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Taste perception is crucial for the critical evaluation of food constituents in human

and other vertebrates. The five basic taste qualities salty, sour, sweet, umami (in

humans mainly the taste of L-glutamic acid) and bitter provide important information

on the energy content, the concentration of electrolytes and the presence of potentially

harmful components in food items. Detection of the various taste stimuli is facilitated

by specialized receptor proteins that are expressed in taste buds distributed on the

tongue and the oral cavity. Whereas, salty and sour receptors represent ion channels,

the receptors for sweet, umami and bitter belong to the G protein-coupled receptor

superfamily. In particular, the G protein-coupled taste receptors have been located in

a growing number of tissues outside the oral cavity, where they mediate important

processes. This article will provide a brief introduction into the human taste perception,

the corresponding receptive molecules and their signal transduction. Then, we will focus

on taste receptors in the gastrointestinal tract, which participate in a variety of processes

including the regulation of metabolic functions, hunger/satiety regulation as well as in

digestion and pathogen defense reactions. These important non-gustatory functions

suggest that complex selective forces have contributed to shape taste receptors

during evolution.

Keywords: taste receptors, gastrointestinal tract, pathogen defense, nutrient sensing, metabolism and

endocrinology

INTRODUCTION

The concerted action of vision, olfaction, mechanoreception, and gustation enables humans to
differentiate nutritionally valuable food items from inedible or even potentially harmful ones. The
final gatekeeper is our sense of taste, which provides a rapid analysis of the relevant food-borne
chemicals in the oral cavity prior to ingestion. To facilitate the detection of nutritionally relevant
molecules among countless food constituents, the oral cavity is equipped with sensors for the five
basic taste qualities salty, sour, sweet, umami (in humans mainly the taste of L-glutamic acid) and
bitter (1). The sensing of table salt helps to maintain our body’s electrolyte balance, sourness hints
at the presence of unripe or spoiled food, sweet and umami tastes assess the energy content of
food, and bitter sensing helps to avoid potentially harmful compounds (1). While taste sensing is
limited to the sensory cells in the oral cavity, the detection of tastants by taste receptors continues
throughout the alimentary canal as well as in other non-gustatory tissues. Among the extra-
oral tissues expressing taste receptors, the airways have received considerable attention, because
numerous cell types have been shown to respond to stimulation with tastants and the activation
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of these cells results in a wide range of profound physiological
responses. The stimulation of solitary chemosensory cells in
the respiratory epithelium of rodents with bitter compounds
leads to respiratory depression (2–4) and elicits the discharge
of antimicrobial peptides (5), the contact of ciliated lung cells
increases their beat frequency (6) and bitter compound treatment
of airway smooth muscle cells induces relaxation (7) making
bitter compounds a relevant target for the treatment of asthma.
These effects have been associated with the expression of the
corresponding taste receptors in the various cell types. Other
tissues shown to express taste receptors are the reproductive tract
(8), urethra (9), skin (10–12), brain (13), heart (14, 15), pancreas
(16, 17) and blood cells (18–22). For the sake of space, we will
focus in this mini-review on the gastrointestinal (GI) tract and
refer the interested reader to a number of comprehensive recent
review articles for further reading (23–25). Before discussing
the function of taste receptors in the GI tract, we will briefly
introduce the receptors, their signaling elements and cells in their
“original” environment, the taste system.

Taste Cells and Receptors
The cells devoted to detect food constituents occur combined
into taste buds, which consist of about 100 cells, on the tongue,
the soft palate and the throat (26). The taste information gathered
in the oral cavity are transmitted to the brain, where complex
percepts are formed and innate as well as learned behaviors
are evoked that regulate food intake. On the molecular level,
tastants interact with taste receptors expressed in the taste
receptor cells of the taste buds. The ionic taste stimuli are
detected by ion channels, with the proton-gating channel otop-
1 serving as sour taste receptor (27–29) and the epithelial sodium
channel ENaC acting as salt taste receptor (30, 31). While the
identity of otop-1 is meanwhile firmly established, the exact
composition of the salt sensor is still a matter of debate (32–34).
The receptors for sweet, umami and bitter taste belong to the
large superfamily of G protein-coupled receptors (GPCR). The 3
TAS1R (taste 1 receptor) genes code for heteromers that assemble
the predominant umami taste receptor, TAS1R1/TAS1R3 (35,
36), the sweet taste receptor, TAS1R2/TAS1R3 (37–42), and exert
long extracellular so-called venus flytrap domains typical for class
C GPCRs. In contrast, the 25 putatively functional bitter taste
receptors belong to the TAS2R (taste 2 receptor) gene family with
short amino termini (43–45).

Upon activation of one of the taste-GPCRs a signaling cascade
centered around the IP3/Ca

2+ second messenger system is
initiated [for a review see (46)]. Briefly, depending on whether
a sweet, umami, or bitter taste receptor cell is activated, a
heterotrimeric G protein complex is recruited and, after GDP
to GTP exchange, dissociates into the α-subunit and the βγ-
heterodimer. The βγ-subunits in turn activate phospholipase
Cβ2 resulting in the generation of IP3 from the membrane-
associated precursor PIP2. Subsequently, the release of calcium
ions from the lumen of the endoplasmatic reticulum via the
receptor IP3R3 is triggered. Next, the elevated level of cytosolic
calcium ions opens the cation-channels TRPM4 and TRPM5,
which allow the influx of sodium ions into the cell causing
depolarization. Finally, voltage-gated sodium channels open

and the neurotransmitter ATP is released through the voltage-
gated channel calcium homeostasis modulator 1 and 3 complex
resulting in the activation of puringergic afferent nerve fibers and
signal propagation toward the central nervous system.

Tastant Reception in the GI Tract
Apart from its role in nutrient absorption, the GI tract is a site
where nutrient sensing occurs and complex biological responses
involving humoral and neural signals are triggered. The first
hints that some of these responses may involve components of
the taste transduction system came from the detection of α-
gustducin, a Gα-subunit first identified in the rodent gustatory
system (47), in brush cells of the stomach and small intestine
(48). Nowadays, sweet, umami and bitter taste receptors and all
canonical taste signaling components have been detected in GI
tissues from stomach to colon (23–25). Moreover, a variety of
GI cell types expressing the taste signaling molecules including
enteroendocrine cells, brush cells, goblet cells, and Paneth cells
have been discovered and nutrient sensingmechanisms involving
taste-like signaling molecules were proposed (23–25).

Sweet, Umami and Bitter Sensing in the GI
Tract
Already the observation that the taste-related signaling molecule
α-gustducin is expressed in brush cells of the GI tract raised the
question if also other components involved in taste sensation
might play a role in nutrient sensing in the alimentary canal.
Indeed, over the past two decades all canonical taste signaling
elements including the G protein-coupled receptors for sweet,
umami and bitter detection have been identified in the GI tract
of vertebrates. Moreover, a number of physiological functions
of taste GPCR-mediated signaling have emerged. Here, we will
point out only some key aspects of GI taste signaling, the
interested reader is referred to one of the recent full-length review
articles (24, 25).

Taste Receptor-Expressing Cell Types
Although a larger number of cell types have been implicated in
taste receptor-mediated signaling, two types of cells stand out
because of their central role(s) and frequent implications in taste-
related signaling events (Figure 1). The first cell type are the
brush cells, which are frequently also named tuft cells or solitary
chemosensory cells. These cells occur throughout the alimentary
tract as individual cells, which are equipped with an apical tuft
of microvilli [for a review see (50)]. They were shown to express
sweet, umami and bitter taste receptors [but cf. (51)] as well as
canonical taste signaling elements such as α-gustducin, PLCβ2,
TRPM5 (52). It is believed that brush cells are capable to signal
their activation via the transmitter acetylcholine in a paracrine
fashion (53). The second cell type are so-called enteroendocrine
cells, which can be further subdivided depending on the peptide
hormones they secrete upon activation. Also the enteroendocrine
cells were identified to express the already mentioned taste-
GPCRs for sweet, umami and bitter sensing and the canonical
taste-signaling elements. Stimulation of enteroendocrine cells
results in the release of important peptide hormones involved
in metabolic regulation, such as GLP-1 from enteroendocrine
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FIGURE 1 | Cell types involved in the detection of taste stimuli. Shown are schematic drawings of type II taste receptor cells (left), enteroendocrine cells of the GI tract

(middle) and brush cells (right). The signal components involved/implied in signal transduction are depicted: Adenosine triphosphate (ATP), calcium ions (Ca2+),

Calcium homeostasis modulator 1 and 3 (CALHM1/3), G protein-coupled receptor (GPCR), G protein alpha subunit α-gustducin (Gαgust), G protein beta subunit (Gβ),

G protein gamma subunit (Gγ), Inositol 1,4,5-trisphosphate (IP3), Phospholipase C beta 2 (PLCβ2), sodium ions (Na+), transient receptor potential cation channel

subfamily M members 4 and 5 (TRPM5/4).

L cells, GIP from K cells, hunger-satiety regulation, such as
ghrelin from P or X cells to name just a few [for a review
see (54)]. Other, less well investigated cell types implicated in
tastant-induced signaling in the GI tract include enterocytes (55),
Paneth (56) and goblet cells (20). It is important to emphasize
that the expression of sweet, umami and bitter taste receptors
in a given cell type does not imply that individual cells actually
house all three taste receptor types. While some cell lines of
enteroendocrine origin may indeed contain taste receptors for
multiple taste modalities, in vivo data on the co-expression does
not exist to date.

Tastant-Induced Functions in the GI Tract
Quite a number of physiological roles have been assigned to
taste receptor-mediated signaling in the GI tract. However, not
all physiological responses triggered by tastants must occur via
the activation of taste receptors, in fact, in many cases where
taste receptors are implicated in GI tastant sensing additional
research is warranted. Among the best investigated processes
elicited by tastants in the GI tract are peptide hormone secretions
from various enteroendocrine cell types. One of these hormones
is the incretin hormone GLP-1 (glucagon-like peptide-1) which
is produced by enteroendocrine L cells. The cells express both
TAS1R subunits, namely TAS1R2 and TAS1R3, constituting the

functional sweet taste receptor as well as the canonical taste
signaling elements. Challenging the cells with sweet compounds

results in the acute release of GLP-1 and the subsequent insulin

secretion from pancreatic beta-cells leading to a reduction of

blood sugar levels and, in case of chronic stimulation, an
elevated absorptive capacity of intestinal enterocytes via the
upregulation of the transport molecule SGLT-1 (57, 58). Also
bitter compounds, such as KDT-501, a synthetic derivative of
hop bitter compounds, have been shown to result in elevated
GLP-1 levels in the blood of mice (59). Whether this implies
co-expression of sweet and bitter taste receptors in L cells or
suggests the existence of specialized subpopulations of sweet
and bitter responsive L cells is unknown. Further effects of GI
bitter stimulation on hormone secretions are the release of CCK
(cholecystokinin) from I cells and a subsequent delayed gastric
emptying and conditioned taste aversion (60, 61). Interestingly,
bitter tastant-responsive X/A-like cells in the stomach also
facilitate the release of the hunger-inducing peptide hormone
ghrelin (62), a fact which appears counterintuitive on the first
glance with the above reported CCK-effects. Not all presumably
taste receptor-mediated GI effects involve necessary hormonal
signaling events. It was shown that the bitter compound caffeine
regulates via bitter taste receptors acid secretion in the human
stomach (63) and in the colon of rodents an increased fluid
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FIGURE 2 | Molecules and organisms implicated in triggering GPCR-mediated defense reactions in non-gustatory epithelia. Gastrointestinal infections with succinate

secreting helminths and bacteria secreting quorum-sensing molecules (homoserine lactones, e.g., C6-HSL) or metabolites (e.g., 2-butanone) are believed to result in

the activation of GPCRs including bitter taste receptors. A ribbon structure (seen from the top) of a homology model of human bitter taste receptor TAS2R14 [derived

from (49), modified with Maestro 12.9 software (Schrodinger)], one of the TAS2Rs implicated in innate immune responses, is depicted at the bottom.

secretion into the lumen (64). Moreover, the modulation of the
intestinal motility via the interaction of selective bitter substances
with bitter taste receptors in intestinal smooth muscle cells has
been reported (65).

Compared to enteroendocrine cells, intestinal brush cells

seems to play a very different role, the defense of pathogenic

organisms (66–68) (Figure 2). In fact, even though brush cells

have been demonstrated to express all elements required for

taste-GPCR signal transduction, albeit with some deviations

from the canonical type II taste cell pathway (52), the taste
receptors themselves were not detected in all studies [cf. (51)].
Nevertheless, brush cells respond to helminth and protist
infections as well as to bacterial dysbiosis [for a review see
(69)] and may indeed rely on the activation of bitter taste
receptors (70). A central role in the pathogen response against
these intestinal intruders was demonstrated for SUCNR1 (71,
72), a succinate-sensing GPCR (also known as GPR91) (73).
Indeed, succinate is released by various pathogens [e.g., protozoa
(72)] triggering IL-25 discharge from brush cells (72) in an α-
gustducin- and TRPM5-dependent fashion (71) and a subsequent

activation of group 2 innate lymphoid cells to promote pathogen
removal (74). As succinic acid has been associated with a umami-
like orosensory perception (75, 76), this process could be judged
to represent an activity by a tastant-like substance. Although the
majority of tastant or tastant-like molecules triggering important
physiological responses in the GI tract have been associated
with enteroendocrine or brush cells, other bitter taste receptor
expressing cell types such as Paneth cells (56) or goblet cells
(20) were shown recently to play critical roles in innate immune
responses as well (77).

DISCUSSION

After the discovery of taste receptors outside the oral cavity,
the research field of extra-oral taste receptors practically
exploded. Taste receptors were found in an increasing number
of tissues and were associated with numerous roles. Whereas,
some of the most optimistic appraisals had to be corrected,
other proposed opportunities solidified over the years
resulting in realistic research goals such as the use of bitter
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compounds as asthma medication or compounds to improve
metabolic functions.

One research gap that exists since the discovery of non-
gustatory taste receptors and the subsequent investigations
of their physiological roles is the firm association of taste
stimuli with specific cellular functions and the unambiguous
involvement of the corresponding taste receptors in this process.
Moreover, many observations of physiological effects in tastant-
responsive GI cells were rather broadly assigned to specific cell
types, which may underestimate diversity with regard to taste
receptor expression and function. Another gap comes from
the observation that a large number of animals exhibit taste
receptor pseudogenizations, which usually correlates well with
their nutrition, however, it has so far not been investigated how
these animals compensate for the loss of those receptors and their
function in extra-oral tissues.

In summary, research on taste receptor functions outside the
gustatory system has become a topic of great interest with future
prospects ranging from more healthy nutrition to even using
tastants and/or their derivatives for medicinal treatments.
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