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1. Introduction

Modular symmetries might play an important role for a description of the flavor structure in particle physics [1]. In string theory, 
modular transformations appear as the exchange of winding and momentum (Kaluza-Klein) modes in compactified extra dimensions, 
combined with a nontrivial transformation of the moduli. In the application to flavor symmetries, these moduli play the role of flavon 
fields that are responsible for the spontaneous breakdown of flavor and CP symmetries. While string theory requires six compact space 
dimensions with many moduli, the explicit discussion in flavor physics has, up to now, mainly concentrated on two compact extra dimen-
sions and few geometric moduli (see e.g. ref. [2]). In the top-down discussion, this included i) the T2/Z3 orbifold with Kähler modulus T
(and frozen complex structure modulus U ) [3–5] subject to the modular group SL(2, Z)T and ii) the T2/Z2 orbifold with T and U moduli 
with a corresponding modular group SL(2, Z)T × SL(2, Z)U combined with a mirror symmetry that interchanges T and U [6].

The present paper performs a next step towards a more exhaustive discussion of the “many-moduli-case”. Our results are based on 
the observation that string theory includes more moduli beyond the (geometric) T - and U -moduli in form of Wilson lines connected to 
gauge symmetries in extra dimensions. Modular transformations act nontrivially on these Wilson lines and require a modified geometric 
interpretation. In the present paper, we illustrate this situation for compactifications on two-tori and the corresponding transformation of 
the Narain lattice in heterotic string theory. Our main results are:

• Wilson line moduli lead to an enhancement of modular flavor symmetries,
• for the case of two compactified dimensions, this leads to the appearance of the Siegel modular group Sp(4, Z), which includes 

SL(2, Z)T × SL(2, Z)U as well as mirror symmetry,
• a generalized geometric interpretation of the origin of these symmetries is given through an auxiliary Riemann surface of genus 2 

(see Fig. 1) that combines the metric and gauge moduli in a common setting,1 and
• a candidate CP-like symmetry naturally appears in string models with two compact dimensions; interestingly, this symmetry also 

arises in a bottom-up discussion as an outer automorphism of the Siegel modular group, extending it to GSp(4, Z).

The paper is organized as follows. In section 2, we introduce the Siegel modular group Sp(2g, Z). Specific properties and subgroups 
are illustrated for the genus 2 case Sp(4, Z), where the subgroups include SL(2, Z)T × SL(2, Z)U and mirror symmetry. Besides the T -
and U -moduli, the Siegel modular group acts on a third modulus Z . In section 3, we relate this third modulus to Wilson lines in heterotic 
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string theory. We introduce the 2D + 16-dimensional Narain lattice and its outer automorphism Oη̂(D, D + 16, Z) and then specialize 
on D = 2 with a nontrivial Wilson line. The subgroup Oη̂(2, 3, Z) of Oη̂(2, 2 + 16, Z) can be mapped to Sp(4, Z) as given explicitly in 
Table 1. This allows for a connection to the recent bottom-up approach of Ding, Feruglio and Liu [8]. Their “third” modulus can thus be 
realized as a Wilson line in heterotic string theory. In addition, string constructions admit a CP -like symmetry, which appears at the same 
footing as all discrete (traditional and modular) symmetries. In section 4, we show that this CP-like symmetry also appears naturally from 
a bottom-up perspective: It corresponds to an outer automorphism of the Siegel modular group extending it to the general symplectic 
group GSp(4, Z). Conclusions and outlook are given in section 5. Finally, some technical details are discussed in two appendices.

2. The Siegel modular group Sp(2g, ZZZ)

The symplectic group over the integers Sp(2g, Z) (also called the Siegel modular group of genus g) is the group of linear transforma-
tions M which preserve a skew-symmetric bilinear form J , i.e.

Sp(2g,Z) :=
{

M ∈ Z2g×2g | MT J M = J
}

. (1)

Here, J is given as

J :=
(

0 1g

−1g 0

)
, (2)

and 1g is the g-dimensional identity matrix.
As reviewed in appendix A, there exists a natural action of Sp(2g, Z) on a symmetric g × g-dimensional matrix called � ∈Hg , where 

the Siegel upper half plane Hg is defined as

Hg := {
� ∈Cg×g | �T = � , Im � > 0

}
. (3)

Hence, � contains g × (g + 1)/2 complex numbers that are called moduli. In more detail, one splits M ∈ Sp(2g, Z) into g × g-dimensional 
blocks A, B , C , and D as follows

M =
(

A B
C D

)
∈ Sp(2g,Z) . (4)

Then, M acts on � as

�
M−→ (A � + B) (C � + D)−1 . (5)

Note that ±M ∈ Sp(2g, Z) yield the same transformation eq. (5) of �.
In the following, we focus on g = 2. In this case, the moduli are encoded in a symmetric 2 × 2 matrix � whose components are 

denoted as

� =
(

U Z
Z T

)
. (6)

As we will see explicitly in the following, T and U are two moduli associated with the modular group SL(2, Z)T × SL(2, Z)U , while Z is 
a new modulus that interrelates the two SL(2, Z) factors.

2.1. Subgroups of the Siegel modular group Sp(4, Z)

The Siegel modular group Sp(4, Z) contains two factors of SL(2, Z), i.e.

M(γT ,γU ) :=

⎛
⎜⎜⎝

aU 0 bU 0
0 aT 0 bT

cU 0 dU 0
0 cT 0 dT

⎞
⎟⎟⎠ ∈ Sp(4,Z) , (7)

where aT dT − bT cT = aU dU − bU cU = 1. Hence,

γT :=
(

aT bT

cT dT

)
∈ SL(2,Z)T and γU :=

(
aU bU

cU dU

)
∈ SL(2,Z)U . (8)

Here, SL(2, Z) denotes the modular group generated by

S :=
(

0 1
−1 0

)
and T :=

(
1 1
0 1

)
. (9)

In detail, SL(2, Z)U is contained in Sp(4, Z) because

M(12,γU ) =

⎛
⎜⎜⎝

aU 0 bU 0
0 1 0 0

cU 0 dU 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Sp(4,Z) as long as γU =

(
aU bU

cU dU

)
∈ SL(2,Z)U , (10)
2
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due to the defining condition MT
(12,γU )

J M(12,γU ) = J of Sp(4, Z), see eq. (1). Then, we use eq. (5) and find that the moduli transform as

T
M(12,γU )−−−−−→ T − cU Z 2

cU U + dU
, (11a)

U
M(12,γU )−−−−−→ aU U + bU

cU U + dU
, (11b)

Z
M(12,γU )−−−−−→ Z

cU U + dU
. (11c)

Note that for Z = 0 we see that T and Z are invariant under SL(2, Z)U modular transformations, while U transforms as expected from 
SL(2, Z)U . Similarly, we can embed SL(2, Z)T into Sp(4, Z) via

M(γT ,12) =

⎛
⎜⎜⎝

1 0 0 0
0 aT 0 bT

0 0 1 0
0 cT 0 dT

⎞
⎟⎟⎠ ∈ Sp(4,Z) while γT =

(
aT bT

cT dT

)
∈ SL(2,Z)T , (12)

such that the moduli transform as

T
M(γT ,12)−−−−−→ aT T + bT

cT T + dT
, (13a)

U
M(γT ,12)−−−−−→ U − cT Z 2

cT T + dT
, (13b)

Z
M(γT ,12)−−−−−→ Z

cT T + dT
, (13c)

using eq. (5). Let us remark that the modular S2 transformations from SL(2, Z)T and SL(2, Z)U are related in Sp(4, Z), i.e. M(S2,12) =
−M(12,S2) and the moduli transform as

T
M−→ T , (14a)

U
M−→ U , (14b)

Z
M−→ −Z , (14c)

for M ∈ {M(S2,12), M(12,S2)}.
In addition, Sp(4, Z) contains a Z2 mirror transformation

M× :=

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ∈ Sp(4,Z) with (M×)2 = 14 . (15)

As the name suggests, a mirror transformation interchanges T and U , i.e. using eq. (5) one can verify easily that

T
M×−→ U , (16a)

U
M×−→ T , (16b)

Z
M×−→ Z . (16c)

Finally, Sp(4, Z) contains elements M(�) with � ∈Z2. These elements are intrinsically tied to the modulus Z . They can be defined as

M(�) :=

⎛
⎜⎜⎝

1 0 0 −�

m 1 −� 0
0 0 1 −m
0 0 0 1

⎞
⎟⎟⎠ ∈ Sp(4,Z) for � :=

(
�

m

)
∈ Z2 . (17)

Then, eq. (5) yields

T
M(�)−−−→ T + m (m U + 2 Z − �) , (18a)

U
M(�)−−−→ U , (18b)

Z
M(�)−−−→ Z + m U − � . (18c)
3
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3. The origin of the Sp(4, ZZZ) Siegel modular group from strings

It is well-known that compactifications of heterotic string theory on tori (and toroidal orbifolds) are naturally described in the Narain 
formulation [9–11]. There, one considers D right- and D + 16 left-moving (bosonic) string modes (yR, yL) to be compactified as

Y ∼ Y + E N̂ , where Y :=
(

yR
yL

)
, (19)

i.e. on an auxiliary torus of dimension 2D + 16. The 16 extra left-moving degrees of freedom give rise to an E8 × E8 (or SO(32)) gauge 
symmetry of the heterotic string. In more detail, the auxiliary torus corresponding to the identification (19) can be defined by the so-called 
Narain lattice

� :=
{

E N̂
∣∣ N̂ =

⎛
⎝ n

m
p

⎞
⎠ ∈Z2D+16

}
(20)

that is spanned by the Narain vielbein E , a matrix of dimension (2D + 16) × (2D + 16). Here, n ∈ZD gives the winding numbers, m ∈ZD

the Kaluza–Klein numbers and p ∈ Z16 the gauge quantum numbers. As the one-loop partition function of the string worldsheet has to 
be modular invariant, the Narain lattice � has to be an even, integer and self-dual lattice with a metric η of signature (D, D + 16). This 
condition on � holds if the Narain vielbein E satisfies

η̂ := ETη E =
⎛
⎝ 0 1D 0
1D 0 0
0 0 g

⎞
⎠ , where η :=

⎛
⎝−1D 0 0

0 1D 0
0 0 116

⎞
⎠ . (21)

Here, g := αT
gαg is the Cartan matrix of the E8 × E8 gauge symmetry and αg denotes a matrix whose columns are the simple roots of 

E8 × E8 (or in the case of an SO(32) gauge symmetry, αg is a basis of the Spin(32)/Z2 weight lattice).
It is convenient to define the so-called generalized metric of the Narain lattice in terms of the metric G := eTe (of the D-dimensional 

torus spanned by the geometrical vielbein e), the anti-symmetric B-field B and the Wilson lines A,

H := ET E :=
⎛
⎝ 1

α′
(
G + α′ AT A + CTG−1C

) −CTG−1 (12 + CTG−1)ATαg

−G−1C α′G−1 −α′G−1 ATαg

αT
g A(12 + G−1C) −α′αT

g AG−1 αT
g

(
116 + α′ AG−1 AT

)
αg

⎞
⎠ , (22)

where C := B + α′
2 AT A and we use conventions similar to those of refs. [12,13], but replacing C by CT for later convenience. Note that 

due to eq. (21), the generalized metric H satisfies the condition(
H η̂−1)2 = 12D+16 . (23)

The outer automorphisms of the Narain lattice are given by “rotational” transformations

Oη̂(D, D + 16,Z) := 〈
	̂

∣∣ 	̂ ∈ GL(2D + 16,Z) with 	̂Tη̂ 	̂ = η̂
〉
. (24)

This is the general modular group of a toroidal compactification of the heterotic string. Elements 	̂ of Oη̂(D, D + 16, Z) act on the Narain 
vielbein E as [4]

E
	̂−→ E 	̂−1 , (25)

such that the Narain scalar product λT
1ηλ2 is invariant for λi ∈ �, i ∈ {1, 2}.

In the following we take D = 2. Moreover, the (continuous) Wilson lines are chosen as Ai = (ai, −ai, 014)T for i ∈ {1, 2}, where Ai

denote the two columns of A. Thus, we allow for continuous Wilson lines ai in the direction of the simple root (1, −1, 014)T of E8 × E8

(or SO(32)) for both directions ei of the geometrical two-torus. Then, we define moduli (T , U , Z) of the two-torus with B-field

B := α′b ε , where ε :=
(

0 1
−1 0

)
, (26)

and Wilson lines background fields A as

T := 1

α′
(

B12 + i
√

det G
)

+ a1 (−a2 + U a1) , (27a)

U := 1

G11

(
G12 + i

√
det G

)
= |e2|

|e1| eiφ , (27b)

Z := −a2 + U a1 , (27c)

cf. ref. [7]. Moreover, e1 and e2 are the two columns of the geometrical vielbein e, and φ denotes the angle enclosed by them. Note that 
the continuous Wilson lines a1 and a2 not only yield a new “Wilson line modulus” called Z but they also alter the definition of the Kähler 
modulus T . In contrast, the complex structure modulus U remains unchanged in the presence of Wilson lines.

In what follows, it will be important to compute the transformation of the moduli (T , U , Z) under general modular transformations 
from Oη̂(2, 3, Z) ⊂ Oη̂(2, 2 + 16, Z). To do so, the generalized metric H = ET E and eq. (25) can be used to obtain

H(T , U , Z)
	̂−→ 	̂−TH(T , U , Z)	̂−1 =: H(T ′, U ′, Z ′) , (28)

for a general modular transformation 	̂ ∈ Oη̂(2, 3, Z).
4
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3.1. Mapping between Oη̂(2, 3, Z) of the Narain lattice and Sp(4, Z)

In this section, we discuss various subgroups and generators of Oη̂(2, 3, Z) ⊂ Oη̂(2, 2 + 16, Z), derive their actions on the moduli 
(T , U , Z) and compare them to the Siegel modular group Sp(4, Z). By doing so, we will show explicitly that the Siegel modular group 
Sp(4, Z) appears naturally in toroidal compactifications of the heterotic string, see also refs. [14–18]. The main results are summarized in 
Table 1 at the end of this section.

Mirror transformation. We define a so-called mirror transformation

M̂ :=

⎛
⎜⎜⎜⎝

0 0 −1 0 0
0 1 0 0 0

−1 0 0 0 0
0 0 0 1 0
0 0 0 0 116

⎞
⎟⎟⎟⎠ ∈ Oη̂(2,2 + 16,Z) , (29)

where we have to change the conventions compared to refs. [3,4] due to the presence of Wilson lines and the resulting changes in the 
generalized metric eq. (22). Using eq. (28) we obtain

T ↔ U and Z ↔ Z , (30)

as expected for a mirror transformation, see eq. (16) for the corresponding case in Sp(4, Z).

Modular group of the complex structure modulus. The general modular group Oη̂(2, 2 +16, Z) contains a modular group SL(2, Z)U associated 
with the complex structure modulus U . It can be generated by

ĈS :=

⎛
⎜⎜⎜⎝

0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 116

⎞
⎟⎟⎟⎠ and ĈT :=

⎛
⎜⎜⎜⎝

1 −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 116

⎞
⎟⎟⎟⎠ . (31)

Then, we use eq. (28) in order to verify the Sp(4, Z) transformations of the moduli (T , U , Z) given in eq. (11).

Modular group of the Kähler modulus. In addition to SL(2, Z)U , due to mirror symmetry eq. (29) there exists a modular group SL(2, Z)T

associated with the Kähler modulus T . It can be defined by

K̂S := M̂ ĈS M̂−1 =

⎛
⎜⎜⎜⎝

0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0

−1 0 0 0 0
0 0 0 0 116

⎞
⎟⎟⎟⎠ and (32a)

K̂T := M̂ ĈT M̂−1 =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0

−1 0 0 1 0
0 0 0 0 116

⎞
⎟⎟⎟⎠ . (32b)

These transformations reproduce the Sp(4, Z) transformations eq. (13) of (T , U , Z), as can be seen explicitly using eq. (28).

Wilson line shifts. Due to the 16 extra left-moving degrees of freedom of the heterotic string, the general modular group Oη̂(2, 2 + 16, Z)

has additional elements called “Wilson line shifts”. They are defined as

Ŵ (�A) :=
⎛
⎝ 12 0 0

− 1
2 �AT g �A 12 �AT g

−�A 0 116

⎞
⎠ ∈ Oη̂(2,2 + 16,Z) , (33)

where �A is a 16 × 2-dimensional matrix with integer entries. Since g is the Cartan matrix of an even lattice (of E8 × E8 or Spin(32)/Z2), 
the 2 × 2 matrix 1

2 �AT g �A is integer. We focus on shifts �A in the directions of a1 and a2. Hence, we define

Ŵ
(

�

m

)
:= Ŵ (�A) for �A :=

⎛
⎜⎜⎜⎝

m �

0 0
...

...

0 0

⎞
⎟⎟⎟⎠ , (34)

for �, m ∈Z . By doing so, we will focus in what follows on a subgroup Oη̂ (2, 3, Z) of Oη̂(2, 2 + 16, Z). Then, using the transformation (28)
of the generalized metric, we obtain
5
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Table 1
We list the generators of the Siegel modular group Sp(4, Z) and their corresponding 
elements in the subgroup Oη̂(2, 3, Z) of the general modular group Oη̂(2, 2 + 16, Z)

constructed explicitly in section 3 in the Narain formulation of the heterotic string. 
In the last column we list the transformation of the moduli, computed in two ways: 
i) using eq. (5) for Sp(4, Z), and independently ii) using eq. (28) for Oη̂(2, 3, Z). The 
CP-like transformation M∗ will be defined in section 4.

Symmetry Sp(4,Z) Oη̂(2,3,Z) Transformation of moduli

SL(2,Z)T

M(S,12) K̂S

T → − 1
T

U → U − Z 2

T
Z → − Z

T

M(T,12) K̂T

T → T + 1
U → U
Z → Z

SL(2,Z)U

M(12,S) ĈS

T → T − Z 2

U
U → − 1

U
Z → − Z

U

M(12,T) ĈT

T → T
U → U + 1
Z → Z

Mirror M× M̂
T → U
U → T
Z → Z

Wilson line shift M
(

�

m

)
Ŵ

(
�

m

) T → T + m (m U + 2 Z − �)

U → U
Z → Z + m U − �

CP-like M∗ ∈ GSp(4,Z) 	̂∗
T → −T̄
U → −Ū
Z → − Z̄

a1

Ŵ
(

�

m

)
−−−−→ a1 + m , a2

Ŵ
(

�

m

)
−−−−→ a2 + � and b

Ŵ
(

�

m

)
−−−−→ b + a1 � − a2 m , (35)

while the metric G is invariant. Translated to the moduli (T , U , Z) defined in eq. (27), this reproduces the Sp(4, Z) transformations given 
in eq. (18).

CP-like transformation. Finally, as discussed in ref. [4], a CP-like generator has to act not only on the (2 + 2)-dimensional Narain coordi-
nates of the geometrical two-torus but also on the 16 extra left-moving degrees of freedom, i.e.

	̂∗ :=

⎛
⎜⎜⎜⎝

−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −116

⎞
⎟⎟⎟⎠ ∈ Oη̂(2,2 + 16,Z) . (36)

Applying eq. (28) to 	̂∗ gives rise to a CP-like transformation

T
	̂∗−→ − T̄ , U

	̂∗−→ − Ū and Z
	̂∗−→ − Z̄ (37)

of the moduli. This string result on CP can also be understood from a bottom-up perspective as we will see in section 4.
As a remark, there exist further Oη̂(2, 2 + 16, Z) transformations not present in Sp(4, Z): One can perform Weyl reflections in the 

16-dimensional lattice of E8 × E8 (or Spin(32)/Z2), see for example M̂W(�W ) in ref. [12].

4. CP as an outer automorphism of Sp(4, ZZZ)

We have seen in the previous section that a CP-like transformation appears naturally in (toroidal) string compactifications. As we shall 
see in this section in a bottom-up discussion, this transformation does not belong to Sp(4, Z) but corresponds to an outer automorphism 
of Sp(4, Z) that, once included, enhances Sp(4, Z) to the general symplectic group GSp(4, Z).

We define a transformation

M
M∗−→ M ′ := M−1∗ M M∗ for all M ∈ Sp(4,Z) , (38)

where M∗ is given by

M∗ :=

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ satisfying MT∗ J M∗ = − J . (39)

Hence, M∗ /∈ Sp(4, Z). Rather it lies in the general symplectic group
6
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GSp(4,Z) :=
{

M ∈ Z4×4 | MT J M = ± J
}

. (40)

Then, it is easy to see that M ′ defined in eq. (38) is an element from Sp(4, Z) for all M ∈ Sp(4, Z), i.e.(
M ′)T

J M ′ = MT∗MT M−T∗ J M−1∗︸ ︷︷ ︸
= − J

M M∗ = − MT∗ MT J M︸ ︷︷ ︸
= J

M∗ = + J . (41)

Hence, eq. (38) defines an automorphism of Sp(4, Z). It is outer because M∗ /∈ Sp(4, Z), as seen in eq. (39).
In order to see the physical meaning of M∗ , we apply eq. (38) to various elements of Sp(4, Z):

M(S,12)
M∗−→ M−1∗ M(S,12) M∗ = (

M(S,12)

)−1
, (42a)

M(T,12)
M∗−→ M−1∗ M(T,12) M∗ = (

M(T,12)

)−1
, (42b)

M(12,S)
M∗−→ M−1∗ M(12,S) M∗ = (

M(12,S)

)−1
, (42c)

M(12,T)
M∗−→ M−1∗ M(12,T) M∗ = (

M(12,T)

)−1
, (42d)

M×
M∗−→ M−1∗ M× M∗ = (M×)−1 = M× , (42e)

M
(

�

m

)
M∗−→ M−1∗ M

(
�

m

)
M∗ = M

(−�

m

)
. (42f)

Let us analyze eq. (42f) in more detail: For each choice of �, m, one can find an M ∈ Sp(4, Z), such that MM
(−�

m

)
M−1 = M

(−�

−m

)
, which 

implies that M
(

�

m

)
is mapped by M∗ to the conjugacy class of its inverse M

(−�

−m

)
. Motivated by eqs. (42), we consider M∗ a CP-like 

transformation, see refs. [19,20]. Indeed, as explained in appendix A, the action of GSp(4, Z) on � can be defined in analogy to the action 
of GL(2, Z) on one modulus, cf. ref. [3,21,22] and ref. [23]. Explicitly, for an element of the general symplectic group

M =
(

A B
C D

)
∈ GSp(4,Z) (43)

we find the transformation rules

�
M−→ (

A �̄ + B
) (

C �̄ + D
)−1

if MT J M = − J , (44a)

�
M−→ (A � + B) (C � + D)−1 if MT J M = + J , (44b)

where �̄ denotes the complex conjugate of �. Consequently, the moduli transform under M∗ as

T
M∗−→ − T̄ , U

M∗−→ − Ū , Z
M∗−→ − Z̄ , (45)

which confirms our expectation for a CP-like transformation.

5. Conclusions and outlook

The potential (traditional and modular) flavor symmetries of string theory compactifications are determined through the outer auto-
morphisms of the Narain lattice. For the heterotic string, the modular symmetries are a subgroup of Oη̂ (D, D + 16, Z), where D is the 
dimension of the relevant compact space, i.e. D ≤ 6. As a starting point, we have concentrated in this paper on a D = 2 sublattice of 
compact six-dimensional space. Apart from the Kähler and complex structure moduli T and U , we include a Wilson line modulus Z and 
arrive at the modular symmetry group Oη̂(2, 3, Z). We show that this group is closely related to the Siegel modular group Sp(4, Z), which 
has been studied intensively in the mathematical literature. The (complex) three-dimensional moduli space of Sp(4, Z) can be visualized 
through an auxiliary Riemann surface of genus 2 (see Fig. 1). Our top-down construction allows for a physical interpretation of the recent 
bottom-up discussion of ref. [8]: Their “third” modulus τ3 (apart from τ1 = U and τ2 = T ) can be understood as a Wilson line modulus Z
of compactified (heterotic) string theory. Furthermore, we have shown in a general study that, in addition to modular symmetries, there is 
a natural appearance of a CP-like transformation predicted from the group Oη̂(2, 3, Z) in string theory. As discussed in section 4, from a 
bottom-up perspective, this CP-like transformation can be understood as an outer automorphism of the Siegel modular group extending 
it to GSp(4, Z).

Beyond these results, an important open task is to make contact with realistic models of “flavor” including chiral matter. With this 
purpose, it is necessary to alter the T2 toroidal compactification by a ZK orbifolding, i.e. T2/ZK . In string theory, this orbifolding results 
in the appearance of twisted strings, which in general give rise to chiral matter. Moreover, it is a remarkable fact that modular symmetries 
act nontrivially on twisted strings, such that twisted strings build nontrivial representations of a finite modular flavor group. Thus, the 
orbifolding in string theory is instrumental to obtain chiral matter that exhibits finite modular flavor symmetries. This general mechanism 
of string theory has been discussed in detail for the T2/Z3 orbifold without Wilson lines: in this case, the modular symmetry SL(2, Z)T

of the Kähler modulus T acts as the finite modular flavor symmetry T ′ on the chiral matter from the twisted sectors of the orbifold [3–5].
As we have seen in this work explicitly, the modular symmetry Oη̂(2, 3, Z) of a toroidal compactification of string theory with Wilson 

lines corresponds to the Siegel modular group Sp(4, Z). Hence, a ZK orbifolding can in general give rise to a finite Siegel modular flavor 
group �g,n (here, of genus g = 2), where chiral matter arises from the twisted sectors of the orbifold and builds nontrivial representations 
of �2,n . For the Z2 orbifold we have n = 2 and �2,2 is isomorphic to S6, the permutation group of six elements, see also ref. [8]. This 
S6 includes the finite modular group S3 × S3 as well as mirror symmetry, as obtained in the string theory discussion of ref. [6], where 
7
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Fig. 1. a) A T1 =T2 torus with the two basis 1-cycles, α and β . Its modular symmetry group is Sp(2, Z) ∼= SL(2, Z). b) A compact Riemann surface of genus 2 T2 and its 
four basis 1-cycles (β1, β2, α1, α2)T. The Siegel modular group Sp(4, Z) is the modular symmetry group of T2. As discussed in ref. [7], setting the Wilson line modulus Z
defined in eq. (27c) to Z = 0 splits the genus 2 surface into two separated two-tori. Note that these auxiliary surfaces must not be mistaken as compactification spaces.

only the moduli T and U associated with SL(2, Z)T × SL(2, Z)U had been considered and the Wilson line modulus was set to Z = 0. This 
indicates the path how to generalize to the case Z �= 0 in string theory. In general, a ZK orbifolding can break the Siegel modular group 
Sp(4, Z) by discrete Wilson lines: The geometrical ZK rotation that acts on the two-torus has to be embedded into the 16 degrees of 
freedom of the gauge symmetry due to worldsheet modular invariance of the string partition function. It is known that a shift embedding 
yields discrete Wilson lines [24], such that the Wilson line modulus Z is frozen at some discrete value. In this case, the Siegel modular 
group Sp(4, Z) is broken by the fixed Wilson line modulus. For a ZK orbifold with K �= 2 the unbroken subgroup from Sp(4, Z) is at 
least the modular group SL(2, Z)T of the Kähler modulus T , while for K = 2 one finds at least SL(2, Z)T × SL(2, Z)U combined with 
a mirror symmetry that interchanges T and U , see ref. [6]. On the other hand, a rotational embedding into the 16 gauge degrees of 
freedom gives rise to continuous Wilson lines [25,26], where the Wilson line modulus Z remains as a free modulus. Hence, one expects 
that a two-dimensional Z2 orbifold with rotational embedding yields the full Sp(4, Z) Siegel modular group, where chiral matter from 
the twisted sector transforms in representations of the finite Siegel modular flavor group �2,2 ∼= S6. A full discussion of the symmetries of 
the Z2 orbifold, including CP , will be subject of a future publication [27].
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Appendix A. Symplectic groups Sp(2g, ZZZ) and modular transformations

Let us review some aspects of the symplectic group Sp(2g, Z) and its relation to modular transformations (see e.g. [28,29] for further 
details). The symplectic group Sp(2g, Z) can be defined by considering an auxiliary genus-g Riemann surface Tg and its symmetries as 
follows: The genus-g surface has 2g nontrivial 1-cycles denoted by (βi, α j) for i, j ∈ {1, . . . , g}, see Fig. 1 for the cases g = 1 and g = 2. 
These cycles form the canonical basis of the homology group H1(Tg, Z) ∼= Z2g . The holomorphic 1-forms ωi build the dual cohomology 
basis, which one can choose to satisfy 

∫
α j

ωi = δi j and 
∫
β j

ωi = ∫
βi

ω j . In these terms, the skew-symmetric form J in eq. (1) is interpreted 

as the intersection numbers 
(

β

α

)
∩

(
β

α

)
of the 2g-dimensional vectors of 1-cycles 

(
β

α

)
= (β1, . . . , βg, α1, . . . , αg)

T, such that αi ∩ α j =
βi ∩ β j = 0 and −(αi ∩ β j) = βi ∩ α j = δi j . Now, one transforms the 1-cycles 

(
β

α

)
(

β

α

)
M−→

(
β ′
α′

)
:=

(
A B
C D

)(
β

α

)
=

(
A β+B α
C β+D α

)
for M =

(
A B
C D

)
∈ Zg×g . (46)

The new 1-cycles 
(

β ′
α′

)
also form a basis of H1(Tg, Z) if M ∈ GL(2g, Z). Moreover, we have to require that the intersection numbers and, 

hence, J be invariant under the transformation (46). This amounts to demanding that M J MT = J . By taking the inverse transpose of this 
equation we get M−T J−T M−1 = J−T. Then, using J−T = J we obtain the condition MT J M = J , i.e. M ∈ Sp(2g, Z).

A consequence of the Torelli theorem for Riemann surfaces is that the genus-g surface Tg is determined by the complex g-dimensional 
torus, which can be defined as the quotient of Cg divided by a complex lattice. This lattice is given by the columns of the g × 2g period 
matrix of Tg ,

�g :=

⎛
⎜⎜⎝

∫
α1

ω1 . . .
∫
α1

ωg
∫
β1

ω1 . . .
∫
β1

ωg

...
...

...
...∫

αg
ω1 . . .

∫
αg

ωg
∫
βg

ω1 . . .
∫
βg

ωg

⎞
⎟⎟⎠ . (47)

By choosing a basis in which 
∫
α j

ωi = δi j , one can always rewrite �g , such that

�g = (1g,�) , (48)
8
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where we have defined the g × g complex modulus matrix �, such that �T = �. Clearly, the transformations 
(

β

α

)
→ M

(
β

α

)
induce 

transformations on the modulus matrix � in eq. (47). Restricting further to Im� > 0, we arrive at the modular space of the genus-g
compact surface Tg ,

Hg = {
� ∈Cg×g | �T = �, Im � > 0

}
. (49)

Consider the g = 1 case. We observe that M are 2 × 2 integer matrices with unit determinant, i.e. they describe the modular group 
Sp(2, Z) ∼= SL(2, Z) of a T2 torus. Given the holomorphic 1-form ω = dz and the nontrivial 1-cycles α and β , shown in Fig. 1a), the period 
matrix of T2 is given by

�1 =
(∫

α ω,
∫
β
ω

)
= (1, τ ) , τ ∈C , Imτ > 0 . (50)

The last equation arises from the choice 
∫
α ω = 1 and the definition of the modulus τ := ∫

β
ω. We now let the SL(2, Z) element M =

(
a b
c d

)
act on the 1-cycle vector (β, α)T. This implies that the period matrix transforms as

�1 → �′
1 =

(∫
cβ+dα ω′,

∫
aβ+bα ω′

)
=

(
c
∫
β
ω′ + d

∫
α ω′,a

∫
β
ω′ + b

∫
α ω′

)
. (51)

By demanding that the holomorphic 1-form transforms under M as ω′ = ω(cτ +d)−1, we normalize the transformed period matrix, which 
then becomes

�′
1 = (

1, (aτ + b)(cτ + d)−1) . (52)

This allows us to identify the standard modular transformation τ → (aτ + b)(cτ + d)−1.
The same discussion can be conducted for the more interesting case g = 2, which leads to the Siegel modular group Sp(4, Z). The 

Riemann surface T2 has the holomorphic 1-form basis (ω1, ω2) and the nontrivial 1-cycles 
(

β

α

)
= (β1, β2, α1, α2)

T, illustrated in Fig. 1b). 
Thus, its 2 × 4 period matrix reads

�2 =
(∫

α1
ω1

∫
α1

ω2
∫
β1

ω1
∫
β1

ω2∫
α2

ω1
∫
α2

ω2
∫
β2

ω1
∫
β2

ω2

)
= (12, �) , (53)

where in the last relation we have chosen 
∫
α j

ωi = δi j and defined the modular matrix �, as given in eq. (6), satisfying � = �T and 

Im� > 0. Next, we perform an Sp(4, Z) transformation M
(

β

α

)
, where M =

(
A B
C D

)
and A, B, C, D are 2 × 2 integer matrices. Although the 

expression for the transformed period matrix �′
2 is more complicated than in the case g = 1, one can readily show that, by demanding 

that Sp(4, Z) transformations on the 1-forms act as (ω′
1, ω′

2) = (ω1, ω2)(C� + D)−1, one arrives at

�2 → �′
2 = (

12, (A� + B)(C� + D)−1) . (54)

We find thus that Sp(4, Z) transformations act on the modular matrix � as

�
M−→ (A� + B) (C� + D)−1 . (55)

We can also consider a GSp(4, Z) transformation, where we are interested in the transformation of � under those M̃ ∈ GSp(4, Z)

with M̃T J M̃ = − J (since for the case with MT J M = + J the result is already given in eq. (55)). In section 4, we have defined a special 
element M∗ ∈ GSp(4, Z) with MT∗ J M∗ = − J . Then, the combined transformation M := M̃ M∗ satisfies MT J M = + J , so M ∈ Sp(4, Z). Since 
we know the transformation of � for M ∈ Sp(4, Z), we only need to know the transformation of � for our special element M∗ in order 
to understand the general case with M̃ = MM∗ . Under M∗ the 1-cycles 

(
β

α

)
transform as

(
β

α

)
M∗−→

(−12 0
0 12

)(
β

α

)
=

(−β

α

)
, (56)

cf. eq. (46). As can be seen in Fig. 1, this transformation corresponds to a geometrical mirror transformation at a horizontal plane. By 
choosing appropriate complex coordinates on the surface T2 (i.e. in each chart) this mirror transformation acts by complex conjugation. 
Consequently, it is conceivable that M∗ has to map the 1-forms ωi to ω̄i . For the period matrix, this amounts to

�2 = (
12,�

) M∗−→
(∫

α1
ω̄1

∫
α1

ω̄2
∫
−β1

ω̄1
∫
−β1

ω̄2∫
α2

ω̄1
∫
α2

ω̄2
∫
−β2

ω̄1
∫
−β2

ω̄2

)
= (

12,−�̄
)

. (57)

This proves eq. (45) that we have also found independently in the string setup, see eq. (37). Furthermore, this discussion can be generalized 
easily to the case GSp(2g, Z) for Tg with general genus g . This is particularly easy for g = 1, where the basis 1-form is ω = dz. Considering 

the CP-like transformation 
(−1 0

0 1

)
(using e.g. eqs. (66) and (144) of ref. [30]) we get (Im dz, Re dz) M∗−→ (− Im dz, Re dz). Consequently, we 

see that dz
M∗−→ dz̄. It then follows for the period matrix that �1 = (1, τ ) M∗−→ (

∫
α ω̄, 

∫
−β

ω̄) = (1, −τ̄ ), choosing τ = ∫
β
ω and 

∫
α ω = 1, 

as before. This confirms the well-known CP-like transformation of the modulus τ [3,21,22], which promotes the modular symmetry 
Sp(2, Z) ∼= SL(2, Z) to GSp(2, Z) ∼= GL(2, Z).
9
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Appendix B. Relations between elements of Sp(4, ZZZ)

In this appendix, we state several relations between elements of the Siegel modular group Sp(4, Z). We have verified that they also 
hold in Oη̂(2, 2 + 16, Z) using the dictionary given in Table 1. This gives a further non-trivial proof that Sp(4, Z) and Oη̂(2, 2 + 16, Z) are 
related.

Elements M(γT ,γU ) of SL(2, Z)T × SL(2, Z)U ⊂ Sp(4, Z) get multiplied as

M(γ1,γ2) M(δ1,δ2) = M(γ1 δ1,γ2 δ2) , (58)

as might have been expected. Thus, the elements M(γT ,γU ) form a subgroup of Sp(4, Z).
On the other hand, the set of elements M(�) ∈ Sp(4, Z) does not form a subgroup of Sp(4, Z) on its own as one can see from the 

relation

M(�1) M(�2) = M(�1 + �2)
(
M(T,12)

)�T
1ε �2 , (59)

for �1, �2 ∈Z2. However, elements of the form M
(

�

0

)
and M

(
0
m

)
build two independent subgroups of Sp(4, Z) because

M
(

�1
0

)
M

(
�2
0

)
= M

(
�1+�2

0

)
, (60a)

M
(

0
m1

)
M

(
0

m2

)
= M

(
0

m1+m2

)
. (60b)

Next, we consider the action of γ ∈ SL(2, Z)U on M� . It is given by

M(12,γ ) M(�) = M(γ �) M(12,γ ) (61)

such that for � = (�, m)T we obtain

M(12,S) M
(

�

m

)
= M

(
m
−�

)
M(12,S) , (62a)

M(12,T) M
(

�

m

)
= M

(
�+m

m

)
M(12,T) . (62b)

From the point of view of Wilson lines on a two-torus, these equations are not unexpected: � corresponds to the Wilson line A2 in the 
e2 direction, while m corresponds to the Wilson line A1 in the e1 direction. Furthermore, under modular S and T transformations from 
SL(2, Z)U , the lattice vectors e1 and e2 get mapped as

e1
S−→ −e2 , e2

S−→ e1 , and e1
T−→ e1 , e2

T−→ e1 + e2 , (63)

see e.g. ref. [30]. Hence, eqs. (62) resembles eq. (63) on the level of the associated Wilson lines. In addition, we have checked the following 
relations, both in Sp(4, Z) and in Oη̂(2, 2 + 16, Z):

M(T,12) M
(

�

m

)(
M(T,12)

)−1 = M
(

�

m

)
, (64a)

M× M(γ1,γ2) M× = M(γ2,γ1) , (64b)

M× M
(

�

0

)
M× = M

(
�

0

)
, (64c)

M× M
(

0
m

)
M× = (

M(S,S)

)−1
M

(
0

−m

)
M(S,S) . (64d)

Finally, we learn from the relation

M
(

�

m

)
= M

(
�

0

) (
M(12,S)

)−1
M

(m
0

)
M(12,S) M×

(
M(12,T)

)−�m
M× (65)

that Sp(4, Z) can be generated by M(12,S) , M(12,T) , M× and M
(

1
0

)
(and its inverse M

(−1
0

)
).
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