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Abstract

Analog quantum simulation has the potential to be an indispensable technique in the investigation of 
complex quantum systems. In this work, we numerically investigate a one-dimensional, faithful, analog, 
quantum electronic circuit simulator built out of Josephson junctions for one of the paradigmatic models of 
an integrable quantum field theory: the quantum sine-Gordon (qSG) model in 1+1 space-time dimensions. 
We analyze the lattice model using the density matrix renormalization group technique and benchmark our 
numerical results with existing Bethe ansatz computations. Furthermore, we perform analytical form-factor 
calculations for the two-point correlation function of vertex operators, which closely agree with our nu-
merical computations. Finally, we compute the entanglement spectrum of the qSG model. We compare our 
results with those obtained using the integrable lattice-regularization based on the quantum XYZ chain and 
show that the quantum circuit model is less susceptible to corrections to scaling compared to the XYZ chain. 
We provide numerical evidence that the parameters required to realize the qSG model are accessible with 
modern-day superconducting circuit technology, thus providing additional credence towards the viability of 
the latter platform for simulating strongly interacting quantum field theories.
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1. Introduction

The investigation of strongly interacting complex quantum systems remains one of the out-
standing challenges of modern physics. Despite the remarkable progress on both numerical as 
well as analytical fronts, systematic and well-controlled non-perturbative analysis of many quan-
tities of interest remain intractable. Quantum simulation provides a promising alternative to the 
aforementioned conventional techniques towards tackling these problems [1]. There are two ap-
proaches to quantum simulation: digital and analog. In principle, digital quantum simulation is 
universal [2,3]. It can be performed by a digital quantum computer built out of qubits. A digital 
quantum simulation of a many-body Hamiltonian comprises encoding of the target Hamiltonian 
as a trotterized sequence of one and two-qubit gates and readout of desired observables. However, 
opening up the digital quantum computer to externally applied gates and measurement apparatus 
leads to unavoidable decoherence of the physical qubits constituting the quantum computer. To 
combat for the finite lifetimes of the physical qubits as well as imperfections of the applied gate-
set, quantum error-correction [4,5] is essential. In the recent years, spectacular process has been 
made towards realizing such a universal computing machine. In fact, noisy, intermediate-scale, 
quantum machines have already been shown to be capable of simulating certain aspects of few-
body systems [6,7]. However, extrapolating these efforts to the many-body domain will require 
enormous overhead and is likely to remain elusive in the immediate future. A more near-term 
approach to simulate many-body physics is analog quantum simulation, where a given quantum 
system is tailored to simulate another [8–13]. In this approach the target Hamiltonian is realized 
by specifically engineering the given quantum system and letting it naturally evolve with time. 
There is no need to implement trotterized gate-sets. Thus, the physical degrees of freedom that 
comprise analog simulators do not need to be individually addressed and can be isolated from 
losses much more than their counterparts in a digital quantum computer. The imperfections in the 
engineered quantum system lead to ‘errors’ which are typical of an experimental realization, e.g.,
finite correlation lengths at criticality due to the disorder, etc. One of the biggest advantages of 
analog quantum simulation is the availability of a wide range of viable experimental platforms. 
Analog simulators based on trapped atoms have been used to experimentally simulate strongly 
correlated systems, topological phases of matter and gauge theories [14–17], while trapped-ion 
based simulators have investigated problems in quantum magnetism [18,19]. Finally, supercon-
ducting quantum electronic circuit (QEC) based simulators have been used to experimentally 
probe quantum electrodynamics in the strong and ultra-strong coupling regimes [20–23].

In this work, we advance the research direction of faithful analog simulation of quantum field 
theories (QFTs) with QEC lattices [13]. Here, faithful refers to the fact that the degrees of free-
dom of the QFT are faithfully represented by the underlying lattice degrees of freedom and do 
not arise out of mathematical manipulations like bosonization. This is particularly important in 
multi-field QFTs, where properties as fundamental to a QFT as integrability, can be difficult to 
relate in the fermionic and the bosonic counterparts [24–28]. With this potential generalization to 
multi-field situations in mind, here we investigate, with the density matrix renormalization group 
(DMRG) technique, a faithful analog QEC simulator for one of the paradigmatic integrable QFT 
models: the quantum sine-Gordon (qSG) model in 1+1 space-time dimensions. The QEC simu-
lator is a one-dimensional array of suitably-arranged Josephson junctions and provides a faithful 
lattice-regularization for the qSG model using only local interactions. In the first part of the pa-
per, we provide numerical evidence that the long-wavelength properties of the QEC lattice model 
are indeed described by the qSG field theory by computing various zero-temperature thermody-
namic properties of the lattice model and comparing with analytical field-theory predictions. In 
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the second part of the paper, we analyze the entanglement spectrum of the qSG model. To that 
end, we first compute the entanglement spectrum using the integrable Luther-Lukyanov lattice 
regularization [29,30] involving the quantum XYZ spin-chain [31]. The entanglement spectrum 
of the XYZ chain is related to the spectrum of the corner-transfer-matrices (CTMs) of Baxter’s 
eight-vertex model [31] and thus, can be computed analytically [32,33]. Then, we calculate the 
entanglement spectrum of the QEC incarnation of the qSG model using DMRG. We show that 
the entanglement spectra of both the XYZ and the QEC regularizations comprise equidistant lev-
els. We argue that the QEC and the XYZ entanglement level spacings are linearly related and 
verify this claim with numerical predictions.

The analyzed QEC simulator provides a different lattice-regularization of the qSG model 
compared to the known existing ones. The primary motivation behind analyzing this lattice 
model is its experimental feasibility. It is a straightforward generalization of the current exper-
imental works which have so far realized the free, compactified boson conformal field theory 
(CFT) [20–23]. In fact, QEC systems which realize the qSG model in the semi-classical limit 
have also been fabricated and experimentally analyzed [34–36]. However, as is shown in this 
work, the QEC regularization of the qSG model is also of intrinsic theoretical interest. In con-
trast to the XYZ chain regularization, where the qSG model arises out of Jordan-Wigner and 
bosonization transformations, in the QEC incarnation, the compact bosonic field φ, is faithfully 
represented at the lattice level. This makes the QEC regularization more easily generalizable to 
multi-field scenarios [13]. At the same time, the correlation functions of vertex operators eiβφ , as 
computed using the QEC regularization, are less susceptible to corrections to scaling, where β is 
the qSG coupling constant. These corrections arise when the correlation length of the underlying 
lattice model is not large enough compared to the lattice spacing; later we provide a quantitative 
estimate of when this effect becomes noticeable. The QEC model is more immune to the cor-
rections to scaling compared to the XYZ chain since we start directly with bosonic fields on the 
lattice. This is in contrast to the XYZ chain, where spin-operator σ+ is proportional to the qSG 
vertex operator eiβφ/2 to leading order [30,37,38]. The situation for the XYZ model is further 
worsened by the fact that the qSG coupling and the mass of the soliton cannot be independently 
tuned unlike in the QEC lattice model. Additionally, we show that the same issues concerning 
reaching the scaling limit in the XYZ model also plague the entanglement spectrum – for cer-
tain parameters, the XYZ model does not provide meaningful predictions for the qSG model, 
in contrast to the QEC model. Note that there is one other well-known regularization, proposed 
by Bogoliubov, Izergin and Korepin, of the qSG model based on nonlocal interactions of the 
bosonic degrees of freedom [39,40]. While the latter model is precious for analytical computa-
tions using the quantum inverse scattering method, its direct implementation in physical systems 
is not straightforward. Lastly, lattice regularizations based on QECs are amenable to DMRG and 
thus, provide a crucial tool to investigate properties of QFTs (e.g., entanglement between spa-
tially separated regions, etc) which are not easily accessible using alternative methods like the 
truncated conformal space approach [41–43].

The article is organized as follows. In Sec. 2, we briefly summarize the relevant properties 
of the qSG model. In Sec. 3.1, we describe the QEC lattice model and provide approximate 
expressions for the qSG parameters in terms of the lattice parameters. In Sec. 3.2, we briefly 
recount the lattice-regularization based on the XYZ spin-chain. In Sec. 4, we provide DMRG 
and analytical results for the one-point and two-point correlation functions. Secs. 4.1 and 4.2
describe the DMRG results for the QEC and XYZ regularizations respectively. The effects of 
corrections to scaling for the two models are discussed in Sec. 4.3. Finally, in Sec. 5, we compute 
the entanglement properties of the qSG model using DMRG. We first present the analytical and 
3
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DMRG results for the XYZ model in Sec. 5.1, followed by the DMRG results for the QEC lattice 
in Sec. 5.2. The consequences of the corrections to scaling on the entanglement spectrum for the 
two models are presented in Sec. 5.3. Sec. 6 presents a concluding summary and outlook. In 
Appendix A, we provide the analytical results of the zero-temperature two-point function for the 
qSG model.

2. The quantum sine-Gordon model

In this section, we briefly summarize the basic properties of the qSG field theory that will be 
relevant for this work. More details on various properties can be obtained in, e.g., Refs. [44–49].

The qSG field theory is an integrable deformation of the free, compactified boson CFT. Its 
Euclidean action is given by

S = 1

2

∫
d2x(∂μφ)2 + M0

∫
d2x cos(βφ), (1)

where M0 is the mass-parameter of the action and β is the coupling constant. We set h̄ = 1
throughout this work. We restrict ourselves to the regime when β2 ∈ (0, 8π). In the classi-
cal limit, which corresponds to β → 0, the coupling constant β plays no role and can simply 
be scaled out. The resulting theory is the well-known classical sine-Gordon theory, which sup-
ports traveling wave-packet solutions, which propagate undistorted through the nonlinear wave-
medium and scatter with only phase-shifts [50]. Our interest, however, is in the quantum regime, 
when the parameter β determines the spectrum of the theory. For β <

√
4π , the qSG model is in 

the attractive regime, where the spectrum of single-particle excitations consists of solitons, anti-
solitons and breathers. For β >

√
4π , the model is in the repulsive regime when the spectrum 

of single-particle excitations consists only of solitons and antisolitons. The fermionized version 
of this model corresponds to the massive Thirring model [44,45,51], where the solitons are the 
fermions in the Thirring model. The choice β = √

4π corresponds to the free, massive (complex) 
fermion QFT.

Many exact results are available for the qSG model, including its exact spectrum and the S-
matrix. The following ones are relevant for our work. The soliton mass can be derived to be [52]

M =
2�

(
ξSG
2
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√
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The mass of the nth breather state is given by

mn = 2M sin
nπξSG

2
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1
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⌋
. (3)

The ground state energy density with respect to the free, compactified boson CFT is [52]

E0(M) = −M2

4
tan

πξSG

2
(4)

and the ground-state expectation value of the local vertex operator eiβφ is given by [53]
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Note that the last two predictions are for the continuum theory and in general, hold for the 
corresponding operators on the lattice only up to proportionality constants that depend on β; see, 
for example, similar computations for the XXZ model [30] and the 2D classical Ising model in 
a magnetic field [54]. Furthermore, we have used in the above expressions, the standard CFT 
normalization (note the difference in definition of β compared to Ref. [53]):

〈cos[βφ(x)] cos[βφ(y)]〉 → 1

2

1

|x − y| β2
2π

, |x − y| → 0. (6)

3. Lattice regularizations for the quantum sine-Gordon model

In this section, we describe two lattice-regularizations for the qSG model. We start with the 
QEC lattice and discuss this in detail. Then, we briefly summarize the XYZ regularization fol-
lowing Ref. [30].

3.1. QEC model

The QEC lattice model for the qSG model comprises a 1D array of mesoscopic supercon-
ducting islands [see Fig. 1 (b)]. Two neighboring islands are separated by Josephson junctions 
(indicated by the green crosses within brown squares) with junction energy EJ and charging 
energy ECJ

= 2e2/CJ . In addition, each island is also separated from the ground plane by a 
Josephson junction (indicated by a purple cross within a red box), with junction energy EJ0 and 
charging energy EC0 = 2e2/C0. For reference, we show the QEC lattice for the free, compact-
ified boson CFT in Fig. 1 (a). For the latter, the Josephson junction on the vertical link in each 
unit cell is replaced by a capacitance C0. Throughout this work, we consider a homogeneous 
array with zero disorder in the off-set charges on the different superconducting islands.1 The 
Hamiltonian describing the array is given by

Harray = EC0

L∑
i=1

n2
i + δEC0

L−1∑
i=1

nini+1 − Eg

L∑
i=1

ni − EJ

L−1∑
i=1

cos(ϕi − ϕi+1)

− EJ0

L∑
i=1

cosϕi. (7)

Here, the first term arises due to the finite charging energy of the mesoscopic islands and ni is 
the excess number of Cooper pairs on the ith island.2 The finite junction capacitance CJ leads 
to, in principle, infinite-range interaction between any two islands with a magnitude that decays 
exponentially with distance [55]. The relevant length scale is given by a

√
CJ /C0, where a is 

the lattice spacing. However, for realistic system parameters [56], it suffices to include only the 
nearest neighbor interaction [57], indicated by the second term in Eq. (7) with δ being a small 
parameter < 1. The third term arises due to the presence of a gate voltage Eg at each node. The 

1 There are no qualitative changes for the qSG predictions in the experimentally relevant scenario of presence of im-
perfections, leading to disorder in the off-set charges; the free, compactified boson CFT has already been experimentally 
observed [20–23].

2 Note that ni can be both positive or negative, the latter corresponding to removal of a Cooper-pair from the super-
conducting condensate on the ith island.
5
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Fig. 1. Schematic of the 1D lattice-regularized model for the free, compactified boson CFT [panel (a)] and the qSG model 
[panel (b)]. Each Josephson junction is indicated by a cross with a box around it. (a) Each unit cell contains a Josephson 
junction (with junction energy EJ and junction capacitance CJ ) on the horizontal link, together with a capacitance to the 
ground-plane C0. We choose the parameter regime: ECJ

	 EC0 	 EJ . In this limit, the nonlinearity of the Josephson 
junction on the horizontal link can be neglected, giving rise to the free-compactified boson CFT. The kinetic inductance 
associated with the Josephson junction gives rise to Luttinger parameter K ∼ 1. (b) In contrast to panel (a), there is a 
Josephson junction on the vertical link in each cell with junction energy EJ0 and junction capacitance C0. The desired 
parameter regime is ECJ

	 EC0 , EJ0 	 EJ . The Josephson junction on the horizontal link leads to a β2 ∈ (0, 8π) [see 
Eq. (13)] while the Josephson junction on the vertical link gives rise to the cosine potential of the sine-Gordon model. In 
both cases, the bosonic field is the continuum version of the discretized superconducting phase ϕi (t) at the node i of the 
lattice. Physically, the ith node denotes the ith superconducting island. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

fourth term in Eq. (7) describes the coherent tunneling of Cooper-pairs between neighboring 
islands. The last term describes the tunneling of Cooper pairs across the Josephson junctions on 
the vertical links and is responsible for the qSG nonlinearity. Note that the operators ni, ϕj are 
canonically conjugate satisfying [ni, e±iϕj ] = ±e±iϕj δij .

First, consider the case EJ0 = 0 [this corresponds to Fig. 1 (a)]. Then, the QEC lattice realizes 
a version of the Bose-Hubbard model with nearest-neighbor repulsion [57–59], where the role 
of the bosons is played by Cooper-pairs. Since the number of excess Cooper-pairs can be both 
positive and negative, the model reduces to a Bose-Hubbard model for quantum rotors, with the 
number of Cooper-pairs being conserved. The phase-diagram of this model has been analyzed 
perturbatively [57] and with DMRG [60]. For EJ � EC0 , the system is in a Luttinger liquid (LL) 
phase of Cooper-pairs, where its long wavelength properties are well-described by the action3:

S0 = 1

2πK

∫
d2x

[1

u
(∂tϕ)2 + u(∂xϕ)2

]
(8)

Here, u is the plasmon velocity and K the Luttinger parameter. Since the lattice model is 
non-integrable, exact expressions for u, K are not known in terms of the lattice parameters. 
Perturbative estimates for EJ � EC0 are given by [55]

u � a
√

2EC0EJ , K � 1

2π

√
2EC0

EJ

. (9)

Lowering EJ /EC0 causes the system to transition into either a Mott-insulating or a charge-
density-wave phase, with pinned densities ρ = m/n. In the Mott-insulating phases, n = 1 and 
m ∈ Z, while for the charge-density-wave phases, n = 2 and m = 2k + 1, where k ∈ Z. The 
transition out of the LL phase to either of the other two phases with fixed density ρ0 = m/n is 
caused by a perturbation of the form

3 The estimate EJ � EC0 is perturbative. As shown below, quite small values of EJ /EC0 are sufficient to give rise to 
this phase.
6
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S′ ∼
∫

d2x cos[2nθ + 2nπx(ρ − ρ0)], (10)

where θ is the field dual to ϕ and ρ is the particle (Cooper-pair) density on each superconducting 
island. From dimensional analysis, it follows that the transition at fixed density ρ = ρ0 occurs 
at a Luttinger parameter of Kc = n2/2, while that with a change of density occurs at Kc =
n2 [61–63]. For the model with only nearest-neighbor interactions, n can be at most 2. Thus, in 
the LL phase, the Luttinger parameter K ≤ 4.

It might appear surprising that we use Josephson junctions on the horizontal link, but consider 
only the limit EJ � ECJ

, EC0 , when the nonlinearity of the Josephson potential in the fourth 
term of Eq. (7) plays no role. Indeed, we do not use the nonlinearity of the Josephson junctions 
on the horizontal links. However, the kinetic inductance associated with the Cooper-pairs, leads 
to a Luttinger parameter up to 4. If linear electromagnetic coil inductances were used instead 
of the Josephson junctions on the links of the array, apart from making the lattice boson non-
compact, the Luttinger parameter would be ∼ Z/RQ ∼ 0, where Z is the impendance of the 
array (∼ 50) and RQ is the impendance quantum (∼ k) [56,64]. As explained below, having 
K ∼ 1 is crucial for exploring the quantum regime of the qSG model.

Now, consider the case EJ0 �= 0, which breaks the particle number conservation of the quan-
tum rotor Bose-Hubbard model described above and contributes an additional term to the action:

S = S0 + Sint, Sint = M0

∫
d2x cosϕ(x). (11)

Rescaling the field ϕ and the space-time axis: t → t
√

u, x → x/
√

u, we arrive at the action of 
the qSG model:

S = 1

2

∫
d2x(∂μφ)2 + M0

∫
d2x cos(βφ), (12)

where ϕ = βφ. Furthermore, the qSG coupling and the mass-parameter of the action are

β = √
πK, M0 = EJ0a

−(
1− β2

4π

)
. (13)

Note that the free-fermion point of the qSG model occurs at β = √
4π , which corresponds to 

K = 4 and not K = 1. From the above considerations, thus, the QEC lattice model of Eq. (7) is 
limited to the attractive regime of the qSG model: β ≤ √

4π since it has only nearest-neighbor 
interactions. However, in an actual experimental realization, the interaction can, in principle, be 
long-ranged, but exponentially decaying. The range of the interaction is determined by the ratio 
C0/CJ [55]. The longer-range model, which supports larger Luttinger parameters, is important 
for realizing the repulsive regime of the qSG model and can be similarly analyzed generalizing 
this current work.

Note two important features of the QEC lattice model for the qSG model. First, the underly-
ing lattice degrees of freedom accessible to numerical simulations are the vertex operators eiϕi , 
which, to leading order, up to a proportionality constant depending on β , are the same as the 
QFT vertex operators eiβφ . Second, the deviations from the leading qSG action are captured by 
the term given in Eq. (10). They are irrelevant in the renormalization group sense, but more im-
portantly, do not renormalize the relevant mass term in the qSG action. This allows us to have 
an analytical control on the mass-parameter of the continuum qSG action in terms of the QEC 
lattice parameters.
7
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3.2. XYZ model

Now, we briefly summarize the qSG limit of the XYZ chain following Ref. [30]. Consider the 
Hamiltonian:

HXYZ = −1

2

L−1∑
i=1

[
Jxσ

x
i σ x

i+1 + Jyσ
y
i σ

y

i+1 + Jzσ
z
i σ z

i+1

]
, (14)

where Jx,y,z are the coupling constants and σx,y,z are Pauli-matrices. We consider the parameter 
regime: Jx ≥ Jy ≥ |Jz|. For Jx = Jy , the excitation spectrum is gapless and the low-energy 
properties of the model are described by a Luttinger liquid action [63]. The correlation length 
ξXYZ diverges as

ξXYZ � 1

4

(
4

l

) 1

1− KXYZ
2

, l2 = J 2
x − J 2

y

J 2
x − J 2

z

, KXYZ = 2

π
cos−1 Jz

Jx

, (15)

where we denote the Luttinger parameter of the spin-chain by KXYZ. Close to the critical point, 
the system is described by the qSG field theory, with the action of Eq. (12). In this case, the qSG 
coupling and the mass of the soliton are given by

β2 = 4πKXYZ, M = 1

aξXYZ
, (16)

where a is the lattice-spacing. For the continuum theory to be applicable, it is necessary to have 
ξXYZ � 1, which in turn restricts the achievable values of M. Note that for the XYZ chain, the 
free-fermion point of the qSG model occurs at KXYZ = 1. To leading order, the spin-creation 
operator σ±(x) can be identified with the vertex-operator of the qSG model [30]:

σ±(x) � C0e
± iβφ(x)

2 + . . . , C0 = 1

2
(
1 − β2

8π

)√
Z1,0

(
M

4

) β2

16π

,
√

Z1,0 = a
β2

16π 〈e iβφ
2 〉, (17)

where the dots indicate corrections to scaling arising from irrelevant terms. More details on the 
corrections to scaling and their effect on the correlation functions in the scaling limit of the XYZ 
chain can be found in Ref. [30].

Note that, as for the QEC model, the effective action is not just the qSG action of Eq. (12), 
but include corrections, which are irrelevant in the renormalization group sense (see Ref. [30]
for explicit forms for these correction terms). However, in contrast to the QEC model, the local 

spin operator corresponding to the vertex-operator accessible in the XYZ case is e
iβφ
2 , which 

is semi-local. As will be shown later, the expectation value of this vertex operator as well as 
entanglement properties of the qSG limit of the XYZ chain is more susceptible to corrections to 
scaling compared to that obtained from the QEC lattice model.

4. Zero-temperature computations of correlation functions

In this section, we compute various zero-temperature thermodynamic properties of the two 
different lattice regularizations of the qSG model using DMRG and compare with analytical 
predictions for the qSG field theory. The DMRG computations were performed using the TeNPy 
package [65].
8
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4.1. QEC model

First, we present the DMRG results for the QEC lattice model. The local Hilbert space on each 
island was truncated to 9 dimensions: ni = −4, −3, . . . , 3, 4 (similar computations for the free, 
compactified boson CFT, including the evidence that this truncation of the local Hilbert space 
is sufficient, are done in Refs. [60,66]). For definiteness, we chose δ = 0.2 and set the overall 
energy scale by choosing EC0 = 1 for all the computations of the QEC model.

First, we consider the case EJ0 = 0, when the system is described by a free compactified, 
boson CFT. The three key properties of this CFT are its central charge (c), the compactification 
radius R = 1/

√
πK and the plasmon velocity u. They can be obtained from DMRG computa-

tions in the following way. The central charge can be verified by computing the scaling of the 
entanglement entropy (S) with correlation length (ξ ) for a partitioning of an infinite system into 
two semi-infinite halves4 [67–70]:

S = c

6
ln ξ. (18)

The Luttinger parameter of the theory is obtained by computing the algebraic decay of the cor-
relation function [62,63]:

〈eiϕi e−iϕi+r 〉 ∼ 1

|r|K/2 . (19)

Finally, the plasmon velocity u is obtained by computing the zero-temperature ground-state en-
ergy (E0) for a finite-system of size L with open (free) boundary conditions and fitting to the 
Cardy formula [71,72]:

E0 = E0L − πcu

24L
, (20)

where E0L is the extensive contribution to the ground state energy. The results are shown in 
Fig. 2 for EJ /EC0 = 1.55. The central charge and the Luttinger parameter are extracted using 
infinite DMRG (left and center panels). We also obtain the ground state energy density E0 from 
the infinite system simulations. The right panel of Fig. 2 shows the variation of the ground state 
energy as a function of system size for free boundary conditions obtained using finite DMRG. 
By fitting to Eq. (20) and using the obtained value of the central charge, we get the ground-state 
energy density E0 and the plasmon velocity u. As shown, both the finite and infinite DMRG 
results for E0 match to the third decimal place. The extracted plasmon velocity and the Luttinger 
parameter values as EJ /EC0 is varied are shown with solid diamonds in Fig. 3. The correspond-
ing perturbative analytical estimates, from Eq. (9), are shown with crosses. While the analytical 
and the DMRG results approach each other for large EJ/EC0 , for the parameters of interest in 
this work, the perturbative analytical estimates are clearly insufficient.

Now, we consider the case when EJ0 �= 0. First, we compute the expectation value of the local 
lattice vertex operator 〈eiϕi 〉 and compare with the QFT predictions for the continuum vertex 
operator 〈eiβφ〉, given in Eq. (5). Here i is a lattice point within an infinitely large chain. The 
results obtained with infinite DMRG are shown in Fig. 4. For a given choice EJ /EC0 , which 
fixes the Luttinger parameter and thus, β [see Eq. (13)], we compute 〈eiϕi 〉 as a function of 

4 This behavior is also true for gapped systems and is not a characteristic of the gapless spectrum. Here, we perform 
a ‘finite entanglement scaling’ [67], where successive increase of the DMRG bond-dimension increases the correlation 
length.
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Fig. 2. Characteristics of the LL phase obtained using DMRG for the QEC model. We chose EJ /EC0 = 1.55. Recall 
that EJ0 = 0. (Left) From the logarithmic growth of the entanglement entropy S as a function of correlation length ξ
[see Eq. (18)], we obtain the central charge c. (Center) The algebraic decay of correlations 〈eiϕi e−iϕi+r 〉 as a function 
of r in log-log scale [see Eq. (19)] obtained using infinite DMRG. The extracted Luttinger parameter as well as the 
computed ground state energy density is shown. (Right) Variation of the ground-state energy as a function of the system 
size obtained using finite DMRG. A fit to Eq. (20) using the obtained value of c yields E0 and u. As shown, the value of 
E0 matches that obtained using infinite DMRG to the third decimal place.

Fig. 3. DMRG results (solid diamonds) for the variation of the plasmon velocity, u (left panel), and the Luttinger param-
eter, K (right panel), with EJ /EC0 in the LL phase (EJ0 = 0). The corresponding values predicted by the approximate 
analytical formula [Eq. (9)] are shown with crosses. Although as EJ increases, the sets of values approach each other, 
for the parameters considered in this work, as shown in this figure, the perturbative formulas are not accurate.

EJ0/2EC0 = M0/2. We verify the expected algebraic dependence [see Eqs. (2), (3), (5)] for 
different choices of EJ /EC0 (note the log-log scale for the plot). For each choice of EJ /EC0 , 
the slope is β2/(8π −β2). The latter can be used to compute the value of β2/8π which is shown 
in the legend of the plot. In parentheses, for each curve, the expected value of β2/8π is shown 
obtained by computing the Luttinger parameter for EJ0/EC0 = 0 [see Fig. 3]. The agreement 
is reasonably good, and improves as EJ/EC0 is increased. This improvement is because the 
corrections to the qSG description of the lattice model, shown in Eq. (10), become more irrelevant 
in the renormalization group sense.

Note that the above computation only confirms the overall scaling of the expectation value 
of the local field, which could be inferred purely from dimensional analysis. However, the exact 
magnitudes of the lattice and continuum vertex operators are equal only up to a proportion-
10
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Fig. 4. Variation of 〈eiϕi 〉, obtained using infinite DMRG, as the mass-parameter of the qSG action, determined by 
EJ0/EC0 , is changed for EJ /EC0 = 0.2, 0.55, 1.1, 1.55 and 2. Here, i is a site within an infinitely large QEC lattice. 
For these choices of EJ /EC0 , the obtained Luttinger parameters are shown in Fig. 3. The Luttinger parameter determines 
the qSG coupling β through Eq. (13). The value of β2/8π computed using K is shown in parentheses in the legend for 
each curve. The algebraic dependence predicted in Eq. (5) is verified, with the slope giving β2/(8π − β2). The value 
of β2/8π obtained from the slopes is shown in the legend. As is evident, the agreement is quite good and improves 
as EJ /EC0 increases. This is because increasing EJ /EC0 makes the irrelevant corrections to the scaling field theory 
action, given in Eq. (10), less dominant. Then, the qSG description is better suited.

ality factor, which depends on β or equivalently EJ /EC0 . This proportionality constant arises 
since the predictions for the qSG field theory assume a certain normalization for the corre-
lation functions of the vertex operators in the conformal limit.5 We determine this constant 
of proportionality and use this to compute the two-point correlations of the vertex operators: 
〈eiβφ(0)e−iβφ(r)〉. The corresponding operators to be computed using DMRG are 〈eiϕi e−iϕi+r 〉. 
Using the corresponding form-factors for vertex operators [73,74], we compute the relevant two-
point correlation function. The form-factor computation is performed by including contributions 
up to second breather mass (see Appendix A for more details). Here we only present the com-
parison between the DMRG and the analytical results in Fig. 5. We chose EJ /EC0 = 1.55 (i.e., 
β2/8π = 0.063) and EJ0/EC0 = 0.016 [see also Eq. (13)]. The corresponding soliton mass, de-
termined using Eq. (2) is � 0.662. The plasmon velocity determined using the Casimir energy is 
� 1.46, see Fig. 3. The overall field normalization is determined using by computing the expec-
tation value of the one-point expectation value (see Fig. 4). Note that there are no fit parameters 
in this plot since the mass of the soliton is determined analytically and the field normalization 
is determined from a different, independent computation. Similar results were obtained for other 
choices of EJ /EC0 and are not shown for brevity. The infinite DMRG computations are shown 
with maroon dots, while the form-factor predictions with a solid green line.

4.2. XYZ model

In this section, we present DMRG results for the qSG limit of the XYZ chain. We choose the 
same set of β as in Sec. 4.1 and vary the mass-parameter of the qSG action M0 [see Eq. (12)]. 

5 The proportionality constant is expected to have a certain scaling behavior, which could be analyzed further; similar 
results exist for the 2D Ising model in a magnetic field [54].
11
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Fig. 5. Two-point correlation function 〈eiϕi e−iϕi+r 〉 as function of r computed using infinite DMRG (purple dots). 
We chose EJ /EC0 = 1.55 (i.e., β2/8π = 0.063) and M0/2 = EJ0/EC0 = 0.016. The corresponding soliton mass (M), 
determined using Eq. (2) is � 0.662. The plasmon velocity (u � 1.46) is determined using the Casimir energy as in Fig. 3. 
The corresponding form-factor results are shown with the solid green line. The form-factor computations are performed 
including up to the second breather mass [see Appendix A]. The overall field normalization to relate the lattice operators 
to the continuum ones is determined by computing the one-point functional (Fig. 4). Note that there are no fit parameters 
in this plot.

To make comparison with the QEC lattice model easier, we plot the results with respect to the 
corresponding QEC mass parameter EJ0/EC0 [see Eq. (13)]. For the simulations, we set Jx = 1. 
From Eqs. (2), (15), (16), the corresponding values of Jy, Jz are inferred. The results obtained 
with infinite DMRG are shown in Fig. 6. In the left panel, we plot 〈σ+

i 〉 ∼ 〈eiβφ/2〉 as a function 
of M0/2 = EJ0/2EC0 on a log-log scale. This expectation value scales as [53]

〈σ+
i 〉 ∼ 〈eiβφ/2〉 ∼

(
EJ0

EC0

) β2/4
8π−β2

. (21)

The proportionality constant of the second relationship is also conjectured [53], but the exponent 
of the algebraic dependence is sufficient for our purposes. The extracted values of β2/8π are 
shown for the different data points with the expected values within parenthesis. As an extra check, 
we compute also the soliton mass (M) as a function of EJ0/EC0 . This is directly computed from 
Eq. (17) by eliminating 〈eiβφ/2〉. The results obtained with infinite DMRG are shown on the right 
panel (empty circles), together with the analytical values of Eq. (16) (crosses). As is evident, the 
agreement is reasonable, which gives us confidence that we are indeed probing the qSG regime 
of the XYZ parameter space.

Note that the x-axis values for both the panels in Fig. 6 are several orders of magnitude smaller 
than that of the QEC simulations of Fig. 4. This is because for the values of the QEC simulations, 
the XYZ chain is no longer in the scaling limit. The reader will notice that the last few data points 
in the plot of the soliton mass for β2/8π = 0.054 (in blue) already start showing deviations 
occurring due to corrections to scaling. We discuss this next.
12
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Fig. 6. Variation of the spin operator (〈σ+
i

〉 ∼ 〈eiβφ/2〉, left panel) and the soliton mass (M , right panel) as a function 
of the mass parameter of the qSG action, M0 = EJ0/2EC0 [see Eqs. (12), (13)]. The different colors correspond to the 
different choices of β2/8π (chosen to be the same set as in Fig. 4). From the slope, the extracted values of the β2/8π

[see Eq. (21)] are shown in the legend, together with the expected values in parentheses. The soliton mass is obtained 
from the infinite DMRG results for 〈σ+

i
〉 using Eq. (17). These are shown on the right panel with empty circles for the 

different choices of β2/8π . The corresponding analytical predictions [Eq. (16)] are shown with crosses. Notice that the 
x-axis values in both panels are much smaller compared to Fig. 4. This is because the XYZ chain is no longer in the 
scaling regime for the range of EJ0 /EC0 shown in Fig. 4. This is discussed in Sec. 4.3.

4.3. Corrections to scaling: QEC vs XYZ

So far, we have computed various zero-temperature thermodynamic quantities for the qSG 
field theory using DMRG for the QEC and the XYZ lattice regularizations. Now, we discuss how 
the two regularizations fare with regards to corrections to scaling. Consider a lattice model whose 
long wavelength behavior (i.e., the scaling limit) is governed by a QFT. Then, there are two cor-
rections to the scaling-limit behavior. First, the lattice Hamiltonian gives rise to various terms in 
addition to the QFT Hamiltonian, which are irrelevant in the renormalization group sense. The 
contributions of these terms are small, but nonzero. Second, the QFT operators are approximately 
represented by the lattice operators. Thus, while computing correlation functions of QFT opera-
tors using lattice regularizations, both these corrections contribute to the subleading corrections. 
For the QEC incarnation of the qSG model, the corrections to the scaling-limit action include the 
irrelevant term shown in Eq. (10), as well as irrelevant terms formed by higher descendants of 
the vertex operator eiβφ . A similar set of corrections arises for the effective Hamiltonian of the 
XYZ chain regularization – some of these terms are explicitly computed in Ref. [30]. However, 
the two regularizations behave differently when it comes to the definitions of the vertex opera-
tors whose correlations are computed. This is because while the spin-operator σ+

i of the XYZ 
chain is approximately equal to eiβφ/2 [see Eq. (17)], the lattice operator eiϕi of the QEC lattice 
model, to leading order, is equal to the operator eiβφ up to an overall β-dependent proportionality 
constant.6

6 In this discussion, we have concentrated on the qSG vertex operators whose correlation functions are observable 
by measuring, for instance, current-current correlation functions in a QEC experiment. However, this does not preclude 
the existence of local operators which have equal or better resilience to corrections to scaling in the XYZ model. Such 
operators are likely to be superpositions of local qSG operators specifically chosen to be local in the spin language.
13
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We observe numerically that larger correlation lengths, ξXYZ, (equivalently, smaller soliton 
mass, M), are required to reach the scaling regime of the XYZ spin-chain compared to the QEC 
lattice. However, this is not always possible in practice due to the following. From Eq. (15), 
for ξXYZ → ∞, the parameter l → 0. This is accomplished by choosing |J 2

x − J 2
y | 	 |J 2

x − J 2
z |. 

However, as β2 gets close to either 0 or 8π , this becomes increasingly difficult since |Jz/Jx | → 1
for these choices. This is the other crucial difference between the QEC and the XYZ regular-
izations. The QEC regularization allows the two qSG parameters: β, M0 to be independently 
controlled: the first being controlled by the junction energies (EJ ) of the Josephson junctions on 
the horizontal links, while the latter being controlled by the that (EJ0 ) of the Josephson junctions 
on the vertical links. In contrast, in the XYZ regularization, M0 cannot be tuned independent of 
β .

This difference in corrections to the scaling limits for the two regularizations is shown in 
Fig. 7. The top left and top right panels show the variation of the expectation values of local 
fields as a function of the qSG mass-parameter M0/2 ∝ EJ0/2EC0 [see Eqs. (12), (13)]. The 
QEC lattice results for 〈eiϕi 〉 ∼ 〈eiβφ〉 and the XYZ results for 〈σ+

i 〉 ∼ 〈eiβφ/2〉 are shown. The 
qSG field theory predicts a linear-dependence with M0 for both vertex operators on a log-log 
scale [see Eqs. (5), (17), (21)]. As seen from Fig. 7, the QEC vertex operator exhibits this behav-
ior for all choices of M0. On the other hand, the corresponding XYZ spin operator does so only 
deep in the scaling regime when M0 < 10−3 for the shown choices of β2/8π . One can identify 
the region where the corrections to scaling are noticeable as the region where |Jx − Jy | is no 
longer 	 |Jx − Jz|. In this region, l is no longer small and thus, the correlation length ξXYZ

is no longer large [Eq. (15)]. Note that the problem is more severe for β2/8π being closer to 
either 0 or 1, which is also apparent from the different curves plotted in Fig. 7 (top right panel). 
The corresponding correlation lengths are shown in the bottom left and bottom right panels. We 
do not go beyond EJ0/2EC0 = 0.1. This is because for this choice, the correlation is already 
only a few lattice sites for both models. Thus, beyond this point, the field theory predictions are 
not expected to describe either lattice model very well. Note that beyond EJ0/EC0 > 10−2, the 
correlation length of the XYZ chain actually goes up, while that in the QEC model keeps going 
down. The increase in ξXYZ for this range of EJ0/EC0 can be understood by noticing that in this 
case, |Jx − Jy | ≥ |Jx − Jz| and the model is no longer in the regime Jx > Jy ≥ |Jz| [see below 
Eq. (14)]. Recalling that the phase-diagram of the XYZ chain is symmetric under permutation of 
the coupling constants [31], we can interchange Jy and Jz and arrive at a corresponding formula 
for ξXYZ [Eq. (15)] that is consistent with this behavior. Thus, in this regime, the correspondence 
between the qSG and the XYZ model presented in Sec. 3.2 is no longer valid. To check that 
we are not encountering any numerical artifacts of the DMRG simulations, we provide an extra 
check by performing computations of the entanglement spectrum of the XYZ chain and compar-
ing with analytical predictions also in the regime EJ0/EC0 > 10−2 (see below). Note that there 
is no such restriction on the parameter space for the QEC model since the two qSG parameters, 
β, M0, can be independently controlled by tuning corresponding lattice parameters EJ , EJ0 .

5. Entanglement spectrum of the qSG model

In the previous section, we have computed various thermodynamic quantities of the qSG 
model, namely, the one and two-point functions of vertex operators with the QEC regularization 
and discussed how the scaling regime is reached in comparison to the XYZ chain. Now, we 
compute the entanglement spectrum of the qSG model.
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Fig. 7. Comparison of the expectation values of the vertex operators obtained using infinite DMRG for the QEC lattice 
model (〈eiϕi 〉 ∼ 〈eiβφ〉, top left) and the XYZ chain (〈σ+

i
〉 ∼ 〈eiβφ/2〉, top right) as a function of M0/2 ∝ EJ0/2EC0 , 

the mass-parameter of the qSG field theory [see Eqs. (12), (13)]. The field theory computations for both the quantities 
predict a linear dependence (see Figs. 4, 6). For very small M0/2, where the correlation-length is large for both QEC 
and the XYZ lattice models and the continuum qSG description is valid for both models. As EJ0 /EC0 increases, the 
correlation length diminishes and the corrections to scaling becomes important. However, as seen from the QEC plot, 
the expectation value of the vertex operator continues to follow the straight line, while that from the XYZ chain deviates 
from the field theory predictions at EJ0 /EC0 ∼ 10−3. This difficulty of reaching the scaling regime for the XYZ chain 
occurs in the region where |Jx − Jy | is no longer 	 |Jx − Jz|. Then l no longer tends to zero and thus, the correlation 
length ξXYZ is no longer large [see Eq. (15)]. We do not go beyond EJ0/2EC0 = 0.1 since the correlation length for both 
the XYZ and the QEC models is only a few lattice sites and it is not meaningful to apply the qSG field theory predictions 
beyond this point. For reference, the corresponding correlation lengths are shown in the bottom left and bottom right 
panels. Note that the correlation length for the XYZ chain actually goes up for EJ0 /EC0 > 10−2. This is because for 
this choice of parameters, the XYZ chain is no longer in the scaling limit and increasing the aforementioned ratio no 
longer corresponds to increasing the mass gap of the model (see main text for more details).

First, we briefly summarize the generic behavior of the entanglement spectrum for a par-
titioning of an infinite system into two halves for massive field theories following Ref. [75]. 
Consider a CFT perturbed by a single primary field � (the generalization to multiple pertur-
bations is straightforward). The entanglement spectrum for this massive theory is given by the 
physical spectrum of a corresponding boundary CFT over a length interval lnξ , where ξ is the 
(finite) correlation length [75]. The two spectra are equal up to rescalings and overall shifts and 
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Fig. 8. Correspondence between the entanglement spectrum of a CFT perturbed by a single primary field � [panel 
(a)] and the physical spectrum of a boundary CFT [panel (b)]. The perturbation � is denoted by the purple lines. The 
boundary CFT has the following boundary conditions: free boundary condition arising from the entanglement cut on 
one end and a boundary field � at the other. Note that the boundary CFT is defined over a length ln ξ , where ξ is the 
correlation length.

comprise equidistant levels. The boundary CFT has two boundary conditions: free boundary con-
dition at one end, which arises from the entanglement cut and a boundary field, �, at the other 
end (see Fig. 8). The equality of the two spectra is correct up to exponential corrections. This 
leads to a restriction on the number of low-lying entanglement energy levels which are in cor-
respondence with the boundary CFT spectrum [75]. Note that when the system is critical i.e.,
� = 0 and ξ → ∞, the second boundary condition (that on the left end in Fig. 8) is inherited 
from the original model whose entanglement spectrum is being computed [60,76].

The aforementioned relationship between the two spectra holds independently of whether the 
perturbation, �, is integrable or not. But, the qSG model is an integrable deformation of the free, 
compactified boson CFT and thus, the question arises as to whether one can use integrability to 
glean additional information about the qSG entanglement spectrum. To that end, we can use the 
fact that the qSG model arises as the scaling limit of the quantum XYZ chain (Sec. 3.2). The 
latter spin-chain or its “classical” version, the eight-vertex model [31], falls within the category 
of integrable lattice models which exhibit equidistant levels for the entire entanglement spectra – 
notable other examples include the transverse-field Ising and the XXZ models [77–79]. We com-
pute the entanglement spectrum of the XYZ chain both analytically and numerically in Sec. 5.1. 
In particular, we show that the level-spacing, denoted by εXYZ, goes as 1/ ln ξXYZ, where ξXYZ is 
the correlation length of the XYZ model [see Eq. (15)] as long as the system size is much larger 
than ξXYZ. This behavior is consistent with what is predicted in Ref. [75].

After computing the qSG entanglement spectrum using the XYZ chain, we compute the same 
for the QEC lattice model using DMRG. The primary motivation for this computation is to in-
vestigate to what extent the low-lying entanglement spectrum of the XYZ chain is a universal 
feature of the qSG model. As will be shown in Sec. 5.2, the spectra computed using the XYZ and 
the QEC lattices have identical degeneracies. Furthermore, the level spacing of the entanglement 
spectrum computed using the QEC lattice model, denoted by εQEC also goes as 1/ ln ξQEC, where 
ξQEC is the correlation length for the QEC lattice model. Without fine-tuning of the microscopic 
models, there is no reason why εXYZ would be equal to εQEC. However, both quantities scale in-
versely with the logarithm of the respective correlation lengths. At the same time, both ξXYZ and 

ξQEC depend on the qSG mass-parameter, M0, as M−1/(2−β2/4π)

0 . Thus, from purely dimensional 
considerations, we can conclude that εXYZ and εQEC are linearly dependent on each other:

εQEC(β,M0) = a0(β) + a1(β)εXYZ(β,M0), (22)

where a0(β), a1(β) are (possibly non-universal) functions that depend on the parameters of the 
two lattice models. Here, we have also explicitly indicated the dependence of the entanglement 
level spacings on the qSG parameters: β, M0. We verify this linear dependence in Sec. 5.2. The 
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secondary motivation for this computation is to demonstrate that the QEC lattice model continues 
to provide meaningful prediction for the qSG entanglement spectrum even when the XYZ chain 
is no longer in the scaling limit (see discussion of Sec. 4.3).

5.1. XYZ model

Now, we compute the qSG entanglement spectrum using the XYZ chain. The XYZ Hamil-
tonian [see Eq. (14)] can be related to the transfer-matrix of the classical eight-vertex model. 
To establish this relation, it is useful to consider the principal regime for the two models [31]. 
Denote the XYZ couplings in the principal regime by Jp

α , where α = x, y, z. Then, the principal 
regime is given by

|Jp
y | ≤ J

p
x ≤ −J

p
z . (23)

The couplings of the XYZ chain can be related to the two parameters of the classical eight-vertex 
model, denoted by �, �. In the principal regime, they are given by

�p = J
p
y

J
p
x

,�p = J
p
z

J
p
x

. (24)

As a result, in the principal regime, for the eight-vertex model,

|�p| ≤ 1,�p ≤ −1. (25)

Since we are interested in the entanglement properties of the XYZ chain, we need two further 
parameters, λ, k, given by [31]

2
√

k

1 + k
=

√
1 − �2

p

�2
p − �2

p

, −isn(iλ, k) = 1√
k

√
1 − �p

1 + �p

, (26)

where sn is the Jacobi sine function [31]. Here, 0 ≤ k ≤ 1 and 0 ≤ λ ≤ I (k′), where k′ = √
1 − k2

and I (k) is the complete elliptic integral of the first kind with modulus k. The entanglement 
spectrum for the XYZ chain can be related to the spectrum of the CTM of the eight-vertex 
model [32,33]. The entanglement spectrum comprises equidistant levels, with the level spacing 
given by εXYZ, given by [31]

εXYZ = πλ

I (k)
. (27)

Now, we compute the scaling of the level-spacing of the entanglement spectrum, εXYZ, as the 
mass-parameter of the sine-Gordon action, M0 of Eq. (1), is taken to zero. This corresponds to 
taking the limit Jy/Jx → 1− in the XYZ chain. For the purposes of the calculation, we set Jx = 1
and consider the case when |Jy/Jz| ≥ 1 (the other case can be analyzed similarly). Our goal is to 
compute the scaling of the level-spacing of the entanglement spectrum, εXYZ, given in Eq. (27)
as Jy/Jx → 1−. To that end, we first define the couplings in the principal regime:

J
p
x = Jy, J

p
y = −Jz, J

p
z = −Jx = −1. (28)

Thus, the limit Jy/Jx → 1− is equivalent to Jp
x /J

p
z → −1+, which in turn implies �p → −1−

[see Eq. (24)]. From Eq. (26), this implies k → 1−. We will also use the fact that
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Fig. 9. (a) Entanglement spectrum for the XYZ chain obtained with infinite DMRG. We chose β2/8π � 0.063, which 
corresponds to Jz � 0.981 [see Eq. (15)] and Jy � 0.999937. The spectrum {εn}, comprises equidistant levels. The 
level spacing (εXYZ) is obtained by extracting the slope by performing a linear fit for the first three eigenvalues. (b) 
Extracted values of εXYZ as Jy is varied. The infinite DMRG results are shown in empty squares, while the CTM results 
obtained by using Eqs. (26), (27) are shown with crosses. For reference, we show the corresponding value of the qSG 
mass-parameter in terms of the QEC circuit-parameter [see Eqs. (12), (13)] on the top x-axis.

−isn(iλ, k) → tanλ, I (k) → −1

2
ln

1 − k

8
(29)

as k → 1−. To quantify deviations from the critical point, we define two small parameters:

δ ≡ 1 − k, x ≡ 1 − Jy. (30)

Then, from Eq. (26), we get

δ = 2
√

2x

sin(β2/8)
− 4x

sin2(β2/8)
(31)

λ = tan−1

[
1

1 − δ

√
1 − �p

1 + �p

]
= π

2

(
1 − β2

8π

)
+

√
x

2
, (32)

where we have kept terms up to O(x). Next, we use

l2 � 2x

sin2(β2/8)
(33)

as k → 1− to get

εXYZ � − π2

ln(l/4)

(
1 − β2

8π

)
+O

(
1

ln2 l

)
, (34)

which is commensurate with the general statement that the entanglement spectrum gap closes as 
1/ ln ξXYZ to leading order [75,79], see Eq. (15). We check the leading order term by analyzing 
the dependence of εXYZ as a function of l. This is shown in Fig. 10, which confirms the predicted 
linear dependence with 1/ ln(l/4) with a slope that is close to −π2(1 − β2/8π).
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Fig. 10. (Left) Variation of the entanglement spectrum spacing, εXYZ, as function of l for different β2/8π . As expected 
from Eq. (34), εXYZ exhibits a linear dependence with 1/ ln(l/4). (Right) The slopes extracted from panel (a) as a 
function of β2/8π , together with the analytical values, given by −π2(1 − β2/8π), are shown.

5.2. QEC model

In this section, we compute the qSG entanglement spectrum using the QEC lattice model. As 
discussed earlier, the low-lying part of the spectrum should be a characteristic of the qSG field 
theory and thus, should be comparable to the results obtained from the XYZ chain (see in Fig. 9). 
The results are shown in Fig. 11 for β2/8π � 0.063 (similar results were obtained for other 
choices and are not shown for brevity). As seen from the left panel, the low-lying entanglement 
spectrum exhibits the expected equidistant level structure, with the same degeneracy structure 
given in Fig. 9 (a). Despite the overall degeneracy structure being consistent, it is clear that data 
quality for the QEC model is worse compared to the XYZ chain. One of the reasons for this 
is that the XYZ chain, unlike the QEC model, exhibits the equidistant structure for the entire
entanglement spectrum due to its relationship to the eight-vertex model. We are not aware of any 
such deep connections for the QEC model. We believe the worse data quality is also partially 
due to the non-universal lattice effects which affect the two models differently. Finally, at a 
more pragmatic level, the large local Hilbert space of the QEC model makes the computations 
much more resource-consuming compared to the XYZ chain. This restricts the size of the bond-
dimensions that are accessible for a moderate-scale simulation effort pursued in this work. In the 
center panel, we show the level-spacings for different choices of EJ0/EC0 as obtained from the 
QEC and the XYZ models for β2/8π = 0.063. As argued earlier [see discussion before Eq. (22)], 
the two level-spacings are not equal to each other, but are linearly related. The verification of this 
linear dependence is shown in the right panel of Fig. 11.

Next, in Fig. 12 (left panel), we verify the linear dependence of εQEC on εXYZ for different 
choices of β2/8π . In the right panel, the corresponding parameters of the linear dependencies, 
given in Eq. (22), are shown. At this point, we do not have a deep understanding of the a0, a1 and 
their functional dependency on β . It is plausible that these are non-universal functions of β which 
depend on the details of the QEC and XYZ lattice models, but we leave a detailed investigation 
for a future work.
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Fig. 11. Entanglement spectrum properties for the QEC lattice model using infinite DMRG. We chose β2/8π � 0.063. 
(Left) First 12 entanglement energies computed for the QEC model. We chose EJ0 /EC0 � 4.8 ×10−5. The degeneracies 
for the plotted levels are the same as for the XYZ chain [see panel (a) of Fig. 9 for the corresponding results]. Note that 
the finite size effects are larger for the QEC lattice compared to the XYZ chain (see main text for discussion). (Center) 
The entanglement spectrum level spacings, εXYZ and εQEC, as a function of EJ0/2EC0 . As argued earlier, the two 
level-spacings are not equal for each parameter choice, but are linearly dependent on each other. (Right) Variation of 
εQEC as a function of the εXYZ, verifying the linear dependence argued in Sec. 5. The coefficients of the linear fit and 
the errors in their determination are shown [see Eq. (22)].

Fig. 12. (Left) Verification of the linear dependence of εQEC on εXYZ for different choices of β2/8π . (Right) The 
parameters of the linear fit, a0, a1 [see Eq. (22)] as a function of β2/8π .

5.3. Corrections to scaling in the entanglement spectrum: QEC vs XYZ

Here, we demonstrate that the corrections to scaling, which are noticeable for EJ0/EC0 >

10−3 and lead to incorrect dependence of the qSG vertex operator eiβφ/2 in the XYZ chain (see 
Sec. 4.3), also causes the qSG entanglement spectrum to be incorrectly inferred from the XYZ 
results. This is in contrast to the QEC model, which continues to provide meaningful physical 
predictions for the entanglement spectrum for these choices of EJ /EC . The results are shown 
0 0

20



A. Roy, D. Schuricht, J. Hauschild et al. Nuclear Physics B 968 (2021) 115445
Fig. 13. Level-spacing of the qSG entanglement spectrum as computed with the QEC and the XYZ lattice models. We 
chose β2/8π � 0.063 (similar results were obtained for other choices and are not shown for brevity). For both models, we 
show the DMRG results. Furthermore, for the XYZ chain, we show the analytic CTM predictions (see Sec. 5.1) as well. 
For EJ0/EC0 < 10−3, both the models give physically meaningful predictions, with εQEC being linearly dependent 
on εXYZ. However, further increase of EJ0/EC0 causes εXYZ to increase much faster compared to εQEC. Beyond 
EJ0/EC0 > 10−2, εXYZ goes down, which is clearly incompatible with the expectation that the entanglement level-
spacing increases with increase of the qSG mass-parameter. The results for the QEC model, however, continue to provide 
physically meaningful predictions, increasing steadily with EJ0 /EC0 . The perfect overlap of the CTM and the DMRG 
results for the XYZ chain show that what we are observing is not a numerical artifact of DMRG; rather, it is the qSG-XYZ 
correspondence that is no longer valid for EJ0 /EC0 > 10−3 (see Secs. 4.3, 5.3 for more discussion).

in Fig. 13 for β2/8π � 0.063 (similar results were obtained for other values and are not shown 
for brevity). For EJ0/2EC0 < 10−3, both XYZ and the QEC models provide meaningful results 
for the qSG entanglement spectrum and the level-spacings, εQEC and εXYZ, are linearly depen-
dent on each other (see Fig. 12). However, upon further increase of EJ0/EC0 , εXYZ grows much 
faster violating the linear dependence. The point of departure of the linear dependence coincides 
precisely with the departure of the linear dependence of the vertex operator eiβφ/2 ∼ σ+ in Fig. 7. 
Beyond EJ0/2EC0 ∼ 10−2, εXYZ actually decreases. Clearly, for these parameters, εXYZ cannot 
correspond to the level-spacing of the qSG entanglement spectrum. This is because increasing 
EJ0/EC0 increases the mass-gap of the qSG model, which would increase the entanglement-
spectrum level spacing of the qSG model. Comparing to Fig. 7 (bottom right panel), this region 
of decreasing εXYZ corresponds precisely to the region where the correlation length of the XYZ 
chain, ξXYZ, increases. We again emphasize that the physics of the XYZ model is perfectly 
consistent – increasing correlation length should be associated with a decreasing entanglement 
level-spacing. An independent check of this is provided by the CTM calculations of the entan-
glement spectrum (see Sec. 5.1). As seen from Fig. 13, the agreement between the DMRG and 
the CTM calculations is excellent for all choices of EJ0/EC0 . Finally, the results obtained using 
the QEC lattice exhibit the expected behavior for all choices of EJ0/EC0 .

Before concluding this section, we point out that the qSG entanglement spectrum could, in 
principle, be inferred using the spectrum of the boundary sine-Gordon model [42,80,81] after 
taking the strength of the bulk perturbation of the latter model to zero. Potentially, this could also 
be a way to investigate the fate of the boundary bound-states of the boundary sine-Gordon model 
in the massless bulk limit and we hope to return to this problem in the future. We did check 
that the degeneracies of the entanglement spectrum of the qSG do indeed match that of the free, 
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compactified boson CFT with Dirichlet boundary conditions [60]. The latter boundary condition 
can be viewed as an extreme case when the strength of the boundary potential is taken to infinity.

6. Summary and outlook

To summarize, we numerically analyzed with DMRG a faithful, analog, quantum simulator 
built with QEC elements for the qSG model in 1+1 space-time dimensions. The QEC model 
provides a lattice-regularization of the qSG model using local interactions that can be physically 
realized by a straightforward generalization of current experimental works. By computing vari-
ous zero-temperature thermodynamic properties of the QEC model with DMRG and comparing 
with the qSG field theory predictions, we numerically demonstrate that the QEC lattice indeed 
realizes the qSG model. Furthermore, we show that in contrast to the integrable XYZ-chain reg-
ularization, the QEC lattice model is less susceptible to corrections to scaling. In contrast to the 
XYZ chain, where the spin-operator σ+ corresponds to the qSG vertex operator eiβφ/2, the QEC 
model directly starts with lattice versions of the operators eiβφ . Furthermore, we computed the 
entanglement spectrum of the qSG model using both the XYZ and the QEC models and showed 
that the low-lying entanglement energy levels exhibit the same set of degeneracies. We provided 
a scaling argument to show that the level-spacings of the low-lying entanglement spectrum for 
the two models are linearly related to each other and verified this claim with numerical results. 
Finally, we also showed that in the XYZ chain, the same corrections to scaling that plague the 
correlation functions of the vertex operators also cause the model to predict unphysical val-
ues of the qSG entanglement spectrum. The latter problem is also remedied by the QEC lattice 
model.

The current work gives rise to many, new, potentially-fruitful research directions and we 
discuss some of them below. First, concerning the qSG model, an experimentally-realizable, 
numerically-tractable lattice model potentially opens the door to the investigation of several open 
problems – examples include many finite temperature properties of the correlation functions for 
the qSG model [82–84]. At the same time, this work opens the possibility of experimentally ex-
ploring non-equilibrium phenomena in the qSG model, which, in the recent years, have received 
enormous interest [85–93]. Second, our approach to faithfully simulate QFTs with QECs can 
be used to investigate multi-field models. For the latter, it is crucial that the underlying lattice 
degrees of freedom faithfully give rise to the continuum ones, without resorting to mathematical 
manipulations like bosonization. This is because properties as fundamental to the QFT as inte-
grability can be difficult to relate in the fermionic and bosonic counterparts – e.g., the quantum 
double sine-Gordon model, which can be faithfully realized with QECs [13]. We aim to analyze 
the latter model with QECs in the near future. Third, the analog QEC simulator for the qSG 
model analyzed in this work can be readily generalized to include integrability-breaking per-
turbations [13]. After all, the eventual goal is to simulate interacting QFTs to answer questions 
which are intractable with analytical methods. This is possible with QEC lattices, which can be 
used to simulate the massive Schwinger model [94] or a two-frequency generalization of the qSG 
model [95,96]. In fact, the basic primitives for realizing the two-frequency generalization have 
already been experimentally demonstrated [97,98]. Fourth, analog QEC simulation of QFTs can 
also be implemented in higher dimensions. In particular, QEC arrays in 2+1 space-time dimen-
sions have already been built and analyzed experimentally in the context of realizing interacting 
bosonic models, even in hyperbolic space [99]. Given this recent experimental progress, we are 
optimistic of the use of QECs for investigation of 2+1D QFTs in the near future.
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Appendix A. Form-factors calculation of the two-point correlation function

In this appendix we derive analytic results for the two-point correlation function 〈eiϕi e−iϕi+r 〉
shown in Fig. 5. More precisely we calculate the static, zero-temperature two-point function 
〈eiβφ(0)e−iβφ(r)〉 via a form-factor expansion [73] directly in the continuum model (1). The basic 
idea is to insert a resolution of the identity between the operators, where the sum runs over 
all possible intermediate states. Since the spectrum of the qSG model is exactly known, these 
intermediate states can be classified by their particle contents (solitons, antisolitons and breathers 
of type n) and the respective momenta of the particles. Since the masses of the particles in the 
intermediate state will lead to an exponential decay at large distances, the leading behavior will 
be governed by the lightest particles. Here we consider the vacuum state |0〉, single breathers of 
type 1 and 2, |θ〉1,2, and two 1-breather states |θ1, θ2〉1,1 respectively, where we parametrize the 
momenta of the intermediate nth breather via their rapidities, P = mn

u
sinh θ . Thus we evaluate

〈eiβφ(0)e−iβφ(r)〉 =∣∣〈0|eiβφ |0〉∣∣2 +
∫

dθ

2π

∣∣〈0|eiβφ |θ〉1
∣∣2

e−i
m1
u

r sinh θ

+
∫

dθ

2π

∣∣〈0|eiβφ |θ〉2
∣∣2

e−i
m2
u

r sinh θ

+ 1
∫

dθ1dθ2
2

∣∣〈0|eiβφ |θ1, θ2〉1,1
∣∣2

e−i
m1
u

r
∑

i sinh θi + . . .

(A.1)
2 (2π)
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where the factor 1
2 in the last term avoids double counting, and the dots represent terms with 

heavier intermediate states. For the parameters of Fig. 5, β2/8π = 0.063, the next terms would 
be the single 3-breather state (mass m3), the 1-breather-2-breather pair (mass m1 + m2) and the 
three 1-breather state (mass 3m1). The form factors (matrix elements) appearing in the expansion 
are known exactly [74]. With this a straightforward calculation yields the result

〈eiβφ(0)e−iβφ(r)〉

= G2
β

[
1 + λ2

π
K0

(m1x

u

)
+ λ4

π |R(
iπ(1 + ξSG)

)|2 sin2(πξSG)

sin(2πξSG)
K0

(m2x

u

)

+ λ4

2π

∫
dθ

2π

∣∣∣∣ sinh θ

sinh θ − i sin(πξSG)

1

R(θ + iπ)

∣∣∣∣
2

K0

(
2m1x

u
cosh

θ

2

)
+ . . .

]
,

(A.2)

where Gβ is given in Eq. (5), and the other parameters are

λ = 2 cos
πξSG

2

√
2 sin

πξSG

2
exp

⎡
⎣−

πξSG∫
0

dt

2π

t

sin t

⎤
⎦ , (A.3)

R
(
iπ(1 + ξSG)

) = exp

⎡
⎣8

∞∫
0

dt

t

sinh(t) sinh(tξSG) sinh
(
t (1 + ξSG)

)
sinh2(2t)

(
sinh2(tξSG) + 1

2

)⎤
⎦ ,

(A.4)

R(θ + iπ) = exp

⎡
⎣8

∞∫
0

dt

t

sinh(t) sinh(tξSG) sinh
(
t (1 + ξSG)

)
sinh2(2t)

(
1

2
− sin2

(
tθ

π

))⎤
⎦ .

(A.5)

The expansion (A.2) contains the leading terms at large distances, with the four given terms 
falling off as 1, e−m1r/u, e−m2r/u and e−2m1r/u, respectively. The dots correspond to higher-order 
terms falling of at least as ∼ e−m3r/u at large distances.
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