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Analytical Model to Estimate Ride
Pooling Traffic Impacts by Using the
Macroscopic Fundamental Diagram
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Abstract
Ride pooling services are considered as a customer-centric mode of transportation, but, at the same time, an environmentally
friendly one, because of the expected positive impacts on traffic congestion. This paper presents an analytical model that can
estimate the traffic impacts of ride pooling on a city by using a previously developed shareability model, which captures the
percentage of shared trips in an area, and the existence of a macroscopic fundamental diagram for the network of consider-
ation. Moreover, the analytical model presented also investigates the impact that improving the average velocity of a city has
on further increasing the percentage of shared trips in an operation area. The model is validated by means of microscopic
traffic simulations for a ride pooling service operating in the city of Munich, Germany, where private vehicle trips are substi-
tuted with pooled vehicle trips for different penetration rates of the service. The results show that the average velocity in
the city can be increased by up to 20% for the scenario when all private vehicle trips are substituted with pooled vehicle trips;
however, the improvement is lower for smaller penetration rates of ride pooling. The operators and cities can use this study
to quickly estimate the traffic impacts of introducing a ride pooling service in a certain area and for a certain set of service
quality parameters.
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Our cities are experiencing growth in population every
year, which contributes to increased traffic demand. The
use of private vehicles—even though convenient—is not
sustainable, considering the large amount of parking
space and street capacity that is required as a result of an
average occupancy of only 1.3 passengers per vehicle (1).
From the other side, traditional public transportation is
typically an efficient and environmentally friendly mode
of transportation; however, it may not be very attractive
for customers because of the lack of convenience and
flexibility as a result of fixed line and schedule and a lim-
ited area of coverage.

The extended availability of smartphones and data
accessibility have made possible the emergence of ride
pooling services. These services offer a user-centric and
sustainable mobility option for the customer, which can
reduce the vehicle kilometers traveled in the system
because of sharing of trips with similar trajectories (2–4).

However, an effective ride pooling service depends
largely on the customers’ readiness to use it, which is
affected by individual choices and on the attributes of
the service. The service attributes which affect customers
the most are travel time, waiting time and service cost,
and the lower they are, the higher is the attractiveness of
the service (5).

From the operators’ perspective, the percentage of
shared trips in an area, called shareability, influences the
profitability of the service, and therefore plays an impor-
tant role in deciding whether to offer a pooling service in
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an area or not. Santi et al. examined shareability in a city
via simulations by using the concept of shareability net-
works (6). To generalize the calculation of shareability
for different cities, Tachet et al. established a mathemati-
cal model, in which shareability depends on city para-
meters (average speed and surface of the operating area)
and service attributes (detour time) and tested it for dif-
ferent cities (7). Their model was extended by Bilali et al.
to capture the additional influence of maximum waiting
time, boarding time, and reservation time, and the impact
that the modeling details have on shareability, showing
that, in particular, the choice of the optimization objec-
tive has a high effect on shareability (8–10).

The before-mentioned studies derived shareability
without considering the traffic impact of ride pooling.
Therefore, average velocity—a commonly used measure
of traffic efficiency—is assumed to be constant in space
and time in these models. However, by introducing a ride
pooling service in a city, the number of vehicles on the
roads will decrease, thereby increasing the average velo-
city in the network. As the velocity is in turn an input for
the shareability model, the percentage of shared trips in
an area will increase even further. This effect is noted as
second-order effect of velocity on shareability and its
basic idea is illustrated in Bilali et al. for a synthetic grid
network (11). In this paper, the concept of this second-
order effect will be explored for a real city network and a
more realistic analytical model capturing traffic effects of
ride pooling.

The benefits of ride pooling, focusing on a particular
city, have been investigated a lot by researchers. Alonso
Mora et al. showed that 98% of taxi trips in New York
city currently catered for by 13,000 taxis, can be substi-
tuted by a fleet of only 3,000 pooled vehicles, reducing
the mean travel distance in the system (2). A study for
the city of Prague, Czech Republic, substituting private
vehicle trips with pooled trips, demonstrated that, when
using ride pooling, vehicle kilometers will decrease to
60% of the current state (3). A similar study was per-
formed for the city of Munich, Germany, and the authors
argue that the benefits of pooling are seen only after a
certain penetration rate of the service, for which the
saved travel kilometers resulting from shared trips are
higher than the empty vehicle trips generated to pick-up
customers (4).

All of the above studies investigate only the impact
from the pooled vehicle fleet and indirectly check the
traffic impacts by calculating the vehicle kilometers in the
system, without examining the interaction with the other
vehicles that are present in the network. These studies are
performed using agent-based simulations, which, even
though providing a good estimation of the vehicle kilo-
meters in the system, are specific for a particular city and
require a large amount of input data. Therefore, a

generalization for different city types is difficult. Albeit
the traffic impacts of ride pooling are not directly investi-
gated in these studies (as, for instance, would be the case
if the agent-based simulation were to be coupled with a
microscopic traffic simulation), the computational time
needed for these simulations is still very high and rises
with increasing problem size. Therefore, it is difficult to
simulate high-demand pooling states, and it is even more
difficult and time demanding to investigate the direct
traffic impact by integrating the agent-based simulation
and microscopic traffic simulation for the pooling case.

To overcome the drawbacks of using agent-based
simulations and to be able to estimate quickly the impact
of ride pooling with only a little input data, this paper
presents a method to derive analytically the traffic
impacts of ride pooling services. The main requirement is
the existence of a macroscopic fundamental diagram
(MFD) for a specific city. Additionally, the influence that
the improvement of average velocity in the city has on
shareability is also modeled. The models presented in this
paper are tested for the city of Munich using AIMSUN
as a microscopic simulation environment.

Analytical Model

This section describes a model allowing the analysis of
traffic impacts of ride pooling. Firstly, an introduction to
the shareability model is given, followed by a model for
the reduction of vehicle trips in the road network result-
ing from shared trips. Subsequently, the relation between
average velocity and vehicle trip generation and the mod-
ified shareability model are described. A detailed descrip-
tion of the model parameters can be found in Table 1.

Shareability Model

The benefits of ride pooling are reliant on the possibility
of sharing trips which have similar trajectories. The per-
centage of shared trips in an area is called shareability S

and differs based on city parameters, service quality para-
meters, and the used optimization objective. The general
formula defining shareability S is given by the following
Equation (7–10):

S = 1� 1

2(Lon
sq )

3
(1� e�Lon

sq )(1� 1+ 2Lon
sq

� �
e�2Lon

sq ) ð1Þ

where the dimensionless quantity Lon
sq (‘‘on’’ refers to

online or on-demand generation of requests, and ‘‘sq’’
refers to the consideration of service quality parameters)
depends on the pooled passenger trip generation rate per
hour lp, city attributes (velocity v and surface area O),
and service quality attributes (temporal deviation from
the direct route or detour time D, maximum waiting time
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the passenger waits to be picked-up tmax, and boarding/
disembarking time tb) (8).

The calculation of shareability is based on the notion
of the shareability shadow, which defines the geometric
shape of where in space the origins and destinations of a
trip should be to be shareable with an already existing trip,
without violating the time constraints (defined by service
quality parameters) (7). Depending on the relation that
service quality parameters have with each other, there are
two different shapes of the shareability shadow specified
by Bilali et al. and, therefore, two forms of Lon

sq (8).
For tmax.D� tb:
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The above equations determine the value of shareabil-
ity when the optimization objective in the customer
matching problem is to maximize the percentage of trips
which will be shared (8). However, using the objective of
maximizing the percentage of shared trips does not
necessarily mean that the distance traveled is minimized.
To maximize the percentage of shared trips, the pooling
algorithm might decide about sharing of the trips (when
the time constraints allow it) just for the sake of achiev-
ing maximum percentage of shared trips, even though it
might be more effective in relation to saved vehicle kilo-
meters to serve the customers one after the other (10).

As the optimization objective to minimize vehicle kilo-
meters traveled is more favorable to improve the traffic
conditions, it is the one selected in this study. The share-
ability for this optimization objective is given by a predic-
tion model defined by Bilali et al. and inspired by Santi
et al. and shown in Equation 4 (6, 10). This form of equa-
tion also describes statistically the natural combinatorial
effects of particle bonding processes in biochemistry. To
use this prediction model, the results of the shareability
values derived by means of simulations for a base sce-
nario referring to a certain set of service quality para-
meters are needed. Therefore, by fitting the simulated
shareability data to the form of shareability equation
given by Equation 4, the parameters n and k are defined.
To calculate the shareability for another set of service
quality parameters, the parameters n and k are kept the
same and the impact of the new service quality

parameters is reflected in the Lon
sq quantity. For the case

when the optimization objective is to minimize the vehicle
kilometers traveled, this prediction model is tested in
Bilali et al. with data from an agent-based simulation,
and the results showed that the model provides a good
estimation of the shareability values for this optimization
objective (10). Therefore, similar to Bilali et al., the share-
ability in this study for the case when the optimization
objective is to minimize the vehicle kilometers traveled is
calculated by using Equation 4 (10).

Sn, k(L
on
sq (v,D, t

b, tmax))=
kLon

sq
n

1+ kLon
sq

n
� � ð4Þ

This shareability model returns the percentage of
shared passenger trips in an area, while assuming that the
average velocity in the city v= v0 remains constant.
However, for a certain pooled passenger trip generation
rate per hour lp, the number of total vehicle trips per
hour in the system g is reduced based on the percentage
of trips that are shareable S(v0). And, as for a lower num-
ber of vehicles in the system, the average velocity in the
system gets higher and a change in average velocity v1 is
encountered, which should be reflected in the shareability
model and additionally increase the shareability value
S(v1). These interactions (recently considered in the liter-
ature by Bilali et al., and Lehe and Pandey) are described
by a loop diagram in Figure 1 (11, 12). Therefore, the
analytical model developed in this study considers the
synergetic effects that increased pooling rate and average
network velocity have on each other. In the following
sections, the reduced number of vehicle trips in the sys-
tem as a result of ride pooling will be defined, followed
by the description of an analytical model that relates
average velocity with the vehicle trips generated per hour
in the city.

Figure 1. Additional effect of average velocity on shareability.
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Vehicle Trip Reduction Model

A distinction is made between passenger trips generation
rate l, for trips requested by the customers, and vehicle
trips generation rate g, for vehicle trips occurring in the
street, which can serve more than one customer simulta-
neously. For simplicity, it is assumed that private vehicle
trips will be replaced by pooled vehicle trips. However,
as the implementation of ride pooling in a city will be
gradual, there will be passengers who will still use their
private vehicles to travel alone and there will also be pas-
sengers who will use the ride pooling service. Therefore,
the total passenger trips generated per hour in the area l

is divided into lone-passenger trips la and pooled pas-
senger trips lp. The number of lone-vehicle trips gener-
ated per hour in the system ga will be the same as the
hourly number of lone-passenger trips la (ga = la), as
there is only one person per vehicle. As the pooled pas-
senger trips lp can be shared with each other, the num-
ber of pooled vehicle trips generated per hour in the
system, gp, depends on the percentage of shared trips in
the operating area (shareability) S and the occupancy of
the vehicles F in the form given by Equation 5. This indi-
cates that, for a shareability value higher than zero, the
hourly pooled vehicle trips gp will be lower than the
hourly pooled passenger trips lp, as there can be more
than one passenger served simultaneously by vehicles.
This equation gives a lower bound for the reduction of
pooled vehicle kilometers traveled, as it does not consider
the empty pick-up trips or the reallocation trips and
assumes that all the passenger trips which are shared have
the same origin and destination. Therefore, by using this
assumption, this model underestimates the total number
of vehicle trips generated per hour in the system and,
thereby, the positive traffic impacts in reality might be
lower than the ones predicted by the analytical model.

gp = lp 1� Sð Þ+ Slp

F
ð5Þ

Therefore, the total number of vehicle trips per hour
in the system g includes the lone-vehicle trips ga and the
pooled vehicle trips gp and is given by Equation 6, where
shareability S is calculated using Equations 1–4.

g = ga + gp = la + lp 1� Sð Þ+ Slp

F

� �
ð6Þ

This reduction in total vehicle trips in the system is
expected to improve traffic conditions in the city by
improving the average velocity.

Analytical Relation of Average Velocity
and Vehicle Trip Generation

As previously mentioned, reducing the number of vehi-
cles in the system will affect the average velocity in the

city. This section will present an analytical model to cap-
ture the relation of average velocity and vehicle trip gen-
eration by exploiting the benefits of an MFD. Therefore,
it will be possible to analytically derive the improvement
in average velocity coming as a result of the reduction of
vehicle trips in urban areas because of ride pooling.

Macroscopic Fundamental Diagram (MFD). MFD (or net-
work fundamental diagram) defines the functional form
of the relation between average velocity, traffic flow q

(vehicles per hour [vph]) and traffic density k (vehicles
per kilometer). The relation between these parameters
was firstly developed for motorway segments by using
roadside sensors (13). Researchers discovered that a simi-
lar relation exists also for urban networks. Godfrey pro-
posed an MFD for a town center road network and
empirically calibrated it (14). A summary of the MFDs
for different networks can be found in Cassidy et al.
(15). A functional form of the MFD for urban areas,
relating travel production (vehicle-meters) with accumu-
lation (vehicles), was defined by Daganzo, and validated
by Geroliminis and Daganzo (16, 17). Since then, the
MFD was developed for different urban areas by using
detector or floating car data or analytically (17–20).
MFD has also been exploited in ride hailing studies,
which do not consider ride pooling, as a background in
dynamic modeling of urban traffic modeling to develop
a revenue maximization platform (21). It was also used
as a means for dynamic modeling and control of a net-
work taxi dispatch system (22).

The functional form of MFD is also going to be
exploited in this study and used as a basis for defining
the relationship between average velocity and vehicle trip
generation in a network. The MFD for this study is
derived by means of simulations. For each time interval,
I, the average velocity vi

e and flow qi
e for each edge in the

network is obtained, and the weighted average velocity
and flow in the network are defined using the below
equations, as proposed by Geroliminis and Daganzo,
where le is the length of each edge e (17):

vi =

P
e2E vi

eleP
e2E le

ð7Þ

qi =

P
e2E qi

eleP
e2E le

ð8Þ

As the relation of flow and velocity resembles a para-
bola, to connect these two parameters analytically, a
parabolic function is defined in the form given by
Equation 9, where the vertex of the parabola is V(qc, vc),
vc and qc are velocity and flow when the network is at
capacity, and a is a parameter which will be defined by
fitting the data points to this function. A parabolic form
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of the MFD is also noticed in Geroliminis and Daganzo,
and Ramezani and Nourinejad (17, 22).

(v� vc)
2 = 4a(q� qc) ð9Þ

Analytical Vehicle Trips in a Network Based on MFD. Firstly, a
simple method to define the traffic density of a network
analytically will be described. It is assumed that a ride
pooling service will be operated in an area defined by a
boundary, as illustrated in Figure 2. Within this area,
there are three different types of trip to be considered:
(1) the ones that have the origin and destination within
the area, (2) the ones that have the origin in the area and
the destination outside, (3) the ones that have the desti-
nation in the area and the origin outside, and (4) the
trips that have both origin and destination outside the
operation area but pass through it. The first type of trip
includes the lone-vehicle trips and the potential pooled
vehicle trips. The second and third types of trip are the
ones that comprise what will be called here ‘‘background
traffic’’ in the network as they are going to be there
regardless of the impact of the ride pooling service in
vehicle trip reduction, as the impact that might come
from parking in the boundary of the area of service and
continuing the trip with ride pooling service is neglected
in this study. To define the traffic density within the
boundaries of this area, only the contribution of vehicle
trip types (1), (2), and (3) are considered, and the contri-
bution from type (4) is left out, as most of the cities have
a highway belt to reduce transit traffic within the city.

Traffic density is defined as the number of vehicles per
lane kilometer in the system. According to Little’s law
the average number of vehicles in the system is equal to
the average time the vehicles spend in the system multi-
plied by the average number of vehicles generated (23). If
only the vehicles of type (1), which have both the origin
and the destination within the area of operation, are con-
sidered, the traffic density kod is given by Equation 10:

kod =
god

lod

v

L
ð10Þ

where
god is the average number of vehicle trips per hour

generated inside the area (denoted by g in the Vehicle
Trip Reduction Model section),

lod is the average vehicle trip length,
v is the average velocity in the network, and
L is the total network length.
For vehicle trips of type (2) and (3), which have only

their origin or destination within the area, the back-
ground density kb is given by Equation 11:

kb =
go

polo
v

+ gd
pdld

v

L
ð11Þ

where
go (gd) is the average number of vehicles generated

which have only the origin (destination) inside the area,
and

lo (ld) is the average vehicle trip length for this vehicle
type.

As the vehicle trips of this type are only partly inside
in the area, po and pd give the percentage of the vehicle
trip length types (2) and (3), respectively, that is, within
the area of operation.

The overall network’s traffic density is the sum of the
traffic density of vehicle trips type (1), (2), and (3), as illu-
strated in Equation 12.

k = kod + kb =
god

lod

v
+ go

polo
v

+ gd
pdld

v

L
ð12Þ

From the MFD relation, q= vk is substituted, and
traffic flow q and, consequently, also the relation of flow
and vehicle trips generated per hour inside the network
(god), are derived analytically by the below formulation:

q=
godlod + gopolo + gdpdld

L
ð13Þ

From Equation 13 it is possible to derive the gener-
ated number of vehicle trips of type (1), which have both
the origin and destination in the operated area god (as
these are the ones of interest for the ride pooling service)
by Equation 14:

god =
qL� (gopolo + gdpdld)

lod

ð14Þ

By substituting q in Equation 9 of the MFD, the rela-
tion of average velocity and vehicle trips generated per
hour inside the network (god) given by Equation 15 is
obtained, from which two values are obtained, depending
on which state the network is: free flow state (Equation
16) or congested state (Equation 17).

v� vcð Þ2 = 4a
godlod + gopolo + gdpdld

L
� qc

� �

= 4a
(la + lp 1� Sð Þ+ Slp

F

� �
)lod + gopolo + gdpdld

L
� qc

0
@

1
A

ð15Þ

If v.vc:

v= vc +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a

godlod + gopolo + gdpdld

L
� qc

� �s
ð16Þ
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And if v\vc:

v= vc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a

godlod + gopolo + gdpdld

L
� qc

� �s
ð17Þ

In this way, it is possible to derive the new average velo-
city in the network, only by having knowledge of the MFD
and the reduced number of vehicle trips per hour resulting
from pooling, calculated by Equation 6 when shareability
value is known. The parabolic shape of this relation is also
supported by a recent study from Ke et al. (24).

Modified Shareability Model

By capturing the impact that ride pooling has on improv-
ing average velocity in the network, this study also cap-
tures the additional impact that the change in average
velocity has on the shareability value. Therefore, this
part describes the modified shareability model where, dif-
ferent from previous studies, velocity is considered as a
dynamic parameter.

To define the modified shareability value, the dynamic
velocity formulation, which depends on shareability,
given in Equation 15, is substituted into the shareability
Equations 2 and 3. Therefore, the modified Lon

sq mod is
given by the following equations:

For tmax.D� tb

Lon
sqmod

=
(n(S))2lp

O

� �
(D� tb

�3

2

3p
+

1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmax

D� tb

� �2

� 1

s
+

1

p

tmax

D� tb

� �2

sin�1 D� tb

tmax

0
@

1
A
ð18Þ

and for tmax\D� tb

Lon
sqmod

=
(n(S))2lp

O

� �
(D� tb

�3 2

3p
+

1

2

tmax

D� tb

� �3
 !

:

ð19Þ

Substituting Lon
sqmod

in Equation 4, which gives the
shareability for the optimization objective of minimizing
the vehicle kilometers traveled in the system, a non-linear
equation of shareability is obtained. The Newton-
Raphsod iterative method is used to solve the fixed point
problem presented in Equation (25) to find the new val-
ues of the average velocity and, thereby, also the new
values of modified shareability.

F Sð Þ=S�
kLon

sq
mod

n

1+ kLon
sq

mod

n
� � = 0 ð20Þ

The model described in this section can capture analy-
tically the traffic impact that ride pooling has on average
velocity and the improvement that it may additionally
cause to the urban environment because of the addi-
tional increase of shareable trips. This implies that traffic
improvement resulting from ride pooling will also be
beneficial for operators to increase the chances of finding
shareable trips as a result of further distances reached
within the allowed detour time because of higher
velocity.

Simulation Setup

Operating Area

To validate the developed model and investigate the traf-
fic impact of introducing a ride pooling service, a ride
pooling service in the city of Munich is considered, where
private vehicle trips are substituted with pooled vehicle
trips for different penetration rates of the service. The
Munich network is built in the microscopic traffic simu-
lation environment AIMSUN (26). The operating area
considered (Figure 3) is located around Munich city cen-
ter, similar to the one in Bilali et al. (10). Its surface is
221 km2 and the network length L is 2450 km. The traffic
demand in this area represents private vehicle trips for
Munich (27).

To construct the MFD for this network and extract
the relevant information, microscopic simulations are
run for the time period from 06:00 to 24:00. To push the
network to capacity, two other simulations are also run
for scenarios where the private vehicle trip demand is
increased by 10% and 20%, respectively. One (network
average) flow-velocity data point is extracted every
10min based on Equations 7 and 8, and it is plotted in
the MFD graph.

Figure 2. Illustration of an operating area with position of
origin–destination (OD) trips.
Note: D = destination; O = origin.
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Scenario Setup

To test the impact of pooling for a more congested net-
work, the traffic demand of the base scenario is selected
to be 10% higher than the current demand from private
vehicle trips in Munich and it is assumed that the pooling
service is offered during the morning peak time from
07:00 to 10:00. The simulation for the base scenario is
run, the results are extracted every 10min, and the aver-
age velocity in the network for each time interval is
obtained by using Equation 7. The average velocity for
the morning peak time vo is found to be 39.2 km/h.

To investigate the traffic impacts of a ride pooling ser-
vice offered within the area of Figure 3, private vehicle
trips type (1) are substituted by pooled vehicle trips for
different scenarios, where the penetration rate of ride
pooling service p= lp=l is 0%, 5%, 25%, 50%, 75%,
and 100%. The base scenario is the one where p= 0%,
meaning that all the vehicle trips in the system are not
shared and are performed by private vehicles. For
p= 100%, all the private vehicle trips in the system are
substituted by ride pooling vehicle trips.

To model these pooling scenarios in AIMSUN, a dis-
tinction is made between the traffic demand generated in
the network from different vehicle types, and three
origin–destination (OD) matrices are created: matrix (B)
for the background traffic (vehicle trips type [2], [3] and
[4]), matrix (A) for the private (lone) vehicle trips type
(1) (ga) and matrix (P) for the pooled vehicle trips type
(1) (gp). The latter two are the ones that have both their
origin and destination within the area of operation.
Matrix (B) representing vehicle trips which have only
the origin or the destination within the area (type [2] and
[3]) or only pass through the area (type [4]), does not
change regardless of the reduction of pooled vehicle
trips. Matrix (A) for private vehicle trips type (1) and
matrix (P) for pooled vehicle trips will be changed
depending on the selected ride pooling scenario.

It is assumed that private vehicle and ride pooling
trips follow the same OD distributions and scale as the
demand matrices based on A0, the original private vehicle
matrix. For each scenario considered, the value of lone-
vehicle trips ga for matrix (A) of private vehicle trips is
changed by using Equation 21. For matrix (P) of pooled
vehicle trips gd , firstly, the pooled passenger demand lp

is obtained by using Equation 22 and then the pooled
vehicle trips gp is calculated by using Equations 5 and 6,
knowing the shareability value for the designed ride
pooling service and the specific pooled passenger trip
demand lp.

ga = la = 1� pð ÞA0 ð21Þ

lp = pA0 ð22Þ

For the ride pooling service selected in this study,
where the optimization objective used by the operator for
the matching algorithm is to minimize the vehicle kilo-
meters traveled in the system, shareability in the area is
derived by using Equations 2–4. The area of the city Oð Þ
is known and the average velocity (vo) is obtained from
the simulation of the base scenario. The service quality
attributes of detour time D and maximum waiting time
tmax are selected to be both equal to 5min, the boarding
time tb is set to 0 for simplicity, and it is assumed that a
maximum of two passengers can share the trip at the
same time (vehicle occupancy F=2).

For each scenario, one simulation is run for the morn-
ing peak time 07:00 to 10:00 and the network statistics
are extracted every 10min. Similar to the base scenario,
the average velocity in the network is calculated for each
time interval by using Equation 7 and then it is averaged
for the morning peak time. All the model parameters and
values are shown in Table 1.

Results

Macroscopic Fundamental Diagram (MFD) for Munich
Network

The MFD for the operating area in the city of Munich is
shown in Figure 4. As specified in the Scenario Setup
section, the blue data points to construct this MFD were
extracted from the results of three scenarios with differ-
ent demand levels. The virtual queues of the vehicles
waiting to get into the network are kept at minimum to
control the state of the network and make sure that net-
work gridlock, which might occur when the input flow
exceeds the supply function, is not happening.

The x-axis correspond to the value of average traffic
flow and the y-axis corresponds to average velocity. It is
shown that the area of consideration from the Munich
network is at the free flow state most of the time, while
reaching the unstable state at the network’s capacity dur-
ing the peak times. This form of the MFD for the city of
Munich is similar to the one observed in Dandl et al.
(28). The high average velocity values come as a result of
the large area considered, which contains city highways
and arterials, where the speed limit is high. A clockwise
hysteresis loop is observed for the investigated scenarios
caused when the demand starts decreasing after the peak
time, showing that the system does not return to the free
flow state immediately if the initial congestion level in
the network is high (16). Therefore, the hysteresis phe-
nomenon in this study occurs when, for the same average
flow in the network, the average velocity is higher during
the congestion onset compared with its values during the
congestion offset. Geroliminis and Sun show that one
reason for the occurrence of this phenomenon is the
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dissimilar spatial and temporal distribution of traffic
congestion (29). The correlations of the loop size of the
MFD, congestion heterogeneity, and network perfor-
mance are further examined in Hemdan et al. (30). At
the point where the traffic flow is at maximum at the
MFD graph, the network is in its optimum state and the
network’s traffic flow at capacity qc is derived. The cor-
responding velocity is the network’s velocity at capacity
vc: The values of traffic flow and velocity at capacity are
equal to 39.2 km/h and 457 vph, respectively. In the con-
gestion regime, where the velocity and traffic flow are
lower than the ones at capacity, the chaotic nature of
traffic leads to network gridlocks, and even small distur-
bances effect the system; that is why the data points in
this regime are widely scattered. These results are in line
with previous studies, which show that, in the congestion
regime, bifurcation occurs and the MFD becomes multi-
valued (31).

To get a functional form for this MFD, the equation
of parabola specified in Equation 15 is used. As the
majority of the data points belong to the free flow state
and the base scenario has data points only in this state,
the data is fit to the parabolic function defined in
Equation 16 for v.vc, where the vertex of the parabola
is defined by the point where the network is at capacity
V (qc, vc). The parameter a of the parabolic function is
found to be 0.62. The fitted curve is shown by the black
line in Figure 4.

Average Velocity and Vehicle Trip Generation Relation

Network Information. To express the relation of average
velocity and vehicle trip generation, it is necessary to
extract the network information mentioned in Equation

14, namely trip lengths and percentage of the trip length
inside the operating area for different vehicle trip types,
for the base scenario.

To get the length of the vehicle trips type (1), (2), and
(3), the centroid statistics in AIMSUN are used. The cen-
troids within the area of operation are extracted, and the
total number of vehicle trips type (1), (2), and (3), and
the total kilometers traveled by each of these vehicle trip
types, are calculated. By dividing the total kilometers per-
formed by each vehicle trip type with the total number of
vehicles of the respective type, the average trip length for
the vehicle trips type (1), (2), and (3) is calculated to be
5.16 km, 17.5 km, and 17.5 km, correspondingly.

As vehicle trips type (2) and (3) are only partly within
the area of operation, it is necessary to find the percent-
age of their trip length that contributes to the road net-
work traffic within the area. Therefore, all possible paths
connecting each origin with each destination are
excerpted, and only the ones which start or end within
the operation area are filtered. For the path that is mostly
used by the vehicles, the identification numbers and
lengths of the sections are obtained, and whether these
sections are within or outside the area of operation is
checked. The length of the trip performed within the area
will be similar to the sum of the length of the sections
which are situated inside the area. Dividing the vehicle
trip length within the area by the total vehicle trip length
returns the percentage of the vehicle trip length that is
inside the operation area. In this case, the values are 51%
and 46% for vehicle trips type (2) and (3), respectively.

Average Velocity and Vehicle Trip Generation Relation. The rela-
tion between average velocity and vehicle trip generation
per hour for the vehicle trips which have both their ori-
gin and destination within the area (god) is illustrated in
Figure 5. The dark blue data points are coming from the
simulation input of generated vehicle trips and the simu-
lated average velocity in the network. For the light blue
data points, the x-value showing the vehicle trips per
hour is derived analytically using Equation 14, and the
y-value is the simulated average velocity.

For the simulated data points, it can be seen that
there are a few scattered data points, which belong to the
unstable state of the network and correspond to the hys-
teresis shown in MFD in Figure 4. Comparing the simu-
lated data points with the analytically derived ones, it is
possible to see quite a good correlation between them,
denoting that the analytical formulation for defining the
generated vehicle trips in the network based on network
and trip information holds for the free flow state of the
network. Further investigations are, however, needed for
the congested state of the network to check the validity
of the model also for this state. As this is not the case for
the network in this study, it is not considered.

Figure 3. Munich operating area.
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The analytical function relating average velocity and
vehicle trip generation (god) using Equation 16 is illu-
strated by the light blue line in Figure 5. It can be noted
that the analytical function fits well with both the simu-
lated and analytical data. Deriving this relation

analytically, by having information of only trip informa-
tion and the MFD relating average velocity and average
flow, is quite important to define traffic impacts of ride
pooling by capturing the change in average velocity if
the vehicle trip generation in the network changes. As
the shareability value S for the defined ride pooling sys-
tem for a certain ride pooling passenger demand lp can
be obtained using (Equations 1–4), it is then possible to
derive the reduced number of vehicles in the street god

because of pooling, based on Equation 6. By using this
value as an input to this function, it is possible to calcu-
late the new average velocity in the network. This func-
tion will be used as an input to analytically derive the
additional improvement in the shareability values as a
result of improved average velocity, described in the next
section.

Traffic Impacts of Ride Pooling

To investigate the traffic impacts of ride pooling service,
various scenarios are designed, where the penetration
rate of ride pooling service p ranges from 5% to 100%,
and matrix (A) of private vehicle trips and matrix (P)
of pooled vehicle trips are changed as specified in the
Scenario Setup section.

Figure 6 depicts the average velocity every 10min for
the morning peak hour for different penetration rates of
ride pooling. It is observed that, at the beginning of the
morning peak, when the network is not in congested
state even for the base scenario, there is no significant
improvement of average velocity in the network for all
the scenarios tested. When the network starts to get con-
gested and the average velocity starts decreasing, the
benefits of pooling become noticeable. This emphasizes
the advantage of pooling in improving traffic condition,
especially during peak times, and shows that it is possible
to see higher benefits of pooling in cities with high levels
of congestion.

As expected, it is shown that, the higher the penetra-
tion rate of pooling, the higher the increase in average
velocity. This comes as a result of high demand for pool-
ing, which increases the chances of finding shareable trips
(shareability). Therefore, as more trips are shared, fewer
vehicles are present in the road network and higher velo-
cities are observed. Figure 7 illustrates the improvement
of average velocity compared with the base scenario and
shows that when the penetration rate of pooling is 100%
the velocity can increase by up to 20% compared with the
base scenario. For scenario P5, when the penetration is
5%, the effect of ride pooling on average velocity is quite
small, indicating that when this service is introduced the
effect on traffic is not expected to be seen immediately.
However, with increasing market share, the positive
impact of pooling will be more prominent. For instance,

Figure 4. Macroscopic fundamental diagram (MFD) for Munich.

Figure 5. Relation of average velocity (v) and vehicle trip
generation (god).

Figure 6. Average velocity for different pooling penetration
rates.
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for scenario P25, when the penetration rate of ride pool-
ing is 25%, the average velocity rises by up to 10% com-
pared with the base scenario. This suggests that ride
pooling services have to gain a considerable market share
to profit from their positive impacts on traffic congestion.

Modified Shareability Model

The results of the previous section show that, when pri-
vate vehicle trips are substituted with ride pooling, traffic
congestion is expected to improve and, therefore, the
velocity will increase depending on pooled passenger
demand, which effects the shareability value. Until now,
velocity was considered as a constant parameter for the
shareability model. Using Equations 18–20 it is possible
to integrate a dynamic velocity into the shareability
model and the result is illustrated in Figure 8.

The dotted gray curve shows the shareability curve for
the original shareability model using the constant average
velocity for the base scenario vo, and the solid gray curve
shows the modified shareability curve for a dynamic velo-
city. The difference between the two curves for the case
study is not very big, as the average velocity was already
rather high in the base scenario (vo = 39:2km=h) and its
improvement was limited; however, an improvement of
the shareability values when the velocity increases can
still be seen, suggesting that this might increase addition-
ally the chances of finding shareable trips and, thus, the
average velocity in the city. The black data points in
Figure 8 are the calculated shareability values consider-
ing the improvement in average velocity for the simulated
scenarios with p equal to 5%, 25%, 50%, 75%, and
100%. The leftmost point represents the shareability
value when p equals 5% and the rightmost point repre-
sents the shareability when p equals 100%. For each of
these scenarios, the simulated shareability data points
are calculated by using the new improved average velo-
city for the whole period of the peak hours under

consideration. These data points show how improvement
in average velocity resulting from ride pooling (given by
the simulation results) further increase the simulated
shareability values. A very good correlation with the
modified shareability model is shown for all of them,
validating in this way the result of the analytical model.
Even though the impact of an increased velocity on the
modified shareability in the case study is small, it is nev-
ertheless an important finding, as it implies that, for cities
which are more congested than Munich, the likelihood of
finding shareable trips will further increase, because of
the higher possibility for improvement in average
velocity.

Conclusion

Summary

In this study, an analytical model to investigate the
impact of ride pooling on traffic efficiency was developed
by using a shareability model and the MFD for a city. A
model was developed that captures the relation of aver-
age velocity and vehicle trip generation in a network, to
analytically check the change in average velocity when
pooling is introduced. Moreover, a modified shareability
model was introduced, which derives further benefits on
shareability from an improved average velocity resulting
from pooling. Different scenarios were developed for a
ride pooling service offered in the city of Munich, where
private vehicle trips are substituted by different levels of
ride pooling penetration rate ranging from 5%, to 100%
(when all the private vehicle trips are substituted by ride
pooling vehicle trips). The results show that this analyti-
cal model provides a very good and fast estimation of the
traffic impacts of ride pooling on the urban environment,
requiring only a few input data and the existence of the
MFD for a city, which allows for a generalization of a
model to other cities, even without the need of network

Figure 7. Difference in average velocity compared with the base
scenario.

Figure 8. Analytical (original and modified) and simulated
shareability depending on the pooled passenger trips (lp).
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simulations and calibrations, in cases when MFD is
derived analytically or via empirical data (17–20). The
analytical model is beneficial for operators to quickly
assess the traffic impact of pooling in a certain area of
service and for a certain sets of service quality attributes.
These insights could be used in discussions with cities to
allow or prioritize the operation of such a service.

Future Work

Future work will include the validation of the developed
model for other cities, especially cities with higher levels
of congestion in their network, where it could be possible
to check if the general assumptions made for this model
hold for the congestion regime as well. This would also
allow further investigation into whether the assumption
used for a parabolic functional form of the MFD is valid
for the congestion regime, or if the functional form of the
MFD needs to be adjusted to a skewed/asymmetric para-
bola as in Daganzo, and Laval and Castrillón (16, 20). In
addition, the validity of the parameters of the prediction
model of shareability (given by Equation 4 and found by
data fitting) for other cities is a topic requiring further
investigation. Furthermore, the simple model used to
derive the reduced number of vehicles resulting from ride
pooling based on the shareability will be extended to cap-
ture analytically the impact of partially shared trips and
how this depends on different optimization objectives
used for the matching algorithm. Moreover, the impact
of empty vehicle trips generated for passenger pick-ups
or re-allocation procedures could also be investigated.
The impact of induced demand from other modes,
because of increased velocity as a result of ride pooling, is
also an interesting topic for further consideration.
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