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Abstract: Due to its merits of fast dynamic response, flexible inclusion of constraints and the ability
to handle multiple control targets, model predictive control has been widely applied in the sym-
metry topologies, e.g., electrical drive systems. Predictive current control is penalized by the high
current ripples at steady state because only one switching state is employed in every sampling period.
Although the current quality can be improved at a low switching frequency by the extension of
the prediction horizon, the number of searched switching states will grow exponentially. To tackle
the aforementioned issue, a fast quadratic programming solver is proposed for multistep predic-
tive current control in this article. First, the predictive current control is described as a quadratic
programming problem, in which the objective function is rearranged based on the current deriva-
tives. To avoid the exhaustive search, two vectors close to the reference derivative are preselected
in every prediction horizon. Therefore, the number of searched switching states is significantly
reduced. Experimental results validate that the predictive current control with a prediction horizon
of 5 can achieve an excellent control performance at both steady state and transient state while the
computational time is low.

Keywords: predictive current control; quadratic programming; multistep; fast solver; symmetry topology

1. Introduction

Model predictive control (MPC) was initially employed in the process industry with
slow dynamic in the 1970s [1–3]. The main concept centers around solving an optimization
problem online by predicting the future behavior of the control plant [4,5]. With the tremen-
dous development of digital processors, the computational capability of the controllers
has been significantly increased in the recent decade, which enables MPC to be applied in
power electronics applications, e.g., railway transportation and wind turbines [6,7]. Due to
its merits of simple concept, flexible inclusion of constraints and the ability to handle opti-
mization problems with multiple control targets, MPC has become an alternative control
strategy for power converters [8,9].

Categorized by the type of control inputs, MPC can be divided into two mainstream
categories, continuous control set MPC (CCS-MPC) and finite control set MPC (FCS-
MPC) [10]. In CCS-MPC, the reference voltage vector is obtained by tracking the predicted
control variable along with its reference value [11]. The optimal vectors and their duty
cycles are calculated in the modulation stage. On the contrary, FCS-MPC directly searches
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all the voltage vectors to evaluate the tracking error between the predicted value and the
reference value. The optimal vector is selected by minimizing the tracking error in the
formulated cost function [12]. Considering the discrete nature of the switching sequences,
FCS-MPC becomes one of the predominant control strategies for the power converters.
Compared with direct torque control (DTC), FCS-MPC overcomes the drawback of high
torque ripples at steady state. Moreover, FCS-MPC achieves the merit of fast dynamic
response when compared with field-oriented control (FOC) [13].

Regarding the diversity of control targets, FCS-MPC is classified by predictive current
control (PCC), predictive torque control (PTC) and predictive speed control (PSC) and so
on [14]. To obtain better current quality for the electrical drive systems, the stator current is
selected as the control target in PCC. However, only one single voltage vector is applied in
each sampling period of the PCC strategy. Therefore, PCC is still penalized by the large
steady-state ripples because the reference vector can not be exactly tracked by the discrete
voltage vector [15]. Although the steady-state errors can be reduced by employing multiple
vectors, the number of applied vectors in each sampling period is increased, which results
in higher switching frequency [16].

To improve the current quality while retaining low switching frequency, the PCC
strategy can be implemented with a longer prediction horizon. However, the number
of searched control inputs grows exponentially with the increased number of prediction
horizons. In [17], a multistep FCS-MPC algorithm for a three-level inverter is proposed.
The proposed algorithm achieves lower current distortion for a longer prediction horizon
and low switching frequency. However, the issue of high computational burden has not
been fully investigated. In [18], a computationally efficient FCS-MPC for the wind turbine
system is proposed, in which the hexagon and triangle candidate regions are applied to
reduce the algorithm complexity. However, the proposed algorithm is conducted with
a short prediction horizon of 1. The high computational burden as a result of a longer
horizon has not been addressed. In [19], a multistep MPC strategy is proposed for the
H-bridge converter. The optimization problem is converted to an integer least-squares
(ILS) problem, to be solved by a fast sphere decoding algorithm (SDA). However, the
control variables in the proposed strategy are projected on the voltage vector, in which the
additional constraint is included by the finite set. Moreover, the common-mode voltage
is penalized in the objective function of the proposed method. In [20], a long-horizon
FCS-MPC with non-recursive SDA is implemented on an FPGA. The effectiveness of the
proposed method with a horizon of 5 steps is experimentally validated. Although the
previous literature has proposed several solutions to reduce the computational burden of
multistep FCS-MPC strategies, how to effectively reduce the algorithm complexity is still
an open issue for further investigation.

To tackle the aforementioned issue, a fast quadratic programming (QP) solution for the
multistep MPC strategy of electrical drive systems is proposed in this paper. First, the PCC
optimization problem is regarded as a quadratic programming problem via a geometric
perspective. Based on the above, the objective function is reformulated as the quadratic
Euclidean norm of the predicted and reference current derivative. Instead of an exhaustive
search, two current derivative vectors close to the reference are selected for optimization.
Finally, the proposed algorithm is experimentally verified on the 2.2 kW induction machine
testbench. It is validated that the proposed algorithm with a prediction horizon of 5 can
significantly reduce the computational burden and achieve an excellent steady-state and
transient-state performance.

The rest of this article is organized as follows. In Section 2, the description of the control
plant is presented. The principle of multistep PCC algorithm is proposed in Section 3. In
Section 4, a fast QP solution for multistep PCC algorithm is proposed. The proposed
algorithm is experimentally validated and compared with the conventional PCC method in
Section 5. Section 6 presents the conclusion and discussion of future work.
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2. Control Plant Description

In this work, the squirrel-cage induction machine (IM) and the two-level voltage
source inverter (2-L VSI) are considered as the control plant. The mathematical model of
IM in the stationary frame is expressed in (1) to (4) [14].

usα,β = Rs · isα,β +
dψsα,β

dt
(1)

0 = Rr · irα,β +
dψrα,β

dt
− jω · ψ̂rα,β (2)

ψsα,β = Ls · isα,β + Lm · irα,β (3)

ψrα,β = Lm · isα,β + Lr · irα,β (4)

where usα,β denotes the applied voltage vector for the 2-L VSI, isα,β and irα,β are the stator
and rotor current, ψsα,β and ψrα,β are the stator and rotor flux, Rs and Rr are the stator and
rotor resistances, Ls and Lr are the stator and rotor inductances, Lm is the magnetizing
inductance and ω represents the angular rotor speed.

The topology of 2-L VSI and its applied voltage vectors are shown in Figure 1. u0–u7
are the applied switching events. Si = 0 denotes that the upper power device turns off,
Si = 1 means that the upper power device turns on and i = a,b,c. The applied voltage vector
us can be expressed as [21]:

usα,β =
2
3

uDC(Sa + aSb + a2Sc) (5)

a = ej 2π
3 (6)

where uDC is the dc-link voltage.

Figure 1. The topology of 2-L VSI and the applied voltage vectors. (a) 2-L VSI. (b) applied volt-
age vectors.

3. Multistep PCC Algorithm

In the PCC algorithm, the tracking error between the predicted stator current and its
reference value is considered as the predominant control target. The additional constraints,
i.e., the limitations of switching frequency and current magnitude, are included in the cost
function of the PCC algorithm. According to the IM model, the stator current is rewritten as:

isα,β = − 1
Rσ

((Lσ
disα,β

dt
− kr(

1
τr
− jω) · ψrα,β)− usα,β) (7)

where the rotor coupling factor kr = Lm/Lr, rotor time constant τr = Lr/Rr, effective re-
sistance of both windings Rσ = Rs + kr

2 · Rr, leakage coefficient σ = 1 − (Lm
2/LsLr) and
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transient stator inductance Lσ = σ·Ls. The predicted value of stator current can be obtained
by forward Euler discretization.

disα,β(k)
dt

=
îsα,β(k + 1)− isα,β(k)

Ts
(8)

where Ts is the sampling period. Therefore, the predicted stator current is described in
Equation (9).

îsα,β(k + 1) = (1− Ts

τσ
)isα,β(k) +

Ts

τσRσ
· [kr · (

1
τr
− jω(k)) · ψrα,β(k) + usα,β(k)] (9)

where τσ = σLs/Rσ. To compensate for the time delay in the PCC algorithm, the predicted
stator current at k + 2 interval is expressed as [22]:

îsα,β(k + 2) = (1− Ts
τσ
)îsα,β(k + 1) + Ts

τσ Rσ
· [kr · ( 1

τr
− jω(k)) · ψ̂rα,β(k + 1)

+usα,β(k + 1)]
(10)

As the number of prediction horizons is N, the cost function of the multistep PCC
algorithm is expressed as:

g =
N+1

∑
h=2
{(i∗sα − isα(k + h))2 + (i∗sβ − isβ(k + h))2 + λ2

sw · n2
sw + Im(k + h)} (11)

in which the stator current error, the constraints of switching frequency and current mag-
nitude are included. nsw is the number of switching events in a sampling period. The
reference value of the stator current in the stationary αβ frame can be expressed as[

i∗sα

i∗sβ

]
=

[
cos θ − sin θ
sin θ cos θ

][ |ψ∗r |
Lm

2LrT∗
3Lm |ψ∗r |

]
(12)

where the flux angle θ = arctan(ψrα/ψrβ) and |ψr
*| represents the reference of rotor flux.

The current magnitude limitation is described in Equation (13). As shown in Equation (13),
the current limitation term Im(k + h) is infinity when the stator current magnitude |is(k + h)|
is larger than the limitation |ismax|. The close-loop block diagram of the multistep PCC
algorithm is shown in Figure 2. The reference is denoted by the superscript *, T represents
the electromagnetic torque.

Im(k + h) =
{

0,
∣∣is(k + h)

∣∣≤∣∣ismax
∣∣

∞,
∣∣is(k + h)

∣∣>∣∣ismax
∣∣ (13)

Figure 2. Close-loop block diagram of the multistep PCC algorithm.
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In regards to the predominant control target of the PCC optimization problem mini-
mizing the error between the predicted stator current and its reference value, the geomet-
ric description of the PCC optimization problem is shown in Figure 3. As can be seen,
isα,β(k + h) is the predicted stator current at h − 1 interval, isα,β

* is the reference value and
d(k + h) denotes the tracking error between the predicted and reference value. Therefore,
the tracking error term of the stator current can be regarded as the quadratic Euclidean
norm of d(k + h), which is formulated as:

||d(k + h)||22 = (i∗sα − isα(k + h))2 + (i∗sβ − isβ(k + h))2 (14)

Figure 3. Geometric description of the PCC optimization problem. (a) Stator current. (b) Projection
on stator current derivative.

We can obtain Figure 3b as Figure 3a is projected on the current derivative plane. As
shown in Figure 3b, the distance between the predicted and reference derivative value is
d’(k + h). The quadratic Euclidean norm of d’(k + h) is expressed as:

||d′(k + h)||22 =

(
di∗sα

dt
− disα(k + h)

dt

)2

+

(
di∗sβ

dt
−

disβ(k + h)
dt

)2

(15)

Based on the above, the multistep PCC optimization problem is considered as a
quadratic programming (QP) problem. The cost function of multistep PCC is rearranged as:

g′ =
N

∑
h=1


(

di∗sα

dt
− disα(k + h)

dt

)2

+

(
di∗sβ

dt
−

disβ(k + h)
dt

)2

+ λ2
sw · n2

sw + Im(k + h)

 (16)

4. Fast Quadratic Programming Solution

To tackle the issue that the number of searched control inputs grows exponentially
with the increased number of prediction horizons, a fast quadratic solution is proposed in
this paper for algorithm complexity reduction instead of the exhaustive search.

The preselection principle of the fast quadratic programming solver is shown in
Figure 4. First, the current derivatives dis(k + h − 1)/dtj using the different voltage vectors
(j = 0,1, . . . ,6) as well as the reference derivative dis*/dt are calculated. The error of the
angle (|θj − θ*|) between the applied current derivative and the reference derivative is
evaluated. Two derivative vectors that minimize the error |θj − θ*| are selected as the
preselection vectors. In each prediction horizon, the cost function (16) is optimized for the
two preselection vectors.
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Figure 4. Preselection principle of the fast quadratic programming solver.

As shown in Figure 5, the preselection-principle-based search method for the multistep
PCC algorithm is proposed. As can be seen, the red nodes are the preselection vectors to
be optimized. The black nodes are the unvisited vectors that will not participate in the
optimization procedure. Assuming that the number of prediction horizon h − 1 = N, the
number of searched nodes is η1 = 7N. The number of preselection vectors for optimization is
η2 = 2N when the proposed fast quadratic programming solver is applied. The comparisons
of optimization number between exhaustive search and fast QP solution are summarized
in Table 1.

Figure 5. Preselection-principle-based search method in multistep PCC algorithm.

Table 1. Comparisons of optimization number between exhaustive search and fast QP solution.

Number of Prediction
Horizons

Exhaustive Search
η1

Fast QP Solution
η2

η1/η2/%

1 7 2 28.57
2 49 4 8.16
3 343 8 2.33
4 2401 16 0.67
5 16,807 32 0.19

5. Experimental Verification

The proposed fast QP solution for the multistep PCC algorithm is experimentally
implemented on the 2.2 kW IM drive testbench, as shown in Figure 6. The components of
the testbench are listed in Table 2. The parameters of IM are illustrated in Table 3. A 1.4
GHz self-made Linux-based real-time control system is applied to conduct the proposed
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algorithm. The applied sampling period Ts is 62.5 µs. The applied control system has
competitive computational capability with the commercial processors, e.g., DSP, FPGA
and Ultrazphm.

Figure 6. Experimental testbench description. (A) Danfoss inverter. (B) Servostar inverter. (C) Control
panel. (D) Real-time control system. (E) Main machine. (F) Load Machine.

Table 2. The components of the experimental testbench.

Number Description

A Danfoss inverter (3.0 kW)
B Servostar inverter (14 kVA)
C Control panel
D 1.4 GHz Linux-based real-time control system
E Main machine (2.2 kW IM)
F Load machine (2.2 kW IM)

Table 3. Induction machine parameters.

Parameter Value

DC-link voltage uDC/V 582
Nominal rotor speed ωnom/rpm 2772

Nominal torque Tnom/Nm 7.5
Nominal flux ||ψnom||/Wb 0.71

Nominal rated power Pnom/kW 2.2
Stator, rotor resistance Rs, Rr/Ω 2.68, 2.13
Stator, rotor inductance Ls, Lr/H 0.283, 0.283
Magnetizing inductance Lm/H 0.275

Number of pole pairs p 1
PI parameters kp, ki 0.23, 5.38

Figure 7 shows the comparisons between the steady-state performance of multistep
PCC with a fast QP solution and the conventional PCC method at 200 rpm with a 2 Nm
load torque. The switching frequency is 800 Hz. Figure 7a shows the measured waveforms
of conventional PCC. It can be observed that conventional PCC suffers from the high torque
and current ripples, which are 2.0 Nm and 0.56 A, respectively. The measured waveforms
of the proposed multistep PCC with a fast QP solution are shown in Figure 8b. The torque
and current ripples are 1.6 Nm and 0.33 A, respectively. Experimental results confirm that
the proposed multistep PCC with a fast QP solution achieves a smaller torque and current
error when compared with conventional PCC at a similar switching frequency.
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Figure 7. Steady-state performance of two predictive current control schemes (ω = 200 rpm,
T = 2 Nm). (a) Conventional PCC. (b) Proposed multistep PCC wth a fast QP solution.
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Figure 8. Steady-state performance of two predictive current control schemes (ω = 2772 rpm,
T = 7.5 Nm). (a) Conventional PCC. (b) Proposed multistep PCC with a fast QP solution.

Figure 8 shows the steady state performance of the two PCC methods at the nominal
rotor speed and load torque (ω = 2772 rpm, T = 7.5 Nm). Due to the optimal solution in
a longer prediction horizon, the proposed algorithm obtains a 29 % and 24 % reduction
on torque and current tracking errors. As shown in Figure 8b, the current error of the
proposed algorithm is 0.62 A. Both the switching frequencies of the two PCC algorithms in
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the nominal steady-state scenario are 1.8 kHz. It is validated that the proposed algorithm
has better current quality in both the steady-state scenarios. The comparisons of performae
metric between the conventonal PCC and the proposed algorithm are summarized in
Table 4.

Table 4. Comparisons of the performance metric between the conventional PCC and the propo
sed algorithm.

Test Scenarios Performance Metric Conventional PCC Proposed Algorithm

1
Torque ripple 2.0 Nm 1.6 Nm
Current ripple 0.56 A 0.33 A

2
Torque ripple 2.5 Nm 1.8 Nm
Current ripple 0.81 A 0.62 A

Figure 9 shows the load disturbance performance of the proposed multistep PCC
algorithm with a fast QP solution. The IM operates at a 50% nominal rotor speed (1386 rpm).
At t = 170 ms, a 4 Nm load torque is applied by the control panel. As can be seen in Figure 9,
the proposed algorithm has a fast dynamic response in which the load torque rises from
0 Nm to 4 Nm in 28 ms. Meanwhile, the rotor speed decreases from 1386 rpm to 1280 rpm,
and then recovers to the original value in 190 ms. After the load disturbance transience, the
proposed algorithm achieves an excellent steady-state performance in which the torque
and current errors are 1.8 Nm and 0.44 Nm, respectively.

Figure 9. Load disturbance performance of multistep PCC with a fast QP solution (ω = 1386 rpm,
T = 4 Nm).

In Figure 10, the load step performance of the proposed algorithm is presented. The
speed control mode is employed in which an 800 rpm rotor speed is given by the control
panel. A 2 Nm load torque is applied by the algorithm, which changes to 4 Nm at t = 187 ms.
It can be observed in Figure 10 that the rotor speed increases from 800 rpm to 980 rpm
(a 22.5% increase). The rotor speed returns to the original value at t = 540 ms while the
recovery time is 353 ms. More specifically, the load step is completed in 300 µs while the
torque error is 1.3 Nm. The current error of the proposed algorithm in this test scenario is
0.40 A. The transient-state performance verifies that the proposed multistep PCC with a
fast QP solution achieves a fast dynamic response and a small steady-state tracking error.
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Figure 10. Load step performance of multistep PCC with a fast QP solution (ω = 800 rpm, T changes
from 2 to 4 Nm).

The comparisons between the number of optimized nodes and algorithm time for the
proposed algorithm and conventional PCC are illustrated in Table 5. As shown in Table 5,
the number of optimized nodes in the conventional PCC is 7. The algorithm time of the
conventional PCC is 19 µs. On the contrary, the proposed algorithm with a prediction
horizon of 5 has 32 optimized nodes, which requires a 27 µs algorithm time. Compared
with the exhaustive search in Table 1, the number of nodes in the proposed algorithm is
significantly reduced by 99.81 %. The proposed algorithm can be implemented at the same
sampling period (Ts = 62.5 µs) as that of conventional PCC.

Table 5. Comparisons between the number of optimized nodes and algorithm time of the two methods.

Algorithm Number of Optimized Nodes Algorithm Time

Conventional PCC 7 19 µs
Proposed multistep PCC with a fast QP solution 32 27 µs

6. Conclusions

This paper proposes a fast quadratic programming (QP) solution for the multistep
predictive current control (PCC) algorithm. Compared with the conventional PCC method,
the proposed algorithm achieves a better steady-state performance and retains a fast
dynamic response. Moreover, the number of optimized nodes as well as the algorithm
time is significantly reduced. In the proposed algorithm, the PCC optimization problem is
regarded as a QP problem. The cost function is formulated as the quadratic Euclidean norm
of the distance between the predicted and reference value. To reduce the algorithm time,
two vectors are preselected by minimizing the error of angle. The optimization procedure
is applied with the preselection vectors in each prediction horizon. Experimental results
verified that the proposed algorithm has the merits of better steady-state performance, fast
dynamic response and low algorithm complexity. Moreover, the proposed fast QP solution
for the multistep PCC algorithm can be extended to the multilevel converter applications
in which the number of control inputs is higher.
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