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Abstract: In this review, we discuss the development pipeline for transcriptional biomarkers in
molecular diagnostics and stress the importance of a reliable gene transcript quantification strategy.
Hence, a further focus is put on the MIQE guidelines and how to adapt them for biomarker discovery,
from signature validation up to routine diagnostic applications. First, the advantages and pitfalls of
the holistic RNA sequencing for biomarker development will be described to establish a candidate
biomarker signature. Sequentially, the RT-qPCR confirmation process will be discussed to validate
the discovered biomarker signature. Examples for the successful application of RT-qPCR as a fast
and reproducible quantification method in routinemolecular diagnostics are provided. Based on the
MIQE guidelines, the importance of “key steps” in RT-qPCR is accurately described, e.g., reverse
transcription, proper reference gene selection and, finally, the application of automated RT-qPCR
data analysis software. In conclusion, RT-qPCR proves to be a valuable tool in the establishment
of a disease-specific transcriptional biomarker signature and will have a great future in molecular
diagnostics or personalized medicine.

Keywords: MIQE; transcriptional biomarkers; biomarker signature; RT-qPCR; molecular diagnostics

1. Introduction to Transcriptional Biomarkers in Molecular Diagnostics

Accurate and fast diagnosis is critical for a successful treatment of any disease. Tra-
ditionally, diagnosis and therefore treatment have been decided based on observation
of specific patterns of symptoms in the patient. However, since many diseases are ac-
companied by similar and ergo unspecific implications, the consensus was reached that
symptomatic diagnosis and treatment might not always be the best choice for a number
of diseases. Thus, the focus has shifted toward the exploration of biological markers
(biomarkers) in patient samples, which reveal distinct biological traits or changes in the
organism and can therefore be connected to specific disorders [1]. Those biomarkers can
mainly be found in the genome, transcriptome, proteome or metabolome and are defined
as “measurable indicator[s] of normal biological processes, pathogenic processes or pharmacological
reaction to a therapeutic intervention” [2]. The process of analyzing the presence or absence of
biomarkers in clinical samples, aiming to identify a certain disease in the patient, is called
molecular diagnostics. Along with new detection and quantification technologies, this field
has been subject to rapid growth and sophistication in recent years. Nowadays, biomarker
families can be detected and quantitatively measured in all kind of solid or liquid biological
samples, even in very low concentrations [3,4]. Highly specific and sensitive molecular
biology techniques provide significant assistance in molecular medicine, disease diagnosis
and prognosis, as well as in agriculture and food safety.
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Liquid biopsies have recently become more and more popular in molecular diagnostic
research, with some assays having already been approved by health authorities [5]. Being
minimally invasive, they promise accurate diagnosis with a sampling procedure that is
easy to handle and reduces the risk of severe complications compared to conventional
biopsies [6]. Furthermore, liquid biopsies can provide decision makers with a holistic
overview of the disease status, including, e.g., metastases from tumor patients, and, conse-
quently, systemic information that might be missing in tissue biopsies [5,7]. Blood plasma,
as a prominently used sample, is advantageous in cases where, e.g., the patient cannot
provide a tissue sample [8] or in order to detect early stages of disease not manifested
yet in tissue [9]. Another well-used source for liquid biopsy is urine, e.g., for detection
of endometrial cancer or bladder cancer [10,11], and saliva can be of diagnostic value for
indication of pain, periodontitis and Alzheimer’s disease [12–14].

So far, proteins have been used predominantly as biomarker molecules, since they
are present in relatively high concentrations in blood and allow for relatively cheap and
fast detection in liquid biopsies by reliable and widely available antibody-based methods,
such as enzyme-linked immunosorbent assay (ELISA) or immunohistochemistry (IHC) [15].
Furthermore, proteins are the biomolecules that facilitate most cellular processes or re-
actions and therefore provide direct information about a cell or tissue [16]. However,
body fluids used in liquid biopsies, such as blood or urine, usually contain several other
components that may also be utilized as disease biomarkers, e.g., cellular nucleic acids,
circulating tumor cells (CTCs), extracellular vesicles (EVs) or circulating nucleic acids, such
as circulating cell-free DNA (ccfDNA), circulating tumor DNA (ctDNA) and cell-free RNA
(cfRNA) [6,17,18]. In fact, nucleic acids offer multiple advantages as biomarkers compared
to proteins. For instance, the detection limits of DNA and RNA are significantly lower than
those of proteins, since they can easily be amplified by polymerase chain reaction (PCR)
or reverse transcriptase PCR (RT-PCR), respectively [15,19,20]. Additionally, nucleic acid
detection is even more cost efficient than protein detection, without the need for highly
affine and expensive antibodies. Furthermore, many diseases are directly caused by DNA
changes, e.g., point mutations or DNA rearrangements, which can easily be detected by
PCR-based methods and next-generation sequencing (NGS) but are significantly harder to
measure via antibody-based methods.

In this review, we focus on molecular biomarkers on the transcriptional level. The
transcriptome can be divided into RNA subtypes with distinct functions.

Messenger RNA (mRNA) carries the genetic sequence in a form that can be recognized
to synthesize proteins. Since its expression frequently correlates with the type and amount
of proteins produced, it is often directly linked to pathological processes and, therefore, a
popular target for transcriptional biomarker studies. Furthermore, it is one of the most easily
accessible biomarkers in liquid biopsy, as its expression in blood is 80% identical to that of
major tissues [21,22]. However, only 1–2% of the human transcriptome encodes for proteins
and is therefore transcribed to mRNAs [23]. The remaining 98% of the transcriptome
consists of a multitude of non-coding RNA families, which can be divided into two groups
based on their length: small and long non-coding RNAs.

Long non-coding RNAs (lncRNAs) include RNA transcripts longer than 200 nu-
cleotides that do not encode for proteins. In the study performed by the consortium
GENCODE, the human genome annotation consists of 15,512 lncRNA transcripts grouped
in 9640 loci [24]. According to lncRNA location with respect to protein-coding genes,
these lncRNA can be classified into intergenic lncRNAs, antisense lncRNAs and intronic
lncRNAs [25]. Biological functions of lncRNAs are carried out through interaction with pro-
teins, RNA or DNA and include transcriptional regulation, competing endogenous RNA,
splicing regulation, translational control, protein localization and RNA interference [26,27].
The ability of lncRNAs to interact with different molecules in a wide range of biological
processes underlines the necessity for a better understanding of their function and hence
their application as biomarkers. Moreover, lncRNAs show more tissue-specific expression
than protein-coding genes [24], and their functions are closely associated with a number
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of diseases [26,28]. Recently, there has been increasing evidence of lncRNAs as potential
prognostic and diagnostic biomarkers, especially in cancer research [29]. For instance,
H19—one of the first identified lncRNAs—is a biomarker for tumors of the esophagus,
liver, bladder, colon and metastases in the liver [30–33]. Additionally, lncRNAs from blood
biopsies could be established as biomarkers for the diagnosis of lung cancer not only in
comparison to healthy controls but also in contrast to pneumonia [34].

Short non-coding RNAs (sncRNAs) include RNA transcripts of fewer than 200 nu-
cleotides in length, such as ribosomal RNA (rRNA), transfer RNA (tRNA), small interfering
RNA (siRNA), small nucleolar RNA (snoRNA) and, most importantly for biomarker re-
search, micro-RNA (miRNA) [28]. miRNAs prevent their respective target mRNAs from
translation into proteins or accelerate their degradation primarily by binding to their 3′

UTR or alternatively in the protein-coding region. They are abundant in many mammalian
tissues, and only a small portion of them are housekeeping miRNAs [35]. Due to their
short length of about 22 nucleotides, they are more resistant to RNase exposure and more
stable than mRNA [36]. miRNAs can be found in any body fluids, such as urine, blood,
sweat, saliva and milk [37–39], where they are protected from RNase degradation, e.g., by
extracellular vesicles or RNA-binding proteins. Hence, some of those circulating miRNAs
were shown to serve as optimal biomarkers for several types of cancer [40,41]. Fueled by
the development of high-throughput sequencing, the identification of miRNA biomarkers
is progressing steadily, and the newly achieved levels of sequence resolution enabled the
discovery of miRNA isoforms, so-called isomiRs [42]. isomiRs differ from canonical miR-
NAs in length and minor sequence substitutions [43]. Depending on their alteration, they
can target mRNAs in cooperation with their canonical miRNAs or gain a completely new
target repertoire [44–47]. Moreover, isomiRs display even higher discriminatory power
than canonical miRNAs for a large number of cancer types [48]. The exploration of miRNA
biomarkers is still an emerging field, and more insights might be gained by studying
miRNAs at the isomiR level [43]. Table 1 provides an overview over different RNA types
and their potential use as biomarkers.

Transcriptional biomarkers, in contrast to DNA and proteins, allow for immediate
detection of cellular changes [15]. The transcriptional profile of a cell responds to a signal
within minutes, while the alterations are only visible after hours on protein level. In the
DNA, on the other hand, these changes are harder to detect, as they are usually regulated
via methylation or binding of transcription factors. Furthermore, the amount of RNA in
a cell exceeds that of DNA by far. Consequently, the copy number of a specific nucleic
acid biomarker sequence in blood and other body fluids is much higher and thus easier
to detect on RNA than on DNA level [15]. This effect is even more prominent in diseases
where certain genes are overexpressed, e.g., HER2-positive breast cancers [49]. However,
proteins remain the most widely used type of biomarkers in diagnostics, and the use
of transcriptional biomarkers in routine diagnostics is still very limited. Nevertheless,
their vast potential has been recognized by researchers, and there is a growing number of
publications developing new nucleic acid biomarker signatures for various diseases [49–55].
Table 2 shows a comparison of different types of biomarkers and compares the information
they provide along with their advantages and disadvantages.

Table 1. Overview of reported biomarkers from different RNA types and their potential use. Ab-
breviations: isomiR (miRNA isoforms); lncRNA (long non-coding RNA); NGS (next-generation
sequencing); mRNA (messenger RNA); miRNA (micro-RNA); piRNA (piwi-interacting RNA); RNA-
Seq (RNA sequencing); RT-qPCR (reverse transcription quantitative real-time polymerase chain
reaction); siRNA (small interfering RNA); snoRNA (small nucleolar RNA).

RNA Sample Type Disease Expression
Level Potential Use

mRNA
PON2

(Paraoxonase-2) [56]
Tissue, urine,

cell lines Bladder cancer Upregulated Diagnosis
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Table 1. Cont.

RNA Sample Type Disease Expression
Level Potential Use

mRNA

PAM50 [15] Tissue Breast cancer Upregulated Diagnosis/
Prognosis

mRNA tHERT [57] - Acute myeloid
leukemia - Therapeutics

lncRNA (>200 nt)
XLOC_009167 [34] Whole blood Lung cancer Upregulated Diagnosis

HOTAIR
[58]

Breast
epithelial cells Breast cancer Upregulated Prognosis

miRNA (~22 nt)
miR-421

[59]
Carcinoma

tissue
Gastric

carcinoma Upregulated Diagnosis

miR-141 [60,61] Plasma Prostate cancer Upregulated Diagnosis

isomiR (~22 nt)

5’ísomiR-140-3p [44] Cancer tissue,
cell lines Breast cancer Upregulated Prognosis

miR-574-3p
(3´ deletion A)

[62]
Serum

Esophageal
squamous

cell carcinoma
Upregulated Diagnosis

piRNA (26–31 nt)

piR-1245 [63] Tissue Colorectal
cancer Upregulated Prognosis

snoRNA (60–300 nt)
SNORA17A

[64] Tissue Hepatocellular
carcinoma Downregulated Prognosis

siRNA (19–23 nt)

ALN-TTR02
[65] -

Familial
amyloidotic

polyneuropathy
- Therapeutics

Table 2. Comparison of different biomarker types, along with the information they contain, the most
widely used detection method and their advantages and disadvantages. Abbreviations: ccfDNA (cir-
culating cell-free DNA); CTC (circulating tumor cells); ELISA (enzyme-linked immunosorbent assay);
EV (extracellular vesicle); FISH (fluorescence in-situ hybridization); IHC (immunohistochemistry);
NGS (next-generation sequencing); qPCR (quantitative polymerase chain reaction); RNA-Seq (RNA
sequencing); RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction).

Type of
Biomarker Sample Type Information Detection

Methods (i.a.) Advantages Disadvantages

Proteins
[16]

Tissue biopsies Expression pattern
in tissue of interest

ELISA
IHC

Immunoblotting
Flow

Cytometry

Direct mediators of
cellular changes
Well-established
biomarkers and
assays available

Expensive
antibody-based

detection
In most cases invasive

sampling necessary

Liquid biopsies
(body fluids):
blood, urine,

saliva, i.a.

Systemic
expression

information

ELISA
IHC

Immunoblotting
Flow

Cytometry

Direct mediators of
cellular changes

High-throughput
methods available

Minimal
invasive sampling

Expensive
antibody-based

detection
Tissue of origin
not determined
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Table 2. Cont.

Type of
Biomarker Sample Type Information Detection

Methods (i.a.) Advantages Disadvantages

Intracellular
RNA

[15,66]

Tissue biopsies Expression pattern
in tissue of interest

RT-qPCR
RNA-Seq

Microarrays
FISH

Expression-level
analysis

Detection of ncRNA

In most cases invasive
sampling necessary

Liquid biopsies:
blood

Systemic
expression

information

RT-qPCR
RNA-Seq

Microarrays

Expression-level
analysis

Immunophenotyping
Analysis of ncRNA

Minimal
invasive sampling

Tissue of origin not
determined

Almost exclusively
information about
immune response

Extracellular
RNA, e.g.,

EV-
associated
[15,67,68]

Liquid biopsies
(body fluids):
blood, urine,

saliva, i.a.

Systemic
expression

information

RT-qPCR
RNA-Seq

Microarrays

Semi-direct
information

Analysis of ncRNA
Minimal

invasive sampling

Fragmented
Relatively new (few

biomarkers and assays
established)
Only partial

transcriptome
Tissue of origin
not determined

Genomic
DNA
[8,69]

Tissue biopsies

Mutations in the
tissue of interest
Epigenetic status

in tissue of interest

qPCR
NGS

Complete genome of
the tissue of interest

Only indirect expression
information available
In most cases invasive

sampling necessary

Liquid biopsies
(body fluids):
blood, urine,

saliva, i.a.

Mutations in the
tissue of interest
Epigenetic status

in tissue of interest

qPCR
NGS

Not limited to a
certain tissue

Minimal
invasive sampling

Only limited gene
expression information
No information about

tissue of origin

ccfDNA
[6,18,67,70]

Liquid biopsies
(body fluids):
blood, urine,

saliva, i.a.

Mutations
throughout the

whole body

qPCR
NGS

Minimal
invasive sampling

No expression
information available

Fragmented

CTCs
[6,7,18]

Liquid biopsies:
blood, urine

Metastatic
tumor cells

Flow
Cytometry
(RT-)qPCR

NGS

Minimal invasive
sampling

Tumor DNA, RNA
and proteins combined

Less useful in later
tumor stages

Limited to
tumor diagnosis

As will be elaborated in the following chapters, the establishment of RNA-based
biomarkers starts with RNA-Seq, which gives a broad and holistic overview over potential
candidate genes. These will be subsequently validated with RT-qPCR, which is ideally
subjected to the MIQE standards. RT-qPCR is the method of choice for evaluation of
candidate RNA biomarkers, due to its sensitivity in detection of less frequent biomarkers,
as well as its specificity.

2. From Biomarker Development to Routine Diagnostics
2.1. RNA-Seq for Holistic Screening and Development of the Biomarker Signature

The first step toward developing a transcriptional biomarker signature for a specific
disease is holistic RNA screening of a training cohort. RNA-Seq is the method of choice for
this purpose, since it allows the measurement of the RNA expression of all genes present
in the sample. In many cases, there is not enough prior knowledge of potential RNA
sequences linked to the disease of interest or whether they can be found in the chosen
sample type to limit the expression analysis to only one RNA subset in the sample. Even
if possible biomarker RNAs are already known, it is recommended to perform a holistic
screening instead of a targeted expression analysis, since those candidate RNAs might not
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be the best suited biomarkers in the sample type of choice. Most diseases affect multiple
cellular pathways and thereby the expression of a vast number of different RNAs. Some of
them might be selectively enriched or depleted in the analyzed samples, either biologically
or technically, e.g., by potentially selective sorting into EVs or by the choice of isolation
method [71–73].

The training cohort contains isolated RNA from patients diagnosed with the disease
of interest, along with RNA from a control group, i.e., healthy volunteers, and is used
to generate a cDNA library for sequencing. The sample type from which the RNA is
isolated always depends on the RNA type of interest and the samples typically available
for the specific disease—it should be the same as the one that will be used later in routine
diagnostics. In liquid biopsy research, serum might be used to develop an EV-associated
miRNA signature for community-acquired pneumonia (CAP) and pneumonia-related
sepsis [50]. In cancer biomarker research, for instance, either tissue or blood samples might
be used. Tissue samples are often routinely taken for clinical diagnosis or during invasive
surgery, e.g., punch biopsies for breast cancer subtyping. Blood samples, on the other hand,
combine information and provide an averaged view of the whole body and from all organs,
including pathological metastases in cancer patients. Biomarkers for some organ-specific
diseases can also be found in more easily accessible samples than tissue biopsies and still
be specific to a small subset of organs only. For example, several potential biomarkers
for bladder cancer have been found in urine [74]. Thus, the choice of sample type and
matrix used for transcriptional biomarker development has an enormous impact on the
significance and informative value of the possible results and should be well thought out
prior to the study.

Another important step to consider is the method used to isolate RNA from the
sample. After all, RNA isolation should be comparatively quick, easy and cost efficient
for transcriptomic biomarkers to compete with already-established methods in routine
diagnostics. On the other hand, a high RNA yield is crucial; otherwise, important transcripts
with essential information might get lost. The studied disease, as well as the sample type
chosen, directly influences which type of RNA is most promising as a biomarker. For
instance, mRNAs overexpressed in certain cancers are a good target for biomarker studies
in tissue samples. Since the RNA found in blood—especially cfRNA—might be partly
degraded, small RNAs, such as miRNA, are usually investigated when working with
blood samples or cfRNA. Consequently, the RNA type chosen as a possible biomarker
source also affects the choice of isolation method, since different isolation strategies might
enrich different RNAs [15,71,75–77]. For EV-associated RNA and cfRNA, the method
used to isolate EVs from the sample has also been shown to impact RNA-Seq results [72],
highlighting the importance of this aspect regarding biomarker development. In general, an
RNA quality evaluation control step should be introduced after RNA isolation, assessing the
degradation status (e.g., by RIN) and yield of isolated RNA from each sample. Afterward, a
standardized amount of RNA—and only from samples showing comparable RIN numbers
and RNA quality—should be used for sequencing.

To reduce possible batch effects, all samples from the training cohort should be handled
simultaneously during library preparation and sequenced in the same run. However,
library preparation is a crucial step that is prone to introduce technical bias in RNA-Seq
experiments [78–81], even when all samples are handled the same way. Possible pitfalls
are rRNA depletion, fragmentation, reverse transcription (RT), PCR amplification and size
selection, but the greatest bias in library preparation is possibly introduced by the ligation
of adapters and barcodes to the RNA fragments [78,80]. To avoid the ligation bias, at least
for the barcode, it is strongly recommended to introduce it only in a later step, e.g., RT or
PCR [78]. Compared to the library preparation protocol, the choice of sequencing platform
does not seem to impact RNA-Seq findings as much [81,82].

After next-generation sequencing, the results are processed in silico. The steps vary
with the length and type of the analyzed RNAs and include filtering, trimming and map-
ping against a suitable database for the analyzed type of RNA. Obviously, the parameters
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used for filtering depend on type and size of the analyzed RNAs and have a big impact
on the results. Using filtering parameters that are too broad, sequencing artifacts and low-
quality sequences will remain in the data set, while overly strict parameters might eradicate
some potential biomarkers. Applying multivariate statistics, e.g., hierarchical clustering
(HCA), principal component analysis (PCA) or partial least-squares discriminant analysis
(PLS-DA) to the processed data, a subset of RNA genes is identified, which are up- or
down-regulated in the treatment compared to the control group samples [3,83,84]. PCA is a
powerful and popular statistical method often used to establish potential biomarkers from
processed RNA-Seq, which reduces the multidimensional data set down to two or three
parameters. These remaining projected dimensions are called principal components. They
help to visualize clusters in the data for human eyes in a simple two- or three-dimensional
plot. Analyzed samples are ranked in the result plot according to the amount of variance
they explain [83,85]. Therefore, RNA genes contributing to the separation of samples in
PCA are promising biomarker candidates [78]. However, PCA as an unsupervised clus-
tering method does not incorporate any technical information about the experiment. This
means that the highest ranked principal components may correspond to experimental
setup, such as different sampling or batch effects, consequently masking information about
potential biomarker genes. To avoid this limitation of PCA, a supervised classification
method, for example (sparse) PLS-DA, may be used instead [84].

The obtained preliminary signature of transcriptional biomarkers, derived from the
first learning cohort of patients, is then validated with more samples in the second valida-
tion cohort using an orthologous method. Since the number of RNAs that are analyzed in
the validation cohort has been reduced to a smaller subset of biomarker candidates, a more
time- and cost-efficient method can be used. RT-qPCR is a well-established and—even
more relevant—standardized method to confirm and validate the candidate biomarker
signatures when in compliance with the MIQE guidelines, as was shown by several recently
published studies [20,86–88].

2.2. RT-qPCR for Confirmation and Validation of the Candidate Biomarker Signature

To validate the biomarkers found by RNA-Seq in the learning cohort, RT-PCR primers
have to be designed first. Primers provide the binding site for the polymerase and act
as a starting point for amplification of the RNA of interest via a hydroxyl group at their
3′ end. This primer design step is the basis for the following biomarker validation and
should be given appropriate thought, since the specificity and efficiency of any PCR
assay are critically dependent on the primers. Suitable primers are usually found with
publicly available software, e.g., Primer3 [89]. Important parameters to consider are primer
length, melting temperature (Tm) and amplicon size, among others. Repeats and runs of
bases in the primer sequence, unspecific primers, as well as the formation of secondary
structures, should be avoided [90,91]. Since biomarker candidate sequences must be
normalized against reference genes in order to make them comparable between different
samples, it is especially important that all RT-PCR assays possess a comparable amplicon
size [91]. Otherwise, effects such as (partially) degraded RNA will distort the results.
When validating mRNA biomarker candidates, the amplicon should contain an exon–exon
junction to ensure primers are RNA specific and avoid genomic DNA (gDNA) amplification.
All primer sequences and their exact binding sites should be reported to comply with the
MIQE guidelines, even when using commercial primers [90].

In order to amplify transcriptional biomarkers, the RNA of interest needs to be reverse
transcribed from RNA to cDNA. Since reverse transcription is a major source of variability
between RT-qPCR experiments, it should ideally be performed in two or three technical
replicates, preferably at the RT level [90]. To avoid the resulting additional workload,
spike-in controls might be used instead to assess RT efficiency [92].

For every assay, all samples should be measured in the same PCR run to ensure inter-
sample comparability. Additionally, it is recommended to include an inter-run calibrator
(IRC) on each plate, so the different assays can be quantified relative to each other [92].
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Biomarker candidates are first validated in the same training cohort that was used in
RNA-Seq. To ensure only specific PCR products are measured, a melting curve analysis
must be performed when using intercalating dye-based qPCR. While a single peak in the
melting curve indicates the presence of a single, specific PCR product, multiple peaks can
be indicative either of a multi-stage melting transition (caused by, e.g., secondary structures
or GC-rich regions) or of unspecific PCR products. In case of a preponderance of unspecific
PCR products, primer design must be resumed and optimized. Additionally, potential
outliers may be removed before further analysis, such as single wells containing products
with incorrect melting temperatures [92]. The procedure for data exclusion must be well
documented, justified and reported to avoid misinterpretation of data. Subsequently, the
authenticated Cq values for each biomarker assay are normalized against reference genes,
resulting in a ∆Cq value [93]. These reference genes must be chosen carefully depending
on the RNA and sample type, as further explained below. Then, the ∆Cq values of patient
samples are subtracted from healthy volunteer ∆Cq, yielding the ∆∆Cq value. Relative
fold gene expression is then calculated using the formula: 2−∆∆Cq [93]. A fold change in
gene expression above a certain value—e.g., 2–5, depending on the amount of target being
quantified—is considered to be significant for p values < 0.05 in a two-tailed Student’s
t-test [92]. Finally, the biomarkers are validated a second time in an independent validation
cohort in the same manner.

Although this approach might come along with additional laboratory and bioinformat-
ical workload, as well as added costs regarding consumables and time [92], it is meaningful
to apply RT-qPCR as a validation step for candidate biomarkers preselected via RNA-Seq.
NGS is technically more demanding in direct comparison to RT-qPCR [94], and, therefore,
the potential for errors is much higher. The increased complexity of NGS can also hamper
the chances of reproducibility [95]. On the other hand, RT-qPCR can check for the selected
candidate RNA biomarkers in biological replicates and can thus validate the RNA-Seq-data
on a bigger sample size in a second additional independent patient cohort. Due to the pres-
elected, smaller set of genes of interest, RT-qPCR is a more cost-effective and time-efficient
method in contrast to the initial holistic RNA-Seq [96].

3. Why Is MIQE and Standardization in RT-qPCR So Important?

Since its introduction to the scientific world by Kary Mullis in 1985 [97], the poly-
merase chain reaction (PCR) made itself indispensable in the scientists’ toolbox through
its sensitivity and specificity in detection of nucleic acids. Further developments of the
technique resulted in second- and third-generation PCR, namely RT-qPCR and digital
PCR (dPCR), adding simplicity and enhanced precision to the desirable features of the
molecular method.

RT-qPCR is unparalleled as the “gold standard” of gene expression profiling [98] and
detects both the presence and quantity of specific single-stranded nucleic acids (cDNA or
RNA) in real time. However, a closer meta-analysis shows that many of the data generated
through RT-qPCR are contradictory and of poor quality, and thus some conclusions might
not be valid [99]. The lack of details on the experimental conditions further complicates the
assessment of the validity of the experiments and their outcomes. This poses a problem
and fuels the “reproducibility crisis” in science [100], since non-reproducible results bear
the risk of distorting a topic and introducing a bias into the research direction, as published
papers serve as the basis for further research and projects. The report of Ramsden et al. [101]
shows that years after RT-qPCR entered the laboratories as an everyday method, there
was still no general consensus on what a well-executed RT-qPCR should look like. This
highlights the need for certain standards regarding planning, performing and analyzing
RT-qPCR-based experiments in order to generate reliable results.

The international standardization rules for RT-qPCR were first laid down in 2009 in
form of the Minimum Information for Publication of Quantitative Real-Time PCR Experi-
ments (MIQE) guidelines, which were established by active researchers under the auspices
of Minimum Information for Biological and Biomedical Investigations (MIBBI) [90]. Not
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only is molecular biology work in academia guided by the MIQE guidelines, but also major
biotech companies in the field of gene quantification and clinical diagnostics abide by
the guidelines.

According to the MIQE guidelines, the factors that will have an impact on the per-
formance of RT-qPCR fall into three broad categories: (1) pre-PCR sample collection and
handling, (2) PCR assay design and (3) post–PCR data analysis. Errors regarding the
sample include inadequate sampling procedure, suboptimal buffer and storage conditions,
inadequate sample preparation and, therefore, reduction in nucleic acid quality, purity
and quantity. Presence of RT or PCR inhibitors in low-quality samples may lead to false
negative results. Inhibitors can be detected using an internal amplification control or by
diluting the sample and calculating the amplification efficiency, for example [102]. Alter-
natively, an assay detecting a spiked-in positive control, e.g., the SPUD assay, might be
used [103]. Further errors in terms of assay design might be the selection of less specific
primers, causing the assay to underperform. Finally, inadequate data analysis followed
by misinterpretation can intentionally or unintentionally bias the results. Data analysis
also involves wrong or missing controls, unreliable reference gene selection, exclusion of
outliers, etc. Further potential sources of outcome variability are different data analysis
methods of qPCR experiments [104], lack of maintenance of technical hardware, equipment
being too outdated, no suitable plastic consumables [105], different consumables (e.g.,
buffer composition) or different methods to determine the quantity and quality of nucleic
acids [106]. Pre-analytical and analytical parameters can impact the overall results for
clinical biomarkers, such as ERBB2 (Her2), in multiple techniques. This was seen in detail
by the impact of RNA integrity on subsequent analysis via RNA-Seq in breast cancer pa-
tients [107], as well as for additional pre-analytic parameters [108]. RNA isolation protocols
and RNA integrity can also alter ERBB2 results in RT-qPCR experiments for such patient
cohorts [109].

The need for a standardized study design using RT-qPCR as method is reflected in the
number of scientific citations in peer-reviewed journals. As of today (December 2021), the
first MIQE guidelines by Bustin et al. [90] have been cited over 8800 times, according to
Web of Science. This version of standardization rules for RT-qPCR-based experiments has
since been further developed; in 2013 a “good practice guide” for the application of dPCR
was published and renewed in 2020 [110,111].

The authors of the MIQE guidelines aim to accomplish three things: (1) to provide a
guide to help scientists design and evaluate meaningful qPCR experiments; (2) to provide
editors and reviewers with evaluation criteria to better assess the quality of submitted
studies/papers; and (3) to facilitate the reproduction of papers that have followed the MIQE
guidelines. Compliance with MIQE guidelines generated only slightly higher costs, as
described by Dooms et al. [112]. Standardization is essential, not only in research, but also
in diagnostics, as will be elaborated below. However, eight years after the introduction of
the first MIQE guidelines, most RT-qPCR-based studies still lack the most basic information
on their study design [100]. Enforcing standards in RT-qPCR remains as urgent as ever for
the sake of reproducibility in science and, furthermore, for translation in clinical settings,
such as the development of biomarker signatures.

4. Examples for Application of RT-qPCR as a Fast and Reproducible Method in
Routine Diagnostics

Not only research, but also diagnostics recognized the accuracy and reliability of
RT-qPCR. Due to the method’s relative simplicity [113], laboratory personnel does not need
extensive training to run this application, and in consequence, RT-qPCR is a method which
can be—and already is—broadly implemented in routine diagnostic laboratories.

Liquid biopsy, as stated above, utilizes biofluids obtained with non- or minimal
invasive techniques for diagnosis [114]. The relatively minor disturbance of the patient’s
physical health allows for repeated sample collection to monitor the treatment over an
extended period of time, as patient compliance is very high [115]. This is especially
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advantageous in oncology, either by analyzing the presence or absence of genes of interest,
as well as their relative gene expression, or by screening for certain point mutations [116].
However, most diseases are rather determined through combined mutations in several
genes. To give an example—in breast cancer, the expression patterns of ERBB2, ESR1, PGR
and MKI67 are used for subtyping the disease and to determine the treatment according to
the St. Gallen guidelines (2017) [117]. Relative gene expression levels of these biomarkers
can be assessed in RT-qPCR-based tests, such as OncotypeDX, EndoPredict, MammaPrint
and Prosigna, to detect breast cancer in an early stage. In follow-up care after cancer
treatment, patients can be monitored using RT-qPCR. With regard to minimal residual
disease measurement, it is possible to screen the patient for traces of leukemic cells [118,119]
and to determine the success of the treatment or to detect relapses or recurrences, therefore
enhancing the survival chances of the patient. Under strict conditions, the aforementioned
mamma carcinoma gene expression tests are already used post-treatment for prognosis of
the risk of relapse in Germany [120].

Another field where RT-qPCR proves to be a valuable tool is infectious disease diag-
nostics. In this case, gene expression levels of pathogens are determined. For instance,
monitoring of the viral load is imperative in HIV patients. One commercially available kit
for this purpose is the AltoStar HIV RT-PCR Kit 1.5. Without doubt, the most prominent
example for the diagnostic use of RT-qPCR is the currently ongoing SARS-CoV-2 pandemic.
Samples processed with RT-qPCR yield results within a few hours to determine whether the
patient is infected. This allows for (1) suitable treatment, when other illnesses, such as cold
or flu, are excluded and (2) quick reactions to quarantine the patient and thus minimize the
potential of spreading the disease. Interestingly, the pandemic fuels further developments
to reduce the cost of RT-qPCR tests for the benefit of the broader public [121–124].

When using RT-qPCR for molecular diagnostics, one should pay careful attention
to experimental design, sample and assay quality, especially with focus on the efficiency
of the reverse transcription reaction, the selection of proper reference genes and how the
normalization will be calculated in the applied data software tool. All those factors signifi-
cantly impact the chance of successful and reliable relative gene expression results [125].
In the next paragraphs, we focus on three aspects having a major effect on the results of
transcriptional biomarker studies: (1) the reverse transcription reaction, (2) the selection
of the right reference genes in relative quantification and (3) that the selected software is
calculating the correct relative quantities of the target genes.

5. Importance of Reverse Transcription in RT-qPCR

Reverse transcription (RT) is presumably the most crucial and variable step in the
entire RT-qPCR workflow. For the quantitative measurement of any RNA family, the RNA
is first reverse transcribed into complementary DNA (cDNA). Afterward, the cDNA is pro-
foundly amplified by a DNA-dependent DNA polymerase during the PCR cycling process.
However, even today, 50 years after the discovery of the reverse transcriptase enzyme [126],
the reaction is not yet fully understood and remains one of the most uncertain steps in gene
expression analysis. The RT can introduce errors, based on complex secondary and tertiary
structures of long RNA fragments, variation in priming efficiency and enzymatic properties
of the different reverse transcriptase enzymes themselves [127,128]. RT yield, reproducibil-
ity, sensitivity, accuracy and precision of the reverse transcription reaction of commercially
available enzymes on various target genes have been tested in multiple studies, and the
results were highly variable between enzyme type and reaction condition. The efficiency
of the RT reaction varies up to 100-fold with the choice of reverse transcriptase enzyme.
That variation is dependent on the gene, primers and the applied priming strategy. In
conclusion, it is recommended to use the same priming strategy and reaction conditions in
all experiments and the same total amount of RNA in all samples for comparable RT-qPCR
gene expression measurements between studies or laboratories. Experimental accuracy is
improved by running samples in a minimum of two technical replicates, starting with the
reverse transcription reaction [127,128].
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6. Proper Reference Gene Selection

Choosing the appropriate quantification strategy is a very important step of gene
quantification and therefore required by the MIQE guidelines. Normally, two quantification
strategies can be applied in the RT-qPCR: absolute and relative quantification. Absolute
quantification creates a correlation between the quantification cycle (Cq) and input copy
number using a calibration (or standard) curve [129]. This calibration curve is then used
to determine the concentration of the unknown nucleic acid analyte [129]. In contrast, the
relative quantification strategy analyzes changes in gene expression levels in each sample
relative to another reference gene. It is based on the relative expression of a target gene
transcript to one or more endogenously expressed reference gene transcripts [130]. A
reference gene can be described as a gene, which is constantly expressed under different
biological conditions. Hence, in the early days of RT-qPCR these genes were named
housekeeping genes. Genes encoding for GAPDH, albumin, actins, tubulins, cyclophylin,
microglobulin, 18S RNA or 28S RNA are widely used in several studies as reference
genes [131]. One well-established reference gene used in liquid biopsy from blood is
PGK1 [132]. However, it has been demonstrated that no reference gene is universally
stable over all biological conditions and that a different set of genes with the least variance
exists for every biological context [72,78]. As discussed by Vandesompele et al. (2019),
the commonly used reference genes GAPDH and ACTB turn out to be less reliable than
assumed in cancer-related research. Underlying mechanisms explaining this observation
might be the heterogeneity and genetic instability of cancerous tissue [133]. Therefore, in
some cases, the classical reference genes are not stably expressed throughout all analyzed
samples. On the contrary, reference genes may even be regulated in some diseases, and thus
universally stable reference genes do not exist [130]. Caution must be used when selecting
reference genes, and it must be assured that they are stably expressed in the sample type
of interest. Unfortunately, reference genes are often selected without prior verification
and independent consideration of the biological context [130,134–136], although different
molecular diagnostic technology providers offer various panels with numerous reference
genes to check for the most stably expressed reference genes.

For research purposes, software tools have been developed to identify stably ex-
pressed genes in a cohort. Convenient algorithms and software tools that analyze ex-
pression data obtained through any quantitative method to select valid reference genes
include geNorm [130], BestKeeper [137], NormFinder [138], RefGenes [139] or miREV [140].
geNorm, so far the most popular algorithm for this purpose, ranks the reference genes
based on the relative variation of pairwise expression values of the given samples. This
variability is a so-called M-value; the higher the M-value, the more stably expressed the
gene is [130]. BestKeeper can compare expression levels of up to ten reference genes to-
gether with ten target genes to determine the most appropriate standard genes among
them, and it combines them into one index. This index can then be compared to other target
genes to determine their expression levels in the given treatment [137]. NormFinder ranks
the group of candidate normalization genes based on the global average expression of all
genes in all samples, which are compared to individual genes. From this comparison, a
standard deviation (SD) for each sample is generated. The genes with the lowest SD are the
most reliable reference genes. Moreover, if different treatments are used, NormFinder can
separate the variations into an intragroup and an intergroup contribution [138]. RefGenes
is an online application that allows users to search for genes with stable expression in a
selected sample set based on microarray data. This sample set can be selected according
to experimental conditions or tissue types [139]. Recently, numerous studies have demon-
strated the potential of RNA associated with extracellular vesicles (EVs), mainly miRNA, as
biomarkers [48,50,71,72]. Online tools and databases such as miREV enable the user to find
stably expressed miRNAs from EV studies regarding different experimental conditions.
miREV includes data sets from publicly accessible sources, focused on blood-derived EVs
and represents nine different pathologies and three different isolation methods from serum
and plasma [51].
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7. Automated RT-qPCR Data Analysis Software

Besides the classical RT-PCR parameters, e.g., primer design, RNA quality, RT and
polymerase performances and the selection of reference genes—as discussed above—the
fidelity of the quantification process is highly dependent on valid data analysis. The choice
of analysis method is an important topic and must also be MIQE compliant [90]. Algorithms
and software tools selected for this purpose should be robust, reproducible and reliable
to generate valid results. As explained in detail above, transcriptional markers identified
by RNA-Seq and multivariate biostatistical methods can be combined in a biomarker
signature of relevant transcripts. The final goal for the RT-qPCR results, in order to
validate this biomarker signature, is to reflect the findings of the RNA-Seq discovery study.
Hence, a successful application of RT-qPCR for transcriptional biomarker development
and post-PCR data processing depends on a clear understanding of the pitfalls in relative
quantification methods.

Facilitating easy data management and providing tools for automated data analysis
to obtain statistically proven results are the main goals in RT-qPCR data processing and
application software development. All of the calculation and statistical software appli-
cations described were already summarized and discussed in other publications [141].
However, we should realize that post-qPCR data processing can influence or even change
the final results of gene expression analysis. Events such as RT-qPCR data generation,
acquisition, evaluation, calculation and statistical analysis, are essential to interpret the
biological significance of an experiment. Depending on the type of data and the biological
question, RT-qPCR data analysis might include curve fitting algorithms, data processing,
selecting or discarding certain data subsets based on specific pre-set criteria, transformation
of logarithmic Cq values to relative quantities, normalization, rescaling and a final statistical
test of the derived qPCR results.

Accurate and straightforward mathematical and statistical analysis of post-PCR data
and management of growing data sets have become the major hurdles for effective im-
plementation into gene expression analyses. Nowadays, high-throughput 384-well ap-
plications generate huge amounts of RT-qPCR data, which in turn need to be grouped,
standardized, normalized and documented by the software applications [142]. However,
the cycler hardware, as well as the performance and chemistry, have developed much
faster in the past than the post-PCR analysis software. Developing a “one-fits-all” software
for simple and reliable analysis of the generated expression data would appear to be the
optimal solution to obtain valid and comparable results from enormous amounts of data.
However, specific demands and biological questions are too heterogeneous to implement
this into a single software tool. The majority of RT-qPCR users analyze their relative ex-
pression data in the software tools provided with the cycling platform. Besides those, only
a few independent and freely available software tools that still fulfill the stringent MIQE
recommendations have survived in the scientific community. Out of these, the three most
used tools for reliable, efficiency-corrected and reference-gene-normalized calculation of
relative gene expression are GenEx [143], qBase+ [142] and REST [144].

GenEx [143] is a software tool developed by a Swedish group, which provides a mul-
titude of functionalities for the RT-qPCR community in research and clinical molecular
diagnostics. Various applications are included, e.g., data pre-processing and management
or advanced cutting-edge multivariate analysis of big RT-qPCR data sets. It provides
various methods for the selection and validation of reference genes, as described above.
Besides qPCR data analysis, it can also cope with small data sets for RNA-Seq gene expres-
sion profiling. Furthermore, the software package contains a wide range of multivariate
statistical and machine-learning algorithms, which makes it an optimal bioinformatical tool
for gene expression data analysis and to find reliable transcriptional biomarker signatures.

The comprehensive software application qBase and the newer version qBase+ were
developed as a generalized solution to accommodate virtually all relative quantification
setups and for the management and automated analysis of real-time quantitative PCR
data [142]. It employs a well-proven ∆Cq quantification model with efficiency correction,
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multiple reference gene normalization and accurate error propagation along all calculations.
The qBase+ browser allows data storage and annotation while keeping track of all real-time
PCR runs by hierarchically organizing data into projects, experiments and runs. As a big
advantage, there is no limit on the number of samples, genes or replicates, and data from
multiple runs can be combined and processed together. Furthermore, the ability to use
up to five reference genes allows for reliable and robust normalization of gene expression
levels on the basis of the geNorm procedure [130].

The relative expression software tool (REST), for comparison of several expressed
genes, is based on Microsoft Excel and programed in the Visual Basic Application (VBA).
The underlying mathematical model is based on the mean Cq deviation of target genes
between the treatment and control group, normalized by multiple reference genes and PCR
efficiency-corrected [144]. Subsequently, all relative expression data are statistically tested
by a Pair-Wise Fixed Reallocation Randomization Test [144].

8. Summary and Conclusions

The potential pitfalls mentioned above highlight how important it is to carefully con-
sider every step in a transcriptional biomarker discovery and development study—from
the initial RNA-Seq screening to data analysis in clinical practice. Through suboptimal
sample choice or mistakes during the RNA-Seq workflow, one might overlook promising
biomarkers. Careless primer design and neglect of the MIQE guidelines in the RT-qPCR
experiment may lead to the wrongful validation of transcripts, insufficient as a measure
for the disease of interest. Finally, faulty data evaluation might result in further misinter-
pretation of the obtained information and—in the worst case—publication of an incorrect
biomarker signature. Therefore, having an overview of the advantages and pitfalls of
each method used is critical to avoid drawing false conclusions from the acquired data.
In the context of liquid biopsy, RNA is a suitable analyte to discover and monitor the
course of disease, as well as the progress of the patient’s treatment. RNA is excessively
more abundant than DNA; its detection level is significantly lower than that of proteins,
and the potential of different RNA classes in research and diagnostics as biomarkers is
constantly expanding. Discovering a set of disease-specific candidate genes is performed
via hypothesis-free RNA-Seq, using a training cohort consisting of patient samples. The
chosen RNA type, as well as extraction method, must be given appropriate thought to
enrich high-quality nucleic acids for sequencing. After using suitable parameter filters,
the resulting set of candidate genes should be validated using an orthologous method,
such as RT-qPCR, both in the initial training cohort and an additional independent co-
hort. Abiding by international standardization rules ensures the accuracy and validity of
RT-qPCR-based results. Subsequently, in a translational approach, the validated genes of
interest can be incorporated into diagnostics. Again, RT-qPCR, as the method of choice for
gene expression analysis, is guided by the MIQE guidelines to reinforce transparency of the
experimental setup for the sake of reproducibility. Possible pitfalls are present in sample
handling, primer design and post-PCR data analysis. One equally important factor to
consider is the appropriate choice of reference genes, for which publicly available software
tools provide extensive support. Post-PCR data processing and statistical analysis have
a major impact on the expression profiling results of transcriptional biomarkers, and the
development of different automated RT-qPCR data analysis software is aimed to answer
distinct biological questions.

In summary, RT-qPCR—when used in compliance with the MIQE guidelines—proves
to be a valuable tool in the establishment of disease-specific biomarkers and in clinical
setting, since it is an accurate and fast method with relatively simple handling. RT-qPCR for
molecular diagnostics, particularly with regard to personalized medicine, is well positioned
to pave its way into daily clinical routine in the near future. It is therefore all the more
important to have and abide by standardized procedures for every step involved.
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