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Abstract

String theory leads to a flavor scheme where modular symmetries play a crucial role. Together with the 
traditional flavor symmetries they combine to an eclectic flavor group, which we determine via outer au-
tomorphisms of the Narain space group. Unbroken flavor symmetries are subgroups of this eclectic group 
and their size depends on the location in moduli space. This mechanism of local flavor unification allows 
a different flavor structure for different sectors of the theory (such as quarks and leptons) and also ex-
plains the spontaneous breakdown of flavor- and CP-symmetries (via a motion in moduli space). We derive 
the modular groups, including CP and R-symmetries, for different sub-sectors of six-dimensional string 
compactifications and determine the general properties of the allowed flavor groups from this top-down 
perspective. It leads to a very predictive flavor scheme that should be confronted with the variety of exist-
ing bottom-up constructions of flavor symmetry in order to clarify which of them could have a consistent 
top-down completion.
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1. Introduction

The consideration of finite modular flavor groups has been suggested in the pioneering work 
of Feruglio [1]. A combination of these modular symmetries and traditional flavor symmetries 
leads to the eclectic flavor scheme [2,3]. Here, we present a study of the eclectic flavor approach 
towards ten-dimensional string theory with D = 6 compactified spatial dimensions.1 This gen-
eralizes previous work with D = 2 compact dimensions which is shown to fail to capture all the 
relevant properties of the eclectic picture. A few of the highlights of this discussion have been 
presented in an earlier paper [12] without explaining the full technical details. These highlights 
include

• a further enhancement of the eclectic group,
• a new interpretation of discrete R-symmetries originating from modular transformations of 

the complex structure modulus,
• a relation between the R-charges and the modular weights of matter fields, and
• new insights in the nature of CP-symmetry and its spontaneous breakdown.

These results have been illustrated previously [3,12] in an example of a D = 2 sublattice based on 
the T 2/Z3 orbifold. Here we shall now present the complete results in the generic situation and 
provide the full technical details of the derivation. In addition, we shall illustrate an interesting 
novel feature: the existence of accidental continuous (gauge) symmetries of the effective theory 
at special loci in moduli space, which turn out to be further enhancements of the traditional flavor 
symmetries.

In section 2 we shall discuss basic background material concerning the D = 2 Narain lat-
tice formulation [13–16] and its outer automorphisms relevant for (discrete) modular symme-
tries [17,18]. These include the groups SL(2, Z)T and SL(2, Z)U for the Kähler modulus T and 
the complex structure modulus U , respectively, mirror symmetry as well as a CP-like transfor-
mation. Results for the generators are summarized in Table 1 for various T 2/ZK orbifolds. We 
include a discussion of the modular properties of the superpotential and Kähler potential in the 
modular invariant field theory, including modular weights and automorphy factors.

Section 3 concentrates on the discussion of those aspects of the modular group SL(2, Z)U of 
the complex structure modulus which will become relevant for the analysis in D = 6 compact 
dimensions. In contrast to SL(2, Z)T (which exchanges windings and momenta), SL(2, Z)U can 
be given a fully geometrical interpretation. In previous discussions of D = 2 orbifolds T 2/ZK , 
the subtleties of this analysis have not yet been completely considered, because the modulus U is 
frozen as a result of the orbifold twist (except for the case T 2/Z2 which has been discussed else-
where [19]). We show here that, even with a frozen value 〈U 〉 of the complex structure U , there 
are nontrivial elements of SL(2, Z)U that remain unbroken. These lead to additional discrete R-
symmetries according to the stabilizer subgroups given in formula (82). These symmetries will 
be relevant for the D = 6 case in the form of sublattice rotations.

In section 4, we consider the T 6/P orbifold (with point group P ). We start with the discus-
sion in full generality (including the restrictions of N = 1 supersymmetry in four space-time 
dimensions) and then illustrate the results for the Z6-II orbifold. We shall identify the sublattice 
rotations of SL(2, Z)U , their action on matter fields and determine which (fractional) modular 

1 For further work on modular flavor symmetries in string theory, see e.g. refs. [4–11].
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weights are relevant for the emerging R-symmetries. Section 4.3 includes a discussion of CP-
transformations, including the full D = 6 picture (summarized in Table 3).

Section 5 presents the complete description for a sublattice T 2/Z3 of the Z6-II orbifold. This 
includes the traditional flavor symmetry �(54), the finite modular symmetry T ′ from SL(2, Z)T , 
a discrete R-symmetry ZR

9 from SL(2, Z)U as well as a CP-like transformation (which is sepa-
rately discussed in subsections 5.6 and 5.7). The maximal eclectic group is shown to have 3, 888
elements, extending �(2) ∼= [1944, 3448] (see Table 5) by the CP-like transformation. We dis-
cuss restrictions of this symmetry on the form of the superpotential and Kähler potential of the 
N = 1 supersymmetric field theory.

Only part of the eclectic flavor symmetry is realized linearly. For generic values of the moduli 
only the traditional flavor symmetry is unbroken. This symmetry will be enhanced at special 
points (or sub-loci) of the moduli space. In section 6 we present this phenomenon of local flavor 
unification for the T 2/Z3 orbifold and identify these enhanced groups (see Table 6 and Fig. 3) as 
well as the specific forms of the superpotential. Moving away from these sub-loci in moduli space 
will correspond to a spontaneous breakdown of the enhanced flavor groups (in particular also for 
the violation of CP-symmetry). A novel observation concerns the emergence of (accidental) 
continuous gauge symmetries at special loci in moduli space, here discussed in section 6.4.

Section 7 will present conclusions and an outlook for future applications of our results.
Note to the reader: As our discussion is partially very technical we include a short specific 

summary at the end of each section 2–6 to make the results of the discussion as transparent as 
possible.

2. Modular symmetries in string theory

In general, the modular group SL(2, Z) can be defined as the group generated by two abstract 
generators, S and T, that satisfy the defining relations

S4 = (S T)3 = 1 and S2 T = T S2 . (1)

It turns out convenient to represent these generators by the matrices

S :=
(

0 1
−1 0

)
and T :=

(
1 1
0 1

)
. (2)

In this context, the elements γ ∈ SL(2, Z) can be expressed by 2 ×2 matrices with integer entries 
and determinant one, i.e.

γ :=
(

a b

c d

)
, with ad − bc = 1, a, b, c, d ∈Z . (3)

Particularly relevant in string models (and in bottom-up flavor model building) are the so-called 
finite modular groups. Their generators are also denoted by S and T, which fulfill the following 
defining relations

�′
N : S4 = (S T)3 = TN = 1 and S2 T = T S2 , (4a)

�N : S2 = (S T)3 = TN = 1 , (4b)

where �′
N is the double cover of �N . The finite modular groups �′

N and �N can be ob-
tained from the modular groups SL(2, Z) and PSL(2, Z) ∼= SL(2, Z)/Z2 as the quotients �′

N
∼=

SL(2, Z)/�(N) and �N
∼= PSL(2, Z)/�̃(N), where �(N) ∼= 〈γ ∈ SL(2,Z) |γ = 1 mod N〉 and 

�̃(N) ∼= 〈γ ∈ PSL(2,Z) |γ = 1 mod N〉 are modular congruence subgroups.
3
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2.1. Narain lattice of torus compactifications

In string theory, target-space modular symmetries can arise from the two-dimensional world-
sheet CFT. To see this, let us first consider string theory compactified on a D-dimensional torus 
TD , which is most naturally described in the Narain formulation [13–15]. There, one considers 
right- and left-moving string coordinates yR and yL, which are related to the ordinary internal 
coordinates y and their dual coordinates ỹ via

y :=
√

α′
2

(yL + yR) and ỹ :=
√

α′
2

(yL − yR) . (5)

Then, (yR, yL) are compactified on a 2D-dimensional auxiliary torus. This torus is defined by 
the so-called Narain lattice � that is spanned by the so-called Narain vielbein E. In more detail, 
the Narain torus boundary condition in this formalism reads(

yR
yL

)
∼

(
yR
yL

)
+ λ , where λ ∈ � :=

{
E N̂

∣∣∣ N̂ =
(

n

m

)
∈ Z2D

}
, (6)

and n, m ∈ ZD are known as winding and Kaluza–Klein (KK) numbers, respectively. Due to 
worldsheet modular invariance of the one-loop string partition function, the Narain lattice �
spanned by E has to be an even, integer, self-dual lattice with metric of signature (D, D). This 
translates into the following condition on the Narain vielbein E:

ETηE = η̂ :=
(

0 1D

1D 0

)
, where η :=

( −1D 0
0 1D

)
(7)

denotes the metric of signature (D, D) and 1D is the (D × D)-dimensional identity matrix. 
Then, the Narain scalar product of two Narain vectors λi = E N̂i ∈ � with N̂i = (ni, mi) ∈ Z2D

for i ∈ {1, 2} reads

λT
1 ηλ2 = N̂T

1 η̂ N̂2 = nT
1 m2 + mT

1 n2 ∈ Z . (8)

This confirms that the lattice � is integer and even, as the scalar product is integer and, if N̂1 =
N̂2, even. Also, as expected from eq. (7), we note that η̂ is the Narain metric in the lattice basis.

In the absence of (discrete) Wilson lines [20], one can choose the (2D × 2D)-dimensional 
Narain vielbein E fulfilling eq. (7) as

E := 1√
2

⎛
⎜⎜⎜⎝

e−T

√
α′ (G − B) −√

α′ e−T

e−T

√
α′ (G + B)

√
α′ e−T

⎞
⎟⎟⎟⎠ , (9)

see refs. [16–18]. Here, α′ is the Regge slope that enters the Narain vielbein E, such that E
is dimensionless. Then, E is parameterized by the (D × D)-dimensional geometrical vielbein 
e, yielding the metric G := eTe of the geometrical torus TD , and the (D × D)-dimensional 
anti-symmetric B-field B .

Using the explicit parameterization (9), we can translate the Narain boundary condition (6) to 
the coordinates y and their duals. We obtain(

y

ỹ

)
∼

(
y

ỹ

)
+

(
e n

e−T
(
B n + α′ m

) ) . (10)
4
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Note that the boundary condition y ∼ y + e n for the geometrical coordinates y of closed strings 
motivates the name of n ∈ZD as winding numbers of the geometrical torus TD spanned by e.

The Narain lattice � is beneficial as it incorporates the winding numbers n ∈ZD and the KK 
numbers m ∈ ZD on equal footing. Hence, it allows for a natural formulation of T -duality in 
string theory, where KK and winding numbers get interchanged.

2.2. Outer automorphisms of the Narain lattice

In the Narain lattice basis, the Narain metric η̂ can be used to define the group of outer auto-
morphisms2 of the Narain lattice � that preserve the Narain metric η̂ as

Oη̂(D,D,Z) := 〈
	̂

∣∣ 	̂ ∈ GL(2D,Z) with 	̂Tη̂ 	̂ = η̂
〉
, (11)

such that each Narain lattice vector λ = E N̂ ∈ � is transformed by an outer automorphism 
	̂ ∈ Oη̂(D, D, Z) according to

λ = E N̂
	̂−→ E 	̂−1N̂ ∈ � . (12)

Here, we use 	̂−1 instead of 	̂ for later convenience, see section 2.5. Then, 	̂−1N̂ ∈ Z2D and 
the Narain scalar product λT ηλ from eq. (8) is invariant under the transformation (12). Note 
that the transformation of the Narain lattice vector eq. (12) can be interpreted as induced by the 
transformation of the Narain vielbein under outer automorphisms given by

E
	̂−→ E 	̂−1 for 	̂ ∈ Oη̂(D,D,Z) . (13)

The group of outer automorphisms of the Narain lattice Oη̂(D, D, Z) with these properties con-
tains the modular group, as we discuss next.

For concreteness, let us focus on a geometrical two-torus T 2 with D = 2. One can easily 
verify that Oη̂(2, 2, Z) contains two copies of SL(2, Z) as follows: First, we can define two 
Oη̂(2, 2, Z) elements

K̂S :=
(

0 −ε

−ε 0

)
, K̂T :=

(
12 0
−ε 12

)
, where ε :=

(
0 1

−1 0

)
, (14)

which satisfy the defining relations (1) of SL(2, Z),(
K̂S

)4 =
(
K̂S K̂T

)3 = 14 and
(
K̂S

)2
K̂T = K̂T

(
K̂S

)2
. (15)

We denote this modular group by SL(2, Z)T . Moreover, we identify the Oη̂(2, 2, Z) elements

ĈS :=
( −ε 0

0 −ε

)
, ĈT :=

(
γ 0
0 γ −T

)
, where γ :=

(
1 −1
0 1

)
, (16)

which also satisfy the SL(2, Z) defining relations,(
ĈS

)4 =
(
ĈS ĈT

)3 = 14 and
(
ĈS

)2
ĈT = ĈT

(
ĈS

)2
. (17)

2 Here, Oη̂(D, D, Z) gives the discrete “rotational” outer automorphisms of the Narain lattice. Furthermore, there 
are continuous translations that act by conjugation on Narain lattice vectors and, therefore, correspond to the trivial 
automorphism of �.
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Hence, ĈS and ĈT give rise to another factor of the modular group, denoted by SL(2, Z)U . Even 
though all elements of SL(2, Z)T commute with those of SL(2, Z)U , these two factors are not 
fully independent since they share a common element, given by(

K̂S

)2 =
(
ĈS

)2 = − 14 . (18)

The group Oη̂(2, 2, Z) of outer automorphisms of the Narain lattice � contains two additional 
generators, which we can choose for example as

	̂∗ :=

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ and M̂ :=

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ . (19)

They give rise to Z2 ×Z2. Motivated by the relations

	̂∗ K̂S 	̂−1∗ =
(
K̂S

)−1
, 	̂∗ K̂T 	̂−1∗ =

(
K̂T

)−1
, (20a)

	̂∗ ĈS 	̂−1∗ =
(
ĈS

)−1
, 	̂∗ ĈT 	̂−1∗ =

(
ĈT

)−1
, (20b)

we call 	̂∗ a CP-like transformation. Furthermore, we call M̂ a mirror transformation as it inter-
changes SL(2, Z)T and SL(2, Z)U , i.e.

M̂ K̂S M̂−1 = ĈS and M̂ K̂T M̂−1 = ĈT . (21)

2.3. Moduli and modular symmetries of T 2

The modular subgroups SL(2, Z)T and SL(2, Z)U of Oη̂(2, 2, Z) are associated with the 
transformations of the moduli of a T 2 torus, as we now discuss.

The Narain vielbein E of the geometrical two-torus T 2 with background B-field allows for 
certain deformations while satisfying the conditions eq. (7) required for E to span a Narain 
lattice. These deformations correspond to two moduli fields:

Kähler modulus T := 1

α′
(
B12 + i

√
detG

)
and (22a)

complex structure modulus U := 1

G11

(
G12 + i

√
detG

)
. (22b)

Comparing these definitions with eq. (9), we realize that the Narain vielbein can be expressed 
in terms of the T 2 moduli, E = E(T , U), up to some unphysical transformations, see for exam-
ple ref. [16]. Hence, the action of 	̂ ∈ Oη̂(2, 2, Z) on the Narain vielbein given by eq. (13) is 
equivalent to a transformation of the T and U moduli. To determine explicitly the transformation 
properties of the moduli, it is convenient to define the generalized metric (valid for an arbitrary 
dimension D)

H := ETE =
( 1

α′
(
G − B G−1B

) −B G−1

G−1B α′ G−1

)
. (23)

For a two-torus T 2, the generalized metric in terms of the torus moduli reads
6
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H(T ,U) = 1

ImT ImU

⎛
⎜⎜⎝

|T |2 |T |2 ReU ReT ReU −ReT

|T |2 ReU |T U |2 |U |2 ReT −ReT ReU

ReT ReU |U |2 ReT |U |2 −ReU

−ReT −ReT ReU −ReU 1

⎞
⎟⎟⎠ . (24)

Due to the transformation of the vielbein eq. (13), the action of 	̂ ∈ Oη̂(2, 2, Z) on the general-
ized metric is given by

H(T ,U)
	̂
−→ 	̂−TH(T ,U) 	̂−1 =: H(T ′,U ′) . (25)

From this equation and the expression (24), given a transformation 	̂, one can readily obtain 
the forms of the transformed moduli T ′ and U ′. For example, considering as 	̂ the SL(2, Z)T
modular generators K̂S and K̂T in eq. (14), we observe that the associated moduli transformations 
are

T
K̂S−→ T ′ = − 1

T
, U

K̂S−→ U ′ = U , and T
K̂T−→ T ′ = T + 1 , U

K̂T−→ U ′ = U ,

(26)

which explains the index chosen for the modular group SL(2, Z)T . From this observation, as 
shown e.g. in ref. [18], we know that under a modular transformation γT ∈ SL(2, Z)T the moduli 
T and U transform as

T
γT−→ γT T := aT T + bT

cT T + dT

and U
γT−→ U for γT =

(
aT bT

cT dT

)
∈ SL(2,Z)T ,

(27)

in the 2 × 2 matrix notation used in eq. (3).
Analogously, letting the generalized metric (24) transform under the SL(2, Z)U generators 

defined in eq. (16), one finds that the T and U moduli transform according to

T
ĈS−→ T ′ = T , U

ĈS−→ U ′ = − 1

U
, and T

ĈT−→ T ′ = T , U
ĈT−→ U ′ = U + 1 .

(28)

Hence, a general modular element γU ∈ SL(2, Z)U acts on the moduli as

T
γU−→ T and U

γU−→ γU U := aU U + bU

cU U + dU

for γU =
(

aU bU

cU dU

)
∈ SL(2,Z)U ,

(29)

as we will also re-derive later in section 3.1 using an alternative approach. Moreover, repeating 
the previous steps, the mirror transformation M̂ interchanges T and U ,

T
M̂−→ T ′ = U and U

M̂−→ U ′ = T , (30)

while the CP-like transformation 	̂∗ acts as

T
	̂∗−→ T ′ = − T̄ and U

	̂∗−→ U ′ = − Ū . (31)

A brief remark is in order: The modular transformation (K̂S)2, which equals (ĈS)2, acts triv-
ially on both moduli. Hence, the modular groups restricted to their action only on the moduli 
7
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is PSL(2, Z)T and PSL(2, Z)U , where for example γT ∈ SL(2, Z)T and −γT ∈ SL(2, Z)T are 
identified in PSL(2, Z)T . However, in full string theory (K̂S)2 acts nontrivially, for example, on 
massive winding strings.

2.4. Orbifold compactifications in the Narain formulation

Defining Y := (yR, yL)T for the Narain coordinates, a TD/ZK orbifold in the Narain formu-
lation is obtained by extending the boundary conditions of closed strings eq. (6) to

Y ∼ �kY + E N̂ , where �K = 12D and k = 0, . . . ,K − 1 . (32)

Moreover, the so-called Narain twist � shall not interchange right- and left-movers. Thus, it is 
given by

� :=
(

θR 0
0 θL

)
∈ O(D) × O(D) . (33)

Hence, � generates a ZK rotation that is modded out from the Narain torus in the orbifold. 
The Narain twist has to be a (rotational) symmetry of the Narain lattice of the torus, i.e. � � =
�. Thus, � has to be an outer automorphism of the Narain lattice �. This translates into the 
following condition on the so-called Narain twist in the Narain lattice basis

�̂ := E−1�E
!∈ GL(2D,Z) . (34)

Furthermore, from eq. (33) we find that the Narain metric (7) and the generalized metric (23) are 
orbifold invariant,

�̂Tη̂ �̂ = η̂ and �̂TH �̂ = H . (35)

In summary, the Narain twist in the Narain lattice basis �̂ := E−1� E has to be a Narain-
metric preserving outer automorphism of the Narain lattice, which, in addition, leaves the gener-
alized metric (and therefore all torus moduli) invariant, i.e.

�̂
!∈ Oη̂(D,D,Z) , Ta

�̂−→ T ′
a

!= Ta and Ub
�̂−→ U ′

b

!= Ub , (36)

where Ta and Ub denote all Kähler and complex structure moduli of a TD/ZK orbifold, respec-
tively. This invariance condition of the moduli results in a stabilization of some of them: One 
says that some moduli are frozen geometrically in order to satisfy eq. (36).

2.5. Modular symmetries of orbifold compactifications

We shall restrict ourselves here to symmetric orbifolds TD/ZK , for which right- and left-
movers are equally affected by the orbifold twist, which is granted if we additionally impose in 
eq. (33) the condition θ := θR = θL ∈ O(D). Then, the orbifold twist θ generates the so-called 
geometrical point group P ∼= ZK ⊂ O(D).

The group structure and the symmetries of the orbifold can be realized by expressing the 
boundary conditions eq. (32) of the Narain orbifold in terms of the so-called Narain space group 
SNarain as

Y ∼ g Y := �kY + E N̂ , where g = (�k,E N̂) ∈ SNarain . (37)

The Narain space group is equipped with the product defined by
8
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g′g = (�k′
,E N̂ ′)(�k,E N̂) := (�k′+k,E N̂ ′ + �k′

E N̂) , g, g′ ∈ SNarain . (38)

An arbitrary element g ∈ SNarain can be expressed in the Narain lattice basis by conjugating with 
h := (E, 0) as

ĝ := h−1 g h = (E−1,0)(�k,E N̂)(E,0) = (E−1�kE, N̂) = (�̂k, N̂) , (39)

where we have used the Narain twist in the Narain lattice basis defined in eq. (34). In our notation, 
the Narain space group and its elements are indicated by a hat in the Narain lattice basis, i.e. 
ĝ ∈ ŜNarain.

To identify the modular symmetries of the four-dimensional effective theory after orbifolding 
amounts to determining the outer automorphisms of the Narain space group ŜNarain. An outer 
automorphism of the Narain space group is given by a transformation

ĥ := (	̂, T̂ ) /∈ ŜNarain , (40)

such that ĥ−1ĝ ĥ ∈ ŜNarain for all ĝ = (�̂k, N̂) ∈ ŜNarain is satisfied. Explicitly, the condition for 
ĥ to be an outer automorphism of ŜNarain reads

(	̂, T̂ )−1(�̂k, N̂) (	̂, T̂ ) = (	̂−1�̂k	̂, 	̂−1(�̂k − 12D) T̂ + 	̂−1N̂)
!∈ ŜNarain , (41)

see refs. [19,21] for an algorithm to classify the outer automorphisms of a (Narain) space group. 
If ŜNarain is generated by pure rotations (�̂, 0) and pure translations (12D, N̂) with N̂ ∈ Z2D , the 
condition (41) is equivalent to demanding that

	̂−1�̂k	̂
!= �̂k′

, 	̂−1N̂
!∈ Z2D and

(
12D − �̂k

)
T̂

!∈ Z2D , (42)

for all k = 0, . . . , K − 1 and N̂ ∈Z2D . Then, also the group of outer automorphism is generated 
by pure rotations (	̂, 0) and pure translations (12D, T̂ ), such that 	̂ �= �̂k and T̂ /∈ Z2D . The 
translational outer automorphisms contribute to the so-called traditional flavor symmetry of the 
theory, as we will review in section 5.2 in the case of a T 2/Z3 orbifold sector. Let us focus now 
on the rotational elements (	̂, 0). Note that choosing k = 0 in eq. (42) delivers precisely the outer 
automorphisms of the Narain lattice, studied in section 2.2. In particular, we find the condition 
	̂−1N̂ ∈Z2D , which is satisfied only if 	̂ ∈ Oη̂(D, D, Z), cf. eqs. (11) and (12). However, for an 
orbifold compactification, the outer automorphism 	̂ is further constrained by the first condition 
in eq. (42) for k �= 0.

Let us focus now on D = 2. As we have seen in section 2.2, in this case the outer automor-
phisms of T 2 build the group of modular symmetries of a torus compactification, generated by 
ĈS, ĈT, K̂S, K̂T, M̂ and 	̂∗, given in eqs. (14), (16) and (19). Thus, the outer automorphisms 	̂
of the orbifold must be a modular subgroup thereof, depending on the orbifold geometry T 2/ZK , 
with K ∈ {2, 3, 4, 6}. Table 1 presents the Narain twists �̂ and a choice of generators of the mod-
ular symmetries arising from the outer automorphisms of all symmetric T 2/ZK orbifolds. As 
we shall discuss explicitly in section 3.2, even though the Narain twist �̂ is an inner automor-
phism of the orbifold T 2/ZK , it becomes an outer automorphism if the T 2/ZK orbifold is only 
a subsector of a six-dimensional factorized orbifold.

2.6. Modular invariant field theory from strings

In string models, matter fields are associated with the excitation modes of strings. In a two-
dimensional compactification of heterotic strings on a T 2/ZK orbifold, matter fields arise from 
9
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Table 1
(Rotational) Outer automorphisms 	̂ of all consistent symmetric orbifolds 
T2/ZK with Narain twist �̂.

K ZK Narain twist �̂ ∈ Oη̂(2,2,Z) Outer automorphisms 	̂

2

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ ĈS, ĈT, K̂S, K̂T, M̂, 	̂∗

3

⎛
⎜⎜⎜⎜⎝

0 −1 0 0

1 −1 0 0

0 0 −1 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ K̂S, K̂T, ĈS	̂∗

4

⎛
⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ K̂S, K̂T, 	̂∗

6

⎛
⎜⎜⎜⎜⎝

1 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 1

⎞
⎟⎟⎟⎟⎠ K̂S, K̂T, ĈS	̂∗

strings that close on the orbifold. They can be arranged in three categories:
(i) Untwisted strings, which are trivially closed strings, even before compactification;
(ii) Winding strings, which close only after winding along the directions e1 and/or e2 of the T 2

torus. At a generic point in moduli space, winding strings have masses at or beyond the string 
scale. Thus, they do not lead to matter fields that appear in the low-energy effective field theory; 
and
(iii) Twisted strings, which close only due to the action of the twist.

This classification can be stated in terms of elements of the orbifold space group, which set 
the boundary conditions for the strings to close. This relation is revealed by regarding eq. (37) as 
the boundary conditions of closed strings in the orbifold, according to

Y(τ, σ + 1) = g Y (τ, σ ) := �kY(τ, σ ) + E N̂ , where g = (�k,E N̂) ∈ SNarain .

(43)

Y = Y(τ, σ) corresponds to the (bosonic) worldsheet string field in terms of the worldsheet 
coordinates τ and σ . Hence, we note that untwisted strings are associated with the trivial space 
group element (14, 0), winding strings are connected with translational space group elements 
(14, E N̂), and twisted strings are related to more general space group elements (�k, E N̂), with 
�k �= 14.

The properties and dynamics of string matter fields are inextricably linked to the attributes of 
the compact space on which these strings live. In particular, if two of the extra dimensions are 
associated with a T 2/ZK orbifold sector, matter fields inherit target space modular symmetries, 
whose generators are listed in Table 1 for each twist order K . Matter fields of heterotic orbifold 
compactifications are endowed with a modular weight for each SL(2, Z) modular symmetry, 
and we denote the set of all modular weights by n. Let us discuss the example of two modu-
lar symmetries SL(2, Z)T and SL(2, Z)U of the Kähler modulus T and the complex structure 
10
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modulus U , where we have n = (nT , nU) ∈ Q2 (see e.g. refs. [22,23]). We denote untwisted 
and twisted matter fields of the orbifold theory as �n given that matter fields can be distin-
guished in general by their modular weights n. In the case of twisted matter fields, they build 
multiplets �n = (φ1, φ2, . . .)T, where the fields φi are associated with different closed strings, 
whose boundary conditions are produced by inequivalent space group elements with the same 
power k of � (i.e. by space group elements from the same twisted sector but different conjugacy 
classes). Consequently, in the absence of discrete Wilson lines [20] in the T 2/ZK orbifold sec-
tor, the twisted fields φi in the multiplet �n share identical gauge quantum numbers and modular 
weights.

Ignoring CP-like and mirror modular transformations that shall be addressed in the fol-
lowing section, a general matter field �n transforms under general modular transformations 
γT ∈ SL(2, Z)T and γU ∈ SL(2, Z)U , as defined by eqs. (27) and (29), according to

�n

γT−→ �′
n := (cT T + dT )nT ρs(γT )�n , (44a)

�n

γU−→ �′
n := (cU U + dU)nU ρs(γU )�n , (44b)

where (cT T + dT )nT and (cU U + dU )nU are the so-called automorphy factors with modular 
weights n = (nT , nU) ∈ Q2. The matrices ρs(γT ) and ρs(γU ) build a (reducible or irreducible) 
representation s of some finite modular group (for example �′

NT
× �′

NU
, where in terms of the 

2 × 2 matrices S, T given in eq. (2), the pair of transformation matrices ρs(γT = S) and ρs(γT =
T) satisfy the defining relations eq. (4a) for some integer NT and analogously for γU ).

As we can infer from the modular symmetry generators listed in Table 1 and shall be dis-
cussed in detail in section 3, in all T 2/ZK orbifold compactifications but those with K = 2, 
the complex structure U is not dynamic as it is fixed at a value 〈U 〉. We will see that this fact 
together with the transformation (44b) leads to new insights about the effective nature of these 
symmetry transformations: they give rise to the well-known R-symmetries in heterotic orbifold 
compactifications. If the complex structure modulus U is fixed, the strength of a superpotential 
coupling is given by a modular form Ŷ (nY )

sY (T ) of the Kähler modulus T . Then, under a general 
modular transformation γT ∈ SL(2, Z)T such a modular form transforms as

Ŷ (nY )
sY

(T )
γT−→ Ŷ (nY )

sY

(
aT T +bT

cT T +dT

)
= (cT T + dT )nY ρsY (γT ) Ŷ (nY )

sY
(T ) . (45)

Here, sY denotes an sY -dimensional representation of the finite modular group (e.g. �NT
or �′

NT
) 

and (cT T + dT )nY is the automorphy factor of γT with modular weight nY . If the finite modular 
group is �N , nY must be even. However, for the double cover groups �′

N that appear in string 
orbifold compactifications also odd nY are allowed [24].

String models based on orbifold compactifications yield typically an N = 1 effective field 
theory. Here, we are mainly interested in its Kähler potential K and superpotential W . The 
superpotential is a holomorphic function of moduli and matter fields �n. Under γT ∈ SL(2, Z)T
and γU ∈ SL(2, Z)U modular transformations, the superpotential becomes

W(T ,U,�n)
γT−→ W

(
aT T + bT

cT T + dT

,U,�′
n

)
= (cT T + dT )−1 W(T ,U,�n), (46a)

W(T ,U,�n)
γU−→ W

(
T ,

aU U + bU

cU U + dU

,�′
n

)
= (cU U + dU )−1 W(T ,U,�n), (46b)

i.e. W behaves similar to a matter field with modular weights nU = nT = −1 and which is 
invariant under the finite modular group of the theory. Consequently, each allowed superpotential 
coupling of matter fields �n has to satisfy the conditions
11
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nY +
∑

matter fields �n

nT = − 1 and ρsY (γT ) ⊗
⊗

matter fields �n

ρs(γT ) ⊃ 1 , (47)

for γT ∈ SL(2, Z)T with n = (nT , nU), ρs is the representation s associated with �n, and the 
coupling Ŷ (nY )

sY of weight nY transforms in the representation sY . An analogous result holds for 
γU ∈ SL(2, Z)U .

On the other hand, the general �-independent contribution to the Kähler potential is given 
by [25]

K ⊃ K0(T ,U) := − ln
(−iT + i T̄

)− ln
(−iU + i Ū

)
. (48)

This universal Kähler contribution transforms under γT ∈ SL(2, Z)T and γU ∈ SL(2, Z)U as

K0(T ,U)
γT−→ K0

(
aT T + bT

cT T + dT

,U

)
= K0(T ,U) + fT (T ) + fT (T ) , (49a)

K0(T ,U)
γU−→ K0

(
T ,

aU U + bU

cU U + dU

)
= K0(T ,U) + fU(U) + fU(U) , (49b)

where fT (T ) = ln(cT T + dT ) and fU(U) = ln(cUU + dU ). Note that the terms fT (T ) + fT (T )

and fU(U) + fU(U) can be removed by performing a Kähler transformation after each modular 
transformation, rendering the Kähler potential modular invariant. A general Kähler transforma-
tion is defined as [26, ch. 23]

K → K +F +F , W → e−F W , (50)

where F is a holomorphic function of chiral superfields. Therefore, any additional �-dependent 
contribution to K must be invariant under modular transformations, cf. ref. [27]. On the other 
hand, it turns out that the superpotential is also modular invariant since e.g. the modular trans-
formation eq. (46a) followed by the Kähler transformation applied for achieving invariance of K
yields

W γT−→ (cT T + dT )−1 W Kähler−−−→ (cT T + dT )−1 efT (T )W = W , (51)

with fT (T ) = ln(cT T + dT ).

2.7. Summary

The modular symmetry groups SL(2, Z) and PSL(2, Z) as well as their respective finite mod-
ular groups �′

N and �N are natural to string compactifications. For example, as explained in 
section 2.3 strings on an internal two-torus yield two moduli: a complex structure modulus U
as well as a Kähler modulus T . This is in contrast to bottom-up models of flavor that typically 
consider only one modulus. Using the Narain description of a torus compactification introduced 
in section 2.1, one can find the modular transformations acting on both moduli by computing 
the outer automorphisms of the Narain lattice associated with the compact space (see sec-
tion 2.2). These modular transformations build in general a large group that includes SL(2, Z)T
and SL(2, Z)U for the standard modular transformations of T and U , as well as two additional 
special transformations: a Z2 mirror duality that exchanges SL(2, Z)T and SL(2, Z)U , and a Z2
CP-like transformation. From this result, one can explore how this changes for all admissible 
T 2/ZK toroidal orbifolds, whose Narain formulation is introduced in section 2.4. As displayed 
in Table 1, we find that only T 2/Z2 orbifolds preserve all the modular symmetries of the torus, 
12
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while for K ∈ {3, 4, 6} the modular groups are subgroups of the group of modular symmetries of 
the torus. Interestingly, under modular transformations string matter fields �n and the couplings 
among them transform as representations of finite modular groups �′

N . In these terms, as detailed 
in section 2.6, we review the modular properties of the superpotential and Kähler potential that 
yield a modular invariant effective field theory.

3. SL(2,Z)U of the complex structure

SL(2, Z)T of the Kähler modulus T is of stringy nature as it relates, for example, compactifi-
cations on compact spaces with small and large volumes. In contrast, in this section we will show 
explicitly using the Narain formulation of D = 2 extra dimensions that the SL(2, Z)U factor of 
the complex structure modulus U allows for a pure geometrical interpretation: On the one hand, 
SL(2, Z)U modular transformations are defined in terms of a special class of outer automor-
phisms of the Narain lattice. On the other hand, SL(2, Z)U only affects the geometrical vielbein 
e. Hence, we will see in a second step that rotational ZN symmetries of the two-torus are de-
scribed by those SL(2, Z)U modular transformations that leave the complex structure modulus 
U invariant. Moreover, the automorphy factors of SL(2, Z)U modular transformations turn out 
to be related to discrete ZN charges. Furthermore, they promote the two-dimensional rotational 
ZN symmetry to a discrete R-symmetry.

3.1. Geometrical interpretation of SL(2,Z)U of the complex structure

In the Narain lattice basis, the generators ĈS and ĈT of SL(2, Z)U (and also the CP-like 
transformation 	̂∗) as defined in section 2.2 yield elements of the form

	̂ =
(

σ̂ 0
0 σ̂−T

)
∈ 〈 ĈS , ĈT , 	̂∗ 〉 ⊂ Oη̂(2,2,Z) , (52)

where σ̂ ∈ GL(2, Z). Note that, in contrast to SL(2, Z)T , modular transformations of this kind 
do not interchange winding and KK numbers. Next, we can change the basis to right- and left-
moving coordinates (in analogy to eq. (39))

	 := E 	̂E−1 . (53)

Hence, 	 acts on right- and left-moving string coordinates as(
yR
yL

)
	̂−→ 	

(
yR
yL

)
, (54)

see section 2.5. Consequently, the coordinates y and their dual coordinates ỹ, as defined in eq. (5), 
transform as(

y

ỹ

)
	̂−→

(
σ 0

e−Tσ̂−T
(
σ̂ TB σ̂ − B

)
e−1 σ−T

) (
y

ỹ

)
, (55)

where σ := e σ̂ e−1. It is easy to see that

σ̂ TB σ̂ = det(σ̂ )B for B = B12

(
0 1

−1 0

)
(56)

and σ̂ ∈ GL(2, Z).
13
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Now let us discuss the case det(σ̂ ) = +1, i.e. when σ̂ ∈ SL(2, Z) corresponds to a modular 
transformation without CP . Then, σ̂ ∈ SL(2, Z) is compatible with the B-field in the two-torus 
T 2, i.e. σ̂ T B σ̂ = B , and we obtain

	 = E 	̂E−1 = 1

2

(
σ + σ−T σ − σ−T

σ − σ−T σ + σ−T

)
. (57)

Furthermore, eq. (55) yields in the case det(σ̂ ) = +1 the simple transformations

y
	̂−→ σ y and ỹ

	̂−→ σ−T ỹ . (58)

These transformations can be absorbed completely into a redefinition of the geometrical torus 
vielbein e. Explicitly, the torus boundary condition

y ∼ y + e n with n ∈Z2 (59)

is mapped under y → σ y to

σ y ∼ σ y + e n ⇔ y ∼ y + σ−1e n = y +
(
e σ̂−1

)
n . (60)

Hence, an SL(2, Z)U transformation 	̂ can be performed alternatively by a transformation of 
only the vielbein e, which then induces a change of the torus metric G = eTe, i.e.

e
	̂−→ σ−1 e = e σ̂−1 ⇒ G

	̂−→ σ̂−T Gσ̂−1 , (61)

while the B-field is invariant. Note that the boundary condition

ỹ ∼ ỹ + e−T (
B n + α′ m

)
with n,m ∈ Z2 (62)

of the dual coordinates ỹ (as given in eq. (10)) transforms analogously under ỹ → σ−T ỹ from 
eq. (58). Since σ̂ ∈ SL(2, Z), the two-dimensional lattice spanned by e is mapped to itself under 
σ̂−1 in eq. (61): in other words, σ̂ ∈ SL(2, Z) is an outer automorphism of the two-dimensional 
lattice spanned by the geometrical vielbein e. For example, under modular S and T transforma-
tions of the complex structure modulus U , the geometrical lattice transforms as

e1
ĈS−→ −e2 and e2

ĈS−→ e1 for S transformation , (63a)

e1
ĈT−→ e1 and e2

ĈT−→ e1 + e2 for T transformation , (63b)

using eq. (61) with σ̂ = −ε for ĈS and σ̂ = γ for ĈT as given in eq. (16). Moreover, using 
eq. (63) the complex structure modulus U defined in eq. (22b) transforms as

U
ĈS−→ − 1

U
for S transformation , (64a)

U
ĈT−→ U + 1 for T transformation . (64b)

Note that these transformations (64) can also be obtained directly following ref. [9] if one takes 
the torus lattice vectors e1 and e2 to be complex numbers, i.e. e1, e2 ∈ C, and rewrites the com-
plex structure modulus as U = e2/e1. Then, the transformations (63) of e1 and e2 imply eqs. (64).

In addition, we take the transformation eq. (61) of the metric G under 	̂ given in eq. (52) in 
order to obtain the general transformation property of the complex structure modulus U , i.e. (see 
also ref. [28])
14
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U
	̂−→ aU U + bU

cU U + dU

for 	̂ =
(

σ̂ 0
0 σ̂−T

)
∈ Oη̂(2,2,Z) , where

σ̂ =:
(

aU −bU

−cU dU

)
, (65)

for aU , bU , cU , dU ∈Z satisfying aU dU −bU cU = +1, while the Kähler modulus T is invariant.
To summarize and to be specific, on the one hand we have identified a special class of outer 

automorphisms 	̂ of the Narain lattice � for D = 2, given by

	̂ =
(

σ̂ 0
0 σ̂−T

)
∈ Oη̂(2,2,Z) with σ̂ =:

(
aU −bU

−cU dU

)
∈ SL(2,Z) .

(66)

On the other hand, we have shown that an outer automorphism of this class acts geometrically 
on the vielbein e that defines the two-torus as

e
	̂−→ e σ̂−1 ⇔

(
e2
e1

)
	̂−→

(
aU bU

cU dU

) (
e2
e1

)
. (67)

Hence, it gives rise to a modular transformation of the complex structure modulus

U
γU−→ aU U + bU

cU U + dU

, where γU :=
(

aU bU

cU dU

)
∈ SL(2,Z)U , (68)

while T is invariant. In other words, there exist outer automorphisms of the Narain lattice �
for D = 2 that are specified by their geometrical action σ̂ ∈ SL(2, Z) on the torus vielbein e
and translate to modular transformations γU ∈ SL(2, Z)U of the complex structure modulus U , 
where the dictionary between these two reads explicitly

γU :=
(

0 1
1 0

)
σ̂−T

(
0 1
1 0

)
∈ SL(2,Z)U . (69)

3.2. Geometrical rotations from SL(2,Z)U

Based on the discussion from the last section, we now analyze a special class of outer automor-
phisms of the Narain lattice that corresponds to geometrical rotations in the extra-dimensional 
space, see also ref. [9] for a related discussion. We focus on two extra dimensions (D = 2), but 
the generalization to six extra dimensions is straightforward, since a rotation in six dimensions 
can be decomposed into three rotations in three orthogonal two-dimensional planes. Thus, the 
results of this section will be important for both: i) to define an orbifold twist and ii) to perform 
a two-dimensional “sublattice rotation” of a six-dimensional orbifold.

We begin with a discrete rotation θ(K) ∈ ZK ⊂ SO(2) that acts as

y
θ(K)−→ θ(K) y , where θ(K) :=

(
cos(2πv(K)) − sin(2πv(K))

sin(2πv(K)) cos(2πv(K))

)
∈ SO(2) ,

(70)

while it leaves all orthogonal coordinates inert. The geometrical rotation angle v(N) is defined as

v(K) := 1
, such that

(
θ(K)

)K = 12 . (71)

K

15
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In order to be a rotational symmetry of the geometrical torus, θ(K) has to map the lattice spanned 
by the torus vielbein e to itself. Hence, we have to impose the condition

σ̂(K) := e−1θ(K) e
!∈ SL(2,Z) for θ(K) ∈ SO(2) . (72)

This constrains the order K to the allowed orders of the ZK wallpaper groups, being K ∈
{2, 3, 4, 6}, see e.g. ref. [29].

Now, we translate this discrete geometrical rotation into the Narain formulation of string the-
ory. To do so, we split y into right- and left-moving string coordinates using eq. (5) and define 
the action on these coordinates as(

yR
yL

)
�(K)−→ �(K)

(
yR
yL

)
, where �(K) :=

(
θ(K),R 0

0 θ(K),L

)
, (73)

and θ(K),R, θ(K),L ∈ZK ⊂ SO(2) are of order K . Using eq. (70) we obtain

y :=
√

α′
2

(yR + yL)
�(K)−→

√
α′
2

(
θ(K),R yR + θ(K),L yL

) != θ(K) y , (74)

such that the rotation has to be left-right symmetric

θ(K) := θ(K),R = θ(K),L . (75)

Thus, the left-right-symmetric rotation �(K) defined in eq. (73) together with eq. (75) corre-
sponds to the transformation 	 from eq. (57) with σ = θ(K) ∈ SO(2), i.e. σ−T = σ . Conse-
quently, we can follow the discussion around eq. (57) and write the rotation in terms of an outer 
automorphism of the Narain lattice as

�̂(K) := E−1�(K) E =
(

σ̂(K) 0
0 σ̂−T

(K)

)
∈ Oη̂(2,2,Z) . (76)

Due to this block-structure together with σ̂(K) := e−1θ(K) e ∈ SL(2, Z), the Narain twist �̂(K)

can be decomposed in terms of the generators ĈS and ĈT, given in eq. (16). Then, using eq. (69)
we can translate the action of the outer automorphism �̂(K) to a corresponding modular trans-
formation from SL(2, Z)U as

e−1θ(K) e = σ̂(K) =:
(

aU −bU

−cU dU

)
∈ SL(2,Z) ⇔

γ(K) :=
(

aU bU

cU dU

)
∈ SL(2,Z)U , (77)

where the modular transformation γ(K) is of order K , i.e. 
(
γ(K)

)K = 12.

3.3. Stabilizing the complex structure modulus by geometrical rotations

Now, we can use the transformation property of the torus metric G = eTe given in eq. (61) for 
a rotational symmetry eq. (72) in order to find

G
�̂(K)−→ σ̂−T

(K) G σ̂−1
(K) = G . (78)

Hence, the metric G and, therefore, the complex structure modulus U (as defined in eq. (22b)) 
must be invariant under a Narain twist �̂(K). In other words, the vev of the complex structure 
16
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Table 2
Geometrical ZK symmetries �̂(K) ∈ Oη̂(2, 2, Z) of the Narain lattice, translated to modular trans-
formations γ(K) ∈ SL(2, Z)U that leave the vev 〈U〉 of the associated complex structure modulus 
invariant. As a consequence, �̂(K) acts left-right symmetrically and rotates the geometrical coordi-
nate y by an angle v(K) . At the same time, the superpotential picks up a phase exp

(
2π iv(K)

)
such 

that the geometrical rotation �̂(K) generates an R-symmetry, as shown in section 3.4.

Order K Rotational symmetry �̂(K) ∈ Oη̂(2,2,Z) γ(K) ∈ SL(2,Z)U 〈U〉 v(K)

2 �̂(2) :=
(
ĈS

)2 =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ S2 =

(
−1 0

0 −1

)
arb. 1/2

3 �̂(3) := ĈS ĈT =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0

1 −1 0 0

0 0 −1 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ S T =

(
0 1

−1 −1

)
ω 1/3

4 �̂(4) := ĈS =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ S =

(
0 1

−1 0

)
i 1/4

6 �̂(6) :=
(
Ĉ3

SĈT

)5 =

⎛
⎜⎜⎜⎜⎝

1 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 1

⎞
⎟⎟⎟⎟⎠ (S3T)5 =

(
1 1

−1 0

)
ω 1/6

modulus 〈U 〉 is a fixed point of those modular transformations γ(K) ∈ SL(2, Z)U that correspond 
to rotational symmetries of the geometrical torus,

U
γ(K)−→ γ(K) U = aU U + bU

cU U + dU

= U at U = 〈U 〉 , (79)

where the vacuum expectation value 〈U 〉 of the complex structure modulus parameterizes the 
torus vielbein e, except for the overall size of its two-torus.

In our case of two-dimensional rotational symmetries of order K , the Kähler modulus T is 
invariant but the complex structure modulus U is frozen geometrically to, for example,

U = unstabilized if K = 2 ,

〈U 〉 = ω if K = 3 or 6 ,

〈U 〉 = i if K = 4 .

(80)

The detailed results for ZK rotational symmetries of the Narain lattice in D = 2 for K ∈
{2, 3, 4, 6} are listed in Table 2. Stabilizing the complex structure modulus by geometrical ro-
tations has two important effects:

i) Even if the complex structure modulus is stabilized, some modular transformations from 
SL(2, Z)U will remain unbroken, i.e. there are elements in SL(2, Z)U that leave 〈U 〉 invari-
ant. In order to analyze this, we define the so-called stabilizer subgroup H〈U 〉 of SL(2, Z)U
modular transformations that leave 〈U 〉 invariant,

H〈U 〉 =
{(

aU bU

c d

)
∈ SL(2,Z)U

∣∣∣∣ aU 〈U 〉 + bU = 〈U 〉
}

, (81)

U U cU 〈U 〉 + dU

17
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i.e. 〈U 〉 is a fixed point of the elements of H〈U〉. Hence, the vev 〈U 〉 of the stabilized complex 
structure modulus spontaneously breaks SL(2, Z)U to an unbroken symmetry group, being

HU
∼= Z2 if K = 2 ,

H〈U 〉=ω
∼= Z6 ∼= Z2 ×Z3 if K = 3 or 6 ,

H〈U 〉=i ∼= Z4 if K = 4 ,

(82)

where the Z2 factors are generated by S2 ∈ SL(2, Z)U and Z3 is generated by S T ∈
SL(2, Z)U . These unbroken modular transformations will be of importance for the sym-
metries after orbifolding.

ii) As we will analyze next, stabilizing the complex structure modulus U promotes the auto-
morphy factor (cU U + dU) to a phase.

3.4. R-symmetries from SL(2,Z)U

In addition, we can compute the automorphy factor (cU 〈U 〉 + dU)−1 of the superpotential 
W , see eq. (46), for a rotational ZK symmetry that is described by a modular transformation 
γ(K) ∈ SL(2, Z)U . It has to be a phase of order K since (γ(K))

K = 12. Indeed, we obtain

cU 〈U 〉 + dU = exp
(−2π iv(K)

)
, (83)

where cU and dU are given by γ(K) ∈ SL(2, Z)U and v(K) = 1/K turns out to coincide with the 
geometrical rotation angle corresponding to γ(K) as defined in section 3.2 and listed in Table 2. 
This yields

W
γ(K)−→ (cU 〈U 〉 + dU)−1 W = exp

(
2π iv(K)

)
W . (84)

Since the modular transformation γ(K) ∈ SL(2, Z)U leaves the (stabilized) complex structure 
modulus 〈U 〉 invariant (cf. eq. (79)), the Kähler potential eq. (48) is invariant under γ(K). Hence, 
the phase in eq. (84) has to be compensated by a transformation

ϑ
γ(K)−→ exp (2π iRϑ) ϑ , where Rϑ := 1

2K
(85)

of the Grassmann number ϑ of N = 1 superspace. Thus, the rotational modular transformation 
γ(K) ∈ SL(2, Z)U of the complex structure modulus is an R-transformation. In more detail, using ∫

dϑ ϑ = 1 we know that the R-charge of 
∫

dϑ is −Rϑ , such that L ⊃ ∫
d2ϑ W is invariant.

3.5. Summary

In summary, a two-dimensional rotational ZK symmetry of the extra dimensional space is an 
outer automorphism of the Narain lattice that leaves the torus metric G and the B-field invariant. 
Because of its geometric nature, it corresponds to a modular transformation γ(K) from SL(2, Z)U
of the complex structure modulus U that leaves U evaluated at its vev and T invariant, as might 
have been expected from geometrical intuition. Moreover, a geometric rotation in two dimen-
sions acts as an R-transformation, where the R-charge of the superpotential originates from the 
automorphy factor (cU 〈U 〉 + dU)−1 of the modular transformation γ(K) ∈ SL(2, Z)U .
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4. R-symmetries and CP in six-dimensional orbifolds

It is known that toroidal orbifold compactifications of string theory lead to discrete R-
symmetries of the four-dimensional effective theory. In the traditional approach, R-symmetries 
are explained to originate from rotational isometries of the six-dimensional orbifold geome-
try [30–34]. Here, we give a novel interpretation for the origin of R-symmetries as a special 
class of outer automorphisms of the Narain space group: R-symmetries correspond to elements 
from the modular group SL(2, Z)U that leave the vev of the (stabilized) complex structure mod-
ulus U invariant.

4.1. Six-dimensional orbifolds T 6/P

In order to specify a geometrical point group P ∼= ZK of a six-dimensional orbifold, we define 
a six-dimensional orbifold twist θ ∈ SO(6) by combining three two-dimensional ZKi

rotations 
θ(Ki) ∈ SO(2) given in eq. (70) for i ∈ {1, 2, 3}. In detail, the orbifold twist is chosen as

θ := (
θ(K1)

)k1 ⊕ (
θ(K2)

)k2 ⊕ (
θ(K3)

)k3 such that y
θ−→ θ y , (86)

for ki ∈ {0, 1, . . . , Ki − 1} and y ∈ R6. One can choose complex coordinates zi := y2i−1 + i y2i

for i ∈ {1, 2, 3}. Then, each two-dimensional rotation θ(Ki) acts only in the i-th complex plane zi . 
The orbifold twist θ generates a ZK rotation group, whose order K is given by the least common 
multiple of K1, K2 and K3. By combining the three rotation angles ki v(Ki) = ki/Ki of (θ(Ki))

ki

we obtain the ZK orbifold twist vector

v :=
(

0,
k1

K1
,

k2

K2
,

k3

K3

)
. (87)

We have extended v by an additional null entry for its action in string light-cone coordinates, 
including those of the uncompactified space. Using the results from Table 2, the orbifold twist 
vector v corresponds to a modular transformation

γ := (
γ(K1)

)k1 ⊕ (
γ(K2)

)k2 ⊕ (
γ(K3)

)k3 ∈ SL(2,Z)U1 × SL(2,Z)U2 × SL(2,Z)U3 . (88)

This transformation leaves the three complex structure moduli Ui invariant, where i ∈ {1, 2, 3}
corresponds to the three complex planes, i.e.

Ui
γ−→ (

γ(Ki)

)ki Ui
!= Ui for Ui = 〈Ui〉 (89)

and 〈Ui〉 is given in eq. (80) for the cases Ki ∈ {2, 3, 4, 6}. Hence, a complex structure modulus 
Ui is either stabilized if Ki �= 2 or unstabilized if Ki = 2.

In addition, using the three automorphy factors arising from the modular transformations 
γ(Ki) ∈ SL(2, Z)Ui

for i ∈ {1, 2, 3} in combination with eqs. (84) and (85), we confirm that the 
superpotential W and the Grassmann number ϑ are invariant under the combined modular trans-
formation γ from eq. (88),

W γ−→ exp
(
2π i

(
k1 v(K1) + k2 v(K2) + k3 v(K3)

))
W = W , (90a)

ϑ
γ−→ exp

(
2π i

2

(
k1 v(K1) + k2 v(K2) + k3 v(K3)

))
ϑ = ϑ , (90b)

if the associated orbifold twist vector v preserves N = 1 supersymmetry, i.e. if
19
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k1

K1
+ k2

K2
+ k3

K3
= 0 mod 2 . (91)

On the other hand, the Kähler potential is invariant under the modular transformation γ given in 
eq. (88): For Ki ∈ {3, 4, 6}, the complex structure modulus Ui is fixed to the values 〈Ui〉 provided 
in eq. (80). Hence, the Kähler potential of the theory does not exhibit any field-dependence on 
Ui . For Ki = 2, the Kähler potential does depend on the (unstabilized) modulus Ui explicitly, 
but is left invariant by the rotational modular transformation γ because neither the complex 
structure modulus itself nor the �-dependent terms of the form |�|2 are altered under these 
transformations.

Factorized orbifolds In the following we concentrate on factorized T 6/ZK orbifold geome-
tries, where the six-torus factorizes as T 6 = T 2 × T 2 × T 2 and each two-dimensional ZKi

rotation θ(Ki) is a symmetry of the respective two-torus T 2. In this case, the orbifold twist �̂ in 
the Narain lattice basis reads

�̂ := �̂(K1) ⊕ �̂(K2) ⊕ �̂(K3) ∈ Oη̂(2,2,Z)×Oη̂(2,2,Z)×Oη̂(2,2,Z) ⊂ Oη̂(6,6,Z) ,

(92)

where the ZKi
Narain twists �̂(Ki) ∈ Oη̂(2, 2, Z) of order Ki ∈ {2, 3, 4, 6} are given in Table 2.

For example, for the phenomenological promising Z6-II (1, 1) orbifold geometry [30,35,36], 
we have an orbifold twist vector

v = (0, 1/6, 1/3,−1/2) , (93)

which preserves N = 1 supersymmetry since 1/6 + 1/3 − 1/2 = 0. For the Z6-II (1, 1) orbifold 
geometry [29] this twist vector corresponds to an orbifold twist �̂ in the Narain lattice basis

�̂ := �̂(6)⊕�̂(3)⊕�̂(2) ∈ Oη̂(2,2,Z)×Oη̂(2,2,Z)×Oη̂(2,2,Z) ⊂ Oη̂(6,6,Z) . (94)

Note that we have chosen the rotation angle of �̂(2) as −1/2 in order to fix the action on spacetime 
spinors, see for example eq. (90b). Using the results from Table 2, the Z6-II orbifold twist vector 
v corresponds to a modular transformation

γ := γ(6) ⊕ γ(3) ⊕ γ(2) ∈ SL(2,Z)U1 × SL(2,Z)U2 × SL(2,Z)U3 . (95)

This transformation leaves the three complex structure moduli Ui of the three complex planes 
i ∈ {1, 2, 3} invariant,

(U1,U2,U3)
γ−→ (

γ(6)U1, γ(3)U2, γ(2)U3
) = (U1,U2,U3) , (96)

if the moduli are evaluated at

(U1,U2,U3) = (ω,ω,U3) , (97)

see Table 2. Hence, the complex structure moduli U1 and U2 of the Z6-II orbifold geometry are 
stabilized (for example) at 〈U1〉 = 〈U2〉 = ω, while U3 in the Z2 orbifold plane is unstabilized.

4.2. Sublattice rotations from SL(2,Z)U of the complex structure modulus

For simplicity, we have chosen the six-torus T 6 that underlies the T 6/ZK orbifold geometry 
to be factorized as T 2 ×T 2 ×T 2. Then, the six-dimensional orbifold has three independent ZK
i
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rotational isometries, whose orders Ki ∈ {2, 3, 4, 6} for i ∈ {1, 2, 3} are given in general by the 
components of the ZK orbifold twist vector defined in eq. (87): there is one rotational isometry 
per two-torus T 2. These ZKi

rotations are also called sublattice rotations.
In detail, as the T 6/ZK orbifold geometry (with ZK orbifold twist vector given in eq. (87)) is 

assumed to be factorized, it contains three two-dimensional subsectors, which we call T 2/ZKi

orbifold sectors for i ∈ {1, 2, 3}. Then, a sublattice rotation θ(Ki) acts on the geometrical coordi-
nate y of the T 2/ZKi

orbifold sector as

y
θ(Ki )−→ θ(Ki) y , where θ(Ki) ∈ ZKi

⊂ SO(2) , (98)

while it leaves the orthogonal coordinates invariant. Following section 3.2, these three geomet-
rical transformations for i ∈ {1, 2, 3} correspond to three outer automorphisms R̂i of the full 
six-dimensional Narain space group, given by

R̂1 := �̂(K1) ⊕ 14 ⊕ 14 , (99a)

R̂2 := 14 ⊕ �̂(K2) ⊕ 14 , (99b)

R̂3 := 14 ⊕ 14 ⊕ �̂(K3) , (99c)

where R̂i ∈ Oη̂(2, 2, Z) × Oη̂(2, 2, Z) × Oη̂(2, 2, Z) ⊂ Oη̂(6, 6, Z) and

�̂(Ki) =
(

σ̂(Ki) 0
0 σ̂−T

(Ki)

)
∈ Oη̂(2,2,Z) and σ̂(Ki) =:

(
ai −bi

−ci di

)
∈ SL(2,Z) ,

(100)

for i ∈ {1, 2, 3}. Each of them is associated with a modular transformation

γ(Ki) :=
(

ai bi

ci di

)
∈ SL(2,Z)Ui

(101)

corresponding to the complex structure modulus Ui , which leaves all moduli invariant. Note that 
the product R̂1 R̂2 R̂3 from eq. (99) equals the Narain twist �̂ given in eq. (94). Hence, R̂1 R̂2 R̂3
is an inner automorphism of the Narain space group.

Next, we analyze the action of the modular transformation γ(Ki) ∈ SL(2, Z)Ui
on matter fields 

�n, where n collectively denotes the set of all modular weights, containing the modular weights 
nUi

of SL(2, Z)Ui
for i ∈ {1, 2, 3}, see e.g. ref. [22,23] for the definition of the (fractional) mod-

ular weights for various orbifold geometries. In this case, the modular transformation (44) of 
matter fields reads

�n

γ(Ki )−→ (ci 〈Ui〉 + di)
nUi ρs(γ(Ki))�n = exp

(−2π iv(Ki) nUi

)
ρs(γ(Ki))�n , (102)

such that the superpotential picks up a phase

W
γ(Ki )−→ (ci 〈Ui〉 + di)

−1 W = exp
(
2π iv(Ki)

)
W . (103)

Here, we used that the automorphy factor evaluated at 〈Ui〉 becomes a modulus-independent 
phase, see eq. (83). In order to ensure that (γ(Ki))

Ki = 12, the matrix ρs(γ(Ki)) of the modular 
transformation has to be of order Ki . Furthermore, note that ρs(γ(Ki)) can be diagonal or non-
diagonal: On the one hand, it is diagonal for example for Ki ∈ {2, 3} since the corresponding 
Oη̂(6, 6, Z) sublattice rotation maps each string (i.e. each conjugacy class of the constructing 
element) to itself, possibly multiplied by a phase. On the other hand, ρs(γ(Ki)) is non-diagonal 
for example for a Ki = 4 sublattice rotation in a T 6/Z4 orbifold geometry, see ref. [33].
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Eq. (102) defines the discrete R-charges of matter fields �n for modular transformations 
γ(Ki) ∈ SL(2, Z)Ui

that correspond to geometrical sublattice rotations. On the other hand, it is 
known [30–34] that a matter field �n transforms under a geometrical sublattice rotation θ(Ki) as

�n

θ(Ki )−→ exp

(
2π iRi

K2
i

)
�n . (104)

Using K2
i as denominator, the R-charges Ri of superfields �n become integer, as defined in 

ref. [32] for Ki ∈ {2, 3, 6}. Consequently, R-charges Ri and modular weights nUi
are related. 

For example, if the representation matrix ρs(γ(Ki)) from eq. (102) is diagonal, we find

Ri = (−nUi
+ αi

)
Ki , (105)

where αi gives the order Ki phase of the i-th entry on the diagonal of ρs(γ(Ki)), i.e. ρs(γ(Ki)) =
diag(exp(2π iαi(φ1)/Ki), . . . , exp(2π iαi(φs)/Ki)).

Couplings Ŷ (nY )
sY do not depend on the complex structure modulus Ui if Ki ∈ {3, 4, 6}. In 

contrast, for Ki = 2 they do depend on Ui but are invariant under the “rotational” modular trans-
formation γ(2). Hence, we can set nY = 0 and ρsY (γ(2)) = 1. Then, we obtain from eq. (47) the 
invariance conditions∑

matter fields �n

nUi
= − 1 and

⊗
matter fields �n

ρs(γ(Ki)) ⊃ 1 . (106)

The later condition can be rewritten (for diagonalized representation matrices ρs(γ(Ki))) as∑
matter fields �n

αi = 0 mod Ki . (107)

Consequently, we see that using eqs. (106) we have to impose the constraint∑
matter fields �n

Ri = Ki mod (Ki)
2 (108)

on the R-charges Ri for each superpotential coupling of matter fields �n to be allowed, cf. 
refs. [30–34]. Hence, the order Ki sublattice rotation yields an R-symmetry that is in general 
ZR

(Ki)
2 , where the nontrivial right-hand side of eq. (108) follows from eq. (103). As we have 

shown, this R-symmetry originates from unbroken modular transformations SL(2, Z)Ui
(that 

leave the complex structure modulus Ui invariant), even in the case when Ui is frozen geometri-
cally by the orbifolding.

Finally, let us note that for special points in moduli space (e.g. for special values of a 
complex structure modulus or for vanishing discrete Wilson lines) there can be additional R-
symmetries originating from the modular group SL(2, Z)U of a complex structure modulus and
from SL(2, Z)T of the Kähler modulus. A detailed example of sublattice rotations in a T 2/Z3
orbifold sector will be discussed later in section 5.4.

4.3. CP for six-dimensional orbifolds

A CP-like transformation has to map a field to a CP-conjugate partner with inverse (discrete 
and gauge) charges. For heterotic orbifolds, a string state with constructing element ĝ ∈ ŜNarain
finds its CP-partner in a string state with constructing element ĝ−1 ∈ ŜNarain. Hence, a CP-like 
transformation is an outer automorphism of the Narain space group ŜNarain, such that
22
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ĝ
CP−→

( ˆCP,0
)−1

ĝ
( ˆCP,0

) != ĝ−1 , (109)

for all constructing elements ĝ ∈ ŜNarain. This means in particular that the Narain twist is mapped 
to its inverse under a CP-like transformation. In detail, in the Narain lattice basis we have to 
impose the conditions

�̂
CP−→

( ˆCP
)−1

�̂
( ˆCP

) != �̂−1 and ˆCP ∈ Oη̂(6,6,Z) . (110)

As in section 4.1, we now assume our six-dimensional orbifold geometry T 6/ZK under con-
sideration to be factorized, i.e. T 6 = T 2 ×T 2 ×T 2. In more detail, we take the ZK Narain twist 
�̂ to be built out of three two-dimensional orbifold sectors

�̂ := �̂(K1) ⊕ �̂(K2) ⊕ �̂(K3) ∈ Oη̂(2,2,Z)×Oη̂(2,2,Z)×Oη̂(2,2,Z) ⊂ Oη̂(6,6,Z) ,

(111)

see eq. (92). Then, eq. (110) is solved by

�̂(Ki)
CP−→

( ˆCP(Ki)

)−1
�̂(Ki)

( ˆCP (Ki)

) !=
(
�̂(Ki)

)−1
, (112)

where

ˆCP := ˆCP(K1) ⊕ ˆCP(K2) ⊕ ˆCP(K3) and ˆCP(Ki) ∈ Oη̂(2,2,Z) . (113)

This means that for each complex plane i ∈ {1, 2, 3} (or each T 2/ZKi
orbifold sector) on which 

a Narain twist �̂(Ki) of order Ki ∈ {2, 3, 4, 6} acts, we look for a corresponding CP-like transfor-
mation that we call ˆCP(Ki). In addition to eq. (112), a two-dimensional CP-like transformation 
has to act on the Kähler modulus Ti of the T 2/ZKi

orbifold sector as

Ti
CP−→ − T̄i , (114)

and in addition, if Ki = 2, on the complex structure modulus as Ui → −Ūi , see ref. [17,37,38]. 
The results are given in Table 3. Hence, the six-dimensional CP-like transformation given 
by eq. (113) acts simultaneously on all six dimensions of the compactified space, see also 
ref. [39].

At first sight, there seems to be a special case if Ki = 2, i.e. if the six-dimensional orbifold 
geometry contains a T 2/Z2 orbifold sector. Let us discuss an example, where the first complex 
plane contains a T 2/Z2 orbifold sector (K1 = 2), i.e.

�̂ := �̂(2) ⊕ �̂(K2) ⊕ �̂(K3) , (115)

and Ki �= 2 for i ∈ {2, 3}. Then, we can define two independent transformations

ˆCP := ˆCP(2) ⊕ ˆCP(K2) ⊕ ˆCP(K3) and ˆCP ′ := ˆCP(2) ⊕ 14 ⊕ 14 , (116)

with ˆCP(2) = 	̂∗ given in Table 3. Both transformations, ˆCP and ˆCP ′
, satisfy eq. (110) since 

(�̂(2))
−1 = �̂(2) for �̂(2) := −14. However, only ˆCP is a consistent transformation but not ˆCP ′

: 
ˆCP ′

acts nontrivially on the Kähler modulus T1 and the complex structure modulus U1 associated 
with the first complex plane of the six-dimensional orbifold, but leaves the moduli associated with 
the four orthogonal compact dimensions invariant. Nonetheless, the superpotential W has to be a 
holomorphic function of all fields (matter fields and moduli) and after CP-conjugation it needs to 
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Table 3
CP-like transformations in the Narain formulation of two-dimensional T2/ZKi

orbifold sectors for 
Ki ∈ {2, 3, 4, 6}.
Order 
Ki

Orbifold twist �̂(Ki )
∈ Oη̂(2,2,Z) ˆCP(Ki )

∈ Oη̂(2,2,Z) Action of ˆCP(Ki )

on moduli

2 �̂(2) =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ 	̂∗ =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

Ti → −T̄i

Ui → −Ūi

3 �̂(3) =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0

1 −1 0 0

0 0 −1 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ K̂∗ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

1 −1 0 0

0 0 1 1

0 0 0 −1

⎞
⎟⎟⎟⎟⎠

Ti → −T̄i

〈Ui 〉 = ω invariant

4 �̂(4) =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ 	̂∗ =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

Ti → −T̄i

〈Ui 〉 = i invariant

6 �̂(6) =

⎛
⎜⎜⎜⎜⎝

1 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 1

⎞
⎟⎟⎟⎟⎠ K̂∗ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

1 −1 0 0

0 0 1 1

0 0 0 −1

⎞
⎟⎟⎟⎟⎠

Ti → −T̄i

〈Ui 〉 = ω invariant

become anti-holomorphic. Therefore, assuming that there are some superpotential couplings that 
depend on moduli associated with all six compact dimensions, CP has to act nontrivially in all 
three complex planes of the six-dimensional orbifold simultaneously. In this case, CP is broken 
spontaneously if any modulus departs from one of its CP-conserving points in moduli space.

4.4. Summary

Many properties of factorized six-dimensional orbifolds can be understood in terms of three 
two-dimensional T 2/ZKi

orbifold sectors, i ∈ {1, 2, 3}, as we show in section 4.1. Nevertheless, 
these six-dimensional orbifolds display a richer structure compared to two-dimensional ones. In 
particular, we observe two important new features:

i) Inner automorphisms of a Narain space group of a two-dimensional orbifold sector can 
become outer automorphisms of a Narain space group of a suitable six-dimensional orb-
ifold. This applies especially to two-dimensional sublattice rotations of six-dimensional 
orbifolds, which are given by (unbroken) SL(2, Z)Ui

modular transformations. Interestingly, 
this uncovers an unexpected relation, eq. (105), between the R-charge Ri of a matter field 
associated with a sublattice rotation in the i-th two-torus and its SL(2, Z)Ui

modular weight.
ii) CP-like transformations in six-dimensional factorized orbifolds must act simultaneously in 

all two-dimensional orbifold sectors, in order to not spoil the holomorphicity of the superpo-
tential. This is based on the assumption that at least one superpotential coupling depends on 
the moduli from all three two-dimensional orbifold sectors. We list in Table 3 the CP-like 
transformations for all T 2/ZK orbifold sectors (Ki ∈ {2, 3, 4, 6}).
i
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5. R-symmetries and CP in a T 2/Z3 orbifold sector

The four-dimensional effective field theory (obtained from a heterotic compactification on 
an orbifold geometry that contains a T 2/Z3 orbifold sector without discrete Wilson lines) is 
equipped with various types of symmetries:

• a �(54) traditional flavor symmetry,
• an SL(2, Z)T modular symmetry that acts as a T ′ finite modular group on matter fields and 

couplings,
• a ZR

9 discrete R-symmetry,
• a CP-like transformation,

see also refs. [30–34,40–44]. These discrete symmetries combine to the eclectic flavor symmetry 
�(2) ∼= [1944, 3448]. Furthermore, as we have seen in the previous sections, all of them have 
a common origin from string theory: they can be defined as outer automorphisms of the Narain 
space group [12,17,18]. This novel approach has revealed several interconnections between dis-
crete symmetries of the various types, with the ultimate aim to connect bottom-up flavor model 
building with a consistent top-down approach from strings.

In this section, we first recall the main results from the analysis of the effective field theory 
obtained from a heterotic string compactification on a T 6/ZK orbifold geometry that contains 
a T 2/Z3 orbifold sector, for example in the first complex plane. The moduli in this plane are 
denoted for simplicity by T and U (without subindex). In addition, we focus on three copies 
(labeled by an index i ∈ {1, 2, 3}) of twisted matter fields (Xi, Yi, Zi) without string oscillator 
excitations. These matter fields are localized in the extra dimensions at the three fixed points 
of the T 2/Z3 orbifold sector. We call them collectively �i

−2/3 = (Xi, Yi, Zi)
T for i ∈ {1, 2, 3}, 

where nT = −2/3 is the modular weight with respect to SL(2, Z)T . In this section, we will obtain 
new results concerning the origin and nature of discrete R-symmetries and CP , related to the 
modular symmetries of the theory.

5.1. Modular symmetry in a T 2/Z3 orbifold sector

One defines a so-called finite modular group �′
N using the relations (1) combined with the 

additional constraint

TN = 1 , (117)

which renders the group finite. For the T 2/Z3 orbifold sector, we are interested in the case N = 3
that corresponds to the finite modular group

T ′ ∼= �′
3

∼= SL(2,3) . (118)

Then, a modular form of T ′ with modular weight nY ∈ N is defined as a (vector of) holomorphic 
function(s) of the Kähler modulus T that transforms under general modular transformations γT ∈
SL(2, Z)T as

Ŷ (nY )
sY

(T )
γT−→ Ŷ (nY )

sY

(
aT T +bT

cT T +dT

)
= (cT T + dT )nY ρsY (γT ) Ŷ (nY )

sY
(T ) . (119)

Here, sY denotes an s-dimensional representation of T ′ and (cT T + dT )nY is the automorphy 
factor of γT with modular weight nY .
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It turns out that there exists only one (two-component) modular form of weight nY = 1

Ŷ
(1)

2′′ (T ) :=
(

Ŷ1(T )

Ŷ2(T )

)
:=

(
−3

√
2 η3(3T )

η(T )

3 η3(3T )
η(T )

+ η3(T /3)
η(T )

)
. (120)

Using eq. (119) it can be checked explicitly that this modular form transforms in a two-
dimensional (unitary) representation 2′′ of T ′, where

ρ2′′(K̂S) := − i√
3

(
1

√
2√

2 −1

)
and ρ2′′(K̂T) :=

(
ω 0
0 1

)
. (121)

Note that we use the T ′ conventions from ref. [45] (with p = i).
In addition, twisted matter fields �i

−2/3 = (Xi, Yi, Zi)
T carry a modular weight nT = −2/3 and 

build a representation s = 2′ ⊕ 1 of T ′ for i ∈ {1, 2, 3}, as shown in ref. [18], i.e.

�i
−2/3

γT−→ �i ′−2/3 := (cT T + dT )
−2/3 ρs(γT )�i

−2/3 , (122)

for γT ∈ SL(2, Z)T , where the representation matrices ρs(γT ) of SL(2, Z)T elements γT are 
generated by [3,18]

ρ(K̂S) := i√
3

⎛
⎝1 1 1

1 ω2 ω

1 ω ω2

⎞
⎠ and ρ(K̂T) :=

⎛
⎝ω2 0 0

0 1 0
0 0 1

⎞
⎠ . (123)

5.2. Traditional flavor symmetry in a T 2/Z3 orbifold sector

It is well-known that a T 2/Z3 orbifold sector yields a �(54) traditional flavor symmetry, 
where twisted matter fields build triplet-representations [40,46]. New insight was gained using 
the Narain space group and its outer automorphisms [17,18]: In the absence of discrete Wilson 
lines, there exist two translational outer automorphisms, A and B, of the T 2/Z3 Narain space 
group,

A := (1, T̂1) , B := (1, T̂2) , where T̂1 :=

⎛
⎜⎜⎝

1
3
2
3
0
0

⎞
⎟⎟⎠ , T̂2 :=

⎛
⎜⎜⎝

0
0
1
3
1
3

⎞
⎟⎟⎠ , (124)

see the discussion around eq. (42) in section 2.5. Similar to eq. (10), one can see that A and B
induce the following geometrical translations

y
A−→ y + 1

3
(e1 + 2e2) and y

B−→ y , (125)

as illustrated in Fig. 1a. Note that, in addition to eq. (125), there is a nontrivial action on ỹ. These 
Narain-translations leave the Kähler modulus inert. Hence, they belong to the traditional flavor 
symmetry. Acting on twisted matter fields �i

−2/3, they are represented as

�i
−2/3

A−→ ρ(A)�i
−2/3 and �i

−2/3

B−→ ρ(B)�i
−2/3 , (126)

where
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Fig. 1. The T2/Z3 orbifold sector and the geometrical actions of the Narain outer automorphisms: (a) the Z3 translation 
A rotates the three twisted states (Xi, Yi, Zi) and (b) the 180◦ rotation C maps Xi to itself and interchanges Yi and Zi .

ρ(A) =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ and ρ(B) =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , (127)

and ω := exp (2π i/3). These matrices ρ(A) and ρ(B) generate a �(27) traditional flavor sym-
metry, where the twisted matter fields �i

−2/3 form a triplet. This non-Abelian flavor symmetry 

includes the well-known Z(PG)
3 × Z3 point and space group selection rules of strings that split 

and join while propagating on the surface of an orbifold [47–49]: In our case of a T 2/Z3 orbifold 
sector, it turns out that the symmetry transformations

A2B2AB and B (128)

correspond to the point and space group selection rules, respectively. In detail, for twisted matter 
fields �i

−2/3 = (Xi, Yi, Zi)
T (from the first twisted sector), we obtain the transformations

Z(PG)
3 : ρ(A)2ρ(B)2ρ(A)ρ(B) =

⎛
⎝ω 0 0

0 ω 0
0 0 ω

⎞
⎠ , (129a)

Z3 : ρ(B) =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ . (129b)

In addition, there is a rotational outer automorphism C := (−14, 0) of the T 2/Z3 Narain space 
group, which corresponds to a geometrical rotation by 180◦ in the T 2/Z3 orbifold sector. Hence, 
C generates an R-symmetry. As we have seen in eq. (82), C corresponds to a modular transfor-
mation S2 ∈ SL(2, Z)U from the stabilizer subgroup H〈U 〉=ω. For the twisted matter fields, C is 
represented as

ρ(C) =
⎛
⎝−1 0 0

0 0 −1
0 −1 0

⎞
⎠ . (130)

By comparing with eq. (123), we note that ρ(C) = ρ(K̂S)2, which is indeed a consequence of the 
more fundamental identity C = K̂2

S , see section 2.2 of ref. [3] for more details. This additional 
element enhances �(27) to a non-Abelian R-symmetry [50] �(54), where the twisted matter 
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fields �i
−2/3 transform in the representation 32. Note that the non-diagonal structure of ρ(C) is 

an example of a non-diagonal representation matrix ρs(γ(Ki)) in eq. (102). Furthermore, one can 
understand geometrically the fact that Yi and Zi get interchanged under the action of C, while 
Xi is mapped to itself, as illustrated in Fig. 1b.

5.3. Superpotential in a T 2/Z3 orbifold sector

Taking only twisted matter fields from one twisted sector into account, the modular group 
SL(2, Z)T , its associated finite modular group T ′ and the traditional flavor group �(54) constrain 
the tri-linear superpotential W ⊃ �1

−2/3�
2
−2/3�

3
−2/3 of twisted matter fields �i

−2/3 for i ∈ {1, 2, 3}, 
such that there is only one free parameter, denoted by c(1). The precise result reads [3]

W(T ,Xi, Yi,Zi) ⊃ c(1)
[
Ŷ2(T )

(
X1 X2 X3 + Y1 Y2 Y3 + Z1 Z2 Z3

)
(131a)

− Ŷ1(T )√
2

(
X1 Y2 Z3 + X1 Y3 Z2 + X2 Y1 Z3 (131b)

+X3 Y1 Z2 + X2 Y3 Z1 + X3 Y2 Z1
)]

,

As a remark, assuming that �1
−2/3 = (X1, Y1, Z1)

T develops a non-trivial vev, this superpotential 
results in a (symmetric) mass matrix

W(T ,Xi, Yi,Zi) ⊃ (
X2 Y2 Z2

)
⎛
⎜⎜⎜⎝

Ŷ2(T )〈X1〉 − Ŷ1(T )√
2

〈Z1〉 − Ŷ1(T )√
2

〈Y1〉
− Ŷ1(T )√

2
〈Z1〉 Ŷ2(T )〈Y1〉 − Ŷ1(T )√

2
〈X1〉

− Ŷ1(T )√
2

〈Y1〉 − Ŷ1(T )√
2

〈X1〉 Ŷ2(T )〈Z1〉

⎞
⎟⎟⎟⎠

⎛
⎝X3

Y3
Z3

⎞
⎠ .

(132)

This observation can be useful in semi-realistic models e.g. to determine the mass textures of 
quarks and leptons, considering that �1

−2/3 corresponds to three Higgs fields coupled to the three 
generations of quark and lepton superfields.

5.4. Z9
R R-symmetry in a T 2/Z3 orbifold sector

We consider a Narain space group SNarain of a T 6/ZK orbifold, which contains a T 2/Z3
orbifold sector (for example in the first complex plane). Then, there exists an outer automorphism

R̂1 := �̂(3) ⊕ 14 ⊕ 14 ∈ Oη̂(2,2,Z) × Oη̂(2,2,Z) × Oη̂(2,2,Z) ⊂ Oη̂(6,6,Z) (133)

of the Narain space group SNarain, where

�̂(3) := ĈS ĈT =
(

σ̂(3) 0
0 σ̂−T

(3)

)
=

⎛
⎜⎜⎝

0 −1 0 0
1 −1 0 0
0 0 −1 −1
0 0 1 0

⎞
⎟⎟⎠ ∈ Oη̂(2,2,Z) , (134)

acts on the D = 2 extra dimensions of the T 2/Z3 orbifold sector. The columns of the upper 2 ×2
block σ̂(3) = e−1θ(3)e of �̂(3) can be interpreted as

e1
θ(3)−→ θ(3) e1 = e2 and e2

θ(3)−→ θ(3) e2 = − e1 − e2 , (135)
28



H.P. Nilles, S. Ramos–Sánchez and P.K.S. Vaudrevange Nuclear Physics B 966 (2021) 115367
Table 4
Discrete ZR

9 R-charges R1 for a T2/Z3 orbifold sector with trivial Wilson line of: matter fields �nT
, the Grassmann 

number ϑ , the superpotential W , and the Kähler potential K in conventions, similar to those of ref. [32]. The ZR
9 R-

symmetry originates from a Z3 sublattice rotation of the T2/Z3 orbifold sector in the normalization where all R-charges 
of bosons (but not of fermions) are integer. Note that the Z(PG)

3 point group symmetry eq. (129a) is a subgroup of ZR
9

(using that ϑ → −ϑ and fermions → −fermions follows from four-dimensional Lorentz invariance).

�0 �−1 �−2/3 �−5/3 �−1/3 �+2/3 ϑ W K

R-charges R1 0 3 1 −2 2 5 3/2 3 0

see eqs. (70) with y = ei and (72). In other words, the two-dimensional sublattice spanned by e1
and e2, illustrated for example in Fig. 1, is left invariant by a 120◦ rotation.

As a remark, let us assume that the order three discrete Wilson line in the T 2/Z3 orbifold sec-
tor is chosen to be non-zero. Then, this 120◦ rotational symmetry remains unbroken. In contrast, 
the Z2 outer automorphism C := (−14, 0), discussed in section 5.2, is broken in this case.

As we have seen in section 3.2, the outer automorphism eq. (133) translates to a modular 
transformation

γ(3) := S T =
(

0 1
−1 −1

)
∈ H〈U〉=ω ⊂ SL(2,Z)U , (136)

which leaves (by definition of the stabilizer subgroup H〈U〉=ω) the complex structure modulus U
of the T 2/Z3 orbifold sector invariant,

U
γ(3)−→ 1

−U − 1
!= U at 〈U 〉 = ω . (137)

Finally, the superpotential transforms under the modular transformation γ(3) ∈ SL(2, Z)U as

W
γ(3)−→ (−〈U 〉 − 1)−1W = ωW = exp

(
2π iv(3)

)
W , where v(3) := 1/3 ,

(138)

using that the complex structure modulus of the T 2/Z3 orbifold sector is frozen at 〈U 〉 = ω.
This sublattice rotation R̂1 acts on matter fields as

�nT

R̂1−→ exp(2π iR1/9)�nT
, (139)

where the R-charges R1 are normalized to be integer for superfields, see Table 4. Hence, the Z3
sublattice rotation R̂1 leads to a ZR

9 R-symmetry of the theory, where the superpotential eq. (131)
transforms according to eq. (138) with a ZR

9 R-charge 3. Note that fermions have half-integer 
R-charges. Hence, this symmetry acts as a ZR

18 symmetry of the fermionic sector [32]. In more 
detail, one can show that the Grassmann number ϑ of N = 1 superspace has a ZR

9 R-charge 
R(ϑ) = 3/2. Furthermore, using 

∫
dϑ ϑ = 1 we know that the R-charge of 

∫
dϑ is −3/2, such 

that the Lagrangian L ⊃ ∫
d2ϑ W is invariant.

5.5. The full eclectic flavor group without CP in a T 2/Z3 orbifold sector

Combining the discrete ZR
9 R-symmetry with the traditional flavor symmetry �(54) yields 

the full traditional flavor symmetry

�′(54,2,1) ∼= �(54) ∪ ZR ∼= [162,44] . (140)
9
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Table 5
Table from ref. [12]: eclectic flavor group �(2) for orbifolds T6/P that contain a T2/Z3 orbifold sector. In this 
case, SL(2, Z)U of the stabilized complex structure modulus U = exp (2π i/3) is broken, resulting in a remnant 
ZR

9 R-symmetry. Including ZR
9 enhances the traditional flavor group �(54) to �′(54, 2, 1) ∼= [162, 44] and, 

thereby, the eclectic group to �(2) ∼= [1944, 3448]. Note that �(1) ⊂ �(2).

Nature of 
symmetry

Outer automorphism of 
Narain space group Flavor groups

eclectic

modular
rotation S ∈ SL(2,Z)T Z4

T ′

�(2)

rotation T ∈ SL(2,Z)T Z3

translation A Z3
�(27)

�(54)
�′(54,2,1)

traditional translation B Z3

flavor rotation C = S2 ∈ SL(2,Z)T ZR
2

rotation R̂1 ⇔ γ(3) ∈ SL(2,Z)U ZR
9

Hence, the full eclectic flavor group of the T 2/Z3 orbifold sector without CP is given by

�(2) ∼= �(1) ∪ ZR
9

∼= [1944,3448] , (141)

where �(1) ∼= �(54) ∪ T ′, see ref. [51] for the nomenclature. The various groups and their 
origins in string theory are summarized in Table 5. Note that �(2) contains the �(54) traditional 
flavor group and all of its enhancements (without CP) to the various unified flavor groups at 
special points in T moduli space, as we shall discuss later in section 6.

5.6. CP in a T 2/Z3 orbifold sector

For heterotic orbifold compactifications, the modular group SL(2, Z)T of the Kähler modulus 
T originates from outer automorphisms of the Narain space group, as we reviewed in section 2. 
For a T 2/Z3 orbifold sector, it can be enhanced naturally by an additional outer automorphism

K̂∗ := ĈS ĈT ĈS 	̂∗ =

⎛
⎜⎜⎝

1 0 0 0
1 −1 0 0
0 0 1 1
0 0 0 −1

⎞
⎟⎟⎠ (142)

that acts CP-like [17,18], i.e.

T
K̂∗−→ − T̄ and U

K̂∗−→ − Ū

1 + Ū
= U at U = 〈U 〉 = ω , (143)

see also refs. [37,39,52]. Following the discussion in section 3.1 we see that K̂∗ acts geometri-
cally as

y
K̂∗−→ σ y using σ = e σ̂ e−1 and σ̂ =

(
1 0
1 −1

)
. (144)

This gives rise to a reflection at the line perpendicular to e2, as illustrated in Fig. 2. Finally, note 
that CP has to act in all extra dimensions simultaneously, following our discussion in section 4.3.
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Fig. 2. The fundamental domain of the T2/Z3 orbifold is depicted in yellow and the three inequivalent fixed-points are 
blue. (X, Y, Z) denote three (left-chiral) twisted strings from the first twisted sector �̂, while (X̄, Ȳ , Z̄) are three (right-
chiral) twisted strings from the second twisted sector �̂2. The CP-like transformation K̂∗ acts as (K̂∗)−1�̂ K̂∗ = �̂2 in 
agreement with eq. (110). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

5.7. CP as a modular symmetry

On the level of 2 × 2 matrices, the CP-like transformation with K̂∗ can be represented by

K∗ :=
( −1 0

0 1

)
. (145)

Since det(K∗) = −1, it enhances the modular group SL(2, Z)T to GL(2, Z)T . Then, the modular 
transformations in eq. (27) of the Kähler modulus T are complemented by

T
γ−→ a T̄ + b

c T̄ + d
if γ =

(
a b

c d

)
∈ GL(2,Z)T with det(γ ) = −1 , (146)

see also ref. [38] for a bottom-up derivation.
Moreover, the transformation of matter fields eq. (44) can be generalized to CP-like transfor-

mations (with det(γ ) = −1) as

�nT

γ−→ �̄nT

′ := (c T̄ + d)nT ρs(γ ) �̄nT
, (147)

where the field �̄nT
on the right-hand side is evaluated at the parity-transformed point in space-

time. In addition, as derived in ref. [18] for our concrete case of a T 2/Z3 orbifold sector, twisted 
matter fields transform under the CP-like generator K̂∗ as(

�nT

�̄nT

)
K̂∗−→ ρs(K̂∗)

(
�nT

�̄nT

)
:=

(
0 13
13 0

)(
�nT

�̄nT

)
, (148)

where we used that the automorphy factor (c T̄ + d)nT in eq. (147) equals 1 for K∗ defined in 
eq. (145).

Consequently, one can show that the finite modular group T ′ ∼= SL(2, 3) gets enhanced by 
CP to GL(2, 3). Simultaneously, the eclectic flavor group �(2) is enhanced by CP to a group of 
order 3,888 (while the �(1) subgroup of �(2) is enhanced to [1296, 2891] by CP).

Modular forms are also affected by the inclusion of CP-like modular transformations. Under 
a CP-like transformation T → −T̄ , we find for the Dedekind η-function η(r T ) → η(−r T̄ ) =
(η(r T ))∗ if r ∈ R. Hence, the weight 1 modular forms of T ′ defined in eq. (120) transform as
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Ŷ1(T )
K̂∗−→ Ŷ1(−T̄ ) =

(
Ŷ1(T )

)∗
, (149a)

Ŷ2(T )
K̂∗−→ Ŷ2(−T̄ ) =

(
Ŷ2(T )

)∗
, (149b)

cf. ref. [53]. We have chosen here a basis of T ′ where all Clebsch–Gordan coefficients in T ′
tensor products are real (see refs. [45,54] with p = i, p1 = 1, and p2 = −1). Therefore, all irre-
ducible T ′ modular forms of modular weight nY ≥ 1 are complex conjugated by K̂∗, analogously 
to eqs. (149), i.e.

Ŷ (nY )
s (T )

K̂∗−→ Ŷ (nY )
s (−T̄ ) =

(
Ŷ (nY )

s (T )
)∗

. (150)

This can be used to generalize eq. (119) to all elements γ ∈ GL(2, Z)T with det(γ ) = −1 as

Ŷ (nY )
s (T )

γ−→ Ŷ (nY )
s

(
a T̄ + b

c T̄ + d

)
= (c T̄ + d)nY ρs(γ )

(
Ŷ (nY )

s (T )
)∗

, (151)

where we have ρs(K̂∗) = 1 in our basis of GL(2, 3) modular forms. Consequently, T ′ ∼= SL(2, 3)

modular forms naturally become modular forms of the CP-extended finite modular group 
GL(2, 3).

Finally, we discuss the transformation of the superpotential W and the Kähler potential K
under general CP-like transformations for a CP invariant theory. Again, we take γ ∈ GL(2, Z)T
with det(γ ) = −1. Then, if the superpotential and the Kähler potential transform as

W
(
T ,�nT

) γ−→ W
(

a T̄ + b

c T̄ + d
, �̄nT

′
)

= (c T̄ + d)−1 (W(T ,�nT
)
)∗

, (152a)

K
(
T , T̄ ,�nT

, �̄nT

) γ−→ K

(
a T̄ + b

c T̄ + d
,
a T + b

c T + d
, �̄nT

′,�nT

′
)

(152b)

= K
(
T , T̄ ,�nT

, �̄nT

)+ f (T ) + f (T̄ ) , (152c)

the theory is CP invariant, using the transformed matter fields �nT
′ given in eq. (147) and a 

Kähler transformation to remove the holomorphic function f (T ) = ln(c T + d), see section 2.6. 
Let us remark that our convention for K∗ given in eq. (145) is chosen such that the automorphy 
factors in eqs. (147), (151) and (152) have a standard form.

Applied to our explicit trilinear superpotential W eq. (131), we note that W satisfies the 
transformation property of a CP invariant theory. For example, under K̂∗

W(T ,Xi, Yi,Zi)
K̂∗−→ W(−T̄ , X̄i , Ȳi , Z̄i) = (

W(T ,Xi, Yi,Zi)
)∗

, (153)

provided that the coefficient c(1) is real as can be chosen in our superpotential by appropriate field 
redefinitions. However, at a generic point in moduli space, the CP-like transformation K̂∗ does 

not leave the vacuum 〈T 〉 invariant, i.e. 〈T 〉 K̂∗−→ −〈T̄ 〉 �= 〈T 〉, which can indicate spontaneous 
CP breaking. Moreover, even though the Clebsch–Gordan coefficients in T ′ tensor products 
are real, this is not true for �(54) tensor products: tensor products of �(54) triplets can also 
yield �(54) doublets with complex Clebsch–Gordan coefficients [45], indicating that CP can be 
broken [54]. However, in order to see this effect in our superpotential one has to consider higher 
order couplings that, from a stringy point of view, originate from the exchange of heavy �(54)

doublets, cf. ref. [55].
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5.8. Summary

In this section, we illustrate our previous findings on R-symmetries and CP in the T 2/Z3
orbifold sector. It is known that this case is endowed with a T ′ finite modular symmetry and a 
�(54) traditional flavor symmetry. However, when embedded into a six-dimensional orbifold, 
sublattice rotations (from SL(2, Z)U ) yield a ZR

9 R-symmetry, which acts linearly on matter 
fields, enhancing the traditional flavor symmetry to �′(54, 2, 1) ∼= [162, 44]. This leads to the 
largest eclectic symmetry without CP , being �(2) ∼= �′(54, 2, 1) ∪ T ′ ∼= [1944, 3448]. On the 
other hand, the modular group in T 2/Z3 orbifolds is naturally enhanced by a CP-like generator 
K∗ that promotes SL(2, Z)T to GL(2, Z)T . We confirm that a general modular invariant theory 
is also invariant under CP-like transformations from GL(2, Z)T (cf. eq. (152)), provided that 
matter fields and modular forms transform according to eqs. (147) and (151), respectively. Note 
that these conditions are expected to be valid also in general bottom-up models involving mod-
ular symmetries with CP . Including CP , the full eclectic symmetry of a T 2/Z3 orbifold sector 
embedded in a higher-dimensional orbifold is �(2) ∪ZCP

2 , which is a symmetry of order 3, 888.

6. Local flavor unification

In this section, we discuss first in general the mechanism of local flavor unification [18] for 
T 2/ZKi

orbifold sectors, taking into account the effect of their embedding in six-dimensional 
orbifolds. We will then focus on the T 2/Z3 orbifold sector as our working example, where we 
additionally study the implications of this scheme on the superpotential.

Consider a T 2/ZKi
orbifold sector, whose complex structure and Kähler moduli shall be de-

noted here as U and T (instead of Ui and Ti ), in order to simplify the notation as in section 5. 
Let us focus on the case Ki �= 2, for which the U modulus is geometrically fixed at a value 
〈U 〉 according to Table 2. (Some of the differences appearing in the T 2/Z2 orbifold sector, 
which has been studied in ref. [19], shall be briefly mentioned below.) We focus first on mod-
ular transformations that are not CP-like and assume that the corresponding Kähler modulus 
T has been stabilized [56,57] at a self-dual point in moduli space. In other words, we suppose 
that T is stabilized at a vacuum expectation value (vev) 〈T 〉, at which there exists a nontriv-
ial finite [58] subgroup H〈T 〉 ⊂ SL(2, Z)T that leaves 〈T 〉 invariant. Just as H〈U 〉 ⊂ SL(2, Z)U
defined in eq. (81), H〈T 〉 is also a modular stabilizer subgroup, defined as

H〈T 〉 =
{(

aT bT

cT dT

)
∈ SL(2,Z)T

∣∣∣∣ aT 〈T 〉 + bT

cT 〈T 〉 + dT

= 〈T 〉
}

, (154)

i.e. 〈T 〉 is a fixed point of the stabilizer subgroup H〈T 〉 of SL(2, Z)T . Hence, the vev 〈T 〉 of the 
stabilized Kähler modulus spontaneously breaks SL(2, Z)T to an unbroken finite subgroup H〈T 〉. 
If this subgroup is nontrivial, there are three main consequences:

i) On the one hand, the vev 〈T 〉 of the Kähler modulus and, hence, all couplings Ŷ (nY )
s (〈T 〉)

are invariant under γT ∈ H〈T 〉. Thus, for all γT ∈ H〈T 〉 we have

Ŷ (nY )
s (〈T 〉) γT−→ Ŷ (nY )

s

(
aT 〈T 〉+bT

cT 〈T 〉+dT

)
= (cT 〈T 〉+dT )nY ρs(γT ) Ŷ (nY )

s (〈T 〉) = Ŷ (nY )
s (〈T 〉) ,

(155)

using eqs. (119) and (154). This implies that the couplings Ŷ (nY )
s (〈T 〉) become eigenvectors 

of ρs(γT ) with eigenvalues (cT 〈T 〉+dT )−nY . Since the representation matrices ρs(γT ) have 
finite order, the eigenvalues of ρs(γT ) are pure phases, especially
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∣∣(cT 〈T 〉 + dT )−nY
∣∣2 = 1 ⇒ |cT 〈T 〉 + dT |2 = 1 . (156)

Compared to traditional flavon models, eq. (155) corresponds to the mechanism of flavon vev 
alignment, see also refs. [53,59,60]. In this scenario, since the vev 〈T 〉 of the Kähler modulus 
breaks some modular symmetry but leaves the traditional flavor symmetry unbroken, an 
additional flavon will be needed for its breaking.

ii) On the other hand, matter fields �n with SL(2, Z)T modular weight nT ∈ n (where n denotes 
the set of all modular weights of the matter field �n) transform in general nontrivially under 
γT ∈ H〈T 〉, according to

�n

γT−→ �n
′ = ρt,〈T 〉(γT )�n := (cT 〈T 〉 + dT )nT ρs(γT )�n , (157)

see eq. (44). Since the moduli are invariant under a modular transformation γT ∈ H〈T 〉, 
we realize that γT is linearly realized. Thus, the transformation matrix ρt,〈T 〉(γT ) enhances 
the traditional flavor symmetry (now, also containing the discrete ZR

(Ki)
2 R-symmetry that 

originates from SL(2, Z)U as discussed in section 4.2) to the so-called unified flavor sym-
metry [18] at the point 〈T 〉 in moduli space. Moreover, the transformation matrix ρt,〈T 〉(γT )

builds a t-dimensional representation t of the unified flavor group. It is important to stress 
the presence of the extra phase in ρt,〈T 〉(γT ) that originates from the automorphy factor 
(cT 〈T 〉 + dT )nT in eq. (157).

iii) In addition, the superpotential transforms under γT ∈ H〈T 〉, according to eq. (46), as

W(〈T 〉, 〈U 〉,�n)
γT−→ W

(〈T 〉, 〈U 〉,�′
n

) = (cT 〈T 〉 + dT )−1 W(〈T 〉, 〈U 〉,�n) ,

(158)

where (cT 〈T 〉 + dT )−1 is a complex phase, see eq. (156), and 〈U 〉 is the fixed value of 
the complex structure U of the T 2/ZKi

orbifold sector, see Table 2. By definition of H〈T 〉, 
the vev 〈T 〉 is invariant under a transformation γT ∈ H〈T 〉. Thus, also the Kähler potential 
is invariant under γT ∈ H〈T 〉. Since the Lagrangian L ⊃ ∫

d2ϑ W must be invariant under 
these transformations as well, the Grassmann number ϑ must transform with a phase

ϑ
γT−→ (cT 〈T 〉 + dT )

−1/2 ϑ , (159)

cf. section 4. As a consequence, unbroken modular transformations γT ∈ H〈T 〉 generate R-
symmetries at self-dual points in moduli space if cT 〈T 〉 + dT �= 1. These R-symmetries 
appear in addition to those arising from SL(2, Z)U discussed in section 3.4.

Taking into account the discussion of section 5.7, one can extend these observations to further 
include CP . In particular, it is possible to define H〈T 〉 as the subgroup of GL(2, Z)T (instead of 
SL(2, Z)T ) that leaves the stabilized Kähler modulus 〈T 〉 invariant, see eq. (146). In this case, the 
unified flavor symmetry can include CP-like transformations generated by the representations 
of the generators shown in Table 3 combined with some SL(2, Z)T elements, endowing the 
theory with a CP symmetry. Note that in these terms, one could envisage a scenario in which 
CP violation occurs as a transition from a point 〈T 〉 in moduli space where H〈T 〉 contains an 
unbroken CP-like symmetry to another point where no CP-like transformation stabilizes 〈T 〉.

In summary, taking into account in the T 2/ZKi
orbifold sector the traditional flavor sym-

metry Gfl, the discrete ZR
(Ki)

2 R-symmetry from SL(2, Z)U , and the stabilizer subgroup H〈T 〉
which may also include CP-like transformations, the unified flavor symmetry is given by the 
multiplicative closure of these groups. Thus, the unified flavor symmetry can be expressed as
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Fig. 3. Fixed points and curves in the moduli space of the Kähler modulus T = ReT + i ImT . The point 〈T 〉 = i (blue 
square) is left fixed by the modular K̂S transformation, whereas K̂SK̂T leaves 〈T 〉 = ω (black bullet) invariant. These 
points lie at the intersections of the curves left invariant by the GL(2, Z) elements indicated next to them. These curves 
build the boundary of the fundamental domain (shaded region) of the moduli space in the T2/Z3 orbifold sector. We 
omit the K̂2

S modular symmetry, which acts trivially on the whole moduli space and is included in the traditional flavor 
group.

Guf,〈T 〉 ∼= Gfl ∪ ZR
(Ki)

2 ∪ H〈T 〉 ⊂ Geclectic , (160)

where also the transformations from ZR
(Ki)

2 ∪ H〈T 〉 are linearly realized in spite of their modular 
origin.

Let us now spend a few words on the case of the T 2/Z2 orbifold sector. As detailed in 
ref. [19], in this case both T and U moduli are not fixed. However, one can choose special 
vevs (〈T 〉, 〈U 〉) that are left invariant by a modular stabilizer subgroup H(〈T 〉,〈U 〉), which, in 
contrast to H〈T 〉 in eq. (154), includes elements not only from SL(2, Z)T , but from the whole 
modular group of the orbifold. Hence, the unified flavor symmetry in this case can be expressed 
analogously to eq. (160), replacing H〈T 〉 by H(〈T 〉,〈U 〉).

In the following, we illustrate the scheme of local flavor unification by assuming that the 
Kähler modulus is stabilized at various different points in moduli space of the T 2/Z3 orbifold 
sector. This moduli space is illustrated in Fig. 3. We explore first the resulting unified flavor 
symmetries at the boundaries of the moduli space, depicted by the curves in the figure, where 
we realize that a unique purely CP enhancement of the flavor symmetry occurs. Then, we focus 
on two self-dual points 〈T 〉 = i and 〈T 〉 = ω, displayed in the Fig. 3 as a (blue) square and 
a (black) bullet, respectively. Since we suppose the T 2/Z3 orbifold sector to be embedded in 
a six-dimensional orbifold, our starting point is the traditional flavor symmetry �′(54, 2, 1) ∼=
[162, 44] ∼= �(54) ∪ ZR

9 , cf. Table 5. Depending on the value of 〈T 〉 in moduli space, different 
unbroken modular transformations contribute to enhance this traditional flavor group to various 
unified flavor symmetries contained in the full eclectic flavor group, �(2) ∪ ZCP

2 , which is of 
order 3,888. A brief summary of these findings is shown in Table 6. Furthermore, we study 
the details of the twisted matter fields �i

−2/3 = (Xi, Yi, Zi)
T and their superpotential eq. (131)

compatible with the unbroken symmetries at the different points in moduli space.
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Table 6
Unified flavor symmetries at different Kähler modulus vevs 〈T 〉 of the T2/Z3 orbifold sector 
embedded in a six-dimensional orbifold. The GL(2, Z)T modular transformations that leave 
〈T 〉 invariant (generating the so-called stabilizer modular subgroup) enhance the traditional 
flavor symmetry �′(54, 2, 1) ∼= �(54) ∪ ZR

9 of the orbifold sector to various large unified 
flavor symmetries, which generically include CP-like transformations. Note that the unified 
flavor symmetry is unique at all curves depicted in Fig. 3 that build the boundary of the fun-
damental domain of the moduli space of T . Furthermore, since (K̂S)2 already belongs to the 
traditional flavor symmetry, we do not list it here.

〈T 〉 Stabilizer generators Unified flavor symmetries

Non CP-like CP-like Without CP With CP
i K̂S K̂∗ �(2,2) ∼= [324,111] [648,548]
ω K̂SK̂T K̂∗K̂T H(3,2,1) ∼= [486,125] [972,469]
Re 〈T 〉 = 0 K̂∗ �′(54,2,1) ∼= [162,44] [324,125]
Re 〈T 〉 = −1/2 K̂∗K̂T �′(54,2,1) ∼= [162,44] [324,125]
|〈T 〉| = 1 K̂SK̂∗ �′(54,2,1) ∼= [162,44] [324,125]

6.1. Flavor enhancement at the boundary of the moduli space of T 2/Z3

Let us begin the discussion of local flavor unification in the T 2/Z3 orbifold sector by studying 
the flavor symmetry enhancement at the various curves in Fig. 3, which describe the boundary 
of the fundamental domain in moduli space for the Kähler modulus T . The three curves are 
defined by the constraints Re 〈T 〉 = 0, Re 〈T 〉 = −1/2 and |〈T 〉| = 1, respectively. We find that 
the stabilizer elements H〈T 〉 ⊂ GL(2, Z)T compatible with the previous conditions are generated 
in each case by

at Re 〈T 〉 = 0 : 〈T 〉 K̂∗−→ − ¯〈T 〉 = 〈T 〉 , (161a)

at Re 〈T 〉 = −1/2 : 〈T 〉 K̂∗−→ − ¯〈T 〉 K̂T−→ − ¯〈T 〉 − 1 = 〈T 〉 , (161b)

at |〈T 〉| = 1 : 〈T 〉 K̂S−→ − 1

〈T 〉
K̂∗−→ 1

¯〈T 〉 = 〈T 〉 . (161c)

Besides, we find the unbroken symmetry K̂2
S that leaves the whole moduli space invariant and sat-

isfies K̂2
S = C, becoming a symmetry generator already included in the traditional flavor group. 

Therefore, we find that the stabilizer subgroup is H〈T 〉 = Z2 ×ZCP
2 . Note that the stabilizer ele-

ments that can enhance the traditional flavor group include the CP-like generator K̂∗ in all cases. 
Hence, there is no flavor enhancement without CP-like transformations at a generic point on the 
boundary of the fundamental domain in T moduli space. That is, ignoring the possibility of CP , 
the traditional flavor symmetry �′(54, 2, 1) ∼= �(54) ∪ZR

9 is not enhanced at the boundaries of 
the fundamental domain.

In order to figure out the flavor enhancements that the CP-like stabilizer elements in eq. (161)
induce, we must consider i) the matrix representations of these stabilizer elements when acting 
on the twisted matter fields �−2/3 (and their CP-conjugate �̄−2/3), and ii) the automorphy factors 
associated with these transformations. The representations are obtained as products of ρ(K̂S)

and ρ(K̂T) given in eq. (123), as well as ρ(K̂∗) defined in eq. (148). Further, by using the 2 × 2
matrices that represent the GL(2, Z)T generators K̂S, K̂T (see eq. (2)) and K̂∗ (see eq. (145)), 
we find that the automorphy factors are trivial for Re 〈T 〉 = 0, −1/2, i.e.
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�−2/3
K̂∗−→ �̄−2/3 , (162a)

�−2/3
K̂∗K̂T−−−→ ρ(K̂T)∗ �̄−2/3 . (162b)

At the points 〈T 〉 satisfying |〈T 〉| = 1, we have

�−2/3
K̂SK̂∗−−−→ �̄′

−2/3 = (〈T̄ 〉)−2/3ρ(K̂S) �̄−2/3 . (163)

In all three cases, one can show easily that H〈T 〉 = ZCP
2 acts on the matter fields as a Z2 symme-

try.3 Thus, the order of the traditional flavor symmetry is enhanced by a factor of two, resulting 
in the unified flavor symmetry

Guf,〈T 〉∈boundary ∼= �′(54,2,1) ∪ZCP
2

∼= [324,125] (164)

at a generic point on the boundary of the fundamental domain of the T moduli space.

6.2. Flavor symmetry at 〈T 〉 = i in moduli space of T 2/Z3

As one can infer from Fig. 3, at 〈T 〉 = i the stabilizer subgroup includes the SL(2, Z)T trans-
formation K̂S,

〈T 〉 K̂S−→ − 1

〈T 〉 = 〈T 〉 at 〈T 〉 = i , (165)

and the CP-like generator K̂∗ because 〈T 〉 = i satisfies eq. (161a). Since K̂4
S = 1, the full sta-

bilizer subgroup is Hi ∼= Z4 ×ZCP
2 , where the Z2 ⊂ Z4 subgroup associated with K̂2

S = C (see 
eq. (130)) already belongs to the traditional flavor symmetry �(54) ⊂ �′(54, 2, 1).

As the vev 〈T 〉 = i of the modulus is invariant under Hi, the coupling strengths Ŷ1(〈T 〉) and 
Ŷ2(〈T 〉) are also invariant. Using the general modular transformations eq. (119), this implies 
particularly that the K̂S transformation on the coupling strengths leads to

Ŷ
(1)

2′′ (i) =
(

Ŷ1(i)
Ŷ2(i)

)
K̂S−→

(
Ŷ1

(− 1
i

)
Ŷ2

(− 1
i

)) = − 1√
3

(
1

√
2√

2 −1

)(
Ŷ1(i)
Ŷ2(i)

)
=

(
Ŷ1(i)
Ŷ2(i)

)
.

(166)

Consequently, the doublet of couplings Ŷ (1)

2′′ (i) is an eigenvector of the matrix ρ2′′(K̂S) with 
eigenvalue i. Thus, eq. (166) amounts to the vev alignment

Ŷ
(1)

2′′ (i) = Ŷ2(i)

(
−

√
2

1+√
3

1

)
, (167)

which provides a nontrivial relation between Ŷ1(i) and Ŷ2(i). As a side remark, because of the 
vev alignment eq. (167), the T ′ modular forms Ŷ (4)

1 (T ), Ŷ (4)

1′ (T ) and Ŷ (4)
3 (T ) of weight 4 given 

in ref. [3] get aligned at 〈T 〉 = i as

Ŷ
(4)
1 (i) = Y

(4)

1′ (i) = 3(3 − 2
√

3) Ŷ2(i)
4 and Ŷ

(4)
3 (i) = 3(2 − √

3) Ŷ2(i)
4

⎛
⎝ 1

1
−1

⎞
⎠ .

3 To verify this, one must use ρ(K̂T)ρ(K̂T)∗ = ρ(K̂S)ρ(K̂S)∗ = 1.
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(168)

Furthermore, both modular forms, Ŷ1(i) and Ŷ2(i), are real at 〈T 〉 = i (as one can also infer 
directly from eq. (149)) and we find

Ŷ1(i) = − 3
√

2
η3(3 i)

η(i)
≈ − 0.5234 and Ŷ2(i) ≈ 1.0112 . (169)

We can apply the vev alignment eq. (167) also to the trilinear superpotential eq. (131) of 
twisted matter fields �i

−2/3 = (Xi, Yi, Zi)
T, i = 1, 2, 3. At 〈T 〉 = i, it turns out that

W(i,Xi, Yi,Zi) ⊃ c(1) Ŷ2(i)
[(

X1 X2 X3 + Y1 Y2 Y3 + Z1 Z2 Z3
)

(170a)

+ 1

1 + √
3

(
X1 Y2 Z3 + X1 Y3 Z2 + X2 Y1 Z3 (170b)

+X3 Y1 Z2 + X2 Y3 Z1 + X3 Y2 Z1
)]

.

Under a modular K̂S transformation with its representation given by eq. (123), twisted matter 
fields transform, according to eq. (157), as⎛

⎝ Xi

Yi

Zi

⎞
⎠ K̂S−→

⎛
⎝ X′

i

Y ′
i

Z′
i

⎞
⎠ = i(−i)−2/3

√
3

⎛
⎝ 1 1 1

1 ω2 ω

1 ω ω2

⎞
⎠

︸ ︷︷ ︸
=: ρ32,i(K̂S)

⎛
⎝ Xi

Yi

Zi

⎞
⎠ , (171)

where the multivalued factor (−i)−2/3 can be fixed to −ω2 = exp(π i/3) by the Z3 point group 
symmetry, and the representation t = 32 following the notation of eq. (157) corresponds to the 
triplet that the matter fields build in the resulting unified flavor symmetry at 〈T 〉 = i. It then 
follows that K̂S acts on the superpotential evaluated at 〈T 〉 = i as an R-symmetry,

W(i,Xi, Yi,Zi)
K̂S−→ W(i,X′

i , Y
′
i ,Z

′
i ) = iW(i,Xi, Yi,Zi) , (172)

as one can also see directly from eq. (46a). Moreover, due to ρ32,i(K̂S), the modular K̂S transfor-
mation at 〈T 〉 = i generates a Z12 ∼= Z4 ×Z3 traditional flavor symmetry when acting on matter 
fields, cf. eq. (171), where Z4 ×Z3 can be generated by

(
ρ32,i(K̂S)

)3 = i√
3

⎛
⎝ 1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠ and

(
ρ32,i(K̂S)

)4 = ω21 , (173)

respectively. It is easy to see that the Z4 factor generated by (ρ32,i(K̂S))3 is an R-symmetry, while 
the Z3 factor generated by (ρ32,i(K̂S))4 is equivalent to the point group symmetry (129a) of the 
orbifold sector.4 Using that (ρ32,i(K̂S))6 = ρ32(C), without including CP-like transformations 
the traditional flavor symmetry is enhanced from

�′(54,2,1) to �(2,2) ∼= [324,111] at 〈T 〉 = i . (174)

4 The transformation K̂3
S at 〈T 〉 = i acts as a Z4 on bosons and on W . However, due to eq. (159), it is actually an Z8

R-symmetry when acting on fermions. Since discrete R-symmetries are relevant for phenomenology [61,62], it may be 
interesting to explore the consequences of this symmetry.
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This is the largest traditional flavor group without CP that can be obtained in the T 2/Z3
orbifold sector embedded in a higher-dimensional orbifold, and contains the group 	(36 × 3) ∼=
[108, 15] that results when the discrete ZR

9 R-symmetry from SL(2, Z)U is not considered [3,17,
18]. Similarly to that case, the �(2, 2) group can be generated by the matrices ρ(A), ρ(B) given 
in eq. (127), the ZR

9 generator ρ(R̂1) eq. (139), and ρ32,i(K̂S) in the faithful triplet representation 
32 of �(2, 2).

As a side remark, the relation ρ32,i(K̂
4
S) = (ρ32,i(K̂S))4 = ω21 in eq. (173) is a consistent 

representation of K̂4
S = 1 (see eq. (1)) because the latter indicates that K̂4

S must act trivially on 
the fields up to the action of the traditional flavor symmetry.

So far, we have not yet considered the ZCP
2 CP-like transformation K̂∗ at 〈T 〉 = i. Using the 

CP-like transformation (162a) of matter fields, one can explicitly show that

W(i,Xi, Yi,Zi)
K̂∗−→ W(i, X̄i , Ȳi , Z̄i) = (

W(i,Xi, Yi,Zi)
)∗

, (175)

using the superpotential eq. (170) with c(1) Ŷ2(i) ∈ R and the discussion on CP from section 5.7. 
Consequently, if we stabilize the Kähler modulus T at 〈T 〉 = i, the trilinear superpotential 
eq. (170) respects CP . Including CP , the unified flavor group at 〈T 〉 = i is given by

Guf,〈T 〉=i ∼= [648,548] ∼= �′(54,2,1) ∪Z4 ∪ZCP
2 , (176)

where �(2, 2) ∼= �′(54, 2, 1) ∪ Z4 is the maximal flavor subgroup of Guf,〈T 〉=i which does not 
act CP-like.

6.3. Flavor symmetry at 〈T 〉 = ω in moduli space of T 2/Z3

Let us now assume that the Kähler modulus is stabilized at 〈T 〉 = ω in moduli space. There, as 
illustrated in Fig. 3, the unbroken GL(2, Z)T symmetries can be generated by the ZCP

2 CP-like 
transformation K̂∗K̂T, and the Z3 modular transformation K̂SK̂T,

〈T 〉 K̂S−→ − 1

〈T 〉
K̂T−→ − 1

〈T 〉 + 1
= 〈T 〉 . (177)

In addition, we have the Z2 transformation K̂2
S = C that is already included in the traditional 

flavor group. The resulting stabilizer subgroup reads Hω
∼= Z3 ×Z2 ×ZCP

2 .
At this point in moduli space, the coupling strengths governed by the modular forms Ŷ1(〈T 〉)

and Ŷ2(〈T 〉) with modular weight nY = 1 get aligned as

Ŷ
(1)

2′′ (ω) = Ŷ2(ω)

(
1√
2
ω

1

)
, where Ŷ2(ω) ≈ 0.97399899 . (178)

Incidentally, the vev alignment given by eq. (178) implies that the T ′ modular forms Ŷ (4)
1 (T ), 

Ŷ
(4)

1′ (T ) and Ŷ (4)
3 (T ) of weight 4 given in ref. [3] are aligned at 〈T 〉 = ω according to

Ŷ
(4)
1 (ω) = 0 , Ŷ

(4)

1′ (ω) = 9

4
ωŶ2(ω)4 and Ŷ

(4)
3 (ω) = 3

2
Ŷ2(ω)4

⎛
⎝ 1

− 1
2ω

−ω2

⎞
⎠ . (179)

On the other hand, in this case the trilinear superpotential eq. (131) simplifies to
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W(ω,Xi,Yi,Zi) ⊃ c(1) Ŷ2(ω)
[
X1 X2 X3 + Y1 Y2 Y3 + Z1 Z2 Z3 (180a)

−ω

2

(
X1 Y2 Z3 + X1 Y3 Z2 + X2 Y1 Z3 (180b)

+X3 Y1 Z2 + X2 Y3 Z1 + X3 Y2 Z1
)]

.

Under a modular K̂S K̂T transformation at 〈T 〉 = ω, the three triplets of twisted matter fields 
�i

−2/3 transform as⎛
⎝ Xi

Yi

Zi

⎞
⎠ K̂S K̂T−−−→

⎛
⎝ X′

i

Y ′
i

Z′
i

⎞
⎠ = i

(
ω2

)−2/3

√
3

⎛
⎝ ω2 1 1

ω2 ω2 ω

ω2 ω ω2

⎞
⎠

︸ ︷︷ ︸
=: ρ32,ω(K̂S K̂T)

⎛
⎝ Xi

Yi

Zi

⎞
⎠ , (181)

where t = 32 denotes the triplet representation of the twisted matter fields �i
−2/3 under the unified 

flavor symmetry at 〈T 〉 = ω. We used eq. (123) for ρ(K̂S) and ρ(K̂T), and the automorphy 
factor (−〈T 〉 − 1)

−2/3 = (ω2)
−2/3 for γT = K̂S K̂T evaluated at 〈T 〉 = ω in moduli space, see 

eq. (157). Note that the multivalued factor 
(
ω2

)−2/3
can be fixed to exp(2π i 2/9) by the Z(PG)

3 point 
group symmetry of the T 2/Z3 orbifold sector, see eq. (129a). Due to this phase, ρ32,ω(K̂S K̂T)

generates a Z9 symmetry that contains the Z(PG)
3 point group symmetry as a subgroup,

(ρ32,ω(K̂S K̂T))3 = ω21 . (182)

Thus, even though ρ32,ω(K̂S K̂T) has order 9, the traditional flavor symmetry (without CP) is 
only enhanced from

�′(54,2,1) ∼= [162,44] to H(3,2,1) ∼= [486,125] at 〈T 〉 = ω , (183)

i.e. the order increases by a factor of three (see ref. [51] for the nomenclature).
It follows that the Z9 ⊂ H(3, 2, 1) transformation eq. (181) acts on the superpotential 

eq. (180) as

W(ω,Xi,Yi,Zi)
K̂S K̂T−−−→ W(ω,X′

i , Y
′
i ,Z

′
i ) = ωW(ω,Xi,Yi,Zi) . (184)

This is expected due to the automorphy factor (−〈T 〉 − 1)−1 = ω of the superpotential W for 
γT = K̂S K̂T evaluated at the point 〈T 〉 = ω in moduli space. Thus, the Z9 symmetry enhance-
ment yields a discrete R-symmetry.

Let us now consider also the CP-like transformation K̂∗K̂T included in Hω. Under K̂∗K̂T, 
twisted matter fields �i

−2/3 transform according to eq. (162b), which in terms of the component 

fields reads (Xi, Yi, Zi)
T K̂∗K̂T−−−→ (ωX̄i, Ȳi , Z̄i)

T. Then, we find that the superpotential at 〈T 〉 = ω, 
eq. (180), respects CP-like transformations, i.e.

W(ω,Xi,Yi,Zi)
K̂∗K̂T−−−→ W(ω,ωX̄i, Ȳi , Z̄i) = (

W(ω,Xi,Yi,Zi)
)∗

. (185)

This can be easily confirmed by applying the identities

Ŷ1(ω)ω =
(
Ŷ1(ω)

)∗
and Ŷ2(ω) =

(
Ŷ2(ω)

)∗
, (186)
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which follow from eqs. (119) and (149). Finally, we find that this CP enhancement leads to the 
unified flavor symmetry given by

Guf,〈T 〉=ω
∼= [972,469] ∼= �′(54,2,1) ∪Z9 ∪ZCP

2 , (187)

where H(3, 2, 1) ∼= �′(54, 2, 1) ∪ Z9 is the maximal flavor subgroup of Guf,〈T 〉=ω which does 
not act CP-like.

6.4. Gauge symmetry enhancement at 〈T 〉 = ω

Let us analyze the “accidental” continuous symmetries of the superpotential eq. (180) at 〈T 〉 =
ω in moduli space. We assume that the twisted matter fields �i

−2/3 = (Xi, Yi, Zi)
T transform 

identically for i ∈ {1, 2, 3} (typically the three copies of twisted matter fields �i
−2/3 differ in 

some other gauge charges, such that there is no flavor symmetry that mixes i ∈ {1, 2, 3}). To 
identify continuous symmetries, we define a general infinitesimal U(3) transformation⎛

⎝Xi

Yi

Zi

⎞
⎠ U(3)−→ (13 + iαa Ta)

⎛
⎝Xi

Yi

Zi

⎞
⎠ , (188)

where summation over a = 1, . . . , 9 is implied and the 3 × 3 matrices Ta denote the Hermitian 
generators of the U(3) Lie algebra. By demanding invariance of the superpotential eq. (180)
at leading order in the parameters αa , we obtain two linear independent generators ta that we 
choose as

t1 := 1

3
√

2

⎛
⎝ 0 ω2 ω2

ω 0 1
ω 1 0

⎞
⎠ and t2 := i

3
√

2

⎛
⎝ 0 ω2 −ω2

−ω 0 1
ω −1 0

⎞
⎠ . (189)

Note that t1 t2 = t2 t1. Hence, we found a U(1) ×U(1) symmetry of the superpotential eq. (180) at 
〈T 〉 = ω. In a full string discussion (see e.g. [41]), one can show that this “accidental” symmetry 
is actually an exact gauge symmetry, where the U(1) gauge bosons correspond to certain winding 
strings that become massless at the self-dual point 〈T 〉 = ω in moduli space.

Next, we diagonalize the U(1) generators eq. (189) simultaneously by performing a (unitary) 
basis change in field space, i.e.⎛

⎝X
g
i

Y
g
i

Z
g
i

⎞
⎠ := Mg

⎛
⎝Xi

Yi

Zi

⎞
⎠ where Mg := 1√

3

⎛
⎝1 ω2 ω2

1 1 ω

1 ω 1

⎞
⎠ , (190)

where the superscript character “g” labels the “gauge” basis, in which the U(1) generators are 
diagonal. In this basis, the U(1) generators tga := Mg ta (Mg)−1 for a ∈ {1, 2} read

tg1 = 1

3
√

2

⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠ and tg2 = 1√

6

⎛
⎝0 0 0

0 1 0
0 0 −1

⎞
⎠ . (191)

This reproduces the U(1) charges of Z3 twisted strings (M1, M2, M3) computed using a Z3 shift 
orbifold, see ref. [41] and especially Table 2 therein. Next, we change the basis for the generators 
ρ(A), ρ(B) and ρ(C) of the traditional flavor group �(54) given in eqs. (127) and (130). We 
obtain
41
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ρg(A) :=
⎛
⎝ 0 0 ω2

ω 0 0
0 1 0

⎞
⎠ , ρg(B) :=

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ and

ρg(C) := −
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ . (192)

Using this, one can show easily that the Z3 ×Z3 subgroup of �(54), generated by the diagonal 
representation matrices

ρg(A) ρg(B) =
⎛
⎝ω2 0 0

0 ω 0
0 0 1

⎞
⎠ and ρg(B) ρg(A) =

⎛
⎝ω 0 0

0 1 0
0 0 ω2

⎞
⎠ , (193)

is contained in the continuous U(1) × U(1) symmetry generated by eq. (191),

ρg(A) ρg(B) = exp

(
2π i

(
+√

2 tg1 −
√

2

3
tg2

))
, (194a)

ρg(B) ρg(A) = exp

(
2π i

(
−√

2 tg1 −
√

2

3
tg2

))
. (194b)

The elements ρg(B) and ρg(C) generate an S3 permutation group, which is an R-symmetry since 
its generator C is defined as a 180◦ rotation in extra dimensions. This S3 does not commute with 
the continuous U(1) × U(1) symmetry. Hence, one can show that the traditional flavor symmetry 
�(54) gets enhanced at 〈T 〉 = ω in moduli space to(

U(1) × U(1)
)
� SR

3 , (195)

see ref. [41]. This is further enhanced by ZR
9 (if the orbifold sector is embedded in a higher-

dimensional orbifold) and by the unbroken SL(2, Z)T modular transformation K̂S K̂T as dis-
cussed in section 6.3. In the new field basis, eq. (181) yields

ρ
g
32,ω

(K̂S K̂T) := Mg ρ32,ω(K̂S K̂T) (Mg)−1 = exp(2π i 2/9)

⎛
⎝ω2 0 0

0 1 0
0 0 1

⎞
⎠ . (196)

Finally, we can perform the basis change in field space eq. (190) for the superpotential 
eq. (131) and obtain

W(T ,X
g
i , Y

g
i ,Z

g
i ) = c(1)

√
3

[(
Ŷ2(T ) − √

2ω2 Ŷ1(T )
) (

X
g
1X

g
2X

g
3 + Y

g
1 Y

g
2 Y

g
3 + Z

g
1Z

g
2Z

g
3

)
+

(
Ŷ2(T ) + ω2

√
2

Ŷ1(T )

)(
X

g
1(Y

g
2 Z

g
3 + Y

g
3 Z

g
2) + X

g
2(Y

g
1 Z

g
3 + Y

g
3 Z

g
1) (197)

+ X
g
3(Y

g
1 Z

g
2 + Y

g
2 Z

g
1)
)]

.

By using the U(1) × U(1) generators defined in eq. (191), we see that the terms from the first 
line of eq. (197), such as Y g

1 Y
g
2 Y

g
3 , break this symmetry, whereas the terms from the second line 

preserve it. On the other hand, at the point 〈T 〉 = ω in moduli space, the couplings align as
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Ŷ1(ω) = ω√
2

Ŷ2(ω) , (198)

see eq. (178). This alignment leads to a vanishing coefficient in the first line of eq. (197) and we 
are left with

W(ω,X
g
i , Y

g
i ,Z

g
i ) = c

(
X

g
1(Y

g
2 Z

g
3 +Y

g
3 Z

g
2)+X

g
2(Y

g
1 Z

g
3 +Y

g
3 Z

g
1)+X

g
3(Y

g
1 Z

g
2 +Y

g
2 Z

g
1)
)

,

(199)

where c := √
3/2 c(1) Ŷ2(ω). This superpotential at 〈T 〉 = ω is clearly invariant under the U(1) ×

U(1) transformations generated by eq. (191).

6.5. Summary

Let us now highlight the main results of this section. Unified flavor symmetries Guf,〈T 〉 are 
enhancements of the traditional flavor symmetry that occur at different self-dual points 〈T 〉
and loci in moduli space of T 2/ZKi

orbifold sectors, where some modular transformations 
are linearly realized. The new flavor symmetries include SL(2, Z)T (and in the case of Ki = 2
SL(2, Z)U ) transformations as well as CP-like symmetries. Thus, in this scenario Guf,〈T 〉 (and 
CP) breakdown is triggered by moving away from the self-dual loci in moduli space. We have 
illustrated this in the T 2/Z3 orbifold sector. At a generic point in moduli space, this orbifold 
exhibits a �′(54, 2, 1) ∼= �(54) ∪ ZR

9 traditional flavor symmetry, when embedded in a higher-
dimensional orbifold. At the points depicted in Fig. 3, we find the following unified flavor 
symmetries:

�′(54,2,1)
K̂∗ or K̂∗K̂T or K̂SK̂∗−−−−−−−−−−−−→ Guf,〈T 〉∈boundary ∼= [324,125] , see section 6.1

�′(54,2,1)
K̂S−→ �(2,2)

K̂∗−→ Guf,〈T 〉=i ∼= [648,548] , see section 6.2

�′(54,2,1)
K̂SK̂T−−−→ H(3,2,1)

K̂∗K̂T−−−→ Guf,〈T 〉=ω
∼= [972,469] , see section 6.3

where we indicate the unbroken modular transformations that are linearly realized. In these cases, 
we have studied how the value of 〈T 〉 induces an alignment mechanism on the couplings, which 
in turn sets the structure of the superpotential of the theory. Finally, in section 6.4 we observe that 
the traditional flavor symmetry is further enhanced to (continuous) gauge symmetries at self-dual 
points of the theory. In particular, by inspecting the (accidental) symmetries of the superpotential 
at 〈T 〉 = ω, we have shown that the �(54) flavor symmetry is enhanced to (U(1) × U(1)) � SR

3 , 
which is broken spontaneously elsewhere in moduli space.

7. Conclusions and outlook

In this paper we have presented a new step of the eclectic approach towards ten-dimensional 
string theory. This discussion goes beyond previous studies in D = 2 that concentrated on the 
modular transformations SL(2, Z)T of a single Kähler modulus T . We now include a detailed 
analysis of SL(2, Z)U of the complex structure modulus U . In the orbifolds T 2/ZK with K =
3, 4, 6 the U -modulus is fixed because of the orbifold twist. We show that even in the case of 
frozen U we encounter remnant symmetries of SL(2, Z)U in form of R-symmetries that extend 
the eclectic group. When embedded in D = 6 compact dimensions these symmetries are relevant 
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as sublattice rotations. We illustrate the full eclectic picture in the case of T 2/Z3, where we 
obtain Gecl = �(54) ∪ T ′ ∪ZR

9 ∪ZCP
2 , a discrete symmetry group of order 3, 888.

In a next step towards D = 6 we shall have to consider more than one unconstrained modulus 
beyond T . The simplest case with two unconstrained moduli (T and U ) is the T 2/Z2 orbifold 
that has already been discussed in ref. [19]. There, it was shown that the remnants of the full 
modular group Oη̂(2, 2, Z) (that contains SL(2, Z)T × SL(2, Z)U ) lead to the finite modular 
group ((S3 × S3) � Z4) × ZCP

2 , where mirror symmetry acts as a Z4 on the level of matter 
fields but only as a Z2 permutation of T and U , and ZCP

2 is a CP-like transformation [19]. 
Together with the traditional flavor group (D8 × D8)/Z2 this leads to an eclectic group with 
4, 608 elements. The full technical details of the analysis of ref. [19] will be presented in ref. [63]. 
This includes a discussion of modular forms with more than one unconstrained modulus, such as 
e.g. Siegel modular forms. Incidentally, in a recent work of Ding, Feruglio and Liu [64] such a 
situation has been discussed from the bottom-up perspective, including the aforementioned finite 
modular group (S3 × S3) �Z2 (on the level of the moduli and without CP). It will be interesting 
to see how our top-down approach from string theory can make contact with the bottom-up 
discussion of ref. [64].

After having control of the T 2/Z2 case, all of the relevant building blocks for the D = 6 case 
are at our disposal. A discussion of the generic case with D = 6 will be too difficult to be analyzed 
in detail. Simpler cases can be found in models of elliptic fibrations of D = 6 compact space. 
Sublattice rotations of the various D = 2 sectors would be relevant for the eclectic group. Finally, 
the next step would require the selection of specific string models that could successfully describe 
the flavor structure of quarks and leptons to make connections to the bottom-up constructions (see 
e.g. [65] and references therein).
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