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Abstract

A profound understanding of structural dynamics is crucial to develop a complete
picture of energy materials and their functional properties on the microscopic scale.
Traditionally, structural dynamics in crystals are studied within the harmonic ap-
proximation. However, in view of the search for and research on new, more efficient
energy materials, such as halide perovskites (HaPs) and solid-state ion conductors
(SSICs), exploring methods beyond the harmonic approximation becomes scientifi-
cally interesting, although it is theoretically challenging.

In this work, state-of-the-art computational methods, in particular first-principles
molecular dynamics (MD) simulations, are used to investigate structural dynamics
and their implications for functional properties in two types of materials, HaPs
and the SSIC a-Agl. Manifestations of vibrational anharmonicity are identified and
explored in both materials.

The paradigmatic CsPbBrjs is used as a representative system for the material class
HaPs to investigate the impact of anharmonic structural dynamics on band-edge en-
ergy distribution, correlations in the disorder potential induced by atomic displace-
ments, and the joint-density of states. To this end, MD simulations are analyzed and
contrasted to static calculations. The effect of the different kinds of atomic motion
within the material is studied using gedankenexperiments. Particular attention is
paid to the motion of the halide atoms, whose structural flexibility is a distinctive
feature of the perovskite structure. This is shown to be connected to some of the
favorable properties of the materials, as a comparison to PbTe confirms.

For a-Agl, anharmonic relaxational motion of the iodine host-lattice is studied us-
ing MD simulations and polarization-orientation Raman measurements, which were
obtained from our experimental collaborators. A model of local Agl, tetrahedral
oscillators is introduced to fully explain the experimental spectra. Trajectories of
the angle formed by three iodine ions exhibit large deviations from the expectation
value, revealing relaxational motion of iodine ions within the tetrahedra. This relax-
ational motion of the iodine ions is shown to be related to silver diffusion in this ion
conductor, which allows to develop a picture of the connection between host-lattice
dynamics and ion diffusion.

In summary, manifestations of anharmonicity are found in all energy materials stud-
ied and it is shown that structural dynamics facilitate some of their favorable func-
tional properties.






Zusammenfassung

Ein grindliches Verstandnis von struktureller Dynamik ist essentiell, um ein um-
fassendes Bild von Energiematerialien und ihren funktionalen Eigenschaften auf mi-
kroskopischer Ebene zu entwickeln. Ublicherweise wird strukturelle Dynamik in
Kristallen mit der harmonischen Naherung beschrieben. Auf der Suche nach neuen,
effizienteren Energiematerialien wie Halogenid-Perowskiten und Festkorperionenlei-
tern ist es von groflem wissenschaftlichen Interesse tiber die harmonische Naherung
hinauszugehen, auch wenn dies aus theoretischer Sicht noch immer eine Herausfor-
derung darstellt.

In dieser Arbeit werden moderne Computerverfahren verwendet, um die strukturelle
Dynamik und ihre Auswirkung auf funktionale Eigenschaften zu untersuchen. Allem
voran sind dies Molekulardynamiksimulationen (MD), die auf Dichtefunktionaltheo-
rie basieren. Hierbei werden zwei Arten von Materialien erforscht: Halogenid-Pe-
rowskite und der Ionenleiter a-Agl.

Die Perowskite werden am Beispiel CsPbBr3 betrachtet und der Einfluss von An-
harmonizitat auf die Energieverteilung an den Bandkanten, Korrelationen im Un-
ordnungspotential und die kombinierte Zustandsdichte untersucht. Hierfiir werden
die MD Simulationen eingehend analysiert und statischen Simulationen gegentiiber-
gestellt. Der Einfluss der Bewegung unterschiedlicher Atomsorten im Material wird
anhand von Gedankenexperimenten erforscht. Ein besonderer Fokus wird dabei
auf die Halogenatome gelegt, deren grofle Flexibilitdt ein markantes Merkmal der
Perowskitstruktur ist, das mit einigen vorteilhaften Eigenschaften des Materials in
Verbindung gebracht werden kann wie ein Vergleich zu PbTe bekraftigt.

In a-Agl wird die anharmonische Bewegung des von den Iodid-Ionen gebildeten
Gitters anhand von MD Simulationen und Ramanspektroskopie untersucht. Um
das experimentelle Ramanspektrum unserer Kollaboratoren vollstandig beschreiben
zu konnen, wird ein Model aus lokalen Agly Tetraedern eingefithrt. Der Winkel
zwischen drei Iodid-Ionen eines Tetraeders durchlauft grofie, langanhaltende Ab-
weichungen vom Erwartungswert. Dies offenbart eine relaxierende Bewegung der
Iodid-Ionen innerhalb der Tetraeder. Diese Bewegung der Iodid-Ionen kann mit der
Diffusion der Silber-Ionen in Verbindung gebracht werden, was es erlaubt ein Bild
fiir den Zusammenhang von Gitterdynamik und Ionendiffusion zu entwickeln.

Zusammenfassend kann gesagt werden, dass anharmonische Atombewegungen in

allen untersuchten Materialien auftreten und dariiber hinaus kann gezeigt werden,
dass diese einige der funktionalen Eigenschaften positiv beeinflussen.

vii






List of publications

The research presented in this work was started at the former research group Com-
putational Materials Physics at the University of Regensburg and continued in the
research group Theory of Functional Energy Materials, Technical University of Mu-

nich.

Parts of the results have a been published in the following peer-reviewed

publications:

1]

Beck, H., Gehrmann, C. & Egger, D. A. Structure and binding in halide
perovskites: Analysis of static and dynamic effects from dispersion-corrected
density functional theory. APL Mater. 7, 021108. doi:10.1063/1.5086541
(2019)

Gehrmann, C. & Egger, D. A. Dynamic shortening of disorder potentials in
anharmonic halide perovskites. Nat. Commun. 10, 3141. doi:10. 1038/
s41467-019-11087-y (2019)

Brenner, T. M., Gehrmann, C., Korobko, R., Livneh, T., Egger, D. A. &
Yaffe, O. Anharmonic host-lattice dynamics enable fast ion conduction in su-
perionic Agl. Phys. Rev. Mater. 4, 115402. doi:10.1103/PhysRevMaterials.
4.115402 (2020)

Seidl, S. A., Kretz, B., Gehrmann, C. & Egger, D. A. Assessing the accuracy of
screened range-separated hybrids for bulk properties of semiconductors. Phys.
Rev. Mater. 5, 034602. doi:10.1103/PhysRevMaterials.5.034602 (2021)

Gehrmann, C., Caicedo-Davila, S., Zhu, X. & Egger, D. A. Transversal Halide
Motion Intensifies Band-To-Band Transitions in Halide Perovskites. Adv. Sci.,
2200706. doi:10.1002/advs.202200706 (2022)

Zhu, X., Caicedo-Davila, S., Gehrmann, C. & Egger, D. A. Probing the Dis-
order Inside the Cubic Unit Cell of Halide Perovskites from First-Principles.
ACS Appl. Mater. Interfaces, acsami.1¢23099. doi:10.1021/acsami.1¢c23099
(2022)

1X


https://doi.org/10.1063/1.5086541
https://doi.org/10.1038/s41467-019-11087-y
https://doi.org/10.1038/s41467-019-11087-y
https://doi.org/10.1103/PhysRevMaterials.4.115402
https://doi.org/10.1103/PhysRevMaterials.4.115402
https://doi.org/10.1103/PhysRevMaterials.5.034602
https://doi.org/10.1002/advs.202200706
https://doi.org/10.1021/acsami.1c23099




Acknowledgments

The research reported in this thesis was carried out under the guidance and supervi-
sion of Prof. David A. Egger, to whom I would like to express my deepest gratitude.
This work would have been impossible without his guidance and support. Further-
more, special thanks should be given to Dr. Bernhard Kretz for being my mentor
and always giving valuable advise on scientific topics and beyond.

In addition, I would like to thank all members of the TheoFEM group at the TUM
— including the former CMS group at the University of Regensburg — for joining
me on the journey of this thesis. I have greatly benefited from all our interesting
discussions and our social activities inside and outside the office have been a great

JOy.

But moreover, scientific research is based on bringing together the experience and
expertise of various scientist by collaborations and discussions. As a consequence,
also this thesis has been enriched by several collaborations which I would like to ac-
knowledge here. To begin with, I want to thank all our experimental collaborators
for sharing both their immense knowledge and their data. First of all, I am indebted
to Michael Sendner, Sebastian Beck, and Robert Lovrincic, who provided us with
experimental data on the infra-red spectra of halide perovskites. Some of their ex-
perimental spectra, shown in section 3.2, are still unpublished and I am profoundly
grateful for the opportunity to include them in this thesis. Second, I want to express
my sincere thanks to Thomas M. Brenner and Omer Yaffe, as well as Roman Ko-
robko and Tsachi Livneh for our successful collaboration on the structural dynamics
of a-Agl. Without their Raman spectra, encouragement and patience the project
about this solid-state ion conductor would not have been realized. To continue with
our theoretical collaborators, I am grateful to Hubert Beck for our fruitful work on
finding the parameters most suitable for simulating structural properties of halide
perovskites. Hubert’s results have been of great value for my research. Furthermore,
I want to express my gratitude to Xiangzhou Zhu and Sebastian Caicedo-Davila for
their enormous contributions to our work on understanding the importance of the
transversal halide motion in CsPbBr3 and the difference between the halide per-
ovskite and PbTe, as well as our extensive and valuable discussions on disorder and
dynamics in halide perovskites. In particular, Sebastian contributed equally to the
analysis of the data shown in sections 3.7 and 3.8 and published in reference [5]. Last
but not least, I want to thank Stefan Seidl and Bernhard Kretz for our discussions
on and their insightful comments about DFT and XC-functionals. Special thanks
also to Stefan for always organizing coffee for our offices.

X1



Finally, I gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.
gauss-centre.eu) for funding this project by providing computing time through
the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer
JUWELS at Jiilich Supercomputing Centre (JSC).

xii


www.gauss-centre.eu
www.gauss-centre.eu

Contents

1. Introduction 1
2. Theory 5
2.1. Born-Oppenheimer approximation . . . . .. .. ... .. ... ... )
2.2. Density functional theory (DFT) . . .. .. ... ... ... ... .. 7
2.2.1. Electronic ground-state energy . . . . . .. .. ... ... .. 7

2.2.2. Hellmann-Feynman theorem and forces on ions . . . .. . .. 13

2.3. Lattice dynamics . . . . . . .. ..o 13
2.3.1. Harmonic approximation: classical description . . . . . . .. 13

2.3.2. Harmonic approximation: quantum mechanical description . 16

2.3.3. Beyond the harmonic approximation . . . ... ... ... .. 19

2.3.4. Vibrational spectroscopy . . . . . . ... ... 20

2.3.5. Relaxational motion . . . . .. ... ... ... ... ... 21

2.4. Molecular dynamics (MD) . . . .. ... ... 25
2.4.1. Fundamentals . . . . . . .. ... ..o o 25

2.4.2. Correlation functions . . . . . . .. ... 29

2.4.3. Phonon quasiparticles from MD . . . . ... ... ... ... 31

2.5. Disorder potential and Urbach energy . . . . . . ... ... ... .. 32
2.6. Numerical details . . . . . . . ... .. ... . 33
2.6.1. Halide perovskites . . . . . . . ... ... 34

2.6.2. Agl . .. 38

3. Results and discussion: halide perovskites 41
3.1. Introduction to halide perovskites . . . . . . . .. ... ... ... .. 41
3.2. Influence of the A-site cation on the infra-red spectrum . . . . . . .. 44
3.3. Cubic perovskite structure as local maximum in potential energy . . 55
3.4. Anharmonic phonon quasi-particles . . . . . . .. ... ... ... .. 61
3.5. Resonant bonding . . . . . . ... ..o 64
3.6. Disorder correlations and band-edge distributions . . . . . . .. . .. 66
3.6.1. Ionic composition . . . . . . . .. ... L 69

3.7. Impact of strongly anharmonic transversal halide motion . . . . . . . 71
3.8. Comparison to PbTe . . . . . ... .. ... 7

4. Results and discussion: superionic a-Agl 83
4.1. Introduction to solid-state ion conductors and silver iodide . . . . . . 83
4.2. VDOS and Raman spectrum of superionic a-Agl . . . . . . . . . .. 86
4.3. Todine host-lattice anharmonicity in superionic a-Agl . . . . . . . .. 91
4.4. Interplay of host-lattice dynamics and ion diffusion . . . . . ... .. 93

xiil



Contents

5. Conclusions and Outlook
Bibliography

Appendix A.
Supplemental figures

Appendix B.
Simplistic model to explain oscillatory decaying autocorrelation func-
tions

Appendix C.
Polarization-orientation Raman spectroscopy

Xiv

97
101

121

125

127



1. Introduction

Our modern civilization and lifestyle comes with the cost of an ever increasing
power consumption. At the same time we have realized that our dependence on
fossil energy sources has to be overcome. Therefore, there is an increasing interest
in renewable energy sources and much effort is put into the technologies behind
renewable energy. Involved technologies include methods to convert energy, such as
photovoltaics, but they also include energy storage systems, e.g., batteries. One ap-
proach to improve devices is to learn about the involved materials. We call materials
used, e.g., in solar cells or batteries “energy materials”. Depending on their applica-
tion, energy materials have properties that are particularly important — we call them
“functional properties”. Examples for functional properties are optical absorption in
materials used for solar cells, or ionic conductivity in electrolytes used for batteries.
Naturally, the material choice allows to optimize functional properties for a specific
scenario, resulting in more efficient devices. But also microscopic details strongly
impact functional properties. For instance, both crystalline and amorphous silicon
are candidates to be used as a light-absorbing material in solar cells. However, the
former reaches higher efficiencies [7]. While both examples for solar cells are based
on the same chemical element — Si — the spatial arrangement of the Si atoms differs
at the microscopic scale. As this example indicates, functional properties can be
modified by a variety of microscopic effects.

Our goal is to understand energy materials and their functional properties on the mi-
croscopic scale with the aim to eventually provide new insight to optimize materials
and devices. Studying a material on the microscopic level can include many aspects,
such as electronic properties (e.g., the electronic bandstructure in semiconductors),
optical properties and structural properties. In this work we are particularly in-
terested in the structural dynamics in energy materials and their implications for
functional properties. Structural dynamics means we are interested in how atoms
move at finite temperature.

Usually, atomic motion in crystals is treated in the harmonic approximation, an
approach which has been proven to be accurate for many conventional materials.
In this approximation, the potential energy surface V(x) of the ions is expanded in
a Taylor series, keeping only non-vanishing terms of the lowest order in the atomic
displacements, i.e., terms quadratic in the displacements away from the average
position Xq:

V(x) & V2V (X)]x, (X — %0)* . (1.1)

In contrast, effects that can only be described with higher-order terms are called
anharmonic effects. For crystalline materials, the harmonic approximation can be
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solved using a plane-wave ansatz and further simplifies due to the translational
invariance. This finally results in a description of lattice dynamics in crystalline
materials in reciprocal space, i.e., g-point dependent vibrational dispersion rela-
tions are obtained. The vibrational quasi-particles, obtained in a quantum mechan-
ical description of lattice dynamics, are called phonons. By now, phonons have
been well-studied, including the development of theories that allow for a profound
understanding of their impact on materials properties such as heat transport and
electron-phonon coupling.

However, many interesting effects occur when approaching the limits of the harmonic
approximation, such as finite phonon lifetimes due to phonon-phonon interactions.
Commonly, limitations of the harmonic approximation are equalized with the neces-
sity of including higher order terms in eq. (1.1). Higher order contributions to lattice
dynamics, such as cubic or quartic terms, can, e.g., be included perturbatively and
manifest for instance in finite phonon lifetimes and frequency shifts. However, the
harmonic approximation and subsequent perturbative treatments of anharmonicity
are based on another very important assumption, namely the existence of a well-
defined equilibrium position xg. Also this latter approximation can be violated in
crystals, for instance, in solid-state ion conductors (SSICs), i.e., crystalline materi-
als which conduct electrical current via diffusing ions. Consequently, the diffusing
ions frequently hop among different locations, and as a result there is no unique
equilibrium structure.

Exploring methods going beyond the harmonic approximation to study structural
dynamics and their implications for functional properties in energy materials is
scientifically interesting and theoretically challenging for this reason. Molecular dy-
namics (MD) simulations are one way to tackle the challenge: in contrast to, e.g.,
perturbative methods, all orders in the Taylor series for the potential energy surface
of the atoms are considered and no well-defined equilibrium positions for the atoms
have to be assumed in MD simulations. Instead of approximating the potential
energy surface, Newton’s equations of motion are solved numerically using instan-
taneous forces on the atoms as obtained, for instance, from quantum mechanical
electronic structure calculations. In this way, trajectories of the atomic positions
are obtained which allow to study structural dynamics in energy materials, including
the identification and investigation of anharmonicity. Moreover, this approach allows
to study implications of structural dynamics for functional properties, both directly
from the trajectories and by using the instantaneous atomic configurations.

While many inorganic materials, especially textbook examples like Si and GaAs,
can be described accurately by theories based on the harmonic or perturbative
treatments of atomic motion, several materials exhibit more complex dynamics.
With this, they challenge the conventional view which assumes well-defined ref-
erence structures combined with harmonic phonons that show long lifetimes and
mean-free paths. These materials include many energy materials like halide per-
ovskites (HaPs), organic semiconductors, SSICs, and thermoelectrics. HaPs are a
relatively new class of materials for use as solar absorbers [8-18], as well as LEDs
and lasers [19, 20], and sensor applications [20]. Their remarkable functional prop-



erties resulted in obtaining solar cells with high efficiency within a comparably short
time [7, 16]. At the same time, they show interesting structural dynamics, includ-
ing phase transitions and rotational motion of the small organic cations in hybrid
HaPs [2, 21-27]. Similarly, organic semicondutors can, among other applications,
be used for solar cells [28], while anharmonicity has been measured experimentally
in these materials [29, 30],manifesting itself, for instance, in a dynamic symmetry
breaking of the structure [31]. SSICs, compelling as electrolytes in batteries [32],
show a close connection between an important functional property — the conductiv-
ity — and structural dynamics, due to the conduction mechanism via diffusing ions,
but lack a unique equilibrium structure for the same reason. Last but not least,
thermoelectrics, i.e., materials capable of converting thermal energy into electrical
energy — and vice versa —, require low thermal conductivity, and thus small phonon
mean free paths [33]. As a consequence, materials which behave as “phonon-glass,
electron-crystal” are explored as thermoelectrics [34]. Hence, it is proposed to study
the effects of structural dynamics and their impact on functional properties for these
systems. Specifically, from the broad spectrum of the above mentioned materials,
HaPs and a-Agl, a paradigmatic SSIC, are chosen for this work.

To summarize the main scientific goal that will be addressed in this work: using
advanced computational methods, such as first-principles MD simulations, to inves-
tigate structural dynamics on the microscopic scale, we aim to probe the limits of
the conventional harmonic treatment in paradigmatic energy materials and finally
unravel the impact of structural dynamics, including anharmonicity, on some of
their key functional properties, namely the steepness of optical absorption close to
its onset in HaPs and ionic conductivity in SSICs (sketched in fig. 1.1).

® ®
oo

® ®
® ®

Figure 1.1.: Sketch visualizing that understanding atomic motion (green arrows),
e.g., whether it is harmonic (indicated as ”springs”), is required to un-
derstand material properties such as charge transport via ion diffusion.
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2. Theory

Unless specific references have been cited, the below sections are based on the fol-

lowing textbooks [35—41] and material provided with the online documentation of
the tools used (e.g., [42-44]).

The goal of this thesis is to provide a microscopic picture of structural dynamics and
functional properties in energy materials. The starting point for any non-relativistic
microscopic description is quantum mechanics, with the Schrodinger equation

maat\p( .ty Ry Ry t) = AW(r; . .ry, Ry . Ry, t) (2.1)

as the essential equation. The solution of the Schrodinger equation is the wavefunc-
tion W(ry...ry,Ry... Ry, t), with N and M the number of electrons and atoms,
respectively. The Hamilton operator

Zle Z]Z]e
H =Tt Toncuit ZZ ’r "1 ZZ Ir, —R1| ZZ R, —Ry|’ (2.2)

i JF# I J#I

is used to describe a solid-state material. The operators

A2 2
A P; h 2
T, = - S T2 ad 2,
S, S Vi an (2.3)
A2 2
A p7 v
Tnuc ei — = — 2.4
: — 2M; ZQM Vi, (24)

are the kinetic energy operators for electrons, with positions r; and charge e, and
ionic nuclei, at positions R; and charges Z;e, respectively. This Hamilton operator
includes many-particle operators, such as the terms %ZZ > i ?2”' As a conse-
quence, a many-body Schrédinger equation would have to be solved. This is almost
impossible to do for any real system, since for real materials there are about O (10%3)
atoms and electrons. For this reason we have to make use of approximations which
simplify this task. One set of approximations is described below, it leads to a theory
called density functional theory (DFT), a very popular electronic structure theory.

2.1. Born-Oppenheimer approximation

Following reference [41], as a first approximation, it is assumed that the light elec-
trons adiabatically adapt to the instantaneous nuclear positions. This approximation
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can be made because the mass of electrons m,. is much smaller than the mass of the
ionic nuclei My
M; 4 6

~ 10% to 10° . (2.5)

Me

As a consequence of this mass difference, electronic motion is happening on much
shorter timescales than ionic motion. Thus we separate the time-dependent wave-
function W(r;...ry, Ry ... Ry, t) into time-dependent wavefunctions for the nuclei
xi({R;},t) and stationary electronic wavefunctions ¢;({r;},{R;}) which contain
the instantaneous nuclear positions {R;}. And thus they contain an implicit time
dependence through the nuclear positions, as parameters

V({r} R} 1) = Y a{rd RD{R D) - (2.6)

Moreover, the electronic wavefunctions ¢;({r;}, {R}) are the solutions of the time-
independent electronic Schrodinger equation

Aoy = By (2.7)

with the electronic Hamiltonian

A A Z[@ Z]ZJ@
c=Te+ = Zz|r_r| ZZ|r—R,y ZZ’RI_RJ‘ (2.8)

i g I J#I

Applying the approach from eq. (2.6) to eq. (2.1) reveals
R L0
|:Tnuclei + El({RI})] xR}t + > Corxr({Rr},t) = ZHEXI({RI}U t), (29
k

with E;({R}) an eigenvalue of eq. (2.7) and

n 2
Cua = (| Tt 1) = 3 (0l 5 o) = 3 5 (0l (Brfo)pr (210)
I I

being matrix elements of the nuclear kinetic energy operator. In the simplest ap-
proximation, no coupling of the nuclear kinetic energy operator on the electronic
wavefunctions is assumed (Cy; = 0), and thus

[T + BURD)] (Ri} 1) = (R} 1) (.11)

This approximation is called the Born-Oppenheimer approximation whose original
derivation involved a perturbative treatment of the problem with an expansion in
terms of k = (m./M)"* [38, 41, 45]. The Born-Oppenheimer approximation is a
special case of the adiabatic approximation which assumes that electrons adiabati-
cally adapt to the instantaneous nuclear positions [41]. The adiabatic approxima-
tion, however, allows for the inclusion of diagonal elements Cyy in eq. (2.9) [41]. As
a very important consequence of the Born-Oppenheimer approximation, which we
will apply below, we can solve the stationary Schrodinger equation for the electrons
decoupled from the nuclear dynamics. And wvice versa, we can solve the nuclear
dynamics with the electrons only acting as a potential E;({R;}).
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2.2. Density functional theory (DFT)

2.2.1. Electronic ground-state energy

After separating electronic and nuclear degrees of freedom, there still remains a
many-body equation for the electrons. Many-body Hamiltonians are extremely dif-
ficult to solve compared to single particle theories. Therefore, the goal is to apply
a theory which is approximating the many-body problem by single particle equa-
tions: (Kohn-Sham) DFT. The derivation of DFT includes the Hohenberg-Kohn
theorems [46]. These theorems allow to replace the equations for the wavefunctions
Yi(ry, ..., ryN), which depend on all spatial coordinates of all electrons, by equations
for the density n(r), which depends on only three spatial coordinates. The first
Hohenberg-Kohn theorem states that for any system of interacting electrons, their
density determines the external potential uniquely (up to a constant). The sec-
ond Hohenberg-Kohn theorem states that there exists a universal functional E[n(r)]
which provides the exact ground state energy and density of any interacting electron
system in an external potential. Therefore, the initial problem is simplified by using
the (charge) density instead of quantum mechanical wavefunctions. The next step is
to map the interacting system to a non-interacting system. This can be done using
the Kohn-Sham map [47]. It maps an interacting system to a non-interacting sys-
tem, such that the groundstate charge density is equal in both systems. According
to the Hohenberg-Kohn theorems, the ground state density uniquely determines the
external potential for this system, the Kohn-Sham potential

2 [ 3 n(r)) B [n(r)]
= ) 2.12
Vics = Veu(r) +¢ /d " lr —r’| + on(r) ( )
From this, the Kohn-Sham equation can be obtained:
h*V? ) n(r’) 0B [n(r)]
- ex d3 ! x i = Ez i - 2.1
{ o Voslr) ¢ R }¢ v (2.13)

This equation depends on the charge density n(r) which again can be obtained from
the Kohn-Sham wavefunctions ;:

n(r) =3Il (2.14)

The charge density is used as a parameter in eq. (2.13) and depends on its solution
Yy, see eq. (2.14). Thus, eq. (2.13) has to be solved self-consistently. A procedure to
solve eq. (2.13) self-consistently has been sketched in fig. 2.1. In this self-consistent
scheme, one starts by providing an initial guess for the charge density or wavefunc-
tions, e.g., from a superposition of atomic orbitals. Using this trial charge density,
one can calculate the Kohn-Sham potential, eq. (2.12), for the current iteration.
Provided with the potential, one can solve the Kohn-Sham equations, eq. (2.13),
to obtain a new set of Kohn-Sham wavefunctions and consequently a new charge
density according to eq. (2.14). The quantities calculated from the new solutions of
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Provide initial charge density n(r)

Calculate KS potential: eq. (2.12)

Solve KS equations: eq. (2.13)

Calculate updated charge density: eq. (2.14)

Self consistent?

Yes

Post-processing

Figure 2.1.: Flowchart of the procedure to solve the Kohn-Sham equations self-
consistently.
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the Kohn-Sham equations can now be compared with the solutions from the previ-
ous iteration, i.e., check the solutions for self-consistency. Once the changes, e.g., in
total energy, are below a defined threshold, the calculation is converged and further
analysis can be done. However, if the differences between the current and the pre-
vious iteration are larger than the threshold, the current charge density is used to
further iteratively solve egs. (2.12) to (2.14).

Exchange-correlation functionals

In principle, Kohn-Sham DFT following the procedure described above is exact,
provided we know the exact exchange-correlation (XC) energy F,.. In practice,
however, this is not known and one has to rely on approximations. The accuracy
of Kohn-Sham DFT calculations thus depends on the approximation for the XC
functional. Commonly used approximations include the local density approximation
(LDA) and the generalized gradient approximations (GGA).

In the LDA, it is assumed that F,. depends only on the local charge density

E?ﬁﬂﬂﬁ—/ﬁ%n@H&W@D+Qm@m (2.15)
and that it can locally be approximated by a homogeneous electron gas, i.e.,
3e?k
ne) = n(e) = =L and e(nlr) =), (216)
™

with kp the Fermi wavevector, related to the Fermi energy Er by hkp = \/2mEp.
The exchange energy of a homogeneous electron gas is known exactly, and the corre-
lation energy can be calculated using quantum Monte Carlo methods [48]. The spin-
polarized formulation of LDA is often called local spin density approximation (LSD),
ELSD = ELSDn, n,], and depends on the densities for spin-up n4 and spin-down n,
individually.

In the GGA, the gradient of the charge density Vn(r) is considered explicitly in the
XC energy

ES:GA[n(r)] = /d3r n(r)eg(n(r), Vn(r)) = /dST f(n(r),Vn(r)) . (2.17)

GGA functionals thus rely on a function f which has to be parameterized.

A famous parametrization is that of PERDEW, BURKE, AND ERNZERHOF (PBE) [49].
In this approach all parameters beyond those of the LSD are fundamental constants.
First, the exchange-correlation energy,

ESE=EPP+ EPE (2.18)

is written as a sum of the exchange energy EFBE and the correlation energy EFBE.
The exchange energy is given as a function of the dimensionless density gradient

1 [Vn(r)|

= ) (2.19)
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by the equation
EPP[n(r)] = / d’r n(r)e™™ (n(r)) Fu(s) (2.20)

with

Fo(s) =14k — (2.21)

14 e

The remaining parameters are determined to be

0.06672572
k=0804 and p o~ Tﬂ ~0.21951 . (2.22)

Similarly, the correlation energy FE. can be obtained as a function of a dimensionless
density gradient
1 |Vn(r)]
t= ———=— 2.23
20ks n(r (223)
with
o) = TR RO

In particular ¢ = 1 for the spin-unpolarized case. Further, to parameterize E., the
Bohr radius ag, Thomas-Fermi screening wave number k,, and local Seitz radius 7y,
defined by

_n¢—n¢

(2.24)

h? 4kp 3 k3
_ k, = ~ d = £ 2.25
W= me2 Tag 473 72 (2.25)
respectively, as well as the parameters
1—1In(2)
¥=—7-—">-=~=0.031091 and p~0.066725 (2.26)
T

are used. Applying all these definitions, the correlation energy in the PBE parametriza-
tion can be written as

BV (), my(e)) = [ @ n(e) [0 O+ HOwGO) - (220

Consequently, the gradient contribution is given by

e2vyg? B 1+ At?
H = In(1+ =42 2.2

with
_B 1
~ yexp(—agelom/ygie?) — 1

It is interesting to note that parameters and functions in the PBE functional are
obtained by enforcing the postulated functions to obey certain physical constraints,
e.g., to recover the LSD approximation for s — 0. The PBE functional is expected
to improve the accuracy of calculations for several physical properties with respect
to LDA/LSD [49-51].

(2.29)
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2.2. Density functional theory (DFT)

Basis sets

Further approximations have to be made when representing the wave functions in
eq. (2.13). A basis set has to be chosen in order to expand the wavefunctions. A
popular basis set for crystalline materials are plane waves,

1.
_ 1(k+Ks)r

L= ——e 2.30

Px, S (2.30)

as they fulfill Bloch’s theorem for lattice periodic systems. Furthermore, they allow
for an efficient transform between real and reciprocal space by means of fast Fourier
transform (FFT). By using the kinetic energy of the plane waves,
E,(k)=—(k+K,)*, 2.31

() = 5 (k + K,) (231)
as a parameter, there exists a straightforward way to increase the number of basis
functions and to check the convergence with respect to it: only plane waves ¢y s
whose kinetic energy is smaller than a defined cut-off energy,

Es(k) S Ecutoff 3 (232)

are used in the basis-set expansion. However, plane waves also exhibit a major
disadvantage: describing localized orbitals, such as core electrons which are in close
proximity to the ionic nuclei, requires a large number of plane waves.

To circumvent the complexity and numerical expenses related to a description of
core electrons with plane waves, pseudo-potentials and pseudo-wavefunctions are
used. Based on the perception that core electrons do not participate significantly in
chemical bonding, they are not treated explicitly. Instead, all interactions between
core and valence electrons, for instance their electrostatic and quantum-mechanical
interactions, are replaced by a pseudo-potential. This pseudo-potential is required to
coincide with the real potential outside a sphere of radius r., but it is much smoother
inside this core region (see sketch in fig. 2.2). Moreover, the pseudo-potential is re-
quired to provide nodeless pseudo-wavefunctions for the valence electrons which
reproduce the real wavefunctions outside the core region. Consequently, if they are
constructed carefully, pseudo-potentials allow for an accurate description of the elec-
tronic structure while being computationally much more efficient than all-electron
calculations. [37, 41]

Van der Waals corrections

In any system, the charge density can temporarily fluctuate, resulting in a temporal
dipole moment. This dipole can now induce dipole moments in its environment.
The interaction between these temporally induced dipole moments is called van
der Waals interaction and is of particular importance for systems where covalent
interactions are absent, such as dimers of noble gas atoms. On the other hand, it

11
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Figure 2.2.: Sketch illustrating the pseudo-wavefunction W eeudo and real wavefunc-
tion U,, as well as pseudo-potential Vpseuao and Coulomb potential Z/r.
Pseudo-wavefunction and pseudo-potential coincide with the real wave-
funtion and potential for r > r.. Reprinted with permission from [52],
released into the public domain.

can be shown that van der Waals forces can contribute significantly for systems such
as HaPs due to their polarizable atoms such as halides, Cs and organic molecules |1,
53-60]. It further can be shown that van der Waals interactions are non-local and
decay with distance as r~® in leading order. In semi-local DFT, however, this
non-local interaction is not well described. Therefore, correction schemes have been
developed and one popular correction scheme is the pair-wise correction suggested by
TKATCHENKO AND SCHEFFLER (TS method) [61], which we will employ. There, the
total energy obtained from DFT calculations Eppr is complemented by a correction
term Erg to obtain the total energy E:

E = Eppr + Ers . (2.33)

The correction term itself is a sum of pair-wise van der Waals interactions,

1« C
Ers =~ > R"’T"“Bf(RAB, RY, RY) | (2.34)
A,B AB

with R4p the distance between atoms A and B. This approximation depends on the
Ce parameters, van der Waals radii RY and R%, and damping function f(R4p, R, R%).
This procedure of a pair-wise correction has been shown to significantly improve the
results for structural properties of materials with significant dispersive contribu-
tions [62, 63].

12



2.3. Lattice dynamics

2.2.2. Hellmann-Feynman theorem and forces on ions

Methods to study structural dynamics, like phonon calculations (section 2.3) or MD
simulations (section 2.4) rely on knowing the forces acting on the nuclei. These
forces can be obtained straightforwardly from the electronic ground-state calculated
in DFT (section 2.2.1) with the use of the Hellmann-Feynman theorem. The theorem
states how the derivative of the total energy F\ with respect to a parameter A can

be calculated: ~
dEy dH )
= Wl =T ) (2.35)

Applying this theorem to eq. (2.2) provides the forces acting on nucleus I:

Z[€2(I'—R[) Z Z]ZJ@Q(R[ _RJ)

Fr(Ry) :/d3r n(r) R ‘3 R, _R |3
— Ry 1 — Ry

(2.36)
J#£I

2.3. Lattice dynamics

2.3.1. Harmonic approximation: classical description

As motivated in section 2.1, the ionic nuclei only enter as parameters in the theory
discussed in section 2.2. Moreover, up to here, the positions of the ionic nuclei are
assumed to stay fixed. However, this assumption is only valid for classical parti-
cles in the limit 7" — 0. At finite temperature (e.g., room temperature) atoms are
moving. This is important to understand effects such as (thermal) transport, tem-
perature dependent band gaps or superconductivity.

To describe nuclear motion theoretically, one approach is solving the classical equa-
tions of motion for the ionic nuclei in a potential V.. The potential energy Viucle
of the nuclei can be rewritten in terms of pair-wise interactions:

Vnuclei - Z ‘/IJ(RI - RJ) . (237>
1,J

In solids at room temperature, nuclear displacements S; around their equilibrium
positions R} (cf. fig. 2.3), with

R;=R’+S,=R,+R;+8S;, (2.38)

are often small. This motivates a Taylor expansion of the potential energy surface
for the nuclei,

1
‘/nuclei = VO + 5 Z SIVQ ‘/}J(R? - R?])SJ +0 (S?) (239)

nuclei
I1,J

13
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!

(

Figure 2.3.: Sketch of the notation used for describing atomic positions within a lat-
tice in the context of the harmonic approximation of lattice dynamics.
The (instantaneous) position vector R; of atom I (cyan) is given as
a sum of the vector R,, pointing to the unit cell,the vector R; point-
ing to the undisplaced atom (gray) at its equilibrium position within
the unit cell, and the displacement vector S; defined by the vectors of
undisplaced (gray) and displaced atom (cyan), cf. eq. (2.37). Similar,
a sum of only the first to vectors provides the vector to the equilibrium
position R(I) of atom I: RY =R, + R;.

and neglect terms of higher order than the quadratic term. The term linear in nuclear
displacements vanishes, since at equilibrium there is no net force on the nuclei, i.e.,
>0 VVr J(RY—RY) = 0. As only the term quadratic in the displacements remains
in this approximation, it is called the harmonic approrimation. We call

527 — *Vi;(Rr —Ry)
05708y |y
the force constants. The rewritten equations of motion for the nuclear displacements
in the harmonic approximation,

(2.40)

2o~ S (2.41)
ot? T
can be solved using the plane wave ansatz
1 .
S; = A(q)eBraet) (2.42)

VM,

with wavevector q and amplitude A(q). Inserting this ansatz, eq. (2.41) can be
written as

0? 1 . 1 A
M AC i(Rp-q—wt) — _ E (baﬁ Aﬁ i(Rm-q—wt) 2.43
IatQ (\/M I(q)e ) Pt IJ\/E J(q)e ( )

) 1 :
—(,U2 /M[A?(CI) el(Rn-q—wt) - E CI)?? Ag(Q) el(qu—wt) (244)

Jm,B VM,
1 N (R —R).

—W? Af(q) = ————— Y 7 (q) R R4S (245)

vV MMy o
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2.3. Lattice dynamics

And by introducing the dynamical matriz

D) = @} il R (2.46)

1
VAT,
this can be written as

)+ Z DA% q) =0 . (2.47)

All non-trivial solutions of eq. (2.47) are thus given by the eigenfunctions of the
dynamical matrix, with the eigenvalues w?(q) providing the vibrational frequencies
w,(q) of the vibrational eigenmodes e, (q), with

D(q)e,(q) = wi(q)e,(q) . (2.48)

The frequencies and eigenmodes are functions of the wavevector q, hence we obtain
dispersion relations. For a system consisting of 3N atoms, we find 3N branches of the
dispersion relations. This is shown in fig. 2.4 for the example of Si. Figure 2.4 shows
the phonon dispersion relation, i.e., the phonon frequencies along a path connecting
the high-symmetry g-points ' = K — X —I' — L — X — W — L in the first Brillouin
zone of Si as obtained from DFT calculations using three different XC-functionals
(shown by black, blue, and yellow lines), as well as experimental data indicated by
open circles. As the phonon dispersion was calculated for Si in the diamond-cubic
structure, the unit cell contains two atoms and a total of six phonon branches can
be seen. These six phonon branches consist of three acoustic phonon branches,
identified by their linear behavior close to the I'-point at which they are identically
zero, and three optical branches.

Finally, we can write nuclear displacements, eq. (2.42), and velocities as functions
of the eigenmodes e, (q)

Si(t) = (a,t)e' ™ e (q) (2.49)

S;(t) = t)e' el (q) . (2.50)

1 )
\/ﬁ ;(}:Qu(qv

The coefficients Q),(q) are normal coordinates [39] and can be expressed as

Q.(q Z\/_e_’qR"eI* ) - S;(t) (2.51)

IRO

P(q) =Qu(q,t) = Z\/_e iaRnel(q) - S;(t) (2.52)

IRO

here e* denotes the complex conjugate of the eigenvector e. These normal coor-
dinates will be helpful for a quantum mechanical description of lattice dynamics
(section 2.3.2).
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Figure 2.4.: Calculated phonon dispersion relations of diamond-cubic Si. Shown
are results calculated using DFT with three different XC-functionals
(solid lines), as well as experimental data extracted from [64, 65] (open
circles). Reprinted with permission from [4]. Copyright (2021) by the
American Physical Society.

In practice, elements of the force-constant matrix @?5 can be computed by using
finite differences, i.e., finite displacements AR? of the atoms:

Fe(Rp, Ry 4+ AR)) — F*(R;,Ry)

o) =
1J A R;J;

(2.53)

Here, Ff(R;,R;) is the a-component of the force F; on nucleus I at position Ry,
with nucleus J at position R;. The forces F; on the other hand can be calculated
with the Hellmann-Feynman theorem (section 2.2.2). An implementation of the
finite displacements approach as provided with the phonopy package [66] will later
be used to compute harmonic phonon properties, as is described in section 2.6.

2.3.2. Harmonic approximation: quantum mechanical
description

Following the classical derivation above, a Hamiltonian for the nuclei can be written
within the harmonic approximation [39]

a2
N p7 1 N
Aram = > oo+ =Y 8,88, . 2.54
h n 2M7; 2[] L= ( )
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2.3. Lattice dynamics

This Hamiltonian can be rewritten using the normal coordinates, egs. (2.51) and (2.52),
as defined for the classical description

. > (isu(q)lsl(q) + wi(q)QV(q)QI(q)) : (2.55)

|l_\iharm =
2
V?q

Similar to a simple harmonic oscillator, usually discussed in the introductory quan-
tum mechanics lecture, this can be solved by introducing creation and annihilation
operators

. 1 A .
3lla) = —m—e (@@ - Pl(a)) (2:56)
. 1 A .

a,(q) = m (wu(Q)Qy(q) + zPl,(q)) ) (2.57)

The Hamiltonian can thus be rewritten as
N 1 1
_ 5t (q)3 ) = A -
= S @) (l(afa) + ) = St (@ +5) - 259

where the number operator fi,(q) = 47 (q)a,(q) has been introduced. It can be shown
that the operator a7 (q), applied to an eigenstate |1/} of the harmonic Hamiltonian,

|qharm |¢> = E |¢> ) <259)

increases the corresponding eigenenergy F by hw,(q): £ — E + hw,(q), i.e., it
creates an excitation and thus it is called creation operator. Similarly, the operator
4,(q) can be shown to annihilate an excitation of energy hw,(q) and thus reduces
the energy F — E —hw,(q). Therefore, the operator is called annihilation operator.
These quantized vibrational excitations are called phonons and are considered to be
vibrational quasiparticles. Finally, the number operator fi,(q) counts the number
n,(q) of excited phonons of energy hw,(q). The eigenstates and eigenenergies of the
Hamiltonian, eq. (2.58), can then be given by the respective number of phonons

P () = () + 3 ) sl @) (2.60)

Before discussing the phonon occupation numbers, it is worth mentioning a pecu-
liarity of the quantum mechanical picture: even in the absence of any phonons, i.e.,
n,(q) = 0 for all v, q, the vibrational energy still is nonzero. As we will see below,
this corresponds to T'= 0 and in this case we will find the zero-point energy

1

Ea =3 tho(a) 2:6)
V?q

For finite temperatures, when phonons are excited, the phonon occupation number

can be related to the amplitudes of nuclear displacements by taking the expectation

value of the squared modulus of the normal mode operator Q,,(q):

()] Qu(@) QL (@) o (@) = ﬁ (m(q) n %) . (2.62)
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2. Theory

The actual number of excited phonons at a specific temperature T" are given by the
underlying statistics. As phonons are Bosons, they are described by a Bose-Einstein
distribution. Specifically, the average number of phonons at temperature T is given
by

1

From this we clearly see that both the number of excited phonons and the amplitude
of nuclei displacements increase with decreasing phonon frequencies. Consequently,
the impact of phonons can be expected to be particularly important in soft materials
with low vibrational frequencies, due to a higher number of excited phonons and
larger nuclear displacements.

Vibrational density of states

Last but not least, for calculating phonon contributions to thermodynamic prop-
erties such as total energy, entropy, or heat capacity, the number of states per
volume element and frequency range, i.e., the phonon density of states (PDOS) or
vibrational density of states (VDOS) is of interest [39]. This density of states is use-
ful whenever we have to evaluate a sum Z%q over all possible phonon frequencies
at all g-points within the first Brillouin zone which, e.g., appears when calculat-
ing the phonon contributions to the above mentioned properties. Introducing the
VDOS g(w), the sum over modes and g-points can be rewritten as an integral over
frequencies

4 3
> Fllal] = G 3 [#aFof@l = [dogw P . o
From eq. (2.64), we can immediately identify

1) = o > [@as(-wi@) (2.65)

In order to get g(w) from the phonon dispersion relations w(q) calculated earlier,
the approximation

1% /q(W+Aw) . w(q)+Aw(q) ) ) ( )
— dq:/ dw g(w) ~ g(w)Aw 2.66
(2m)? a(w) w(a)

is used, i.e., an integration over infinitesimal volume fractions in reciprocal space
with constant w(q). This volume integral can be rewritten as an integral over the
surface dS, with constant w times the change normal to this surface dg, , using that
the change perpendicular to the constant w surface is given by Aw = |Vqw(q)| dg.

Aw

d*q=4dS,dq, =dS,—— .
. "Vqw(a)l

(2.67)
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2.3. Lattice dynamics

Comparing eq. (2.66) with eq. (2.67) allows to finally identify an expression of the
VDOS based on the phonon dispersion relations w(q) [35, 36]

1% ds,
g(W) a (27)3 /wzconst. ’qu(q)‘ . (268)

It is important to note that although the VDOS has been motivated and derived
from the phonon dispersions obtained from the harmonic approximation, the concept
of a density of states still holds when the harmonic approximation breaks down and
no phonon dispersions can be defined, e.g., in the case of liquids, similar to the case
of electrons as discussed in reference [67].

2.3.3. Beyond the harmonic approximation

The harmonic approximation of lattice dynamics is already helpful in describing
many phenomena at finite temperature. However, a variety of phenomena cannot
be explained relying only on the harmonic approximation. These phenomena in-
clude, among others, thermal expansion and phonon-phonon interactions. While
the former effect can be taken into account by a formalism called quasi-harmonic
approximation, i.e., by treating thermal expansion and lattice dynamics as indepen-
dent effects and explicitly performing calculations within the harmonic approxima-
tion at different volumes, the latter effect is more difficult to treat theoretically.
Still, phonon-phonon interactions are important, e.g., to determine the lifetime of
phonons. Within the harmonic approximation, a phonon that has been excited once
will have an infinite lifetime. In order to calculate phonon-phonon interactions, and
as a consequence finite vibrational lifetimes and further effects such as frequency
shifts caused by anharmonicity, at least third order terms in the Taylor expansion of
the potential energy surface for the nuclei, eq. (2.39), have to be taken into account.
In terms of the creation and annihilation operators defined in section 2.3.2 third
order terms can be written as

CII\D(?))/ ,,(q q q//)
\/wu(q>wl/’(q,)wl/”(q”)

L)) (ala”) + 3l (a”) .

(2.69)
see, e.g., reference [39]. From eq. (2.69) it can be seen that anharmonic contribu-
tion can, in the framework of vibrational quasiparticles, be seen as phonon-phonon
interactions as it contains, e.g., terms éyé,jréi,, where two phonons are annihilated
and one is created. Similarly, also terms can be found where one phonon is annihi-
lated and two phonons are created. In general, no exact solution exists for solving
the resulting equations. Instead, approximations are used to compute (numerically)
such higher order contributions. Higher order terms are for instance treated pertur-
batively (e.g., references [68, 69]), or using Green’s functions (e.g., reference [70]).
Another approach to obtain anharmonic material properties is to find an effective
harmonic Hamiltonian. This Hamiltonian is quadratic in principle, but it is ob-
tained such that anharmonic properties of a material are mimicked. To obtain this,
the effective Hamiltonian is fitted, e.g., to MD simulations. Examples are given in
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2. Theory

references [71-73]. Besides creating an effective harmonic Hamiltonian, MD offers
further ways to investigate anharmonic lattice dynamics, as will be discussed in
section 2.4 and in particular section 2.4.3.

2.3.4. Vibrational spectroscopy

In order to study lattice vibrations experimentally, the interaction of phonons with a
probe, e.g., photons or neutrons, is measured. Inelastic neutron spectroscopy allows
for the accurate measurement of the q dependent vibrational frequencies, i.e., the
phonon dispersion relation, with the disadvantage of requiring a neutron source.
The latter disadvantage can be overcome by using photons as a probe, for instance
using one of the two spectroscopy methods introduced below, as light sources are
readily accessible.

Infra-red spectroscopy

Optical spectroscopy, i.e., using photons as a probe, allows only to measure phonons
at the I'-point due to the small momentum of photons. In the simplest case, light
with a frequency corresponding to the phonon frequencies is used as a probe and
absorbed by the sample. The absorbed frequencies provide the phonon frequencies.
Due to the typical frequencies being in the infra-red (IR) region of the electro-
magnetic spectrum, this is usually called IR-spectroscopy. For a phonon mode to
be measured with IR-spectroscopy, two requirements have to be met: first of all,
the frequency of the light has to match the phonon frequency. And second, the
phonon mode has to interact with the electromagnetic field of the light, i.e., the
associated atomic vibration has to induce a change in the dipole moment of the
sample. Because of the second requirement, only optical phonons can be probed by
IR-spectroscopy. In theory, the infrared activity of a mode v with I'-point frequency
w, and (normalized) eigenvector &,, can be calculated from the change of the macro-
scopic polarizability P with respect to the mode eigenvector [74-78]. Introducing
the Born effective charges [78, 79]

0P,

as(i) = Qom : (2.70)

where €1y is the unit cell volume, «, 3 denote Cartesian coordinates, and i labels
atom number i, the infrared activity can be written as [74, 76-78§]

Lw) =) DD Zusld) &)
5

a 7

2

(2.71)

To include effects observed in experiment, such as the finite linewidth of the absorp-
tion peaks, effects going beyond the harmonic approximation have to be taken into
account. This can, e.g., be done using MD (see section 2.4) by analyzing correlation
functions of the dipole moment (cf. section 2.4.2).
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2.3. Lattice dynamics

Raman spectroscopy

A complementary optical method to probe phonon frequencies at the I'-point is
Raman spectroscopy. Raman spectroscopy allows to probe structural dynamics by
inelastic scattering of light with the material. Due to the scattering, the frequency
of the outgoing light changes with respect to the incident monochromatic light. The
Raman shift, i.e., the frequency shift is determined by the phonon energy. For a
shift towards lower frequencies (Stokes) a phonon is excited. If the frequency of the
scattered light changes towards higher frequencies (Anti-Stokes) a phonon has been
annihilated. The ratio of Stokes and Anti-Stokes intensities is determined by the
population of the phonon modes, with Stokes intensities usually being higher as it
is more likely to create an phonon than to find a populated phonon that can be
annihilated. Theoretically, Raman spectra can be calculated from the change of the
polarizability tensor & with respect to the phonon eigenvector [74, 75, 78] or, in an
MD approach, from the velocity autocorrelation function of the polarizability [80,
81]. However, in this work no theoretical Raman spectra have been calculated.
Instead, experimentally obtained Raman spectra were compared to the VDOS ob-
tained from MD simulations in the case of Agl (cf. sections 2.4.2 and 4.2).

2.3.5. Relaxational motion

There are two special situations of the theoretical framework introduced above that
are of particular interest for the scope of this work. These situations are connected
to a particular type of structural dynamics, which we call relazational motion. In
this context, relaxational motion describes a motion that — in contrast to vibrational
motion — implies long-lasting changes in the nuclear positions.

The first case is the scenario where an eigenvalue of the dynamical matrix, cf.
eq. (2.48), is negative, i.e.,

wy(a) = — |wp(a)] - (2.72)
In this case the vibrational “frequency” gets imaginary
wy(q) = ilw,(q)] (2.73)

and the oscillatory nuclear motion in eq. (2.42) becomes exponential

_ 1 Roq gt _ L

S=ap e e =
Consequently, getting an imaginary phonon mode from a (DFT) calculation — ex-
cluding numerical issues [82] — implies that displacing nuclei according to the eigen-
vector of this mode actually results in a structure with lower total energy, i.e., the
structure is unstable with respect to this mode. This might imply that the structure
used for phonon calculations is not the actual equilibrium structure (in particular,
in DFT calculations the geometry might not have been optimized properly) but it
might also imply that there is a structural phase transition related to this phonon

Aj(q) B glevlt (2.74)
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Figure 2.5.: Sketch of atomic motion (of a system with one atom per unit cell
and lattice parameter a) in unit cells n, n + 1, and n + 2 for vibrations
located at different points in reciprocal space. a) at the I'-point (¢ = 0),
the atoms of all unit cells move in phase. If the sketched phonon mode
would correspond to an imaginary frequency, the lower energy structure
could be obtained by optimizing one unit cell. b) at ¢ = 7/a, the atoms
move with a phase difference of 7. If the sketched phonon mode would
correspond to an imaginary frequency, the lower energy structure could
not be obtained by optimizing only one unit cell as the head-to-head
motion (accompanied by a variation of the interatomic distance) could
not be mimicked.

mode. For judging whether an imaginary mode obtained from a DFT calculation
might be related to an improper geometry optimization, its location in reciprocal
space provides helpful information. According to eqgs. (2.42) and (2.74) and the
translational periodicity of a crystalline material, the motion of nucleus I in unit
cells n and m differs by their phase factor ezp (iR, - q), where q is the location of the
mode in reciprocal space. In particular, at the I-point, i.e., q = (0,0,0)7 this phase
factor is 1 for all atoms, i.e., all atoms move in phase. Consequently the motion can
be represented within only a single unit cell. This suggests that the unit cell geom-
etry with lowest total energy has not been found during the geometry optimization
procedure. In contrast, for any q # I', the motion of nuclei in different unit cells
differs by their phase and more than one unit cell might be required to mimic the
motion lowering the total energy of the structure. This has been sketched in fig. 2.5.
There, two possible nuclear motions are sketched for an example with one atom per
unit cell. The motion in fig. 2.5a resembles a I'-point motion as the atoms in all
sketched unit cells n...n + 2 move in phase. According to the above discussion,
if this motion corresponded to an imaginary frequency, the lower energy structure
could be obtained by optimizing a single unit cell. In fig. 2.5b, the contrasting case
of atoms with a phase difference of m between unit cells has been sketched. This
portraits a phonon mode located at Brillouin zone boundary in reciprocal space. As
the head-to-head motion cannot be mimicked using only the one atom of one unit
cell, the lower energy structure could not be obtained by optimizing atoms in one
unit cell, in case this motion was associated with an imaginary frequency. In plots of
the phonon dispersion, imaginary frequencies are usually plotted as negative values,
i.e., “negative frequencies”.

A second phenomenon that can be understood as relaxational motion are zero fre-
quency, i.e., w = 0 modes, as they, e.g., are measured in Raman spectroscopy. As the
frequency of a single harmonic oscillator w = 4/ f/m can be directly linked to the
force constant f (m is the mass of the oscillator, see eqgs. (2.40) to (2.42) and (2.46)
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to (2.48) for a generalization), zero frequency implies no restoring force. Thus, zero
frequency modes imply nuclear motion without restoring force, i.e., relaxational
motion.

On the other hand, zero frequency Raman modes can also be be understood as
modes with finite frequency that are overdamped, which is helpful to understand,
e.g., symmetries still connected with these modes (see also section 2.3.4 and sec-
tion 4.3). The peak-shape of the intensity I of a Raman active phonon mode with
frequency w,, and thus the response of a crystal to a corresponding excitation,
can be modeled using a damped Lorentzian oscillator as can be obtained from the
fluctuation-dissipation theorem [83]

Tv
7+ (@ = )

I,(w) = ¢, npp(w) , (2.75)

with ¢, being the intensity coefficient and 7, the damping of the oscillator. From
this, the well-known Lorentzian peak-shape

= 1C n w VV/Q
I,(w) = =¢, npg( )<’YV/2)2 T+ (w?—w?)’

(2.76)

used to model peaks in spectroscopy, can be obtained as the low ~, limit [83]. In
this context, however, we are interested in the high-damping limit. In fig. 2.6, the
evolution of a peak modeled with a damped-Lorentzian, eq. (2.75), and resonance
frequency wy is shown. The plot shows the intensity /(w) as a function of the
normalized frequency w/wy for three different damping parameters v = 0.5wy (blue
line), v = wp (green line), and v = 2w, (orange line). It can be observed that the
peak broadens and at the same time shifts towards lower energies if the damping is
increased. In the extremely over-damped case (here: v = 2wy), the curve has a peak
with resonance frequency wy =~ 0 instead of the underlying finite resonance frequency
wo. In this sense, a zero-frequency motion can be understood as evolving from an
over-damped regular mode: in the extreme case, a full oscillation is not completed
and thus the nuclear motion can be considered not to be oscillatory anymore. This is
consistent with the above picture of relaxational motion. Yet, it helps to understand
the (possible) presence of symmetries associated with the peak as the nuclear motion
remains the same as for the regular mode. In the overdamped limit, the peak can
be modeled with a Debye relaxor [83]

Yow

Iy(w) = ¢o npe(w)

to obtain the damping factor that is related to the width of the peak and the
characteristic timescale of the relaxational motion.
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I(w) |a.y]

w/wo

Figure 2.6.: Sketch of the Raman intensity I(w) according to the model eq. (2.75)
for a mode with frequency wy and for different damping parameters ~.

The temperature for the Bose-Einstein factor ngg(w) is set such that to
fuwwo [kpT = 0.25.
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2.4. Molecular dynamics (MD)

2.4.1. Fundamentals

In order to study the phenomena discussed in sections 2.3.3 and 2.3.5, a theoretical
framework going beyond the approximations introduced in sections 2.3.1 and 2.3.2
is required. Assuming one can treat nuclei as classical particles around room tem-
perature, one approach is to iteratively solve Newton’s equations of motion for the
nuclei )
Tr(p=T10_ L
t M[ M[
This approach to simulate finite temperature dynamics is called molecular dynamics
(MD). The equations of motion are solved starting from forces which are provided
either by a “higher level” theory or from a parametrization. The first case is called
first-principles MD and the forces can be obtained from the electronic ground-state
as calculated, e.g., using DFT as discussed in section 2.2.2; eq. (2.36). The latter
case is called force-field MD and forces are obtained from a parametrization of the
potential energy surface

Vi, V({R1}) - (2.78)

V({R[}) ~ VFF({R[}) = ZUI(RI) -+ Z U2(R[7 RJ) + Z ’Ug(R[, RJ, RK> +... 3
I 1,J 1JK
(2.79)
with vy, vg, ..., v, the one-body, two-body, ..., n-body contributions to the poten-
tial. For instance, the SSIC a-Agl has successfully been described [84] using only
two-body potentials of the form

VFF({R[}>:Z A[J(U[—i-di)n Z[ZJe _(Oé[ZIQ+OéJZ32€2_ W[J -,
1,7 |RI_RJ‘ ‘RI_RJ| 2|R[_RJ| |R[_RJ’

(2.80)
with repulsive strength A;;, particle radii oy, polarizabilities a;, and nuclei charges
Zre. The specific parameters for applying eq. (2.80) to a-Agl can be found in
reference [84]. Naturally, the force-field includes additional terms if more complex
materials, such as hybrid organic-inorganic HaPs are to be described. For instance
the force-fields used to describe MAPbBr3 [85] and MAPbDI3 [86] consist of three
parts

Ver({R1}) = Vir({R1}) + Vio({R1}) + Voo ({R1}), (2.81)

to describe the interactions of the inorganic PbXj3 framework (V7;) the organic

methylammonium (MA) molecule (Vo) and the interaction between organic molecule
and inorganic framework (V;o). The interactions between inorganic atoms as well

as between inorganic framework and organic molecule are described by two-body

terms, describing electrostatic and dispersive interactions complemented by Pauli

repulsion,

ZIZJ€2 C[J

R R, R, R, P el Ri=RaD/B1 | (2.82)
I — tvJ 1 — vy

Vii{Rr}) = Z

1,J
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with parameters A;;, Br; and Cyy, and

47'('60 |R[_RJ| |RI_RJ|

12 6
( S1J > _ ( S1J )
IR; — Ry IR — Ry
with parameters o;;, A7y, prs, €17, and sry. The potential to describe the organic
MA molecule further includes additional two-body contributions taking into account

the atomic bonds b, three-body contributions parameterized as (harmonic) angles
6, and four-body contributions as torsion ¢ [87]

1 YA
VIO({RI}) = Z{ =7 — Irs =+ Apj e~ Ri—R;l|/p1s
(2.83)

+€]J

Voo{Ri}) = D k(b —bo)* + > ko0 —00)> + > kg (cos(ng +6) +1)

bonds angles torsions

12 6
n Z qrqs ( Ay ) B < Cry )
R, — Ry| R; — Ry R —Ry[/)

nonbond
(2.84)

with the force-field parameters ky, kg, and ky, as well as A;; and Cfp.

Once the force F = — Vg, V{({R;}) on atom I at time ¢ is know from either of the
methods described above, Newton’s equation of motion, eq. (2.78), can be integrated
numerically using, e.g., the Verlet algorithm [88]

t
RIFAN — 9R! — REAT 1 %Aﬁ , (2.85)
I

for which the next position R?At can be determined from knowing the current posi-
tion RY and the previous position Ri‘At. Here, At is the timestep of the numerical
integration that will further be discussed below. Alternatively, if instead of stor-
ing the previous position, only the current position and the current velocity v} are
stored, a velocity Verlet algorithm can be used [89]:

F!

R = R+ vEAL + 5 ]\21 At? (2.86)
Ft Ft+At

VLA _ gt ”;T[fm . (2.87)

From this, the trajectory of the system, i.e., a time-series of the positions of all
atoms during the simulated time-frame can be obtained, and with this all quantities
that rely on either the positions or the velocities of the atoms.

As can be seen from egs. (2.85) to (2.87), and is indicated by writing R} instead of
R;(t), our solution of the equations of motion are only obtained for discrete timesteps
n x At. Thus, the timestep At has to be chosen very carefully. The specific choice
depends on both, the system and the phenomena of interest. On one hand, choosing
a large timestep allows to calculate long trajectories and observe slow phenomena
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with reasonable computational expenses. On the other hand, fast motion has to
be described accurately in order to obtain physically and numerically meaningful
trajectories. Typically, the timestep has to be a few percent of the vibrational
period of the fastest, i.e., highest frequency, motion. For instance, DOVE suggest
not to exceed 5% of the shortest vibrational period [39]. Consequently, in most cases
the timestep will be chosen as large as possible but as small as necessary.

This scheme simulates a microcanonical (NVE) ensemble, i.e., the number of par-
ticles N, the volume V of the system, and the total energy E are conserved. To
achieve the latter, algorithms that are designed to conserve the total energy of the
system are applied to numerically integrate the equations of motion, for instance
the algorithms based on eq. (2.85) or egs. (2.86) and (2.87).

However, usually one is interested in the finite temperature properties of the system
studied. In order to obtain this, the temperature has to be set and controlled. A
popular definition for the temperature in MD simulations is based on the average
kinetic energy, motivated by the equipartition theorem [90]

2 2 My,
T = Brn) = —— (S22 2.

with Ny the number of degrees of freedom. As with this definition the temperature
is related to the average kinetic energy of the system, the most straightforward way
to fix the (instantaneous) temperature T} is to rescale all velocities,

vi(t) . (2.89)

In practice, however, one wants to simulate a thermodynamic ensemble, e.g., the
canonical ensemble (constant particle number N, constant volume V', and constant
temperature 7'), including its fluctuations. In “MD language” ensembles are named
after the fixed variables, e.g., the canonical ensemble is called the NVT ensemble.
This canonical ensemble is introduced in statistical mechanics lectures by the cou-
pling of a microcanonical ensemble (NVE ensemble) to a heat bath. This coupling to
an external bath can also be mimicked in MD simulations to introduce a thermostat,
e.g., the Nosé-Hoover thermostat [91, 92]. In the Nosé-Hoover thermostat the bath
is introduced to the Hamiltonian of the system by an additional degree of freedom s,
with momentum p, and “mass” ). As will be shown below, this additional degree
of freedom finally acts like a friction term —(p; in the equation of motion for the
momentum designed to keep the total kinetic energy constant [91, 92]:

b= ~Vr V(R - (o (2.90)
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In order to obtain this equation, NOSE [91] introduced a set of virtual variables
(R}, p},t') using a transformation that can be understood as transformation to a
system with scaled time:

1=Rr, (2.91)
P} =P;S, (2.92)
Py =Dpss, (2.93)
dt' = sdt . (2.94)
Further, he postulated the following Hamiltonian for the extended system:
1 p? T
Hyose = ) 52 mb + V({R'1}) + o5 + LkpTIn(s) (2.95)

2M[ 52 2@

in which the logarithmic potential for s, LkgT1n(s), ensures reproducing a canonical
ensemble for the physical system [91]. Applying the Hamilton formalism

dRII o dHNose dp’; . _dHNose

I

= = 2.
dt dp, ' dt dR/, (2.96)
@ o dHNose d_p; o _dHNose (2 97)
dt — dp, ' dt ds ' ‘

and transforming back to the real variable, modified equations of motion can be
derived [91]:

%RI _ ]1\% , (2.98)
P = IR V(R - Top (2:99)
%S _ Sgs , (2.100)
Op = ( I ]1\'}—% - Lk:BT> - %2 . (2.101)

As seen in the equations, eq. (2.99) is equivalent to eq. (2.90), with a friction term
that couples the additional degree of freedom s to the degrees of freedom of the
real system. Therefore energy is transferred between system and bath allowing
a canonical ensemble for the real system while conserving the total energy for the
extended system. However, as a consequence of the way the system exchanges energy
with the bath, it is not always and instantaneously at the correct temperature.
Instead, the temperature fluctuates during MD simulations of an NVT ensemble.
The energy transfer, and thus also the frequency of the temperature fluctuations,
is determined by the coupling between system and bath that has to be tuned via
the variable (). Note that there also exist other thermostats, such as the procedures
suggested by ANDERSEN [93], BERENDSEN ET AL. [94] and Langevin thermostats,
e.g., references (95, 96].

Similarly, it is often useful to simulate an isothermal-isobaric NPT ensemble. And
consequently, there exists a number of approaches to control pressure during the MD
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simulations. Examples for barostats are provided in references [93, 94, 97, 98]. The
research that was conducted here, however, focused on NVT simulations applying a
Nosé-Hoover thermostat.

An accurate simulation of a system in a chosen ensemble usually includes the below
steps [40, 99]. After carefully preparing the starting point of the MD simulation, e.g.,
by using nuclear coordinates obtained from a minimization of the total energy of
the system and assigning random velocities that are Maxwell-Boltzmann distributed,
the system has to evolve for some time until a steady state is reached and potential
and kinetic energy are partitioned correctly. This part of an MD simulation is
called equilibration, and its goal is to have the system evolved to the target energy,
temperature, pressure, or volume — depending on the target ensemble — and to
discard any influence of the starting configuration. The simulation time necessary
to achieve this goal can hardly be predicted beforehand, instead the important
variables have to be monitored during the equilibration run. However, once this
has been achieved, the production run can be performed, i.e., the part of the MD
simulation that describes the target system (e.g., in terms of temperature, volume,
etc.) and actually should be analyzed. The production run can then be analyzed, for
instance, by using statistical methods as explained below in section 2.6.1. Caution
has to be taken that the results of the analysis are converged with respect to the
simulation length.

2.4.2. Correlation functions

MD simulations provide a huge amount of output data, since usually the trajectories
of large numbers of atoms are computed for a large number of timesteps. In order
to analyze this large amount of data, statistical methods are applied. Since in prac-
tice ergodicity is assumed, statistics can be calculated over the ensemble of atoms
and over time. Statistical quantities to be computed include for instance (proba-
bility) distributions, such as the velocity distribution which is expected to resemble
a Maxwell-Boltzmann distribution even in solids [100]. But moreover, correlation
functions can be employed to analyze MD trajectories. In particular, autocorrelation
functions provide the spatial or temporal relationship between one instance of an
observable A and an instance of the same variable shifted in space or time. Three
autocorrelation functions particularly helpful to analyze structural dynamics in a
material within the context of this work are the mean-squared displacement (MSD),
the velocity autocorrelation function (VACF), and the dipole-dipole autocorrelation
function.

Mean-squared displacement (MSD)

The MSD, defined as

msd(At) = {(x(t + At) —r(1)?) | (2.102)
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provides a measure for the average absolute distance traveled by an atom after a
lag time At. For usual crystalline materials, in which the nuclei are (harmonically)
bound to an equilibrium position, the MSD will fluctuate around a (system and
temperature dependent) constant value. In contrast, for fluid materials the MSD is
increasing linearly with time, with the slope given by the diffusion constant D:

msd(t) = 2nDt (n: dimensionality) . (2.103)

In return, a motion with linear MSD is called diffusion. Strikingly, in the case of
SSICs, the conducting ion species is also diffusing while the rest of the material is
in a crystalline phase. As a consequence, while most atomic species of the material
show a more or less constant MSD, one species shows a linearly increasing MSD.
Furthermore the diffusion constant determines the magnitude of the ion diffusion
and thus the magnitude of the ion conduction. We will thus use the MSD to quantify
ionic motion in the SSIC material Agl.

Velocity autocorrelation function (VACF)

The VACF, defined as
vacf(At) = (v(t) - v(t + At)) , (2.104)

provides information about temporal correlations of the nuclear velocity with itself.
In particular, it can be shown [101] that the power-spectrum of the VACF resembles

the VDOS N f(t)
it Vac
vdos(w / dt e vack(0) ’ (2.105)

where N is the number of atoms and V' the volume of the system. Moreover, we
can rewrite eq. (2.102) as

msd(At) = <</Atdt v(t >> /Atdt /Atdt” (v(t") - v(t") (2.106)
/Atdt/ dt" (v(t')-v(t")) , (2.107)

i.e., we can rewrite the MSD in terms of the VACF (see also, e.g., [101]) and finally
obtain for the diffusion constant

t t
D- % / dt vack(t) — % / dt vack(t) = é]—"[vacf(t)](w —0). (2.108)
0 —t
L.e., the diffusion constant can be obtained from the zero-frequency component of the
Fourier transform F of the VACF. Thus the VACF offers two important observables
for our analysis of structural dynamics: an alternative way to calculate the diffusion
constant on one hand, and on the other hand the VDOS of a system from MD, i.e.,
the VDOS including anharmonicity up to any order of the Taylor expansion for the
potential energy surface of the nuclei.
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Dipole-dipole autocorrelation function

Similar to the VACF an autocorrelation function (M(t) - M (¢ 4+ At)) can be defined
for the electric dipole moment M. This dipole-dipole autocorrelation function is
related to the infra-red (IR) absorption coefficient a(w) [80, 102-104]:

_ 2nw (1 —e™/msT) D(w) /00

a(w)n(w) = TG dt et (M(t) - M(t + At)) . (2.109)

oo

Here, n(w) is the frequency dependent refractive index, ¢ is the speed of light and
V' is the volume. Since classical MD, i.e., solving Newton’s equations of motion
for the ions (see section 2.4), will be applied to obtain the time dependence of
the dipole moment, quantum corrections D(w) have to be applied [80, 103]. These
quantum corrections are responsible for correcting detailed balance and a popular
choice is [80]

hw/kgT

D(w) = T ocha/kaT -

(2.110)

Furthermore, in force-field MD simulations, M can be obtained from summing up
atomic charges q;:

M =Y Ryq. (2.111)
1

As a consequence, it is possible to calculate IR-spectra including effects of anhar-
monicity and finite absorption linewidths from force-field MD using egs. (2.109)
to (2.111).

2.4.3. Phonon quasiparticles from MD

For crystalline materials we would like to extend the harmonic phonon picture (sec-
tion 2.3) with the information obtained from MD simulations. This can be done
using the normal mode decomposition method [105-109]. Using this method, one
can determine vibrational quasiparticles with a quasiparticle frequency wq, and a
quasiparticle lifetime 74, from a calculation that includes all orders of the Taylor
series in eq. (2.39). The starting point for this is the VACF. As has been dis-
cussed in section 2.4.2, the VDOS can be related to the power-spectrum G(w) of
the VACF [105]

Glw)=2) / dr 7 (v;(0)v,(7)) . (2.112)

j —0o0
On the other hand, since the phonon eigenvectors €4, are orthonormal, they can
be used as a basis set to describe all atomic displacements and thus also velocities.

We now introduce the velocities in reciprocal space, i.e., the atomic velocities V;-l
projected on wavevector q:

vil(t) = \/%Ze_mﬂq vi(t) , (2.113)
I

31



2. Theory

with power-spectrum
Gq(w) = 22/ dr T (VI (0)v(T)) . (2.114)
j —00
And we further introduce the phonon-mode projected velocities
Vau(t) =Y vi(t)- &, (2.115)
J
with power-spectrum

Gq(w) =2 /_ h dr 7 (v}, (0)vqu(T)) . (2.116)

o0

Since the phonon eigenvectors &g, are orthonormal, as mentioned above, we can
write
Gw) =) Gq(w) =) Gq(w) . (2.117)
q qv

This allows us to interpret Gg,(w) as the contribution from phonon-mode v to the
phonon density of states at wavevector q. On the other hand, it has been shown
that for small temperature-dependent anharmonic phonon self-energies, with little
frequency dependence, this contribution follows a Lorentzian lineshape [108]

2
([var ()%
. 2 :
T <1 + (—‘”;:j") )

This allows us to define “anharmonic phonon quasiparticles” with a quasiparticle

frequency wq, and a quasiparticle linewidth 7, related to the inverse phonon lifetime

-1
qu, .

G (w) ~

(2.118)

2.5. Disorder potential and Urbach energy

To investigate the impact of structural dynamics on optical absorption, correlations
in the disorder potential can be examined [110-112]. The disorder potential is
defined as [112]:

V(r) = Vilr) = Viysra (1) 2.119)

with V;(r) being the instantaneous electrostatic potential and Vi,ystal(r) the “perfect

crystal potential”. The spatial autocorrelation C'(Ar) of this disorder potential,

V(r+ Ar) V(r))
(V(0)v(0))

C(Ar) = & (2.120)

has been shown to provide information about optical absorption of a material [110—
112]. Small correlations lengths of the correlation in eq. (2.120), on the order of
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interatomic distances, imply small Urbach energies Ey. The Urbach energy pro-
vides how steep the optical absorption coefficient « increases close to the onset of
optical absorption [111, 113, 114]. If a material exhibits deviations from the perfect
crystalline structure, e.g., because of structural disorder, the absorption coefficient
increases exponentially as a function of photon energy E:

a(E) o e E-E1D)/Eu(T) (2.121)

with E; an energy close to the band gap in semiconductors. Small Urbach ener-
gies thus provide a steeper increase of the optical absorption. This implies that a
higher fraction of incoming photons will already be absorbed in a thin layer of the
semiconductor. Thus having small Urbach energies is one important factor for the
fabrication of efficient thin film photovoltaic devices.

With the sketch in fig. 2.7 we want to explain the relation between disorder cor-
relation length and Urbach energy in a more graphical and intuitive way. For a
mathematical derivation we would like to refer to references [110-112]. Figure 2.7a
sketches the case of long-range correlations, i.e., a displacement of a single atom
(indicated by the arrow) can be seen by a large fraction of the material, as indicated
by the yellow area. Since a large fraction of the material is influenced, many tail-
states are induced in the electronic density of states D(FE) (yellow). Having many
tail-states within the band gap implies that there are many electronic excitation pos-
sible by absorbing (lower energy) photons. But as their occupation is usually small,
the absorption coefficient is also small and thus increases only slowly as a function
of the photon energy. With this simple argumentation scheme, the Urbach energy
is high in case of long range correlated disorder. Figure 2.7b, however, sketches the
opposite case. Due to a short range correlation, atomic displacements (arrows) are
only seen by small fractions of the material (green areas). As a consequence only a
few tail states are induced in the density of states. And arguing in analogy to the
long range scenario, we now find a small Urbach energy.

We will substantiate this picture in section 3.6 by explicitly linking correlations in
the disorder potential to band edge distributions in HaPs. We will further find
that the connection between (anharmonic) structural dynamics, disorder correla-
tions, and band edge distributions is remarkable and particularly important in these
materials.

2.6. Numerical details

The plane-wave code VASP [115] was used for DFT calculations and first-principles
MD simulations. The projector augmented wave (PAW) method [116] was used
as a pseudo-potential to treat core states. The PBE functional [49] was used to
describe exchange and correlation. The plane-wave energy cutoff and the number
of k-points used for each system, and listed below, were converged such that the
change in total energy upon changing the parameter was less than 1-2 meV /atom.
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Figure 2.7.: Schematic representation of the amount of tail states in D(E) (top) as
expected from the extent of the correlation in the disorder potential
(bottom, filled areas) caused by a nuclear displacement (black arrow)
for the cases of (a) long-range and (b) short-range correlated disorder
potentials. Reprinted with permission from [2], published under a CC
BY 4.0 license.

Atomic structures were visualized using the VESTA program [117]. Furthermore,
VESTA was also used to visualize the phonon modes adding arrows to the atomic
structure.

2.6.1. Halide perovskites

Density functional theory calculations

In order to obtain accurate structural properties DFT calculations have been cor-
rected for dispersive interactions in the Tkatchenko-Scheffler (TS) scheme [1, 61].
Unless stated differently, the following parameter were applied to simulate HaPs:
a I'-centered k-point grid of 6x6x6 and 6x4x6 k-points was used for cubic and or-
thorhombic structures, respectively. The energy threshold was set to 10® eV and
the plane-wave cutoff energy to 500 eV for CsPbBr3 and CsPbl; and to 600 eV for
MAPDBr3;. The studied structures of all materials were optimized until forces on
the atoms were below 1 meV/A. The Gadget code [118] has been used as an alter-
native to the VASP internal routines for geometry optimization, in particular for
the hybrid HaPs. In case Gadget and VASP provided somewhat different results,
the structure with the lowest total energy has been used.
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Lattice dynamics and Infra-red spectra

Phonon dispersions and VDOS were obtained using the phonopy package [66], im-
plementing the finite displacement method described in section 2.3. Supercells, dou-
bling the unit cell in each dimension, were used with the k-point grid being reduced
accordingly. IR spectra were obtained using the phonopy-spectroscopy package [78,
119]. The Born effective charges were calculated using the density functional per-
turbation theory (DFPT) formalism as implemented in VASP [120, 121].

DFT-based molecular dynamics

First-principles MD simulations of cubic CsPbBr3 and cubic CsPbls were performed
as implemented in VASP. A 4x4x2 (160 atoms) supercell was simulated in an NVT
ensemble for 150 ps after an equilibration of at least 5 ps. The timestep for nu-
merically integrating the equations of motion was set to 8 fs. To improve numerical
efficiency, a plane-wave energy cutoff of 250 eV, an energy threshold of 10° eV | and
a single k-point were used. Moreover, the “GW” PAW potentials were used, as they
improved the numerical convergence of the electronic self-consistency cycles while
retaining the accuracy of the power spectrum of the VACF (cf. fig. Al).

Force-field molecular dynamics

Force-field MD simulations were performed using the LAMMPS code [122] and the
force fields for MAPbDI; [86] and MAPbBr3 [85], respectively, applying a timestep of
0.5 fs.

MAPbBr; Cubic and orthorhombic MAPbBr; were simulated in an NPT ensem-
ble at 295 K and 130 K, respectively. All simulations started with a cubic 6x6x6
supercell (2592 atoms). For the low temperature simulation, the structure was op-
timized first resulting in a ratio ¢/a =~ 1.067 between the longest lattice parameter
¢ and the shortest lattice parameter a. This has been proven to be a measure for
the orthorhombic structure in this material [85]. A 150 ps NVT equilibration was
followed by an 1 ns NPT equilibration at 0 pressure and a 4.5 ns production run.
Frequencies obtained from the MD simulations, i.e., while calculating the IR spectra
of MAPbBr3 from MD, had to be reduced by 27% to account for a too stiff descrip-
tion of the dynamics [85, 123]. IR spectra from MD have been obtained according
to eq. (2.109), employing the quantum correction of eq. (2.110). The total dipole
moment of the system has been obtained as a sum of the atomic charges, eq. (2.111),
as assigned to the atoms by the force field parametrization.
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MAPDbDI; A 4x4x2 supercell of cubic MAPDbI; (384 atoms) was simulated in an
NVT ensemble for 150 ps, after equilibrating the system for 1 ns.

Phonon-quasiparticle properties

Phonon-quasiparticle properties of cubic CsPbBr3 were calculated using a projection
of the MD-based VACF onto harmonic eigenmodes as described in section 2.4.3. For
this means, the dynaphopy package [105] has been employed, using standard FFT
to transform to frequency domain. This provided quasiparticle frequencies and life-
times at high symmetry points of the Brillouin zone. The finite-temperature phonon
dispersion at arbitrary q was obtained from an interpolation akin to harmonic lat-
tice dynamics calculations, i.e., an updated dynamical matrix was calculated from
renormalized force-constants. Acoustic phonon modes at the I'-point (zero-frequency
modes) were excluded due to their long vibrational period in time domain.

Disorder potential and band-edge histogram calculations

The disorder potential and band-edge distributions were calculated for selected in-
stantaneous configurations of the MD trajectories. A plane-wave energy cutoff of
500 eV and a 1x1x2 k-point grid, corresponding to the real space dimensions of the
supercell, were used to increase the accuracy of the calculations. The autocorrela-
tion function C'(Ay), as shown in figs. 3.20, 3.21, 3.23 and 3.29, was calculated for
30 structures, separated by 5 ps each, according to eq. (2.120). Specifically, the elec-
trostatic potential energy averaged over all considered configurations was subtracted
from the instantaneous potential energies to calculate the disorder potential. For
fig. 3.29, Br displacements have further been projected on longitudinal and transver-
sal directions, setting either of the contributions to zero. For the autocorrelation
function in fig. 3.19 the deviation of an example configuration with one Pb ion dis-
placed by 5 % of the primitive lattice constant was calculated with respect to the
ideal configuration. A 5x5x2 supercell was considered in this case to account for the
long-range nature of the response. The change in the charge density for longitudinal
and transversal displacements of Br, as shown in fig. 3.30, was calculated similarly.
Band-edge distributions were calculated from 90 instantaneous configurations, sep-
arated by 1.6 ps. In figs. 3.21, 3.23 and 3.35 histograms are shown as a function of
dimensionless parameters. transversal and longitudinal
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JDOS

The joint-density of states (JDOS) was calculated as a sum over all differences
between the eigenstates ¢;(k) in the valence (v) and conduction bands (c¢) at all
k-points [124]:

Wi _ (ee(®)—cn(k)—E)?
e 202 (2.122)
2w

JDOS(E) =2)

v,c,k

Here, wy are the weights of the k-points k and o is the spectral broadening. In
figs. 3.22 and 3.31, 0 = 20 meV has been used. The finite temperature JDOS in
fig. 3.22, as well as the JDOS in fig. 3.31, have been obtained for 90 snapshots of
the MD simulation and geometries with projected Br displacements as described
in section 2.6.1, respectively. In the latter case, structures which resulted in band
gaps lower than 80% of the respective average band gap have not been considered.
In order to numerically account for the sum over all k-points in the first Brillouin
zone, non-selfconsistent calculations on an increased 3x3x6 k-point grid have been
performed

Cs,PbBrg and CsPb;,Brs

Cs,PbBrg was simulated using a I'-centered 4x4x4 k-point grid, an energy threshold
of 10% eV and a plane-wane cutoff energy of 350 eV. CsPbyBrs was simulated using
a I-centered 6x6x3 k-point grid, an energy threshold of 10° eV and a plane-wane
cutoff energy of 450 eV. The structures of both compounds were optimized until
the forces on the atoms were below 10* meV/A. Again, Gadget [118] has been
applied on top of VASP routines and the structure with the lowest total energy has
been used for further calculations. Phonons were only calculated at the I'-point,
as implemented in VASP. IR spectra were calculated according to eq. (2.71) with
the Born effective charges calculated using the DFPT formalism implemented in
VASP.

PbTe

A conventional unit cell of PbTe (8 atoms) was used for PbTe. DFT calculations
were performed with a 375 eV plane wave cutoff energy and a 6x6x6 k-point grid.
An energy threshold of 10 eV for all calculations and a force threshold of 1073
eV/A for geometry optimization were applied. MD simulations were done for a
3x3x2 supercell (144 atoms), with a reduced cutoff of 240 eV, a T'-only k-point grid
and a timestep of 10 fs. PbTe was simulated in a canonical (NVT) ensemble at
425 K, with 5 ps of equilibration and 150 ps of production run. From this, the disor-
der potential and band-edge distributions were calculated for selected instantaneous
configurations of the MD trajectories. A plane-wave energy cutoff of 375 eV and
a 2x2x3 k-point grid, corresponding to the real space dimensions of the supercell,
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were used to increase the accuracy of the calculations. The autocorrelation func-
tion C'(Ay), as shown in fig. 3.35, was calculated for 30 structures, separated by
5 ps each, according to eq. (2.120). Specifically, the electrostatic potential energy
averaged over all considered configurations was subtracted from the instantaneous
potential energies to calculate the disorder potential. For the autocorrelation func-
tion in fig. 3.34 the deviation of an example configuration with one Pb ion displaced
by 5 % of the primitive lattice constant was calculated with respect to the ideal
configuration. Band-edge distributions were calculated from 90 instantaneous con-
figurations, separated by 1.6 ps. Histograms in fig. 3.35 are shown as a function of
dimensionless parameters.

The harmonic VDOS in fig. 3.33 was obtained performing lattice dynamics calcu-
lations using the finite displacement method as implemented in the phonopy pack-
age [125]. Therefore, a 2x2x2 supercell of the optimized structure was used. The
k-point grid was reduced to a 3x3x3 ['-centered grid according to the larger cell size,
while all other numerical parameter were kept as described above. The VDOS from
MD was obtained as a Fourier transform of the velocity autocorrelation function

N [T V) ()
vdos(w) = v /_OO dt N v (2.123)

see also eq. (2.105).

Si MD

The instantaneous total energies shown in fig. 3.14 are obtained from a MD simula-
tion of a 3x3x3 supercell (216 atoms) of the conventional unit cell of Si. The DFT
calculations were performed with a 240 eV plane wave cutoff energy and a I'-only
k-point grid, as well as an energy threshold of 107¢ eV. An NVT ensemble at 425 K
was simulated with a timestep of 2 fs. The data shown in fig. 3.14 were following
2 ps of equilibration.

2.6.2. Agl

DFT-based molecular dynamics

First-principles MD simulations were performed with an energy threshold of 10 eV,
a single k-point, a plane-wave energy cutoff of 280 eV, and a MD timestep of 10 fs.
A system of 128 atoms in a cell of ~4736 A® was simulated in an NVT ensemble at
500 K, with an equilibration time of 10 ps and 100 ps production run.

Selective dynamics as implemented in the VASP package were used to fix I or Ag

atoms to perform gedankenexperiments. The systems were again equilibrated for
10 ps at 500 K, with the thermostat considering only the available degrees of freedom
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to obtain the temperature values. 10 instantaneous I configurations of the “full MD”
trajectory, separated by 1 ps, were chosen to start simulations with I atoms fixed at
“snapshots from full motion”.

Correlation functions

The MSD, eq. (2.102), was calculated as an ensemble average. The diffusion constant
D was obtained from a linear fit of the MSD, according to eq. (2.103), with n = 3,
i.e., msd(t) = 6Dt.

The frequency dependent VDOS, eq. (2.105), was calculated as the FFT of the

normalized VACF: N f(1)
vact(t

d =— FFT 2.124

vdos(w) v {vacf(O)} ; ( )

with N the number of atoms and V' the simulation volume. The VACF was calcu-
lated according to eq. (2.104) by averaging over atoms and initial time. Finally, the
diffusion constant has been obtained from the zero-frequency value of the Fourier
transformed VACF, see eq. (2.108).

Angles and Fourier filtering

Angles of a representative Agly tetrahedron were calculated as

d;; - dj.

©; = arccos (4> : (2.125)
|dij|di|

where 7,7,k are the I atoms of the tetrahedron defining the angle located at atom

i. The atomic distances d;;(t) = R;(t) — R;(t) were calculated from the atomic

trajectories R;(t).

The trajectories were further filtered to exclude high-frequency motions using a
Fourier filter
Ritered(t) = F 1 [O(w)O(wWmax — w)F[R(D)]] . (2.126)

Here, F and F~! are the Fourier transform and its inverse, respectively. The upper
limit in the Heaviside step function © was set to wmax = 4 cm™.
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3. Results and discussion:
halide perovskites

3.1. Introduction to halide perovskites

Halide perovskites (HaPs) are a material class with remarkable properties. The
materials are named after their crystal structure which resembles that of CaTiOs,
a mineral named after LEV PEROVSKI. This typical cubic perovskite structure can
be seen in fig. 3.1. It consists of corner sharing BXg octahedra, centered around a
B-site cation, with the A-site cations positioned at sites in between the octahedra.
The stoichiometric composition of perovskite materials is ABX3. Whether the cubic
perovskite structure actually exists for a given set of chemical elements {A B, X} is
determined by the empirical Goldschmidt tolerance factor [126]

o _fatfx (3.1)

\/E(RB + Rx)

with R; the atomic radius of element 7. In order to find a cubic perovskite structure
t =~ 1 is required. For ¢ < 0.8 and ¢t > 1 different crystal structures are found for
ABX3 compounds, as can be seen for the example of CaCOj3 for which ¢ > 1 and
that is found with calcite structure and aragonite structure [126]. In case of lead
halide perovskites, B is lead (Pb), and X is a halide ion, e.g., Br, I, or Cl. Finally, the
A-site is either a large atomic cation such as Cs, or it is a small (organic) molecular
cation such as MA or formamidinium (FA).

Electronically, HaPs resemble usual semi-conductors. BRENNER ET AL. (2016)
remark that “the most extraordinary feature of the bandstructure of MAPbls is how
ordinary it is” [16]. An example band structure is shown in fig. 3.2. HaPs are
semi-conductors with a direct band gap in the optical range and they have effective
masses comparable to those of, e.g., GaAs [16]. However, the band gap of cubic
HaPs is found at the edge of the Brillouin zone, at the R-point, not at the Brillouin
zone center. The nature of the band edges is of PbX origin, i.e., the A-site cation
is not contributing to electronic states close to the band gap. In contrast, the
electronic states of the A-site cations are found to be far away from the Fermi energy
fueling the discussion whether the A-site cation is only a “space filler” stabilizing the
structure [57]. Due to the heavy masses of the atoms contributing to the band edges,
spin-orbit coupling (SOC) has a strong influence. In addition, HaPs show only a
few sub-bandgap states, resulting in small Urbach energies of only about 15 meV
at room temperature [127-131], and efficient solar absorption. The combination
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Figure 3.1.: Schematic representation of the crystal structure of cubic CsPbBrsg,
shown as an example for HaPs. The structure consists of corner sharing
BXg octahedra (gray), with six X-site anions (here: Br, brown) cen-
tered around a B-site cation (here: Pb, gray), and A-site cations (here:
Cs, cyan) positioned at sites in between the octahedra. On the right
two paradigmatic A-site cations are shown. Top: Cs in cyan. Bottom:
Methylammonium (MA) molecule (CH3NHj3), consisting of C (brown),
N (blue), and H (white).

of these features in conjunction with long carrier lifetimes, and thus long diffusion
lengths renders HaPs promising materials for photo-voltaic applications [8-18]. Up
to now, solar cells with an efficiency of more than 25% have been reported [132] (cf.
also reference [7]). This is comparable with Si and GaAs solar cells, where reaching
the same efficiency took decades of research (cf. reference [7]). Further applications
for HaPs include the usage as photon sources, e.g., for LEDs and lasers [19, 20], and
sensor applications [20].

Importantly many findings suggest that charge transport in HaPs is significantly
influenced by lattice dynamical phenomena, such as polaronic effects and dynamic
disorder [16, 134, 135]. The strong electron-phonon interactions in these materials
might be further enhanced by the high phonon occupation numbers at usual device
operation temperatures. The high phonon occupation numbers are a consequence of
the mechanical softness of HaPs, which is related to their low phonon frequencies [24,
136-139.

Moreover, lattice dynamics in HaPs show effects going beyond the usual harmonic
approximation used in solid state physics [2, 21-27, 138, 140-142]. These anhar-
monic effects can, e.g., be seen in the short phonon lifetimes [2, 22, 26, 27|, low ther-
mal conductivity [23], and presence of a central peak in the Raman spectrum [24].
In addition, this includes structural phase transitions related to phonon mode con-
densation [143], with the phonon modes that are associated with the phase transi-
tions showing up as imaginary modes in harmonic phonon calculations [2, 26, 144—
150]. Temperature driven phase transition occur in all HaPs discussed below, due
to octahedral tilting [143, 146, 151-154]. l.e., starting from the cubic perovskite
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Figure 3.2.: Electronic bandstructure of cubic CsPbBrj calculated using DF'T with-
out SOC. Reprinted from [133], with the permission of AIP Publishing.

structure (fig. 3.1) and decreasing temperature, the system will transition from the
cubic structure to a tetragonal structure and finally to an orthorhombic structure
(fig. 3.3).

The organic cations of hybrid organic-inorganic HaPs add further complexity to
the system. These cations are only weakly bound to the PbX octahedra, e.g., by
H-bonds and thus molecular rotation is activated at higher temperatures [21, 23,
155]. In this picture, the organic molecule introduces (rotational) disorder and is
discussed to have certain impacts on HaPs properties [21, 23, 155]. First of all, the
entropic contributions of the disordered molecules have been discussed to stabilize
the material [156]. And second, molecular rotation has been discussed to inter-
act with charge carriers in form of screening [155], dynamical changes of the band
structure [57] and localization of charge carriers due to dipole reorientation [157].
Moreover, the rotational motion of the organic cation is per se anharmonic and
thus not fully included in the phonon picture of structural dynamics. Further, the
motion of the organic A-site cations is found to be strongly coupled to the struc-
tural dynamics of the PbX octahedra, and thus mediating properties like the band
gap and structural dynamics properties (e.g., vibrational lifetimes) of the inorganic
framework at least indirectly [22, 57, 156, 158].

On the other hand, little differences have been observed between hybrid organic-
inorganic HaPs and all-inorganic (Cs-based) HaPs with respect to vibrational prop-
erties [24], polaron binding energies, delocalization lengths, formation times, or bi-
molecular recombination lifetimes [161]. This might be explained by the notion
that longitudinal-optical (LO) modes associated with Pb-X stretching and bending
are important for electron-phonon coupling and thus properties like charge carrier
scattering and mobility [134, 162, 163].

As a paradigmatic example for the wide class of HaPs, mainly CsPbBrs will be
studied. This choice will be put in contrast with HaPs of different composition sev-
eral times, when appropriate. Starting from the harmonic approximation in the low
temperature orthorhombic phase, we will discuss the theoretical and experimental
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cubic: tetragonal: orthorhombic:

o

Figure 3.3.: Schematic representation of the structural phases of CsPbBrs (struc-
tures taken from references [151, 159, 160]). Starting from a cubic
structure, the material transitions to a tetragonal and orthorhombic
structure upon cooling. The color scheme is the same as in fig. 3.1.

IR spectra of CsPbBrs and MAPDbBr3 in section 3.2. This includes a discussion
about the influence of the A-site cation and a brief investigation of Pb- and Cs-
rich structural phases, which might form during experimental sample preparation.
In section 3.3, it will be demonstrated that the high-temperature cubic perovskite
structure is located at a local maximum of the potential energy surface. After-
wards, in sections 3.4 to 3.7, anharmonic calculations of cubic CsPbBr3 based on
first-principles MD simulations will be analyzed. This will also include a discussion
how dynamic disorder is introduced to the system and how the correlation length of
the induced disorder potential helps to understand important device properties such
as the Urbach energy. In section 3.7, the MD data will be used to study the halide
motion in detail. Finally, in section 3.8, HaPs will be contrasted to anharmonic

PbTe.

3.2. Influence of the A-site cation on the infra-red
spectrum in the orthorhombic phase

The conventional starting point for theoretical studies of lattice dynamics are cal-
culations using the harmonic approximation. The harmonic phonon dispersion and
vibrational density of states (VDOS) of the prototypical CsPbBr3 in the low tem-
perature orthorhombic phase is shown in fig. 3.4 . The choice for the orthorhombic
phase is supported by the phase diagram of CsPbBrs, for which the phase transi-
tion occurs only at approximately 130°C [151]. Thus, the orthorhombic phase is
the one which is relevant around room temperature. As we expect for this me-
chanically soft material [24, 136-139], we observe low phonon energies of less than
6 THz (200 cm™). These low phonon frequencies are also observed in experimental
measurements, e.g., by means of neutron scattering [164], Raman spectroscopy [24],
and infrared spectroscopy (see results presented below). For comparison, the op-
tical phonon frequencies of typical inorganic semi-conductors are in the range of
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Figure 3.4.: (a) Phonon dispersion relation and (b) VDOS of orthorhombic
CsPbBrj as obtained from harmonic phonon calculations. The phonon
density of states is further projected onto the contributions from Cs,
Pb, and Br, respectively.
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about 9 THz for GaAs and up to 16 THz for silicon (see, e.g., ref. [4] and references
therein). The low phonon frequencies found for CsPbBrs imply that the phonon
occupation numbers are high even at moderate temperatures, suggesting a large
influence of structural dynamics on the physical properties of HaPs, as discussed in
the introduction, section 3.1.

From calculations of the harmonic phonon frequencies and eigenvectors at the I'-
point, combined with Born effective charges, a theoretical IR spectrum can be ob-
tained (cf. section 2.3.4). It allows to probe optical phonons at the I'-point and,
since an interaction between lattice dynamics and light is required, it allows to de-
termine the (frequency dependent) dielectric constant. The latter, combined with
LO phonon frequencies and charge carrier effective masses, allows to determine po-
laron parameters, such as the polaron mass [165]. Finally, the IR spectrum is a
material property that is directly accessible both to theory and experiment.

Motivated by the ongoing debate how important the A-site cation in HaPs actually
is for functional properties, we are especially interested in a comparison of the IR
spectra of CsPbBr3 and MAPbBr3;. On one hand, the electronic structure close
to the Fermi energy is dominated purely by the PbBr framework, on the other
hand lattice dynamics are found to be important in these materials (see section 3.1
and references there). Pb and Br motion is expected to largely dominate the low
frequency region due to their higher masses. At the same time, a correlation of the
A-site cation motion and the PbBr framework is discussed in literature [6, 22, 57,
156, 158]. Cs with an atomic mass of approximately 132 u is much heavier than
the MA cation (approximately 32 u) and the frequency, at least of an harmonic
oscillator, is proportional to 1/y/m. Therefore, Cs is expected to have a higher
contribution to the low frequency spectrum than the organic cation composed of light
elements, such as H, and exhibiting strong atomic bonds. Consequently, the question
how much lattice dynamics in the low frequency spectral region are influenced by
the A-site cation can be considered to be non-trivial. Of course, MAPbBr; also
has high-frequency vibrations outside the frequency range considered here, due to
intramolecular vibrations of the organic molecule. These high-frequency vibrations
will not be discussed here, as the focus is set on vibrational properties occurring
at frequencies that are comparable to those of the inorganic PbBr framework of
the perovskite crystal, and less on the internal vibrational properties of the organic
molecules.

In fig. 3.5 the theoretically calculated IR spectra of CsPbBrs and MAPbBr3 are
shown. The calculated IR activities are shown as vertical bars, comparing the two
materials, and broadened by a Lorentzian function. The broadening has been applied
to facilitate the visual comparison with experimentally measured spectra. Unlike the
experimentally measured broadening, which is related to vibrational lifetimes and
instrument properties, the broadening applied in fig. 3.5 is arbitrary and does not
convey any physical information. The comparison between CsPbBr; and MAPbBr;
reveals that both materials show actually quite similar spectra in the region below
4 THz, although the partial VDOS in fig. 3.4 shows obvious contributions of Cs in
this frequency range. A significant difference between the different materials can
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Figure 3.5.: Infrared activity of CsPbBrs and MAPbBr3 in the orthorhombic phase
as obtained from DFT calculations. The IR activity (vertical bars, right
y-axis) has further been broadened by a Lorentzian (left y-axis) with
width=1 THz as a guide to the eye. The units are the same on both
axes.
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Figure 3.6.: VDOS of orthorhombic MAPbBr3 as obtained from harmonic phonon
calculations. The phonon density of states is further projected onto the
contributions from Br, Pb, and the MA molecule, respectively.

only be seen in the frequency range above 4.5 THz. To investigate this difference
the VDOS projected on the A-site, B-site, and X-site species, respectively, can be
used. The projected VDOS of CsPbBrs has already been shown in fig. 3.4, that of
MAPDBrj is shown in fig. 3.6. Although there are phonon modes related to mainly
Br motion above 4.5 THz (cf. figs. 3.4 and 3.6), there also is a large contribution
of the MA molecule, see partial VDOS in fig. 3.6. In particular, a visualization
of the IR active modes, shown in fig. 3.7, exposes a dominant contribution of the
MA molecule. Similarly, a detailed analysis of the MA vibrational eigenvectors in
MAPDI; reveal those modes to be MA libration [166]. In conclusion, the theoretical
IR spectra suggest that the main difference between the inorganic CsPbBr3 and the
hybrid MAPbBr3 in the investigated frequency range is an additional feature in the
IR spectrum of the latter material.

The deduction drawn from the theoretical spectra can further be tested by a compar-
ison to experimentally measured IR spectra of both materials [165, 167]. However,
first theoretical IR calculations will be used to examine whether the experimentally
measured samples of CsPbBr3 are indeed perovskite crystals. Besides the perovskite
CsPbBrj3 discussed here, the Cs-rich compound CssPbBrg and the Pb-rich compound
CsPbyBr; (fig. 3.8) can form from the same precursors [168-170]. Moreover, by re-
acting with CsBr or PbBry, CsPbBrs can spontaneously be converted to Cs;PbBrg
and CsPbyBrs without applying high temperature, high pressure, or catalysts [168,
170]. In addition, water is found to extract CsBr driving a conversion of Cs;PbBrg to
CsPbBr; and CsPbBr; to CsPbyBrs [168]. As a consequence, being able to predict
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Figure 3.7.: Visualization of the IR active modes close to 4.5 THz / 150 cm™. (a)
Phonon mode at 4.41 THz / 147.15 cm™. (b) Phonon mode at 4.58 THz
/ 152.70 em™. (c¢) Same phonon mode as in panel (b) shown from a
different perspective.

the IR spectra of Cs,PbBrg and CsPbyBrs; and comparing them to the spectra mea-
sured for the experimental perovskite sample might allow to learn about the actual
composition and eventually to draw conclusions on the stability of CsPbBrjs.

Figure 3.9 shows the IR spectra of these compounds. Similar to the perovskite
spectrum in fig. 3.5, the IR activities of Cs4PbBrg (blue) and CsPbyBrs (orange)
are shown as vertical bars and broadened by a Lorentzian function. The broadening
again is chosen arbitrary for better comparison with the theoretical and experimental
spectra of CsPbBrs. From this comparison with the spectra of CsPbBrs it can be
seen that the theoretical spectra of all three Cs,Pb,Br. compounds can clearly be
distinguished from each other. The Cs-rich compound Cs;PbBrg has only a small
frequency range at around 3.15 THz. This is at the higher end of the calculated IR
spectrum on CsPbBrs. In addition it is higher than main features in the calculated
spectrum of CsPbyBrs, but lower than the highest frequency features of the latter
compound. The Pb-rich compound CsPbyBrs on the other hand has its main IR
active vibrations in a range between ~ 0.9 THz and ~ 2.55 THz. This is at the lower
end of theoretical CsPbBrj frequencies and clearly lower than Cs;PbBrg frequencies.
Besides this, CsPbyBrs has also contributions to the IR spectrum at about 4 THz.
This is clearly higher than any IR active vibrations of both the perovskite CsPbBrj
and Cs,PbBrg.

With this short excursion we have discussed the possible presence of Cs-rich Cs,PbBrg
and Pb-rich CsPbyBr; compounds within a sample. By discussing and comparing
the IR spectra of these compounds with that of CsPbBr3 we have shown that we
can distinguish between the spectra of all three compounds.

Herewith, the theoretical spectra can be compared to the experimental spectra in

fig. 3.10. There, the relative transmittance of CsPbBrs and MAPbBr; samples are
shown at room temperature (fig. 3.10a) as well as a comparison of room tempera-
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Figure 3.8.: Structural representations of CssPbBrg and CsPbyBrs. The color
scheme is the same as in fig. 3.1.
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Figure 3.9.: Infrared activity of Cs;PbBrg and CsPbyBrs obtained from DFT calcu-
lations. The IR activity (vertical bars, right y-axis) has further been
broadened by a Lorentzian (left y-axis) with width 0.5 THz as a guide
to the eye. The units are the same for both axes.
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ture (cubic phase) and low temperature (orthorhombic phase) spectra in the case
of MAPDbBr; (fig. 3.10b). The IR activity shown in fig. 3.5 can in first approxima-
tion be compared to 1 - relative transmittance, as the latter approximately provides
the absorption. The absorption is highest for frequencies with a high IR activ-
ity. In fig. 3.10a, it can be seen that the absolute absorption of CsPbBrs is much
smaller than that of MAPbBr;. However, when both spectra are normalized (inset of
fig. 3.10a), they are remarkably similar, like it was found theoretically for most parts
of the spectrum in fig. 3.5. There are slight differences, like the higher frequency tail
of MAPbBr3 decaying slower, which can potentially be understood, by the possible
configurational disorder in MAPbBr3 due to the organic molecule. This is supported
by the observation, that the decay is much faster in the low temperature, orthorhom-
bic spectrum, shown in fig. 3.10b. As another difference, for lower frequencies, the
peak at approximately 1.35 THz is much more pronounced in MAPbBr3. This peak
seems to also exist in CsPbBrs but is hardly visible within the slope of the main
peak. However, for low frequencies, close to 1 THz, limitations of the measurements
due to the experimental setup are expected. Thus, overall, and especially around
the main peak, we find the two spectra to remarkably well resemble each other.
Furthermore, from a comparison with theoretical spectra in figs. 3.5 and 3.9, first of
all strong evidence is presented that the experimentally measured CsPbBr3 sample
was indeed a perovskite crystal as CsyPbBrg frequencies are predicted to be higher
than any experimentally measured feature whereas CsPbyBr; spectra are predicted
to have one main feature at the lower end of the experimentally measured spectrum
and a second feature that is predicted to occur at frequencies higher than any ex-
perimentally measured feature and that is not seen in experiment. What is more,
besides a shift of slightly less than 1 THz good overall agreement between theory
and experiment can be found for most parts of the spectra. The shift can likely
be attributed to numerical parameters such as SOC or XC-functional [171, 172].
However, the most striking difference between theory and experiment is that the IR
active modes at around 4.5 THz/150 cm™ in the theoretical spectrum of MAPbBr3
are not only absent in the theoretical IR spectrum of CsPbBrs, surprisingly, they
are also absent in the experimental IR spectrum. In particular, in experiment there
is no additional mode in MAPbBr3; compared to CsPbBrs, unlike it was predicted
theoretically. This naturally rises questions about the origin of the computationally
found additional IR active mode.

Experimental measurements of the LO phonons of MAPbBr3 show a feature close
to the frequencies of the additional theoretical features [165]. LO phonons are not
infra-red active and thus cannot be seen in the transmission spectra, fig. 3.10 [39].
However, these LO phonons are always included in theoretical calculations of the
phonon dispersion and VDOS. And in fact, both MAPbBr; (fig. 3.6) and CsPbBry
(fig. 3.4) show vibrational modes around 4.5 THz. The VDOS in the relevant fre-
quency range can be attributed to Br motion in both materials, and there are large
contributions of MA in MAPbBr3. Experimentally, LO phonons can be measured
with the method suggested by BERREMAN [173]. Instead of illuminating the sam-
ple perpendicularly and measuring its absorption, the angle of incidence (Aol) is
changed to 60°. The transmittance measured with a non-normal angle of the in-
coming light also contains information about the LO phonons of the material [39,
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Figure 3.10.: IR spectra of CsPbBrs and MAPbBr3 as measured from our exper-
imental collaborators [165, 167]. (a) Room temperature (295 K) IR
spectra of CsPbBrs and MAPbBr3;. Shown is the relative transmit-
tance. The inset shows the transmittance scaled to the same range for
CsPbBrg and MAPDBr3, facilitating a comparison. (b) Room temper-
ature (295 K, cubic) and low temperature (130 K, orthorhombic) IR
spectra of MAPbBrs. Shown is the relative transmittance.
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Figure 3.11.: Relative transmittance of CsPbBrs measured with normal (i.e., 7°) and
60° angle of incidence (Aol) of the incoming light as measured from
our experimental collaborators [167].

165, 173]. For CsPbBrs, the spectrum is shown in fig. 3.11 [167] which shows the rel-
ative transmittance of CsPbBrs measured with normal (i.e., 7°) and 60° Aol. The
non-normal spectrum shows an additional peak at around 4.5 THz revealing the
LO phonon frequency. This frequency is predicted very accurately from theory, as a
comparison with fig. 3.4 reveals. Interestingly, the LLO phonon frequency of CsPbBrj
is close to the LO phonon frequency of MAPbBr; reported in literature [165] and the
additional feature in our experimental IR spectrum. This suggests that the experi-
mentally measured LO modes in CsPbBrg and MAPbBr3, relevant for investigating
charge transport [165], can be attributed to Br motion and are not related to the ad-
ditional modes in the theoretical IR spectrum of MAPbBr3 compared to CsPbBrs.
As discussed above, the latter modes can be attributed to MA libration, a type
of motion that is understood not to be described accurately within the harmonic
approximation.

To investigate whether the theoretically found additional IR active mode is a con-
sequence of anharmonic MA motion, the IR spectrum of MAPbBr3 has also been
calculated from (force-field) MD simulations using fixed atomic charges and dipole
autocorrelation functions, see section 2.4.2. The IR spectra calculated at low tem-
perature (130 K) and at room temperature (295 K) are shown in fig. 3.12. As can be
seen in fig. 3.12, calculations based on MD simulations show much better agreement
with the higher frequency tail of the main peak, correctly predicting the absence of
any additional peak at higher frequencies. In addition, even the shape of the tail,
showing a shoulder in the low temperature spectrum, is predicted correctly. On the
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Figure 3.12.: IR intensity of MAPDbBr3 calculated from (force-field) MD simu-
lations using fixed atomic charges and the dipole autocorrelation
function.  The experimental line shown for comparison is 1 —
relative transmittance (cf. fig. 3.10), normalized for the highest peak.
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3.3. Cubic perovskite structure as local maximum in potential energy

other hand, the peak at approximately 1.35 THz is not predicted correctly from the
MD simulations, demonstrating potential shortcomings of the force-field, which is,
for instance, known to provide too high frequencies if not scaled a posteriori (see
details in section 2.6.1) [85]. The absence of the IR active mode at approximately
4.5 THz in MD simulations can be rationalized recalling our findings on the nature
of the underlying nuclear motion. According to the visualization in fig. 3.7, it is
most likely related to MA libration. This is especially interesting as IR activity of
a vibrational mode is related to the change of the dipole moment (see section 2.3.4)
and the organic MA molecule exhibits a dipole moment. In conventional theoretical
calculations only one unit cell of the material is used explicitly and repeated by pe-
riodic boundary conditions to resemble a bulk material. However, this also implies
that only a single configuration of MA orientation is repeated periodically, implying
a situation of parallel orientated dipole moments. Accordingly, the additional mode
found theoretically might either be a consequence of the limitations of the harmonic
approximation or it might be a consequence of not including configurational disorder.
The latter is in line with previous MD studies showing a more broadly distributed
orientation of the molecular dipole moments at higher temperatures [174, 175].

Summarizing our findings so far, we found good overall agreement between the
theoretically computed and experimentally measured IR spectra of CsPbBr3 and
MAPDBBr3, except for an additional mode in MAPbBr;. Remarkably, this addi-
tional mode is only present in harmonic calculations for MAPbBr3 and absent in
both CsPbBr3 and experimental data. There is convincing evidence from the data
shown in figs. 3.6 and 3.7, as well as reference [166], that the mode is related to a
tilting motion of the organic MA molecule which has a dipole moment. Perform-
ing MD simulations, as a method going beyond the harmonic approximation and
periodic boundary conditions applied to a single unit cell, affects the theoretical
results and increases agreement with experiment, suggesting a noticeable influence
of anharmonic MA motion and configurational disorder. Besides this difference, the
spectra of CsPbBrs and MAPbBr3 are similar, implying constraints, as imposed
by the harmonic approximation, on the MA molecule to be more important for IR
spectra than the chemical composition of the A-site cation. Thus the IR spectrum
of MAPDbBr;3 constitutes a first example that suggests to exploring methods beyond
the harmonic approximation for HaPs.

3.3. Cubic perovskite structure as local maximum in
potential energy

In the previous section, it was concluded that anharmonicity has to be included in
theoretical methods for an accurate treatment of the dynamics of the organic A-site
cation in MAPbBr3. However, from the above results it is less obvious whether an
all inorganic HaP can be treated within the harmonic approximation. In order to
investigate this, lattice dynamics of the high-temperature cubic structure of CsPbBrj
have been investigated. Figure 3.13 shows the harmonic phonon dispersion and
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3.3. Cubic perovskite structure as local maximum in potential energy

VDOS of CsPbBrj3 in the cubic phase, as obtained from a DFT calculation within
the harmonic approximation. A comparison to fig. 3.4 reveals the frequency range of
orthorhombic and cubic CsPbBr3 to be very similar. The number of branches shown
for the orthorhombic phase, however, is much higher. This is simply a consequence
of the number of phonon modes being 3 x N with N the number of atoms in the
unit cell. While only one formula unit, i.e., five atoms, is necessary to form the
cubic unit cell, four formula units, i.e., 20 atoms, are required for the orthorhombic
unit cell. A more striking feature, however, are the imaginary phonons, plotted as
negative frequencies in fig. 3.13. To understand the mathematical origin and physical
implication, we recap section 2.3. According to the harmonic theory introduced
there, we obtain the squares of the phonon frequencies w? as the eigenvalues of
dynamical matrix D. If D has negative eigenvalues w? = —@?, we obtain imaginary
“frequencies”

w=id . (3.2)

The time-dependent nuclear displacements are given by a plane-wave ansatz, eq. (2.42).
If we now apply eq. (3.2) in eq. (2.42), we obtain

1 1
\/M[ VMI

In other words, instead of an oscillatory motion, as described by the plane-wave
ansatz in eq. (2.42), imaginary phonon modes describe an increasing nuclear dis-
placement with time. Physically, imaginary modes describe a structural instability.
Following the eigenvector associated with the imaginary phonon, one ends up in a
lower energy structure. In case of HaPs, the imaginary phonon modes found at the
Brillouin zone boundary (M and R point of the Brillouin zone) can be linked to
octahedral tilting and related to the phase transitions to the low temperature or-
thorhombic and tetragonal phases [144, 150, 164]. This is further supported by the
calculated phonon dispersion and VDOS of CsPbBrj in the orthorhombic phase, as
shown in fig. 3.4, which do not show any imaginary phonon modes. The orthorhom-
bic phase is the low temperature phase of CsPbBrs and thus expected to be stable
at 0 K. Therefore, no imaginary phonon modes are expected and found to arise from
effective 0 K DFT calculations.

Sy = Ai(q) e 9 = Ai(q)erae™ (33)

The imaginary frequency modes in the harmonic phonon dispersion of cubic CsPbBrj
suggest the structure to be at a local maximum of the potential energy surface. In
particular, a detailed analysis revealed that the modes corresponding to the Bril-
louin zone boundary imaginary frequencies can be related to PbXg octahedral ro-
tations [144, 150, 164] and the associated potential energy landscape to be of a
double-well shape with the average atomic position located at a saddle point [26,
144-146, 149, 150]. Already about 60 years ago it has been suggested that the cubic
structure of Cs-based HaPs actually has several potential minima with the Cs and
halide atoms randomly distributed among different sites [176]. In this early work it
was suggested, based on the analysis of X-ray data, that the halide atoms randomly
populate one of four, the Cs one of six individual local potential energy minima
each about 0.5 A away from the average position. Twenty years later, this picture
has been rejected and the cubic structure of these compounds has been explained in

57



3. Results and discussion: halide perovskites

terms of the Pm3m cubic average atomic positions with large anharmonic contri-
butions to the dynamics of Cs and halides present at temperatures relevant for the
cubic phase [177]. This refined picture is based on a neutron diffraction study of cu-
bic CsPbBr3 and CsPbCl;. With the renaissance of (hybrid organic-inorganic) HaPs
as up-and-coming solar materials the anharmonic nature has been further studied
and a picture of double-well potentials has been established [26, 144-146, 149, 150].
The transition time between the minima in the potential energy surface has been
discussed to be related to the extremely short phonon lifetimes in these materials [26]
and comparable with MA residence time in hybrid HaPs [145]. Evidence for transi-
tions between instantaneous structures has also been observed experimentally, e.g.,
in Raman spectroscopy [24]. YAFFE ET AL. [24] predict transition times between
instantaneous structures of the order of a few hundred fs, based on the width of the
Raman central peak. This is remarkable since many experimental and theoretical
studies report extremely short phonon lifetimes in the (sub-) ps regime [2, 22, 26].
Along these lines, first-principles MD simulations revealed octahedral tilting in the
cubic phase leading to instantaneous tetragonal structures [21].

This motivates the use of MD simulations in the cubic phase of CsPbBr3 to demon-
strate that the ideal cubic structure is a local maximum in the total energy surface
and that this is different to conventional materials, such as Si. Figure 3.14a shows
the difference in total energy between the ideal cubic structure, E.upi, and instan-
taneous nuclear configurations, F;, obtained from MD simulations:

AE = E; — Eeupic . (3.4)

The negative sign of AFE in fig. 3.14a shows that the total energy of instantaneous
configurations is lower than that of the ideal high-symmetry structure [158, 178].
This is substantially different to Si (fig. 3.14b), where the positive sign of AE demon-
strates the total energy of instantaneous configurations to be higher than that of
the ideal structure. Usually, one expects the equilibrium (high symmetry) structure
to be the structure with the lowest total energy, and thus atomic displacement, e.g.,
due to lattice dynamics to increase the total energy, as observed for Si. Therefore,
the situation in cubic HaPs contradicts intuitive expectations and the above results
are another endorsement of picture to have the ideal structure located at a local
maximum.

Consequently, one could ask whether lattice dynamics in cubic HaPs should be
understood as low frequency relaxational motions between instantaneous configura-
tions plus (harmonic) phonons around these new equilibrium positions. Already the
definition of phonons (quasiparticles) requires a reference structure (see section 2.3)
and therefore is difficult to reconcile with the presence of instantaneous configura-
tions and local minima in the potential energy surface. As a consequence, lattice
dynamics in cubic CsPbBrs are difficult to be explained by means of harmonic
approximation with a cubic reference structure. Even if perturbatively including
higher order corrections of the Taylor series of the lattice potential, eq. (2.39), this
approach to lattice dynamics will not capture relevant effects of lattice dynamics, as
it starts from the cubic reference structure, and thus may not fully explain, e.g., the
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Figure 3.14.: Change of the total energy (excluding kinetic energy of the ions and
the energy of the thermostat) per atom as a function of time during
an MD simulation. Shown is the difference AE = E; — E.qui between
instantaneous total energies F; and the total energy of the equilibrium
structure Eequ for (a) CsPbBrs and (b) Si. Instantaneous structures,
i.e., atoms displaced from the equilibrium structure lead to lower total
energies (AE < 0) in CsPbBrs whereas in Si displaced atoms increase
the total energy (AE > 0).

low frequency relaxational motion between different instantaneous configurations
observed, e.g., in Raman spectroscopy and first-principles MD simulations.

This can be expected to also influence functional properties as the physical observ-
able predicted from the average structure is not necessarily the same as the average
of the observable taken over different (instantaneous) structures. As a consequence,
the cubic perovskite structure fails to predict many properties of HaPs. A list of such
observables has recently been discussed for static properties, using a static approach
of “polymorphous networks” [178] to mimic the distribution of atoms in its refined
total energy minimum. Interestingly, these ”polymorphous networks”, obtained by
theoretically relaxing atom positions of beyond unit cell configurations, looking for
the configuration with minimal total energy, are characterized by PbXg octahedral
rotations and B-site displacements when compared to the monomorphous Pm3m
cubic structure. Thus this approach is in great agreement with the picture of finding
the ideal structure at a local maximum of the potential energy surface. Here, we
will recapitulate and extend this list from reference [178]. Difficulties already start
with attempting to unravel the exact structure. First, although the average atomic
positions and long range order, as measured by X-ray diffraction, can be explained
by the Pm3m cubic structure, mutual agreement between theory and experiment for
more local structural details, as measured by the pair distribution function, can only
be achieved if local distortions are allowed for in theory. These local motifs include,
but are not limited to, octahedral tilting and B-site displacements. Second, the
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Figure 3.15.: Band-edge energy distributions shown as histograms of the instanta-
neous VBM and CBM energies E; obtained from a MD simulation at
T=425 K. Vertical lines show VBM and CBM for a static calculation
of an ideal system with cubic Pm3m symmetry. The histograms are
normalized by the highest occurrences nmax = n(E{py /CBM) for VBM
and CBM, respectively. The nominal band gap Ej,, = E¢gy — Eypy

is given by the difference between the VBM/CBM energies with the
highest occurrence, Ejq\, JCBM-

cubic structure fails to predict the band gap, with changes of up to 300% in “poly-
morphous” vs. “monomorphous” DFT calculations. While calculating the effect
of disorder correlation lengths on band-edge energy distributions (see section 3.6),
we discovered a significant difference between the band gap of a cubic unit cell and
snapshots from MD calculations, see fig. 3.15. This remarkable finding has been
discussed and explained by the “polymorphous network” picture [178] independent
from our work while our work was still in progress. Even the relative order of band
gaps with respect to phase transitions is not maintained with “monomorphous”
cubic calculations. Third, mixing enthalpies are corrected by using polymorphous
networks. And last but not least, a much larger dielectric constant, with substantial
ionic contributions, is obtained. On the other hand, using a polymorphous approach
does not contradict properties which usually are related to high symmetry unit cells,
such as sharp bands and small Urbach energies [178].

The above paragraphs establish that the cubic structure as such is difficult to ratio-
nalize in a static or harmonic picture. This conclusion has been approached from
different directions, e.g., rationalizing imaginary phonon modes, “polymorphous net-
works”, and experimental data such as Raman spectra and X-ray measurements.
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3.4. Anharmonic phonon quasi-particles

Note that parts of the results presented in sections 3.4 to 3.8 are published in
references [2, 5].

Motivated by the discussion above, the role of anharmonicity in the all-inorganic
HaP is investigated, ruling out the anharmonic motion of the organic molecule with
its anisotropy and dipole moment. We thus characterize vibrational properties of
cubic CsPbBrs by analyzing first-principles MD simulations using a projection of
the VACF on harmonic phonon modes (section 2.4.3). Vibrational quasiparticle
properties as obtained from MD are shown in fig. 3.16. First of all, fig. 3.16a shows
the phonon dispersion at 425 K, compared to the phonon dispersion obtained from
the harmonic approximation. The dispersion relations of these two cases are rather
similar, except for two key features we would like to further discuss.

One striking difference is the absence of imaginary modes (plotted as negative fre-
quencies) at 425 K. This is to be expected as the imaginary phonon modes at the
boundaries of the first Brillouin zone (M and R point) are related to octahedral
tilting and thus to the phase transitions to tetragonal and orthorhombic structural
phases at low temperature. This connection has been discussed before in litera-
ture for related materials, e.g., references [144, 150], and very recently also again
for CsPbBrs [164]. Displacing atoms according to the eigenvector of an imaginary
phonon mode one obtains a lower energy structure. In cubic HaPs these modes ap-
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Figure 3.16.: (a) Phonon dispersion of CsPbBrs as obtained from calculations in
the harmonic approximation (orange) and from MD simulations at
T = 425 K (blue). (b) Power spectrum of the VACF obtained from
MD simulations at T'= 325 K, T' = 425 K, and T' = 525 K. Reprinted
with permission from [2], published under a CC BY 4.0 license.
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Figure 3.17.: Sketch explaining imaginary (harmonic approximation) and finite fre-
quencies (MD) in a double-well potential (gray): the harmonic fre-
quency is determined by a quadratic approximation of the potential
close to the local maximum (indicated in blue). Moreover, at low tem-
peratures, atom are expected get caught in a local minimum. At high
enough temperatures, however, a larger part of the potential energy
landscape is accessible to the atoms and the atoms can oscillate with
finite temperature as indicated in orange.

pear to be associated with a double-well potential [144, 150] whose local maximum is
located at the average structure. Atomic displacements according to the harmonic
approximation would thus lead to a lower energy structure, thus the presence of
imaginary frequencies, and at low temperatures the material would be expected to
get trapped in one of the local minima. Eventually, as temperature increases, ther-
mal energy is higher than the energy barrier of the double-well potential, thus it can
be overcome and a larger area of the potential energy landscape is accessible (see
sketch in fig. 3.17). Consequently, atomic oscillations around the average position
are found, resulting in a finite frequency when projecting this atomic motion onto
the harmonic phonon eigenvector. The consistency of our findings, no imaginary
phonon modes from MD at 425 K, with this picture is further supported by a com-
parison with the experimentally measured phase transition temperature, approxi-
mately 400 K [151], and with the theoretically obtained potential well depth, about
26 meV /atom [164] which is, converted to kgT, equivalent to around Ta302 K.

The second difference is the shift in the highest frequency optical phonon branches.
This shift might be due to a “simple” temperature effect, however the effect on
these modes is rather large compared to the effect of temperature on other modes.
As an alternative explanation, it might as well be a pressure effect. Since our MD
simulations at different temperatures are performed as NVT simulation, all of them
with the same volume obtained from a optimization of the unit cell at 0 K, pressure
is increasing with increasing temperature. WANG ET AL. [179] have studied the
effect of pressure on phonon properties of MAPbI3 using NPT MD simulations.
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3.4. Anharmonic phonon quasi-particles

Table 3.1.: Range of phonon quasi-particle lifetimes of CsPbBrs at three different
temperatures, specified for acoustic modes and optical modes, respec-
tively. And mean phonon quasi-particle lifetimes as obtained from the
histograms in fig. 3.18b. Reprinted and adapted with permission from [2],
published under a CC BY 4.0 license.

Temperature ‘ Acoustic modes ‘ Optical modes ‘ Mean

325 K 0.5-9.5 ps 0.3-4.6 ps 1.38 ps
425 K 0.4-6.7 ps 0.3-4.4 ps 1.25 ps
525 K 0.5-5.4 ps 0.3-2.8 ps 1.08 ps

Although the inorganic lattice has not been a focus of their work, fig. 3c and d of
their publication show very clearly that changing the pressure from 1 bar to 6 bar
shifts the higher end of the inorganic (Pbl contributions) VDOS from about 5 THz
to about 4 THz. Although we are considering a different material, even having a
different X-site atom, and no systematic pressure was applied, the effect we observe
here for CsPbBrj is similar to the effect observed in MAPbDI3 [179] rendering it
possible that this observation is related to a pressure effect.

In fig. 3.16b the power spectrum of the VACF, which is related to the VDOS as
discussed in section 2.4.2, is shown. Compared to the VDOS obtained from calcula-
tions within the harmonic approximation (cf. fig. 3.13) the features appear strongly
broadened. The width in frequency space can be related to vibrational lifetimes
as explained in section 2.4.3. In particular by projecting the VACF onto harmonic
phonon eigenvectors, quasiparticle lifetimes can be obtained. A plot of lifetimes as
a function of frequency can be seen in fig. 3.18a. The (short) phonon lifetimes are
attributed to phonon-phonon scattering. This is supported by our observation that
the frequencies with the highest intensities of the VDOS (fig. 3.16b) seem to be
correlated with the frequencies at which the shortest vibrational lifetimes are found
(fig. 3.18a). In other words, phonon-phonon interactions appear to be strongest
between 1 and 3 THz due to the presence of a high number of vibrational states,
manifesting itself in a high density of states. The vibrational lifetimes span between
0.3 ps and 10 ps (table 3.1) and are thus extremely short. For comparison, the
phonon lifetimes calculated here for CsPbBrs are two orders of magnitude shorter
than, e.g., phonon lifetimes in bulk silicon [180].

A different visualization of the vibrational lifetimes, i.e., a histogram of the phonon
lifetime is shown in fig. 3.18b. From this representation we can obtain further insight:
first of all, the average phonon lifetime (horizontal lines in fig. 3.18b) is decreasing
with increasing temperature (cf. also table 3.1). This is consistent with the pic-
ture of increasing anharmonicity and phonon-phonon interactions with increasing
temperature. And second, we observe that the lower end in the distribution of vi-
brational lifetimes hardly shifts towards shorter lifetimes, with even the maximum
of the distributions of all three temperatures not changing much. Instead , the
quasiparticle lifetimes seem to reach a physical limit. A reasonable lower limit is
given by the period of the vibrational frequency, i.e., atoms have to undergo at least
one full period in order to have a vibrational quasiparticle.. In the case of HaPs this
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Figure 3.18.: (a) Phonon quasi-particle lifetimes as a function of quasi-particle fre-
quency obtained from MD simulations at T' = 325 K, T' = 425 K, and
T = 525 K. (b) Histograms of the phonon quasi-particle lifetimes 7 at
three different temperatures. The histograms are normalized such that
the integral over the range is 1. The horizontal lines indicate the mean
values, see table 3.1 for details. Reprinted with permission from [2],
published under a CC BY /.0 license.

limit seems approached for all temperatures considered here (see also [158]). We
can thus conclude that anharmonicity is a strong and important effect in HaPs and
that it would be interesting to elucidate its microscopic origin.

3.5. Resonant bonding

A phenomenon that has been related to anharmonicity in HaPs is called resonant
bonding [158, 181]. This mechanism, also active in other materials [182, 183], orig-
inates from orbital degeneracy. Metaphorically speaking, this quantum mechanical
effect can be illustrated as a frequent change between configurations that are de-
generate. As a consequence, an effective configuration establishes, which is known
as a resonant network. In this regard, it can be understood as an extension of
the bonding resonance known, e.g., from the benzene ring to crystals [184]. How-
ever, at finite temperature the material undergoes atomic motion, which breaks the
degeneracy and favors specific configurations over the effective configuration. As
the resonant network and thus also the breakdown of the effective configuration
go through large parts of the material, resonant bonding can be considered to be
a long-range interaction. The long-range nature is illustrated for the example of
CsPbBrs. In fig. 3.19a the change in the charge density upon displacing a single Pb
atom is shown. The response of the charge density is obviously long-ranged, since
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Figure 3.19.: Long-range resonant bonding in CsPbBrj;. (a) Difference in the charge-
density induced by displacing a single Pb atom, visualized as an iso-
surface plot. (b) Autocorrelation of the disorder potential for elec-
tronic states, calculated according to eq. (2.120).  Reprinted with
permission from [2], published under a CC BY 4.0 license.

it implies a response significantly larger than one unit cell. Figure 3.19b shows that
this long-range response of the charge density can quantitatively be observed in the
correlation length for the disorder potential, eq. (2.120). A significant correlation
C(Ay) can be seen for distances Ay > 12 A, which by far exceeds the 5.8 A lattice
parameter of CsPbBr3 by far.  Therefore, the above described resonant bonding
mechanism is suggested to cause long-range effects in the dynamical matrix and,
more importantly, induce anharmonicity [182]. Moreover, as discussed in section 2.5
and the following section, this long-range correlation of the disorder potential would
significantly impact the functional properties of HaPs.

It is worth noticing that the observations of fig. 3.19 are not specific for the dis-
placement shown in fig. 3.19, the same behavior would also have been observed
when displacing any of the other atoms. This can be understood by considering all
the atoms which still are at their undisplaced, ideal positions to form the resonant
network inside the material and being responsible for the long-range correlation.
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3. Results and discussion: halide perovskites

3.6. Disorder correlations and band-edge distributions

As discussed in section 2.5, the correlation length of the disorder potential can be
linked to the Urbach energy. A long-range correlation as found in section 3.5 implies
a large Urbach energy. This is seemingly in contrast with the small Urbach energies
measured experimentally [127-131]. To further study this, we calculated the corre-
lation in the disorder potential for instantaneous snapshots from MD simulations.
While fig. 3.20a clearly demonstrates changes in the charge density to be present all
over the simulated system for instantaneous nuclear configurations, remarkably, the
correlations obtained from MD simulations, shown in fig. 3.20b are short ranged.
The correlations decay on the range of half a unit cell, i.e., on the order of inter-
atomic distances. Naturally, the question arises how the correlation is shortened
comparing it to the correlation in fig. 3.19.

To examine this question we considered constraint cases, resembling intermediate
scenarios between the cases of only a single displaced Pb atom and “full MD”. For
these intermediate cases certain atoms are displaced according to MD displacements
while the other atoms have been kept at their ideal average lattice positions. In de-
tail, we considered the cases where all Pb atoms have been displaced, but Cs and
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Figure 3.20.: (a) Difference in the charge-density between an instantaneous configu-
ration and the mean density taken from a MD trajectory at T' = 425 K.
(b) Autocorrelation of the disorder potential for electronic states, cal-
culated according to eq. (2.120). The thin curves show the autocor-
relation functions for instantaneous snapshots of MD trajectories at
three different temperatures. The thick lines represent the averages of
the instantaneous configurations. Reprinted with permission from [2],
published under a CC BY 4.0 license.
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3.6. Disorder correlations and band-edge distributions

Br atoms were fixed (“Pb MD”), the case were Pb and Cs atoms have been dis-
placed and Br was fixed (“Pb + Cs MD”), and the case were Pb and Br atoms have
been displaced and Cs was fixed (“Pb + Br MD”). The results of these gedanken-
experiments can be seen in fig. 3.21. There, one can observe that the correlation is
of somewhat longer range, compared to the ones observed in fig. 3.20, when only
Pb atoms are displaced. However, it gets shortened to (almost) the MD correla-
tion length as soon as the A-site cation Cs or, in particular, the halide ion Br are
displaced in addition. We can thus conclude that the correlations in the disorder
potential get dynamically shortened especially by the large displacements of Cs and
Br ions.

According to section 2.5 the changes in the correlation length should be related to
the Urbach energy. To test this hypothesis, we studied the band-edge distributions,
i.e., the distributions of the VBM and CBM for two paradigmatic cases with dif-
ferent correlation lengths. We choose the case for which we obtained the shortest
correlation length, the “full MD” case and the constrained MD simulation with the
longest correlation length, which is the “Pb MD” case.

In fig. 3.21 the band-edge distributions for these two cases are shown. In agreement
with our expectations, we first of all observe that the distributions of VBM and
CBM are broadened for both cases at finite temperature. This is a consequence of
different ionic configurations, as obtained from instantaneous MD snapshots, pro-
viding slightly different electronic structures. Second, we observe that the “Pb MD”
case shows an additional tail for the CBM distribution. This can be understood from
the fact that the conduction band in this material is mainly formed from the Pb p-
orbitals, which are also predominant in the resonant-bonding mechanism discussed
above. And last but not least, we observe that the band-edge distributions for the
“full MD” case is narrower than for the “Pb MD” case. This is in perfect agreement
with our hypothesis that the correlation length of the disorder potential determines
the number of electronic tail states. As predicted by this hypothesis, the case with
the shorter correlation length exhibits the narrower band-edge distributions. This is
remarkable, however, as this implies that increasing the number of activated degrees
of freedom reduces the number of tail states observed. With this, we established the
relation between correlation length of the disorder potential and band-edge energy
distributions. Allowing to better understand one of the key properties of HaPs,
namely their small Urbach energies and efficient optical absorption.

An even more direct approach to investigate optical absorption is provided by the
JDOS which counts possible band-to-band transitions [124, 185-187]. Previous work
on HaPs already found the JDOS to increase rapidly close to the band edge when
compared to other materials [188-190]. However, so far calculations have only been
performed for static cells. Figure 3.22 shows the JDOS of CsPbBrjs for the static
as well as a dynamic picture. The dynamic JDOS is represented by the JDOS
calculated for instantaneous configurations extracted from a MD trajectory at 425 K
as well as their average. Indeed, the dynamic JDOS increases much faster than the
static JDOS emphasizing once more the importance of dynamics for understanding
important physical properties of HaPs in the cubic phase. This is in line with the
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Figure 3.21.: (a) Autocorrelation of the disorder potential for electronic states, cal-
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culated for three different scenarios. (i) Pb atoms are displaced and
Cs and Br atoms are fixed to their ideal lattice positions (blue curves).
(ii) Pb and Br atoms are displaced and Cs atoms are fixed (green
curves). (iii) Pb and Cs atoms are displaced and Br atoms are fixed
(orange curves). All displacements are according to MD simulations
at T' = 425 K. The thin curves show the autocorrelation functions for
instantaneous configurations. The thick lines represent the averages of
the instantaneous configurations. (b) Band-edge energy distributions
shown as histograms of the instantaneous energies F;. Shown are va-
lence band maximum (VBM) and conduction band minimum (CBM)
energy distributions for two scenarios: instantaneous configurations
are taken along a MD simulation at 7" = 425 K (red curve) and sce-
nario (i) of panel (a) (blue curve). The histograms are normalized
by the highest occurrences nmax = n(Eypy cpy) for VBM and CBM,
respectively. The nominal band gap Eg,, = E&py — Eypy 1s given
by the difference between the VBM/CBM energies with the highest
occurrence, Eyp\; cpy-  Reprinted with permission from [2], published

under a CC BY 4.0 license.
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Figure 3.22.: Static and dynamic JDOS of CsPbBr3. The thin gray curves show the
JDOS for instantaneous snapshots of a MD trajectory at T=425 K.
The thick black line represent the averages of the instantaneous con-
figurations. The red line shows the static JDOS for a cubic perovskite

structure. Reprinted with permission from [5], published under a CC
BY 4.0 license.

findings above which suggest narrower band-edge energy distributions and thus an
even steeper increase of band-to-band transitions close to the band gap in the case
of a dynamic picture In addition, there is a second difference: the onset of the JDOS
differs between the dynamic and static JDOS by about 0.5 eV, respectively. This
can be linked to the difference between the band gap of a static perovskite structure
and the average band gap of CsPbBrj as obtained from MD simulations, which has
already been shown in fig. 3.15, section 3.3. At this point, there is strong evidence
that dynamics in CsPbBrj significantly influence optical absorption. Below, this will
be tested for different HaP compounds and attributed to an intrinsic characteristic
of the perovskite structure, namely its dynamic flexibility.

3.6.1. lonic composition

As discussed in the introduction (section 3.1), the class of HaPs contains a variety
of compounds with an ABXj3 stoichiometry. Even when focusing on lead-halide per-
ovskites, i.e., constraining B to Pb and X to be a halide, there is still broad flexibility
within the possible compounds. Here, we test our findings of dynamically shortened
disorder potential correlations with HaPs of different chemical composition.

We start by changing the halide ion to iodine, thus considering CsPbls. In fig. 3.23a
we show the correlation function as obtained from MD simulations at 425 K. Similar
to CsPbBrjs, the correlation decays on the range of interatomic distances, revealing a
short range correlation. To investigate the mechanisms that shorten the correlation
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Figure 3.23.: Autocorrelation of the disorder potential for electronic states in
CsPbl; as obtained from (a) MD simulations and (b) calculated for
three different scenarios similar to fig. 3.21a. (c) Band-edge energy
distributions for CsPbls, obtained similar to fig. 3.21b. (d) Autocor-
relation of the disorder potential for electronic states in MAPbDI; as
obtained from force-field MD simulations. Reprinted with permission
from [2], published under a CC BY 4.0 license.

function, the procedure reported for CsPbBrs has been repeated. In fig. 3.23b the
correlation functions for constrained simulations are shown. In case of only Pb being
displaced (“Pb MD”) the correlation is more long range compared to the case of
“full MD” (fig. 3.23a) and the cases of “Pb + I MD” and “Pb + Cs MD”. Thus,
the findings are similar to those for CsPbBrs;. However, besides the similarities of
CsPbBr3 and CsPbls, there is also one difference. Considering only Pb displacements
induces a partially negative correlation at a distance of about two lattice parameters.
Compared to CsPbBr; (fig. 3.21a), this is hardly visible in CsPbl; (fig. 3.23b) at least
on average. This difference can be rationalized considering iodine has a larger atomic
polarizability, which would imply that the iodine lattice provides more screening
than the bromine lattice.

Last but not least, we investigate the hybrid organic-inorganic HaP MAPbI;. MAPDI;
is the paradigmatic HaP for solar-cell applications and has been shown to feature
resonant bonding and long-range effects [158]. Occupying the A-site with the or-
ganic MA molecule instead of the inorganic Cs atom makes the system anisotropic.
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3.7. Impact of strongly anharmonic transversal halide motion

The permanent dipole moment of the MA molecules further allows for additional
long-range order, due to oriented dipoles. On the other hand, disarranged molecules
might introduce additional disorder and screening of the correlation. The correla-
tion function for the disorder potentials was calculated similar to the correlations
shown for CsPbBrs and CsPbls, but for instantaneous atomic configurations ob-
tained from force-field MD (see fig. 3.23d). Again, we find the correlation to be
short-ranged. This finding is consistent with the notion that at elevated tempera-
ture the orientation of the MA molecules is disordered, as we, e.g., discussed already
for MAPDbBrj in section 3.2. An analysis of constrained MD cases is complicated by
the orientational degrees of freedom of the MA molecules. Due to this additional

complexity for the constraints no further gedankenexperiments have been performed
for MAPDI;.

As a bottom line, we have found short-range correlated disorder potentials in all
HaP examples we studied and conclude that this is important for their functional
properties due to the implications for band-edge distributions and Urbach energy. In
particular, the correlations are dynamically shortened due to A-site and especially
due to halide motion. The latter will be further studied in the following section.

3.7. Impact of strongly anharmonic transversal halide
motion

The strong impact of the halide motion on the disorder potential and thus band-edge
distributions motivates further studying it. A useful starting point is a peculiarity
of the cubic perovskite structure, i.e., that there exists a “directionality” in halide
bonding. In particular, in the ideal cubic perovskite geometry, there exists a linear
Pb-X-Pb bonding, while the halide ions exhibit no bonding in any other direction
(cf. fig. 3.24a). This allows for the definition of a longitudinal (blue arrows in
fig. 3.24a) and transversal direction (yellow arrows in fig. 3.24a) with respect to
the Pb-Br-Pb bond in CsPbBr;. To compare the transversal displacements to the
longitudinal displacements, the transversality has been defined as

Ngr

1
1 i
NBr - diongl

transv
d;

(3.5)

’r]:

where d™™/"8 are the (absolute) transversal/longitudinal displacements of Br

atom ¢ and Ng, denotes the total number of Br atoms considered in the analysis.
Thus, the transversality can be interpreted as the averaged ratio between transver-
sal and longitudinal components of Br displacements, with a large transversality
(n > 1) indicating that, on average, transversal displacements are larger than lon-
gitudinal displacements. A histogram of the transversality, as obtained for a system
containing 96 Br ions and from a MD trajectory of 150 ps at 425 K can be seen in
fig. 3.24b. This histogram is peaked at around n ~ 15 — 20 ( log;,(n) ~ 1.2 — 1.3)
and quickly decays for n approaching 1. Consequently, the histogram reveals large
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Figure 3.24.: (a) Visualization of longitudinal Br displacements (parallel to Pb-
Br-Pb bonds, blue arrows) and transversal Br displacements (in plane
perpendicular to the Pb-Br-PB bonds, sketched in orange). (b) Semi-
log plot of the histogram of the transversality, 7, eq. (3.5), as obtained
from an MD simulation at 425 K containing 96 Br atoms. Reprinted
with permission from [5], published under a CC BY 4.0 license.

transversal displacements. Alternatively, the histograms of transversal and longitu-
dinal displacements, fig. 3.25, can be inspected directly. The broader spread for the
components of transversal displacements in comparison to the longitudinal displace-
ments in fig. 3.25a, as well as the broader spread and the shift of the peak to higher
values for the norms of the displacements in fig. 3.25b result in the same conclusion
of larger transversal displacements. On top, as shown in fig. 3.26, potential energy
landscapes U (dry, drq, dr3) for specific transversal and longitudinal directions can be
deduced from this. The potential energy landscapes are obtained from inversion
of the histograms of the displacements, n(dry, dro, dr3). Since the histograms are
obtained from MD simulations, Boltzmann statistics can be assumed:

n(dry, drg, d13) X exp{—U(5r1,5r2,5r3)/kBT} ) (3.6)
Accordingly, the potential energy landscapes can be calculated as:
U(8r1,6ra,0r3) = —In{n(0ry, ora,6r3) } - kT + const. (3.7)

However, for this method one has to consider that the result would be the potential
energy landscape as a function of all three spatial coordinates drq, 7, dr3. For
simplicity, fig. 3.26 shows the potential energy only along exemplary paths in which
two directions are kept at 0, i.e.,

U(dry) = U(0ry,0ry = 0,0r3 =0) = —ln{n(érl, 0ry = 0,0r3 = O)} - kgT + const.
(3.8)
This is in contrast to fig. 3.25, where the one-dimensional histograms were obtained
by integrating out the other components, i.e.,

n(ory) = // dory dorsn(0ry, 0rg, 073) . (3.9)

The potential energy landscapes obtained according to eq. (3.8) provide much shal-
lower potentials for transversal displacements, i.e., large longitudinal displacements
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Figure 3.25.: Distribution of Br displacements in CsPbBrs, projected onto longitu-
dinal and transversal components. In (a) histograms for one longi-
tudinal and two transversal components 5r1°ngi/ Y are shown. All

components are perpendicular to each other such that the three com-

ponents shown form a basis to fully characterize Br displacements.

In (b) histograms for the norms dlone!/transy — |gylongi/transv| of Jongj-

tudinal and transversal displacements are shown. All histograms are

normalized such that they resemble a density, i.e., their integral equals

1. Reprinted with permission from [5], published under a CC BY 4.0

license.
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Figure 3.26.: Potential energy landscape, U(dr), of the Br displacements obtained
from an inversion of the Boltzmann distribution for one longitudinal

and one transversal direction. Reprinted with permission from [5],
published under a CC BY 4.0 license.
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Figure 3.27.: Correlation between average octahedral rotation angle ¥ (cf. fig. 3.28)
and the average transversal ((a)) and longitudinal ((b)) Br displace-
ments in CsPbBrs. Reprinted with permission from [5], published under
a CC BY 4.0 license.

are energetically much more expensive than transversal displacements. Moreover, a
strongly anharmonic potential can be found for the transversal displacement which
resembles the double-well potential found in literature for octahedral tilting and
that was discussed earlier in section 3.3.

Finally, in fig. 3.27 the average ocathedral rotation angle (see fig. 3.28 for a defini-
tion of the angle) is shown as a function of the average transversal and longitudinal
displacements, averaged over all Br atoms. While a correlation between transversal
displacement and rotation angle can be seen in fig. 3.27a, no such correlation can
be seen for longitudinal displacements in fig. 3.27b. Consequently, the transversal
displacements can be correlated to octahedral tilting (see figs. 3.27 and 3.28) which
is an established element of HaP dynamics [191-194]. In sum, the above findings es-
tablish a certain directionality in halide displacements. Here, however, implications
of the directionality in halide motion on the resonant bonding and short disorder
potential correlations, attributed to halide motion in section 3.6 above, shall be
investigated.

In fig. 3.29, the correlation of the disorder potential according to eq. (2.120) is
shown for several cases: only longitudinal Br displacements, only transversal Br
displacements, and for the case of all possible atomic motion, according to thermal
excitations at 425 K (full MD). From the correlations in fig. 3.29, it can be seen
that the correlation length of the disorder potential induced by Br displacements
transversal to the Pb-Br-Pb bonds is concurrent with the short-range correlation
found for the dynamically shortened correlations from MD simulations, whereas the
correlation in the disorder potential induced from longitudinal displacements of the
Br atoms is more long-range. This suggests that the favorable properties of HaPs,
namely short correlation length of the disorder potential and narrow band-edge
energy distributions, are due to the structural flexibility of the halide atoms, i.e.,
their large transversality.
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Figure 3.28.:

Figure 3.29.:

Sketch to visualize the calculation of the octahedral rotation angle
in the x-y plane. The rotation of an octahedron with respect to its
reference is indicated by the two differently colored octahedra. The
rotation angle can be calculated from the displacements of the four

Br atoms as ¥ = arcsin (m[&tl — 0yg — O3 + 5y4]), where dpy_p,

is the Pb-Br distance. Reprinted with permission from [5], published
under a CC BY 4.0 license.
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Autocorrelation of the disorder potential for electronic states, calcu-
lated according to eq. (2.120). The thin curves show the autocorrela-
tion functions for instantaneous snapshots of the three cases described
below. The thick lines represent the averages of the instantaneous
configurations. Shown are the correlation functions for three differ-
ent cases: only longitudinal displacements of Br atoms are considered
(blue), only transversal displacements of Br atoms are considered (or-
ange), and all atomic motion at 425 K, according to a MD simulation,
is considered (black). Reprinted with permission from [5], published
under a CC BY 4.0 license.
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3. Results and discussion: halide perovskites

Figure 3.30.: Difference in the charge-density induced by displacing a single Br atom
in (a) longitudinal and (b) transversal direction, visualized as an
iso-surface plot, with an iso-surface of more than 8.1 x 1073 eA~3.
Reprinted with permission from [5], published under a CC BY 4.0 li-
cense.

Further, in order to understand the differences between longitudinal and transversal
correlations, the response of the charge-density to atomic displacements is investi-
gated fig. 3.30a and fig. 3.30b. The results can be explained as follows: the valence
band of CsPbBrjs is formed by a o interaction between Br p-orbitals and Pb s-
orbitals [195, 196], which form the resonant network explained in section 3.5. A lon-
gitudinal Br displacement thus perturbs the orbital overlap, lifting the degeneracy
of the resonant spo-bonds, and results in a long-range change of the charge-density;,
as can be seen in fig. 3.30a. However, a transversal displacement is, by definition,
perpendicular to the spo-bonds and therefore has a much smaller influence on the
network of resonant bonds. For this reason changes in the charge-density, induced by
a transversal Br displacement, are much more localized, i.e., short-range in nature.

This can be seen fig. 3.30b.

These differences between longitudinal and transversal displacements are expected
to also impact optical absorption. Consequently, fig. 3.31 shows the JDOS for lon-
gitudinal and transversal Br displacements. The result resembles the findings in
fig. 3.22 remarkably well. In other words, while the JDOS calculated for instanta-
neous configurations with longitudinal Br displacements only in fig. 3.31 still behaves
as the static case in fig. 3.22, it is the emergence of transversal Br displacements
which leads to the rapid rise found for the MD case in fig. 3.22.

We thus conclude that the favorable band-edge distributions and short-range correla-
tions of the disorder potential in HaPs are a consequence of the perovskite structure
and the dynamic flexibility coming along with this geometry, i.e., the transversality
of Br displacements. This hypothesis will next be further tested by a comparison of
the case of HaPs to a material with a similar degree of anharmonicity and bonding
mechanism, but a substantially different crystal structure.

76



3.8. Comparison to Pb'Te

1
. trz‘insversz‘ﬂ
» (0.8  longitudinal ——
==
I 0.6 F
2
o 0.4 |
@)
A 0.2 F
=
0 ‘ /

1 1.5 2 2.5 3 3.5
E [eV]

Figure 3.31.: JDOS of CsPbBrj for two different cases. The thin curves show the
JDOS for instantaneous snapshots of the two different scenarios de-
scribed below. The thick lines represent the averages of the instanta-
neous configurations. Shown is the JDOS for the cases: only longitudi-
nal displacements of Br atoms are considered (blue) and only transver-
sal displacements of Br atoms are considered (orange). Reprinted with
permission from [5], published under a CC BY 4.0 license.

3.8. Comparison to PbTe

PbTe is a paradigmatic thermoelectric material with a rocksalt crystal structure
(fig. 3.32), a low band gap, and a high thermoelectric figure of merit, i.e., a high
efficiency in converting heat into electrical energy [197-202]. PbTe is a compelling
counter-example to CsPbBrs as both materials share some important characteris-
tics while they differ in others. Among their similarities are their vibrational and
bonding properties. Both materials exhibit low phonon energies, i.e., lower than
approximately 4 THz and 5 THz for PbTe and CsPbBrj, respectively, see fig. 3.13,
fig. 3.16, fig. 3.33, and the summary in table 3.2 [2, 203-205]. Figure 3.33 shows the
VDOS of PbTe as obtained from harmonic calculations using finite displacements
(black line) as well as the VDOS obtained from MD simulations by means of the
VACF (green curve). The VDOS demonstrates the low vibrational frequencies re-
ported above for both, a harmonic and an anharmonic treatment of lattice dynamics.
Second, the differences between a harmonic and an anharmonic treatment can be
seen by comparing the black line with the green curve. Anharmonicity is important
in both PbTe [182, 206-208] and HaPs [21, 22, 24, 26, 144-146, 156, 158, 209], which
is the second similarity both materials share for their vibrational properties. This
can, e.g., also be seen in their low phonon lifetimes of less than 10 ps in both, PbTe
and HaPs (see table 3.2 and references there). The important role of anharmonicity
has been attributed to the bonding mechanism in both materials, which also is very
similar as discussed below and summarized in table 3.2. In particular, resonant
bonding can be found and related to anharmonicity in PbTe [182] and HaPs [2, 158,
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Figure 3.32.: Crystal structure of PbTe (gray: Pb, yellow: Te). In contrast to the
halide ions in HaPs, Te exhibits three longitudinal directions (indi-
cated by blue arrows). The atomic structure was visualized using the
xCrysden program [215].

181] (see also section 3.5). In both materials, the valence band is anti-bonding and
formed by a o interaction of Pb s-orbitals with Te and halide p-orbitals, respec-
tively [197, 210, 211]. The conduction band, on the other hand, is predominantly
formed by Pb p-orbitals in both materials, with ¢ interactions dominating in PbTe
and 7 character arising in HaPs due to their different crystal structures [197, 210,
211]. Finally, the hybridization of Pb s-orbitals and Te/halide p-orbitals results in a
stereochemically active lone pair of electrons in both compounds [212-214]. Hence,
these characteristics render PbTe an interesting material for comparison when it
comes to properties that are suggested to depend on (anharmonic) structural dy-
namics and resonant bonding.

On the other hand, there are also important differences between PbTe and HaPs
rendering the comparison of both materials even more interesting. First of all, the
most obvious contrast is the difference in the crystal structure between both materi-
als, see figs. 3.24 and 3.32. Although both materials share their bonding mechanism,
PbTe crystallizes in a rocksalt structure whereas HaPs show the perovskite struc-
ture. As a consequence the structures show the same coordination for the Pb atoms
in both compounds, however the coordination of Te is higher than that of the halides
(Br in CsPbBrs). Therefore, PbTe has three longitudinal directions (indicated by
blue arrows in fig. 3.32), i.e., directions parallel to Pb-Te-Pb bonds, but no direction
perpendicular to the Pb-Te-Pb bonds, that is, no transversal direction. This is in
contrast to the case of HaPs which have only one longitudinal, but two transversal
directions. Following our discussion in the previous sections, we assume this differ-
ence to be crucial for the structural flexibility and its impact on disorder-potential
correlations and band-edge distributions.

Closely related to band-edge distributions is the Urbach energy, providing the steep-
ness of the absorption coefficient close to the onset of optical absorption, as discussed
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Table 3.2.: Comparison of several properties between the two materials PbTe and
CsPbBrs. Reprinted with permission from [5], published under a CC BY

4.0 license.
PbTe CsPbBr;
crystal structure rocksalt perovskite
phonon frequencies | < 4 THz" [204, 205] < 5 THz [2, 203]
anharmonic v v
phonon lifetimes < 10 ps [216] < 10 ps [2, 27]
resonant bonding v v
VBM character o* o*
CBM character o* o*mrm*
band gap ~ 0.32 eV [217-220] | 2.25 - 2.38 eV?¥ [151, 221-224]
Urbach energy ~ 56 meVT [220] ~15 meV* [127-131, 225]
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Figure 3.33.: Harmonic (black) and anharmonic (green) VDOS of rocksalt PbTe.
The anharmonic VDOS has been obtained from the VACF calculated
from MD at 425 K. Reprinted with permission from [5], published
under a CC BY 4.0 license.
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Figure 3.34.: (a) Difference in the charge-density induced by displacing a single Pb
atom, visualized as an iso-surface plot (iso-level = 8.1 x 1073 eA~3).
Reprinted with permission from [5], published under a CC BY 4.0
license. (b) Autocorrelation of the disorder potential for electronic
states, calculated according to eq. (2.120).

in sections 2.5 and 3.6. For sharp optical absorption edges and thus efficient solar
absorption in thin-film devices, small Urbach energies are demanded, which requires
narrow band-edge distributions. Indeed, small Urbach energies have been measured
for HaPs, with Urbach energies of about 15 meV about room temperature reported
for the paradigmatic MAPDbI3 [127-131] (<19 meV in CsPbBry [225]). In contrast,
PbTe is not known as an efficient solar absorber and features higher Urbach energies
of 56 meV in nanocrystalline PbTe [220].

Further differences include the electronic structure. PbTe exhibits a comparatively
small direct band-gap (around 0.32 eV) at the L-point of the Brillouin zone [217—
220]. Several prototypical HaPs, on the other hand, as discussed in section 3.1
exhibit a direct band gap at the R-point of the Brillouin zone when in the cubic
phase. Their band gap is much larger than that of PbTe, and it is tunable by
ionic composition. For instance, the band gap of CsPbBrs is measured to be 2.25
- 2.38 eV, with the spread in the reported values resulting from different structural
phases, temperatures, and methods [151, 222-224].

The focus here, however, is on comparing the material to the findings discussed in
sections 3.5 and 3.6 for HaPs to further test the importance of transversal motion
hypothesized in section 3.7. In fig. 3.34a, the response of the charge density to the
displacement of a single Pb atoms is shown, similar to fig. 3.19 in section 3.5. This
response is found to be long range, in accordance with our expectations based on
the knowledge that PbTe and HaPs exhibit similar bonding mechanisms for their
ideal structures. Consequently, the correlation of the disorder potential, shown in
fig. 3.34b, also is long range, easily exceeding the 6.56 A of the lattice constant of
the conventional unit cell. Thus our findings for the charge density response are
similar to our findings in fig. 3.19, section 3.5. Particularly, we establish that we
indeed find a (static) long-range response of the material, similar to the findings for
HaPs.
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3.8. Comparison to Pb'Te

For HaPs, dynamic effects have shown to dynamically shorten the correlation length
of the disorder potential and narrow band-edge distributions (section 3.6). There-
fore, the behavior of PbTe has been examined with calculations including structural
dynamics by means of MD simulations. In fig. 3.35a the correlation of the disor-
der potential calculated for instantaneous snapshots from MD at 425 K is shown.
Remarkably, the correlation remains long ranged, in particular when compared to
the case of CsPbBrs, since it goes far beyond unit cell size and the Pb-Te nearest-
neighbor distance. A second remarkable feature of the disorder potential correlation
in PbTe, are the oscillations that can be seen in fig. 3.35a. These oscillations can
be attributed to the periodic crystal potential which is modulated by the thermal
noise. For further details, see the toy model in appendix B.

Finally, the relative widths of the VBM and CBM distributions of PbTe and CsPbBrj
are compared in fig. 3.35b. There, we find that the relative band-edge distributions
of PbTe are much wider than those of CsPbBrs which is in agreement with the
expectations from (i) literature results on the Urbach tail, namely a larger Urbach
energy in PbTe compared to HaPs (cf. table 3.2) coincides with larger distributions
in fig. 3.35b. And (ii), as discussed already before in section 3.6, a broader band-
edge distribution is concomitant with a longer correlation length in the disorder
potential.

In summary, a comparison of CsPbBrs to PbTe supports the notion of attributing
important characteristics of the HaPs, such as short-range correlated disorder poten-
tials, narrow band-edge distributions, and consequently small Urbach energies and
sharp optical absorption edges, to the structural flexibility of the perovskite struc-
ture. More precisely, the structural flexibility of HaPs manifests in large transversal
motion of the halide atoms which is preferred over longitudinal displacements and
cannot be found in PbhTe.
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Figure 3.35.: (a) Autocorrelation of the disorder potential for electronic states in
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PbTe as obtained from MD simulations. (b) Band-edge energy distri-
butions for PbTe (green curve) and CsPbBrs (black curve) as obtained
from MD simulations at 425 K. The histograms are normalized by the
highest occurrences nmax = n(Eypy /CBM) for VBM and CBM, respec-
tively. The nominal band gap E;,, = E¢gy — Evpy is given by the
difference between the VBM/CBM energies with the highest occur-

rence, E{",BM/CBM. Reprinted with permission from [5], published under
a CC BY 4.0 license.



4. Results and discussion:
superionic a-Agl

4.1. Introduction to solid-state ion conductors and
silver iodide

The application of energy materials with intriguing structural dynamics is not re-
stricted to photovoltaics only. Energy storage systems, in particular batteries, are
also driven by the usage of promising new materials. One such candidate for im-
provement in battery research are solid-state electrolytes, which could potentially re-
place liquid electrolytes [32]. Solid-state electrolytes are usually nonflammable [226]
and thus they improve safety of batteries, the longevity of batteries [227, 228] and
they enable higher energy densities [226]. In electrolytes - in liquid as well as solid-
state - electrical current is conducted by diffusing ions. Thus we call solid mate-
rials, e.g., crystalline materials, glasses, polymers, or nano-composites [229], used
as electrolytes solid-state ion conductors (SSICs). The applications of SSICs fur-
ther span fuel cells, supercapacitors, sensors, and filters [229-232]. Crucial for all
these applications is a high electric conductivity, which is often hindered by low ion
diffusion [233]. As a consequence, SSIC research is driven by understanding and
predicting highly conductive SSIC materials, and by the search for well-founded
descriptors of “good” ion conduction.

In accordance with the scope of this work, we will discuss the role of lattice dynam-
ics for ionic conductivity. Lattice dynamics studies on ion conductors have been
done for decades, see, e.g., refs. [84, 234-238] for MD studies on the SSIC a-Agl.
Consequently, lattice dynamics have been suggested as descriptors for SSICs [227,
239-242] and even for being used in high throughput studies [227]. However, simple
approaches, for instance correlating the softness of the lattice (low phonon frequen-
cies) with the activation energy for ionic transport [239-242], have been shown to
break down at some point [243, 244]. But ion diffusion is a structural dynamic pro-
cess, and it can be shown that exciting as little as only about 10 % of the vibrational
modes in Ge-substituted LisPOy (Lis042Geg.042P0.95804) can drastically increase ion
diffusion [233]. This motivates studies towards a more fundamental understanding
of lattice dynamics in SSICs. This understanding has to include anharmonicity and,
strongly connected to this, relaxational motion as discussed in section 2.3.5, two as-
pects which have often been neglected in traditional models. As sketched in fig. 4.1,
diffusing ions (green arrow) have to overcome the saddle point area in the potential
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Figure 4.1.: Sketch of the potential energy landscape for ion diffusion, comparing
the harmonic region and the anharmonic region close to the saddle point.
Reprinted with permission from [3]. Copyright (2020) by the American
Physical Society.

energy landscape (blue curve) during ionic hopping. This region is clearly outside
the range where a harmonic model (orange curve) is valid, thus anharmonicity is
inherent to ion diffusion [3, 245-248]. In traditional models, however, the harmonic
approximation has been used to estimate hopping frequencies and anharmonicity
has at most been described phenomenologically [32, 245-249]. Our approach is to
include anharmonicity and relaxational motion by means of combining Raman spec-
troscopy, conducted by our experimental collaborators and MD simulations, for the
paradigmatic SSIC a-Agl.

The high-temperature phase of silver iodide, a-Agl, is one of the seemingly sim-
plest and most extensively studied ion conductors. Structural phase transitions,
and consequently the ion diffusivity, of silver iodide are temperature and pressure
dependent. There are two phases stable only at high pressure, whereas the three
phases mentioned below are (meta-)stable at ambient pressure [250]. At low tem-
peratures — including room temperature — 5-Agl, exhibiting a wurtzite structure, is
the most stable phase. In this phase, Agl is not a SSIC, however it is famous for
its application in cloud seeding. This weather modification, e.g., allows to prevent
damage by hail using S-Agl to initiate freezing of water within the cloud, see, e.g.,
reference [251]. In the same temperature range, the meta-stable v-phase coexists
with 8-Agl [250]. This phase crystallizes in a zinc blende structure, however it is
not ion conductive, either. The most interesting phase, in our context, is the high
temperature phase a-Agl. This phase is stable above approximately 420 K [3, 250,
252] and exhibits a high ionic conductivity due to diffusing silver ions [234, 252]. In
this structural phase, the iodide ions crystallize into a BCC lattice, with the silver
ions distributed over tetrahedral sites (see fig. 4.2) [237, 250, 253-257]. As there
are more tetrahedral sites than Ag atoms, the Ag atoms are distributed across and
moving in between the sites, finally breaking translational symmetry. An alternative
way to interpret the structure of a-Agl, is to consider it as a space filling arrange-
ment of X1 tetrahedra, with X either an empty tetrahedral site or an Ag cation
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[001]¢

Figure 4.2.: Structural representations of a-Agl. (a) Crystal structure of a-Agl. Io-
dine anions (purple) are positioned at BCC positions. Ag cations (gray)
are distributed over tetrahedral sites (empty sites: white). Ag diffusion
between tetrahedral sites is indicated by the black arrows. The crystal
structure of a-Agl can also be represented by space filling Agl, tetra-
hedra. (b) Agly tetrahedron.  Reprinted with permission from [3].
Copyright (2020) by the American Physical Society.

(fig. 4.2b). In this more localized picture, Ag is diffusing between tetrahedra which
can either be empty or occupied. In our recent work on the lattice dynamics on
a-Agl, our experimental collaborators convincingly show that this local tetrahedral
picture explains the Raman spectrum much more accurately than models based on
the (average) crystal structure [3].

Below, we discuss the lattice dynamics of a-Agl by means of Raman spectroscopy
experiments and theoretical MD simulations. In particular, we identify important
roles of anharmonicity for the iodine host lattice as well as the mobile Ag ions.
Moreover, using a set of theoretical gedankenexperiments we establish a link between
the host lattice dynamics and ion diffusion, with host lattice dynamics facilitating
ion diffusion. We therefore suggest (anharmonic) host lattice dynamics, which can
for instance be observed as a central peak in Raman spectra, as a descriptor for high
ionic conductivity in SSIC materials.
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4. Results and discussion: superionic a-Agl

4.2. VDOS and Raman spectrum of superionic a-Agl

Note that parts of the results presented in sections 4.2 to 4.4 are published in
reference [3].

As introduced above, the second important field of energy materials, we discuss in
this work, are SSICs, as used for instance as solid electrolytes in all solid-state batter-
ies. Their name - 2on conductor - already highlights one of their hallmark properties,
i.e., their electric conductivity that is dominated by the (diffusive) motion of ions.
This ion diffusion is an inherently anharmonic motion, already because there is no
long term average position Ry the ion could fluctuate around in a harmonic poten-
tial. An illustration of a simplified picture of the potential energy landscape has
been discussed above in the context of fig. 4.1. In a traditional description of ion
diffusion, the ion is harmonically vibrating until it reaches the saddle point area,
which it finally overcomes [32, 245-249]. The attempt frequency for overcoming
the migration barrier is estimated from the harmonic frequency. However, natu-
rally this description is neglecting all effects of anharmonicity going beyond the ion
diffusion. Such effects may arise in the saddle point region and, moreover, might
even be present for the host lattice of SSICs , i.e., the lattice formed by the ion
species that are not diffusing. This host lattice is traditionally assumed to fulfill the
harmonic approximation [245]. However Raman spectroscopy of super-ionic a-Agl
reveals traces of anharmonicity besides the signature of ion diffusion. Experimen-
tal measurements of Raman spectra, an example spectrum can be seen in fig. 4.3,
exhibit a central peak [3, 250, 258, 259], a clear signature of anharmonicity. A cen-
tral peak denotes a Raman peak at zero frequency, and as in a harmonic picture
w = /f/m, this would imply an atomic motion without restoring force f, a re-
laxational motion. Obviously, ion diffusion resembles such an atomic motion and
has been identified to cause a central peak in the Raman spectrum. However, ion
diffusion is not required to observe a central peak in Raman spectra - for instance
a central peak has also been observed for anharmonic HaPs [24, 260, 261], oxide
perovskites [262-267], and other materials [268-272]. In the case of a-Agl, previous
work identified one very narrow central peak caused by the diffusing silver atoms,
which however is too narrow to be resolved in fig. 4.3 [259, 273]. On top, there is a
second relaxational motion, resulting in a broader central peak whose origin has not
yet been identified [3, 259] and which is visible in the experimental Raman spectrum
in fig. 4.3.

A more detailed experimental study using polarization-orientation (PO) Raman
measurements further reveals that the central peak of fig. 4.3 exhibits a symme-
try [3] (see discussion of fig. 4.4 below). As discussed in appendix C, in addition
to “normal” Raman measurements, PO Raman measurements further observe the
angular dependency of the outgoing light to learn about the symmetry of the un-
derlying Raman active phonon modes. For further information on the experimental
part, we would like to refer to the paper by BRENNER ET AL. [3] accompanying our
combined experimental-theoretical study.
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Figure 4.3.: Vibrational spectra of a-Agl at finite temperature. Top: Experimen-
tally measured Raman spectrum at 443 K. The raw data are shown
in gray, the Bose-Einstein corrected spectrum is shown in black. Bot-
tom: VDOS of a-Agl obtained from first-principles MD at 500 K. The
full VDOS is shown in purple, contributions from I and Ag ions in
orange and yellow, respectively. The gray circle highlights the zero-
frequency component of the VDOS, providing a diffusion constant
D = 3.1 x 1075 cm?/s for Ag diffusion. Reprinted with permission
from [3]. Copyright (2020) by the American Physical Society.
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4. Results and discussion: superionic a-Agl

We would like to start our discussion of structural dynamics in a-Agl and its im-
plications for functional properties by revisiting the crystal structure, fig. 4.2. It
comprises a BCC iodine host lattice and a silver sublattice. However, the distri-
bution of silver atoms is ambiguous, as the two silver atoms per unit cell populate
two out of twelve tetrahedral sites in the unit cell [237, 250, 253-257], with empty
sites sketched in white in fig. 4.2. Between these sites, silver atoms can hop, i.e.,
diffuse. As a consequence silver atoms are distributed at finite temperature and
there is no unique reference structure. Moreover, translational invariance is broken
by the silver atoms, introducing a form of disorder. Subsequently, the symmetry
of the material is shortened to below the unit cell range, which will be important
for understanding PO Raman spectra as we will discuss below. On top, not having
a reference structure makes it unfeasible for us to start describing the structural
dynamics of this material by harmonic phonon calculations as we have done for the
HaPs (sections 3.2 and 3.3). Instead, we will directly start from first-principles MD
simulations.

The VDOS as obtained from MD, using the VACF as explained in section 2.4.2, can
be seen in fig. 4.3. The VDOS in fig. 4.3 resembles the experimentally measured
Raman spectrum shown in the same figure remarkably well. This is peculiar since
the Raman spectrum only samples vibrational modes at the I'-point of the Brillouin
zone of a crystalline material (cf. section 2.3.4) which is a direct consequence of the
comparatively small momentum of photons. The momentum of a photon with wave
vector k is given by

and its magnitude is determined by the photon energy

with k& = |k| the absolute value of k and ¢ the speed of light. Similar expressions
also hold for a phonon with wave vector q,

p, = hq (4.3)

and
E, = hw, = hcsq (4.4)

with ¢, = w,/q the phase velocity of the phonon mode (the speed of sound in case
of acoustic modes). Due to energy conservation, the change in the energy between
incident light and scattered light has to be similar to the energy of the involved
phonon that scatters the light, i.e.,

AEy, = hAwy, = heAk = E, . (4.5)
But momentum conservation also implies
hAk = hq . (4.6)
From egs. (4.5) and (4.6) we get

hesqg = helAk . (4.7)
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4.2. VDOS and Raman spectrum of superionic c-Agl

But since ¢ > ¢, egs. (4.6) and (4.7) can only hold at the same time when
Ak~q=0, (4.8)

i.e., only phonons close to the I'-point (q = 0) can be measured with photons. For
photons in the visible range (E ~ 2 eV) the change in reciprocal vector can be

estimated to Ak = AFEy/hc ~ 1073 Afl, which indeed is much smaller than the
typical dimension of the first Brillouin zone (~ 1 A_l) (36, 39].

An alternative picture in real space can be obtained considering the much longer
wave length of light than the size of a typical unit cell. Therefore only vibrational
motion with long wave lengths, i.e., atoms vibrating in phase in several unit cells,
are expected to be probed in Raman spectroscopy. But the long wave-length limit
is the ¢ — 0 limit. Thus, also this picture provides that only phonons close to I' can
be probed in such experiments.

According to the above pictures and reasoning, only a small fraction of the VDOS
should be represented in the Raman spectrum. However in fig. 4.3, the theoretically
obtained VDOS resembles the experimentally measured Raman spectrum remark-
ably well. This can be explained by a breaking of the translational symmetry: The
[-point is defined as the center of the Brillouin zone, the “unit cell” in reciprocal
space. However, as the unit cell dimensions, for instance the volume V¢ of the unit
cell, increase in real space, the dimensions in reciprocal space, as represented here
by the volume of the first Brillouin zone in reciprocal space decrease

(2m)°
Ve

Viz = (4.9)

In the extreme case of total absence of translational symmetry, the lattice dimensions
of the “unit cell” in real space go to infinity (there is no repeated motif), and thus
the reciprocal lattice dimensions go to 0, i.e., they collapse to a single point, the
[-point. Thus, with increasing disorder, i.e., increasing breaking of translational
symmetry, an increasing fraction of vibrational excitations are represented at the
[-point. Consequently, the VDOS, sampling all vibrations within the complete first
Brillouin zone, and the Raman spectrum, only sampling vibrations at the I'-point,
become more and more similar. Therefore, our comparison in fig. 4.3 establishes the
notion of broken translational symmetry, thus the experiment is sampling phonons
at the [-point of an effectively larger “unit cell” spanning a larger fraction of the
sample.

Having established the broken translational symmetry in a-Agl, we can now analyze
the vibrational properties in more detail. In both, theory and experiment, two broad
features at approximately 40 cm™ and 100 cm™ respectively are found. A detailed

analysis of the PO Raman spectra reveals three underlying modes at 37.7 cm™,

102.2 cm™?, and 106.4 cm™ (cf. fig. 4.4b and table 4.1) [3]. A fourth feature is
the experimentally detected central peak. According to literature, there should be
two contributions to the central peak, with the narrower being caused by silver
diffusion [259, 273]. In our theoretical VDOS silver diffusion can be seen by the
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Figure 4.4.: PO Raman spectra of a-Agl. (a) Angle dependent Raman intensities
for parallel (]|, top) and perpendicular (L, bottom) polarization. (b)
Example Raman spectra for both polarizations at fixed angle (dashed
lines in panel (a)), decomposed into its contributions as obtained from a
fit according to the “local tetrahedral model”. (c¢) Angle dependence of
the four components of the Raman spectrum at three different tempera-
tures, compared to the expectation from the “local tetrahedral model”.
Reprinted with permission from [3]. Copyright (2020) by the American
Physical Society.

non-zero VDOS at zero frequency, see fig. 4.3. The decomposition of the theoretical
VDOS into atomic contributions in fig. 4.3 confirms that this is solely due to silver.
Besides the difference at zero frequency, the decomposition into atomic contributions
reveals that both, Ag and I, show similar frequency ranges. From the zero frequency
VDOS the diffusion constant D can be obtained with eq. (2.108) to obtain D =
3.1 x 10°cm? /s, which is in excellent agreement with literature values [234, 252]
and with the diffusion constant obtained from a fit of the MSD (cf. eq. (2.103);
fig. 4.6). Nonetheless, due to experimental limitations, the contribution of silver
diffusion to the Raman spectrum should not be resolved in the experimental Raman
spectrum shown in fig. 4.3. Therefore, the central peak in the Raman spectra of
our experimental collaborators (figs. 4.3 and 4.4) has to be caused by a different
relaxational motion.

Moreover, the PO dependence of the Raman intensity of the measured central peak
reveals an underlying symmetry of this peak (fig. 4.4). Similar, the PO analysis
of the three finite frequency components shown in fig. 4.4 reveals underlying sym-
metries. Figure 4.4 shows the PO Raman intensities measured experimentally. In
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4.3. lodine host-lattice anharmonicity in superionic a-Agl

Table 4.1.: Raman modes and their symmetries as predicted from both, the average
space group of a-Agl and the “local tetrahedral model” (LTM), as well
as the frequencies and widths obtained from fitting the experimentally
measured spectrum at 442 K (cf. fig. 4.4). Reprinted with permission
from [3]. Copyright (2020) by the American Physical Society.

Component Space group | LTM | Frequency (cm™) | Width (cm™)
Central component E, A+ B 0 23.0
Peak 1 T By + E 37.7 37.0
Peak 2 - By + F 102.2 95.7
Peak 3 - Ay 106.4 61.4

panel (a), the intensity is shown as a function of both the PO angle 6 (see fig. C1
in section 2.3.4) and frequency for parallel and perpendicular polarized light. A
representative spectrum at constant PO angle is shown in fig. 4.4b (the angle is
indicated by the dashed line in panel (a)). From this spectrum at constant angle,
the four components discussed above can be identified. The angular dependence of
each of the four components can be observed in the modulation of the spectrum in
fig. 4.4a and, in particular, in fig. 4.4c. Figure 4.4c shows the Raman spectrum as
a function of the PO angle for each of the four components individually (this can
be understood as a vertical line in fig. 4.4a, i.e., a line with constant frequency). At
the bottom line, the main features of the PO measurements can be summarized to
reveal four Raman active components, each showing a PO angle dependence.

All of these PO findings are difficult to rationalize by using a traditional picture.
The space group of the time-averaged crystal structure (Im3m) only predicts two
Raman active phonon modes of symmetries F, and T5,, respectively, see table 4.1.
On the other hand, the spectrum cannot be explained by disorder induced Raman
scattering, either. Disorder induced Raman scattering, as observed in other ma-
terials with broken translational symmetry, e.g., amorphous crystals or liquids, is
expected not to show any PO angle dependence at all [3]. This is also shown in
fig. A2, where the PO Raman measurements of liquid CHCl3 at room temperature
are shown. As discussed here, the Raman spectrum of this fluid has no PO angle
dependence, although showing a central peak. In conclusion, established pictures
predict either two Raman active modes with PO dependence or no PO dependence
at all, in contrast with the four features with PO dependence experimentally mea-
sured.

4.3. lodine host-lattice anharmonicity in superionic
a-Agl

In order to identify the origins of this “liquid-crystal conundrum” and the relax-
ational motion that results in the central peak, we thus study the I-I-I bond angle
6 (defined in fig. 4.2), see fig. 4.5 (all 12 angles are shown in figs. A3 and A4).
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Figure 4.5.: Trajectories of the angle # as obtained from MD simulations at 500 K.
The unfiltered trajectories are shown in red, the black lines show the
trajectories filtered with a Fourier filter. The expectation values are in-
dicated by the gray horizontal lines. Top: unfiltered and Fourier filtered
trajectory of 6 as obtained from a fully unconstrained MD simulation.
Bottom: unfiltered and Fourier filtered trajectory of 6 as obtained
from a MD simulation with Ag ions fixed to BCC positions. Reprinted
with permission from [3]. Copyright (2020) by the American Physical
Society.

In fig. 4.5 we show the trajectories of 6 as obtained from MD simulations. The
full trajectory (red line) shows significant temporal deviations from 6 = 70.5° and
0 = 54.75° for the large and the small angles of the tetrahedra, respectively, which
are expected for the tetraheda in the ideal BCC structure. These deviation further
seem to appear even at longer timescales. To distinguish slow motion and thus low
frequency fluctuations from expected high frequency fluctuations, we filtered the
trajectories for low frequencies. The solid black lines in fig. 4.5 show only contri-
butions to the angular trajectories with frequencies below 5 cm™ (see section 2.6.2
for details on the FFET-filter method). Importantly, also the FFT-filtered angular
trajectories show long lasting, large deviations from the expected angles, suggesting
that the low frequency relaxational motion observed in Raman spectroscopy can be
related to iodine host lattice motion.

Remarkably, this suggests that the “crystal-liquid conundrum” can be resolved by
introducing a local tetrahedral oscillator model. As discussed before, the relaxational
motion we observe, independent whether it is due to ion diffusion or any other
process, breaks translational symmetry. As a consequence, lattice vibrations localize

92



4.4. Interplay of host-lattice dynamics and ion diffusion

to motifs below unit cell size and, thus, the symmetry observed in the PO data is
established locally, rather than through long-range order. Omne natural motif is
given by the Agl, tetrahedron sketched in fig. 4.2b. The point group of one such
local tetrahedron (Dsg) predicts Raman modes of symmetries 24; + By + 2B, +
2F. And thus, as table 4.1 reveals, the point group of the local Agl, tetrahedra
can indeed correctly predict the PO spectrum. Interestingly, the local tetrahedral
oscillator model is also capable of explaining the symmetry of the central peak as
part of the eigenmodes of a Doy tetrahedron. As discussed in section 2.3.5, and in
particular demonstrated in fig. 2.6, a central peak Raman feature can result from
an overdamping of a normal mode. It thus appears that the Raman spectrum of
a-Agl can be rationalized by a local tetrahedral model and the central peak arises
from an overdamped normal mode of the Agl, tetrahedron. Notably, this suggest
that also the iodine host-lattice undergoes a relaxational motion.

4.4. Interplay of host-lattice dynamics and ion
diffusion

Provided with this finding we studied the interplay of host lattice and silver dynamics
by a set of gedankenexperiments, performing constrained MD simulations. First of
all, we fixed the silver atoms when analyzing the angular trajectories. The obtained
trajectories can also be seen in see fig. 4.5. While there still are high frequency
fluctuations around the expectation value obtained from the BCC structure, the long
lasting low frequency deviations are no longer present. This can particularly well
be seen in the FFT-filtered trajectories which are almost identical to the expected
angle. We therefore conclude that the host lattice relaxational motion is closely
related to silver motion being active or mute at this temperature.

What is more, however, we examined to what degree silver diffusion is influenced by
iodine motion. Hence, we studied the MSD of the silver atoms for a set of gedanken-
experiments. As shown by eq. (2.103), the slope of the MSD determines the diffusion
constant, D. In case of full MD, i.e., all degrees of freedom are active according to the
thermodynamic ensemble, we obtain a diffusion constant of D = 2.6 x 10~°cm? /s
(black line in fig. 4.6). This value however, is significantly reduced when the io-
dine sublattice is frozen. In case of iodine atoms fixed at their ideal BCC positions,
D = 1.0x10"°cm? /s is obtained (yellow line in fig. 4.6). This is even further reduced
when iodine atoms are frozen at instantaneous, randomly selected configurations as
obtained from the full MD simulation (red lines in fig. 4.6). In this case, diffusion
constants of only D = 0.3 x 10~°cm?/s to D = 0.7 x 10~°cm? /s are obtained. It can
be understood that the diffusion is slower in case of instantaneous configurations
compared to BCC positions, when considering the potential energy landscape for
diffusion. In case of iodines frozen to BCC positions, the potential barriers are of
equal height (as sketched in figs. 4.1 and 4.7a). In case of instantaneous snapshots,
however, the potential barriers are on different heights and silver atoms eventually
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Figure 4.6.: Mean square displacement of the Ag™ ions in a-Agl for different cases
of constrained MD. The black line shows the MSD for full motion of Ag
and I ions. The MSD with fixed I ions is shown in yellow for I ions fixed
at the lattice positions of a BCC lattice, and in red with I ions fixed at
positions obtained as snapshots from a full MD trajectory. Reprinted
with permission from [3]. Copyright (2020) by the American Physical
Society.

get caught in deeper potential wells, sketched in fig. 4.7b, in total slowing down
silver diffusion.

Thus, fig. 4.7 presents our conclusions for full dynamics: the host lattice dynam-
ics apparently are coupled to the diffusion dynamics, lowering the potential energy
barriers for the Ag ions such that diffusion is enhanced. Only then, theory and
experiment agree on the value of D. With this, we established a local tetrahedral
model to describe lattice vibrations in a-Agl, and we discussed the presence of relax-
ational motion in the iodine host lattice and how it is facilitating silver diffusion [3].
This emphasizes the important role of anharmonicity to understand the structural
dynamics in a-Agl and the implications for its hallmark functional property, the
diffusion of silver ions.
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Figure 4.7.: Sketch showing the interplay between host-lattice ions (blue) poten-
tial energy landscapes (black) for diffusing ions (green) if host-lattice
ions are (a) located at their equilibrium positions (b) located at in-
stantaneous positions (c) allowed to move (blue arrows). In the last
scenario, the instantaneous potential energy landscape from panel (b)
(gray curve) gets modified (black curve), facilitating ion diffusion by a
coupling of the dynamics of host-lattice and diffusing ions.
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5. Conclusions and Qutlook

Understanding finite temperature properties of energy materials on a microscopic
level includes developing a profound understanding of structural dynamics in these
materials. In crystals, structural dynamics are usually described and studied within
the harmonic approximation, an approximation resulting in the well-known phonon
quasi-particles with their g-point dependent dispersion relations. This approxima-
tion is well-established for many conventional materials, although anharmonic ef-
fects, such as finite phonon lifetimes and lattice expansion, are frequently discussed
in textbooks. In particular, recent literature has discussed anharmonic effects in
energy materials which are important for renewable energy.

Here in this work, structural dynamics in general, and anharmonicity in particular,
as well as their implications for functional properties have been studied for paradig-
matic energy materials, namely HaPs and the SSIC a-Agl. Specifically, to investigate
the role of anharmonicity in all orders of the Taylor expansion as well as a lack of a
well defined reference structure, first-principles MD simulations have been employed.
These simulations allow to investigate the connection between anharmonic motion
and functional properties, such as electronic properties.

Limitations of the harmonic approximation have been shown for HaPs, for which
calculations of the IR spectrum within the harmonic approximation predict IR-
active modes in MAPbBr3 that are neither found in the inorganic CsPbBrs nor
in experimentally measured spectra. This additional IR activity could further be
linked to libration motion of the organic MA cation. Using MD simulations and
correlation functions to calculate the IR spectrum, thus including a larger number
of MA molecules and allowing them to reorient, this additional IR activity vanishes,
resulting in a close resemblance of experimental and theoretical IR spectra. In
particular, besides the large difference in the atomic masses of Cs and MA, the IR
spectra of CsPbBr3; and MAPDbBr3 are found to be very similar if the constraint
on the molecular orientation, imposed by the periodic boundary conditions of usual
computations, are loosened.

In CsPbBrj; vibrational anharmonicity has been found although no anharmonic mo-
tion of a molecular A-site cation has to be considered. Harmonic phonon calculations
of the cubic phase recovered imaginary phonon branches which, in literature, have
been related to octahedral tilting and the temperature-dependent phase transitions.
From this and an inspection of the differences in total energy between the ideal cu-
bic structure and instantaneous structures obtained from a MD simulation it can be
concluded that the cubic perovskite structure is located at a local maximum of the
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potential energy surface. Calculating finite temperature vibrational quasi-particles
from MD simulations, using a normal mode projection, revealed the material to sta-
bilize, i.e., no imaginary phonon modes are found anymore in a phonon dispersion
calculated from MD at 425 K. Further, quasi-particle lifetimes have been found to be
extremely short indicating an enormous degree of anharmonicity and a breakdown
of the quasi-particle picture.

The anharmonic structural dynamics are connected to further material properties,
such as bonding, band-edge energy distributions, and the JDOS. Anharmonicity in
HaPs has been linked to their bonding, in particular to a mechanism called resonant
bonding which is causing long-range effects, e.g., in the charge density. Indeed
such long-range effects could be recovered for the average structure — tested by
a small disturbance — for two properties, a direct inspection of the change in the
charge density and the autocorrelation of the disorder potential. There is a dynamic
shortening, particularly seen in the autocorrelation function of the disorder potential,
as soon as relevant structures obtained from MD simulations at finite temperature
are inspected. A short-range correlation in the disorder potential can be related to
a small Urbach energy, favorable for solar absorbers in photovoltaic devices. Here,
favorable band-edge distributions have been shown to coincide with short correlation
lengths in the disorder potential. Last but not least, also for the JDOS, proportional
to the number of possible band-to-band transitions under the approximation of
constant transition matrix elements, a beneficial steepening close to the onset has
been found in the case of structures from MD simulations in contrast with the
average structure. Particularly, for the above mentioned quantities, as well as for
the band gap, it could be shown that the average calculated from MD snapshots
does not equal the values calculated from the average cubic structure. Performing
various gedankenexperiments together with a comparison to PbTe, allowed to further
pin down the effects responsible for the shortening of the correlation functions and
the intensification of band-to-band transitions. It has been shown that especially
anharmonic halide motion is involved. More precisely, it is the structural flexibility
of the perovskite structure, allowing for motion transversal to the Pb-halide-Pb
bonds, that is peculiar. This motion is also concurrent with octahedral rotation and
multi-well potentials, in contrast to the motion longitudinal to the bond-axis.

Not only HaPs suffer from an incomplete description of structural dynamics when
applying the harmonic approximation, also SSICs are effected by it. Using a combi-
nation of PO Raman experiments and MD simulations, lattice dynamics have been
studied in the paradigmatic a-Agl with a particular focus on host-lattice anhar-
monicity. The Ag ions in a-Agl diffuse by jumping in between tetrahedral sites, thus
distributing themselves among these sites. As a consequence, the average structure
can hardly be taken as a reference, e.g., for harmonic phonon calculations. Further,
it has been shown that the experimental Raman spectrum, probing vibrations at
the I'-point, corresponds remarkably well to the theoretically calculated VDOS, in-
cluding vibrations at all points of the first Brillouin zone. This has been discussed
to be an effect of the breakdown of translational invariance due to a failure of the
averaged unit cell to represent instantaneous configurations. As has been shown,
the average structure of a-Agl further fails to predict the PO dependence of the
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Raman spectrum, as a too small number of Raman active modes would have been
predicted. Interestingly, assuming Raman scattering from a completely disordered
system, such as a liquid, fails to predict the correct PO response, too.

To study this "liquid-crystal conundrum®, the trajectories of I-I-I angles in Agly
tetrahedra, as obtained from MD simulations, have been analyzed. Large, long-
lasting low frequency deviations from the expectation values could be observed for
the angles. These low frequency changes of the angles indicate anharmonic relax-
ational motion in the iodine host-lattice. This provides a possible explanation for a
central peak that has been found in the Raman spectrum. Moreover, a local motif
— below unit cell dimensions — in form of the Agl, tetrahedron allows to resolve the
"liquid-crystal conundrum“ and correctly predict the PO Raman spectrum.

A connection between iodine and silver motion could be established by performing
a set of gedankenexperiments. First of all, it could be shown that the host-lattice
relaxational motion only occurs if silver motion is allowed. Freezing the silver mo-
tion also hinders the host-lattice relaxational motion. And second, allowing for
host-lattice motion aids silver diffusion as has been quantified by investigating the
diffusion constant obtained from the MSD.

Taken together, we conclude that several HaPs and SSICs share some interesting
features, in particular related to their structural dynamics. Among these common
features are manifestations of anharmonicity, such as a central peak in the Raman
spectra, which can be connected to the relaxational motion between instantaneous
structures. More intriguing however, is the observation of localization due to anhar-
monic structural dynamics in both materials. This has been identified here for the
correlation of the disorder potential in HaPs, which is dynamically localized, as well
as for the Raman spectrum in a-Agl, which can only be described correctly using a
"local tetrahedral model “.

Below this work will be put in a broader context and an outlook will be provided. It
has been shown long ago that disorder localizes both charge carriers [274] and lattice
vibrations 275, 276]. Judging from the (average) structure the materials studied in
this work are not considered to be disordered or amorphous. However, the above
results suggest to have an effect that results in localization for both materials, HaPs
and a-Agl, which might be in line with the findings that their average structures
do not represent a unique minimum in the potential energy surface. Therefore,
dynamic disorder might be assumed. The effect of dynamic disorder on charge
transport has been studied in organic crystals [277-281] and recently also suggested
for HaPs [135]. However, many questions about the interesting topic of dynamic lo-
calization still remain to be investigated. For instance, understanding how dynamic
disorder impacts structural dynamics and whether vibrations are dynamically local-
ized could facilitate the search for efficient thermoelectric materials. Such materials
require a “electron crystal, phonon glass”, i.e., the material should not be amorphous
to display favorable electronic properties, however vibrations should be localized to
find a low thermal conductivity [34].
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Finally, oercoming the limitations of the harmonic approximation by performing
computational research on those anharmonic materials can be expedited not only
by the increase in computer power but also with the development of new methods.
Among these mentionable developments is the usage of machine learning for perform-
ing and accelerating MD simulations, as has already been done for HaPs [27, 174,
282] and SSICs [283]. The trajectories obtained from (machine learned) force-field
MD simulations can then be combined, for instance, with tight-binding calculations
to study finite temperature electronic properties at reasonable computational costs,
even in anharmonic materials [163, 284].
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Figure Al.: Power spectrum of the VACF obtained from MD simulations at
T=425 K obtained with the “GW” PAW pseudo-potentials (blue) com-
pared with “normal” PAW pseudo-potentials (orange).
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Figure A2.: PO Raman spectrum of liquid chloroform (CHCl;3) at room temperature.
An orientation-independent central peak can be observed, indicating
stochastic relaxation processes . Although there are differences between
parallel and perpendicular measurements, no angular dependence can
be found. Reprinted with permission from [3]. Copyright (2020) by the
American Physical Society.
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Trajectories of all 12 I-I-I bond angles 6 (continued in fig. A4) as obtained from
MD simulations at 500 K. The unfiltered trajectories are shown in red (full MD)
and orange (Ag frozen), the black lines show the trajectories filtered with a Fourier
filter. The expectation values are indicated by the gray horizontal lines. Reprinted
with permission from [3]. Copyright (2020) by the American Physical Society.
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Figure A4.: Trajectories of all 12 I-I-I bond angles @ (continued from fig. A3) as obtained from
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MD simulations at 500 K. The unfiltered trajectories are shown in red (full MD)
and orange (Ag frozen), the black lines show the trajectories filtered with a Fourier
filter. The expectation values are indicated by the gray horizontal lines. Reprinted
with permission from [3]. Copyright (2020) by the American Physical Society.



Appendix B.
Simplistic model to explain oscillatory
decaying autocorrelation functions

In this appendix, following reference [5], a simplistic model for the correlations in a
one dimensional periodic function, resembling the potential in a crystal, is presented.
A “disorder potential” of amplitude A; preserving the translational invariance of a
crystalline material, with spatial periodicity w;, might be written as

AV;(y) = A;sin(w; y) . (B1)
For this case, normalized autocorrelation function

(AVi(y + Ay) - AVi(y))

R N AN AT

(B2)

is periodic too (see fig. Bla and fig. Blb for the potential and autocorrelation,
respectively). However, for a crystalline material at finite temperature, the period-
icity is expected to be disturbed due to nuclear motion. This has been mimicked
in fig. Blc by using randomized A; and w;. The correlation of each randomized
function, shown as light red lines in fig. B1d, still is periodic and non-decaying,
as each function still only has one (random) frequency. But a combination of sev-
eral randomized functions culminates in a autocorrelation function which is both
oscillatory and decaying. This on one hand resembles a periodic potential which is
modulated by thermal noise due to nuclear displacements and on the other hand
the autocorrelation function resembles the one found in section 3.8, fig. 3.35.
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Figure B1.: Toy model to explain oscillatory and decaying autocorrelation func-
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tions. (a) shows the function of eq. (Bl) for A = 1 and w = 1.
(b) shows the autocorrelation function (eq. (B2)) for the periodic
function shown in panel a. (c¢) N = 50 randomized functions with
0.5 < A; < 1.5and 0.9 < w < 1.1 chosen randomly (light red), the
dark red curve shows their average. (d) shows autocorrelation func-
tions for the 50 randomized functions of panel ¢ (light red), and the
average C'(Ay) = N~! Zf;l C;(Ay) (dark red). Reprinted with permis-
sion from [5], published under a CC BY 4.0 license.



Appendix C.
Polarization-orientation Raman
spectroscopy

In this appendix, we will further discuss some aspects of PO Raman spectroscopy,
following reference [285], as this will help in understanding the experimental results
in section 4.3 and the model depicted from this. Since the Raman intensity is
connected to the change of the polarizability &, which is a tensor, also a Raman
tensor 94

A &

R, -z

0Q,

can be defined. As with the polarizability, the elements of the Raman tensor are

determined by the symmetry of the specific Raman active phonon mode. The Raman
intensity is then given by

(C1)

2

7 (C2)

€; Rl/es

I, x

with e;/, the polarization vectors of the incident and scattered light, respectively.
Equation (C2) provides that the intensity of a Raman active mode v depends on
the polarization of the incident and scattered light. Or, wvice versa, the components
of the Raman tensor can be obtained from measurements using incident light with
a specific orientation of the polarized light. Such an experimental measurement is
called PO Raman spectroscopy and sketched in fig. C1. As visualized in fig. C1, the
incident light is polarized, using a polarizer, with a specific angle 6 with respect to
the predefined x-axis

e; = (cos 0,sin 0,0)" . (C3)

During the experiment, 6 is varied from 0 to 27 and the Raman intensity is measured
for scattered light with an orientation parallel and perpendicular to the incident
polarization, i.e.,

e |(0) =e;(0) and e, (0) = (—sin 6, cos 0,0)" . (C4)

As a consequence, the symmetry of a Raman mode can be determined from the
periodicity of

1,)(0) o

e (0)Re, 1 (0) \2

(C5)

and I, (0) o |e;(0)R, e, 1 (0) (C6)

‘ 2
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Appendix C. Polarization-orientation Raman spectroscopy
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Figure C1.: Sketch of an experimental setup to measure the polarization-orientation
(PO) Raman spectrum of a sample, in this example a-Agl. Reprinted
with permission from [3]. Copyright (2020) by the American Physical
Society.

This allows to match the measured frequencies to specific phonon modes, if their
irreducible representation is known, and in the case of the SSIC a-Agl this method
particularly allows to distinguish disorder induced, e.g., liquid-like Raman response,
exhibiting no periodicity, from vibrational features showing specific symmetries.

128



	Introduction 
	Theory 
	Born-Oppenheimer approximation 
	density functional theory (DFT) 
	Electronic ground-state energy 
	Hellmann-Feynman theorem and forces on ions 

	Lattice dynamics 
	Harmonic approximation: classical description 
	Harmonic approximation: quantum mechanical description 
	Beyond the harmonic approximation 
	Vibrational spectroscopy 
	Relaxational motion 

	Molecular dynamics (MD) 
	Fundamentals
	Correlation functions 
	Phonon quasiparticles from MD 

	Disorder potential and Urbach energy 
	Numerical details 
	halide perovskites  
	AgI 


	Results and discussion: halide perovskites
	Introduction to halide perovskites
	Influence of the A-site cation on the infra-red spectrum
	Cubic perovskite structure as local maximum in potential energy 
	Anharmonic phonon quasi-particles
	Resonant bonding 
	Disorder correlations and band-edge distributions 
	Ionic composition

	Impact of strongly anharmonic transversal halide motion
	Comparison to PbTe 

	Results and discussion: superionic -AgI
	Introduction to solid-state ion conductors and silver iodide
	VDOS and Raman spectrum of superionic -AgI 
	Iodine host-lattice anharmonicity in superionic -AgI 
	Interplay of host-lattice dynamics and ion diffusion 

	Conclusions and Outlook
	Bibliography
	Appendix  Supplemental figures
	Appendix  Simplistic model to explain oscillatory decaying autocorrelation functions 
	Appendix  Polarization-orientation Raman spectroscopy

