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A B S T R A C T   

This paper presents a Convolutional Neural Networks (CNN) based Unsupervised Curriculum Learning approach 
for the recognition of water bodies to overcome the stated challenges for remote sensing based RGB imagery. The 
unsupervised nature of the presented algorithm eliminates the need for labelled training data. The problem is 
cast as a two class clustering problem (water and non-water), while clustering is done on deep features obtained 
by a pre-trained CNN. After initial clusters have been identified, representative samples from each cluster are 
chosen by the unsupervised curriculum learning algorithm for fine-tuning the feature extractor. The stated 
process is repeated iteratively until convergence. Three datasets have been used to evaluate the approach and 
show its effectiveness on varying scales: (i) SAT-6 dataset comprising high resolution aircraft images, (ii) 
Sentinel-2 of EuroSAT, comprising remote sensing images with low resolution, and (iii) PakSAT, a new dataset 
we created for this study. PakSAT is the first Pakistani Sentinel-2 dataset designed to classify water bodies of 
Pakistan. Extensive experiments on these datasets demonstrate the progressive learning behaviour of UCL and 
reported promising results of water classification on all three datasets. The obtained accuracies outperform the 
supervised methods in domain adaptation, demonstrating the effectiveness of the proposed algorithm.   

1. Introduction 

Wetlands are the core source of life on Earth. Each wetland can be 
considered as an individual ecosystem considering the geographical 
location, climatic variability, exposure to the type of landscape, and 
many other factors (Bhowmik, 2020). They are having a significant 
ecological and economic importance (Mishra, 2020) and need to be 
preserved. An essential prerequisite for this is to estimate the presence of 
wetlands at different locations. United Nations (UN) water report 2019 
states that the consumption of water from various sources (i.e., reser
voirs, lakes, and rivers) increases following the economic expansion, 
urbanization, and growth of the population, causing an imbalance be
tween supply and demand. In parallel, the global water cycle is inten
sifying due to climate change, where wet regions are generally 
decreasing, and the drier regions are becoming even drier. Other global 

changes such as deforestation, intensification of agriculture, and ur
banization pose further challenges. The lack of adequate water man
agement systems in many countries leads to a waste of water with an 
economic value of billions of dollars every year (UNE, 2019). This 
deficiency raises the need for efficient wetland monitoring and man
agement systems. Typically, the water body monitoring systems rely on 
rich remote sensing spatial and temporal data to detect water bodies 
(Mahdavi et al., 2018). 

Waterbody detection from the water surface is a fundamental mod
ule in many remote sensing studies such as land cover (Zhang et al., 
2018) and land use (Buma et al., 2018), estimating water scarcity (Guo 
et al., 2017), controlling flood hazard (Kyriou and Nikolakopoulos, 
2015), predicting aquatic widespread disease, and measuring water 
quality (Sadeghi et al., 2017). In this paper, we cast water detection as a 
two-class problem where input images are divided into smaller sized 
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image patches, and each image patch is classified as water or a non- 
water patch. To solve this classification problem, we present an effi
cient and robust deep Unsupervised Curriculum Learning (UCL) based 
algorithm. Specifically, in this work, we propose unsupervised curricu
lum learning such that representative sample selection for water and 
non-water category is done from unlabelled data. Extraction of repre
sentative samples for each cluster to fine-tune the deep network is thus a 
key step in our approach. For this, we take inspiration from curriculum 
learning (Bengio et al., 2009) in which the learning algorithm is fed by 
training samples in the order of their difficulty. Difficulty depends upon 
the complexity of the samples’ features. Easy samples are fed in the 
starting iterations and the complexity is gradually increased in the 
subsequent iterations. It has been shown that feeding the learner in this 
manner improves the learning speed as deep learning algorithm has to 
gradually learn complex examples. The major challenge in curriculum 
learning is how to define the difficulty level of a sample. Different 
heuristics have been used successfully in different domains to establish 
the complexity of a data sample. Here, we use proximity from cluster 
centroids as the criteria for the selection of representative “easy” sam
ples. In the beginning, the deep learning model used for feature 
extraction is pre-trained on the ImageNet dataset, which represents a 
different domain. Hence, the resulting model may not extract good 
features of the water bodies and non-water bodies from remote sensing 
imagery, leading to loose clusters. When the clusters are loosely packed, 
only a few easy samples are selected. The deep learning model is fine- 
tuned on these samples using their pseudo labels. With every iteration, 
the fine-tuned deep learning model extracts better features resulting in 
improved clusters. Progressively, we increase the complexity of the 
chosen samples via curriculum learning by allowing more samples to be 
selected for fine-tuning deep model on water bodies using pseudo labels. 
This progressive-leaning behaviour can be called Unsupervised Curric
ulum Learning. This idea has been exploited in natural images (Fan 
et al., 2018; Caron et al., 2018) and the proposed framework adopted 
this idea for the classification of remote sensing imagery. 

In this context, the contributions proposed in this paper are twofold. 
(1) An easy-to-implement unsupervised progressive deep learning model 
for water body classification from RGB remote sensing imagery. The 
integration of clustering with curriculum learning leads to unsupervised 
learning of the deep model by using pseudo labels. (2) The evaluation of 
the proposed strategy is performed using three datasets, out of which 
two are benchmark datasets, space-borne EuroSAT (Helber et al., 2019) 
and air-bone Sat-6 (Basu et al., 2015), and our newly introduced custom 
space-borne dataset, PakSAT, which shall be made open for the public. 
The statistics of the PakSAT dataset are detailed in Section 4.3. 

The rest of the paper is structured as follows: In Section 2 we present 
a brief review of the techniques related to our approach and waterbodies 
detection using remote sensing data. In Section 3 we describe the 
designed unsupervised methodology. Then, in Section 4 we discuss the 
datasets used “as-is” as well as the dataset generated for this paper. 
Following this, in Section 5 we present the experiments conducted and 
give a detailed analysis of the obtained results. Lastly, in Section 6 we 
provide our conclusions and give an outlook to future work. 

2. Related work 

Numerous techniques have been introduced to detect water utilizing 
radar and optical imagery (Guo et al., 2017). Radar data have the 
advantage of capturing the information in almost every weather and 
day-night condition. However, the prominent features of vegetation 
(Huang et al., 2018), waves (Töyrä and Pietroniro, 2005; Marti-Cardona 
et al., 2013), sand (Martinis et al., 2018) and radar shadows produced by 
landscape features (Giustarini et al., 2013) deterrent the effective sep
aration of water from the land surface. Therefore, the extraction of water 
bodies from remotely sensed data is more effective from optical imagery 
than from radar data (Schumann et al., 2009). 

2.1. Sensing Modalities 

2.1.1. Satellite Imagery (Space-borne) 
The satellite imagery (spaceborne) of the Landsat Program (launched 

in 1972) gradually became the most popular source of optical imagery in 
remote sensing. The optical sensor of the Landsat satellites has a typical 
spatial resolution of 30 m which was better than other freely available 
coarse sensors like MERIS with spatial resolution 300 m, NOAA/AVHRR 
with spatial resolution 1100 m, and MODIS with spatial resolution 
250–1000 m. Therefore, most of the global digital maps for water are 
designed using Landsat imagery, some of the datasets are Global Inland 
Water Body (GIW) (Veloso et al., 2017), Global Surface Water (Markert 
et al., 2018), and Global Water Bodies Database (GLOWABO) (Pahlevan 
et al., 2017). Similarly, most of the water detection based applications 
are designed using Landsat Imagery (Manakos et al., 2020; Davranche 
et al., 2013; Puliti et al., 2018). The Sentinel-2 which was launched by 
the European Space Agency (ESA) in 2015 became an alternative to 
Landsat. Compared to the Landsat imagery, Sentinel-2 provides 10 
meter spatial resolution imagery of RGB bands with less revisit time and 
wider swath. 

The data captured from satellites has a low ground resolved distance. 
This leads to a blurring of the images and making the detailed land 
features like the boundaries of water bodies difficult or almost impos
sible to identify. The lack of detailed land feature analysis impacts the 
results of environmental assessment (Sanga-Ngoie et al., 2012). Despite 
the availability of high-resolution sensors like GeoEye (0.46–1.84 m), 
WorldView (0.31–2.40 m), and IKONOS (1–4 m) (Tu et al., 2004) that 
are used in different applications, the difficulty of accessing the data 
creates hindrance in the development of pervasive applications. Alter
native solutions are required to overcome the stated limitation to cap
ture the land information in detail for analyzing inter and intra class 
variation. 

2.1.2. Aerial Imagery (Air-borne) 
The multispectral satellite imagery allows reliable extraction of 

water using various water indices (McFeeters, 1996; Domenikiotis et al., 
2003; Kordelas et al., 2019) and specific bands based threshold methods. 
However, usage of optical imagery in the presence of clouds prevents the 
observation of the earth’s surface (Shen et al., 2019). For this, some 
approaches have used radar data during the period of intense cloud 
cover to overcome the limitations of optical imagery (Markert et al., 
2018; Manakos et al., 2020). On the contrary, most air-crafts and Un
manned Aerial Vehicles capture the data from very low elevation and 
provide high-resolution air-borne imagery when required considering 
the limitations of law regulation and weather condition (Iizuka et al., 
2018; Pásler et al., 2015). Air-borne imagery is actively used to detect 
land cover and land use changes (Salamí et al., 2014; Feng et al., 2015), 
and natural disasters like floods and earthquakes (Abdelkader et al., 
2013; Casado et al., 2018). Baker and Kamgar-Parsi (2010) presented 
autonomous shoreline navigation using UAVs. The use of UAVs to cap
ture airborne imagery is comparatively cheap and fast for detailed land 
feature analysis of a specific area. 

2.2. Relevant Approaches 

2.2.1. Threshold Methods 
In remote sensing studies, most of the water detection algorithms are 

based on water indices. In 1996, McFeeters (McFeeters, 1996) firstly 
designed a popular water index, the Normalized Difference Water Index 
(NDWI) for water mapping from satellite imagery. He has used the near- 
infrared (NIR) and the green bands of the Landsat Thematic Mapper 
(TM) for depicting water features. Xu (Xu, 2006) modified the NDWI by 
replacing the NIR band with shortwave-infrared (SWIR) and named it 
Modified Normalized Difference Water Index (MNDWI). MNDWI partly 
reduced the error rate generated by soil, vegetation, and urbanized 
areas. Feyisa (Feyisa et al., 2014) introduced the Automated Water 
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Extraction Index (AWEI) to cater for the misclassification of shadow as 
water by using multispectral bands. A new water index was created with 
linear discriminant analysis which Fisher (Fisher et al., 2016) revised by 
using five surface reflectance (SR) bands of Landsat. She also provided a 
thorough comparison of water indices for Landsat imagery. 

Water detection requires rich spatial information to design threshold 
methods like Near Infra-Red (NIR) band that separates the water from 
the land. Most of the low-cost off-the-shelf UAVs are only equipped with 
conventional cameras that provide only the spectral bands red, green, 
and blue. RGB based threshold methods are only used for vegetation 
detection and observing its growth, e.g., Colour Index of Vegetation 
Extraction (CIVE) (Kataoka et al., 2003), Excess Green (ExG) (Woeb
becke et al., 1995), Excess Red (ExR) (Meyer et al., 3543), Green Leaf 
Index (GLI) (Louhaichi et al., 2001), Normalized Green–Red Difference 
Index (NGRDI) (Tucker, 1979), Red-Green–Blue Vegetation Index 
(RGBVI) (Bendig et al., 2015), and many others. The lack of rich spectral 
information in imagery provided by most UAVs limits the use of indices 
for water body classification (Komarkova et al., 2019). In such scenarios, 
an effective machine learning algorithm is needed based on water 
classification for remote sensing imagery having limited spectral infor
mation but substantial scale variations. 

2.2.2. Machine Learning Methods 
Machine learning algorithms for water estimation can be categorized 

into supervised and unsupervised methods. Many waterbody classifi
cation algorithms have been designed using supervised methods, such as 
Support Vector Machines (SVM) Wang et al. (2018), Decision Trees 
(Davranche et al., 2013; Lefebvre et al., 2019; Acharya et al., 2016), 
Random Forests (Huang et al., 2002; Ko et al., 2015; Vries et al., 2017), 
Gradient Boosting (Mahdavi et al., 2018), and Deep Neural Networks 
(Isikdogan et al., 2017). In the past few years, bag-of-visual-words based 
methods employing K-Means and SVM have been used in several clas
sification and target detection techniques leading to better accuracy 

(Yang and Newsam, 2010; Hu et al., 2015). It is noteworthy that the 
essential semantic information is stored within the spatial relationship 
of pixels instead of individual pixel intensity values. Many methods have 
been introduced involving image context to make the class information 
more explicit (Feng et al., 2015). Luo et al. (2014) proposed a hierar
chical generative model, the Author-Genre-Topic Model (AGTM), to 
introduce context information. It was designed to perform annotation of 
satellite images. Recently, Generative Adversarial Neural networks 
(GANs) are being used in a semi-supervised manner to address the 
problem of cross-domain adaptation in semantic segmentation of remote 
sensing imagery Zhu et al. (2019), Li et al. (2021). 

Deep learning has become a state-of-the-art method to extract more 
abstract features from lower layers to higher layers of the model. 
Comparing deep learning methods with shallow classification methods 
like SVM, deep learning solutions result in better learning models 
(Hinton et al., 2015). Cheng et al. (2017) replaced hand-crafted features 
with CNN for water bodies segmentation. Lin et al. (2017) used Fully 
Convolutional Network (FCN) to add multi-scale information. Noh et al. 
(2015) designed a multi-layer deconvolutional network to address the 
scale challenge. Wei et al. (2017) and Miao et al. (2018) used auto- 
encoders to extract high-level feature maps from high-resolution im
ages. Fang et al. (2019) used the ResNet model to identify global water 
reservoirs. Yagmur et al. (2019) combined residual blocks in the 
inception network to detect shallow water areas. In spite of their 
excellent performance, supervised methods have some limitations. 1) If 
labelled data is not available, supervised methods require the collection 
of data and expert knowledge for data labelling which is a time- 
consuming and tedious task. 2) Supervised methods are domain spe
cific. Their accuracy often decreases drastically when applied to 
different domain data about the same problem. Some researchers have 
also explored and used the concept of Curriculum Learning to efficiently 
train supervised deep neural networks (Ul-Hasan et al., 2015). The focus 
of our work is to overcome the stated issues by introducing an 

Fig. 1. UCL: Deep learning based Unsupervised 
Curriculum Learning for water classification. UCL (1) 
extracts the features of a training corpus using Con
volutional Neural Network (CNN). It clusters the 
features into two classes. (2) It applies a selection 
operation to remove the noisy samples from the 
clusters. (3) The selected samples from the training 
corpus are used to fine-tune the CNN model. Once, 
the CNN model is fine-tuned, the steps are repeated 
until the CNN model has learned the patterns in the 
training corpus.   
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unsupervised deep learning solution using the concept of curriculum 
learning for water body classification for RGB data. 

3. Methodology 

The proposed deep learning based UCL model learns the features of 
water bodies from remote sensing imagery in an unsupervised manner 
using the pseudo-labels generated by the clustering technique. The 
outline of the proposed method is shown in Fig. 1. UCL is composed of 
two main modules (i) A pre-trained deep learning architecture (CNN) to 
extract and learn features from the remote sensing data, (ii) an unsu
pervised clustering technique to cluster the extracted features. A UCL 
based selection operation is added between clustering and fine-tuning to 
extract the samples present near the clusters’ centroids, called “reliable 
samples”. The deep learning model is fine-tuned on the extracted reli
able samples. UCL is composed of the following steps:  

Step 1. Extract features of remote sensing imagery of water bodies and 
non-water bodies using a pre-trained deep learning architecture.  

Step 2. Create two clusters on the extracted features of remote sensing 
imagery, assigning them pseudo-labels of water-bodies and non- 
water-bodies clusters.  

Step 3. From each cluster, select the reliable images using the UCL 
based selection operation.  

Step 4. Fine-tune the deep learning module on reliable samples using 
pseudo labels given by the clusters.  

Step 5. Extract features of the whole training corpus of remote sensing 
imagery using the pre-trained model of the previous step.  

Step 6. Repeat steps 2 to 5 until the deep learning model is converged. 

In the beginning, the CNN, pre-trained on a different domain 
(ImageNet) is used to extract features from remote sensing imagery. 
These features are clustered into two, assuming them to be of water and 
non-water category. As the clusters are created from the features 
generated from a deep learning model trained on a different domain, we 
may obtain noisy clusters (for water classification of the remote sensing 
imagery). To filter out the reliable samples from the clusters, a UCL 
based selection operation is used to extract a small number of reliable 
samples. These are the samples present near the centroid of the clusters, 
containing the prominent features. The CNN model is fine-tuned on 
these reliable samples with pseudo labels assigned by clustering. The 
reliable samples restrict the CNN to learn only the prominent features of 
the clusters by avoiding unnecessary noise. The updated CNN is used for 
feature extraction in the preceding iteration. With every iteration, the 
model learns the features of remote sensing imagery with pseudo labels 
of clusters resulting in comparatively better clusters than the previous 
iteration. The process iterates until the CNN model has converged. This 
process is called unsupervised because it only needs the pseudo labels of 
the clusters to fine-tune the CNN model. 

3.1. Deep Learning Model 

In UCL, a deep learning module is used for feature extraction from 
remote sensing imagery. Later, this module is fine-tuned on selected 
reliable samples, say, of water bodies and non-water bodies. Several 
deep learning models like VGG-16, ResNet-50, DenseNet, Inception Net, 
and Xception Net have been explored in this work to demonstrate the 
generalization of the introduced framework. VGG-16 and ResNet-50 
outperformed the other networks for water bodies classification from 
remote sensing imagery. Hence, we have used VGG-16 for our final UCL 
algorithm due to its lower computational complexity compared to 
ResNet-50. The described training process is general and independent of 
the CNN used. It will work with VGG as well as with Inception Net, and 
Xception Net. The training process of VGG-16 in UCL can be decom
posed into two parts:  

1. Feature Extraction: VGG-16, pre-trained on the ImageNet dataset is 
used for feature extraction of remote sensing imagery in the first 
iteration. The output of the last convolutional layer is extracted to get 
feature maps of each sample in the dataset. The extracted feature 
maps are flattened to get the feature vectors. These feature vectors 
are clustered into two, assuming them to be of water and non-water 
bodies. From these clusters, reliable feature samples are selected 
using the UCL based selection operation for fine-tuning the deep 
model.  

2. Fine-tuning of VGG-16 with reliable images: The model is fine-tuned 
on the training set of reliable samples considering their cluster as 
their pseudo label. We have modified the input layer of VGG-16 
according to our aerial image patch size and the output layer to 
the number of clusters we generate. In the current scenario, the 
considered two classes for training are; water-body and non-water- 
body. 

3.2. Clustering 

The features extracted from the deep learning module are clustered 
using an unsupervised clustering technique. We have explored three 
different types of clustering techniques, K-Means, hierarchical clus
tering, and Fuzzy C-Means (FCM). These techniques are suitable for the 
considered problem of water and non-water classification of remote 
sensing imagery patches as they have a fixed number of classes. FCM and 
K-Means clustering generated better clusters than hierarchical clustering 
(see Section 5). We have deployed K-Means clustering as it has lower 
time complexity than FCM. 

Suppose the features extracted from remote sensing imagery patches 
{xi}

N
i=1 using the deep learning model ϕ(.,θi)are represented by {fi}N

i=1. 

{fi}
N
i=1←ϕ({xi}

N
i=1, θ) (1)  

These features are clustered such that each feature vector is assigned a 
cluster label {yi}

N
i=1 where yi ∈ {1, …, k}on the basis of a minimum 

distance from the centroid ck, where c is the centroid of kth cluster. In the 
current scenario, k = 2 to generate two clusters, assuming them to be of 
water bodies and non-water bodies. 

{yi}
N
i=1←min

∑N

i=1

∑2

k=1
|fi − ck| (2)  

These generated pseudo-labels, {yi}
N
i=1, are later used for fine-tuning the 

CNN model. 

3.3. UCL based Selection Operation 

Using the concept of CL we want to extract reliable samples for fine- 
tuning the CNN. We achieve this in an unsupervised manner, by 
selecting features near the centroid of a cluster. More specifically, we 
select all features that are at a distance λ from the centroid of the cluster 
(see Selection Operation in Fig. 1). The parameter λ is a constant value 
that can be adjusted according to the requirement. We have used λ =

0.85 after empirical evaluations. 
The closest feature vector to the centroid is considered as a centroid 

feature vector, {fk}2
k=1where k represents the cluster. 

{fk}
2
k=1←min{|fik − ck|}

N
i=1 (3)  

We calculate the similarity between a specific feature vector fi belonging 
to a cluster k and the centroid feature vector fk using the inner product, i. 
e. 

{γi}
N
i=1←{fik⋅fk}

N
i=1 (4)  

If the calculated similarity is greater than the λ, the sample of the 
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considered feature vector is declared as a reliable sample x′

i and the 
cluster label is considered as the pseudo sample label for the next 
training cycle. 

{x′

i}
M
i=1←{γi}

N
i=1 < λ (5)  

The number of extracted reliable samples vary at every iteration of fine- 
tuning. 

3.4. Progressive Learning 

Initially, when the model is not trained on remote sensing imagery, 
the features extracted from this model may result in loose clusters. These 
clusters are less dense and result in a set of only a few reliable images. In 
the beginning, the network is fine-tuned on this set of a few reliable 
images considering their cluster as their pseudo label, either water or 
non-water. Then the fine-tuned network is used to extract features of the 
whole training corpus and new clusters are generated. The selection 
operation is performed on these clusters to extract reliable samples. This 
time the clusters might be comparatively dense than they were in the 
previous iteration, and we get more reliable images. Progressively, the 
model gets stronger by learning the patterns from the data and the set of 
reliable images iteratively grows leading to self-paced learning. 

The proposed UCL technique is an unsupervised binary classifier 
where the model has learnt the features and is able to create clusters of 
water and non-water. Now the question is how to know which cluster 
indicates which class? The automation of mapping the pseudo-labels to 
true labels is beyond the scope of this work and can be considered as one 
of the future directions. 

3.5. Implementation Details 

The experiments were conducted on a GPU machine having an 
NVIDIA Titan-X GPU for training and fine-tuning with 32 GB RAM and 
Linux operating system. It took about 4.5 h for training the model on the 
considered datasets. We used a Stochastic Gradient Descent (SGD) 
optimizer and categorical cross-entropy loss. Learning rate was set to 
0.0001, momentum to 0.9 and batch size to 16 images. The training 
dataset with pseudo labels is split into 80% for training and 20% for 
validation for progressive learning of UCL. The input layer of the deep 
learning model is set to 64x64x3. As the considered three datasets have a 
difference in their image patch sizes (28x28, 61x61, and 64x64), the 
patches of all the datasets were interpolated to patch size 64x64 to make 
them suitable as an in input to the deep learning model. 

4. Datasets 

UCL takes the input in the form of an image patch and classifies it 
either to be of water or non-water category. Therefore, huge tiles of 
aerial images were broken down into smaller patches on the basis of the 
requirement for better classification. Only RGB bands of the images were 
considered to model the situation where only these bands are available, 
like high-resolution UAV data which usually does not contain multi
spectral bands. We have used two publicly available datasets, namely, 
EuroSAT (Helber et al., 2019) and SAT-6 (Basu et al., 2015), and our 
newly created PakSat dataset to demonstrate the effectiveness of the 
proposed architecture. 

This study has considered the imagery from different parts of the 
world to address variations in the spectral responses of water depending 
on the region of the globe. EuroSAT carries Sentinel-2 imagery patches 
of 34 European countries, SAT-6 covers the area of California, and 
PakSAT is composed of Sentinel-2 imagery patches of Pakistan. 

4.1. SAT-6 Dataset 

SAT-6 (Basu et al., 2015) is a high-resolution dataset captured from 

an aircraft providing 1 meter GSD pixel resolution covering different 
parts of California. It is composed of small patches of size 28 × 28 
divided into six classes. Initially, it has four bands; red, green, blue, and 
infrared. The dataset was preprocessed to remove the infrared band from 
the corpus to make it suitable for RGB input. The patches were divided 
into two categories i.e. water and non-water class. Both classes contain 
an almost equal number of patches, having a corpus of 7500 image 
patches for fine-tuning and 3000 for testing. This high-resolution dataset 
was used to evaluate the robustness of UCL for scale variation and to 
prove the hypothesis of the progressive learning behaviour of the model. 

4.2. EuroSAT Dataset 

EuroSAT (Helber et al., 2019) is composed of image patches from 
different regions of 34 European countries. The image parches are of 
sentinel-2 satellite having a resolution of 10 m per pixel for red, green, 
and blue bands. It consists of 10 classes of land cover and land use. We 
have only used the red, green, and blue bands of the data and divided the 
dataset into two classes by considering the “river” and “sea & lake” as 
water class and the rest of the classes as the non-water class in such a 
way that there are almost 50% samples of water and 50% of non-water 
category. The purpose behind balancing the two classes is the unbiased 
training of the deep learning model. The size of each patch is in EuroSAT 
dataset is 64 × 64. We have considered 8000 image patches for fine- 
tuning and 3000 for testing. 

4.3. PakSAT Dataset 

With the PakSat dataset, we have developed the dataset for water 
bodies segmentation from Sentinel-2 satellite imagery. This dataset is 
composed of water bodies of Pakistan. We have applied the threshold 
methods to get a roughly estimated mask of water pixels in the image. 
Later, the correction of the generated mask is done manually. The 
PakSat dataset is composed of 61 × 61 sized patches of water, non- 
water, and mixed classes. Each patch has 14 bands, the first 13 bands 
are of Sentinel-2 and the 14 th is the generated mask. In this study, we 
have only considered the red, green, and blue bands of the data having a 
pixel resolution of 10 m. The dataset consists of three classes; namely 
water, non-water, and mixed. The patches containing more than 75% of 
water pixels are declared as water patches. Patches with less than 75% of 
water are placed in the mixed category. The patches with no water pixel 
were classified as non-water patches. Lets have a look into the process of 
PakSAT dataset creation. 

4.3.1. Process for creating the PakSAT dataset 
The creation of PakSAT dataset was started with the downloading 

Sentinel-2 tiles of water reservoirs and part of the Indus river of Pakistan 
from June 2015 till October 2019. After downloading the required tiles 
of Sentinel-2 imagery, the following steps were taken one by one to 
create the ground truth of the PakSAT dataset. 

4.3.1.1. Resampling. The Sentinel-2 bands come in varying spatial res
olution of 10 m, 20 m, and 60 m. For overlying data, the cell resolution 
should be the same. For this, each band was upsampled to achieve 10 m 
resolution using the Bilinear Resampling technique. Bilinear is an 
interpolation technique that considers the values of the four nearest 
pixels to calculate the value for the current pixel on the output image. 
The calculated new values on the output raster are the weighted average 
of the considered four nearest values. The four values are considered on 
the basis of their distance from the center of the output pixel. Resam
pling is processed by Data Management Tools in ArcGIS. All bands of the 
spatial resolution of 20 m e.g. Band5, Band6, Band7, Band8A, Band11, 
and Band12 of Sentinel-2 and bands of 60 m resolution e.g. Band1, 
Band9, and Band10 of Sentinel-2 resolution was resampled to 10 m by 
using the Bilinear Resampling technique. We have performed this step in 
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the creation of the PakSAT data to make it more practical for more 
interested researchers who intended to use the dataset with multispec
tral bands. 

4.3.1.2. Labelling Water Features. Clear and greenish reflection water 
bodies show high reflectance values for the green band than red and 
blue. Whereas muddy water bodies show high reflectance on the red 
band than green and blue. Hence, the Normalized Difference Water 
Index (NDWI), uses the green band along with the near-infrared (NIR) 
band, whereas the Normalized Difference Vegetation Index (NDVI), uses 
the red band with near-infrared (NIR). Both of the approaches map the 
water bodies differently according to the difference in their color. We 
have used both of the indices to estimate the water bodies in Sentinel-2 
imagery. 

Normalized Water Index (NDWI) is another threshold method to 
detect water from remote sensing data. NDWI absorbs the NIR reflec
tance and emphasizes the green band reflectance to detect water bodies. 
Thus, water pixels become prominent having positive values, and other 
categories like soil and vegetation carry zero or negative values. A 
threshold on these values gives an estimated binary mask of water 
bodies. 

NDWI =
Green − NIR
Green + NIR

(6)  

The values of NDWI range between − 1 and 1. In most cases, NDWI was 
used to detect water features but in some tiles, where there are some 
problems in detecting features due to shadows, clouds, or muddy water, 
NDVI was deployed. The values of NDVI as well range between − 1 and 1 
as both are normalized indices. For NDVI, the negative values close to 
− 1 represent water/ The values close to zero usually correspond to 
barren areas like rocky or sandy land or snow category. Low positive 
values roughly up to 0.4 classify green lands like grass and shrubs. 
Whereas positive values approaching 1 represent tropical and temperate 
rainforests. 

NDVI =
NIR − Red
NIR + Red

(7)  

The pixels of water were labelled by reclassifying the pixels. The pixel 
values representing water were labelled as 1 and 0 otherwise. This 
resulted in a binary mask for water bodies. These auto-generated binary 
masks contained some errors like cloud cover, shadows, and boundary 
pixels of the water bodies. 

4.3.1.3. Manual Correction. Manual Correction included the step of 
locating the errors by visualizing the satellite image and the corre
sponding generated binary mask for a specific area of interest containing 
water body (see Fig. 2). Wherever the pixel(s) was misclassified, it was 

manually corrected by changing the binary mask value from 0 to 1 and 
vice versa. 

4.3.1.4. Bands Composition. Band composition is similar to layer 
stacking in which after resampling into the same resolution of 10 m, all 
the 13 bands are stacked together in the standard order of Sentinel-2. 
Lastly, the generated ground-truth mask is added to it as a 14th band 
and stored as a single raster file. 

4.3.1.5. Splitting into Patches. As each raster file was huge in size, they 
should be divided into smaller patches to make it suitable for UCL. Each 
raster file composed of 14 channels (13 Sentinel-2 bands and 14th 
ground-truth binary mask) is split into smaller non-overlapping patches 
of size 61 × 61 × 14. The size of the patch is an important parameter as 
UCL takes the patch and does classification at the patch level. 

4.3.1.6. Categorization of Patches. Some of the generated patches 
contain only water, some do not contain water or contain the coastline of 
the water having a portion of water and non-water part. We segmented 
the patches into three different categories on the basis of the water pixels 

Fig. 2. Sentinel-2 tile captured on 11th May 2018 containing Rawal Dam along with its approximated binary mask generated by using NDVI and NDWI.  

Table 1 
The count of patches in each category generated from Sentinel-2 tile captured on 
a specified date containing water body.  

Water Bodies Capturing 
Date 

Water Land Mixed Total  

Chashma Reservior 2016–09-05 877 160 - 1037  
2017–11-06 315 296 - 611  

Darawat Dam 2019–10-19 118 510 131 759  
Ghazi Barotha 

Reservior 
2019–04-06 9 778 137 924  

Gomal zam Dam 2016–08-15 372 - - 372  
2019–06-08 58 189 76 323  

Indus River 2016–07-22 287 - - 287  
Manchar Lake 2017–06-08 650 215 - 865  

2017–08-27 570 1651 173 2394  
2018–08-01 554 - - 554  
2019–10-16 719 1694 242 2655  

Mangla Dam 2016–02-06 455 3186 228 3869  
2016–10-20 673 - - 673  
2017–12-07 206 2299 402 2907  
2018–08-19 492 3336 660 4488  
2018–12-11 452 - - 452  

Rawal Dam 2016–11-12 75 - - 75  
2018–10-07 73 - - 73  
2019–06-10 48 951 171 1170  

Tarbela Dam 2016–07-04 347 - - 347  
2017–07-07 235 2102 212 2549  
2019–04-06 389 1954 335 2678  

Total Count  7974 19321 2767 29389   
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they contain. If a patch has no water pixel, it belongs to the ”Land” 
category. If a patch has 75% or more water pixels then it belongs to the 
”Water” category. If a patch has water less than 75%, it is categorized as 
”Mixed” containing both water and non-water regions. 

In total 29389 patches were created. Out of which 7974 patches 
belong to the Water category, 19321 belong to the Land category, and 
2767 belong to the Mixed category. The details of the water patches can 
be seen in Table 1. 

In this work, we have used the water and non-water patches with 
RGB bands for unsupervised progressive learning of water classification 
from satellite imagery. Fig. 3 provides a visualization of the patches of 
the considered three datasets. 

The size of the input patch has great significance. If the patch size is 
large, there are chances of mixing the boundary pixels of multiple land 
covers. The smaller the patch size the better the results. Our main focus 
is to develop an unsupervised deep learning based approach considering 
the prominent features of each class. This could be done by avoiding the 
patches containing the features of both classes significantly like 50% of 
each class in the patch. It may confuse the network at the time of training 
for binary classification. If the network is designed for multiple classes 
and a new class can be added called ”mix class”, the network will be able 
to learn such patches containing features of multiple classes which can 
be considered as a future direction of the work. Our major focus is on 
learning the prominent features for binary classification. 

5. Experimental Validation 

The progressive learning behaviour of UCL was analyzed by con
ducting multiple experiments on the considered datasets, namely Sat-6, 
EuroSAT, and PakSAT. The experiments are divided into 4 subsections; 
(i) direct testing of the considered dataset on ImageNet weights, (ii) fine- 
tuning of VGG-16 and UCL supervised, (iii) their cross domain adapta
tion, (iv) clustering analysis and (v) error analysis. 

5.1. Direct Testing on ImageNet Weights 

Before conducting the experiments of UCL progressive learning and 
supervised comparison, direct testing on VGG-16 with ImageNet 

weights of EuroSAT, SAT-6 and PakSAT is done (see Table 2). 
VGG-16 with ImageNet weights is directly tested on EuroSAT, Pak

SAT, and SAT-6 datasets. Assuming the dataset to be unlabelled, two 
strategies were followed; (1) the classification layer of VGG-16 is 
randomly initiated with 0 mean and 0.001 standard deviations, and (2) 
VGG-16 with ImageNet weights are used as a feature extractor for 
remote sensing data. In Table 2, Random FC represents the results of 
randomly initializing the fully connected binary classification layer. As 
the random initialization of the classification layer is not aware of the 
considered datasets, it makes the classification quite challenging leading 
to unsatisfactory results. Whereas, in the second approach, K-Means has 
been used for the classification of deep extracted features which lead to 
comparatively better performance for all three datasets. The EuroSAT 
gives the lowest performance, it is because we have combined the River 
class with Sea & Lake. Sea & Lake class carries the Sentinel-2 patches of 
only water. Whereas, in River class patches we can observe a great part 
of the land with the river stream. This intermixes the river patches with 
non-water class leading to poor intra class variation for clustering and 
compromised F1-Score. The PakSAT and SAT-6 datasets carry promi
nent patches of water and non-water categories. 

5.2. Fine-tuning of VGG-16 and UCL 

In general, supervised deep learning models have better performance 
than unsupervised models as they are trained using ground-truth labels. 
UCL’s performance has been analyzed considering the supervised 
model’s performance as the benchmark. VGG-16 with ImageNet weights 
is fine-tuned in a supervised manner on EuroSAT, SAT-6 and PakSAT 
datasets that reported the F1-Score of 99.49%, 99.53% and 96.07%, 
respectively, see Table 3. All the fine-tuned models have learned the 
remote sensing features to classify the water patches for the respective 
datasets. 

We have analyzed the progressive learning behaviour of UCL that is 
capable of learning the variations in the new dataset, progressively. For 
UCL training, we assume that there are no labels available for the 
training process. UCL uses the clustering technique to generate the 
pseudo labels to train the deep learning model. The CNN based model of 
UCL with ImageNet weights has been fine-tuned with EuroSAT, PakSAT, 
and SAT-6 datasets in unsupervised progressive learning behaviour. The 

Fig. 3. Some patches of Sat-6, EuroSAT and PakSAT Datasets.  

Table 2 
Describes the direct inference of EuroSAT, PakSAT, and SAT-6 datasets on VGG- 
16 considering two different techniques. Random FC indicates the results with 
random initialization of the FC layer. K-Means shows the results for clustering 
the features extracted from VGG-16 and classified by K-Means clustering.  

Initial Test Set F1-Score (%)  

Weights  Random FC K-Means  

ImageNet EuroSAT 44.46 54.45  
ImageNet PakSAT 51.98 57.13  
ImageNet Sat-6 58.20 65.50   

Table 3 
F1-Scores of VGG-16 supervised fine-tuned and tested on each dataset; EuroSAT, 
PakSAT, and SAT-6. The last column reports the results of UCL fine-tuned and 
tested on each considered dataset.  

Fine-Tuned F1-Score (%) 

& Tested Supervised UCL 

EuroSAT 99.49 84.05 
SAT-6 99.53 90.89 
PakSAT 96.07 87.66  
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UCL reported promising results on all the three datasets by giving F1- 
Score above 80%, see Table 3. The supervised model performed better 
than UCL but there is a huge trade-off of data labelling which is quite an 
exhaustive task. 

Considering the dataset with no labels, the direct testing on Image
Net weights with K-Mean clustering performed comparatively better 
than the random classification layer (see Table 2). It reported the F1- 
Score of 54.45% for EuroSAT, 57.13% for PakSAT, and 65.5% for 
SAT-6 dataset. Later, deploying the UCL for progressive unsupervised 
learning from the data, it is able to learn the features from the unlabelled 
data by reporting the considerable improvement in the F1-Score. The 
evaluated F1-Score on UCL is 84.05% for EuroSAT, 87.66% for PakSAT, 
and 90.89% for SAT-6 dataset, see Table 3. The F1-Score is improved by 
around 20% for EuroSAT and PakSAT datasets, and 25% for SAT-6 
dataset. 

5.3. Cross-domain Adaptation 

To analyze the domain adaptation, we have tested the model trained 
on one dataset on the other two datasets (see Table 4). It has been 
observed that the test accuracy for supervised fine-tuned VGG-16 is 
quite low on the other datasets, indicating that the supervised models 
are data-specific and lack adaptability in the cross-domain adaptation 
scenario. Here, the variation among the datasets is due to different data 
acquisition platforms (space-borne/air-borne), resulting in different 
image properties with varying image resolution. 

To further analyze the progressive learning behaviour of the pro
posed model and its adaptation to the new dataset, each UCL model 

trained on one dataset was tested on the other two considered datasets. 
It can be seen in Table 4, the supervised model trained on EuroSAT does 
not perform that well on PakSAT and SAT-6 datasets with an F1-Score of 
70.68% and 32.84%, respectively. Whereas, UCL fine-tuned with 
EuroSAT achieved comparatively better F1-Scores on the other datasets 
i.e., 78.00% for PakSAT and 75.76% for SAT-6 datasets. Similarly, the 
supervised trained models and the UCL trained models of SAT-6 and 
PakSAT were tested on the other two datasets and a similar trend was 
observed (as reported in Table 4). 

5.4. Clustering Analysis 

The UCL results of the SAT-6 dataset are further analyzed by 
observing the clusters generated using K-Means during training. We 
have observed the training procedure of UCL for 20 iterations of fine- 
tuning. Initially, the clusters are created using the features extracted 
from a model trained on a different domain, ImageNet, which does not 
contain any remote sensing data. Consequently, the generated clusters 
are not compact and loosely packed for remote sensing imagery. To 
evaluate the compactness of the clusters, purity and Silhouette Score are 
computed, see Fig. 4. The purity is a supervised measure that calculates 
the correctly classified samples over the total number of samples in the 
cluster. Whereas, Silhouette Score is an unsupervised measure that 
calculates the compactness of the clusters on the basis of the distance 
between each sample within the cluster and the neighboring clusters. 

It can be seen in Fig. 4 that the Silhouette Score is as low as 0.15 at 
the start, showing the lack of compactness in the clusters. Later, with 
iterations of fine-tuning, the value grows indicating the saturation in the 
compactness. Whereas, the purity remains at a good score in the range of 
0.90 to 1.00 over iterations. 

The Sum of Squared Error (SSE) is evaluated for the clusters gener
ated from SAT-6 dataset which is also an objective function of K-Means 
clustering. In Fig. 5, the graph represents the values of SSE for generated 
clusters at every fine-tuning iteration. The vertical axis represents the 
values of SSE and the horizontal axis are the fine-tuning iterations of the 
model. The graph shows a quite high value of SEE at the start when 
clustering is done with features extracted from a pre-trained model of 
ImageNet. As soon as the model is fine-tuned on SAT-6 patches, the SEE 
score is exponentially decreased. We can see a small peak at the end of 
the curve showing that the progressive fine-tuning of the model has led 
to somewhat over-fitting and fine-tuned models of these iterations can 
be ignored. This graph helps to choose the candidate fine-tuned models 
over iterations. The fine-tuning iterations having minimum SSE can be 
the potential fine-tuned model for the deployment. 

As the clusters are loosely packed at the start, we extract the reliable 

Table 4 
F1-Scores of VGG-16 fine-tuned in a supervised manner on each dataset and 
tested on the other two datasets. The last column reports the results of UCL fine- 
tuned on each dataset and tested on the other two datasets. The considered 
datasets are EuroSAT, PakSAT, and SAT-6.  

Fine-Tuned Tested F1-Score (%)    

Supervised UCL  

EuroSAT PakSAT 70.68 78.00   

SAT-6 32.84 75.76  
SAT-6 PakSAT 63.16 68.97   

EuroSAT 42.83 72.43  
PakSAT EuroSAT 62.70 79.00   

SAT-6 59.92 71.72   

Fig. 4. Graph showing the purity and Silhouette Score of generated clusters for 
water bodies and other regions of SAT-6 over every iteration of fine-tuning 
of VGG16. 

Fig. 5. Graph showing Sum of Squared Error of generated clusters for water 
bodies and other regions of SAT-6 over every iteration of fine-tuning of VGG16. 
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samples present near the centroid of the clusters using the selection 
operation of UCL. The deep learning model is fine-tuned on these sam
ples. This step avoided the noisy samples of the clusters and restricted 
the model to learn random features. 

It can be seen in Fig. 6 that only a few reliable samples (exactly 4) are 
extracted at the start using the pre-trained model further indicating that 
the samples are loosely packed in the clusters. With iterations of fine- 
tuning, the count of reliable samples is significantly growing. After a 
few iterations, the growth in the count of the reliable samples seemed 
saturated. After 4 iterations, the count of reliable samples remains above 
6000 indicating that the reliable set contained the majority of the 
samples from the corpus of size 7000. 

In UCL, VGG-16 is trained with pseudo-labels generated by the 
clustering technique, K-Means. The model has reported almost 0% error 
over cross-validation on every iteration of fine-tuning. The cross- 
validation corpus is a fraction of the training corpus where the gener
ated pseudo-labels are used for cross-validation purpose as well. The 
model is fine-tuned end-to-end to the classification layer. Fig. 7 shows a 
visualization of centroid patches of the clusters at every iteration of fine- 
tuning for the SAT-6 dataset. It can be seen that the centroids of both 
clusters at every iteration are belonging to the water and non-water class 
indicating that the model is able to distinguish both classes. 

The fine-tuned models of 20 iterations are evaluated on the test 
corpus, see Fig. 8. It can be seen that the model has converged well on 
the 4th iteration, reporting the F1-Score of 0.99. The accuracy remained 
consistent for the next two iterations. After that, the accuracy tends to 
decrease indicating a sign of overfitting. It may be because of the mul
tiple interactions of fine-tuning the model over the same dataset. The 
model reported the highest accuracy 99.31% at the 6th iteration. Table 5 
shows the confusion matrix of the 6th iteration of fine-tuning. It can be 
seen that most of the patches are correctly classified with the exception 
of 20 false-negative patches that are belonging to other regions and are 
declared as water by the model. 

To analyze the change of pseudo-labels among the patches, we have 
evaluated the count of the patches whose pseudo-labels are changed in 
the next iteration, see Fig. 9. It can be seen that at the 0th iteration, all 
the patches are predicted with a specific class. Later, with every 

iteration, the count of change in the labels of patches tends to decrease 
and gets converged after a few iterations. 

5.5. Error Analysis 

The extracted reliable samples of the best fine-tuning iteration of 
EuroSAT demonstrate that the visual features of residential, industry, 

Fig. 6. Graph showing the count of reliable samples of SAT-6 over every iter
ation of fine-tuning of VGG16. 

Fig. 7. The centroids of the clusters of SAT-6 at each iteration of fine-tuning of VGG-16.  

Fig. 8. Graph showing the test accuracy of SAT-6 over every iteration of fine- 
tuning of VGG16. 

Table 5 
Confusion Matrix for SAT-6 test corpus on best iteration of fine-tuning of VGG- 
16.  

Predicted →  

Actual ↓  Water Non-water Total 
Water 1,460 0 1,460 
Non-water 20 1,440 1,460 
Total 1,480 1,440 2,920  

Fig. 9. Graph showing the count of the patches whose pseudo-labels are 
changed in the next iteration of fine-tuning of VGG16. 
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highways, annual and permanent crops were properly classified as non- 
water categories. Whereas, the forest patches show a similar colour as 
the reflection of some lakes and seawater which resulted in intermixing 
of some forest patches with water and vice versa. Herbaceous vegetation 
patches also showed a resemblance to water. It could be because of the 
low resolution of Sentinel-2 to appropriately distinguish the intra-class 
variation in different lands. Some of the failure cases have been visu
alized in Fig. 10. 

6. Conclusion and Outlook 

In this paper, we have introduced an unsupervised method UCL to 
categorize water bodies from remote sensing imagery and showed that 
the unsupervised deep learning approach can learn the desired features 
and have the tendency to outperform the supervised model with respect 
to domain adaptation. The supervised models of deep learning need a 
massive dataset of labelled images to train the architecture, which is a 
tedious, exhausting, and time-consuming task. The unsupervised algo
rithm removes the requirement of a labelled dataset for training the 
architecture and perform classification. The datasets used to prove the 
hypothesis are, EuroSAT (covering 34 European countries), PakSAT 
(covering Pakistan), and SAT-6 (covering California). This paper has 
shown the efficiency of unsupervised architecture by reporting the F1- 
Score around 85% to 91% for considered datasets (see Table 3). We 
have also analyzed the domain adaptation of UCL to check its robustness 
using EuroSAT, PakSAT, and SAT-6 datasets. We have trained the UCL 
on one dataset and tested its performance on the other datasets. UCL was 
able to give better domain adaptation performance on other datasets 
than supervised models with a considerable difference in the F1-Score 
from 8% to 42% (see Table 4). However, a big room of work is still to 
be done in the field. We worked on the patch-wise classification of the 
images considering red, green, and blue bands only which can be 
extended to pixel-based segmentation. This work also focused only on 
binary classification and could be further extended to the multi-class 
classification of aerial photographs. 
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