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Abstract: Reconstruction algorithms are at the forefront of accessible and compact data collection. In
this paper, we present a novel reconstruction algorithm, SpecRA, that adapts based on the relative
rarity of a signal compared to previous observations. We leverage a data-driven approach to learn
optimal encoder-array sensitivities for a novel filter-array spectrometer. By taking advantage of the
regularities mined from diverse online repositories, we are able to exploit low-dimensional patterns
for improved spectral reconstruction from as few as p = 2 channels. Furthermore, the performance
of SpecRA is largely independent of signal complexity. Our results illustrate the superiority of our
method over conventional approaches and provide a framework towards “fourth paradigm” spectral
sensing. We hope that this work can help reduce the size, weight and cost constraints of future
spectrometers for specific spectral monitoring tasks in applied contexts such as in remote sensing,
healthcare, and quality control.

Keywords: reconstruction; symmetric non-negative matrix factorization; nonlinear dimensionality
reduction; sparse sensor placement; spectral sensing

1. Introduction

Natural signals are compressible functions that represent changes in the spectrotempo-
ral dynamics of physical phenomena [1]. Common examples of natural signals include light
and sound. The information contained within a signal is encoded when it is received by an
observer. Observers can be biological, such as the human eye, or mechanical (e.g., a digital
camera). The most useful “observers” encode signal information into a format that can be
read, copied, and shared with others via a process called quantization. Contemporary scien-
tific discovery is increasingly dependent on encoding hardware as numerous autonomous
processes require vast amounts of data. In what many are now calling the “fourth paradigm
in scientific discovery” [2], efficient data transcoding is paramount. Herein, we approach
the metrological process from the perspective of information science starting with quanti-
zation and concluding with reconstruction. We hypothesize that by exploiting regularities
in existing datasets, we can develop optimized non-uniform protocols for spectral sensor
placement and use adaptive methods to maximize reconstruction efficiency. While we
focus on spectral sensing for visible light, the methods discussed are applicable to any set
of signals characterized by locality and compositionality.

1.1. What Is “Spectral” Sensing?

Spectral sensing is used in a number of applied contexts including healthcare, re-
mote sensing, and quality control [3–5]. To meet the requirements of this highly diverse
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field, current compact spectral imaging solutions include systems based on the following
technologies:

1. Multispectral, filter-array sensors;
2. Compressive spectral sensors;
3. Lens-encoders;
4. Spectral super-resolution;

While each application of spectral sensing has different requirements for what is
considered “spectral” resolution, we can broadly identify three main classes: (1) tristimulus;
(2) multispectral; and (3) hyperspectral imaging. Pixel-based, red, green, blue (RGB)
is perhaps the most ubiquitous “spectral” signal and is used for color rendering and
other imaging purposes. While RGB has historically been excluded from spectral sensing
technologies, interest in recovering broadband spectral signals from RGB has increased
over the years [6–11]. So-called “RGB-to-spectrum” approaches are, however, limited in
their applicability to broadband (low-complexity) signals and generally fail for signals with
low autocorrelation. Multispectral imaging is an exciting emerging field and typically refers
to systems capturing between 3 and 10 channels with bandwidths greater than 20 nm [12].
Common applications are in color evaluation for quality control and remote sensing [13].
Advances in optical filters and semiconductor technology have also improved the size,
weight, power, and cost constraints, making hyperspectral sensing a more attractive middle
ground [14]. Hyperspectral imaging is perhaps the most diverse class reserved for devices
measuring more than 10 channels [15]. For imaging applications, hyperspectral cameras can
have between 512 and 2048 channels over the visible domain making them extraordinarily
information-rich. While devices in each of these classes all collect “spectral” data, the range
in resolution covers three orders of magnitude.

1.2. Existing Methods

Many compact spectral sensing methods exist based on the aforementioned technolo-
gies. Recent interest in multi-spectral filter-array technology has, in particular, attracted
a lot of interest. Methods of multispectral demosaicking have improved low-cost “single
shot” imaging [16] as well as compressive methods [17]. Alternative approaches look for
statistical regularities to exploit for task-specific applications. A plethora of work in natural
image statistics has motivated approaches based on scene optimization [18] and RGB im-
ages [8,19,20]. Increasingly, however, focus has shifted towards data-driven computational
methods to recover as much information as possible from low-fidelity measurements. This
includes improving the optimization frameworks for diffractive achromats (DAs) [21] and
constructive improvements for the alternating direction method of multipliers (ADMM)
optimization in solving ill-posed reconstruction problems [22].

Contemporary approaches to compressive spectral sensing rely on a diversity of sensor
technologies from liquid crystal phase retarders [23–25] to stacked array spectrometers
with broadband filters [26]. Emergent technologies such as quantum dot and nanowire
spectrometers [27,28] also show great potential to disrupt the spectral sensing space. At
the same time, the manufacturing cost of “single shot” compact filter-array spectrometers
with 3–20 channels and bandwidths in the 20 nm range have dramatically decreased to
a fraction of the cost of conventional scanning spectrometers [29,30]. Regardless of the
underlying technology, each measurement device maps data from the “natural” dimension
to a hardcoded “measurement dimension” defined by the resolution of the device. Towards
this end, we are interested in applying a data-driven approach to investigate the theoretical
boundaries constraining reconstruction performance in the future generation of compact
sensing hardware.

1.3. Problem Statement

While determining the threshold of what constitutes “spectral sensing” is highly
contextual, advances in applied math and signal processing have demonstrated that natural
signals exhibit a high-degree of redundancy. Formally, this means that most natural signals
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are encoded in a smaller dimension below the theoretical limits set by the Shannon–Nyquist
sampling theorem [31]. As we are interested in investigating the magnitude of information
required to reconstruct a spectral power distribution from low-dimensional data, we will try
and find the best low-rank representation (i.e., embedding) given a set of prior observations.
Determining a theoretical limit and workable latent space for visible spectra will not only
help to improve how spectral data are measured, compressed, and stored, but also in how
they are classified.

Efficient sensing is a two-step process requiring the informed design of an optimized
encoder gφ and an adaptive reconstruction algorithm characterized by fθ . Thus, the
contributions herein are two-fold. First, to determine the optimal sensor locations for the
reconstruction of broadband (low-complexity) and narrowband (high-complexity) spectra.
Second, to develop an a data-driven reconstruction algorithm (SpecRA) that balances
simplicity and reconstruction fidelity. Together, we show that a combined workflow
can account for real-world engineering and fabrication constraints on spectral sensors
to determine what are the maximally informative dimensions of visible spectra in theory and
practice.

2. Beating Nyquist

In 2005, our understanding of the theoretical limits of sampling rate for bandlimited
signals were such that if a signal is sampled at a frequency f , perfect reconstruction is only
guaranteed if the bandwidth b < f /2 [32]. This observation is a result of the Shannon–
Nyquist sampling theorem and while this theorem still holds today, two seismic advances
in applied math have forced engineers to contextualize it in a new light. First, in 2006, it was
demonstrated that sub-Nyquist sampling was possible without violating the theorem by
requiring the signals to be sparse (i.e., compressible) in a generic basis [31,33]. This approach
is called compressive sensing and has since revolutionized data collection by initializing
compression at the point of quantization. Second, the increase in data availability has made
it possible to feature mine prior observations for statistical regularities. These regularities
can then be used to exploit symmetries and other structural properties in order to make
inferences that further maximize reconstruction performance. In this way, the “datafication”
of our world has imparted huge implications for metrology in general and spectral sensing
in particular. In this paper, we will specifically show how advanced domain knowledge
can be used to optimize the measurement process.

3. What Is Reconstruction?

Simply defined, reconstruction refers to a process of recovering a signal from a set of
limited measurements [1]. In practice, this can be done several ways depending on the
application and in context, all of which result in solving the following problem:

minK(ŝ, s) subject to ŝ = fθ(y) (1)

Here, y = gφ(s) is a measurement of a high-dimensional signal s = E(λ) by an
encoder gφ reconstructed by a function fθ (c.f., Figure 1). The function K being minimized
can be any metric or norm capturing the dissimilarity between the reconstruction and the
ground truth. If the signal is sampled at or above the Nyquist rate, reconstruction can
be as simple as constructing a linear fit through the sub-sampled points (we call this the
“interpolation regime”). Alternatively, if the signal is undersampled but known to exhibit
unique statistical regularities, “reconstruction” can also be a process of finding a match
among known prior observations. In both examples, we say the reconstruction is “naïve”
in the sense that interpolation and pattern matching are inherently trivial tasks.

If the reconstruction is lossy, performance metrics are accompanied with a compression
power score to contextualize the trade-off between complexity and descriptivity. The
compression power is defined as the ratio between the uncompressed and compressed file
size (e.g., defined by the vector length). What can be misleading about the compression
power is that in the limit that the compressed file size obtains information saturation (i.e.,
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is sampled at a lossless rate via Nyquist or CS) the compression ratio becomes meaningless
when the uncompressed signal dimension is increased. This is because the features used
for lossless reconstruction are fully formed at a given resolution, and artificially increasing
the resolution of the uncompressed file will inflate the compression power. Towards this
end, we propose a slightly amended performance metric that encapsulates the about of
“work” performed by the algorithm fθ : Rp → Rn in order to reach a target error depending
on the available information:

W = max[p−1n(∆−max[γ, µ]), 0] (2)

where ∆ is the target performance threshold, γ is the percent of signals matching signals
in the Kanji, and µ is the percentage of signals recovered at or above the Nyquist rate.
We can think of W as the penalized compression power that is set equal to 0 when the
reconstruction algorithm fails to outperform either the matching problem or interpolation.
Given that we reconstruct a set of observations encoded by gφ, from a Kanji K ∈ Rm, we can
define the proportion of adequately reconstructed signals as the ratio of the cardinalities
of S and S where S = { s | s ∈ S ∧ K(s, ŝ) < ε ∀ ŝ = fθ(y) } is the subset of reconstructed
observations adhering to a dissimilarity score less than ε defined by a function K appro-
priate for the underlying datatype. For spectral sensing applications, this is typically the
spectral angle (SA) or another derivative index corresponding to the spectral information
divergence [34,35].

5.1 Encoding light

to improve how spectral data are measured, compressed, and stored, but also in how they are

classified. Naturally the question becomes: what is the intrinsic dimension of visible light?

In 2005, our understanding of the theoretical limits of sampling rate for bandlimited signals

were such that if a signal is sampled at a frequency f , perfect reconstruction is only guaranteed

if the bandwidth b < f /2 (Shannon, 1949). This observation is a result of the Shannon-

Nyquist sampling theorem and while this theorem still holds up today, two seismic advances

in applied math have forced engineers to contextualize it in a new light. First, in 2006 it

was demonstrated that sub-Nyquist sampling was possible without violating the theorem

by requiring the signals to be sparse (i.e., compressible) in a generic basis (Candès et al.,

2006a,b). This approach is called compressive sensing and has since revolutionized data

collection by initializing compression at the point of quantization. Second, the increase

in data availability has made it possible to feature mine prior observations for statistical

regularities. These regularities can then be used to exploit symmetries and other structural

properties in order to make inferences that further maximize reconstruction performance.

In this way, the "datafication" of our world has imparted huge implications for metrology

in general and spectral sensing in particular. In this chapter, we will show specifically how

advanced domain knowledge can be used to optimize the measurement process.
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Figure 5.1: Spectrometry is the process of encoding spectral data to a measured dimension p from
the infinite natural signal dimension. This process is visualized in the graphic above and written
mathematically as g¡ : R1 ! Rp . The measured data can then be reconstructed to a target high
resolution n > p such that fµ :Rp !Rn . Here the encoder g¡ is a filter-array spectrometer with some
transmission functions ri for i = (1, ..., p) and fµ represents a reconstruction algorithm (c.f., Figure 3.2).
This structure is analogous to that of an autoencoder where the learned encoder weights would replace
the response functions of the physical spectrometer and p is the dimension of the hidden layer.

Contemporary approaches to sub-Nyquist spectral sensing rely on a diversity of sensor tech-

nologies from liquid crystal phase retarders (Oiknine et al., 2018; August and Stern, 2013;

Oiknine et al., 2019) to stacked array spectrometers with broadband filters (Zhang et al., 2018).

Emergent technologies such as quantum dot and nanowire spectrometers (Bao and Bawendi,

2015; Yang et al., 2019) also show great potential to disrupt the spectral sensing space. At the

same time, the manufacturing cost of single shot compact filter-array spectrometers with 3

to 20 channels and bandwidths in the 20 nm range have decreased dramatically to a fraction

of the cost of conventional scanning spectrometers (Chang et al., 2011; Choi et al., 2016;
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Crocombe, 2019). Regardless of the underlying technology, each measurement device maps

data from the "natural" dimension to a hardcoded "measurement dimension" defined by the

resolution of the device (see Figure 5.1). Towards this end, we are interested in applying a

data-driven approach to investigate the theoretical boundaries constraining reconstruction

performance in the future generation of compact sensing hardware.

5.1.3 Problem statement

Efficient sensing is a two-step process requiring the informed design of an optimized encoder P

and an adaptive reconstruction algorithm. Thus the contributions herein are twofold. First, to

determine the optimal sensor locations for the reconstruction of broadband (low-complexity)

and narrowband (high-complexity) spectra. Second, to develop an a data-driven reconstruc-

tion algorithm (SpecRA) that balances simplicity and reconstruction fidelity. Together we show

that a combined workflow can account for real-world engineering and fabrication constraints

on spectral sensors to determine what are the maximally informative dimensions of visible

spectra in theory and practice.

5.2 What is reconstruction?

Simply defined, reconstruction refers to a process of recovering a signal from a set of limited

measurements (Priemer, 1991). In practice this can be done several ways depending on the

application and context, all of which result in solving the following problem:

minK (ŝ, s) subject to ŝ = fµ(y) (5.1)

Here y = g¡(s) is a measurement of a high-dimensional signal s = E(∏) by an encoder g¡
reconstructed by a function fµ (c.f., Figure 5.1). The function K being minimized can be any

metric or norm capturing the dissimilarity between the reconstruction and the ground truth.

If the signal is sampled at or above the Nyquist rate, reconstruction can be as simple as con-

structing a linear fit through the sub-sampled points (we call this the "interpolation regime").

Alternatively, if the signal is undersampled but known to exhibit unique statistical regularities,

"reconstruction" can also be a process of finding a match among known prior observations.

In both examples, we say the reconstruction is "naïve" in the sense that interpolation and

pattern matching are inherently trivial tasks.

If the reconstruction is lossy, performance metrics are accompanied with a compression power

score to contextualize the trade-off between complexity and descriptivity. The compression

power is defined as the ratio between the uncompressed and compressed file size (e.g., defined

by the vector length). What can be misleading about the compression power is that in the limit

that the compressed file size obtains information saturation (i.e., is sampled at a lossless rate

via Nyquist or CS) the compression ratio becomes meaningless when the uncompressed signal
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(Crocombe, 2019). The generic structure for a sensor with approximate Gaussian responsibility,

over a wavelength range ∏ 2§, is defined as:

R(∏, p) = exp

∑
°∏°§(Pi j )

2æ2

∏
(5.11)

where §(Pi j ) is the peak wavelength corresponding to the non-zero element of the p-th

column of P (for a total of p channels), and æ is the full-width at half-maximum (FWHM). As it

is infeasible to manufacture photodiode sensors with single-wavelength sensitivity channels

(the diodes themselves are made from semiconductors with limited physical properties),

available filters have FWHM values such that æ 2 [18,25] nm (Crocombe, 2019). An encoder,

g¡, with p channels defines a measurement process.

g¡ :R1 !Rp (5.12)

As with all "natural" non-bandlimited signals, E (∏) 2R1 requires that we make an assumption

that E(∏) 2 Rn where n is finite and p ø n. When p < 2K log(n/K )+ (7/5)K , where K is the

sparsity of the coefficient vector (Candès et al., 2006b), then g¡ is a lossy compressor as

the rate is below the minimums required for lossless reconstruction via Shannon-Nyquist

and compressed sensing. We can further minimize information loss by designing g¡ in

a way that leverages domain knowledge of the underlying datatype g¡ will likely encode.

To do this, we need to construct a simple mathematical model for g¡ that simulates the

measurement process of a real-world physical sensor. This is done by modeling the output

current as proportional to the sum of the response function multiplied by the unknown

spectral distribution.

y = ≤(∏, p)+
∏>X
i=1

R(i , p)E(i ) (5.13)

where ∏> = max(§) and ≤(∏, p) is the per-wavelength measurement error associated to the

channels. If we assume the response functions are roughly Gaussian, the relative differences

between measured points are only preserved if the response functions are the same width

(which is not always the case in real-world sensors).
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Figure 1. Spectrometry is the process of encoding spectral data to a measured dimension p from the
infinite natural signal dimension. This process is visualized in the above graphic and mathematically
written as gφ : R∞ → Rp. The measured data can then be reconstructed to a target high resolution
n > p such that fθ : Rp → Rn. Here, the encoder gφ is a filter-array spectrometer with some
transmission functions R(λ, i) for i = (1,. . .,p) and fθ represents a reconstruction algorithm. This
structure is analogous to that of an autoencoder where the learned encoder weights would replace
the response functions of the physical spectrometer and p is the dimension of the hidden layer.

When we say that the algorithm has to “work”, what we mean is that unlike in pattern
matching and interpolation tasks where there is no optimization procedure taking place,
reconstruction has to “add” information that is not trivially available. When signals have
no corresponding match and are sampled in the sub-Nyquist regime, the reconstruction
problem formulated in Equation (1) becomes:

min ‖x‖1 subject to ŝ =
m

∑
i=1

xi ki (3)

where x is a coefficient vector and ki ∈ K is a prior observation contained in our “Kanji”
(a Pareto-optimal library distinct from a learned dictionary). A fundamental property
of signal reconstruction is that the more complex a signal is, the more basis modes are
needed to accurately approximate that signal. One of the consequences of deriving K from
a big dataset L is that the likelihood that a “new” observation has already been measured
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and exists in an accessible dataset is high. Consequently, reconstruction in the era of big
data is less about adhering to a specific methodology and instead about finding the most
efficient process required to return the true signal from an encoded measurement. Towards
this end, ensuring that K comprises real spectral observations ensures that the “missing”
information in an undersampled measurement can be “filled in”. That said, when we take
a measurement y, the only information we have is that of the encoded signal. This means
that we have to “trick” the algorithm by solving:

min ‖x′‖1 subject to ŷ =
m

∑
i=1

x′i gφ(ki) (4)

with the assumption that x′ ≈ x. Given that K is not a generic basis, the guarantees of
compressed sensing do not hold in this case. Instead, the efficacy of this assumption is
constrained by the ability of signals in K to preserve a unique structure in the measured di-
mension.

Of course, not all measured dimensions are the same. For example, we show in
Figure 2 what happens when signals are sampled with a uniform encoder. A central aim
of this work is to investigate other sampling protocols by constructing gφ from bases,
learned via different decomposition methods. We hypothesize that non-uniform sampling
procedures will be informed by the features shared by many real-world spectra and will
therefore result in a greater preservation of “uniqueness” in the measured dimension.
Furthermore, by extension, we hypothesize that preserving structure in the encoded output
will result in greater reconstruction performance for undersampled data.
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Figure 2. Unique identifying features of the signal are lost when the resolution of the sensor is
decreased. Here, we show the effect of uniform sampling. Preserving unique features in the measured
dimension is important for ensuring agreement between x′ and x.

Looking at Figure 2, one may also question why we would bother forming the re-
construction problem as Equation (4) in lieu of training a neural network on K, thereby
learning a map between the measured and target dimensions. We refrain from taking
such an approach for two reasons: first, it is well known that “black box” models do not
generalize well and this has, in fact, been demonstrated to be the case in the application of
recovering visible spectral distributions from encoder-array spectrometers [36,37]; second,
we lose any interpretability or contextual reference of the scene. While Equation (4) may
seem trivially simple, enforcing sparsity via the l1-norm has demonstrated incredible suc-
cess in not only reconstructing low-dimensional measurements, but also in reconstructing
them in a way that mimics the underlying physical system [38]. This observation has led
some to claim that parsimony is the ultimate physics regularizer [39].
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4. Towards Data-Driven Bases for Reconstruction

Variation in spectral distributions is created from interactions between light and matter.
In order to derive a basis, we first need to compile some observable data. Here, we compile
a library of illuminant and reflectance spectra from available open source datasets [40–43].
A high-level description of our library L is summarized in Figure 3. Since each spectrum
was sampled at different frequencies, we normalized all spectra within the visible range
from 380 to 780 nm and re-sampled them using standard interpolation methods. Within L,
we have 401 spectra which were used as a representative set for color rendition studies in
addition to 99 color evaluation samples (CESs) uniformly distributed within the natural
color system (NCS) gamut [44,45].
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be infinite, we know that the set of illuminant spectra is not due to physical constraints on how light33

is created. The diversity of spectra is further limited when one considers the fact that many possible34

sources of visible spectra (e.g. nuclear fusion) are not available and many of the available sources35

(e.g. bioluminescent plankton) are not common [11]. In the same way that biological individuals may36

exhibit intraspecific variation, we can see how a theoretically infinite set of spectra may be reduced37

into a finite set of spectral ’species’.38

Partitioning light into different classes based on features in the spectral power distribution can be39

traced to the the early 19th century. Classification systems for spectral distributions were first proposed40

as a method of stellar classification in the early 20th century [12–16]. Since then, spectral classification41

has served as a the backbone of spectral monitoring applications most notably in medical research,42

astronomy, and remote sensing [17–20]. Towards this end, interest in dimension reducing algorithms43

like PCA, and non-negative matrix factorization (NMF) have become widespread in the literature as44

viable methods to describe the variance in large spectral datasets [21–25]. While these approaches45

have been generally successful, there has not been an attempt to apply these methods to describe,46

organize, and label all available spectra in the visible domain. Such an approach would help to create an47

organizational structure which results in a set of empirically-derived endmember spectra or ’spectral48

species’. The identification of which can be used to exploit regularities in spectral feature space for49

spectral monitoring and compression applications.50

2.1. Constructing a spectral reference library51

The first step towards creating a classification structure is to compile a library of spectra which are52

representative of the visible domain Lvis. Towards this end, we created our own library of illuminant53

and reflectance spectra from available open-source datasets [26–29]. A high-level description of the54

library is summarized in Table 1. Of the 1767 spectra collected, 746 are illuminant spectra (of which 60055

are non-theoretical) and 1021 refer to materials illuminated under an equal energy illuminant. Each56

spectrum was cropped to a range from 380 to 780 nanometers and re-sampled using cubic interpolation57

in MATLAB 2020a.58

Code Details N % Code Details N %
LM LED Mixed 116 15.5 CES Textile 21 2.1
LP LED Phosphor 160 21.4 CES Skin 2 0.2
HI HID 45 6.0 CES Nature 17 1.7
FB Flourescent broadband 45 6.0 CES Printed 27 2.6
FN Flourescent narrowband 77 10.3 CES Paint 10 1.0
DS D-series illuminent 156 20.9 CES Plastic 12 1.2
BB Black body 8 1.1 CES Color System 10 1.0
TF Tungsten filament 30 4.0 BDM Building materials 34 3.3
EE Equal energy 2 0.3 TER Rocks and soils 333 32.6
OT Other 5 0.7 VEG Vegitation 549 53.8
LC LCD 95 12.7 H2O Water 2 0.2
CD Candle/oil lamp 7 0.9 OTH Other 4 0.4

total: 746 100.0 total: 1021 100.0

MATERIALSILLUMINANTS

Table 1. A high-level description of the contents of our spectral libraries for the illuminants (left) and
material reflectances (right). Of the 746 illuminant spectra 146 are theoretical and 600 are real. NB:
CES refers to ’color evaluation sample’. Reflectance spectra in the CES set are uniformly distributed across the
NCS color gamut. The complete library with verbose descriptions of the spectra can be found in the
supplemental material.

The contents of Table 1 are random in frequency since they reflect the abundance in available spectral59

data in open source datasets. The illuminant spectra contain 401 spectra which were used as a60

representative set for color rendition studies as where the 99 CES reflectances which are uniformly61

distributed within the NCS color gamut [30,31]. Additions to the illuminant class include mobile and62

computer screen as well as high-intensity discharge (HID) sources used in street lighting, and daylight63

spectra for various sun angles above the horizon in urban and rural settings [32]. We acknowledge that64
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data in open source datasets. The illuminant spectra contain 401 spectra which were used as a60

representative set for color rendition studies as where the 99 CES reflectances which are uniformly61

distributed within the NCS color gamut [30,31]. Additions to the illuminant class include mobile and62

computer screen as well as high-intensity discharge (HID) sources used in street lighting, and daylight63

spectra for various sun angles above the horizon in urban and rural settings [32]. We acknowledge that64
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be infinite, we know that the set of illuminant spectra is not due to physical constraints on how light33

is created. The diversity of spectra is further limited when one considers the fact that many possible34

sources of visible spectra (e.g. nuclear fusion) are not available and many of the available sources35

(e.g. bioluminescent plankton) are not common [11]. In the same way that biological individuals may36

exhibit intraspecific variation, we can see how a theoretically infinite set of spectra may be reduced37

into a finite set of spectral ’species’.38

Partitioning light into different classes based on features in the spectral power distribution can be39

traced to the the early 19th century. Classification systems for spectral distributions were first proposed40

as a method of stellar classification in the early 20th century [12–16]. Since then, spectral classification41

has served as a the backbone of spectral monitoring applications most notably in medical research,42

astronomy, and remote sensing [17–20]. Towards this end, interest in dimension reducing algorithms43

like PCA, and non-negative matrix factorization (NMF) have become widespread in the literature as44

viable methods to describe the variance in large spectral datasets [21–25]. While these approaches45

have been generally successful, there has not been an attempt to apply these methods to describe,46

organize, and label all available spectra in the visible domain. Such an approach would help to create an47

organizational structure which results in a set of empirically-derived endmember spectra or ’spectral48

species’. The identification of which can be used to exploit regularities in spectral feature space for49

spectral monitoring and compression applications.50

2.1. Constructing a spectral reference library51

The first step towards creating a classification structure is to compile a library of spectra which are52

representative of the visible domain Lvis. Towards this end, we created our own library of illuminant53

and reflectance spectra from available open-source datasets [26–29]. A high-level description of the54

library is summarized in Table 1. Of the 1767 spectra collected, 746 are illuminant spectra (of which 60055

are non-theoretical) and 1021 refer to materials illuminated under an equal energy illuminant. Each56

spectrum was cropped to a range from 380 to 780 nanometers and re-sampled using cubic interpolation57

in MATLAB 2020a.58

Code Details N % Code Details N %
LM LED Mixed 116 15.5 CES Textile 21 2.1
LP LED Phosphor 160 21.4 CES Skin 2 0.2
HI HID 45 6.0 CES Nature 17 1.7
FB Flourescent broadband 45 6.0 CES Printed 27 2.6
FN Flourescent narrowband 77 10.3 CES Paint 10 1.0
DS D-series illuminent 156 20.9 CES Plastic 12 1.2
BB Black body 8 1.1 CES Color System 10 1.0
TF Tungsten filament 30 4.0 BDM Building materials 34 3.3
EE Equal energy 2 0.3 TER Rocks and soils 333 32.6
OT Other 5 0.7 VEG Vegitation 549 53.8
LC LCD 95 12.7 H2O Water 2 0.2
CD Candle/oil lamp 7 0.9 OTH Other 4 0.4

total: 746 100.0 total: 1021 100.0

MATERIALSILLUMINANTS

Table 1. A high-level description of the contents of our spectral libraries for the illuminants (left) and
material reflectances (right). Of the 746 illuminant spectra 146 are theoretical and 600 are real. NB:
CES refers to ’color evaluation sample’. Reflectance spectra in the CES set are uniformly distributed across the
NCS color gamut. The complete library with verbose descriptions of the spectra can be found in the
supplemental material.

The contents of Table 1 are random in frequency since they reflect the abundance in available spectral59

data in open source datasets. The illuminant spectra contain 401 spectra which were used as a60

representative set for color rendition studies as where the 99 CES reflectances which are uniformly61

distributed within the NCS color gamut [30,31]. Additions to the illuminant class include mobile and62

computer screen as well as high-intensity discharge (HID) sources used in street lighting, and daylight63

spectra for various sun angles above the horizon in urban and rural settings [32]. We acknowledge that64
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Snew(l) = I(l) ⇥ (1 � a)R(l) (2)

where I(l) and R(l) represent spectra from the illuminant and reflectance classes respectfully and a is76

a scalar weight between 0 and 1. For a = (0, 0.1, 0.2, ..., 1) we generate 6,738,600 spectral combinations77

which we use to represent the visible spectrum, Lvis. Towards this end, our goal is to find a basis set B78

such that79

span(Lvis) =

(
k

Â
i=1

biBi(l)
�� k 2 Z+, bi 2 R+

)
(3)

where k is the target low-rank used in the NMF. Since the only requirements on B is that it represents80

a linearly independent spanning basis, it is unlikely that the functions will represent any familiar81

structure. In order to find B we derive an affinity matrix A from Lvis using the distance function82

Ai,j =

8
<
:

exp
�d(si , sj)

s2 if i 6= j

0 if i = j
where d(si, sj) =

si(l) · sj(l)

ksi(l)kksi(l)k (4)

where si, sj 2 Lvis. The NMF calculation was executed in MATLAB [10]; the bases for three different83

implementations are shown in Figure .84

e = kA � WHkF/kAkF (5)

2.2. The learning module85

The learning module is the physical device which will be used to train low-dimensional sensors. The86

simplest solution would be to construct a device where an LED panel is connected to an integrating87

sphere [11,12].88

e = 1 � kA � WHkF/kAkF89
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of13

be
infinite,w

e
know

thatthe
setofillum

inantspectra
is

notdue
to

physicalconstraints
on

how
light

33

is
created

.T
he

d
iversity

ofspectra
is

further
lim

ited
w

hen
one

consid
ers

the
factthatm

any
possible

34

sources
of

visible
spectra

(e.g.
nuclear

fusion)
are

not
available

and
m

any
of

the
available

sources
35

(e.g.biolum
inescentplankton)are

notcom
m

on
[11].In

the
sam

e
w

ay
thatbiologicalindividuals

m
ay

36

exhibitintraspecifi
c

variation,w
e

can
see

how
a

theoretically
infi

nite
setofspectra

m
ay

be
red

uced
37

into
a

finite
setofspectral’species’.

38

Partitioning
light

into
d

ifferent
classes

based
on

features
in

the
spectralpow

er
d

istribution
can

be
39

traced
to

the
the

early
19th

century.C
lassification

system
s

forspectraldistributions
w

ere
firstproposed

40

as
a

m
ethod

ofstellar
classification

in
the

early
20th

century
[12–16].Since

then,spectralclassification
41

has
served

as
a

the
backbone

ofspectralm
onitoring

applications
m

ostnotably
in

m
ed

icalresearch,
42

astronom
y,and

rem
ote

sensing
[17–20].Tow

ards
this

end,interestin
dim

ension
reducing

algorithm
s

43

like
PC

A
,and

non-negative
m

atrix
factorization

(N
M

F)have
becom

e
w

idespread
in

the
literature

as
44

viable
m

ethod
s

to
d

escribe
the

variance
in

large
spectrald

atasets
[21–25].

W
hile

these
approaches

45

have
been

generally
successful,there

has
not

been
an

attem
pt

to
apply

these
m

ethod
s

to
d

escribe,
46

organize,and
labelallavailablespectra

in
the

visible
dom

ain.Such
an

approach
w

ould
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Figure 3. A high-level description of the contents of our spectral libraries for the illuminants and
material reflectances. Of the 746 illuminant spectra, 146 are theoretical and 600 are real. The
1021 reflectances correspond to material samples under equal energy illumination. We can see that
despite the variety of illuminants and materials, there are clear regularities in signal space (e.g., very
few spectra have high relative power between 380 and 430 nm).

Additions to the illuminant class include mobile and computer screen as well as
high-intensity discharge (HID) sources used in street lighting, and daylight spectra for
various sun angles above the horizon in urban and rural settings [46]. We acknowledge
that this set is not complete; however, we believe that from a mechanistic perspective, the
space of available spectral illuminants is sufficiently sampled and is likely overcomplete
for some sub-classes [47]. Like pixel space, the vastness of signal space means that natural
signals are inherently rare with the vast majority of signals containing no information [48].
Even if future spectral measurements are naturally sparse in L, there is a lot of redundancy
making L computationally heavy. This is where our learned Kanji can be useful. If K
comprises the same features as L, then we can use K to derive a low-rank basis (with the
default being uniform placement). Towards this end, we investigate the following sparse
coding methods:

1. Singular value decomposition (SVD);
2. Symmetric non-negative matrix factorization (SymNMF);
3. Sparse dictionary learning (SDL);
4. Deep autoencoders (DAE).

Details

Figure 3. A high-level description of the contents of our spectral libraries for the illuminants and
material reflectances. Of the 746 illuminant spectra, 146 are theoretical and 600 are real. The
1021 reflectances correspond to material samples under equal energy illumination. We can see that
despite the variety of illuminants and materials, there are clear regularities in signal space (e.g., very
few spectra have high relative power between 380 and 430 nm).

Additions to the illuminant class include mobile and computer screen as well as
high-intensity discharge (HID) sources used in street lighting, and daylight spectra for
various sun angles above the horizon in urban and rural settings [46]. We acknowledge
that this set is not complete; however, we believe that from a mechanistic perspective, the
space of available spectral illuminants is sufficiently sampled and is likely overcomplete
for some sub-classes [47]. Like pixel space, the vastness of signal space means that natural
signals are inherently rare with the vast majority of signals containing no information [48].
Even if future spectral measurements are naturally sparse in L, there is a lot of redundancy
making L computationally heavy. This is where our learned Kanji can be useful. If K
comprises the same features as L, then we can use K to derive a low-rank basis (with the
default being uniform placement). Towards this end, we investigate the following sparse
coding methods:

1. Singular value decomposition (SVD);
2. Symmetric non-negative matrix factorization (SymNMF);
3. Sparse dictionary learning (SDL);
4. Deep autoencoders (DAE).
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4.1. Singular Value Decomposition

The simplest data-driven basis can be derived by computing the first r column vectors
of the unitary matrix of the singular value decomposition [39]. Given some representative
data K, a basis Ψr can be found by solving:

K = UΣV∗ where Ψr = UrΣr. (5)

The main advantage of SVD is that it can be quickly and efficiently performed in
most computational software packages. The resulting basis (columns of Ψr) are ordered
with respect to the strength of their contribution in representing variance in the original
data matrix. When plotted, it is evident that any similarity to real-world spectral power
distributions is lost. Instead, we can think of the basis vectors as defining an abstract
“feature space”. While the advantage of an SVD-derived basis is simplicity, the drawback is
that the bases can only be used to find a linear map (i.e., a relatively simple relationship
given the abilities of modern deep autoencoders). In fact, we can think of SVD as a special
case of a DAE wherein the encoder weights describe a linear relationship.

4.2. Symmetric Non-Negative Matrix Factorization

While the SVD basis works well capturing the features of K, it notoriously lacks
interpretability when applied to physical systems where negative values may be meaning-
less. Within the context of designing a spectral imaging sensor, the response sensitivities
of each channel must be positive because there is no physical way to interpret negative
sensitivity. Towards this end, we implement symmetric non-negative matrix factorization
(SymNMF) [49,50]. SymNMF overcomes the pitfalls of other algorithms insofar as it is
capable of capturing nonlinear cluster structures (unlike standard “brother” non-negative
matrix factorization). Even more interestingly, SymNMF optimization is independent of
the eigenspace of the affinity matrix (unlike spectral clustering). Furthermore, the affinity
matrix A can be defined with respect to any appropriate distance metric given a priori
knowledge of the datatype. The minimization problem for SymNMF is defined as

L(Ψ, r) = argmin
n

Ψ≥0
‖A−ΨΨ′‖2

F (6)

where r is the rank of Ψ. If the number of spectra in L is n, then A is a square n× n matrix
where each element in A corresponds to a measure of distance between observations.
Formally, we define A elementwise as

ai, j =

{
K(ki, kj) if i 6= j
0 if i = j

(7)

where K(ki, kj) is a similarity measure (e.g., Euclidean distance) between ki, kj ∈ K. Here,
Ψr has r columns corresponding to the learned basis vectors. One of the core benefits of
SymNMF is that d can be selected via knowledge of the underlying datatype. In the most
abstract applications, d may best be represented by information theoretic measures such as
the normalized information and compression distances [51,52].

4.3. Sparse Dictionary Learning

Sparse dictionary learning (SDL) is a sub-domain of sparse representation that spans
a number of algorithms, most notably: the method of optimal direction (MOD) [53,54];
k-singular value decomposition (K-SVD) [55]; and online dictionary learning (ODL) [56],
which is commonly implemented for its competitive speed [57]. While it may appear that
learned dictionaries are naturally superior, it is important to understand their benefits and
shortcomings. First, SDL may be unnecessary if the data are naturally sparse in signal
space [39]. Second, dictionary learning algorithms tend to be computationally expensive
because they require multiple iterations to converge on the optimal solution. Regardless,
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their applicability in sparse approximation should not be ignored and while the atoms
do not necessarily retain their similarity to real-world spectra, they do share the most
similarities than any of the other methods and do not produce negative values if the input
data are nonnegative. We seek to find a dictionary Ψr by minimizing the following loss
function reported in [58]:

L(y, Ψt) = argmin
x′
‖y−Ψtx′‖2 + β‖x‖1 (8)

Here, β is a sparsity-promoting coefficient. This loss function is commonly referred
to as the sparse-coding or LASSO regression [59]. LASSO balances sparsity with model
complexity in order to promote a dictionary with low cross-validated error and is one
proposed approach to solving the l1-minimization problem framed in Equation (3).

4.4. Deep Autoencoders

Autoencoders refer to a specific class of artificial neural networks whose aim is to
learn the most efficient encoding of some data in a target low-dimensional representation
(latent space) [60]. The architecture of an autoencoder is roughly represented by the sketch
in Figure 1 where the encoding weights Ψ are learned via the loss function:

L(y, Ψ) = argmin
x′

1
2‖ŷ− y‖2 + βΩw + λΩs (9)

where Ωw acts as an l2 penalty on the encoder weights and Ωs enforces sparsity via the
Kullback–Leibler (KL) divergence [61]. While the loss function for the autoencoder requires
more unpacking than others, the key take-away is that the mean squared error (MSE) is
minimized between the learned representation ŷ = fθ(y) and y for some latent basis Ψ

given some regularization constraints on the weights associated to each basis vector, and a
sparsity constraint on the reconstruction of the output. In essence, the goals and ambitions
are well aligned with the other methods but with an added degree of flexibility. Equation (9)
is closely related to the sparse relaxed regularized regression (SR3) method [62] aimed at
finding a less restrictive loss function.

4.5. Implementation via QU Factorization

To summarize out steps up to this point, we amassed a library L ∈ Rn of available
online datasets without processing it in any way. We then used a subset K ∈ Rm as an
input to a number of well-known sparse-coding methods to arrive at four candidate low-
rank bases Ψi ∈ Rr for n � m > r. We now want to use these bases to design different
non-uniform encoders by assigning response functions to the pivot points derived via QU
factorization [63]:

ΨiPi = QU (10)

Here, a pivot matrix P is derived for each of the four “data-driven” bases (n.b., the
uniform basis is not subscripted). Equation (10) can be solved using preset commands in
most computational suites, taking the basis Ψi as the only input and outputting the pivot
points. The resulting pivots (non-zero entries in P) correspond to the peak wavelengths
used to construct our encoder. From these points, we can define a response function
by fitting a Gaussian distribution consistent with most available filters used in array-
type spectrometers [14]. The generic structure for a sensor with approximate Gaussian
responsibility over a wavelength range λ ∈ Λ, which is defined as

R(λ, p) = exp
[
−λ−Λ(Pij)

2σ2

]
(11)

where Λ(Pij) is the peak wavelength corresponding to the non-zero element of the p-th
column of P (for a total of p channels), and σ is the full-width at half-maximum (FWHM).
As it is infeasible to manufacture photodiode sensors with single-wavelength sensitivity
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channels (the diodes themselves are made from semiconductors with limited physical
properties), available filters have FWHM values such that σ ∈ [18, 25] nm [14]. In Figure 4,
we show example response functions constructed via Equation (11).

5.3 Towards data-driven bases for reconstruction
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Figure 5.4: Response functions (shown here for p = 8) derived from the QR pivots of the learned basis
(top row) and the uniform (control) and direct SymNMF-derived responses for the cluster centers
(SymNMF-C), evenest per-cluster (SymNMF-E) and lastly, the original basis (SymNMF-B).

69

SNM DAE

Figure 4. Response functions (shown here for p = 8, σ = 18 nm) constructed via Equation (11). Here,
the peak responsivity corresponds to the pivot points derived via QU factorization.

An encoder, gφ, with p channels, defines a measurement process:

gφ : R∞ → Rp (12)

As with all “natural” non-bandlimited signals, E(λ) ∈ R∞ requires that we make an
assumption that E(λ) ∈ Rn where n is finite and p� n. When p < 2Klog(n/K) + (7/5)K,
where K is the sparsity of the coefficient vector [33], then gφ is a lossy compressor as the
rate is below the minimums required for lossless reconstruction via Shannon–Nyquist
and compressed sensing. We can further minimize information loss by designing gφ in
a way that leverages the domain knowledge that the underlying datatype gφ will likely
encode. To do this, we need to construct a simple mathematical model for gφ that simulates
the measurement process of a real-world physical sensor. This is performed by modeling
the output current as proportional to the sum of the response function multiplied by the
unknown spectral distribution:

y = ε(λ, p) +
λ>
∑
i=1

R(i, p)E(i) (13)

where λ> = max(Λ) and ε(λ, p) is the per-wavelength measurement error associated
with the channels. If we assume the response functions are roughly Gaussian, the relative
differences between measured points are only preserved if the response functions are the
same width (which is not always the case in real-world sensors).

5. Specra: An Adaptive Reconstruction Framework

Reconstruction is broadly characterized by three regimes depending on the accessi-
bility of information: matching, reconstruction and interpolation. When signals are easily
describable in K, there is little risk of overfitting, but when signals exhibit unseen features,
adding a greater number of elements to K does not always imply greater reconstruction per-
formance. What we seek to accomplish with SpecRA, is to develop an adaptive framework
that uses the knowledge of K, together with the measured signal y, to triage observations
as they arrive at the sensor in order to apply the reconstructive method with the highest
probability of success. The core decision making comes down to the value of the following
measure, which we refer to as the relative “rarity” of the measurement y relative to the
encoded elements in the reference set ki ∈ K:

R =
1
m

m

∑
i=1
K(y, gφ(ki)) (14)
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The challenge with this approach is that measured signals lose much of their unique
features during the encoding process. In the previous section we outlined a workflow to
improve the preservation of feature structure by deriving data-driven non-uniform sam-
pling alternatives. Here, we aim to benefit from this groundwork in order to demonstrate
the superiority of the proposed, integrated, method outlined in Figure 5.

Observable (natural signal)

Low-rank measurement

Reconstructed measurement
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For example, while there are numerous species of insects that have yet to be discovered, 31

enough have been identified to reasonably conclude that any unknown species that remain 32
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physical morphology). Therefore, when entomologists go into the field to search for novel 34
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Ê(l) = xK subject to minkx � wk1 13
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Transcoding spectral data with prior knowledge
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The goal of this document is to outline the systems and methods for the optimal design of
a transcoder specifically for spectral data in the visible domain, but with potential to be
generalized to other datatypes.

R =
1

m

mX

i=1

K(y, g�(ki)) (1)

↵ (2)

A transcoder can be a physical device or computer program which takes data (in this case
spectral light data) from one dimension, encodes it to a lower dimension and decodes it back
to a higher resolution which may or may not be the same as the original input dimension.
For simplicity, we will call the encoder Q and the decoder Q�1 such that Q : Rd ! Rp

where p < d and Q�1 is approximated by a reconstruction algorithm � ⇡ Q�1. As � ! Q�1

the reconstruction performance increases although perfect (i.e. lossless) reconstruction may
not be guaranteed. Towards this end, designing a good transcoder means designing both an
e�cient encoder Q and a corresponding reconstruction algorithm �.

Designing an optimal encoder

Since the data we are encoding is spectral data (i.e. ambient light) the ’encoder’ will be a
form of spectrometer specifically a filter array spectrometer where the spectrum is measured
by m number of channels placed at di↵erent wavelengths. Each channel is sensitive to
a particular wavelength and current state-of-the-art filters are roughly Gaussian with full
width at half maximum (FWHM) around 20nm [1, 2]. Of course the narrower and more
plentiful the filters are, the better the spectrum is measured (for reference, conventional
spectrometers have 2048 channels and sample every 0.3nm). Achieving such results with
low-cost and compact spectrometers is currently impossible. For this reason optimization
must be within the constraints we are given: FHWM ⇡ 20nm and if we can reconstruct the
same data with fewer channels without significant loss of information that is an advantage
(i.e. data collection would be more e�cient). Towards this end, we can only change two
things: where the channels are placed on the wavelength axis, and the number of channels
(between 3-20 channels for compact filter-based spectrometers).

1

Chapter 5. Fourth paradigm spectral sensing

(Crocombe, 2019). The generic structure for a sensor with approximate Gaussian responsibility,

over a wavelength range ∏ 2§, is defined as:

R(∏, p) = exp

∑
°∏°§(Pi j )

2æ2

∏
(5.11)

where §(Pi j ) is the peak wavelength corresponding to the non-zero element of the p-th

column of P (for a total of p channels), and æ is the full-width at half-maximum (FWHM). As it

is infeasible to manufacture photodiode sensors with single-wavelength sensitivity channels

(the diodes themselves are made from semiconductors with limited physical properties),

available filters have FWHM values such that æ 2 [18,25] nm (Crocombe, 2019). An encoder,

g¡, with p channels defines a measurement process.

g¡ :R1 !Rp (5.12)

As with all "natural" non-bandlimited signals, E (∏) 2R1 requires that we make an assumption

that E(∏) 2 Rn where n is finite and p ø n. When p < 2K log(n/K )+ (7/5)K , where K is the

sparsity of the coefficient vector (Candès et al., 2006b), then g¡ is a lossy compressor as

the rate is below the minimums required for lossless reconstruction via Shannon-Nyquist

and compressed sensing. We can further minimize information loss by designing g¡ in

a way that leverages domain knowledge of the underlying datatype g¡ will likely encode.

To do this, we need to construct a simple mathematical model for g¡ that simulates the

measurement process of a real-world physical sensor. This is done by modeling the output

current as proportional to the sum of the response function multiplied by the unknown

spectral distribution.

y = ≤(∏, p)+
∏>X
i=1

R(i , p)E(i ) (5.13)

where ∏> = max(§) and ≤(∏, p) is the per-wavelength measurement error associated to the

channels. If we assume the response functions are roughly Gaussian, the relative differences

between measured points are only preserved if the response functions are the same width

(which is not always the case in real-world sensors).

68
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5.4 SpecRA: an adaptive reconstruction framework

Reconstruction is broadly characterized by three regimes depending on the accessibility of

information: matching, reconstruction, and interpolation. When signals are easily describable

in K, there is little risk of overfitting, but when signals exhibit unseen features, adding a greater

number of elements to K does not always imply greater reconstruction performance. What we

seek to accomplish with SpecRA, is to develop an adaptive framework that uses the knowledge

of K, together with the measured signal y, to triage observations as they arrive at the sensor in

order to apply the reconstructive method with the highest probability of success. The core

decision making comes down to the value of the following measure we refer to as the relative

"rarity" of the measurement y, relative to the encoded elements in the reference set ki 2 K.

R = 1

m

mX
i=1

K (y, g¡(ki )) (5.14)

The challenge with this approach is that measured signals lose much of their unique features

during the encoding process. In the previous section we outlined a workflow to improve the

preservation of feature structure by deriving data-driven non-uniform sampling alternatives.

Here, we aim to benefit from this groundwork in order to demonstrate the superiority of the

proposed method.

Observable (natural signal)
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Figure 5. The SpecRA algorithm sorts raw measurements based on their rarityR relative to a Kanji K
and applies an appropriate minimizing optimization (i.e., M1, M2, or M3). This process helps prevent
both underfitting and overfitting, making for an adaptive and more generalizable framework. In
general, the greater theR, the greater algorithmic “work” is required.

The three minimizing optimization processes are defined as follows:

M1 Return the nearest match ki such thatR = min(R);
M2 Solve min‖x‖+ ‖x−w‖1 for wj=i = 1; wj 6=i = 0, subject to y = xgφ(K);
M3 Solve min‖x‖ subject to y = xgφ(K).

To determine the triage constants α and β, we incrementally increased each value
while repeatedly applying the algorithm on randomized testing and validation partitions.
We also realized that β should depend on the number of channels p of the encoder. This is
because lower-dimensional data will more effectively “mask” the rarity of the signal (i.e.,
leading to greater metamerism). For this reason, we repeated this analysis for p = (1,. . .,25)
channels. While we experimented with many different relationships, the ansatz that β
scales with the inverse square-root of p was the most successful. Consequently, we were
able to determine the following relationship for the available spectral data:

β =
Lβ√

p
(15)

where L is the target loss (of the reconstruction) determined by the spectral angle map-
per [64]. In practice, Lβ = 0.05. For α, we found that this relationship also holds—albeit for
a smaller target loss such that Lα = 0.01.

6. Non-Uniform Performance Dynamics

In this section, we present results from simulated data for which we compare the
viability of the learned non-uniform sampling protocols against the uniform reference.
We compute the mean errors and plot their distribution as a function of method and
rate. Additionally, we test our hypotheses regarding the correlation between loss, signal
complexity, and signal rarity.
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6.1. Comparison to Existing Approaches

To obtain an idea of the differences between SpecRA and other competing approaches,
we present results from the undersampled regime (p = 3). Here, Figure 6, we simulated the
response that a tristimulus sensor would have with uniform and non-uniform responsivity.
As expected, the information being fit is too coarse for the Fourier modes to find a fit
in the measured dimension. LASSO fails to find a parsimonious fit and succumbs to
overfitting. Because of the adaptability of SpecRA, the fit is more balanced and the ansatz
made in the low-rank space is not far from the ground truth. Furthermore, we can see
that the performance increases when structure is preserved by finding a more optimal
low-rank encoding.
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Figure 6. Comparing the performance of the algorithm in the “extreme” undersampled case of p = 3,
we see how SpecRA outperforms the other methods, mostly by avoiding overfitting. Furthermore,
the performance is improved when the signal is encoded with a learned non-uniform protocol (in
this case, derived from the weights learned by training a deep autoencoder network).

While reconstruction with Fourier modes may be more appropriate in higher dimen-
sional reconstruction (i.e., p > 10), the advantages are only seen when the measured signal
is typologically distant from the reference set of prior observations. SpecRA takes a simple
yet effective approach: maximizing the available information and not overfitting.

6.2. Loss as a Function of Method and Rate

As we are working with spectral data, we reported the reconstruction error (loss)
terms of the spectral angle mapper (SAM) defined as

L = K(s, ŝ) = cos−1 ∑n
i=1 si ŝi(

∑n
i=1 s2

i
)1/2 (

∑n
i=1 ŝ2

i
)1/2 . (16)

In order to compare results, we first split our library L into five random training, T,
and validation V sets. The training sets comprised nT = 300 spectra while the validation
sets comprised nV = 1417 (i.e., the remaining signals in L after removing the 146 theoretical
sources). We then constructed our encoder using the training set to first derive K, then Ψ,
and finally P used to construct the response functions R for gθ . Then, we simulated the mea-
surement process of the spectra in the validation set by Equation (13) with ε(λ, p) = 0 (i.e.,
for comparative analysis and applications where simulated data are used, e.g., rendering)
for p = (1,. . .,25). We then reconstructed the measured spectra via the SpecRA algorithm,
and computed the reconstruction loss defined above.

What we see in Figure 7 is the type of Pareto distribution we expect to see in such
experiments. As the number of channels increases, eventually a plateauing effect is ob-
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served wherein adding more channels to the encoder does not result in greater returns in
minimizing loss. What is interesting is that the uniform approach is very clearly the excep-
tion resulting in a loss 150% that of the nearest non-uniform approach for an encoder with
two channels. Aside from the mean, we can also plot the individual loss per reconstructed
spectrum in the validation set. In Figure 8, we can see how plotting the uniform losses
against the non-uniform losses directly evidences the efficacy of the underlying method.
While it is clear from Figure 7, that non-uniform methods are competitive for p < 4, we can
see how this competitive edge is maintained for larger p. Even after the plateauing of the
mean, we can see that the distribution of losses exhibits a bias for non-uniform methods
(c.f., SVD, SNM, and SDL, for p = 12). Interestingly, this effect is not observed for responses
derived via the autoencoder weights which are presumed to be a generalization of the SVD
modes demonstrating competitive results.
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Figure 7. Here, we show the mean loss and standard deviation for each method as a function of the
sampling rate. The methods are abbreviated by three-letter codes for visual clarity. The mean SAM
loss, L, is displayed as a heat-map and as a Pareto plot. The difference between methods is greatest in
for p < 5 (boxed region).
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Figure 8. Here, we plot the uniform loss against the non-uniform loss for the four derived sampling
protocols at three different encoder rates for all the spectra in our validation set (nV = 1417). When
the majority of the points fall below the y = x line (shown in red), this means that the non-uniform
approach outperforms the uniform method (e.g., SVD, p = 12).
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6.3. Correlation between Loss, Signal Complexity, and Rarity

In addition to comparing methods, we had two core hypotheses: loss will be corre-
lated with signal complexity and rarity. To test these hypotheses we computed the signal
complexity by taking the standard deviation of the signal (as a proxy) and the signal rarity
by computing the mean of the 10 most similar (according to Equation (16)) signals in the
training set. Since SpecRA enforces sparsity, the number of spectra used in the reconstruc-
tion generally does not exceed 10 (or else it would suffer from overfitting). Towards this
end, we compute these metrics and present the results in Figure 9. Interestingly, there is
little to no correlation between the complexity of the signal and reconstruction via SpecRA
while, we see a notable trend in the loss when plotted against the rarity of the signal relative
to the training set (especially for lower rates). The lack of correlation with signal complexity
could be a result of how the SpecRA switches between reconstruction methodologies and
also explain why signal rarity does not exhibit a stronger correlation. If the spectra in the
training library or predefined set, K, are similar to the measured spectra, SpecRA will be
effective at finding either a direct match or a sparse approximation, even if the rate is small.
At the same time, we see detrending as the rate increases, indicating that rarity is less
important when more information is available.
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Figure 9. Here, we show the results for loss as a function of complexity (top row) and as a function of
rarity (bottom row) for three representative encoder rates.

The results of our preliminary analysis are promising and generally consistent with
our hypotheses. One interesting question that remains unanswered here is the degree to
which a signal can differ from the reference set, K, and still be effectively reconstructed
from a sparse combination of prior observations.

7. Discussion and Future Integration

Formally, reconstruction, in the context of signal processing, is any process that recov-
ers a signal from the set of points. Whether this is performed via a codebook or regression,
the end goal is the same: recover information that is not readily available (i.e., via interpo-
lation). Data-driven reconstruction methods apply some inductive bias and in the case of
SpecRA, we exploit Lex Parsimoniae by toggling between pattern matching, l1-minimization
via a primal-dual algorithm, and linear interpolation. As more information becomes avail-
able via online repositories, tailored bases will likely outperform generic ones such as that
of Fourier. As is the case with all data-driven methods, the success is still highly linked
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to the availability and tractability of the underlying data (which can be a challenge for
hyperspectral imaging).

In this paper, we simulated response functions for uniform and non-uniform sampling
methods based on exploiting regularities in the frequency domain. Applying real-world
constraints on idealized mathematical models is a challenge in any discipline. In the case
of visible spectral data, there is a clear effect of information saturation implying that finer
resolution is perhaps not needed to capture sufficiently unique information about the
spectrum. On the other hand, the relative rarity of a signal does play a role in constraining
the possible loss. Towards this end, applying online learning algorithms to sift through
repositories to construct interpretable low-rank reference libraries, K, is paramount.

Furthermore, systematically selecting filter locations via a combined process of data-
driven analysis and matrix factorization can dramatically improve results, especially for
low-rate encoding (i.e., p < 4). A clear benefit of our method is its independence from
fitted optimization parameters for a set of priors, and prior information in the form of a
measured signal does improve results. Finally, our approach remains untested on real-
world sensing hardware. It remains unclear what effect increasing channel errors will
have on the reconstruction process. This will be investigated in future work. In applying
this work to other domains, it is important to note that while many of these methods are
generalizable, there will always be specific design constraints that need to be considered
for any new class of sensors. In conclusion, spectral sensing spans many disciplines and
its relevance in autonomous systems is becoming even more present. The systems and
methods outlined in this paper provide a working template for research into the design
and implementation of compact spectrometers and rendering software for a diversity of
applications. While conventional spectrometry is seen as costly and data intensive, taking
advantage of domain knowledge and sparse optimization can offer a valuable alternative
to existing methods. We hope that this work provides a foundation for both theoretical
and practical future developments.
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