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Characterizing items for content-based recommender systems is a challenging task in

complex domains such as travel and tourism. In the case of destination recommendation,

no feature set can be readily used as a similarity ground truth, which makes it hard

to evaluate the quality of destination characterization approaches. Furthermore, the

process should scale well for many items, be cost-efficient, and most importantly correct.

To evaluate which data sources are most suitable, we investigate 18 characterization

methods that fall into three categories: venue data, textual data, and factual data. We

make these data models comparable using rank agreement metrics and reveal which

data sources capture similar underlying concepts. To support choosing more suitable

data models, we capture a desired concept using an expert survey and evaluate our

characterization methods toward it. We find that the textual models to characterize cities

perform best overall, with data models based on factual and venue data being less

competitive. However, we show that data models with explicit features can be optimized

by learning weights for their features.

Keywords: destination characterization, rank agreement metrics, expert evaluation, data mining, recommender

systems, content-based filtering

1. INTRODUCTION

The performance of data-driven systems is inherently determined by the underlying quality
of data, which is becoming increasingly hard to judge in the current era of big data. When
deciding on which features to use in the data model of an information retrieval or content-based
recommender system, there are often several options to choose from. Out of the many options
how to model a domain, how can one determine which instantiation of the available data is the
best? The data-driven characterization of real-world items should capture each entity as closely as
possible with respect to the user task supported by the system. As a principle, similar items in the
physical world should also be similar in the information space, despite the loss of information and
granularity. Thus, authors of content-based filtering algorithms (Pazzani and Billsus, 2007) should
evaluate whether their data model matches the user goals, since a divergence might cause confusion
and inevitably decrease the trust in and satisfaction with the system. Sometimes, the mapping to
the physical world is obvious. When recommending a computer configuration, the feature values,
such as the available memory or number of USB outlets have clear meaning and can be easily
interpreted by the users and algorithms (Zhang and Pu, 2006). In other domains, however, a
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ground truth for items similarity is hard to capture, which is
a fundamental problem (Yao and Harper, 2018): What are the
movies most similar to “Fight Club”? Which cities are most
similar to Munich? We as humans might have an intuition
about such similarity concepts, but it is hard to develop
recommendation algorithms that emulate such, possibly latent,
concepts. Evaluating this is an under-researched challenge in the
area of content-based recommendation, especially in the travel
and tourism domain, where items such as destinations or travel
packs are often not as clearly defined as consumer products.
Approaches that rely on a history of explicit or implicit user
interactions, such as collaborative filtering or bandit algorithms
do not face this problem since there is a clear connection between
the item and the user’s rating (Su and Khoshgoftaar, 2009). Still,
in cold-start situations, i.e., when too little interaction data is
available for employing such approaches, a common strategy
used is hybridization, which again requires using content-based
algorithms to compute the initial recommendations (Çano and
Morisio, 2017).

To make these considerations concrete, take a destination
recommender system as an example. The CityRec system (Dietz
et al., 2022), allows users to refine their travel preferences based
on six features that were obtained and derived from various
sources such as Foursquare and open data portals: “Nightlife,”
“Food,” “Arts and Entertainment,” “Outdoor and Recreation,”
“Average Temperature,” and “Cost.” However, when developing
this system, we faced the issue of determining which data set and
features are the most accurate and useful for prospective travelers
to reason about destinations. Given that recommendations are
computed using the cities’ features and the users base their
decisions on them, inaccuracies in the data model negatively
impact the trust in the system. To the best of our knowledge, this
two-fold challenge of choosing accurate data sources to quantify
specific aspects travel destinations, as well as choosing which
features to incorporate in a content-based recommender system
has not been analyzed in a systematic way (Yao and Harper,
2018). This motivated us to develop this toolbox of methods to
compare data sources with each other and also with respect to
what is important in the domain of such a recommender system.

To make our contributions generalizable for different data
models in various domains, we rely on rank agreement
methods (Kendall, 1970), which operate on ranked lists based
on the similarity measure of the recommender system. The
proposed methods quantify correlations between conceptually
diverse characterization methods to enable informed decision
making with respect to which one to employ. For example,
if it turns out that two characterization methods are highly
correlated, i.e., both capture the same underlying concepts using
different features, one could go ahead and exchange one for
another without introducing disruptive changes in the resulting
recommendations.

Furthermore, we propose a method to assess the quality of
data models with respect to a desired concept. We argue that
a destination recommender system should use a data model
that results in recommendations that emulate the destination

Abbreviations: LBSN, location-based social network; OSM, OpenStreetMap.

experience as closely as possible. To achieve this, it is imperative
to assess which available data source and feature set approximate
the concept of touristic experience best. However, such a “gold
standard” is readily not available and typically can only be elicited
for a small subset of the recommendation items. We elicit the
concept of touristic experience using an expert study and propose
methods to assess the quality of the characterization methods
with such incomplete information.

To showcase the utility of our approach, we exercise the
methods within the particularly challenging domain of content-
based destination recommendation (Le Falher et al., 2015; Liu
et al., 2018), where recommendations are solely computed based
on the items’ characteristics as opposed to rating or interaction
data in collaborative filtering approaches. For this, we introduce
18 destination characterization methods for 140 cities, which we
have collected from literature or constructed ourselves. Using
well-established rank correlation methods (Kendall, 1970), we
compute their pairwise similarities, thereby revealing families of
similar data sources. To evaluate the data sources with respect
to how tourists experience a destination, we conduct an expert
study to elicit this latent concept. Using variants of established
top-k rank agreement methods, we are able to assess the quality
of the data sources by their similarity to the expert opinions.

The main contributions of this work are as follows:

• We propose a method to assess the similarities and the
quality of data models characterizing items in content-based
recommender systems.

• We introduce, instantiate, and compare 18 different
destination characterization methods using the proposed
methodology.

• We conduct a survey among travel experts to establish a
similarity baseline of the different destination characterization
methods. Using this expert-elicited concept, we assess and
optimize the data sources with respect to this concept.

While we use destination characterization as our running
example, our methods are not specific to this domain, since the
proposed methods operate on ranked lists of any kind.

The structure of the paper is the following: after discussing
the prior work in Section 2, we provide a description of the data
for destination characterization. In Section 4, we introduce our
methodology of how we made the data sources comparable using
rank agreement metrics. The expert study in Section 5 shows
how we elicited our desired concept. In Section 6, we present the
analysis of which data sources capture similar concepts andwhich
approximates the concept of touristic experience best. Finally, we
conclude our findings and point out future work in Section 7.

2. RELATED WORK

In recommender systems research, most algorithms traditionally
use the collaborative filtering paradigm, i.e., interpreting user
ratings (or similar explicit feedback) of items. However, in cold-
start recommendation situations, where such interaction
data does not exist to sufficient degree, content-based
algorithms (Lops et al., 2011) play a role to be able to generate
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meaningful and personalized recommendations to the users.
This research is motivated by practical challenges of content-
based information retrieval systems, especially personalized
recommender systems.

Concerning the similar item recommendation problem, Yao
and Harper have shown that content-based algorithms have
outperformed ratings- and clickstream-based ones with respect
to the perceived similarity of items and the overall quality of
the recommendations in the movie domain (Yao and Harper,
2018). Our work goes one step further: We provide a framework
that allows to compare different data models of the same items
with respect to the similarity according to a desired concept and
additionally provide means to optimize the feature weights to
approximate the concept even better.

We use the travel and tourism recommendation domain
as a running example; however, other domains face similar
challenges. In their survey, Borràs et al. (2014) identify four
different tasks that tourism recommender systems have to cope
with: recommending travel destinations or travel packages (Liu
et al., 2011), suggesting attractions (Massimo and Ricci, 2018;
Sánchez and Bellogín, 2022), planning trips (Gavalas et al.,
2014; Dietz and Weimert, 2018), and accounting for social
aspects (Gretzel, 2011). We aim to contribute to the feature
engineering challenges of the first task: recommending travel
destinations. We focus on the characterization of destinations,
which is the task to establish the underlying data model
for destination recommender systems. Herein, “destination”
refers to cities. Key challenges in recommending cities are the
intangibility of the recommended item, high consumption costs,
and high emotional involvement (Werthner and Ricci, 2004).

Burke and Ramezani (2011) suggest the content-based
recommendation paradigm as one of the appropriate ones for the
tourism domain. Content-based recommenders need a domain
model and an appropriate distance measure to enable effective
matchmaking between user preferences and items to generate
recommendations without details rating or interaction data.
For this reason, they can be successful in situations where
the interaction with the recommender is very rare and short-
term and the user model can be derived from alternative
information sources. Domain models in recommenders have
been constructed using various data sets (Dietz et al., 2019)
derived through analyses and user studies (Neidhardt et al., 2014,
2015) or realized through ontologies (Moreno et al., 2013; Grün
et al., 2017). In this work, we compare different data-driven
destination characterization methods, which project destinations
onto the respective search spaces using different types of
data, cf. Section 3.

Naturally, the question of which features are useful to
characterize a destination for efficient retrieval in an information
system arises. Dietz (2018) mentions challenges of characterizing
destinations: the destination boundaries must be clearly defined,
the data needs to be kept up-to date, and the features should
be relevant with respect to the recommendation goal. Analyzing
LBSN data to characterize cities and their districts has been an
active topic in previous years (Silva et al., 2019). It has been
shown that such data is quite useful to unveil characteristics
of certain districts within a city (Le Falher et al., 2015).

McKenzie and Adams (2017) suggested the use of Kernel density
estimation models of check-ins to identify thematic areas within
a city.

A related line of research is concerned with capturing and
visualizing intangible concepts in urban areas: Quercia et al.
(2015) used LBSN data and Google Street View imagery1

to determine intangible concepts such as the smell, the
soundscape (Aiello et al., 2016), and general happiness (Quercia
et al., 2014) on a street granularity. Analogously, street imagery
can also be reliably used to measure distributions of income,
education, unemployment, housing, living environment, health
and crime as Suel et al. (2019) have demonstrated. Finally, it
has been shown that it possible to automatically distinguish
cities based on their architectural elements learned from street
imagery (Doersch et al., 2015). Using features derived from
such approaches could also be used to compute similarities of
cities and their districts. Obtaining Google Street View images
is feasible on a small and medium scale, however, the costs
to do such an analysis on a global scale prevented us from
experimenting with this data source.

In the area of content-based characterization of destinations
for use in recommender systems there are so far few
approaches. Sertkan et al. (2017) characterized a huge data set
of 16,950 destinations based on 26 motivational ratings and
12 geographical attributes within the Seven Factor Model of
tourism motifs. They proposed a cluster analysis and regression
analysis to map the destinations to the vector space of the
Seven Factor Model (Neidhardt et al., 2015). The framework
was recently also used by Grossmann et al. (2019) to elicit
preferences of prospective tourists using picture of destinations
While modeling the user’s interests using travel-related pictures
has been shown to be possible, obtaining a representative set of
images of global destinations in an automated fashion is an open
research problem (Sertkan et al., 2020a,b). The development of
the CityRec recommender system (Dietz et al., 2019, 2022) partly
motivated investigating different data models for recommender
system: CityRec uses a domainmodel based on Foursquare venue
categories and further information such as a cost index or climate
data collected from web APIs (Dietz et al., 2019). This data
model is used both to elicit user preferences via conversational
refinement, i.e., turn-based adjustment of the preferences in a
dialogue with the system and to compute the recommendations
in a content-based way.

It is striking that researchers invest a lot of energy into
capturing signals from various online sources to approximate
complex, intangible concepts. To the best of our knowledge, these
data models are rarely systematically verified as to what extend
they approximate the recommendation domain. In this paper, we
propose a collection of several methods to provide researchers
with tools to evaluate this.

3. DATA SOURCES

To characterize destinations, we used various online data sources
showcased in Table 1. Our selection criteria for the data sources

1https://www.google.com/streetview/
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were that they should have touristic relevancy, i.e., prospective
travelers should be able to use them to familiarize themselves
with a destination, or that they are already part of travel-related
information systems, as is the case with the data set from
Foursquare and the data sources in the factual category.

To obtain a balanced collection of destinations on all
continents that would reflect the cultural differences of the travel
destinations, we initially gathered an extensive list of prominent
cities such as capital cities or relevant travel destinations.
Unfortunately, not all cities could be characterized with all
methods. Several destinations were not included in Nomad List
and OpenStreetMap did often not have proper city boundaries
for several cities in Asia and Africa. Our proposed approaches
to make the destination characterization methods comparable,
however, require complete data for each city. Thus, our data
set for this study comprises a set of 140 cities, which are those
that could be characterized with all data sources. Looking at
Figure 1, the distribution of destinations on the planet is missing
cities in Central Asia and Africa that had to be excluded due
to this requirement, otherwise the distribution would roughly
correspond to the world’s population density. The full list is
available in the replication pack.

Throughout this paper, we work with ranked lists of the cities
most similar to one city. Such lists are based on one data source
and start with the base city followed by the 139 other cities. This
means that for each data source there are 140 such ranked lists. In
the following, we describe the data sources and howwe computed
the similarity metrics between the cities.

3.1. Venue Data
The first type of data we used to characterize destinations is
venue-based data. Intuitively, the variety of venues one can visit
at a destination might reflect the experience of a traveler. The
underlying assumption is that a destination can be characterized
using the distribution of all its touristic venues. The following
characterization methods rely on the assumption that the larger
the variety of, e.g., restaurants or cultural sites of a city is, the
better the score should be in these categories. This also means
that we do not aim to assess the quality of the venues, since most
venues do not come with quality indications such as ratings.

3.1.1. Foursquare
Foursquare is a LBSN that offers a rich, well-structured taxonomy
of venue categories and also allows reasonably generous API rate
limits to crawl data from it. Using the “search venues” endpoint2,
we were able to obtain a collection of each city’s venues using
a recursive algorithm that exhaustively queried all Foursquare
venues specified within a bounding box. Using this method, we
collected 2,468,736 venues in 140 cities that had at least 5,000
venues each.

To create the specific set of lists, we needed to establish an
association between the cities and the venue types. Foursquare
provides a well-defined venue category hierarchy3, which allows
us to map every venue to a top-level category, e.g., Science

2https://developer.foursquare.com/docs/api/venues/search
3https://developer.foursquare.com/docs/resources/categories

Museum → Museum → Arts & Entertainment. We use the
tourism-related subset of these categories to create a feature set
that enables us to characterize the cities, shown in Figure 2. These
features can be conceptualized as a multi-dimensional vector
space, however, to perform reasonable comparisons the data
must be normalized to make large and small cities comparable.
By normalizing the number of venues in each category using the
total venue count of the city, we obtain the percentage of each
category in the city’s category distribution. This approach relies
on the assumption that a larger number of venues in a certain
category improves the touristic experience while visiting it. A
simple example helps in demonstrating this: The cities in our data
set have a certain distribution of venue categories; if the number
of venues labeled with “Arts & Entertainment” in a city is on the
high end of that distribution, it can be assumed that it likely offers
a larger number of opportunities and should, thus, get a higher
score in this category. Figure 2 shows the category distributions
of a few cities of different continents and sizes that we have
chosen as illustrative examples. Note that, unlike in the data
model, this visualization is not normalized with respect to the
number of venues. Examining Figure 2, one can see that many
cities have a somewhat similar distribution of venue categories,
where “Food” and “Shops & Service” dominate in general. To
eliminate this effect, we apply min-max scaling to the calculated
percentages. This way we obtain the final city scores for each of
the features, which take values in [0, 1].

Using this method, we constructed two data models from
Foursquare. The first on the four top-level categories –
“Arts & Entertainment,” “Food,” “Outdoors & Recreation,” and
“Nightlife” – and another one using the 337 second-level
categories as aggregation target.

3.1.2. OpenStreetMap
With OSM, we used a similar approach as with Foursquare.
To obtain all map features, we set up our own OSM server
and developed a querying client to obtain the entities within
the city relations. The map entities are again hierarchically
categorized on three levels4. The 27 top-level categories are
subdivided into several subcategories which finally contain 1,032
types of map features. For example, the “amenity” category has
several subcategories, such as “Healthcare,” “Transportation,” and
“Entertainment, Arts and Culture.” These subcategories again
contain numerous entities, uniquely identified by the full path,
for example “amenity:entertainment/arts” and “culture:cinema.”
As opposed to the Foursquare characterization, we also had exact
city boundaries, so we could compute the area of the destination.

Leveraging this hierarchy, we again built a top-level model,
which collapses the map entities to tourism-related categories:
“tourism,” “leisure,” “historic,” “natural,” and “sport” as well as
the venue count and the area. The second-level model comprises
entities of 14 tourism-related subcategories as well as the venue
count and area.

4https://wiki.openstreetmap.org/wiki/Map_Features
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TABLE 1 | Overview of the data sources for characterizing cities.

Type Name Category Data objects Number of objects Acronym

Venue Foursquare LBSN Venues 2,468,736 FSQ

Data OpenStreetMap Collaborative map Map entities 3,106,856 OSM

Textual Wikipedia Collaborative encyclopedia Documents 1,150,719 words WP

Wikitravel Travel-related Wiki Documents 984,777 words WT

Google travel Travel information Documents 56,499 words GT

Factual Webologen Travel information provider City features 49 tourism facts/city TF

Nomad list Collaborative travel information City features 8 features / city Nomadlist

Seven factor model Scientific characterization Derived factors 7 factors / city 7FM-2018

Geographic location Geographic location Latitude, longitude 1 coordinate pair / city GEO

FIGURE 1 | Geographic distribution of the characterized cities. Map data © OpenStreetMap contributors, see https://www.openstreetmap.org/copyright.

3.2. Textual Data
Using document similarity assessments such as the Jaccard
Distance, Word2Vec embeddings and a transformers-based
approach on texts describing a destination, we are able to
compute pairwise similarities between the cities. As textual
basis, we used three online resources: Wikipedia, Wikitravel, and
Google Travel.

3.2.1. Wikipedia
We used the articles of the English Wikipedia5 about the 140
cities to compute the similarity between cities. The mean length
of the articles about our destinations was 8,219 words.

5https://en.wikipedia.org

3.2.2. Wikitravel
This collaborative travel guide6 provides useful information
about touristic destinations. It is free of charge and offers detailed
information about possible activities, recommended restaurants,
and general advice for traveling. Some cities have sub-pages about
their districts, however, we have only used the main articles to
maintain comparability. The mean length of the articles was
7,034 words.

3.2.3. Google Travel
Another popular platform for learning about travel destinations
and planning trips is Google Travel7. Based on actual traveler
visits and local insights, the platform provides a list of most

6https://wikitravel.org
7https://www.google.com/travel
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FIGURE 2 | Venue category distribution for a subset of cities.

iconic attractions. In this work, we used the short description
of each attraction at a destination. For example, the description
of Schönbrunn Palace in Vienna is “Baroque palace with opulent
interiors.” Since there are often myriads of attractions in a city,
we concatenated these descriptions into one document to obtain
the overall description of the considered city. This resulted in one
document per city with a mean length of 404 words.

3.2.4. Text Processing and Similarity Measures
For the raw text of the three text sources, we used the same pre-
processing steps. After theHTML tags were removed, the text was
put in lower case and stripped of all special characters, such as line
breaks and punctuation marks. Then, the terms were tokenized
using a standard word tokenizer and the stop words eliminated
to reduce noise.

For the Jaccard models, the document term matrix was
computed based on the cleaned text and then the similarity
between the cities was computed using the Jaccard Distance.

We use pre-trained Word2Vec and BERT-based models
as zero-shot encoders to embed the documents. In case
of the Word2Vec-based models, we aggregated the pre-
trained word embeddings using mean-pooling to obtain the
document embedding and used the cosine similarity to compute
the similarity. We utilize the open-source library spaCy8

and in particular the english-core-web-large model, which
outputs 300-dimensional vectors and is trained on OntoNotes
5 (Weischedel et al., 2011), ClearNLP Constituent-to-Dependency
Conversion (Choi et al., 2015), WordNet 3.0 (Miller, 1995), and
GloVe Common Crawl (Pennington et al., 2014). This means,
that there was no need to fine-tuning the models; the default
hyperparameters of Spacy could be re-used.

The BERT-based sentence encoder (Yang et al., 2021) we
employed was also pre-trained on Wikipedia and Common
Crawl9 to encode the documents, thus, again making further

8https://spacy.io
9https://commoncrawl.org

fine-tuning of (hyper-) parameters obsolete. We use the cosine
similarity to rank the cities. Thus, we obtained nine textual
ranked lists: three data sources× three similarity measures.

3.3. Factual Data
The third category is factual data with a focus on travel and
tourism. This group comprises data sources that had readily
available facts about destinations, such as rated features or geo-
social features relevant for travelers. However, this does not imply
that the quality of the data is beyond scrutiny.

3.3.1. Webologen Tourism Facts
The former German eTourism start-up Webologen compiled a
data set of 30,000 cities, which are described by 22 geographical
attributes and 27 “motivational” ratings. The geographical
attributes have binary values indicating the presence or absence
of various geographical attributes: sea, mountain, lake, island,
etc. The motivational ratings were assessed using proprietary
methods at Webologen, taking into account infrastructure,
climate, marketing, and economic data. With a score between
0 and 1, the motivational ratings, such as nightlife, wellness,
shopping, nature and landscape, measure the quality of those
touristic aspects at a destination. The higher the value, the better
this aspect is for a traveler. Given this multitude of features, this
data set provides a very detailed image of a tourism destination.
Since there are multiple types of data (i.e., binary and interval
scale), we use the Gower Distance (Gower, 1971) to compute the
similarity for the city rankings.

3.3.2. Nomad List
As opposed to Webologen’s approach, Nomadlist10 employed
a mixture of own data modeling and crowdsourcing to
characterize cities for their suitability for digital nomadism.
Built as a specialized platform for this community, it offers
rich information about the cities in its database. We crawled

10https://nomadlist.com
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the publicly available data and were able to obtain the
following features for each city: “Nomad Score,” cost, fun, life
quality, air quality, healthcare, happiness, and nightlife. Since
these features were already available in a normalized interval
format, we used the Euclidean Distance to compute the city
similarity rankings.

3.3.3. Seven Factor Model
This model was previously developed by Neidhardt et al.
(2014, 2015) to capture the preferences and personality of
tourists, but also to project touristic recommendation items
such as destinations and attractions. Both user preferences
and items are embedded into the same vector space using
seven orthogonal dimensions: Sun and Chill-Out, Knowledge
and Travel, Independence and History, Culture and Indulgence,
Social and Sports, Action and Fun, Nature and Recreation. These
factors were derived from a factor analysis of the well-known
“Big Five” personality traits (Goldberg, 1990) and 17 tourists
roles of traveler behavior (Gibson and Yiannakis, 2002). In
subsequent work, they showed that tourism destinations can
be mapped onto the Seven Factor Model using tourism facts
based on the Webologen data set (Sertkan et al., 2019). We
used the same mapping mechanism to reproduce the Seven
Factor representations for each destination in our data set.
Given that the resulting representation is a seven-dimensional
vector [0, 1], we use the Euclidean Distance to compute the city
similarity rankings.

3.3.4. Geographical Distance
The geographic position of the destinations certainly also plays
a role assessing the similarity among them. Intuitively, cities
close to each other might have a higher similarity than those
far apart. While this model might not provide much insight
into the characterization of destinations, it still serves as an
interesting baseline in assessing the similarities of other methods.
We used the Haversine Distance (Robusto, 1957) based on the
cities’ geographic coordinates to compute this distance.

4. COMPARING RANKED LISTS

Each data source described in the previous section establishes
a pairwise similarity for all cities. Selecting a city, we can rank
all other cities based on these similarity scores. We want to
compute metrics that capture the similarity of ranked lists,
thus, revealing which data models capture a similar concept.
In literature, one can find various methods to compute the
agreement of two ranked lists. They are also known as rank
“correlation” methods and essentially capture a notion of
similarity between the ordering of items within two lists. For
complete permutation groups, i.e., both lists have the same items
and the same length, there are several established metrics, such as
the Kendall’s Tau Distance (Kendall, 1970), Spearman’s Footrule
Distance (Spearman, 1906), and Spearman’s ρ (Spearman, 1904).
Based on these measures, myriad other methods have been
proposed to cater the needs of more specialized domains and
other assumptions.

To precisely describe the methods, we briefly discuss our
assumptions and introduce a terminology that is inspired
by Fagin et al. (2003). Throughout this work, we consider ranked
lists of 140 cities, which are our fixed domain D. We analyze
several data models, which express their similarity in form of
ranked lists rl ∈ RL, of which we ultimately would like to find
which would be most suitable to be employed in a content-based
recommender system. Each ranked list is a permutation of the set
of permutations SD of D. rl(i) denotes the rank of a city i in the
ranked list rl. rl(1) is always the city based on which the model
was created.

4.1. Rank Agreement of Complete Ranked
Lists
The simplest problem to determine the correlation between
two ranked lists is comparing two permutations (Kendall, 1970;
Diaconis, 1988). We will briefly recapitulate two common
measures for this, as they are the foundation of our proposed
metrics for the agreement of top-k lists with a full permutation.

4.1.1. Kendall’s Tau Distance
It is defined as the minimum number of pairwise adjacent
transpositions needed to transform one list into the
other (Kendall, 1970). It counts the number of pairs of
items P(i, j), such that rl1(i) < rl1(j) and rl2(i) > rl2(j). This
is equivalent to the number of swaps required for sorting a list
according to the other one using the Bubble Sort algorithm (Lesh
and Mitzenmacher, 2006).

T(rl1, rl2) =
∑

i,j∈P

T̄i,j(rl1, rl2),

where P = {{i, j}|i 6= j and i, j ∈ D}, and T̄i,j(rl1, rl2) = 1 if i and j
are in the opposite order, and 0 otherwise.

4.1.2. Spearman’s Footrule Distance
Intuitively, this metric is defined over the distance of the ranks of
the same item in the two lists (Spearman, 1906).

F(rl1, rl2) =

n∑

i=1

|rl1(i)− rl2(i)|

Despite being conceptually different it has been shown
that in practice, both metrics yield similar results for full
permutations (Kendall, 1970). In our evaluation in Section 6,
we will use them to determine which data models capture
similar underlying concepts and they form the foundation for our
proposed rank agreement methods of incomplete rankings.

4.2. Rank Agreement of Incomplete
Rankings
In their original definition, the rank agreement methods
introduced in Section 4.1 are defined over two complete
permutations of the same finite list. This assumption does not
generally hold, since we were unable to characterize all cities with
all data sources resulting in missing characterization of cities.
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We sidestepped this problem by considering only a subset of
destinations that could be characterized with all methods.

4.2.1. Problem Formulation
The outcome of the expert study (cf. Section 5) is a collection of
top-k lists. Each top-k list contains the k ≥ 10 most similar cities
to the city the expert characterized. To find out which data model
is the most similar to the experts’ opinions, we need to modify the
rank agreement methods to cope with this scenario. Concretely,
this means that we need to compute the rank agreement between
an expert’s top-k ranking τ , where 10 ≤ k ≤ 139 and a complete
permutation of length 140. To the best of our knowledge, we are
first to systematically analyze this special case.

4.2.2. Approaches in Literature
In literature, similar problems have been tackled in the area
of biostatistics and information retrieval. Critchlow was first
to establish a theoretical basis for such rankings (Critchlow,
1985), assuming a fixed domain of items D. One of the most
comprehensive papers on the rank agreement of top-k lists is the
one of Fagin et al. (2003). Unlike Critchlow and us, they did not
assume a fixed domain of items and, thus, proposed very general
distance measures for top-k lists that are not directly useful to
our scenario. The authors also proved that in the general case, the
measures for top-k lists reside in the same equivalence class and
showcased further applications of these measures in the context
of the rank aggregation problem (Dwork et al., 2001; Lin and
Ding, 2008).

An important property of Kendall’s Tau and Spearman’s
Footrule is that all ranks are treated equal, i.e., they do not
take the potentially non-uniform relevancy of top-ranked or
bottom ranked into account. In many domains, the assumption
of uniform relevancy does not hold, thus, several other measures
have been proposed. Iman and Conover (1987) proposed a
concordance measure that prioritizes rank agreements at the
top of the rankings, while Shieh proposed a weighted variant of
Kendall’s Tau, where the analyst can prioritize either low-ranked
or high-ranked items (Shieh, 1998). The Average Precision (AP)
correlation is another importantmeasure in information retrieval
that more heavily penalizes differences of top-ranked items
compared to Kendall’s Tau (Yilmaz et al., 2008).

In our domain at hand, the issues motivating the
aforementioned papers are not present. Since our top-k
lists are very short, we do not need to come up with additional
weights based on the position within the list. Furthermore, given
the underlying data sources and similarity measures used, the
probability of tied ranks in the lists is very low so that this case
can be neglected as well (Urbano and Marrero, 2017).

The alternative to dealing with the rank agreement problem of
a top-k list and a permutation would be to disregard the inherent
order of the ranked list and view it as a set. This would open
the door to interpret each element of the list as an independent
query, on which traditional information retrieval metrics can
be computed such as Precision or the Reciprocal Rank. By
repeating this process for each item, one could assess the quality
of the expert’s selection just as it is frequently done with search
engines or recommender systems resulting in metrics, such as the

Precision (Precision@K) or the Mean Reciprocal Rank (MRR).
Instead, we aim to retain the ranking information by the experts
and discuss various methods to compute metrics that operate on
the ranked list semantics.

4.2.3. Proposed Methods
Under the assumptions that 1) we have a fixed domain of items,
and 2) only the relative ranking in the ranked lists matters, i.e.,
the concrete values of the agreement are not of importance,
there is the option to randomly fill the missing items of a top-
k list τ with the remaining items {D − τ } (Ekstrøm et al.,
2018). This essentially constructs two permutations, which can
then be assessed with the standard metrics from Section 4.1. By
repeating this process a large number of times, the effect of the
random items at the tail of the list is eliminated and, finally, the
ranking is computed based on the mean value of all iterations.
This simple idea would be a permissible option for our scenario;
however, it requires much overhead computation and does not
provide concrete values for the rank agreement, since only the
top k items contribute to the signal, while the remaining ones
are pure noise.

Thus, an analytic solution for this problem would be
preferable. In our scenario, we can always assume that we have
a fixed domain of items, since each data model will be able to
produce similarity scores between all items. Thus, our problem
is similar to the one Fagin et al. resolve in their approach, i.e.,
comparing one top-k list τ of length k with a ranked list rl (Fagin
et al., 2003, Section 3.1), however, due to the fixed domain
assumption, we only need to discriminate three cases. This results
in a simpler problem without any room for uncertainty that
might arise from having items that are in one top-k list, but not
in the other.

• Case 1: i ∈ τ , and rl(i) ≤ k (the item is in the top-k list and the
rank of the item in the permutation is at most k)

• Case 2: i ∈ τ , but rl(i) > k (the item is in the top-k list but the
rank of the item in the permutation is greater than k)

• Case 3: i /∈ τ (the item is not in the top-k list)

Using this insight, we propose variants to Kendall’s Tau and
Spearman’s Footrule distance for top-k lists.

• Modified Spearman’s Footrule Distance

If a city is in the top-k list (Case 1 & 2), we can compute the
distance between τ (i) and rl(i) as before, since all information
is still available. In Case 3, we do not add any penalty, since we
have no information about which penalty should be applied.
Thus, F′(τ , rl) is simply the footrule distance between all
elements of τ and the corresponding elements in rl.

F′(τ , rl) =

k∑

i=1

|τ (i)− rl(i)|

Fagin et al. (2003) discuss another variant, F(l), the footrule
distance with location parameter l, where they set l =

k + 1. This is not applicable in our scenario, since we
have a fixed domain and have already applied a penalty for
each element τ .
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• Modified Kendall’s Tau Distance

For a modified Kendall’s Tau Distance, we again count the
number of discordant pairs between τ and rl. This situation is
similar to the modified footrule distance, as only the penalties
from the elements of τ are applied.

T′(τ , rl) =
∑

i,j∈P

T̄i,j(τ , rl),

where P = {{i, j}|i 6= j and i, j ∈ D}, and T̄i,j(τ , rl) = 1 if i and
j are in the opposite order, and 0 otherwise.

Table 2 at the end of the following section exemplifies howwe use
these derived rank agreement metrics adapted to our scenario to
compare top-k lists with complete permutations in Section 6.2.

5. ELICITING A DESIRED CONCEPT
THROUGH EXPERT OPINIONS

Now, we want to find out which data source is best suited for
the domain of destination recommendation. To do so, we have
developed a web-based expert study to capture a very specific
concept we are interested in: “similar experience when visiting
cities as a tourist.” To make this latent concept explicit, we asked
experts from the travel and tourism domain to give their opinion
on this matter, by selecting the most similar destinations to a
given city.

In a pilot study, we realized that even for experts, the task to
rank the k most similar destinations from a list of 140 cities in
world be challenging. Therefore, to obtain a sufficient number
of characterizations per city, we restricted the characterization of
our expert study to 50 prominent cities. Naturally, we would have
preferred to perform a characterization of all cities in the data set,
but given that the experts’ time was limited, we focused on the 50
cities, which we expected our experts to be most familiar with.

5.1. Expert Survey Instrument
We now describe the user interface of the online survey
application and elaborate on the design choices that influenced
the system.

5.1.1. Landing Page
The experts were contacted via email and, when they followed
the link, they were presented with a landing page, which
contained general instructions and the contact data of the
authors. They were allowed to choose either from the 50 cities to
be surveyed, or in the case of local experts a predefined city they
should characterize.

5.1.2. City Similarity Ranking Task
After selecting the city to be characterized, the experts were
presented with their task, as shown in Figure 3. First, they were
asked to provide their familiarity with the given city on a five-
point named Likert Scale. Then the concrete task followed, which
was to be completed by ranking the cities using three columns.
The left “Most Similar Cities” column was initially empty. The
middle column contained a precomputed candidate list of 30
cities, that were the most similar to the base city according

to the aggregation of all methods. The decision to introduce
this column – as opposed to a two-column solution – was not
taken lightly. It was necessary, though, since going through an
unordered list of 139 items is not practical for human experts,
as it would have taken a long time depleting their concentration.
For this reason, we added this shortlist in a randomized order
to ease the task for the experts without introducing bias in
favor of a specific data source. We chose 30 as length of this
shortlist, since this is three times longer than the minimum of
10 cities that needed to be dragged to the left result column.
These precautions prevent biasing the results toward a specific
datamodel. Finally, the right column contained all remaining 109
cities in alphabetical order, to provide the experts the possibility
to incorporate them into their ranking.

When the experts finished dragging at least 10 cities to the
left column and indicated their familiarity with the base city,
a prominent “Submit” button became available. The minimum
number of 10 cities was chosen to give the partial rank agreement
methods sufficient information to compute meaningful results
and to limit the time it takes for the experts to complete a city
ranking. It also corresponds to the reality of information retrieval
or recommender systems, where only few highly relevant items
are of importance. When clicking the button, the results were
not yet finally submitted; instead, a modal pop-up window
appeared, where the users were asked to adjust the ranking of
their current shortlist: “Please adjust the order of the cities in this
list before submitting.” We decided to introduce this additional
step, because when we observed test subjects in our pilot runs,
it became apparent that some users simply dragged the cities
into the left column without taking much care of the internal
ordering of the left column. By explicitly reminding the user to
revise this result, we aimed to improve the ranking, as otherwise
the left column might have had set semantics instead of a
ranked list semantics.

5.2. Sampling of Tourism Experts
To obtain a high-quality ranking data set, we reached out
to experts having relevant experience with global tourism in
three ways: first, we distributed leaflets to tourism experts
and researchers at the ENTER eTourism Conference held in
January 2020 in Guildford, United Kingdom. Second, we directly
contacted representatives and researchers on the tourism boards
of the 50 cities and their respective regions. Our reasoning
was that these experts in the local tourism boards know best
whom they compete with, and we hope this helped to establish
higher diversity of where the participants of our study originated
from. This group did receive a special link to the survey, which
forced them to first complete the ranking of their local city,
before having the chance to rank other cities as well. Finally, we
also shared the user study with the TRINET Tourism Research
Information Network11 mailing list of accreditedmembers of the
international tourism research and education community.

We are confident that this rigorous sampling method ensured
that both the quality and the quantity of the responses are very
high, despite being a web-based study conducted during the
Covid-19 Pandemic.

11https://tim.hawaii.edu/about-values-vision-mission-accreditation/trinet/
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TABLE 2 | Three expert opinions on the city of Munich are contrasted with the WP-jaccard ranked lists. The ranking of Expert 1 is closer to the ranked list than the two

others.

WP-jaccard Expert 1 Expert 2 Expert 3

1 Vienna Salzburg Vienna Frankfurt

2 Dusseldorf Vienna Milan Brussels

3 Leipzig Cologne Dusseldorf Heidelberg

4 Berlin Graz Paris Budapest

5 Frankfurt Milan Boston Hamburg

6 Heidelberg Edinburgh Luxembourg Barcelona

7 Cologne Dusseldorf Berlin Vienna

8 Nuremberg Hamburg Cologne Prague

9 Salzburg Amsterdam Vancouver Berlin

10 Copenhagen Brussels Dubai Rome

F ′(τ ,m) x = 233.67 146 292 263

T ′(τ ,m) x = 16.33 14 15 20

FIGURE 3 | User interface of the expert survey.

5.3. Data Preparation and Cleaning
In total, we received 164 destination rankings from the survey.
Since it was a web study, we took the following precautions to
protect the data quality against potential low-effort submissions:
We excluded responses that were completed in shorter time than
1 min and all those who did not adjust the internal ordering

within the results column at all. Furthermore, we removed
responses where the experts indicated their familiarity with the
city on the “Very unfamiliar” or “Unfamiliar” levels. Looking
at the number of completed rankings by destination, we have
28 cities with at least two submissions. Excluding the rankings
of cities that were only ranked once, the results in Section 6.2
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are based on the final 88 rankings of 28 cities coming from 37
different IP addresses. The characterizations done by the experts
are available in the supplementary material.

The median time the experts needed to rank one city was 3m
14s and the number of re-rankings in the left results column
had a median value of 4. Most submissions (74) comprised the
minimum number of 10 most similar cities; eleven characterized
11–12, and the remaining three rankings were of length 13–
14. The top five most characterized cities were London, UK;
New York City, NY, USA; Miami, FL, USA; Barcelona, Spain;
and Nice, France.

5.4. Example
To concertize the approach, we show the experts’ rankings for
the city of Munich in Table 2. The first column shows the first 10
cities of the Wikipedia-jaccard list. To obtain the score of a data
model with respect to the expert’s opinion, we compute the two
modified rank agreement metrics between the ranked list and the
experts’ partial rankings. The overall score is the mean value of
the rank agreement metric of all experts and all cities. The lower
part of the table shows individual values and the aggregation:
In this example, the opinion of Expert 1 is quite close to the
ranked list according to both metrics. According to the modified
Kendall’s Tau, Expert 2’s ranking is closer than Expert 3, however
themodified Footrule distance is lower for Expert 3. This is due to
the potentially exotic choices of Expert 2 to include Dubai (rank
48 in the ranked list), Vancouver (rank 54), and Boston (rank 84),
which are heavily penalized in Footrule distance.

The final score of a data model according to one of the
metrics is computed by the mean value of all expert rankings
over all cities.

5.5. Expert Ranking Behavior
To provide some insights into the expert opinions, we first
tabulate the number of cities that came from the 30 destination
shortlist against the cities that were in the right column of
Figure 3. Overall, the expert rankings comprised 80% of cities
from the shortlist, whereas they still included 20% from the
arguably more arduous longer list of 109 alphabetically sorted
items. We see this as a confirmation that the recruited experts
were serious about their task and did not only follow the ranking
provided by the shortlist. Nevertheless, the shortlist might still
have influenced the reviewers in a way that we cannot quantify
using this study design.

In the right column of Table 3, we quantify the level of
agreement among the experts. Since this ranking task is different
from traditional rating data, where the agreement could be
quantified using metrics such as Fleiss’ kappa (Fleiss, 1971), we
use a set-theoretic measure to quantify the agreement of the
experts for each city. We compute the agreement as the pairwise
size of the intersection over the union of two annotators. The
reported number is the mean value over all pairs to make results
of cities with a different number of annotators comparable. The
agreement ranges between 11% in the case of Brussels, Mumbai,
and Osaka, while it reaches up to 54% in the case of San Diego.
On average, the experts’ lists had an overlap of about 25%, which
we consider as quite good, given that they chose at most 14

TABLE 3 | Expert annotators behavior: amount of cities selected from the shortlist

vs. the full alphabetical list and percentages of the same cities selected.

City name Alphabetical list % Shortlist % Expert agreement %

Amsterdam 20.00 80.00 17.65

Bangkok 30.43 69.57 27.78

Barcelona 40.00 60.00 12.57

Berlin 0.00 100.00 36.51

Brussels 55.00 45.00 11.11

Chicago 30.00 70.00 17.65

Copenhagen 22.73 77.27 15.79

Hamburg 23.33 76.67 27.78

Hong Kong 0.00 100.00 40.00

London 8.06 91.94 21.92

Madrid 18.00 82.00 29.50

Miami 48.00 52.00 26.59

Moscow 10.00 90.00 25.00

Mumbai 20.00 80.00 11.11

Munich 23.33 76.67 17.92

New York City 13.33 86.67 24.39

Nice 28.85 71.15 14.41

Osaka 10.00 90.00 11.11

Oslo 0.00 100.00 37.50

Paris 9.38 90.62 31.02

Rome 20.00 80.00 21.69

Saint Petersburg 43.33 56.67 17.92

San Diego 35.00 65.00 53.85

Seville 3.12 96.88 46.98

Singapore 11.63 88.37 30.72

Stockholm 12.50 87.50 32.83

Vancouver 10.00 90.00 26.32

Vienna 18.92 81.08 37.16

Overall 20.18 79.82 25.88

out of 139 other cities. Agreeing on about one-fourth of the
most similar destinations both shows that there is clear common
ground among the experts, but also that an intangible concept
such as the touristic experience cannot be determined in a purely
objective way. Finally, it should be noted that our proposed rank
agreement metrics deal well with potentially diverging opinions
about a concept.

6. RESULTS

We evaluate our work in three ways: first, an exploratory
approach using pairwise comparisons of the ranked lists to
capture commonalities between them. Second, the comparison
of each individual data model against the top-k lists that
encode the expert-elicited concept, and, finally, the results of
black-box optimization of selected data sources against the
expert-elicited concept.
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FIGURE 4 | Crosswise-analysis of all data models using Kendall’s Tau method. The entries are sorted using hierarchical clustering; the dendrogram reveals families of

data sources. The colors are scaled according to Kendall’s Tau with the bright yellow corresponding to 0 (the diagonal) and dark red representing no correlation

(Random).

6.1. Assessing the Similarity of Data
Sources
To reveal correlations, we compare our data sources for each
city against each other using the rank agreement metrics for full
permutations. In this particular case, we chose Kendall’s Tau,
but we could have likewise chosen Spearman’s Footrule distance,
which gives a similar picture. The heatmap in Figure 4 visualizes
the mean pairwise distances among all ranked lists derived from
the data models. The sort order was adjusted using hierarchical
clustering using the Euclidean Distance, which is also the basis
of the dendrogram on the top. The values in the cells are the
Kendall’s Tau distance, rounded to integers.
We now describe the resulting clusters. RANDOM is clearly
separated from all other data models, since it has no correlation
to any of them. The first group is the family of textual data
sources together with GEO. The respective ranked lists (Jaccard,
Word2vec, and BERT) are based on the same data source and
closest to each other. Within this family, one can also see that
those based on Google Travel are a bit further away from the
remaining ones. We attribute the very close grouping of GEO
with the ones from Wikipedia and Wikitravel to the amount

of geographic information that is encoded within the articles
describing the cities. Nomadlist seems to be unrelated to any
other data source in particular, but unlike RANDOM still has
a low correlation to all other data models. The remaining three
clusters are the ones of Foursquare, OSM, and the ranked
lists based on the Webologen data (TF). The high agreement
between TF and 7FM-2018 is interesting, because it shows
that the tourism facts are still manifested in the Seven Factor
Model of the destinations. This analysis is a very compact
representation of the similar concepts behind the respective data
sources and their instantiation. Thus, we want to outline some
further observations:

It seems that the choice of document similarity, i.e., Jaccard

distance vs. cosine similarity based on word vectors, is more

important in the Google Travel documents than in theWikitravel

or Wikipedia, which can be attributed to the topic, but also to

the length of documents. Google Travel descriptions are around
400 words compared to 7,000 in the case of Wikitravel and
8,200 in Wikipedia.

When we compare the similarities between the top-level
aggregation of OSM and Foursquare to their second-level
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variants, the distances are quite small between the two OSM
aggregations, however, relatively large between the Foursquare
aggregations. Revisiting the data, this can be explained with the
very huge branching factor of the Foursquare’s category tree,
where the four top-level features are expanded into 337 second-
level features. In the case of OSM, the four top-level categories
are only expanded to 14 second-level features. This makes the
Foursquare data models more dissimilar to each other than the
ones from OSM.

This analysis was interesting to get a broad overview of
the data sources and their commonalities. The hierarchical
clustering grouped the data models in well-comprehensible
families; however, the pairwise comparisons also revealed that
some models that one could have expected to be quite similar,
such as the top-level and second-level aggregation of Foursquare,
are indeed not that similar. The benefit of this analysis is that
an analyst can quickly recognize whether data models capture
similar concepts to make a decision if they can be interchanged
in case of them being highly correlated.

6.2. Comparison With the Touristic
Experience
Finally, we get to answer which characterization method would
be most suited to use within a content-based information
retrieval system such as a destination recommender. Having
elicited the concept of “similar experience when visiting cities as
a tourist” with the expert study, we can now compare the partial
rankings of the experts with our characterization methods. We
use the two proposed methods from Section 4 that compare a
full permutation with a top-k list. Furthermore, we also tabulate
the Mean Reciprocal Rank (MRR), and Precision to comparison
baselines. Precision@1 was very near to 0 for all characterization
methods. Note that the MRR and Precision do not capture the
internal rankings provided by the experts. To compute them,
we treated the rankings provided by the experts as a set and
aggregated the metrics over all cities included in the lists, treating
each element as an individual query.

Note that the expert study is only one way to determine such
a latent concept. In other domains, there are potentially different
ways to elicit a baseline, but we argue that it is commonplace that
a latent concept is only partially observable with respect to the set
of rated items and the list of most similar items per item.

Generally, the results in Table 4 confirm the picture that was
already painted in Figure 4: the versions that have shown to
be similar there also rank similarly in the comparison to the
expert ranking. The textual data models derived fromWikipedia,
Wikitravel and Google Travel, as well as the geographic location
performed best, followed by the 2nd-level aggregation of
Foursquare, and the factual ones. OSM and the Foursquare top-
level categories conclude the ranking with the random model
unsurprisingly performing worst.

The general stability of the ranking among the rank agreement
metrics is high. This should not come as a surprise, since the
metrics do capture the same concept; thus, we can confirm the
findings of Fagin et al. (2003) that distance measures within the
same equivalence class behave similarly. The absolute values of

the data sources and the random baseline are quite close in some
metrics, which we attribute to the small signal-to-noise ratio in
the data: the rankings have only been computed on the basis of
10 – 14 items out of 140. Comparing the results to the MRR and
Precision baselines, the overall trends are also similar. We again
attribute this to the low signal-to-noise ratio in the evaluation of
top-k lists, however, one can already see that, for example, the
geographic distance becomes less successful when the ordering
of the experts’ lists is not taken into account.

The fact that the most successful data models according to
the rank agreement with the expert study stem from freely
available textual descriptions of the destinations, as well as the
geographic location, is an interesting finding. The good result of
the geographic location can be explained using the intuition that
nearby destinations are often within a similar culture and climate
and, thus, also have a similar experience when visiting them
according to our expert rankers. The articles in the Wikipedia
and Wikitravel also do a good job of emulating the expert-
elicited concept. Many travelers already use such sources to
inform themselves about potential destinations and we attribute
the consistently higher ranking of the Wikipedia over Wikitravel
to the different target audiences. As a travel guide, Wikitravel is
more oriented toward travelers already at the destination seeking
practical travel information such as restaurant suggestions, while
the Wikipedia offers a more comprehensive overview of the
culture, history, and attractions of a city.

We now can also see that the differences between the
two document similarities, cosine similarity based on word
vectors and the Jaccard Distance, do matter with respect to
the baseline. For the shorter Google Travel documents, the
word embeddings outperformed their counterpart, whereas the
Jaccard Distance was slightly better for the longer Wikipedia and
Wikitravel texts.We attribute the lesser performance of the BERT
transformer encoder architecture due to the fact that the touristic
information is mostly encoded within the terms, thus, using
full contextual embeddings does not benefit the performance
of the characterization.

When looking at the expressiveness of the data sources, we
see no connection between the amount of information that
is explicitly encoded within the features of a data model and
its performance. This suggests that more information is not
needed to build a successful data model, but features that are
of high quality with respect to the target concept. The highly
successful geographic distance only consists of two floating
numbers [−180; 180], but of course, implicitly encodes much
relevant information for travelers such as the culture and climate
of a city. As we will see in the next section, this analysis can
be used to improve the performance of some data models by
dropping features that are not useful toward the target domain.

Why were the factual and venue-based destination
characterization methods, of which some are already employed
in destination recommender systems (Sertkan et al., 2019;
Myftija and Dietz, 2020) outperformed? The reason lies within
the very specific concept that we elicited using the expert survey.
The factual and venue-based data models could not have been
optimized toward the concept of “touristic experience” based
on the insights from the survey, since when constructing them,
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TABLE 4 | Ranking of the different data sources using the modified rank agreement methods for top-k lists as well as MRR and Precision.

Spearman’s FR top-k Kendall’s Tau top-k Mean Reciprocal Rank Precision@5 Precision@10

WP-jaccard 297.011 GEO 18.284 WP-jaccard 0.101 WP-word2vec 0.186 WP-jaccard 0.304

GEO 304.091 WP-jaccard 18.750 WP-word2vec 0.101 WT-word2vec 0.182 GEO 0.302

WP-word2vec 318.080 WP-word2vec 19.068 WT-word2vec 0.100 WP-jaccard 0.178 WT-jaccard 0.297

WT-word2vec 322.489 WT-jaccard 19.227 FSQ-2nd 0.094 GEO 0.162 WT-word2vec 0.297

WT-jaccard 330.057 WP-BERT 19.568 WP-BERT 0.093 WT-jaccard 0.161 WP-word2vec 0.291

FSQ-2nd 330.420 GT-word2vec 19.852 GEO 0.093 FSQ-2nd 0.154 WP-BERT 0.279

WP-BERT 343.307 WT-word2vec 20.011 WT-jaccard 0.093 WP-BERT 0.147 FSQ-2nd 0.264

GT-word2vec 346.955 FSQ-2nd 20.625 GT-word2vec 0.088 GT-word2vec 0.139 GT-word2vec 0.263

TF 395.841 WT-BERT 20.818 WT-BERT 0.081 WT-BERT 0.139 WT-BERT 0.243

GT-BERT 396.375 TF 21.409 TF 0.075 TF 0.113 TF 0.231

WT-BERT 402.159 GT-BERT 21.477 GT-BERT 0.074 GT-BERT 0.103 GT-BERT 0.202

GT-jaccard 408.943 GT-jaccard 21.864 GT-jaccard 0.067 OSM-2nd 0.099 OSM-2nd 0.195

7FM-2018 457.909 OSM-2nd 22.375 7FM-2018 0.065 Nomadlist 0.092 GT-jaccard 0.187

Nomadlist 461.830 Nomadlist 22.420 OSM-2nd 0.065 OSM-TOP 0.090 7FM-2018 0.187

FSQ-TOP 506.500 FSQ-TOP 22.864 Nomadlist 0.063 GT-jaccard 0.087 OSM-TOP 0.180

OSM-TOP 516.114 7FM-2018 22.966 OSM-TOP 0.063 7FM-2018 0.086 Nomadlist 0.169

OSM-2nd 521.273 OSM-TOP 23.045 FSQ-TOP 0.054 FSQ-TOP 0.060 FSQ-TOP 0.122

RANDOM 649.398 RANDOM 23.341 RANDOM 0.039 RANDOM 0.033 RANDOM 0.073

the respective authors had no instantiation of the concept
available or potentially decided to optimize toward a different
concept. For example, the Nomad List characterization is aimed
at digital nomads instead of tourists. Thus, it would have been be
surprising if it was in a front runner position, as digital nomads
have different information needs than a typical tourist does. For
the same reason, the OSM performed quite poorly. Instead of the
touristic experience, they simply captured the similarity of the
distribution of the different map entities. On the contrary, the
textual data sources are there to learn about the characteristics
of a city, so it is not surprising that they encode the most
useful information for travelers. This means that the proposed
methods are able to discriminate between similar and somewhat
orthogonal concepts and do so by quantifying the distance. Since
some features of Nomad List, OSM, and Foursquare were not
aimed at encoding the same concept that we have elicited in the
expert study, it is just natural that these data sources perform
underwhelmingly in our initial comparison. Our methods reveal
the degree to which the expert-elicited concept is not (well)
encoded within the features, but since the characterizations are
somewhat related to traveling, they are not orthogonal.

To summarize, the proposed rank agreementmetrics for top-k
lists have been successfully employed in determining the quality
of the data sources with respect to the expert-elicited concept.
They produce comparable rankings as established information
retrieval metrics, such as MRR and Precision. The advantage
is that rank agreement metrics operate on ranked lists instead
on sets, making them conceptually more fitting than MRR, and
Precision or similar metrics.

6.3. Optimization of Data Models
With this tooling established, there is now potential to refine
existing data models based on tourism facts and the venue

TABLE 5 | Optimization toward the Expert Opinion using Spearman’s Footrule

top-k.

Model Unoptimized Optimized Improvement

Nomadlist 461.83 426.27 7.70%

FSQ-TOP 506.50 503.33 0.63%

FSQ-2nd 330.42 312.47 5.43%

OSM-TOP 516.11 508.38 1.50%

OSM-2nd 521.27 490.33 5.94%

distributions by learning the importance of the respective
features or even constructing a composite data model with
features from different data sources. By assigning different
weights to the features based on their importance in computing
similarity metrics, rich models with several features can be fine-
tuned toward the expert-elicited concept. This is useful, since
standard similarity metrics in content-based recommendation,
such as the Euclidean Distance give same weight to all features.
In practice, however, not all features equally contribute to the
expert-elicited concept of the touristic experience. By decreasing
the weights of less-relevant features, the similarity metric can be
improved to emulate the expert concept even better.

Given the combinatorial explosion of the search space for
weights, we have used black-box learning, namely Simulated
Annealing (Kirkpatrick et al., 1983) for tuning the weights [0,1]
of the data sources with explicit features. The proprietary TF and
7FM-2018 sources were only provided to us as rankings, thus, we
could not optimize those.

The optimization tabulated in Table 5 works better with more
features, as can be seen with Nomadlist, FSQ-2nd, and OSM-2nd.
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We attribute the small relative changes in FSQ-TOP and OSM-
TOP to the fact that they capture slightly orthogonal concepts
to the expert-elicited baseline and due to their smaller number
of features, they are harder to optimize toward this concept.
However, as discussed before, this domain has a high signal-to-
noise ratio, making these small relative improvements relevant
in the overall comparison. Concretely, the optimized version
of FSQ-2nd would be the third most competitive data model
in Table 4.

What is more, even with minor contributions to the overall
performance, the learned weights for the features gives further
insight into their importance. Features with a very low weight
could be dropped, while the feature selection of a potential
combined data model of several data sources should be guided
by the learned weights.

To exemplify the insights from this analysis, we discuss the
learned weights of the Nomadslist data: The features “cost,”
“life quality,” “air quality,” and “happiness” got relatively high
values ranging from 0.58 to 0.75, while the other features,
“nomad score,” “fun,” “healthcare,” and “nightlife” were reduced
to low weights ranging between 0.2 and 0.35. Such low values
indicating that they are not in line with the elicited concept
of the expert study. In FSQ-TOP, which is employed in the
CityRec system (Dietz et al., 2019), “food” gets a very low
weight, which is an indication that it could be dropped from the
recommendation algorithm.

The results of this in-depth analysis of the weights are certainly
quite specialized with respect to the target concept and the
intricacies of the respective data sources. For this reason, we
do not further elaborate on the other optimized models but
refer the reader to the full results of this optimization tabulated
in the reproducibility material. The method, however, is again
generalizable for any domain, where the data source’s features are
known and a baseline exists in the form of ranked lists.

7. CONCLUSIONS

We presented a comprehensive overview of data-driven methods
to characterize cities at scale using online data. Motivated by the
question of model choice in destination recommender systems,
we proposed methods to make such data models of destinations
comparable against each other as well as against a – potentially
latent – concept, that the recommender system should emulate
when computing content-based recommendations. To derive
this concept, we conducted an expert study that provided us
with partial rankings and provided us opportunity to further
optimize the data models that are based on explicit features. The
decision of eliciting this baseline using experts instead of large-
scale crowd-sourcing was done due to the difficulty of the task.
Since this is the first study analyzing latent concepts encoded
in features of content-based recommender systems, we decided
to elicit a high-quality data set with less noise, than having a
large-scale data set that is less to be trusted.

In a first step, we were able to unveil commonalities of data
sources, through which it became apparent that, for example,
articles about destinations on Wikipedia and Wikitravel encode

much geographic information. The second contribution are
methods to compare top-k lists with permutations in our specific
scenario. We used these to show that, according to the expert
opinion, the touristic experience was best approximated using
the textual similarities from Wikipedia, Wikitravel, and the
geographic location. This means that when simply retrieving the
most similar destinations according to the touristic experience,
one can choose one of the top-ranked entries from Table 4.
Finally, we were able to show that it is possible to optimize the
distance metric of a content-based recommender system toward
a desired concept.

From a recommender systems research perspective, the results
show that existing destination recommender systems do not
necessarily use data models that capture the concept of similar
touristic experience very well. This might be intentional, if the
system’s purpose is to capture a different concept, or possibly
due to the previous lack of a concrete instantiation of the
concept. A limitation of the top-ranked textual or geographic
characterizations is that they do not come with specific features
the user can interact with. This is a drawback, since it means
that they cannot directly place the user’s preferences and the
items in a common vector space to perform content-based
recommendation as frequently done in travel recommender
systems (Burke and Ramezani, 2011). Furthermore, common
recommendation techniques such as critiquing (Chen and Pu,
2012), i.e., giving a system feedback about the features of a
suggested item, are only possible if the items are characterized
with a fixed number of features.

Our work has provided the community with adequate
tools to optimize feature-based data models toward a
desired concept such as the similar touristic experience.
The methodological contribution, is, however, not limited
to recommender systems in the tourism domain, but can
be applied in other domains similarly as the proposed
metrics operate on ranked lists. Latent similarity concepts
are prevalent in many domains such as music (Yoshii
et al., 2006) or leisure activities (Brítez, 2019); generally
anywhere, where the accuracy of the information retrieval
system depends on the embeddings of items in a
search space.

A logical continuation of this work would be to investigate
the potential to construct better, potentially combined data
models. This research can help to improve all kinds of data-
driven characterizations of travel destinations as it provides
direct feedback about the data quality with respect to the
touristic experience. While this time we used an expert study,
we also plan to apply these methods in other domains
in a large-scale crowd-sourcing setting. Finally, it would be
worthwhile to perform an analysis of the effect of improved
data model quality with respect to further evaluation metrics
such as accuracy.
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