
Technische Universität München

TUM School of Computation, Information and Technology

Designs, Protocols, and Software Tools for Quantum Enhanced

Networks

Stephen Di Adamo

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung eines

 Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Wolfgang Kellerer

Prüfer*innen der Dissertation:

1. TUM Junior Fellow Dr. Janis Nötzel

2. Prof. Elham Kashefi, Ph.D.

3. Assistant Prof. Dr. David Elkouss

Die Dissertation wurde am 08.06.2022 bei der Technischen Universität München

eingereicht und durch die TUM School of Computation, Information and Technology

am 28.11.2022 angenommen.

LEHRSTUHL FÜR THEORETISCHE
INFORMATIONSTECHNIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Doktor der Ingenieurwissenschaften (Dr. Ing.)

Designs, Protocols, and Software Tools for
Quantum Enhanced Networks

Stephen DiAdamo

Supervisor: Dr. Janis Nötzel
Advisor: Dr. Elham Kashefi
Submission Date: April 26th, 2022

I confirm that this dissertation is my own work and I have documented all sources and
material used.

In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Technical University of Munich’s products or services.
Internal or personal use of this material is permitted. If interested in reprinting/re-
publishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to http://www.ieee.
org/publications_standards/publications/rights/rights_link.html to learn how
to obtain a License from RightsLink. If applicable, University Microfilms and/or Pro-
Quest Library, or the Archives of Canada may supply single copies of the dissertation.

Munich, April 26th, 2022 Stephen DiAdamo

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

List of Articles in This Thesis
8. S. DiAdamo, J. Nötzel, "The Impact of Quantum Memory Quality on Distributed

Quantum-Accelerated Computation", Publication in progress.

7. S. DiAdamo, C. O’Meara, G. Cortiana, J. Bernabé-Moreno, © 2022 IEEE. Reprinted,
with permission, from "Practical Quantum K-Means Clustering: Performance
Analysis and Applications in Energy Grid Classification", in IEEE Transactions on
Quantum Engineering, 2022.

6. S. DiAdamo, J. Nötzel, S. Sekavc̨nik, R. Bassoli, R. Ferrara, C. Deppe, F. Fitzek,
H. Boche, © 2022 IEEE. Reprinted, with permission, from "Integrating Quan-
tum Simulation for Quantum-Enhanced Classical Network Emulation", in IEEE
Communications Letters, 2021, 10.1109/LCOMM.2021.3115982.

5. R. Parekh, A. Ricciardi, A. Darwish, S. DiAdamo. © 2022 IEEE. Reprinted,
with permission, from "Quantum Algorithms and Simulation for Parallel and
Distributed Quantum Computing", in 2021 SC21 International Workshop on
Quantum Computing Software, 2021, 10.1109/QCS54837.2021.00005.

4. S. DiAdamo, J. Nötzel, B. Zanger and M. M. Beşe, © 2022 IEEE. Reprinted, with
permission, from "QuNetSim: A Software Framework for Quantum Networks",
in IEEE Transactions on Quantum Engineering, 2021, 10.1109/TQE.2021.3092395.

3. S. DiAdamo, J. Nötzel. "Undoing Causal Effects of a Causal Broadcast Chan-
nel with Cooperating Receivers using Entanglement Resources", arXiv preprint
arXiv:2102.07427, 2021.

2. S. DiAdamo, M. Ghibaudi and J. Cruise, © 2022 IEEE. Reprinted, with permission,
from "Distributed Quantum Computing and Network Control for Accelerated
VQE", in IEEE Transactions on Quantum Engineering, 2020,
10.1109/TQE.2021.3057908.

1. J. Nötzel and S. DiAdamo, © 2022 IEEE. Reprinted, with permission, from
"Entanglement-Enhanced Communication Networks," in 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE), 2020,
10.1109/QCE49297.2020.00038.

ii

Abstract
Throughout the last six decades, since the invention of the Internet, the use of commu-
nication networks has been critical and revolutionary for many fields, from controlling
robot fleets, to secure and covert communications for the military, to deep space commu-
nication with satellites orbiting Saturn. The development of communication networks
is a marvel of human ability. Today, a new networking paradigm is emerging. We
are shifting from communicating with information mediums that behave according to
classical mechanics to those which behave quantumly. Indeed many obstacles arise
when developing quantum networks and the networking theory developed over these
last decades is not directly applicable. Quantum systems are much more complex to
work with and many challenges arise when designing future quantum networks. By
overcoming these challenges, quantum networks will bring applications that cannot
possibly be achieved via classical networks alone, but still, the full suite of applications
for quantum networks is not yet known. In this thesis, we, therefore, aim to bring to
light more potential applications of quantum networks.

Compared to the information mediums that behave classically, various properties
of quantum systems allow for these further applications. One such property is called
quantum entanglement. Independent quantum systems can be correlated in a particular
way such that regardless of the distance separating the systems, by observing one of
the systems, the other entangled systems are instantaneously affected. Entanglement,
therefore, becomes a valuable commodity when dealing with multiparty communication
and can even be used to accelerate transmission rates across quantum communication
channels. In practice, distributing entanglement in a quantum network, because of
the challenges of distributing quantum systems, is yet a more challenging problem. A
large part of the thesis, therefore, explores the process of distributing entanglement
efficiently and then consuming it so that transmission rates over quantum channels
are, on average, increased. We study the effects of entanglement for accelerating
communication rates from a physical, link, and network layer perspective, designing
protocols for entanglement-assisted communication and methods for optimally moving
entanglement around in an entanglement-enhanced network. In a more theoretical
framework, we explore a communication scenario in which many users cooperate to
decode messages. By using entanglement, they can decode incoming messages with an
advantage over a purely classical strategy.

Another highly important application of quantum networks next to communication is
the ability to connect quantum computers to perform distributed quantum computing.
Indeed connecting quantum computers can be done in a variety of ways, using various
approaches and physical mediums. In this thesis, we first explore the state-of-the-art in
terms of accessing quantum computers via remote, cloud services to perform quantum
algorithms over a network. We benchmark these remote quantum computers for their
ability to perform quantum clustering algorithms. Next, we propose an architecture
of parallel and distributed quantum computing, proposing circuit decomposition
algorithms and qubit allocation and program scheduling over a network of quantum
computers. Such distributed quantum networks require novel control systems and we

iii

Abstract

also propose such an approach for one. We apply these methods in an explicit use-case,
namely the accelerated variation quantum eigensolver algorithm, in-depth.

When designing novel applications of quantum networks, because access to physical
hardware is rare, it is important to have the ability to easily simulate such environ-
ments. Quantum networking is an emerging field and therefore the scope of available
simulation tools is presently narrow. Contributing to the available simulation tools,
we develop a quantum network simulation platform to target the application layer of
quantum networks. We use the platform to demonstrate various quantum networking
protocols and further use the platform to integrate a classical network emulation tool
with our novel quantum network simulator. We demonstrate a prototype link-layer
protocol for a quantum-enhanced communication network using the tool. In terms of
distributed quantum computing, for validating circuit decomposition algorithms, pro-
gram scheduling, and network control, we develop a framework built on our network
simulator that simulates a network of quantum computers.

Quantum networks have the potential to bring an abundance of novel applications to
communication networks and distributed computing, leading to more secure communi-
cation, accelerated communication rates, and more powerful computing methods. With
this thesis, we uncover and explore such applications. Overcoming the hurdles that
make reliable and robust quantum communication so challenging will be a problem to
face for the coming decades, but with these problems comes the possibility to invent,
recreate, rethink, and redesign, bringing on a tremendously exciting period in quantum
science and networking in general.

iv

Acknowledgments

The road from the start to the end of a doctorate is never traveled alone and indeed,
I am no exception. I am grateful to many people for their guidance, patience, advice,
support, and interaction during my studies. The first of which to mention, and of
most importance, is Dr. Janis Nötzel, my supervisor. From the beginning to the end
of my studies, Janis has provided challenging research topics, the freedom to explore
my path, and a great deal of support and opportunity throughout. My time in his
group has allowed me to become a far better scientist than when I began, and for that I
am grateful. The next two people I mention are Dr. Marco Ghibaudi and Dr. Corey
O’Meara whom I worked with during my time at Riverlane and E. On respectively.
During these two independent internships, Marco and Corey both provided project
supervision, and in the process much creative freedom to explore the topics I am
passionate about with careful but crucial guidance to produce the best possible outputs.
From these experiences, I have learned, by example, a great deal about both science and
strong leadership, and for that am grateful. Next, I mention Dr. Elham Kashefi who
has on many occasions welcomed me into her group to visit, present, and discuss. Her
openness and creativity have helped me to broaden my scope of the field of quantum
networking and my career in general, and for that I am grateful.

From my personal relationships, I first mention my partner Muneeza Qureshi who has
provided an endless supply of love, support, and patience, without which my doctoral
studies would be incomplete. Throughout the last three years, she has supported me in
more ways than she knows, constantly making me a better person, and for that, I am
both grateful and forever indebted. Next to mention is my sister Christina DiAdamo,
who has, since I moved to Germany six years ago, continuously shown support and
care while I have been away. Knowing I have not lost my close family connection after
being away for so long has kept me at peace and for that I am grateful. Lastly, I mention
my parents Pia and Joe DiAdamo, who have always allowed me to be myself and take
risks even when I know it would cause them to worry and stress. The level of support
they have given me and the selflessness they have shown me in my life has allowed me
to make every decision on my own without sacrifice, always with their full support,
which is something I can never repay. For that, I am truly grateful.

Contents

List of Articles in This Thesis ii

Abstract iii

1. Introduction 1
1.1. Modeling and Manipulating Quantum Systems 2
1.2. Quantum Communication Networks . 4

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks 9
2.1. A Physical Layer Analysis . 10
2.2. A Link-Layer Protocol for Quantum-Enhanced Classical Networks . . . 33
2.3. Network-Layer Protocols for Entanglement Redistribution 36
2.4. Entanglement-Assisted Cooperation in MIMO Channel Settings 46

3. Networked Quantum Computing 57
3.1. Quantum Computing in the Cloud . 57
3.2. Distributed Quantum Computing . 82
3.3. Monolithic to Distributed Algorithms . 84
3.4. Networked Control and Algorithm Scheduling 107

4. Software Frameworks for Quantum Networks 121
4.1. An Overview of Quantum Network Simulators 121
4.2. QuNetSim: A Software Framework for Quantum Networks 123
4.3. Interlin-q: A Distributed Quantum Computing Simulator 134
4.4. ComNetsEmu with QuNetSim . 138

5. Conclusion and Outlook 144

A. QuNetSim Example Simulations 146
A.1. Sending Data Qubits . 146
A.2. GHZ-based Quantum Anonymous Distribution 148
A.3. Routing with Entanglement . 152

B. Interlin-q Example Simulations 156
B.1. Distributed Quantum Phase Estimation 156

C. Additional Material 160

Bibliography 161

vi

1. Introduction
In the last two to three decades, the level of interest in quantum science and technology
has been steadily increasing, and especially in the last five years, the resources allocated
to quantum information processing have grown very rapidly [1]. The level of interest
and investment does not go unjustified, as the possible applications of quantum
technologies apply to many fields. The applications for quantum technologies that are
of high interest are in quantum computing, secret key distribution, and most related to
this thesis, quantum communication. The development of these technologies brings
with them a vast number of novel applications that are either not possible to achieve or
are difficult to achieve without the integration of quantum technology, what is usually
referred to as the “classical” approach.

Within these fields are specific use cases that can fundamentally change the way we
approach current computation and communication challenges. Quantum computing
for example uses properties of quantum entanglement and superposition to execute
algorithms that can take a challenging problem such as prime factorization, the method
on which most Internet encryption is based on and which classical computing methods
struggle to perform and reduce the complexity dramatically [2]. Quantum Key Distri-
bution (QKD) is another application that uses the property of unclonability of quantum
systems to distribute secret keys among communicating parties. QKD is a large driver
for the industry development of quantum networks and it promises communication net-
works with a higher level of privacy and security than what can currently be achieved
[3, 4]. With regards to quantum communication, it has been shown theoretically that
when two parties share entangled quantum states, subsequent classical communication
over a quantum channel can have a vastly increased communication rate [5].

Although the many applications that come with the integration and development
of quantum technologies into our current computing and communication systems can
be highly beneficial, the challenges in which to overcome to do so are vast. Quantum
systems are very fragile and many environmental factors can influence and destroy the
information contained in a quantum system. To perform complex quantum algorithms,
methods of quantum error correction will be needed, potentially increasing the num-
ber of required qubits and control instructions drastically [6, 7]. Transmitting single
quantum states over a fiber-optic cable causes loss and error scaling poorly with the
length of the connection, making long-distance quantum key distribution challenging
without quantum repeater technologies [8]. To perform entanglement-assisted commu-
nication requires that quantum entanglement can be distributed and stored for periods,
requiring quantum memory technologies [9].

The promise of the vast applications that come with quantum technologies, therefore,
goes hand-in-hand with the difficult engineering challenges that come when developing
the technology to perform the applications. Nonetheless, the history of human nature
has shown repeatedly with the advent of many technologies that we can persevere
and overcome difficulties. With this thesis, we explore various use cases and imple-
mentations to further develop the number of applications for quantum technologies,
benchmark the current state-of-the-art quantum technology, and develop architectural

1

1. Introduction

plans for the construction of quantum networks. In this introductory section, we explore
what differs quantum systems from classical systems. We review the mathematical
models for quantum systems and quantum channels and the fundamentals of quan-
tum computing. The following chapters of this thesis go on to develop and analyze
protocols for entanglement-assisted communication networks, propose an architecture
for a distributed quantum computing network, and finally develop various simulation
platforms for the further study of quantum networks. Overall, the strong drive we
are currently witnessing in both academia and industry to further develop quantum
technology shows strong promise that the challenges faced when building quantum
technologies will be overcome, and with this thesis, we aim to further this development
along.

1.1. Modeling and Manipulating Quantum Systems

Classical computing and communication technology are based on the fundamental
unit of information called the “bit”. A bit is an abstraction of objects that can contain
one piece of information. Usually, we represent a bit by a 0 or a 1, up or down, or
true and false. Bits can be implemented using a vast number of physical objects, but
in our commonly used technology, the most important is the transistor. Transistors
have been miniaturized to a scale that millions of them are integrated into commonly
available computer chips, and even so far that the effects of quantum mechanics are a
real concern, as the effect known as quantum tunneling starts to occur.

Bits, albeit the most common way to encode information, are not the only basis for
computing or communication technologies. Indeed, the concept of quantum computing
and quantum information theory have become successful fields of research, making
use of the additional properties of another medium for information storage, namely
the “qubit”. In the quantum setting, a qubit is an analogous unit of information with
two states, that can contain one unit of quantum information. Mathematically, a qubit
is represented by a complex vector in a Hilbert space. The key difference between a bit
and a qubit is that a qubit can be in a superposition of the two states and the quantum
superposition is usually represented as |ψ⟩ = α |0⟩+ β |1⟩, where α, β ∈ C, such that
|α|+ |β| = 1. Using the basis vectors |0⟩ = (1, 0)T, |1⟩ = (0, 1)T, the vector |ψ⟩ is a
vector in the Hilbert space C2. These types of quantum systems that can be written in
this vector form are quantum systems that are in what is called pure quantum states,
where those that cannot are considered in a mixed state.

Although we can—in theory—encode an infinite amount of information into a single
qubit using rotational degrees of freedom, decoding the qubit to recover all the infor-
mation is not possible. Qubits exist in a probabilistic mixture of states, and because
measuring qubits forces the qubit into one state or the other, a second measurement will
not help in determining the probabilistic mixture. Indeed, many copies of the encoded
qubit would be necessary to recover, to a finite precision, an arbitrary choice of α and
β. This leads to the next step, which is representing multiple qubits. Mathematically,
this is achieved using a tensor product. For qubits |ψ⟩ and |ϕ⟩, we can create a single
quantum state |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩. Using this approach, we can grow the quantum system

2

1. Introduction

infinitely large, allowing now for both encoding and decoding approaches.
A feature of quantum systems that do not exist in purely classical systems is that

multiple quantum systems can be entangled between themselves. Entanglement is a
type of correlation that can— regardless of physical distance—create a type of shared
randomness between multiple parties. Shared randomness can be achieved using
purely classical techniques, but in 1964, John Bell derived an upper bound on the
amount of shared randomness that can be produced with classical systems, and further
showed that particular entangled quantum states violate this classical upper bound [10].
Using Dirac notation, we sometimes write a class of important two-qubit entangled
states which are known as Bell Pairs or Einstein-Podolsky-Rosen (EPR) pairs as,∣∣Φ+

〉
=

1√
2
|00⟩+ |11⟩ , (1.1.1)∣∣Φ−〉 = 1√

2
|00⟩ − |11⟩ , (1.1.2)∣∣Ψ+

〉
=

1√
2
|01⟩+ |10⟩ , and (1.1.3)∣∣Ψ−〉 = 1√

2
|01⟩ − |10⟩ . (1.1.4)

Using these entangled states, we can devise communication protocols that consume
entanglement such as quantum teleportation and super-dense coding, creating appli-
cations beyond shared randomness, that are unique applications of quantum commu-
nication. Entanglement is a property that will appear repeatedly in this thesis and is
invaluable when deriving protocols that outperform classical solutions.

To create quantum communication protocols or develop algorithms for quantum
computers, it is necessary to be able to encode, manipulate, and read out quantum
information. To manipulate quantum systems in a mathematical sense, we use the
theory of linear operators, specifically linear operators that are also unitary operators.
This means that the operators, when applied to the quantum system, maintain the
mathematical properties of the quantum system and it is possible to recover the original
system by reversing the operator since unitary operators have an inverse. Measuring
quantum systems is not a unitary operation, since, based on Born’s rule, measurements
force a quantum system into one specific state, destroying the superposition of states.
We therefore cannot use unitary transformations for measurements, but rather another
class of operators that have the property of positive operator-valued measure. A positive
operator-valued measure M is composed of a set of positive semi-definite operators
{Mi}n

i=1, where ∑i Mi = I. This ensures that indeed all measurement outcomes are
accounted for, with which a valid probability distribution over the outcomes can be
constructed.

With these ingredients, it is possible to develop complex protocols and algorithms that
use the additional properties of quantum mechanics to enhance classical counterparts.
Communicating with quantum systems follows much of the same principles as when
using classical systems. To send messages using quantum systems, it is still required
to encode information, transmit, and then decode. What changes between classical
and quantum communication theory is the mathematical model, which needs to be

3

1. Introduction

generalized to accommodate quantum systems.
So far, we saw how to manipulate pure state quantum systems for message encoding

as well as the model for measuring them. What is missing from this is the model
for transmission, which we will use quantum channels for. Quantum channels are a
general concept, and essentially any manipulation of a quantum system that maintains
a quantum system can be considered a quantum channel. Throughout this thesis, we
will be concerned with a specific quantum channel, namely the (lossless) qubit channel.
A qubit channel is a completely positive, trace-preserving map from the set of qubit
states to the set of qubit states. Qubit channels that we consider face two types of errors,
which are dephasing errors and depolarizing errors which affect the fidelity of the
quantum state. These errors appear due to noise in the physical medium transmitting
the quantum state and we investigate the effects on communication more deeply in this
thesis.

With the ability to transmit qubits, it is possible to perform the superdense coding
protocol—the foundation for entanglement-assisted communication. Superdense coding
in the qubit scenario is an entanglement-assisted communication protocol that uses
a qubit channel and one pre-established EPR pair to communicate two classical bits
of information using the qubit channel only once. This protocol effectively doubles
the classical communication capacity of the qubit channel, as otherwise only one
bit of information can be encoded in a qubit per transmission and shown in the
Holevo capacity theorem [11]. Superdense coding is the foundation for the first part
of this thesis, and we will explore in depth how a network of channels implementing
superdense coding for classical message transmission can be cast into a network setting.

1.2. Quantum Communication Networks

Communication networks—in the classical sense—are a major theme in today’s society.
Communication networks, such as the Internet, span the entire planet and even go
into space via satellite communication. The success of communication networks is a
major feat of humanity, allowing us to communicate across oceans in real-time, which
would be an impossibility not long ago. Communication networks have a vast variety
of use cases such as video streaming, video calling, and online banking, all requiring
a unique transport protocol and a varying level of security. There are a vast number
of topics surrounding communication networks, far too many to be covered in this
thesis, but the topics now need to be well understood by quantum scientists with the
coming of quantum networks. The state of quantum networks is much like the state
of classical networks when the ideas were still in the infant stage. This time around,
we now have the knowledge to learn best practices for the deployment of quantum
networks. At the current development stage of quantum technology, we can only be
mainly in the planning stage, and so concrete protocols for the varying applications of
quantum networks are not yet standardized.

One of the most successful architectural ideas regarding communication networks is
the abstraction of the varying required tasks when transmitting information from one
point in the network to another into layers. Although quantum network protocols are

4

1. Introduction

still far from being standardized, it is generally agreed upon that a layered architecture
will be used in the future [12]. Isolating particular tasks into layers allows for easier
development and standardization of network technologies, allowing more applications
to run over less complex networks. It further allows changes at a layer level that do
not require an entire network overhaul, since the changes would affect just a single
layer. Moreover, a layered architecture provides a means of communicating particular
networking tasks more abstractly. Quantum networks will no doubt benefit from
a layered architecture, but the exact responsibilities of each layer are still open to
standardization.

Another point of note is that when we refer to a quantum network, the meaning is a
general-purpose quantum network and not a single application QKD network. QKD
networks have the specific application of distributing keys in a network of nodes via
quantum state transmission or entanglement, and the task of performing QKD can
include additional layers, such as key management layers, error correction layers, and
privacy amplification layers [13, 14]. In a general-purpose quantum network, these
tasks can all be performed, as the goal of a general-purpose quantum network is to
both distribute quantum states and entanglement. The specific implementation of the
protocol, although, relies on further technological developments.

In this section, we describe the core layers of future quantum networks and the
general concepts of what layers should do. Here we restrict our discussion to four
network layers, which are clearer to explain, but defining a standardization is still a
global work in progress. In classical network models, for example, the OSI model [15],
there are usually more network layers but because it is generally accepted that quantum
networks will not replace classical networks, it is unlikely that there will be a one-to-one
correlation between all of the classical network layers and the coming quantum network
layers. The layers we discuss are the Physical, Link, Network, and Application layers.
These layers are all present in the OSI model and will also be important layers for
quantum networks.

1.2.1. Physical Layer

The physical layer of a quantum network is the quantum channel that connects two
devices in the network, be it via optical fiber or free space channels, and is responsible
for forwarding arbitrary quantum states. The physical layer is not responsible for
performing any logical tasks such as error correction or triggering retransmission, it
simply attempts to transmit a quantum state over the channel.

As discussed in [16], the physical layer of a quantum network could involve various
technologies that can store quantum information, namely, a quantum memory. Quan-
tum memories can be implemented via solid-state technology such as ion traps or NV
centers. Transporting quantum states though will be implemented via optical quantum
states. Pirker and Dür, therefore, give the responsibility of converting a state stored in
a quantum memory to a flying qubit and visa versa to the physical layer. Moreover,
in a quantum inter-network, it could be that the optical frequency in which quantum
states are transmitted is not universal, and so the task of frequency conversion is also
given to the physical layer. Finally, a unique feature of a quantum network is the ability

5

1. Introduction

to distribute entanglement. Entanglement generation can be probabilistic, and in some
cases, probabilistic entanglement generation suffices for a particular application, for
example, entanglement-based QKD protocols, whereas in others, for example, quantum
teleportation, heralded entanglement is important. Distributing heralded entanglement
can be done using a variety of protocols [17]. A task of the physical layer is then to ei-
ther attempt entanglement distribution or perform a heralded entanglement generation
protocol but perform no other action for error correction.

1.2.2. Link Layer

The link layer of a network is generally responsible for ensuring that the information
transmitted between two points over the physical layer is transferred reliably, correcting
any errors as well as performing retransmission requests. In a quantum network, there
are many challenges to overcome concerning the reliable transmission of quantum
states, since retransmission is generally not possible due to the unclonability of quan-
tum states. To reliably transmit quantum states in a network, the first generation of
quantum networks will use a combination of entanglement distribution and quantum
teleportation [18] and therefore the link layer will be responsible for generating robust
entanglement.

In [16], the link layer described is quite different from a classical link layer. The
link layer proposed builds on a so-called connectivity layer, used for creating robust
point-to-point and point-to-multi-point entanglement, generating Bell pairs and graph
states. The entanglement generated via the connectivity layer forms a virtual “entan-
glement network”, which is a network of nodes that are connected not via physical
channels, but via entanglement. The link layer is then responsible for manipulating the
entanglement network in such a way as to provide the service of generating arbitrary
graph states between any collection of nodes in the network. The link layer can then
use further protocols to distill entanglement, as in each local operation between nodes,
the entanglement fidelity diminishes. An alternative proposal for a quantum link
layer is described in [19]. This proposal is designed to generate robust entanglement,
concerning the user’s requirements, at a point-to-point level, relying on the upper layers
of the stack to then create distant entanglement. This link layer proposal, while error
correction can be integrated, initially uses error detection as a means of determining
link quality to then prevent errors in transmission. The motivation for this is that in
practice, performing error correction will initially be challenging experimentally.

Overall, any future quantum link layer will be responsible for reliably and robustly
transmitting quantum states from one point in the network to another. As the technol-
ogy develops, more complex methods of doing this will surely become enabled, but
still, the underlying goals of the link layer will remain.

1.2.3. Network Layer

The network layer in classical networking is responsible for determining an optimal
route in the network from the source to the destination, providing the routing in-
formation in an encapsulating network-layer packet to each node along the path to

6

1. Introduction

transfer the link-layer data. Current proposals for network layer protocols for quantum
networks, on the other hand, have no concept of packets or packet switching. The goal
of a general quantum network is to move quantum states from one point to another
in a network, and in the first generation of quantum networks, this is done using
entanglement distribution and quantum teleportation. The goal of the network layer is
therefore to create distant quantum entanglement using techniques involving quantum
repeaters, entanglement swapping, and entanglement purification or distillation.

Quantum repeaters are quantum network devices that can be used to extend the
range of quantum transmissions. Because transmitting optical signals is lossy and
because signal amplification cannot be used on quantum signals due to the no-cloning
theorem, it becomes challenging to directly transmit quantum states over a long range.
The quantum repeater acts as a relaying node in the network whose job is to, in the
first generation of quantum networks, extend the range of entanglement by using the
entanglement swapping procedure [20]. Entanglement swapping works in a three-node
setting, take for example a network with topology A− B− C, by first establishing two
entangled pairs, one between A and B and another between B and C. The goal of
entanglement swapping in this case is to use the entanglement between B and C to
finally have entanglement between A and C. Essentially, the process consumes the
entanglement between B and C using quantum teleportation, teleporting B’s part of of
the AB entanglement to C. The final state is then an entangled pair between A and C.
This process is the basis for generating distant entanglement.

There are various approaches for generating distance entanglement in a quantum
network. The most straightforward approach is to determine a path in the network,
develop entanglement point-to-point in the path, and then perform an entanglement
swapping procedure down the path, extending the method described in the three-node
case. Another approach as described in [16] is to generate graph states, a particular
quantum state that allows multi-party entanglement, which can be manipulated using
local operations and classical communication to then establish a Bell pair between
two of the parties in the overall multi-party state. After performing entanglement
swapping, the fidelity of the entanglement diminishes and so to restore the fidelity to
an acceptable level, the process of entanglement purification can be used [21, 22]. In
[23], Kozlowski et al. incorporate all of these pieces, creating a network layer protocol
for end-to-end entanglement generation.

These tasks—entanglement swapping and purifying—are all multi-party procedures,
and therefore require coordination using network layers protocols. The network layer
of a quantum network is thus responsible for orchestrating these routines.

1.2.4. Application Layer

The application layer of a communication network is responsible for setting the user-
selected parameters of an application layer protocol and then moving the information
to a lower network layer, abstracting away further processing. For example, in the
(classical) Internet, requesting the HTML of a website is achieved by setting the pa-
rameters to the standardized HTTP protocol and pushing the request to the next layer
to be processed through the other layers of the network. From the same point in the

7

1. Introduction

network, one can instead connect remotely to another point in the network using the
SSH protocol. There are various application layer protocols, and it is up to the end user
to decide which task they would like to carry out.

In a quantum network, the application layer is very much analogous, with the dif-
ference that protocols for performing quantum-specific applications like QKD and
distributed quantum computing will instead be of more importance. Because infor-
mation encoded into quantum states is prone to loss and error during transmission, a
unique feature of the application layer likely to appear in future quantum networks
is a user-defined threshold for acceptable error. This is a key reason why a quantum
network will likely come accompanied by a parallel classical network, as many of these
parameters will need to be agreed upon between parties before the quantum part of
the protocol begins. For some scenarios, like in QKD, errors in the sifted key—the
remaining part of the key after the parties agree on the selected bases—can be corrected
classically using methods of information reconciliation and so it could be acceptable
to have a higher threshold to error. On the other hand, in distributed computing, the
fidelity of the quantum state will be of much higher importance, as a low state fidelity
could cause errors in the algorithm if too much noise is allowed, and so the threshold
for error would be lower. We see therefore that the error tolerance is likely to be an
application-specific parameter, at least until methods of quantum state transmission
become robust.

1.2.5. Entanglement-Enhanced Classical Networks

Overall, we have described the high-level idea of a layered architecture of a network
that is designed to transport quantum states from one point in a network to another.
Such a network can be used for many quantum applications such as quantum key
distribution and distributed quantum computing. The first generations of the network
we described will use entanglement to teleport quantum states, but in the future, it
could be that the direct transmission of quantum states is enabled using error correction
techniques [18].

In this thesis, we therefore also consider a different type of quantum network which
we call an entanglement-enhanced classical network that relies on direct transmission
of quantum states—rather than teleportation. This network will have a network stack
just like a classical network, except with additional features to enable entanglement
generation in the network for purposes of enhancing classical message transmission.
The task we focus on most in this thesis is the task of entanglement-assisted classical
communication, which we saw in the previous section can have a strong rate advantage
over unassisted rates. A general-purpose quantum network could indeed perform the
task of entanglement-assisted communication, but a network designed specifically for
the task could also have an advantage, as the design would be a bottom-up approach,
integrating quantum features into already established networks from the lower layers,
rather than a top-down approach which is to build the network with a particular
application, in this case reliably transmitting quantum states.

8

2. Entanglement-Assisted Communication
in Quantum-Enhanced Networks

The power of quantum communication over purely classical communication methods
lies in the fact that quantum systems can be entangled—a special type of correlation
found in quantum systems—adding a fundamental correlation between systems which
is not possible to achieve using classical approaches. Entanglement can be used, in
theory, to create advanced strategies and communication protocols between many
parties such that no classical alternative can outperform them. In this section, we
explore two such cases, where with pre-established entanglement, a communication
advantage is observed. The first three subsections are related to entanglement-assisted
communication.

Firstly, we investigate how the physical-layer properties of a communication channel
affect the ability to perform entanglement-assisted communication when entanglement
is generated during idle periods in communication. We use simulation to observe
how changing the quantum memory storage properties affects the throughput of the
system. We extend to a network setting and investigate a multi-party computation
setting. In this section, we ignore for now the link-layer protocol required to perform
entanglement-assisted communication.

In the next section, we consider a link-layer strategy for performing entanglement-
assisted communication. We design a protocol as an initial step for noiseless quantum
channels and provide the explicit protocols in detail. Later in this thesis, we will use
this link-layer protocol to integrate quantum communication into a classical network
scenario.

In the third section, now we review a network-layer perspective for entanglement
distribution as well as entanglement re-balancing via entanglement swapping to use
entanglement-assisted communication as frequently as possible. We use linear programs
to optimize at the link level as well as the network level with a broader optimization
scope. We simulate our network layer approach over three network topologies and see
in some cases, a significant advantage is observed.

In the last section of this chapter, we see another use of entanglement other than
entanglement-assisted communication. Here we explore a broadcast channel commu-
nication scenario where one user sends messages over a causal channel, where the
receivers of the message must perform a cooperative decryption scheme for any of
them to receive the broadcast. We see that with a shared Greenberger–Horne–Zeilinger
(GHZ) state, the communication cost of the decoding is reduced by a polynomial factor.

Using entanglement for communication has a variety of applications and the extent
of the applications is still a popular area of research. In this section, we aim to widen
the scope of known applications and through analysis and simulation, determine the
extent of the benefits that can be expected, as well as how feasible the deployment of
such systems is.

9

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

2.1. A Physical Layer Analysis

Section based on the article: "A Communication Strategy for Entanglement-Assisted
Communication"

The field of quantum networking is becoming an increasingly important topic as
quantum hardware technologies begin to perform what has been predicted theoretically.
Theoretically, networked quantum technologies offer a variety of use cases that promise
to outperform current and potentially any future classical implementation. Such use-
cases are in distributed quantum computing [24, 25], distributed quantum sensing [26],
clock-synchronization [27], quantum key distribution [28], and especially related to this
work, quantum communication [29, 30]. On the hardware side, experimentally we have
seen non-local control gates between physically separated quantum processors [31],
quantum clock-synchronization [32], deployed quantum key distributed networks [33],
and recently an entanglement-assisted communication experiment [34]. Moreover,
experiments conducted for quantum repeater technology with quantum memories are
underway [35]. These results all give promise to the future goal of deploying networked
quantum technologies for industrial use cases.

In this section, we focus on entanglement-assisted classical communication over
quantum channels. At a high level, a quantum channel is a communication channel
that can transport quantum systems from one physical location to another. Realizations
of quantum channels are for example fiber optic cables. Quantum systems have a
unique property that is not seen in purely classical states called entanglement. Two
or more quantum systems being entangled means, irrespective of physical distance,
that the systems share a special type of correlation. By measuring the quantum state of
one system, one obtains information regarding the state of the other system, so long
as one knows the originally prepared state. Entanglement-assisted communication is
the communication scenario where, between communicating parties, entanglement
resources are established before messages are transmitted, and at the time of message
transmission, codewords are encoded into sending party’s part of the entangled system
to then be transmitted over a quantum channel. The receiving party decodes the
incoming quantum system with the assistance of their part of the entanglement resource
which they had ahead of time by measuring the transmitted system in a particular way.
Entanglement-assisted communication has been proven in a variety of communication
scenarios to increase the classical capacity of a quantum channel [5, 36].

Most important to any entanglement-assisted communication scenario is the ability
to distribute entanglement so that when a message is transmitted, the required entan-
glement resources are available at both sides of the transmission. One can consider
three possible ways to achieve this: 1) Generate entanglement at the time it is needed
and then use it immediately to transmit a message, 2) Generate entanglement before it
is needed and store it for later use, or 3) A hybrid of the two. On one hand, generating
entanglement at the time it is needed adds a layer of communication complexity to
the overall protocol, but reduces the need for highly robust quantum storage devices,
and on the other, for storing entanglement resources, one needs access to a robust
quantum memory such that the established entanglement resources are used before

10

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

they decohere or are lost, a highly-challenging technological problem.
Here we consider a communication protocol for the second scenario and integrate

an entanglement distribution protocol which depends on the traffic of the network.
In Fig. 2.1 is a depiction of the single link communication setting. What we consider
is, a sender and receiver who share a synchronized quantum memory used to store
entanglement resources, and the link connecting the two parties is a quantum channel.
The sender additionally has a classical message buffer which receives bit-strings of
some fixed length with some probability per time step. In the first part of this work, we
define a stochastic process to model this scenario. At a high level, the process is that
when the sender has no bits to transmit, they instead generate several entanglement
resources and share half of each pair with the receiver to be stored, storing the other
half locally. When entanglement resources are available in storage and there are bits
to transmit, the sender uses those resources to transmit at the entanglement-assisted
capacity of the channel. If no entanglement resources are available at the time of
transmission, the sender simply uses an entanglement-free transmission, thereby using
the classical capacity of the channel.

For a scheme to move from theory to practice, there are many hardware parameters
to first consider determining, at least in theory, if there are advantages to gain worth the
effort of developing the technology. In this work, we aim to add clarity to the questions
regarding what quality of quantum memory is necessary to perform our protocol. After
defining a general model for the communication scenario, we consider two cases for
entanglement-assisted communication. For the first case, we consider just a single link
between two parties. We analyze a communication scheme using a qubit model and
superdense coding, transmitting two classical bits per channel use, and generating one
entanglement unit per entanglement transmission when idle. We model this scenario
in simulation using noise models for memory coherence. In our analysis, we ignore
the loss effects caused by the channel and suboptimal writing or reading efficiency of
the memory, as the effects trivially reduce the rates, that is, a rate reduction directly
proportional to the loss probability. Secondly, we consider a four-node network under
the same model, again analyzing the effects of memory noise. For the final sections of
this work, we consider a model for a quantum-enhanced data center. The data center
model is that each computing node in the network is connected via a network that
is performing our communication protocol for entanglement-assisted communication.
When the computing cluster needs to communicate with other nodes, they attempt to
boost their transmission rate using entanglement-assisted communication, where the
entanglement is generated during iterations of an algorithm computation.

2.1.1. Review of Related Work

Past work related to the topics covered here is those which are related to quantum
channels that have a queuing aspect, co-dependent queues, entanglement distribution
protocols, and trading off entanglement resources for achieving entanglement-assisted
capacities. In this section, we review various results and discuss their relation to
the present work. Overall, this article offers a unique perspective to analyzing how
building-up entanglement resources, while the network traffic rates are low, provides a

11

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

. . .

. . .

. . .

{0, 1}J

(a) (b)

·

{0, 1}J

E E

L

Figure 2.1.: A depiction of the buffered entanglement channel as a communication
system. A communicating party in (a) has a classical message buffer of
length L in which binary messages of length J arrive and are stored. Further,
at (a) is a quantum memory with E slots used for entanglement buffering
where entanglement is generated and stored. Connecting parties (a) and
(b) is a quantum channel, where classically encoded quantum messages
are sent, depending on the state of the entanglement buffer. At (b) is
another entanglement buffer that is perfectly synchronized with the one at
(a). Depending on the state of the entanglement buffer, messages are either
decoded with a measuring device with entanglement assistance or not.

communication advantage in various network settings.
The first result we review is that of Mandayam et al. [37]. In the work, a communica-

tion setting where a sequentially processed stream of qubits is considered, where before
the qubits are processed, they are stored in a quantum memory where processing is
executing a quantum operation on the qubit or the transmission of the qubit over a
quantum channel. During the time between when qubits enter the memory and are
processed, the qubits decohere, losing information with time. The system is modeled
after a single server queue and derived in the work as an expression for the classical
capacity in terms of the waiting time of the qubit. Here, the analysis is performed on a
queuing model that has unlimited storage space for arriving qubits being processed
in a First-Come-First-Served order. Decoherence on the waiting qubits is modeled as
a quantum channel which depends on the waiting time of the qubit. The key result
of the work is a classical capacity formula for this so-called quantum-queue channel.
Overall, the result differs from the present in a few ways. Firstly, the queued quantum
systems that we consider are only used for storing entanglement. For data, there is a
classical message buffer that stores classical bits of information to be encoded in an
entanglement-assisted way. Once encoded in the stored entangled quantum system,
the quantum system is then transmitted over a quantum channel to be decoded at the
receiver. Here we use the entanglement assisted classical capacity of the channel to
transmit at an accelerated communication rate, a different type of capacity than the
stricter classical capacity.

A network of nodes that can build up and re-distribute entanglement among them-

12

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

selves is analyzed in [30]. In this work, various network topologies are considered, and
a method of entanglement generation is proposed to maintain synchronized quantum
buffers. This work deals with the specific case of noiseless qubit storage and superdense
coding between the network nodes. Moreover, the work focuses mainly on the network
layer of the stack. In this work, we take a similar approach, building on the results of
[38] and focusing on the link layer. Here we are more concerned with noise models in
quantum storage.

A method for using quantum channels to transmit a mixture of classical information
and entanglement is analyzed in [39]. Here the method of “trade-off” coding is
introduced which, for a given entanglement-consumption rate, some of the transmission
uses entanglement-assisted coding and the remaining part of the transmission without
entanglement. This method of transmitting with and without entanglement in one
transmission outperforms a more common approach known as time-sharing, where
some transmissions are only without entanglement assistance, and some are with it.
[39] takes the perspective of finding the ultimate rates, but consideration for what
hardware specifications are needed to execute such a protocol is not considered. In this
work, our queuing model takes a time-sharing approach as a first step as our focus here
is to benchmark quantum hardware for their ability to perform entanglement-assisted
communication. We aim to clarify how good quantum hardware should be to perform
entanglement-assisted communication at before moving to the more complex coding
scenario of trade-off coding.

For a communication channel using an auxiliary channel for entanglement generation
along with another quantum channel for data transmission, Djordjevic has considered
the transmission rates with a bosonic model [40]. What is shown is that for such
a channel, using the auxiliary channel, not for entanglement generation, but rather
message transmission, the communication rates will always be higher compared to
entanglement-assisted communication rates. Indeed, this work also does not consider
that the entanglement can be built up and stored ahead of time. Storing quantum states
for very long periods is beyond the ability of current technologies, and not making
such considerations shows us that without such technology, entanglement-assisted
communication may never provide an advantage over traditional methods. What we
determine in this work is how much of a communication advantage is there when such
memories exist, and if it is enough of a reason that additional efforts for building robust
quantum memories for communication will lead to a large enough payoff.

The effects on entanglement concerning memory coherence times have been investi-
gated in a simulation setting in [41]. In this work, the authors simulate entanglement
sharing between two end nodes for entanglement distribution and consider an entan-
glement management scheme for optimizing performance. In the work, the application
tested is the generation of entanglement over a linear chain of network nodes using
an entanglement swapping procedure. The key metric considered is the entanglement
generation rate over a system with length-dependent loss in the channel. The present
work differs in that we consider a specific application requiring the consumption of
entanglement for classical message transmission. In this initial work, we concern
ourselves only with how the effects of memory influence the communication of classical
messages.

13

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

2.1.2. A Queuing Process for Entanglement-Assisted Communication

We now discuss how one can use entanglement in a communication protocol to improve
communication rates. The model we use is for a communication scenario where two
communicating parties share a synchronized quantum memory which, depending on
the network traffic level, will fill up and deplete to make use of entanglement-assisted
communication rates.

In this section, we consider a communication single link, whereas later in Section
2.1.5, we will consider more complex network topologies. The single link model is
composed of the following: two buffer types—one for classical information and one
for entanglement storage; and a single quantum channel connecting the two parties.
For this section, we first mathematically formalize an entanglement buffer and a
buffered-entanglement quantum channel and then define the process that governs the
communication scenario. From there, we can define a stochastic process for the model
which governs the behaviors of the system.

Definition 1 (Entanglement Buffer). An Entanglement Buffer (EB) EB(M, α) for two
communicating parties is defined by parameters M ∈ Z the size of the buffer and a rate
α ∈ [0, 1] which represents the probability that after each time unit a stored entanglement unit
becomes unavailable.

For the communication channel which makes use of an EB, we define a Buffered-
Entanglement Channel (BEC).

Definition 2 (Buffered-Entanglement Channel). A BEC J := J(G, C, L, J, CEA, CC) is a
quantum channel S(HA ⊗HS)→ S(HB ⊗HS) between parties A and B with shared access
to HS where G ∈ R+ is the amount of entanglement bits (ebits) that can be generated per
transmission, C ∈ R+ is the number of ebits consumed to transmit CEA ∈ R+ bits with
one transmission, or without entanglement CC ∈ R+ bits can be transmitted, L ∈N is the
maximum number of bits that can be queued at A, and J is the number of bits that an arriving
job contains.

With this definition, we can describe stochastic processes for a BEC. We define firstly
a stochastic process for a system that can hold just one job in its processing queue,
that is, L = J. We choose this restriction because, for our first analysis, we analyze the
system analytically, arriving at closed forms for throughput and job drop rates. The
restriction of L = J simplifies this. In the next sections, we extend the process to handle
multiple jobs at once, which becomes challenging to analyze analytically, especially
with noise models, and therefore we will use simulation.

Definition 3 (One job BEC process). A stochastic process for a BEC J(G, C, L, J, CEA, CC)

is defined with a state space consisting of: 1) SB := {0, . . . , L}, a classical buffer at the sender;
2) SE := N, the state of the EB shared between both parties; 3) ST := N the number of
transmitted bits; 4) SJ := {0, A, N}, the active job processing type; and 5) SD := N the
number of dropped jobs. A state of the system is s = (b, e, t, j, d) ∈ SB × SE × ST × SJ × SD.
The variables for the “one job” stochastic process are r ∈ [0, 1], λ ∈ [0, 1], and τ ∈ N.
The variable r represents the probability that a message arrives after each time step, λ is the

14

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

probability that after each time step, τ units of entanglement arrive from an outside source. The
transition matrix for the system is

T(s′|s) :=(1− λ)
(
(1− r) · T0(s′|s) + r · T1(s′|s)

)
+

λ
(
(1− r) · (E ◦ T0)(s′|s) + r · (E ◦ T1)(s′|s)

)
,

(2.1.1)

with E(s′|s) := δs′((b, e + τ, t, j, d)),

T0(s′|s) := (2.1.2)

δe′(e + G) · δb′,d′,j′,t′(b, d, j, t), j = 0, b = 0

δb′(b− CEA) · δd′,e′,j′,t′(d, e, j, t), j = A, b > CEA

δ0(b′) · δ0(j′) · δd′,e′,t′(d, e, t + 1), j = A, b = CEA

δb′(b− CC) · δd′,e′,j′,t′(d, e, j, t), j = N, b > CC

δb′(b− CC) · δ0(j′) · δd′,e′,t′(d, e, t), j = N, b = CC

and,

T1(s′|s) := (2.1.3)

δA(j′) · δe−C(e′) · δL−CEA(b
′) · δd′ ,t′(d, t), j = 0, b = 0, e ≥ C

δN(j′) · δL−CC (b
′) · δd′ ,e′ ,t′(d, e, t + 1), j = 0, b = 0, e < C

δ0(j′) · δ0(b′) · δd′ ,e′ ,t′(d + 1, e, t), j = A, b = CEA

δb′(b− CC) · δd′ ,e′ ,j′ ,t′(d + 1, e, j, t), j = N, b > CC

δ0(j′) · δb′(b− CC) · δd′ ,e′ ,t′(d + 1, e, t), j = N, b = CC.

To provide a clearer picture of how the stochastic processes T0 and T1 in Definition 3
function, depicted in Fig. 2.2 is a high-level flow diagram of the process. We can analyze
such a system analytically and determine a closed form for the average, throughout,
job processing time, and drop rate. Below we give the formal definition of these values.

Definition 4 (Throughput and Rejected Job Rate). For n ∈N, let Sn
T, Sn

D be the respective
total transmitted data and dropped jobs in the process defined in Definition 3 after n time steps.
The throughput of J is the supremum over all non-negative numbers T satisfying

lim inf
n→∞

P
(1

n Sn
T ≥ T

)
= 1. (2.1.4)

The job drop rate is the infimum over all non-negative numbers D satisfying

lim inf
n→∞

P
(1

n Sn
D ≤ D

)
= 1. (2.1.5)

In this section, we analyze the BEC for an EB when α = 0, that is the EB never loses
any entanglement due to noise and only the communicating parties will reduce the
number entangled pairs in the buffer via consumption.

15

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Await time interval

Incoming job?

Buffer too full?

Buffer empty?

Drop job Store job

Ent. buffer full? Enough ent.?

Send CE ent. assisted Send CC classicallySend G ent. units

noyes

noyes

yes no

yes nonoyes

Figure 2.2.: A flow diagram for the queuing processes T0 and T1 which governs an
buffered entanglement channel’s transmission and internal entanglement
generation.

Theorem 5. [38, Theorem 3] When CE divides L and CE/CC = 2, the throughput and
job drop rates are described by the functions T(J) and D(J) of the system parameters J =

(G, C, L, J, CEA, CC) governed by the stochastic process in Definition 3 defined via

T(J) :=
r · L

1 + r · (P(J)− 1)
, (2.1.6)

D(J) :=
r · (P(J)− 1)

1 + r · (P(J)− 1)
(2.1.7)

where

P(J) := θ · tA + (1− θ) · tN (2.1.8)

is the average job duration and

θ :=
{

θ′, θ′ ≤ 1,
1, otherwise,

(2.1.9)

with

θ′ :=
1−r

r (G′ + λτ′) + tN · λτ′

C + λτ′(tN − tA)
. (2.1.10)

Further, tA = L/CEA, tN = L/CN , G′ = G/(tN − tA) and τ′ = τ/(tN − tA).

Corollary 6. A classical system (one where tN = tA) is described by

Tcl(J) =
r · L

1 + r(tN − 1)
, (2.1.11)

Dcl(J) =
r · (tN − 1)

1 + r(tN − 1)
. (2.1.12)

16

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Remark 7. θ′ for the system with parameters J = (G, C, L, tA, tN , r, 0, 0), that is, with no
external supply of entanglement, and where CE ≪ L, simplifies to

θ′ :=
(r− 1)(tA − tN)G

r · tA · C
. (2.1.13)

The formulas for the various rates remain unchanged.

To get an idea of how the system behaves, in Fig. 2.3 is a plot for a system using
superdense coding (i.e. C = 1, CEA = 2, and CC = 1). We vary the rate of external
entanglement λ and plot the statistics against the rate of incoming messages for the
average number of transmissions it takes to transmit a single job, the average throughput
of the system, and the rate at which jobs are dropped at the sender. The plot of the
analytical forms in Eqs. (2.1.6)–(2.1.8) against a simulation of the stochastic process
in Def. 3. Overall, with varying parameters of the system, proving the correctness
of closed-form formulas quickly becomes a challenging endeavor and likely a novel
analysis technique should be used. On the other hand, a straightforward way to analyze
the system is through simulations which are relatively efficient and can produce an
accurate benchmarking of the system for an arbitrary choice of system parameters.
In the next section, we continue with simulation and work towards integrating noisy
memory models to benchmark how well superdense coding can perform.

2.1.3. Simulation Setup and Parameter Selection

The scenario we use for simulation, as was in the previous section, is a quantum channel
with a classical buffer, quantum memory, and a parameter for the rate of incoming
messages. For message transmission, classical information is encoded into qubits
and when possible, using pre-established entanglement, transmitted using superdense
coding. When there is no entanglement available, qubits are transmitted directly
with no entanglement assistance. The simulations contain a quantum channel that is
modeled after a lossless 1 km fiber with a fixed delay time of 5 µs, roughly the time
light takes to travel through a 1 km fiber. This work aims to consider short-distance
quantum networks as a starting point.

The flow of transmission and processing of the classical messages is as depicted in
Fig. 2.2. When there are no messages to process, a single entangled pair is generated
between the sender and receiver. The sender and receiver have a synchronized quan-
tum memory which they use to encode and decode superdense-encoded messages.
The qubits stored in the quantum memories experience time-dependent decoherence
properties, and so with simulated time, the qubits decohere in the memories according
to the memory T1 and T2 times. Here we are concerned with the quality of storage
required to implement the protocol and do not apply noise effects to the writing and
reading steps.

The simulations we perform are concerned with how the physical layer—namely
the quantum memory—properties affect the throughput and error rate during com-
munication. To simplify this as much as possible, we program the simulation to be
independent of any link-layer protocols, but in a real communication setting it would
be required for the receiver to distinguish qubits to be stored and qubits to measure.

17

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

2

2.5

3

3.5

4

A
vg

.J
ob

D
ur

at
io

n

λ = 0.00 λ = 0.25
λ = 0.50 λ = 0.75
λ = 1.00

0

0.5

1

1.5

2

A
vg

.T
hr

ou
gh

pu
t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

r

A
vg

.J
ob

D
ro

p
R

at
e

Figure 2.3.: A data stream using superdense coding as the encoding and decoding
scheme, i.e. CEA = 2 and CC = 1. The associated parameters to the model
are G = 1, C = 1, and we have chosen L = J = 4. Varied are the incoming
message rate r on the horizontal axis and the external rate of entanglement
generation λ and fix τ = 1 in the plots. In all plots, the black line is the
analytical formulae of Theorem 5 and the dots are the results of numerical
simulation.

18

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

To accomplish this in simulation, we use global parameters in software so that the
receiver can make the distinction. An initial link-layer approach for this particular
communication setting has been considered in [42], where a data frame of qubits is
transmitted behind a frame header, indicating how the following qubits should be
treated at the receiver. Here, we ignore the link-layer protocol to focus on the best-case
effects for the physical layer.

To develop the simulations, we use the quantum network simulator NetSquid [43].
NetSquid is a Python-based software library used for simulating—for one—various
physical layer effects in quantum networks. Incorporated into the software are the
physical models of various quantum technologies such as quantum memories, fiber
optical channels, and photon sources and detectors. NetSquid is developed in a
modular way, so that network nodes can contain any variation of the built-in hardware
models. We construct a sender and receiver using NetSquid’s models for the scenario
depicted in Fig. 2.1. The simulation configuration using NetSquid’s models is depicted
in Fig. 2.4, where the sender’s classical message buffer feeds data to the quantum
processor.

The exact models we use in NetSquid are as follows. For the sender and receiver
memories, we use the QuantumMemory object. The quantum memory has parameters
for the number of memory positions and the decoherence model, where we select the
T1T2NoiseModel error model. Each party is also equipped with a QuantumProcessor,
which can encode and decode a superdense encoded message, whose memory slots are
also governed by the T1T2NoiseModel error model. The quantum processor can perform
a set of physical instructions which perform single and two-qubit operations with 1-time
unit and 10-time units respectively. To generate the qubits for transmission, the sender
has an EPR generating source as well as a qubit source both implemented using the
QSource object. With the QSource, one can select which type of quantum systems are
emitted, in this case, either Bell states or ground state qubits, and at which frequency.
For our experiments, we only concerned ourselves with the properties of the memory,
and so we allow these systems to emit the expected qubits with certainty, that is, we
assume a perfect quantum source. Connecting the two parties is a QuantumChannel
modeled with the FixedDelay delay model.

2.1.4. Point to Point Channels

In this section, we develop and present simulations of the BEC model using varying
quantum hardware parameters and analyze the achievable throughput and decoding
error rates for various scenarios. The key aspects we are concerned about here are
the properties of quantum memories. We investigate how the T1 and T2 times of the
stored qubits and the number of memory positions available affect the throughput
achieved when using the communication setting previously defined for generating or
consuming entanglement. These simulations provide an initial estimate for the required
quality and quantity of memory positions the quantum memory should have for an
advantage to be seen over purely classical communication methods using the principle
of generating entanglement while idle.

19

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Sender
Entanglement Buffer

. . .

EPR Source Qubit Source

Quantum Processor

Quantum channel...

Classical

Receiver

. . .

Quantum Processor

·Switch

Classical

Figure 2.4.: The sender and receiver node configuration using the NetSquid simulations.
The sender and receiver each have a quantum memory, which is synchro-
nized. The sender has two quantum sources, one for generating qubits and
one for generating EPR pairs. The sender has a classical message buffer
that feeds data to the quantum processor which prepares fresh qubits from
the source or qubits removed from the memory for transmission. Once
transmitted, the receiver can process the qubits or store them, and outputs
a classical message accordingly.

20

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Simulation Configuration and Execution

We use the simulation configuration as explained in the previous section. Here we
describe the precise program logic of the simulation. To begin, each party starts with
empty entanglement buffers and the sender’s message buffer is empty. With some
probability r, a bit-string of length J fills a classical buffer of capacity L if possible,
otherwise, the message is dropped. If no message arrives, the sender uses its qubit
source to generate an EPR pair, storing half of the pair in its memory and transmitting
the other half over the channel. We test two approaches here, namely, if the quantum
memory is full to replace the oldest qubit or to simply discard the newly generated
qubit.

To transmit messages, when there is no entanglement stored in the memory, 1 bit of
the message is encoded into a single qubit generated by the secondary qubit source
which produces ground-state qubits and is sent over the fiber after encoding in the
quantum processor. When entanglement is instead present in the memory, 1 qubit
is removed from the memory using the selected queuing priority. Here we test two
approaches which are using a First-In-Last-out (FILO) priority and a First-In-First-
Out (FIFO) priority. The qubit removed from memory is then put into the quantum
processor to be encoded and transmitted.

We run each simulation with different parameters for 2,500,000 time iterations,
which at this the simulation time scale represents 2.5 milliseconds. We compare the
transmitted messages to those received to determine the percentage of the messages
that were transmitted with and without error. To compute the average throughput,
we determine the fraction of the number of bits transmitted in the total iterations
multiplied by the decoding error rate. We simulate 15 different settings grouped into
three different simulations. Firstly, we replicate the simulation from the previous
section, using L = J = 4 varying the T1, T2 times of the model and fixing E = 200
memory slots. Next, we repeat the process using J = 4 and L = 5J. Finally, we fix the
T1, T2 = 1100, 1000 ns and vary the number of memory slots in the quantum memory.
The sender attempts to send a message every 10 ns—simulating a maximum of 400
mb/s link at most—or else generates entanglement using an entanglement source.

Analysis and Discussion

We review the results of the simulations, the first of which are plotted in Fig. 2.5. In the
upper plot, we see the average throughput results for varying T1 and T2 times of the
buffer against a varying message arrival rate. As expected, the longer the T1 and T2

times, the smaller the error rate and thus a better throughput. We also observe that
under a certain threshold for the T1 and T2 times, superdense coding performs far worse
than in a purely classical way, where the dashed line represents the entanglement-free
case. We can see when the T1, T2 times of the memory are (11, 10) respectively, since the
messages are 4 bits long, until r ≈ 0.38, the transmission produces completely random
outputs with a decoding error rate of 1− 1/24 = 0.9375. If we compare to the plots
in Fig. 2.3, we see the point r ≈ 0.38 plays a special role as well, where having no
externally generated entanglement sent into the system, that is, when λ = 0, begins to
affect the trend. The point is exactly that at which the majority of the messages are sent

21

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

using classical means over entanglement-assisted.
In the plot of the error rates, we note that the red curve representing the T1, T2 times

1100, 1000 ns is not non-increasing, and at around the point r ≈ 0.38 raises slightly to a
local maximum before beginning to steadily fall. This is because the system uses FILO
ordering for entanglement consumption, leaving some entangled pairs to decohere for
long periods. With the red dashed line in the same plot, we show the error rates for a
First-In-First-Out (FIFO) ordering which does not increase in error rate but performs
much worse overall as FIFO will choose the entangled pairs that have been stored the
longest when performing entanglement-assisted communication. Another point of
note is when we apply the approach of discarding old entangled pairs, replacing them
with fresh pairs when the memory is full. The throughput and error rates in this case
are shown with dotted lines. Here we see significant improvement at low traffic rates,
eventually converging to the same trend at higher rates.

In Fig. 2.6, we repeat the simulation, but increase the message queue size so that at
most 5 jobs are in the message queue at once and observe similar trends but with the
plots squeezing more tightly to the smaller values of r. Because fewer jobs are dropped
with a larger message queue size, the system is idle less often and therefore has fewer
opportunities to generate entanglement. Indeed in this scenario, the average throughput
in the classical case (the dashed black line) outperforms the three cases of noisy memory
that we analyze, which is in contrast to the single job buffer. Moreover, comparing
the classical trend to the trend for the perfect quantum memory, there is only a small
portion of the incoming job probability domain in which superdense coding with GEWI
outperforms the classical case. For the error rates, we again compare the FILO and
FIFO consumption of entanglement. We see again that FIFO ordering performs poorly,
no better than random decoding. Again, the dotted trend represents the case where
entanglement bits are refreshed, and significant improvement is observed.

The final set of simulations we performed in this section is comparing the perfor-
mance when varying the size of the quantum memory. In Fig. 2.7 are the trends for
four memory sizes which all share the properties for T1, T2 = 1100, 1000 ns. What we
observe is that with this choice of T1, T2 times, of all the entanglement buffer sizes that
we tested, when the rate of incoming messages is low, a smaller quantum memory size
performs better than a larger one, and indeed when E = 10, until r ≈ 0.35, outperforms
the cases when E = 200. This is due to the aging of the entangled pairs and using a
FILO consumption without replacing the older stored pairs. Since the rate of incoming
messages is too low, the stored EPR pairs decohere before they can be used, whereas in
the E = 10 case, the buffer is emptied more often and so the EPR pairs are younger on
average. When r ≳ 0.38, the rate at which entanglement is consumed increases enough
until both E = 10 and E = 200 perform equivalently. With the entanglement replacing
strategy, we see that for low traffic rates, replacing the entanglement with fresh units
improves performance significantly, reducing error rates drastically and thus improving
the overall throughput.

Overall, we can conclude the following: Firstly, not only do the T1, T2 times greatly af-
fect throughput, but also the order in which the entanglement is consumed plays a large
role. By testing three orders of magnitude in this case, we can already observe T1, T2

values that perform sub-classically, and those which perform super-classically. More-

22

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

0.00

0.25

0.50

0.75

1.00

A
vg

.T
hr

ou
gh

pu
t

Perfect
T = (11, 10) ns
T = (110, 100) ns
T = (1100, 1000) ns
No entanglement
Ent. replacing

0 0.2 0.4 0.6 0.8 1
0.00

0.25

0.50

0.75

1.00

r

D
ec

od
in

g
bi

t
er

ro
r

ra
te

FIFO
Ent. replacing
FILO

Figure 2.5.: A simulation of a BEC using the NetSquid simulation platform. In the
simulation, two nodes are separated by a fibre 1 km long with a fixed delay
of 5000 ns. In the first simulation, Each node has an entanglement buffer
of 200 memory slots which have a specific T1 and T2 times associated with
them.

over, common orderings like FIFO and FILO are sub-optimal and so future work will
therefore include a deeper analysis into how the ordering of entanglement consump-
tion optimizes the throughput of the system; Second, with sub-optimal entanglement
consumption orderings, we see that the size of the entanglement memory plays an
important role as well. With shorter T1, T2 times, using a smaller entanglement buffer
will ensure the entanglement buffer is emptied more often, thereby maintaining fresher
entanglement units on average and hence better decoding error rates. Lastly, in all
cases, replacing stored EPR pairs with fresh pairs will improve the decoding error rates,
thereby improving the total throughput.

2.1.5. Networks of Buffered-Entanglement Channels

In the previous section, we analyzed the properties of a single link under the queuing
process of GEWI, and so the next naturally arising question is: What are the properties
of a network of such links? These types of questions have arisen in other queuing
theory contexts, specifically, Jackson or Kelly networks for various queuing models [44,
45]. In this section, we take a similar approach and analyze a network of such queues.
We begin by defining the network of BECs. For our analysis, we model the network of
queues after an open queuing network—a network with data sources and sinks where
data enters from outside the network at the source, routes itself in the network, and
eventually exits at the sinks. For more details regarding networks of queues and the

23

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

0.00

0.25

0.50

0.75

1.00

A
vg

.T
hr

ou
gh

pu
t

Perfect
T = (11, 10) ns
T = (110, 100) ns
T = (1100, 1000) ns
Classical
Ent. replacing

0 0.2 0.4 0.6 0.8 1
0.00

0.25

0.50

0.75

1.00

r

D
ec

od
in

g
bi

t
er

ro
r

ra
te

Ent. replacing
FIFO
FILO

Figure 2.6.: The same configuration as Fig. 2.5 but the size of the message buffer is
increased to L = 5J.

0.00

0.25

0.50

0.75

1.00

A
vg

.T
hr

ou
gh

pu
t

E = 1 E = 10
E = 200 E = 0
Ent. replacing

0 0.2 0.4 0.6 0.8 1
0.00

0.25

0.50

0.75

1.00

r

D
ec

od
in

g
bi

t
er

ro
r

ra
te

Ent. replacing
FILO
FIFO

Figure 2.7.: T1 and T2 times fixed at 1100 ns and 1000 ns respectively. The size of the
entanglement buffer is varied.

24

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

(b)

. . .

. . .

(a) . . .

. . .

. . .

. . .

. . .

. . .

Figure 2.8.: A depiction of the network of entanglement-buffered channels. Each con-
nected pair of nodes have a shared buffer and each process its classical
message queues according to the transition matrix of the BEC. Here (a) is
the source node, where classical data arrives to be sent into the network
and (b) is the sink, where classical data will be processed and removed
from the network.

different types of queuing network models, we refer the reader to [46]. To start, we
define a buffered entanglement channel network.

Definition 8 (Buffered Entanglement Channel Network). A Buffered Entanglement Chan-
nel Network (BECN) N = (G, R) is made up of a directed graph G = (V, E) where each v ∈ V
represent the network nodes and the edges (u, v) ∈ E, represent that node u shares a BEC with
node v. G contains a single source node s and a sink node d. The source node receives classical
messages from outside of the network at a rate of r messages arriving per unit time and stores
the messages in its buffer if possible. The sink node processes messages and takes them out of the
network. A BECN also contains a routing algorithm R : V ×V → E, which provides the next
edge in a path within G, where R need not necessarily be deterministic. R can moreover use the
current state of the networks to determine the next step in a route.

For the remainder of this section, we present simulation results using the four-node
network topology depicted in Fig. 2.8. As in Section 2.1.4, we again concern ourselves
with how the T1, T2 times of the quantum memory affect the transmission throughput
and decoding error rates.

Simulation Configuration and Execution

The configuration in this simulation is the following: For the nodes with outgoing
connections, using the stochastic process defined in Fig. 2.2 for each connection, the
node transmits data or entanglement depending on the state of its message buffer and
the choice of routing. When qubits are sent to another node, they are firstly measured,
thereby extracting the classical information, and reprepared to be transmitted again
depending on the state of the entanglement buffer. This implies that each connection
builds up and consumes its own entanglement, with one pair of synchronized entan-
glement buffers per connection. In Fig. 2.2, the nodes other than the source (a) have a
larger message buffer so that messages that are put into the network do not drop en
route. Decoding at re-encoding at the mid-way nodes eliminates the need for relaying
the quantum traffic over multiple network hops as well as the need for entanglement

25

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

swapping, simplifying the technological requirement for a physical realization in this
first stage.

The three nodes with outgoing channels all have the components as seen in the
upper portion of Fig. 2.4. The three that have incoming channels, components for the
lower portion of Fig. 2.4 are also added so that the middle nodes can both receive and
transmit qubits. The simulation again uses a fixed delay model based on a 1 km lossless
fiber model for each connection in the network. For the message sizes, we use a similar
setting as in the single link case, which is that the source node can first store just one
message at a time with J = L = 4 bits. We repeat the simulation except with set L = 5J,
allowing 5 messages in a buffer at once. For each time step, a message randomly
arrives at the source and if there is data to transmit, an outgoing edge is selected
and data is transmitted. For the edges where no data is being transmitted, instead,
entanglement is generated to be stored. Each node can store E = 200 entanglement
units with varying T1, T2 times for the simulations. In this case, since we have timing,
the time that the polls for new messages every 10 ns, thereby simulating a maximum of
400 mb/s network throughput.

In each of the simulations, we use a simple routing approach. We set R in Definition
8 to be such that it chooses the outgoing link that has the most stored entanglement at
the time of transmission. The result of this is that entanglement-assisted transmission is
used as often as possible. Alternative approaches can be used, for example in [30], the
stored entanglement over entire paths is considered for routing. Given the single source
of network traffic being analyzed in this case, the alternative approach is equivalent.
We again bypass any link-layer protocols of the network by using a global variable
in software that allows the receiver to distinguish when data arrives versus when
entanglement arrives.

Analysis and Discussion

For the setting when J = L = 4, the average throughput, and decoding error rate are
displayed in Fig. 2.9. Compared to the single-link case, the average throughput and the
decoding bit error rates differ quite dramatically compared to those in Fig. 2.5. The
main difference is, with two outgoing links from the sender, there is always one link
idle during any transmission—one link is transmitting data, and the other is idle. This
implies that for each transmission of data, one EPR pair is generated across the idle link
and therefore entanglement is always available across the two links. Using superdense
coding is therefore always possible for the first hop and an average throughput from
the sender is maximized at two bits per unit time under perfect memory settings. What
becomes clear is that a quantum storage of size E = 200 is excessive and E = 1 for these
simulations produces the same average throughput and error plots for the different
storage parameters. We, therefore, do not show plots for the throughput and decoding
error rates for varying E in this case. In the latter half of the network, the middle
nodes will have the same property where one will always be idle, therefore having
the ability to generate entanglement with the receiver. In this case, since E = 1 will
achieve the same throughput and average error rate, we further do not need to consider
entanglement queuing practices, since for a queue with one position, all practices are

26

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

equivalent. With dotted lines, we show the trend for replacing old entanglement units,
which demonstrates, as with the point-to-point case in the previous section, a significant
improvement in error rates and thus throughput.

What differs in the network setting as compared to the single-link setting is that,
because entanglement is always available hop-by-hop, entanglement-assisted communi-
cation is always used, thereby leading to larger error rates with respect to the memory
noise. Here we see that for T1, T2 = 11, 10 ns, the error rate never falls from totally
random decoding of 4 bits. On the other hand, with T1, T2 = 1100, 1000 ns, a significant
throughput advantage is observed, outperforming the classical case with a relatively
low incoming message rate of r ≈ 0.2. For the T1, T2 = 110, 100 ns case, the classical
rate is only surpassed at a high incoming message rate of r ≈ 0.9, where entanglement
will be stored for only short periods. The case when L = 5J, where J = 4, has the
same properties of the previous case, except here the case when T1, T2 = 110, 100, the
advantage over the purely classical approach is seen at a much lower incoming message
rate of r ≈ 0.5.

In conclusion, what we can say in this case is that already with two connections,
the use of the GEWI communication strategy can already supersede a purely classical
transmission approach even with low storage times of T1, T2 = 110, 100 ns for high rates
of traffic, and with an order of magnitude larger, T1, T2 = 1100, 1000 ns, can observe
super-classical rates even with low incoming message rates. Here the size of the buffer
is less important as with two links and one source and the method of routing selected,
there is more idle time on average between the two links in comparison to the single
link case.

2.1.6. Two-Way Communication for Distributed Computing

For the single-link setting, an important and natural extension to consider is a two-
way communication scenario, where there are idle periods between responses. Such
scenarios in which two parties communicate between themselves with periods of idle
between communication is a common setting in, for example, distributed computing
[47]. In this setting, two parties send messages back and forth between themselves and
once messages are received, there is a period of processing or idle until a response
message is sent back. In this case, the processing or idle time is an opportunity that
can be used to build up entanglement on the respective channels. When data is ready
for transmission, the two parties can then make use of the established entanglement to
accelerate their transmission.

In this section, we focus on a (classical) distributed computation setting and simulate
a setting where two parties are performing the unsupervised learning algorithm k-
means clustering [48] in a distributed fashion [49–51]. The initial condition of the
distributed computation is that each party has access to the complete data set as well
as knowledge of the initial centroid points. For the first iteration of the algorithm,
each party computes the distance to the centroids for a fair share of the data, thereby
labeling just their part of the data. The computed labels are then sent to the other
party, each party receiving the labels from the other, to update the centroid locations.
An alternative approach can also be taken, where with the partial label data, partial

27

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

0

0.5

1

1.5

2

A
vg

.T
hr

ou
gh

pu
t

Perfect T = (11, 10) ns
T = (110, 100) ns T = (1100, 1000) ns
Classical Ent. replacing

0 0.2 0.4 0.6 0.8 1
0

0.5

1

r

D
ec

od
in

g
bi

t
er

ro
r

ra
te

Figure 2.9.: A simulation of a BECN as in Fig. 2.8. In the simulation, the nodes are
separated by a fiber 1 km long with a fixed delay of 5000 ns. Each node has
an entanglement buffer of 200 memory slots which have specific T1 and T2

times associated with them. Here the source node has a buffer capacity for
one message.

28

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

0

0.5

1

1.5

2

A
vg

.T
hr

ou
gh

pu
t

Perfect
T = (11, 10) ns
T = (110, 100) ns
T = (1100, 1000) ns
Classical
Ent. replacing

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r

D
ec

od
in

g
bi

t
er

ro
r

ra
te

Figure 2.10.: A simulation of a BECN as in Fig. 2.8. In the simulation, the nodes are
separated by a fibre 1 km long with a fixed delay of 5000 ns. Each node
has an entanglement buffer of 200 memory slots which have specific T1

and T2 times associated with them. Here the source node has a buffer
capacity for five messages.

29

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.11.: A depiction of the communication setting we consider for a distributed
computing experiment with entanglement generation. The two parties
each have a one-way channel towards the other party such that two-way
communication is achieved while both parties can generate entanglement
during the computation phase of an algorithm.

average positions for the new centroid positions can be computed and these partial
averages can be shared with the network to then update the centroid locations. This is
possible since all parties know the number of data points each other party is averaging
over ahead of time. Once the centroids are updated, the remaining unlabeled points
can then be labeled. The difference here is that the precision of a real number comes
into play and a reasonable choice for encoding such values becomes a trade-off to make.
When noise is considered, given that, depending on the data, small changes to centroid
locations can still produce accurate labeling, it might be the better option over label
data transmission, where a mistake in the labeling would likely be more detrimental
to the result. Indeed, when the error is in the more significant digits, the result could
make the results worse, so ensuring the most significant digits are sent noise-free would
be critical.

Here we only consider the first case as a proof-of-concept with binary labeling,
thereby using superdense coding to transmit the label information at an accelerated
rate. The idea to enhance the distributed computation with stored entanglement is
that while the parties are computing their part of the distances between centroids and
data points, entanglement is generated as a side process so that when the individual
parties complete their processing, the respective data can be transmitted with fewer
transmissions using an entanglement-assisted capacity. The simulation setting we use
in this case is much like the single link simulations in Section 2.1.4, except we extend
the channel slightly to accommodate two-way communication. We depict the scenario
in Fig. 2.11.

Simulation Configuration and Execution

The simulation setting, in this case, is the following: The topology of the network is the
one depicted in Fig. 2.11. The nodes can communicate back and forth over a quantum
channel, where all messages are transmitted via qubit mediums. Each node can store
500 EPR pairs in a quantum memory that has decoherence properties based on a T1, T2

time model, as described in earlier sections. The memory we select here is one with

30

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

−1 −0.5 0 0.5 1

0.8

1

1.2

Figure 2.12.: The synthetic data set used for the distributed clustering simulation.

T1 = 1100 ns and T2 = 1000 ns. We repeat the process for more robust memories with
T1 = T2 = 1 ms and T1 = T2 = 2 ms. The channel connecting the nodes in this case
is reduced to 20 meters to simulate a data center distance, reducing the transmission
latency in comparison to the previous section.

The data set we consider here is depicted in Fig. 2.12 which is simply a synthetic
data set consisting of 500 data points surrounding 2 clusters clustered around (−1, 0)
and (1, 0). This simple configuration is chosen so that here we can focus on the
communication aspect of the distributed computation rather than an overly complex
computation scenario. The data sets are generated with a standard deviation of 0.1
around the center.

The computation and communication scenario is the following: For a maximum of
10 iterations, the two nodes compute the distances for their fair share of the 500 data
points (i.e. 250 points each). During this time, they transmit a varying number of EPR
pairs between themselves. We assume that the time between the last EPR transmitted
to the end of data processing is 1 ms, a duration selected based on the performance
of a modern laptop performing one iteration of clustering on 250 data points. During
this 1 ms, the qubits decohere in the memory. After the 1 ms, the two parties share
their respective 250 labels with the other party so that new centroid locations can be
computed. In this case, we are considering binary classification and so this is a binary
string of 250 characters. Using the pre-shared entanglement, they transmit several
messages to the other party using superdense coding as much as possible and then
reverting to classical message transmission when not. To mitigate errors, after each
iteration of clustering, the indexes of the data points labeled by each party in the
previous iteration swap, and so each party labels the data points of the other in an
alternating fashion.

The metrics for performance that we consider are the total number of message
transmissions used during the execution of the protocol, and the F1 score [52] of the
classification comparing the final labels of Alice and Bob, which is defined as, for a
collection of binary labels A and B,

F1(A, B) := 2 · precisionAB · recallAB

precisionAB + recallAB
. (2.1.14)

31

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

0 50 100 150

0.5

0.6

0.7

0.8

0.9

1

Num. EPR pairs sent between iterations

F 1
Sc

or
e

1

2

3

4

·103

N
um

.T
ra

ns
m

is
si

on
s

Transmissions
F1 Score

Figure 2.13.: The trends for a total number of transmissions made between two com-
puters over a quantum channel versus the accuracy they can achieve for
the binary classification. Note that the number of transmissions is scaled
down by 3 orders of magnitude on the right Y-axis. The red (up most) plot
represents T1 = T2 = 10 ms, the green (middle), T1 = T2 = 1 ms and the
blue (lowermost), T1, T2 = 1100, 1000 ns.

We run each simulation 200 times over, plotting the average. The standard deviation in
the F1 score is < 2% in each case, and for clarity do not plot error bars in the figures.

Analysis and Discussion

In Fig. 2.13, we see the performance of this mixed computation and communication
setting. What we observe is that with a T1, T2 = 1100, 1000 ns, the fidelity of the
entanglement is not high enough. As more entanglement units are used, more noise
is introduced to the messages, making the decoding process nearly random, and
eventually so much so, that the labels of Alice and the labels of Bob become completely
random at the end of the 10 iterations. As one could expect, as the memory fidelity
increases, the F1 score improves as well, implying better matching between sender and
receiver. Because superdense coding is being used to communicate, fewer and fewer
transmissions are made, but at the cost of a reduced F1 score. When the T1, T2 time
approaches 1 ms, the best trade-off is seen, where there is a high F1, ≥ 0.9, score and
fewer total transmissions used.

2.1.7. Summary

In conclusion, we investigated a communication scenario where, to boost communi-
cation rates, entanglement is generated during times when communication is idle, to
be used when communication is required. We proposed a communication scheme
that implements this, and modeled it after a stochastic process, reviewing the theory
surrounding the model. Next, to investigate the physical hardware properties required
to implement the communication strategy, we considered three communication settings:
a point-to-point channel, a network of four nodes with a single source and a single

32

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

receiver, and a two-party computation. To analyze the three settings, we implemented
simulations that simulate physical models of the quantum memory to determine var-
ious performance metrics for imperfect memory coherence times. What our results
show is that even with near-term quantum memory coherence properties, using our
communication model, it is possible to outperform purely classical settings, where no
entanglement is used. Moreover, by varying the entanglement consumption queuing
practice and replacing entanglement resources as often as possible with fresh pairs,
even more, efficiency is obtainable.

2.2. A Link-Layer Protocol for Quantum-Enhanced Classical
Networks

Section based on the article: "Integrating Quantum Simulation for Quantum-
Enhanced Classical Network Emulation"

Future communication networks will encounter performance boundaries that will
be difficult to overcome using traditional approaches. Significant trade-offs will make
requirements for very-high data rates (at very-low latency with extreme reliability and
resilience) very difficult. At the same time, networks need to continue implementing
complete network softwarization and massive data mining and processing because
of in-network Artificial Intelligence (AI) [53], for example. To go beyond these tech-
nological limitations, new communication paradigms are needed. Recent advances
in entanglement-assisted data transmission [5] highlight the potential of quantum
communication methods for hybrid networks, utilizing these novel methods at lower
network layers: this advantage being simplified by the integration with the existing in-
frastructure [38]. The question arises whether this concept of hybrid classical-quantum
networks carries further than described previously [38, 54, 55]. As the answer to this
question is of a highly interdisciplinary nature, we highlight a full integration of the
quantum network simulator QuNetSim [56] into the link layer of the classical network
emulator ComNetsEmu [53]. With this tool, a variety of networking questions can be
answered using the large set of possible quantum communication techniques [57] as
part of hybrid classical-quantum communication networks.

We display the potential use of the software integration with a clear focus on the
case of a hybrid entanglement-assisted quantum-classical communication network. We
assume that the protocol stack above the link layer remains unchanged. The link and
the physical layer, however, are modified to enable quantum information processing
and communication. In addition to the integration, we propose a novel link-layer
protocol, which implements the queuing model in [38], where entanglement-assisted
data transmission is a stochastic process generating, sharing, and storing entanglement
between network nodes during stagnant communication periods, enabling higher data
rates. If the stored entanglement is depleted during data transmissions, any further
message in the buffer of the sending node is transmitted using classical communications.
This protocol is labeled “Generate Entanglement While Idle” (GEWI, see [38]), and we
use it as a proof-of-concept for our emulation tool. Finally, the protocol is evaluated

33

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

over a single network link using the integrated software platform. In this way, we close
an existing gap between quantum network simulation and classical network emulation.

2.2.1. Link Layer Protocols for Quantum Networks

The following briefly reviews existing link-layer protocols for quantum networks
and explains some important concepts for understanding the contribution of this
article. Here the link layer is considered a mechanism providing error-free qubit
transmission between the interfaces connecting the network nodes. A network not
making use of quantum effects will encode one bit per qubit at those interfaces. A
network utilizing quantum effects can, in addition to this, distribute, store, and measure
Einstein-Podolsky-Rosen (EPR) pairs between any two connected interfaces and execute
arbitrary gates on each interface. A complete overview of this process is found in
[57, Chapter 6.4]. This encapsulation of quantum functionalities into the lower layers
simplifies the integration in terms of software and hardware, and is also in line with
recent research, which we review in the following.

In [54], a classical-quantum network layer is considered, which can increase network
throughput using entanglement-assisted message transmission. Features for a link-layer
protocol are also proposed, which aim to generate entanglement for subsequent use in
entanglement-assisted message transmission. Missing from [54] is the explicit protocol
used on the link layer to transmit classical messages using the quantum channel. It
only considers the statistical properties of the link layer to measure the performance of
the network.

Pirker and Dür propose a protocol stack for a quantum network [16]. They introduce
a so-called “connectivity layer” between the quantum physical and link layer. Such a
layer does not have an analog in the Open Systems Interconnection (OSI) model [15].
The connectivity layer handles the requests from the upper layers by converting them
into instructions for the physical layer. Such instructions can, for example, be a request
for qubit transmission or EPR pair generation, without assumptions of the underlying
physical models. Moreover, the connectivity layer provides means of handling quantum
errors arising at the physical layer, detaching the link-layer logic from the physical layer.
The proposed link layer further keeps track of the current quantum entanglement status
in the network to later generate long-distance quantum entanglement. The connectivity
layer hides the particular implementation of the physical layer from the higher layers.
Our exemplary implementation of a network link, utilizing superdense coding, rests on
the assumption of error-free transmission of (entangled) qubits, a functionality that can
be achieved using functionalities of a connectivity layer.

In [19], a quantum network link-layer protocol is proposed for the generation and
distribution of entanglement between network nodes. The main focus of the work
is establishing multi-party entanglement in quantum networks rather than a mixture
of entanglement generation and classical communication. The duty of the proposed
link layer is to schedule which requests for entanglement will be served first. In the
work, this is left open to the specific application and so one can consider the GEWI
protocol as an explicit schedule to the proposed protocol. Moreover, since here we use
the quantum channel to transmit classical information as well as entanglement, one

34

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

could make use of the “Create and Keep” protocol to store entanglement to perform
entanglement-assisted communication.

Among these works, only [54] explicitly considers enhancing communication rates in
classical networks with entanglement, but an explicit protocol is not considered. The use
of entanglement in the other works is primarily for entanglement-swapping routines or
teleportation of quantum states. Using entanglement primarily for enhancing classical
communication rates, and generating entanglement only when the network is idle,
allows the network to see performance improvements when entanglement is established,
and still function normally otherwise. We consider both the explicit link-layer protocol
as well as a simulation tool for determining these performance improvements.

2.2.2. Proof-of-Concept: A Link-Layer Protocol for Classical-Quantum
Communication Networks

In this section, we describe a link-layer protocol to perform entanglement-assisted
transmissions which we will then use with the classical-quantum simulation platform
described in the previous section for proof-of-concept. The protocols referred to are
defined below. Protocol 1 contains the heart of the logic. In each iteration of Protocol 1,
the sender checks if there is classical data to send at the upper layers. If there is data,
then a quantum data frame is generated and transmitted using Algorithm 1, which
uses the state of the entanglement buffer to determine if the classical data frame should
be encoded into qubits (thus encoded into an entanglement-assisted data frame) or not,
using the stored EPR pairs in a First-In-First-Out (FIFO) ordering. On the other hand,
if there is no data to transmit, a frame of EPR qubits is sent if the quantum storage can
accommodate it.

Type Payload Flag︸ ︷︷ ︸
1 qubit

︸ ︷︷ ︸
variable length

︸ ︷︷ ︸
8 qubits

Figure 2.14.: The link-layer data frame used for the entanglement-assisted quantum
channel.

The data frame structure we use is depicted in Fig. 2.14. One leading qubit is used to
indicate the Type of payload—entanglement or data—followed by the payload itself,
which is of variable length. The benefit of this is the avoidance of padding, which
could result in a waste of quantum resources. Next, a reserved byte sequence Flag,
representing the “end of frame”, signals the end of the frame. Alternatively, we could
have included the number of bits transmitted in the frame, but when this binary number
is greater than 255 bits, it becomes less efficient than using a termination flag. When
an EPR frame is sent, the protocol uses a maximum size of the EPR payload L. In this
noiseless and ideal setting, we exclude a leading flag for the data frame, since qubits
here are a discrete resource, for example, a single polarized photon. After the end of a
sequence, any qubit detection would indicate the beginning of a new incoming frame.
In more realistic scenarios, the data frame would need to be modified according to the
hardware parameters.

35

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Once a data frame is received, the receiver performs Algorithm 3. The receiver simply
decodes the first incoming qubit to determine the payload type. If the header indicates
EPR pairs, they store the payload for later use. If the header indicates data, then the
information is decoded either with entanglement assistance or without. The sender
and receiver agree with this before Protocol 1 starts.

Protocol 1 Entanglement-Assisted Message Transmission
Sender

1: while active do
2: if there is data to transmit then send data frame
3: else if entanglement buffer is not full then send EPR frame

Receiver
1: while active do receive frames

Algorithm 1 Send Data Frame
1: payloadQubits← initialize empty list
2: qh ← initialize qubit in the |1⟩ state
3: for byte in data stream do
4: for (b1, b2) in byte do ▷ iterate 2 bits at a time
5: if ent. buffer non-empty then
6: q1 ← pop qubit from ent. buffer
7: superdense encode q1 with (b1, b2)
8: add q1 to payloadQubits
9: else

10: q1, q2 ← initialize two qubits in |0⟩ state
11: if b1 = 1 then X(q1) ▷ excite q1 to |1⟩
12: if b2 = 1 then X(q2) ▷ excite q2 to |1⟩
13: add q1, q2 to payloadQubits
14: f lagQubits← generate 8 qubit flag state
15: f rame← (qh, payloadQubits, f lagQubits)
16: send frame

In Chapter 4 of this thesis, we demonstrate an integration of this protocol into a
classical-quantum network simulation merger. We combine the network simulators
Mininet and QuNetSim and analyze the performance of this protocol in depth. The
results show that this link layer can offer a performance improvement for classical
communication over qubit channels.

2.3. Network-Layer Protocols for Entanglement Redistribution

Section based on the article: "Entanglement-Enhanced Communication Networks"

An entanglement-enhanced communication network is a network where, depending
on its phase of development, the nodes in the network can generate, store, and also
swap entanglement. Thereby network nodes can share growing amounts of entangled

36

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Algorithm 2 Send EPR Frame
1: payloadQubits← initialize empty list
2: qh ← initialize qubit in the |0⟩ state
3: while ent. buffer not full and |payloadQubits| < L do
4: q1, q2 ← initialize two qubits in |0⟩ state
5: entangle q1, q2
6: store q1 in ent. buffer
7: add q2 to payloadQubits
8: f lagQubits← generate 8 qubit flag state
9: f rame← (qh, payloadQubits, f lagQubits)

10: send frame

Algorithm 3 Receive Frame
1: mh ← receive header qubit and measure
2: bytes← initialize empty list
3: bits← initialize empty list
4: if mh = 1 then ▷ Data frame
5: while bits ̸= FLAG do
6: reset bits
7: while |bits| ̸= 8 do
8: q← receive qubit
9: if ent. buffer non-empty then

10: qe ← pop qubit from ent. buffer
11: b0, b1 ← superdense decode (q, qe)
12: add (b0, b1) to bits
13: else ▷ classical decode
14: b0 ← measure(q)
15: bits.add(b0)

16: add bits to bytes
17: else ▷ EPR frame
18: qubits← receive L qubits
19: add qubits to ent. buff

states over distances that increase as the technology matures. This enables the execution
of novel network protocols that initially accelerate only the already known tasks of
data transmission, while at the later stages of the network, development allowing for
execution of novel tasks and ultimately being able to network quantum computers.
With this, we explore a phased approach to how such a network can be developed.

Phase One: In phase one, the aim is to develop the physical layer and the link
layer so that shared entanglement allows to temporarily increase the throughput of a
point-to-point link. With this, only the capacity of each link can benefit from newly
developed quantum technology for entanglement generation and transmission, allowing
the use of the entanglement-assisted capacity of the link [36]. Recent results show
that potential gains for entanglement as a plug-in resource to classical communication
can by far exceed the factor 2 demonstrated in superdense coding [58]. Preliminary
analysis of such an advantage is analytically demonstrated in [5, 59–61]. Experiments

37

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

of superdense coding demonstrating an entanglement-assisted classical capacity of an
optical fiber have been achieved in [62]. Entanglement across each link is created by
the link itself during periods when no or small amounts of data need to be transmitted,
and therefore no information to higher layers is required in this phase. We detail the
effects on the affected layers.

Physical Layer: To generate entanglement, the physical layer must produce entangled
photons to distribute from one node to another. Hardware additions that can generate
heralded entanglement between two parties will be needed. We enforce that entan-
glement pairs are generated on one side of a link and then half of the entanglement
is transmitted to a second party, where a protocol (see section 2.3.1) would be put in
place such that using classical communication, the arriving qubits would be known
to be an entanglement unit. Further, quantum memories used for storing quantum
entanglement between connections will also be needed. The memory hardware can
vary node to node, but the main principle is that each memory can store entanglement
in some way.

Link Layer: The link layer determines how information is encoded to transmit it over
the link. If there are entanglement resources available, the link layer can choose to
encode information such that the entanglement-assisted capacity of the channel [36] is
used. Alternatively, if there are no entanglement resources, links can transmit purely
classically. Optical fibers connecting routers will enable the transmission of information
either based on logical qubits or based on logical bits, depending on the state of the
entanglement resource buffer. To accomplish such a task, for example, one can use a
software-based switching mechanism as in [63]. We place the entanglement generation
logic on this layer since no entanglement routing is needed and the network in the
phase is oblivious as to how the information is transmitted. Reliable entanglement
generation is thus also left to the link layer.

Network layer: In this phase, we can begin to consider routing algorithms that take
into consideration the potential entanglement resources along a path. Using link-state
routing methods, using routes that have more entanglement can be considered for
single- or multi-path routing.

Phase Two: In phase two, we focus on the network layer. Here the key is to develop
network protocols so nodes can swap entanglement amongst themselves such that links
under heavy load can benefit from entanglement that was generated on other links of
the network, also increasing entanglement utilization. Link cost calculation methods
can also reflect the potential to swap entanglement if swapping can be done before
transmission. Routes can then be calculated based on various link cost metrics and
using for example a max-flow-min-cost approach. Phase two can also be considered as
a series of sub-phases. We use the term “physical link” to mean a direct connection
between two nodes (e.g. a cable or air interface), and “virtual link” for a connection that
is established via intermediate nodes. Then, the “swap distance” of a network can be
defined as the maximum number of intermediate nodes in a virtual link of the network
that has entanglement shared between its endpoints. For each proceeding phase, the
swap distance is increased by one. We provide simulation results in this thesis for the
initial phase, where the swap distance is one, and for a phase where the swap distance
is unbounded. The sub-phases are highly correlated with the advancement of quantum

38

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

repeater chains and the generations of quantum repeaters such as defined in [18].
Network Layer: The network layer will need to coordinate entanglement swapping

amongst the nodes to make use of new routing approaches and to add entanglement
resources to routes that are under heavy load. New network protocols to reliably
accomplish such tasks will be needed. Depending on the sub-phase of phase two,
the level of coordination of these protocols will increase. While the swap distance
increases, we can envision novel research topics regarding routing and applications for
entanglement-enhanced networks.

Phase Three: Up to now, we have considered methods for transmitting only classical
information through the network, which is encoded classically or quantumly depending
on the state of the entanglement in the network. In this final phase, we integrate
the transmission of quantum information, that is, the possibility to transmit arbitrary
quantum states. Developing an internet that transmits quantum information is currently
receiving much attention (see for example [64]). This phase will require joining the two
paths to form a unified classical-quantum Internet.

2.3.1. Entanglement Generation and Balancing in the Network

Through all phases, our assumption in this thesis is that entanglement is generated
independently between direct endpoints of physical links during idle times, as described
in [59]. That means we explicitly exclude the possibility of forwarding or relaying qubits
in the entanglement generation process. Thus, we avoid contradiction with the end-to-
end principle, stay in tune with the current network architecture, and open a path of
subsequent evolutionary optimization towards a fully quantum internet. In this section,
we propose a “sliding-window"-like method for distributing entanglement across a
physical link. We emphasize that, from a network perspective, the entanglement is
considered generated only after it is distributed across a link. Further, we describe an
entanglement balancing protocol as an optimization step.

Entanglement Generation and Distribution

In phase one, we consider a system that is continuously attempting to generate entan-
glement between nodes when they are idle. This generation mechanism is autonomous
and unknown from the perspective of the network layer which is in alignment with
the end-to-end principle [65]. The generation of entanglement is therefore a link-layer
protocol.

We rely on the ability to store quantum entanglement in quantum memories for these
protocols. Using a heralded entanglement generation technique, for example using
the technique described in [66], individual entanglement units are generated locally
to a minimum entanglement fidelity threshold Fmin. With these individual units, a
frame of entanglement is generated where a “frame" in this setting is a collection of
entanglement units. We propose a protocol for efficiently distributing entanglement
frames between two hosts connected by a quantum link. We base the protocol on the
TCP sliding window protocol.

The protocol runs as follows. A frame of EPR pair halves is generated with a
minimum fidelity Fmin and is transmitted. The qubits are sent one after another to the

39

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

receiver and at the last qubit in the frame, a timer starts at the sender. As with a sliding
window algorithm, each frame is given a sequence number. After the frame is sent, the
sender awaits an acknowledgment from the receiver for a fixed amount of time. If the
acknowledgment is received within the timeframe, then the EPR pair halves are stored
at the sender. If no acknowledgment is received, the sender discards their halves. At
the receiver, if the frame meets the acceptance criteria, the pair halves are stored, and
an acknowledgment is sent. The procedure of preparing and accepting frames is given
in Protocol 2 and a depiction of the procedure is in Fig. 2.15.

In Protocol 2, we refer to an await task that is waiting for N qubits to arrive. This is
dependent on the method of transmitting physical qubits. Presently, there are methods
for non-destructive detection of photons, even demonstrated experimentally in [67],
but the detection method does not in general maintain quantum correlations. Future
generations of quantum optics technology promise improvements to non-destructive
detection methods of photons [68, 69].

The link layer is further responsible for maintaining entanglement units with high
enough fidelity. Based on the properties of the quantum memory device, entanglement
units in storage will be automatically eliminated from the system based on the expected
coherence time of the memory devices, or they can be consumed by performing a
round of entanglement distillation to generate higher quality entanglement [70].

Protocol 2 Sliding window entanglement generation protocol
Input: A previously agreed upon entanglement fidelity Fmin and values N, total number
of entangled pairs and T the number of qubits for foreign fidelity testing. We assume that a
handshake protocol to initiate entanglement frames transfer has been established when the
data transmission buffer at the sender’s side is empty. Moreover, when a frame is resent, the
quantum memory holding the qubits in that frame at the sender is first cleared.
Sender

1: Prepare N entangled pairs using (for example) heralded entanglement generation with
fidelity ≥ Fmin

2: S_Measurements← Measure T halves of the N entangled pairs
3: Send the remaining N halves to Bob in a frame with S_Measurements
4: Store remaining N − T halves and await

Receiver
1: await Receive N entanglement halves from sender
2: Timer← On the arrival of the first qubit, start a timer to track frame transmission time
3: if number of received < N after a waiting period then
4: reject frame
5: R_Measurements← Measure the agreed subset of T qubits received
6: if ratio of matches in R_Measurements and S_Measurements < Fmin then
7: reject frame
8: Store remaining N − T halves and accept frame

Entanglement Buffer Balancing

As an optimization step, a protocol for balancing the entanglement buffers can be
used. We assume each transmission link is directed and has one entanglement buffer

40

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

start

ok
0
1
2

× × × × × ×0
1
2

× × ×
× ×

timeout

× × ×
× ×

0
1
2

timeout
× × ×
× ×

× ×

× × ×
× ×

× × ×

stop

Figure 2.15.: In the first three frame transmissions, all three frames are acknowledged,
and they are stored successfully at the sender and receiver. In the second
window, the first frame transmission does not arrive at the receiver. The
receiver does not add the frame to memory and as a consequence neither
does the sender. In the next window, the receiver receives all three frames,
but an acknowledgment for frame 1 to the sender is lost. The sender
discards their half of the EPR pair after a timeout period and continues the
process, but the receiver holds their half of the EPR pair. The qubit in the
receiver memory will eventually expire and the sender will not use that
frame for transmission. Finally, the receiver sends a signal to the sender to
stop sending entanglement frames.

41

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

consisting of two quantum memories at its endpoints (see Fig. 2.16). Let a link A→ B
be accompanied by its reverse link B → A. If A transmits data to B, but B does not
transmit data to A at the same time, entanglement units are created on the B→ A link.
While A and B consume the shared entanglement stored in the A→ B entanglement
buffer, a messaging protocol between A and B can “relabel” entanglement units from
the entanglement buffer of the B→ A link to that of the A→ B link. The protocol is
given in full in Protocol 3.

Protocol 3 Entanglement Balancing
Input: Ethresh, Emin

Sender
1: EntBufferLow← Number of available entanglement units on A→ B link is less than

Emin

2: EntBufferHigh← Number of available entanglement units on B→ A link is more
than Ethresh

3: if not (EntBufferLow & EntBufferHigh) then
4: continue
5: EntUnits← select the N newest entanglement frames in the B→ A entanglement

buffer
6: send classical request to B to make the EntUnits entanglement frames available for

A→ B transmission
7: await Avail← List of available frames from B
8: if Avail is non-empty then
9: Use new Avail entanglement frames for transmission

10: else
11: continue
Receiver

1: receive request from A to re-address the EntUnits entanglement frames from B→ A
memory to A→ B memory

2: for each e in EntUnits do
3: success← mark e as an A→ B entanglement frame, return success status
4: if success then
5: add address e to list Avail
6: send Avail

Supporting Routes via Nearby Entanglement Swapping

Entanglement in the network can be a valuable resource, and in some cases, it can be
beneficial to move entanglement around in the network to high-demand routes rather
than waiting to generate more entanglement. We motivate with an example.

If large amounts of data need to be transmitted in a short time, entanglement
swapping can be beneficial. Consider the exemplary situation in Fig. 2.17 with t = 5,
x = 3, and y = 4. Assume the number of EPR pairs stored per link is 3. The act
of sending 12 bits from s to d using swapping can take 6 time units: In the first 3

42

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

B→ A buffer

A→ B buffer

A B

× × × × × × × × × × × × ×

× ×

Figure 2.16.: The upper entanglement buffer stores entanglement created on the A→ B
link and the lower that created on the B→ A link. Each buffer is physically
shared between A and B. Red lines represent example thresholds where
balancing can be triggered.

s

n1 n2

nt

nx

nyd

Figure 2.17.: Example of a growing swap chain.

time units all entanglement on (s, d) is consumed while transmitting the first 4 bits.
Meanwhile, the entanglement on (s, n1) . . . (n6, d) is swapped to (s, d) via a chain of
measurements and classical messaging. The first swapped EPR pair is available in the
3rd communication round when the entanglement originally present on (s, d) has just
expired. Thus in each round 2 bits are sent. Sharing the load fairly over (s, d) and
(s, n1), . . . , (nt, d) will take 8 time units, using only (s, d) without swapping will take 9
time units, using no entanglement but all available paths will take 9 time units as well.

Once a route or a collection of routes is established between source and destination,
we can consider supporting the route with additional entanglement resources. We
consider an approach to orchestrate the nodes which are not part of the route, that
share entanglement with those which are, to supply it with entanglement resources.
We provide a sample algorithm to do this in Algorithm 4.

Algorithm 4 Entanglement Supplementation
Input:
R: Route steps from s to d (i.e.[(s, l1), (l1, l2), . . . , (ln, d)])
K: List of candidate supplier nodes

1: for each (l1, l2) in R do
2: for each k in K do
3: if not(connected(l1, k) and connected(k, l2)) then
4: continue
5: if entUnits(l1, k) = 0 or entUnits(k, l2) = 0 then
6: continue
7: swap(k, l1, l2)
8: updateLinkInfo(k, l1, l2)

We can instead use a linear program to find the optimal swaps to make to provide a
given route with sufficient amounts of external entanglement. As we have Algorithm 4,

43

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

k

i
j

lwkj

Figure 2.18.: Node k has the ability to perform an entanglement swap to the edge (i, j)
and (j, l) if the necessary entanglement has been pre-established. In this
case, the amount swapped to (i, j) or (j, k) must be less than the weight
wkj.

there is a list of candidate supplier nodes K where each k ∈ K has edges to nodes i and
j where (i, j) is an edge in the route. In this direction, let xkij ∈N represent the amount
of entanglement swapped from node k to the link (i, j), where the edge (i, j) is an edge
in the route. S is the set of all possible swaps in this form. E(R) is the amount of
entanglement that exists on the route R and E the total entanglement in the network. C
is the set of swap triples ((k, i, j), (k, j, l)) where the node k can swap to the edges (i, j)
or (j, l) where j is a common node in the swap (see Fig. 2.18 for a depiction). Finally,
M is the number of bits to transmit. The linear program is given in Linear Program 1.

Linear Program 1 Local Entanglement Redistribution
Maximize: ∑

(k,i,j)∈S
xkij.

Subject to conditions:
1. ∑

(k,i,j)∈S
xkij ≤ E − E(R),

2. 0 ≤ xkij ≤ min{wki, wkj, ⌈M/2⌉}, ∀(k, i, j) ∈ S ,
3. xkij + xkjl ≤ wkj, ∀((k, i, j), (k, j, l)) ∈ C.

Supporting Routes via Global Entanglement Swapping

We define a linear program allocating entanglement to a given route from the entire
unused part of the network. For a collection of edges L ⊂ E, we write G \ L to
denote (V, E \ L). A path puv is an ordered collection of edges from vertex u to v.
Let psd be a path connecting the source s and destination d in the graph G. Define
G′ := G \ psd. Then G′ is the part of G that can contribute entanglement to support
message transmission via psd. Let for each edge (u, v) ∈ G′, P(u, v) be the set of all
paths in G′ that connect u to v. For each step (u, v) ∈ psd, P(u, v) is the set of paths that
can swap entanglement towards (uv). The length of q ∈ P(u, v) is denoted |q|.
Optimization variables: xuv

ijq ∈N where (i, j) ∈ G′, (u, v) ∈ psd and q ∈ P(u, v). Each
xuv

ijq is the amount of entanglement taken from link (i, j) via path q to edge (u, v).
(wij)(i,j)∈G′ is the entanglement in G′.

44

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Linear Program 2 Global Entanglement Redistribution
Maximize: x ∈N

Subject to conditions:
1. Cannot swap more than minimum amount per path.

0 ≤ xuv
ijq ≤ min

(k,l)∈q
wkl ,

∀(i, j) ∈ G′, ∀(u, v) ∈ psd, ∀q ∈ P(u, v).
(2.3.1)

2. Cannot overuse entanglement on the link,

∑
(u,v)∈psd

∑
q∈P(u,v)

xuv
ijq ≤ wij, ∀(i, j) ∈ G′. (2.3.2)

3. All edges use the same amount of entanglement,

xuv
ijq = xuv

klq,

∀(u, v) ∈ psd, ∀q ∈ P(u, v), ∀(i, j), (k, l) ∈ q.
(2.3.3)

4. To max-minimize the bottle neck on each path,

wuv + ∑
q∈P(u,v)

∑
(i,j)∈G′

xuv
ijq ≥ x, ∀(u, v) ∈ psd. (2.3.4)

5. Should not waste entanglement, ∀(u, v) ∈ psd,

∑
q∈P(u,v)

∑
(i,j)∈G′

xuv
ijq

|q| ≤ max (0, ⌈M/2⌉ − wuv) . (2.3.5)

The linear program is written in Linear Program 2. With the linear program solved,
for each path q, the value xuv

ijq is the amount of entanglement that can be moved to the
link (u, v) and it is the amount of entanglement removed from reach edge (i, j) in the
path q. In this initial work, we leave open the question of how to optimally execute
the messaging that is needed to perform the optimal allocation as calculated in Linear
Program 2. In simulations, we work with the simplified assumption that the delay until
the entanglement is present at (u, v) is min{⌈ |q|2 ⌉ : xuv

ijq > 0} and links contributing an
amount E of EPR pairs cannot build entanglement for E time units.

Simulation Results

To compare the approaches to routing and path augmentation discussed in the previous
sections, we simulate two entanglement-enhanced network configurations depicted in
Fig. 2.19. We compare the results to the classical setting using single- and multi-routing.
For the analysis, we use graph G = (V, E, W) defined in the previous section. We
assume that there are several messages N that are being transmitted from a source to a

45

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

(a) Grid network (b) Complete network (c) Wide network

Figure 2.19.: Networks used for simulation analysis. In the grid network, transmissions
are alternated from bottom-left to top-right corner and bottom-right to top-
left. In the complete network, the source and destination are alternated
clockwise along the outer edges. Source and destination are fixed for
the wide network, which is the left and right nodes in the center row
respectively.

destination. Each message has 6 bits to transmit. The simulation runs by selecting a
source and destination and transmits a message completely. Except in the wide network
case, once the message is transmitted, the source and destination change, and another
message is transmitted until all N messages are transmitted. For the wide network, to
incorporate noise, we assume that with a 50% chance an entanglement unit is generated
on an unused link, and it costs 2 e-bits to send a superdense message. For the other
network types, at each time step, an e-bit is generated with certainty on each unused
link and the cost to send a superdense message is one e-bit. In the case of superdense
coding, when entanglement exists over a link, the classical capacity is doubled. We use
this knowledge to determine the capacity of the links before routing. An entanglement
swapping procedure is assumed not to increase routing time. We show the results in
Fig. 2.20.

2.4. Entanglement-Assisted Cooperation in MIMO Channel
Settings

Section based on the article: "Undoing Causal Effects of a Causal Broadcast Channel
with Cooperating Receivers using Entanglement Resource"

The use of entanglement resources in classical communication scenarios has been
shown to reduce communication resources [71], increase the capacity of channels
[72], and enable communication [38, 73]. Entanglement can moreover be used to
improve upon protocols for secure multi-party computation and communication [74, 75],
allowing parties to compute a common function securely. In this thesis, we introduce a
communication scenario with a single sender broadcasting classically encoded messages
to N receivers. To decode the messages, the receivers must cooperate, or conference
[76], with one another or otherwise, because of the channel’s causal properties, the
capacity of the channel vanishes. This scenario mimics one where a sender broadcasts
a message to a collection of receivers such that either all receivers receive the message
or none of them receive it, based on their cooperation.

46

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

0 20 40 60 80 100 120 140 160 180

0

200

400

600

800

1,000

0 20 40 60 80 100 120 140 160 180

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160 180

0

200

400

600

800

1,000

0 20 40 60 80 100 120 140 160 180

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180

0

200

400

600

800

1,000

0 20 40 60 80 100 120 140 160 180

1

1.2

1.4

1.6

1.8

2

2.2

N N

Grid: Transmissions Grid: Bandwidth

Complete: Transmissions Complete: Bandwidth

Wide: Transmissions Wide: Bandwidth

Figure 2.20.: The green lines represent max-flow routing with quantum resources and
the red lines represent max-flow routing without quantum resources. For
the shortest-path, the blue crosses are no quantum resources, the black
crosses are with quantum resources without entanglement swapping,
the red dots are with quantum resources and depth one entanglement
swapping, and the yellow dots are with quantum resources and global
swapping. Sub-figures in the left column represent the number of trans-
missions from the senders. Sub-figures in the right column represent the
average network bandwidth, where each link in the network has one unit
time for transmission.

47

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

The channel model in this thesis has a causal state variable that determines how the
channel transmits the sender’s messages. Specifically, “causal” here means that with
each transmission made over the channel, the transmission behavior of the channel
changes depending on a random state variable. When a message arrives at the receiver,
it is accompanied by a piece of state information. The state information is split between
the receivers such that alone, the best the receiver can do is randomly guess the channel
state. The receivers’ task is to cooperate to fairly determine the channel state – essential
for decoding the sender’s message. In the general case, the receivers can collude with
each other in groups to attempt to determine the channel state unfairly, that is, where
the receivers in the colluding group determine the channel state and the others do not.
To overcome this, we apply secure multi-party protocols that work under a maximum
colluding number of receivers. We investigate protocols under three conferencing
resource scenarios.

The scenarios we consider are: when the receivers are only able to share entanglement,
but are unable to classically communicate; second, they can classically communicate
but not share entanglement; and lastly when they can both share entanglement and
can classically communicate. In these scenarios, we determine a lower bound for
the communication cost for performing protocols that allow the receivers to fairly
determine the channel state. We find that with only classical resources, the receivers
can perform a fair and conditionally secure protocol to determine the channel state
but at the expense of additional classical resources compared to the case where they
can in addition share entanglement. We see an overall quadratic reduction of the
communication resources needed when entanglement resources are available with an
addition of provable security.

2.4.1. Related Work

In this thesis, we consider a causal broadcast channel communication scenario with
cooperating receivers. In [73], a dual scenario is considered where instead of a cause
broadcast channel, the channel is a causal multiple access channel with cooperating
senders. In that case, the receivers need not communicate, as shared entanglement is
enough to achieve a positive channel capacity. In [77], a causal broadcast channel with
channel state information at the sender is analyzed. In this thesis, we make use of the
multi-party modulo summation protocols developed in [78] and [79], extending and
optimizing them for this particular communication scenario when n modulo sums are
needed.

We propose a communication model with a sender and many receivers that can
be used to ensure that either all receivers receive their message with certainty if they
cooperate or otherwise none of them receive their message. We use protocols developed
in [78, 79] to develop a scheme that is fair and secure such that all receivers can
decode messages from the sender fairly when the protocols run honestly, even when
some receivers collude. We consider the trade-offs for allowing the receivers to share
classical and quantum resources and find when the receivers can share entanglement
and can broadcast messages, they can verifiably securely perform the multi-party
computation needed to determine the channel state which encrypts each transmission

48

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

un

mN

un(mN)

(ûn
1 , xn

1) (ûn
N , xn

N). . .

. . .

Cs

Figure 2.21.: Depiction of the causal, state-dependent, broadcast channel. The sender
at the top sends mN to the encoder un which encodes the message as uNn.
After encoding, the message is put through the state-dependent channel
Cs, where for each bit of uNn sent through the channel, a state is selected
uniformly at the random game using the modulo sum of xN . One piece of
xN is sent to the respective receiver until all xn

i are received. The receivers
can then use their part of xNn as input to their coordinator q to receive γn

i
which can be used to aid in decoding ûn

i .

from the sender. We determine the communication complexity for each case where
communication is possible.

2.4.2. Notation

Given a finite alphabet X, the set of probability distributions on it is P(X). The
corresponding state space for quantum systems on a finite-dimensional Hilbert space H
is denoted S(H). The n-fold composition X× . . .× X is written Xn. A classical channel
W with input alphabet X and output alphabet Y is defined by a matrix (w(y|x))x∈X,y∈Y

where w(·|x) ∈ P(Y) for all x ∈ X. The set of all such channels is denoted C(X, Y).
Specific channels used in this thesis are: The identity map on x ∈ {0, 1}, defined
by 1(x) = x, the bit-flip on F as F(x) = x ⊕ 1, and the binary symmetric channel
(BSC) with parameter ν ∈ [0, 1] defined as BSC(ν) := ν1+ (1− ν)F. The entropy of
p ∈ P(X) is H(p) := −∑x∈X p(x) log(x), (log being calculated with base 2 and using
the convention 0 log(0) = 0). The mutual information of p ∈ P(X) and W ∈ C(X, Y) is
I(p; W) := H(p) + H(W p)−H((W, p)). Distribution π ∈ P(X) represents the uniform
distribution on X.

2.4.3. Channel Model

The broadcast channel consists of one sender and N receivers, of which up to N − 2
can be colluding, as to satisfy the maximum collusion condition. A single sender
intends to transmit a collection of private messages mN := (m1, ..., mN), one to each
of the respective receivers. For message transmission, the sender uses encoder un :
(m1, ..., mN) 7→ (un

1 , ..., un
N) which maps the messages (m1, ..., mN) to block-length n

49

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

messages un
i ∈ {0, 1}n for n channel uses. For convenience, we define the map un(mi) 7→

un(mN)i, a mapping to the i-th index of the encoded message string. Between the sender
and each receiver i is a state dependent binary inference channel Cs ∈ C({0, 1}, {0, 1})
with an environmentally controlled state s ∈ {0, 1}. The channel behaves as follows:
When s = 0, C0 := 1 is the identity channel, and when s = 1, C1 := F is the bit flip
channel. The total channel CN

s is a product of the channels, that is,

CN
s :=

N

∏
i=1
Cs, (2.4.1)

where each channel in the product shares the same state s.
The main requirement for channel state selection is that the state of the channel

is uniformly random between two outcomes such that for three or more players, no
receiver can infer the channel state based on their individual state information. We
use one such example as follows. Prior to transmission of ut = {0, 1}N at time t, an
environmental state xN

t ∈ {0, 1}N is realized according to the uniform distribution
on {0, 1}N . For each i, one part xi,t of xN

t is sent along with other information to
receiver i with no encoding or effects from the channel when a transmission is made.
The state s at transmission t is selected using s = ∑i xi,t mod 2. For convenience we
define Φ(xN

t) = ∑i xi,t mod 2. We use this example modulo sum throughout this work.
Φ(xNn) denotes (Φ(xN

1), ..., Φ(xN
n)).

When the sender sends a message to the receivers, the message is encoded into n bits
and transmitted over n uses of CN

s . At each transmission t the receivers receive their
part of xN and use it to assist in decoding their private message from the sender. Each
receiver i ∈ [N] can use {xi,t}n

t=1 to aid in selecting a decoder dn
i ∈ C({0, 1}n × Γn, Mi),

Mi the codebook for receiver i, which takes as input n outputs of the channel Cs

and a coordination parameter γn
i ∈ Γn which serves to coordinate the N receivers

while decoding. The parameter γn
i ∈ Γn is distributed according to the channel

q ∈ C({0, 1}Nn, ΓNn) which we call the coordinator. Each receiver inputs their part xn
i

of xNn to q and receives a response γn
i which is used for decoding.

Definition 9 (Non-signalling channel). A channel q ∈ C(X, Γ) is called non-signalling if,
for all γ1, x1, x2, x′2,

∑
γ2

q(γ1, γ2|x1, x2) = ∑
γ2

q(γ1, γ2|x1, x′2) (2.4.2)

and for all γ2, x1, x′1, x2,

∑
γ1

q(γ1, γ2|x1, x2) = ∑
γ1

q(γ1, γ2|x′1, x2). (2.4.3)

In this thesis, we use various approaches at the receivers for determining the decoding
parameter γn

i . Here we consider the following three scenarios:

1. Classical communication is not available between receivers, but shared entangle-
ment is.

2. Classical communication is available between receivers but not entanglement.

50

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

3. Classical communication and shared entanglement are both available.

In the first case, correlations are non-signaling, whereas in the other two, they are
signaling. We define the channel formally as follows:

Definition 10 (Broadcast Code). A broadcast code C for block-length n and N receivers
consists of message sets M1, ..., MN . Moreover C contains an encoder un(m1, ..., mN) where
un : (m1, ..., mN) 7→ (un

1 , ..., un
N) ⊂ {0, 1}Nn. Next, for each i, C contains a causal decoder

dn
i (m̂i|un

i , γn
i) which decodes the channel output when n bits arrive. dn

i assigns an estimate
m̂i ∈ Mi using decoding sets Dγi

i := {Dγi
i,j}
|Mi |
j=1 ⊂ {0, 1}n where for a fixed i and j ̸= k

Dγi
i,j ∩ Dγi

i,k = ∅.

Definition 11 (Transmission Error). Let Cn be a broadcast code with block-length n and
N receivers transmitting over CN

s as defined in (2.4.1). Let M := ∏N
i=1 |Mi|. The average

probability for transmission success is,

Psucc(Cn) =
1

M2Nn ∑
mN

∑
xNn,
γNn

q(γNn|xNn)·

N

∏
i=1

dn
i (Dγn

i
i,mi
|Cn

Φ(xNn)(u
n(mi)), γn

i).

(2.4.4)

where Cn
Φ(xNn)

(un(m)) represents the channel output after n uses of CΦ(xN
t) using {xN

t }n
t=1 for

transmission t to send the t-th bit of encoding un(m). The probability of error is defined as
Perr(Cn) = 1− Psucc(Cn).

Definition 12 (Achievable Rate Tuple). A rate tuple (R1, ..., RN) is called achievable if there
exists a sequence of causal codes (Cn)n∈N such that for any i ∈ {1, ..., N},

lim inf
n→∞

1
n

log |Mi,n| ≥ Ri (2.4.5)

while at the same time

lim
n→∞

Perr(Cn) = 0. (2.4.6)

The capacity region of a channel is the closure of all achievable rate tuples.

In order to determine the channel state for each transmission in this communication
scenario, the receivers will need a scheme such that they can determine the modulo sum
of the combined state information of each other receiver. Since some of the receivers are
possibly colluding, each receiver should not simply give away their state information
and thus use a random variable Ri to encode Xi with. Formally, we enforce that for any
proposed protocol for multi-party modulo sum, it must be that for colluding receivers
Z ⊂ [N], |Z| ≤ N − 2 and each for all non-colluding receivers i ∈ [N] \ Z,

I(Ri; YZ) = 0, (2.4.7)

where YZ is all of the information obtainable by the coalition excluding information
derivative to the multi-party calculation. One might consider enforcing I(Xi; Yz) = 0

51

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

for all i as well, but for any multi-party summation protocol, there is always a way to
determine the sum of the inputs of the non-colluding parties amongst the coalition.
We also enforce a reliability condition which is that when all N receivers perform the
protocol honestly, then each of the receivers determines the channel state. Once the
channel state is determined for each transmission, they generate a variable γNn which
contains the state information for each transmission 1 ≤ t ≤ n. With this, each receiver
i can choose the respective decoding set Dγn

i
i .

2.4.4. Entanglement Without Classical Communication

Theorem 13. When classical communication between the receivers is not available but entan-
glement is, the rate region equals 0N . Moreover, without classical communication, no protocol
exists using only entanglement to compute the modulo sum of the channel state information.

In this scenario, the receivers cannot classically communicate but can share entangle-
ment resources in any form distributed prior to transmission. For each transmission t,
each receiver i receives their bit xi,t where based on the channel state selection mecha-
nism, each xj,t is independent of xi,t for i ̸= j. The task for the receivers is to correlate
themselves such that they have a better than p = 1/2 chance of guessing the channel
state. To do this, the parties need to devise a joint measurement of their entangled
states that can signal, contradicting the no-signaling theorem. Because the channel
state is selected using an unbiased modulo sum the channel state equals the identity
channel as it is the bit flip channel, the overall channel is a binary symmetric channel
with p = 1/2, well known to have 0 capacity. That the parties are malevolent makes no
difference here as there is no way for the receivers to gain any information from the
other receivers.

Proof. For the channel CN
s , assume there is an achievable rate tuple (R1, ..., RN) where

for at least one i, i = 1 without loss of generality, Ri > 0. Then, for any ϵ > 0 there is
an n large enough such that,

1− ϵ ≤ 1
M2Nn ∑

mN
∑
xNn

γNn

q(γNn|xNn)·
N

∏
i=1

dn
i (Dγn

i
i,mi
|Cn

Φ(xNn)(u
n(mi)), γn

i)
(2.4.8)

≤ 1
M12Nn ∑

m1

∑
xNn

γNn

q(γNn|xNn)·
dn

1(Dγn
1

1,m1
|Cn

Φ(xNn)(u
n(m1)), γn

1).
(2.4.9)

In order to better predict Φ(xNn), the receivers coordinate with q(γNn|xNn). Shared
entanglement alone is non-signalling [80] and so

∑
γ(N−1)n

q(γn
1 , γ(N−1)n|xn

1 , x(N−1)n) = q1(γ
n
1 |xn

1). (2.4.10)

The channel state Φ(xNn) for channel Cn
Φ(xNn)

(ûn|un(m1)) and decoder dn
1 with n

transmissions leads to an effective channel from sender 1 to receiver 1. Let g denote

52

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

the channel from sender 1 to receiver 1, including the reception of a copy x of the state
variable x1.

g(x, y|u) = 2−N ∑
xN

δ(x, x1)δ(y, Φ(xN)⊕ u) (2.4.11)

= 1
2 ∑

x1,x̂
δ(x, x1)

1
2 δ(y, x̂⊕ x1 ⊕ u) (2.4.12)

= π(x)π(y). (2.4.13)

Obviously, for the Shannon capacity C of g it holds C(g) = 0. Therefore, no coding
scheme, and in particular none that uses the particular random decoder

d̂(m|xn
1 , yn) := ∑

γn
1

q(γn
1 |xn

1)1D
γn

1
m
(yn), (2.4.14)

can transmit at positive rates over g. This contradicts (2.4.8) and thus only 0N is
achievable.

2.4.5. Classical Communication Without Entanglement

In the next two cases, we develop a signaling coordinator q that can be used to achieve
positive capacity.

Theorem 14. When classical communication is allowed between the receivers, using Protocol 5
the rate tuple 1N is achievable and the communication complexity is Ω(N2) using a conditionally
secure protocol.

Remark 15. For unconditional security, the secrecy of each communication channel between
each pair of connected receivers must be verified, which would add significant communication
resource overhead to the protocol. With only classical resources, one could consider private key
distribution, but with colluding receivers, this would not work since private keys could be shared
in the collusion.

When classical communication is available, the receivers can collaborate to each send
the xi amongst each other receiver to perfectly determine the channel state s for each
transmission. When all receivers are honest, nothing more needs to be done, however,
when some receivers are dishonest, more complexity is needed to preserve secrecy.
We can turn to theory for secure multi-party computation (MPC), specifically, secure
multi-party modulo summation to compute the common function Φ(xN). Since in this
case the parties are not allowed to share entanglement and are allowed only classical
communication, we only investigate purely classical strategies. In all strategies, the
assumption of minimum non-colluding parties (i.e., at most N − 2 parties can collude)
is made. In the following, we sketch the strategy and the complexity analysis.

Strategy I: Secure multi-party modulo summation

For the first strategy, we consider a protocol that requires secure channels between
each of the receivers. We enforce this in this case in a purely classical way (e.g., using

53

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

quantum key distribution schemes is prohibited). If we assume a standard public key
cryptography system then there is an additional communication overhead of Ω(N2).
This is because with just forward communication as the protocol needs,

(N − 1)(N − 2)/2 = (N2 − 3N + 2)/2, (2.4.15)

secure channels are needed and therefore as many public keys need to be distributed.
Commonly used public key cryptography schemes like RSA are not unconditionally
secure as they can be broken with enough computing power or a quantum computer
[2]. In contrast, as we will see in Section 2.4.6, when entanglement is available, secure
communication is not necessary.

In [78], Chor and Kushilevtiz give a multi-party protocol to compute a modulo sum
with a security trade-off parameter t ∈ [N]. Here t represents that no coalition of size at
most t can infer any additional information from the other receivers’ xi from the other
N − t parties other than the modulo sum value, with t ≤ N − 2. This protocol uses
N⌈(t + 1)/2⌉ conferencing messages assuming preestablished secure communication
channels. For completeness, we state the protocol in Protocol 4, where t is assumed to
be N − 2.

Protocol 4 Classical State Decoding

1: for i ∈ {1, ..., N − 2} do
2: Receiver i awaits zj,i from receivers j < i and

calculates wi = ∑i−1
j=1 zj,i mod 2 with w1 = 0

3: Receiver i selects uniformly at random
zi,i+1, zi,i+2, ..., zi,N−1 each from {0, 1}

4: Receiver i determines zi,N such that
xi + wi = ∑N

j=i+1 zi,j and sends zi,j to the respective
receiver j > i

5: Receiver N − 1 computes zN−1,N = xN−1 + ∑N−2
j=1 zj,N−1 mod 2 and sends it to receiver N

6: Receiver N computes s = xN + ∑N−1
j=1 zj,n mod 2 and broadcasts s to all other receivers

The proof of correctness for this protocol is given explicitly in [78]. The downside of
using this protocol alone is that for decoding a message of length n, the protocol needs
to execute n times. In Strategy II, we use this protocol to generate a zero-sum random
variable in the first step, and then using this zero-sum random variable, one can save
resources by reusing it for each transmission. We explore the pros and cons in depth.

Strategy II: Modulo-zero summation from modulo summation

We consider another strategy where the receivers use Protocol 4 to produce random
variables R = (r1, ..., rN) such that ∑N

i=1 ri = 0 and then perform steps 4 and 5 from
Protocol 7 using this zero-sum randomness. To generate such a zero-sum random
variable, one can use the protocol defined in [79, Protocol 2] which we include explicitly
as a subprotocol in Protocol 5. Once a zero-sum realization is generated, it can be used
repeatedly to decode a message of length n. The full protocol is given explicitly in
Protocol 5.

54

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Protocol 5 Classical Secure Multi-Party Summation
1: Each receiver i generates a uniform random number Yi independent of the other receivers
2: The receivers run Protocol 4 with {Yi}N

i=1 and each receiver will have the result ∑N
i=1 Yi

3: Receiver 1 uses random variable r1 = Y1 −∑N
i=1 Yi, receivers i ∈ {2, ..., N} use ri = Yi

4: To determine channel state st for transmission 1 ≤ t ≤ n, each receiver broadcasts si,t :=
xi,t + ri. The channel state is found by st = ∑N

i=1 si,t mod 2 = ∑N
i=1 xi,t + ri mod 2 =

∑N
i=1 xi,t mod 2

We summarize the communication complexity analysis. For establishing (condition-
ally) secure connections using public key distribution techniques requires each receiver
(in the limit of increasing receivers) to send a public key to each other receiver consum-
ing Ω(N2) messages. Next, generating a zero-sum random variable using Protocol 4
requires Ω(Nt) for t colluding parties. Once a zero-sum random variable realization
is successfully generated, the receivers can use step 4 from Protocol 7 which requires
each sender to use a broadcast channel to transmit their encrypted state information.
In total, the communication is, therefore, Ω(N2 + Nt).

That the zero-sum random variable can be recycled because of its zero-sum condition.
For example, assume N− 2 parties collude and share their ri in an attempt to determine,
without loss of generality, r1 and r2. Then at the end of the protocol, the N− 2 colluding
parties have (x1 + r1) + (x2 + r2) + ∑N

i=3 ri = x1 + x2, and thus no reminisce of r1 or r2

remains.

2.4.6. Classical Communication with Entanglement

Theorem 16. When classical communication and entanglement are allowed between the
receivers, there exists a multi-party summation protocol such the rate tuple 1N is achievable with
classical communication complexity Ω(N) and entanglement resource complexity Ω(N2m)

with unconditional security.

We sketch the proof. To determine the channel state s, the receivers perform Protocol
7 for multi-party modulo summation extended from [79, Protocol 4], which offers
verifiable randomness for zero-sum random variables and unconditional security. The
protocol uses phase-GHZ states defined as follows. Let RN := {rN = (r1, ..., rN) :
∀i, ri ∈ {0, 1}, ∑N

i=1 ri = 0}. The phase-GHZ state is defined as:

|GHZ⟩p :=
1√

2N−1 ∑
rN∈RN

∣∣∣rN
〉

. (2.4.16)

This ensures every joint measurement result of |GHZ⟩p sums to 0. With security param-
eter f , we write the necessary protocols that the receivers use to securely communicate
their piece of the channel state such that the security is verifiable. Using these
protocols, the receivers can with certainty and security (with respect to parameter
m) determine the channel state s for each transmission, thereby allowing for perfect
decoding of the message.

The communication complexity of this approach is as follows. As far as we know,
there are no protocols currently used for distributing GHZ states, and so to estimate

55

2. Entanglement-Assisted Communication in Quantum-Enhanced Networks

Protocol 6 Phase-GHZ State Validation
1: With 4N f copies of the |GHZ⟩p state, randomly divide the states into 4 f groups with n

states each.
2: Apply measurements to the respective groups using the measurement structure in [79, Table

1].
3: Await a broadcast from all other receivers with their measurement results from the previous

step.
4: Check that inequalities (9) and (10) in [79, Protocol 3] hold.
5: If the inequalities hold report success, otherwise report failure.

Protocol 7 Entanglement Assisted State Decoding

1: The N receivers generate 4N2m + 1 copies of the |GHZ⟩p state.
2: From the 4N2m + 1 |GHZ⟩p states, each receiver allocates 4N2m of the copies, randomly

selecting 4Nm copies from their respective part, and applies as a sub-protocol Protocol 6. If
the sub-protocol runs successfully, they continue to the next step.

3: Each receiver i measures the last remaining copy in the computational basis and stores the
output as ri.

4: For each xi,t, each receiver i calculates si,t := xi,t + ri and broadcasts all {si,t}n
t=1 to all other

receivers.
5: Each receiver calculates st = ∑N

i=1 si,t mod 2 = ∑N
i=1 xi,t + ri mod 2 = ∑N

i=1 xi mod 2.

the communication complexity of the task we assume there is a communal source
generating |GHZ⟩p states and transmitting them to the receivers in a “frame” of qubits
using one transmission to transmit the 4N2m + 1 |GHZ⟩p states, namely Ω(1) classical
resources to generate Ω(N2m) entanglement resources. Next, the receivers use Protocol
6 to validate their GHZ states using Ω(N) messages over a broadcast channel. Finally,
the receivers again use Ω(N) messages to broadcast the state information encoded
with the zero-sum random variable. In summary, Ω(N2m) entanglement resources are
used with Ω(N) classical resources for verifiable unconditionally secure decoding of
the state information satisfying all of the protocol requirements.

In each case, the converse arguments are the same. The broadcast channel transmits
the messages in such a way that without signaling communication amongst the receivers,
the channel acts as a BSC(0.5) channel, well known to have a capacity of 0. Because the
channel state information vector xN is generated i.i.d. randomly, there is no correlation
between any two receivers’ individual state information. Because of this, there is no way
for the receivers to achieve any positive rate without the cooperation of all receivers.

In summary, we have constructed a communication scenario over a causal broadcast
channel such that for the channel to have a positive capacity, the receivers must
cooperate to compute a multi-party modulo sum. We considered three scenarios where
the receivers have access to various resources and showed that when the receivers
can share entanglement and use a separate classical broadcast channel to cooperate,
they can most efficiently determine the channel state to achieve the full capacity of the
channel. We can further investigate different methods of selecting the channel state
based on results where there is a known quantum advantage.

56

3. Networked Quantum Computing
Another major use case of future quantum networks will be to connect physically
separated quantum computers or to access remote quantum computers. Distributed
quantum computing requires a paradigm shift concerning classical distributed quantum
computing. In this chapter, we will explore two types of future distributed quantum
computing approaches. The first method of distributed quantum computing is to
connect, in a classical sense, to a quantum computer operating in a cloud environment
to run quantum algorithms. Here we explore integration of a practical application
of quantum computing, running in the IBM Quantum Experience environment. We
conduct several experiments, benchmarking how well a commonly used algorithm can
be performed on real hardware, using a cloud-based integration. We further explore
a real-use, unsupervised learning experiment, using quantum computers to cluster
a dataset of the energy grid network in Germany. Next, in a more traditional sense,
we explore how multiple quantum computers can interconnect to perform parallel
and distributed quantum algorithms. We formalize the meaning of a parallel and
distributed quantum algorithm and investigate some well-suited candidate applications
for distributed quantum computing.

3.1. Quantum Computing in the Cloud

Section based on the article: "Practical Quantum K-Means Clustering: Performance
Analysis and Applications in Energy Grid Classification"

Given the challenging engineering requirements for building and maintaining quan-
tum computers, it is likely that quantum computers will only be accessible through
cloud services for the majority of users. Quantum computers, depending on the qubit
technology, can require a complex construction and maintenance schedule that makes it
impractical for the average user to own [81]. Rather than building quantum computers
as a hardware product to sell to consumers, companies like Amazon, Microsoft, and
IBM are rather developing cloud-based platforms for online access to their quantum
devices. Although these quantum cloud services are currently accessible, the question
of how useable they are for practical, industrial use cases arises. For our interest, we
ask: Can these quantum computers produce accurate enough distance estimates for
clustering? Can we achieve any speedup with them currently? The focus of this work
is therefore to benchmark this simple, common use-case using the IBM Quantum cloud
services [82].

Clustering algorithms can be used on unlabeled data to find relationships between
the data’s various features. To perform clustering, an algorithm introduced by Lloyd in
1982 called k-means clustering [48] can be used. The k-means algorithm takes as input
a collection of unlabeled data points, or feature vectors, and outputs a list of labels, one
for each data point. The data points are labeled based on the minimal distance to a
particular centroid. During execution, the algorithm improves the centroid locations
by running iteratively, updating the location to be the mean of the data points that are

57

3. Networked Quantum Computing

determined nearest to them based on a distance metric.
Classically, the usual method for measuring the distance between centroids and

data points is to simply compute the Euclidean distance. For feature vectors of N
features, computing the Euclidean distance requires O(N) computational steps. With
a quantum approach, using quantum amplitude embedding (see [83] for details),
one can encode length-N vectors into O(log2 N) qubits, an exponential decrease in
resources for embedding, assuming one can load quantum states into a quantum
random access memory [84]. With this embedding, one can perform what is known
as a swap test using a quantum computer, as described in [84, 85], to compute an
estimate for the Euclidean distance between two vectors. Because the swap test requires
several operations proportional to the number of qubits used for embedding—needed
for swapping two multi-qubit states—in theory, this would result in an exponential
speedup in runtime complexity. Moreover, the minimum distance to a centroid for
each point can be found using Grover’s search [86] for an additional quadratic speedup.
Using a simpler data embedding approach like angle embedding, the theoretical
advantage provided by amplitude embedding is lost, as angle embedding requires
several qubits directly proportional to the data dimension. However, the benefit of using
this alternative embedding is that the depth of the state preparation circuit is constant,
whereas, with amplitude embedding, the state preparation circuit uses exponentially
more non-local gates as the data dimension grows [87], leading to vastly deeper circuits
using current approaches.

This result makes quantum clustering and nearest-neighbor classification appear as
very attractive use cases for quantum computing since they both use distance estimation
and therefore can benefit from a theoretical speedup. When put into practice though,
there are various challenges to overcome before one can effectively perform distance
estimation on a quantum computer. Moreover, a strong assumption of efficient state
preparation needs to be made to have an exponential speedup using the quantum
approach over the classical approach [88]. Nonetheless, with this article, we aim to
expand the results related to clustering on real, gate-based, quantum hardware, and in
particular, to explore how this type of algorithm can be executed on IBM’s quantum
cloud computing service. In this work, we use only the software libraries and services
available to us with no direct hardware access, aiming to demonstrate how well one
can expect quantum clustering to perform using generally available resources.

We begin by reviewing how we perform data encoding and how we calculate the
distance estimation in our quantum algorithm using the cloud service. We then bench-
mark how well distance estimation can be performed, testing for various Euclidean
distances and dimensions in simulation and on hardware. Further, we analyze various
clustering experiments using synthetic data with two and four dimensions with several
datasets. Given the results of the performance analysis, we then apply the findings
to a non-trivial clustering problem that is relevant in the energy sector. In particular,
we show that by decomposing high-dimensional vectors into 2-dimensional subspace
projections, we can compute the overall distance in a parallel fashion which signifi-
cantly reduces the error induced by existing quantum hardware, while simultaneously
reducing the total number of circuits.

58

3. Networked Quantum Computing

3.1.1. Related Work

Performing clustering and nearest-neighbor-type algorithms using quantum computers
has been studied in various contexts. Improving the encoding strategy to work better
with IBM’s quantum computers was studied by Khan et al. in [89]. In the article, they
describe an encoding mechanism for feature vectors and benchmark the approach on
IBM’s quantum computer. Feature vectors, after PCA is performed, of dimension two
are considered and benchmarked with the MNIST dataset using quantum hardware.
Using the IonQ quantum hardware, Johri et al. perform data classification using
clustering on their trapped ion quantum computer [90]. In their work, they define
an optimized method for encoding 8-dimensional classical data into the quantum
computer and use PCA to benchmark against MNIST data for ten different labels, and
perform their quantum algorithm for nearest-neighbor classification. In these works, an
explicit benchmarking of distance estimation accuracy is not demonstrated. Moreover,
the only experiments tested on the IBM quantum system were of two dimensions. In a
quantum annealing setting, clustering has also been considered. The authors of [91]
and [92] map a clustering problem to a quadratic unconstrained binary optimization
(QUBO) problem for an adiabatic quantum computer and use hardware to test their
approach. Quantum annealing uses a different approach to quantum computing versus
the gate-based model, indeed no swap test is involved, and the results from annealing
experiments do not paint a clear picture of performance using a universal quantum
computing approach.

In [93], Benlamine, et al. review three methods for distance estimation using a
quantum approach and benchmark the approaches using nearest-neighbor classification
in simulation only, not testing their approaches on real hardware. Further modified
quantum clustering approaches were proposed in [94, 95]. These works did not perform
tests on real physical hardware, and therefore did not benchmark their performance, as
we do in this work. In [96], Nguyen et al. run experiments to test the accuracy of the
swap test using their trapped ion system in a continuous variable setting, but do not
perform any experiments of clustering or distance estimation for classical input vectors.
Overall, our work is the first to benchmark these popular swap-test-based distance
estimation techniques in a general way and for classification and clustering.

3.1.2. Summary of Contributions

In this work, we analyze how well current quantum computers can perform unsuper-
vised clustering. To do this, we use two different distance metrics that are based on the
swap test and thoroughly benchmark their accuracy. The swap test is a general method
for computing distance between vectors on a quantum computer and is therefore
important to thoroughly understand. The two metrics we use are based on popular,
well-known, methods of data embedding, and therefore of general interest to explore,
something this work does for the first time on real quantum hardware. To compare
the accuracy of the real quantum device to the true result, we use noiseless simulation
as the ground truth. To perform many distance measurements at once for k-means
clustering, we define two approaches to parallelize the calculations. In the first case,
we offer a parallelization approach when the quantum computing platform does not

59

3. Networked Quantum Computing

allow for sending circuits to execute in bulk. We tested these approaches to perform
benchmarking, but because of the large performance improvement when using bulk
circuit execution of the second approach, we use only the second approach for our
analysis in this work. We benchmark distance estimation via the swap-test, varying
the scale of the distance, the number of shots used, and the dimension of the data.
To the best of the author’s knowledge, no such benchmarking has been previously
demonstrated.

Next, we analyze unsupervised clustering on real quantum devices. Using the results
of the distance metric analysis, we benchmark the best cases in terms of dimension—2D
and 4D—using synthetic data. We found that the accuracy of the real devices using
standard approaches and synthetic data proved relatively low. We next tested the ability
to perform a true unsupervised clustering problem using real data from the German
energy grid. We found that using a standard approach for quantum k-means clustering,
the accuracy result output from real quantum hardware is low. We then tested our
novel approach to performing the distance metrics, which is to decompose the distance
calculation into smaller-dimensional projections, and then use quantum circuits that
compute multiple swap tests at once, thereby accommodating the additional swap-tests
required after projecting to smaller dimensions. With this approach, we were able to
achieve high accuracy concerning the classical results, thus demonstrating a scalable
approach to distance estimation with high accuracy on real quantum devices.

3.1.3. Program Setup and Configuration

In this section, we review the setup and configuration used to perform clustering
algorithms. In the first subsection, we review how the synthetic data is generated. Next,
we review how the quantum algorithm works as well as the two methods used for
classical data embedding in quantum states. Finally, we review the software approach
used to execute the algorithms on the quantum cloud hardware.

Generating Synthetic Data and Quantum Data Loading

In the experiments conducted, we used synthetic data generated with varying dimen-
sions, number of clusters, cluster variance, and minimal distance between the centers.
At a high level, the cluster generation algorithm used works by first selecting k center
points to then generate cluster data around them. Using the center points as the multi-
dimensional mean of a multivariate normal distribution, a set number of cluster points
are generated surrounding the center. Input to this algorithm is a cluster-variance
parameter which we use to set the variance level of the respective dimension to control
the “tightness"—how we measure the difficultly of clustering—of the cluster. To avoid
the randomly initialized center points being too close to each other, an additional step
that resets a center point if it is within some ϵ distance from the already initialized
center points is added. The synthetic data generated can be seen in Figure 3.8.

To perform the quantum distance estimation algorithm, the generated data points
first need to be embedded into a multi-qubit quantum state. For this, we use two types
of embeddings, namely amplitude embedding and angle embedding, and test them

60

3. Networked Quantum Computing

Algorithm 5 Synthetic Cluster Data Generation
Input:

• k: The number of clusters
• dim: The dimension of the data
• var: The variance of the normal distribution
• seed: The random seen
• ϵ: The minimum distance between two cluster centers
• rng: The range of the data in the form of a tuple
• num: The number of points surrounding a centroid

Output: A set of cluster data
1: set the random seed
2: centers← empty list
3: data← empty list
4: i← 0
5: while i < k do
6: point← random(low=rng[0], high=rng[1], size=dim)
7: re-initialize point while dist < ϵ to other points in centers
8: centers.add(point)
9: i← i + 1

10: cov← Idim/10var ▷ Setting the co-variance matrix
11: for center ∈ centers do
12: cluster ← normal(mean=center, cov=cov, points=num)
13: data.add(cluster)
14: return data

independently. To perform the embeddings, we use the circuit structure shown in
Fig. 3.1 and Fig. 3.2. To implement amplitude embedding in code, we simply use the
built-in initialize function offered by Qiskit, which is a function that takes as input a
real vector and returns the necessary gate set for complex amplitude embedding [97].
For angle embedding, we use two-dimensional rotations to embed two dimensions of a
data vector per one qubit. This type of embedding is also referred to as dense angle
embedding [98], but in this thesis, we will only use the name “angle embedding" to
refer to it. The scaling in terms of circuit depth and the number of two-qubit gates
varies significantly between the two embeddings. When embedding data using angle
embedding, gate depth does not increase with dimensional, but circuit width grows
linearly. On the other hand, embedding classical data using amplitude encoding can
scale quite poorly in depth concerning the data dimension [87]. We plot the scaling
concerning the data dimension in Fig. 3.3 where we plot both the depth and the number
of non-local gates required for initializing data for a completely connected quantum
computer (solid line) and the 65-qubit IBM Brooklyn topology (dashed line), followed
by a swap-test.

Quantum Circuits for Distance Estimation

To perform clustering, we replace the distance calculation from the classical algorithm
with a quantum algorithm for distance estimation. Using amplitude embedding, we
use a direct Euclidean distance approximation, based on the one developed in [84],

61

3. Networked Quantum Computing

|0⟩

Eψ

|0⟩

...

|0⟩ ×

|0⟩ Eϕ ×

|0⟩ H • H

Figure 3.1.: Circuit for embedding classical data using amplitude embedding. We make
use of the built-in features of Qiskit to initialize the amplitude-encoded
data.

|0⟩ U(a′1, a′2) ×

|0⟩ U(a′3, a′4) ×
...

...
|0⟩ U(a′n−1, a′n) ×

· · ·

|0⟩ U(b′1, b′2) ×

|0⟩ U(b′3, b′4) ×
...

...
|0⟩ U(b′n−1, b′n) ×

· · ·

|0⟩ H • • • H

Figure 3.2.: Circuit for embedding classical data using angle embedding with swap test.

62

3. Networked Quantum Computing

reiterated in [99], and for angle embedding, we define a simple encoding that properly
scales the data for embedding. The algorithm used for distance estimation first embeds
the data for two vectors and then performs a swap test. To then approximate the
distance, several repetitions of the circuit are used to buildup measurement statistics
for a single ancilla qubit. Once the repetitions are complete, by using the measurement
statistics, the distance estimation can be reconstructed using the following formulas:

Pr(0) =
1
2
+

1
2
|⟨ψ|ϕ⟩|2 , (3.1.1)

Pr(1) = 1− Pr(0) =
1
2
− 1

2
|⟨ψ|ϕ⟩|2 . (3.1.2)

By determining the probability for a 0 or 1 measurement outcome of the ancilla qubit
in the swap-test using a computational basis measurement, we can estimate |⟨ψ|ϕ⟩|2,
thereby providing an approximation to the inner product for our choice of embedding
or at least a measure that scales with the inner-product in the case of angle embedding.

In the two cases of amplitude embedding and angle embedding, the swap-test pro-
cedure differs in terms of the number of controlled swaps— also known as Fredkin
gates—used due to the difference in qubit resources required to perform the data em-
bedding as well as the data representation strategy. For two (not necessarily normalized)
data vectors a = (a1, a2, ..., an) and b = (b1, b2, ..., bn)—which in the case of clustering
or classification would be one centroid and one data point—the two quantum states
that are compared when performing the swap-test when using amplitude embedding
represent, as defined in [84]:

|ψ⟩ :=
1√
2
(|0⟩ |a⟩+ |1⟩ |b⟩) , (3.1.3)

|ϕ⟩ :=
1√
Z
(|a| |0⟩ − |b| |1⟩) , (3.1.4)

where Z := |a|2 + |b|2. To recover the distance estimation in this case, an ancilla qubit
initialized in the |0⟩ state is added to the system, and after applying a Hadamard gate
to it, a Fredkin (or controlled-swap) gate is applied with the ancilla as the control and
|ψ⟩ and |ϕ⟩ as the target systems. In this case, since |ϕ⟩ is just one qubit, one Fredkin
gate is needed, greatly reducing the number of controlled swaps needed. Another
Hadamard gate is applied to the ancilla qubit and then it is measured. By repeating
the process a number of times, Pr(0) can be estimated to then recover the distance:

|a− b|2 = 4Z(Pr(0)− 0.5). (3.1.5)

For angle-embedding, we prepare the two vectors a′ = (a′1, a′2, ..., a′n) and b′ =
(b′1, b′2, ..., b′n) which are angle-encodings for a and b respectively and defined as,

a′i := π
2 (ai + 1) (3.1.6)

b′i := π
2 (bi + 1). (3.1.7)

used to ensure the values are between 0 and π. With this embedding, we can encode
data using a two-dimensional rotation operation defined by U:

U(θ, γ) :=
(

cos θ
2 − sin θ

2
eiγ sin θ

2 eiγ cos θ
2

)
. (3.1.8)

63

3. Networked Quantum Computing

We encode a′ and b′ respectively in ⌈n/2⌉ qubits, using 1 qubit per two dimensions of
each vector resulting in the overall states,

|ψ⟩ :=
⊗

i∈odd(n)

U(a′i, a′i+1) |0⟩ (3.1.9)

|ϕ⟩ :=
⊗

i∈odd(n)

U(b′i , b′i+1) |0⟩ , (3.1.10)

where odd(n) is the set of odd numbers from 1 to n, where in our case we use only
powers of 2 for the data dimension, so n is always even. To recover the distance
estimation in this case, again an ancilla qubit is introduced to the system. A Hadamard
gate is applied to it followed by a series of n/2 controlled-swap gates using the ancilla
as the control and one qubit from |ψ⟩ and one from |ϕ⟩. A final Hadamard gate is
applied to the ancilla qubit and then it is measured. The overall circuit is depicted in
Fig. 3.2. The goal, in this case, is to produce an estimate for Pr(1), which is a valid
distance metric (i.e. it satisfies d(a, a) = 0). Because we are using arbitrary data not
normalized in advance, we accommodate for this in the distance metric as is also done
in amplitude embedding. For this, we set Z := |a|2 + |b|2 and a and b are reassigned to
a = a/

√
Z and b = b/

√
Z. We define the metric as

d(a, b) =
√

Z · P(1), (3.1.11)

where P(1) is the same as in (3.1.2). We note that although this will normalize any two
points, creating a global normalization factor based on the dataset to subdivide the
degrees of freedom on the Bloch sphere more evenly would likely lead to more accurate
results. For this thesis, we test a distance estimation function that takes arbitrary data
as input with no additional pre-processing for scaling that can be applied to any dataset
in the same way.

3.1.4. Running Clustering on the Quantum Cloud

To perform and benchmark the clustering experiments, we implemented k-means
clustering algorithm as in [48] with a modularized distance estimation step so that
distance calculation can be replaced for the variety of distance estimation methods used
in this thesis which are the purely classical approach, a noiseless quantum simulation
to verify the approach, and the same circuits as in the noiseless case but using cloud
quantum computers.

To implement the circuit preparation and execution of the quantum circuits in
software, we use IBM’s Qiskit Python framework [100]. With Qiskit, one can construct
circuits using a gate-based model. Parts of the Qiskit ecosystem are simulators and
various cloud services for executing circuits online. IBM’s Quantum Experience uses
Qiskit natively, so circuits constructed in the Qiskit language can be sent to the IBM
cloud service for execution directly. There are two methods of sending circuit jobs to
the IBM cloud. The first is to send a single quantum circuit to be executed. When the
circuit is sent to the cloud with the execution parameters, it is first queued until the
computing resource becomes available, then the circuit is run until completion, or an

64

3. Networked Quantum Computing

21 22 23 24 25 26 27 28 29

0
0.2
0.4
0.6
0.8

1
·104

Data Dimension

Circuit Depth
Non-local Gates
Circuit Depth: IBMQ Brooklyn
Non-local gates: IBMQ Brooklyn

21 22 23 24 25 26 27 28 29

0
500

1,000
1,500
2,000
2,500

Data Dimension

Figure 3.3.: The circuit-depth and number of non-local gates in a circuit that embeds
classical data using amplitude encoding and performs the swap test of vary-
ing dimension transpiled with the basis gates for the IBM cloud computers
under full connectivity and for the IBMQ Brooklyn device.

21 22 23 24 25 26 27 28 29

0

100

200

Data Dimension

Lo
gi

ca
lQ

ub
it

s Angle Embedding
Amplitude Embedding

Figure 3.4.: The number of qubits required to embed classical data of varying dimen-
sion.

65

3. Networked Quantum Computing

error occurs. For quantum clustering, many circuits need to be executed to compute
a distance estimation between the k centroids and all of the data points. Sending one
circuit at a time very quickly becomes a bottleneck, especially with queuing.

A property of the k-means clustering algorithm is that it is highly parallelizable,
and we use this property to execute the clustering algorithm more time-efficiently. In
each iteration of k-means clustering, a distance is calculated between the current set
of centroids and the data points. These distance calculations are independent of each
other and can be computed in parallel using multi-processing or in a batch job. In the
quantum case, to parallelize, we take two approaches. Firstly, we prepare one circuit
per distance estimation and then send the collection of circuits as a batch job to the
cloud service. The response is the measurement results of the circuits which can then
be post-processed according to the embedding. The second way we parallelize the
algorithm is to embed multiple swap tests into one circuit and execute them on the
same quantum computer at once. This allows for multiple distance estimations to be
done on a single quantum computer.

We developed the first parallel approach in two ways, one using our approach and
later, when it became available, using a more Qiskit native approach. For the first
approach, we use many processes locally to send many requests simultaneously to the
server to reduce queuing time. In simulation, the approach improved performance, but
when there is only one quantum computer, this makes no difference. The advantage of
parallel execution is achieved with multiple quantum computers working together to
compute distance estimations as described in [101]. The better approach was to send
the circuits in a batched job, which is a recently added feature called “circuit-runner”.
This feature allows the user to send up many circuits at once to be executed, where
job queuing is done only once, saving a significant amount of time. The performance
improvement between parallel execution and batch-circuits was significant. Indeed,
some quantum cloud platforms do not yet implement batched jobs in the same way,
but due to the significant performance enhancement, we foresee this to be a universal
feature for all cloud platforms. To clarify the difference between the two approaches,
we describe the approaches at a high-level in Algorithms 6 and 7.

3.1.5. Benchmarking Distance Estimation

To develop a clear understanding of how well clustering and nearest-neighbor classi-
fication can be performed using current quantum, it is helpful to test how accurate
distance estimation can be performed on a quantum computer. In this section, we
benchmark a variety of cases for performing distance estimation and compare the
estimations using simulation and IBM’s quantum hardware. To perform the analysis,
we test three different cases. We first test how varying the number of circuit shots
affects the estimation in both two and four dimensions. Next, we vary the distance
of the data points also in two and four dimensions. Lastly, we test how varying the
dimensions affects the estimation up to 32 dimensions using amplitude embedding
and 26 using angle embedding.

In all tests, for each data point in these experiments, we use 100 repetitions, plotting
the average output and the standard deviation. In each case, we use the measurement

66

3. Networked Quantum Computing

Algorithm 6 Clustering on the Quantum Cloud with Multi-processing
Input:

• k: The number of clusters
• data: The data to cluster
• embedding: The choice of data embedding
• ϵ: The minimum distance between two cluster centers
• maxIterations: The maximum number of iterations to make
• processes: A list of running processes

Output: An ordered list of labels for the data points
1: centroids← initialize the centroids using ϵ min distance
2: for i < maxIterations do
3: circuits←generate all circuits with the data, centroids,

and embedding choice
4: dists← initialize empty shared storage
5: while not all circuits have been processed do
6: if a process is idle then
7: job← send single circuit to server and await response
8: dist← process job results according to the embedding
9: add dist with circuit number to shared storage

10: else
11: wait
12: Sort dists according to circuit number
13: dists← using the returned, ordered measurement results from

the server, complete the distance estimation procedure
14: labels← using the distances to the centroids, label the

data points
15: centroids← with the updated labels, recompute the centroids

as an average position of the labeled data.
Delete centroids for empty clusters.

16: check if centroid position converged and break accordingly
17: i← i + 1
18: return labels

error mitigation feature when running the experiments on the physical hardware. To
execute the 100 instances, we make 100 copies of the circuits and use the circuit-runner
service to execute the circuits in a batched job. We then process the results which
significantly sped up the processing time in comparison to sending one circuit at a
time.

The results of varying the number of shots are plotted in Fig. 3.5. In this experiment,
we created a circuit for the vectors (1, 0) and (1, 1). Comparing simulation to the
physical device results, in the simulation we see a convergence in the number of shots
to the true answer, and moreover, the average is close to the true distance as desired.
With the real hardware, we see no convergence trends behind the dotted line, and
using more shots than around 2000 does not generally perform better than using the
maximum number of shots 8192. In some cases, a lower number of shots performed
better, having a lower variance in the standard deviation than with more shots. On
the other hand, when we switched to a quantum computer that supported a higher
number of shots, much better and more consistent results are seen. For 4D, the points

67

3. Networked Quantum Computing

Algorithm 7 Clustering on the Quantum Cloud with Batched Circuits
Input:

• k: The number of clusters
• data: The data to cluster
• embedding: The choice of data embedding
• ϵ: The minimum distance between two cluster centers
• maxIterations: The maximum number of iterations to make

Output: An ordered list of labels for the data points
1: centroids← initialize the centroids using ϵ min distance
2: for i < maxIterations do
3: circuits←generate all circuits with the data, centroids,

and embedding choice
4: job← send the collection of circuits to the cloud server

for processing and await response
5: dists← using the returned, ordered measurement results from

the server, complete the distance estimation procedure
6: labels← using the distances to the centroids, label the

data points
7: centroids← with the updated labels, recompute the centroids

as an average position of the labeled data.
Delete centroids for empty clusters.

8: check if centroid position converged and break accordingly
9: i← i + 1

10: return labels

(1, 0, 0, 0) and (1, 1, 1, 1) are used, and the same effects are more or less seen. Converge
is not reached using real hardware, but a relatively rapid converge is seen in simulation,
where with a high number of shots, the results improve significantly.

An important point of note is that for angle embedding, the difference in output
between the simulation and the hardware is much starker than with amplitude embed-
ding. The reason behind this is since on the IBM quantum devices, the accuracy of qubit
rotations is much less precise with the available gate basis of [CX, ID, RZ, SX, X] and
so significant differences between the simulation, where such rotations are precise, are
observed. Another noteworthy aspect is that in some instances, the variance in the stan-
dard deviation becomes very small for the 100 samples, with no simply recognizable
trend, for example, the 7000 shots point in the upper-left plot and the 6000-shot point in
the lower-left plot. We suspect this may come from a periodic hardware calibration that
is performed by IBM that was executed by the quantum devices between experiments.

For the next set of experiments we vary the distance between two points in 2D and
4D and plot the outputs in Fig. 3.6. The points we choose have the shape (1, ..., 1) and
(x, ..., x) where we vary x to vary the distance between the points. The results of the 2D
experiments show that the simulation and the physical device have similar outputs for
x ≤ 5, but for x > 5, the outputs from the simulation and real device start to diverge.
In 4D, the effects of encoding show a stark difference between amplitude and angle
embeddings. Interestingly, the simulation results for 4D amplitude embedding match
very closely to the simulation for all tested values of x, more so even than in 2D. On
the other hand, angle embedding performs worse in 4D than in 4D, where already for

68

3. Networked Quantum Computing

x = 5 the difference between the simulation and the real device differs significantly.
This extra noise is again likely because for more dimensions, the limited precision of
the angle embedding is now applied for another two dimensions.

In the last set of experiments, we vary the dimension of the data to observe the
limits to the number of features we can use and with what level of accuracy. We test
up to 32 dimensions for amplitude embedding and up to 26 dimensions for angle
embedding. We test vectors with the shape (1, ..., 1) and second coordinates with the
shape (2, ..., 2), (3, ..., 3), and (4, ..., 4). What we observe is indeed with 4 dimensions,
the accuracy is at a reasonable level, but with 8 dimensions or more, the difference
between simulation and real hardware loses too much accuracy to be reliable. In Tables
3.1 and 3.2, we show the percent difference between the simulation outputs and the
results from the quantum computer for amplitude and angle embedding respectively.

Dim. x = 2 x = 3 x = 4

2 66.44% 9.56% 13.69%
4 97.95% 30.29% 9.21%
8 128.25% 61.44% 8.42%
16 133.22% 54.98% 34.08%
32 110.86% 47.40% 24.72%

Table 3.1.: Amplitude Embedding: Percentage difference comparison between simula-
tion and real data for the distance between data points of varying dimension
and distance on IBMQ Sydney.

Dim. x = 2 x = 3 x = 4

2 85.87% 61.87% 61.26%
4 144.24% 117.87% 98.77%
8 161.70% 131.13% 115.94%

16 156.84% 128.40% 113.8%
26 158.58% 129.59% 111.42%

Table 3.2.: Angle Embedding: Percentage difference comparison between simulation
and real data for the distance between data points of varying dimension and
distance on IBMQ Sydney.

3.1.6. Benchmarking Quantum Clustering

With distance estimation benchmarking results, we move on to benchmarking how
well, even with noisy quantum devices, clustering can be performed. In this section,
we test the ability to cluster in various dimensions and the number of clusters using
synthetic data. To determine the accuracy of clustering using a quantum approach, we
generated three types of synthetic data using 2 and 4 dimensions. The first two types
of data that we generate are an easy data set, and a hard data set both with 4 clusters
and 15 data points in each cluster. This totals 60 data points. The third data set we

69

3. Networked Quantum Computing

0 5 10 15 20 25 30

·103

0

1

2

Number of shots

A
vg

.D
is

ta
nc

e
Simulation
Hardware

0 5 10 15 20 25 30

·103

0

0.5

1

Number of shots

A
vg

.D
is

ta
nc

e

Simulation
Hardware

0 5 10 15 20 25 30

·103

0

2

4

6

Number of shots

A
vg

.D
is

ta
nc

e

Simulation
Hardware

0 5 10 15 20 25 30

·103

0

1

2

3

Number of shots
A

vg
.D

is
ta

nc
e

Simulation
Hardware

Figure 3.5.: The distance estimation for amplitude encoding (upper) and angle embed-
ding (lower) of (1, 0) and (1, 1) in 2D (left) and (1, 0, 0, 0) (1, 1, 1, 1) in 4D
(right). The circuit for measuring the distance between these two points
is generated and ran a varying number of shots. Displayed is the average
output of 100 trials with the standard deviation shaded around the average.
The black dotted line indicates where the quantum hardware used switches
from IBMQ Bogata on the left of the line to IBMQ Casablanca on the right.

2 4 6 8 10

0

50

100

150

Coordinate

A
vg

.D
is

ta
nc

e Simulation
IBMQ Bogota

2 4 6 8 10

0

20

40

60

80

Coordinate

A
vg

.D
is

ta
nc

e Simulation
IBMQ Bogota

2 4 6 8 10

0

100

200

300

400

Coordinate

A
vg

.D
is

ta
nc

e Simulation
IBMQ Bogota

2 4 6 8 10

0

50

100

150

Coordinate

A
vg

.D
is

ta
nc

e Simulation
IBMQ Bogota

Figure 3.6.: Plots for varying the distance between points. The plots on the left are
amplitude and angle embedding in two dimensions. The right plots are
for amplitude and angle embedding in four dimensions. We run the
experiments for a vector of shape (1, ..., 1) for the base points and, (x, ..., x)
for the varying point. We repeat the experiments 100 times with 2048 shots
plotting the average with the standard deviation.

70

3. Networked Quantum Computing

21 22 23 24 25

0

50

100

150

Data Dimension

A
vg

.D
is

ta
nc

e Simulation
IBMQ Sydney

21 22 23 24 25

0

100

200

Data Dimension

A
vg

.D
is

ta
nc

e Simulation
IBMQ Sydney

21 22 23 24 25

0

200

400

Data Dimension

A
vg

.D
is

ta
nc

e Simulation
IBMQ Sydney

21 22 23 24 24.7

0

20

40

60

Data Dimension
A

vg
.D

is
ta

nc
e Simulation

IBMQ Sydney

21 22 23 24 24.7

0

50

100

Data Dimension

A
vg

.D
is

ta
nc

e Simulation
IBMQ Sydney

21 22 23 24 24.7

0

100

200

Data Dimension

A
vg

.D
is

ta
nc

e Simulation
IBMQ Sydney

Figure 3.7.: Plots for varying the dimension of the data, using the vectors (1, ..., 1),
comparing (2, ..., 2), (3, ..., 3), (4, ..., 4) respectively from top to bottom to
benchmark distance estimation accuracy. We run the experiment 100 times
with 2048 circuit shots and plot the average output and standard deviation
of simulation after running on the IBMQ Sydney device for up to 32
dimensions with amplitude embedding (left) and 26 dimensions with angle
embedding (right).

71

3. Networked Quantum Computing

use has a variance between the easy and hard sets, but with 8 clusters and 14 points
per cluster. The number of data points and clusters was selected to most easily work
with the circuit-runner service, reaching the limits to how many circuits can be sent
at once. The data is depicted in Fig. 3.8. In the case of the four clusters easy and hard,
we analyze under the same conditions. We use both amplitude and angle embedding
with a maximum of 5 iterations or until convergence of the centroid locations and run
the three different approaches taken for distance estimation, using the outputs of the
classical algorithm as the base truth. We use 8192 shots, for each experiment, using the
option for measurement error mitigation in all cases. For these experiments, we use
quantum devices with quantum volume 32. The results of the experiments for 2D are
seen in Figs. 3.9. The results displayed are, on the left side, left column, the confusion
matrices comparing the classical baseline to the quantum outputs using amplitude
embedding, and the analogous for angle embedding on the right column. The results
show that, in the simulation setting, the classical outputs are matched perfectly. For real
hardware, the results do not match perfectly and indeed the results show a relatively
low accuracy in the labeling for both embeddings using the real hardware. The results
are similar for the hard data set as seen on the right side of Figs. 3.9.

For the 8-cluster data, we perform the same simulation steps, but for a maximum of
3 iterations with 8192 shots. In simulation, convergence is reached with 2 iterations
with perfect labeling results. We test both 2D and 4D data sets. The 2D results are
shown in Fig. 3.10. For 4D data, the results had very low accuracy, with essentially a
random labeling and we neglect the results here for concern of text length.

These experiments motivate that a single quantum circuit with such low shots to
generate a distance estimation is not enough, to improve the results of this experiment,
likely we would need to average multiple distance estimations times to have consistency
enough to provide accurate distance estimations. We do exactly this in the next section
with real-world data to validate this hypothesis.

3.1.7. Applications for Energy Subgrid Clustering

The motivation for performing a detailed analysis on how well real quantum hardware
performs on various distance-related metrics for high dimensional data is because,
typically, many real-world datasets are non-trivial, high dimensional, and not well
clusterable. In classical computing solutions involving unsupervised clustering, the
problem of aggregating and grouping sets of objects usually involves some dimension
reduction techniques and some type of domain knowledge to tune any machine
learning algorithm used. To the best of the authors’ knowledge, there is no existing
work on a large dataset, non-trivial (e.g. input vector dimensional greater than 2),
unsupervised clustering use cases using real quantum hardware. Since quantum
machine learning and variations of clustering are touted as being a possible avenue for
quantum advantage, we aim to employ the findings in the previous section in a real
use-case that provides business value. In doing so, we propose an alternative k-means
clustering algorithm to overcome some of the deficiencies revealed in the previous
section, namely, the inability of the vanilla k-means algorithm to be able to handle
classical input vector dimensions of more than 4.

72

3. Networked Quantum Computing

(a) (b)

(c)

Figure 3.8.: Synthetic 2-dimensional data used for clustering. In (a), the data is tightly
clustered with 4 clusters with 60 points in total which we consider an easy
clustering. In (b) the data is more scattered with 4 clusters and 60 points
total which we consider a hard clustering. In (c) are 8 clusters with 14 points
per cluster for a total of 112 points.

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0.33 0 0.67 0
3 0 0 0.53 0.47

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0.86 0.14 0

(a) Simulation (b) Simulation

(c) Noisy Simulation (d) Noisy Simulation

(e) Real Hardware (f) Real Hardware

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 0.86 0.14
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 0.93 0.07
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0 1 0 0
2 0 0 0.93 0.07
3 0 0 0 1

Predicted
0 1 2 3

Tr
ue

0 1 0 0 0
1 0.07 0.93 0 0
2 0.60 0 0.33 0.07
3 0.13 0.07 0.33 0.47

Predicted
0 1 2 3

Tr
ue

0 0.86 0 0.14 0
1 0 1 0 0
2 0 0 1 0
3 0 0.93 0.07 0

(a) Simulation (b) Simulation

(c) Noisy Simulation (d) Noisy Simulation

(e) Real Hardware (f) Real Hardware

Figure 3.9.: The confusion matrices for the execution for clustering the easy (left) and
hard data set (right) with 2 features using amplitude (left column) and angle
(right column) embeddings. In (a) and (b) are the clustering outcome of the
noiseless quantum simulation. In (c) and (d) are the outcomes when a noise
model taken from parameters of the IBMQ Sydney device are used. In (e)
and (f) are the results of running on the real IBMQ Sydney device. Each
instance ran for a maximum of 5 iterations using the maximum number of
shots 8192.

73

3. Networked Quantum Computing

Predicted
0 1 2 3 4 5 6 7

Tr
ue

0 1 0 0 0 0 0 0 0
1 0 0.93 0.07 0 0 0 0 0
2 0 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0.06 0 0 0 0.64 0 0.28 0
5 0.14 0 0 0 0.29 0.35 0.21 0
6 0 0.07 0 0 0.07 0.07 0.78 0
7 0.57 0 0 0 0.43 0 0 0

Predicted
0 1 2 3 4 5 6 7

Tr
ue

0 0.79 0 0 0 0 0 0 0.21
1 0 1 0 0 0 0 0 0
2 0 0.29 0.64 0 0 0.07 0 0
3 0 0 0.28 0.71 0 0 0 0
4 0 0.07 0 0 0.50 0.14 0 0.28
5 0 0.36 0 0 0 0.57 0 0.07
6 0 0.64 0 0 0.07 0.28 0 0
7 0 0.07 0 0 0.14 0.21 0 0.57

Predicted
0 1 2 3 4 5 6 7

Tr
ue

0 0.64 0 0.14 0.07 0 0.14 0 0
1 0.14 0.14 0.07 0.07 0.28 0.28 0 0
2 0.21 0 0.50 0 0 0.21 0 0
3 0.14 0.07 0.14 0.21 0.07 0.36 0 0
4 0.14 0.07 0.07 0 0.36 0.36 0 0
5 0 0 0.07 0.21 0.21 0.5 0 0
6 0.07 0.07 0.28 0.21 0.07 0.28 0 0
7 0.14 0 0.42 0.14 0 0.28 0 0

Predicted
0 1 2 3 4 5 6 7

Tr
ue

0 0.36 0.28 0.14 0.14 0.07 0 0 0
1 0.14 0.36 0.07 0.14 0.28 0 0 0
2 0.36 0.07 0.28 0.21 0.07 0 0 0
3 0.28 0.14 0.14 0.28 0.14 0 0 0
4 0.14 0.21 0.28 0 0.36 0 0 0
5 0.21 0.14 0.14 0.14 0.36 0 0 0
6 0.28 0.14 0.07 0.21 0.28 0 0 0
7 0.14 0.14 0.21 0.28 0.21 0 0 0

Figure 3.10.: Results from clustering data as depicted in Fig. 3.8(c) using amplitude
encoding in the upper matrices and angle embedding in the lower. The
left column uses 2D synthetic data and the right column uses 4D synthetic
data. For the 2D data, we run the distance estimation circuits for 8192
shots on IBMQ Sydney. For the 4D data, the distance estimation circuits
run for 2048 shots on IBMQ Bogota. The results are those of running 3
iterations of k-means, where in simulation, perfect results are produced
with 2 iterations.

74

3. Networked Quantum Computing

3.1.8. German Electricity Grid Data

In the energy operations sector, one major topic is of predictive maintenance. The
ability to determine areas of the electrical grid that are susceptible to failing in some
pre-determined timespan has many obvious benefits for customers downstream from
any grid infrastructure which may fail. One possible approach to this problem is using
data-driven analysis of different partitions of the full network grid to group and find
similar types of subgrid assets by taking into account data features such as the amount
of renewable and non-renewable electricity flowing through the grid subsection, the
number of power lines within a subsection, and statistics about the ages of the assets
contained in the subsection. Given such a collection of asset properties for electrical
grid assets, we aim to employ unsupervised k-means clustering to classify the various
subgrids.

The dataset consists of 81,350 low-voltage power lines from a Distribution System
Operator (DSO) grid in Germany. Each power line has 7 numerical features as described
in Table 3.3. Low-voltage subgrid networks are connected to high-voltage entry and
exit points in the grid. For a given high-voltage transformer in the grid network, we
collect the low-voltage lines which are part of its respective subnetwork and compute
numerical features describing the entire subset of low-power lines. Specifically, for each
subgrid, we compute: Number of Non-Powerline Assets, Total Number of Connected
Assets, and then the minimum, maximum, and sum of each of the features listed in
Table 3.3. There are 1,037 subgrids and therefore we have a final dataset of 1,037 feature
vectors each of dimension 26.

Name Unit

Conductor cross-section cm2

Operating Voltage kV
Average Renewable Energy In-feed Load MWh

Average Non-Renewable Energy In-feed Load MWh
Number of Exits of Next Major Substation #

Line Length m
Sum MVA at closest HV exist MVA

Table 3.3.: Description of the features for each powerline in the dataset.

3.1.9. Results

To cluster the 26-dimensional data created using the individual power line features (see
Table 3.3) for all power lines in a given high voltage entry point, we first perform a
preprocessing step to reduce the total feature vector dimension. To fit the data onto the
quantum computers available for this work, we reduce the dimension to eight using
Principal Component Analysis (PCA) which results in a 97.7% explained variance as
well as a dataset with six dimensions using PCA which accounted for 91.4% of the
variance. This second dataset was used for the angle embedding approach to fit in a
7-qubit quantum computer, the quantum computer topology we had the most access to

75

3. Networked Quantum Computing

in this work.
With an initial classical analysis using the elbow method [102], the optimal number

of clusters for this dataset was determined to be k = 5. From this dimension-reduced
dataset of 1,087 points, we randomly selected 180 points to cluster, where 180 points
allow us to send 900 circuits (180 · 5 = 900) to IBM’s cloud service in one job (an
upper limit for some hardware). Important to any unsupervised clustering algorithm
is the choice of initial centroid points. To ensure a quick convergence, and to reduce
the number of quantum iterations, we ran the classical algorithm with a variety of
random seeds such that convergence was reached within three iterations. The classical
clustering results are depicted in Fig. 3.11(a), using t-Distributed Stochastic Neighbor
Embedding (t-SNE) [103] on the high-dimensional data to generate a 2D projection.
Using the initial centroids that achieved this, we then ran the quantum clustering
experiment.

To validate the quantum approaches we used, we first compare the labeling output
from noiseless simulation to the label outputs using the classical approach and then
repeat the comparison running on real quantum devices. Because the classical approach
converged in three iterations, we allow the quantum versions to run with a maximum
of five iterations. In the simulation, the balanced accuracy of the experiments was
100% for amplitude embedding and 97.8% for angle embedding. Given that simulation
produces high accuracy, we performed a series of tests on the quantum hardware.

Clustering using amplitude embedding

The first test we perform is to simply run the same logic as in the simulation. We
use 12,000 shots per distance estimate and run the full clustering algorithm for five
iterations. The clustering result using amplitude embedding is given in Fig. 3.11(b). The
grid data is of relatively high dimension and the circuits to prepare the data are roughly
120 gate-depth with approximately 70 non-local gates for amplitude embedding. For
angle embedding, the gate depth is expectantly shallower at approximately 86 but with
roughly 103 non-local gates, depending on the randomization of the circuit transpilation
step. With the level of noise occurring, five iterations do not improve the results, and
indeed we speculate further iterations would not have led to improved results either.
Here, our observation is that the labeling is essentially random due to the noise in the
distance estimation circuits, never leading to a converging state.

Classification using amplitude encoding

As a second test, we implemented a pure nearest-neighbor classification application.
We begin by training the model offline classically to determine optimal centroid loca-
tions, then, at runtime, we compute only the prediction step quantumly to determine
which cluster test set data points belong to. Fig. 3.13(a) shows the accuracy results of
the outcome, where we used 30,000 shots to estimate the distances using amplitude
embedding in 8D. We see the majority of points were assigned to one class, similar to
how the five iterations of clustering performed.

76

3. Networked Quantum Computing

(a)

(b)

(c)

(d)

Figure 3.11.: (a) Classical clustering output after t-SNE is performed on the subgrid
data. (b) Quantum labeling output using 8D amplitude embedding for five
iterations with 12,000 shots per distance estimation on IBM Casablanca.
(c) Quantum clustering output using the angle embedding split distance
estimation (3.1.12) of the subgrid data. We decomposed the distance
estimation to be one estimate per circuit, for five iterations with 12,000
shots per distance estimation on IBM Perth. (d) Quantum clustering using
amplitude embedding split distance estimation (3.1.12) using a parallel
execution process as described (c).

77

3. Networked Quantum Computing

Simulation
0 1 2 3 4

C
la

ss
ic

al

0 1 0 0 0 0
1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1

Simulation
0 1 2 3 4

C
la

ss
ic

al

0 1 0 0 0 0
1 0 0.99 0.01 0 0
2 0 0.03 0.97 0 0
3 0 0 0 1 0
4 0 0 0 0.08 0.92

Hardware
0 1 2 3 4
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

Hardware
0 1 2 3 4
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

Figure 3.12.: Unsupervised clustering results compared to the classical outputs using
energy grid data with 5 clusters on IBMQ Casablanca using 12,000 shots
for amplitude embedding and 2,048 for angle embedding.

Distance estimation with vector subspace parallelization

So far, our approach to distance estimation has been to use the approach as stated in
[84], however, the accuracy in practice using this approach has thus far been relatively
low. From the benchmarking section, the highest accuracy was seen in the two-
dimensional data experiments. Using this as motivation, we propose a new technique
of parallelizing the distance calculation for high-dimensional vectors by using distances
between two-dimensional subspaces of the full feature vectors.

Given input data vectors a := (a1, a2, ..., an) and b := (b1, b2, ..., bn), the distance
between them can be decomposed as

d(a, b) = d(a1,2, b1,2) + d(a3,4, b3,4)

+ · · ·+ d(an−1,n, bn−1,n),
(3.1.12)

where ai,j = Pi,j(a) and bi,j = Pi,j(b) are projections of the respective vectors to the
(i, j)-th vector subspace. The circuit for this parallel distance estimate using angle
embedding is depicted in Fig. 3.14.

This approach has various benefits in terms of mitigating noise. Firstly, it uses only
low-dimensional projections. In this case, we use two-dimensional projections, aligned
with our benchmarking results, but as hardware improves, we can extend this to larger
dimensions to reduce the number of total independent measurements until we can
eventually use the entire vector. Next, these low-dimensional circuits will be in general
shallower and thinner, which will improve the accuracy and reduce the computation
time, allowing for more shots within the same execution timespan. Because in some
cases we observed a large standard deviation, with shorter execution time, one can also
execute the circuit many times to produce an average distance estimate within the same
period, mitigating Gaussian noise in the system.

78

3. Networked Quantum Computing

IBMQ Lagos
0 1 2 3 4

C
la

ss
ic

al

0 0 0 0 1 0
1 0 0.14 0 0.86 0
2 0 0 0.44 0.56 0
3 0 0 0.03 0.97 0
4 0 0 0 1 0

IBMQ Jakarta
0 1 2 3 4

C
la

ss
ic

al

0 1 0 0 0 0
1 0 0.57 0 0 0.43
2 0 0 0.66 0.33 0
3 0 0 0 1 0
4 0 0 0 0 1

IBM Perth
0 1 2 3 4

C
la

ss
ic

al

0 1 0 0 0 0
1 0 0 0 0 1
2 0 0 0.66 0.33 0
3 0 0 0 1 0
4 0 0 0 0 1

(a)

(b)

(c)

Figure 3.13.: The results of classifying the test set of 60 data points using a nearest-
neighbor prediction. In (a), we use amplitude encoding in 8 dimensions
and 30,000 shots per distance estimation. The balanced accuracy, in this
case, is 17.0% and the raw accuracy 46.7%. Weighted precision cannot be
computed since some classes are empty. In (b) we repeat the classification
using 15,000 shots using the divided distance estimation in four 2D esti-
mates, using an averaged of five estimates per distance. The results have
a balanced accuracy of 84.8%, a raw accuracy of 90.0%, and a weighted
precision score of 92.1%. In (c), the classification is done using the vector
subspace parallelization circuit which uses two swap tests per circuit.
This approach reduces the total number of circuits by 50%. The results
improved significantly to have a balanced accuracy of 73.3%, and a raw
accuracy of 83.3%.

79

3. Networked Quantum Computing

|0⟩ U(a′1, a′2) ×

|0⟩ U(a′3, a′4) ×

|0⟩ H • H
...

|0⟩ U(a′n−3, a′n−2) ×

|0⟩ U(a′n−1, a′n) ×

|0⟩ H • H

Figure 3.14.: Circuit for processing multiple distances in one circuit using angle embed-
ding with swap tests. The dashed boxes separate each independent swap
test.

Because the distance estimation circuits are indeed thinner, we can load multiple
circuits into one QPU proportional to the number of qubits. For example, because the
swap test with angle embedding in 2D uses three qubits per swap test, we can load two
distance calculations at a time in a seven-qubit quantum computer, reducing the number
of total circuits to execute by 50%. This approach could be generalized to contain as
many swap-tests as there are (the floor of) one-third the number of qubits, which could
in turn result in again using one circuit for distance estimation, simply with a modified
pre- and post-processing step. These benefits make this much more NISQ compatible
than performing the distance estimation with all dimensions considered at once.

After verifying this approach produced accurate results in simulation, to test how well
it mitigates the effects of noise in the classification task, we ran the circuit implementing
(3.1.12) using two approaches. For the first approach, we used amplitude encoding and
executed each distance estimation circuit independently five times, averaging the results
and using the average as the distance estimate. We used 15,000 shots per execution
and since the circuit uses four qubits, we could fit just one circuit at a time on the
7-qubit device. The confusion matrix of the results is in Fig. 3.13(b), showing a vast
improvement.

For the second approach, we perform classification again, now using angle embed-
ding, but in this case, since just three qubits per swap test are required, we could load
two distance estimates in parallel into the 7-qubit device. Using 15,000 shots with, in
this case, two repetitions per circuit, we again use the average for the estimate. The
results of the classification are shown in Fig. 3.13(c). Again, we see a strong improve-
ment for the classification problem over the standard method, increasing the balanced
accuracy from 17% in the standard approach to 73.3% using this novel approach, a
difference of 56.3%.

80

3. Networked Quantum Computing

Clustering with vector subspace parallelization

Given the promising results from the classification task using the vector subspace par-
allelization, we again perform the full clustering algorithm using the angle embedding
approach. We use the distance estimation (3.1.12) with 12,000 shots and one repetition
on the IBM Perth machine with a total of five iterations for the clustering algorithm.
The clustering results are shown in Fig. 3.11(c). Although the labels were reduced to
three classes, two fewer than in the classical algorithm, we see a much clearer separation
of the classes in comparison to using amplitude encoding for all eight dimensions.

3.1.10. Conclusion and Discussion

In this work, we thoroughly investigated the potential of using quantum k-means clus-
tering practically on current NISQ quantum hardware. In terms of distance estimation
comparison between classical and quantum distance calculations, we observed a high
level of difference between simulation and running on physical devices—especially com-
paring the distance estimation results using angle embeddings. The results which used
batched job submission via Qiskit Runtime showed to vastly improve performance,
allowing for more circuit executions, improving reliability, as well as drastic speed
improvements when dealing with large datasets due to the reduction in job-queuing
time.

The best k-means clustering results observed were from clustering datasets of 2-
dimensional data points. When we increased the number of clusters from four to a more
complex scenario of eight clusters and changed the input vector dimension from two to
four, the results worsened. We experimented with an industrial unsupervised learning
problem, labeling high-dimensional energy grid data using k-means clustering. Using
the state-of-the-art approach, the clustering and classification results proved inaccurate
when executed over real hardware. When we changed the distance metric and used
our vector subspace parallelization approach, we saw a significant improvement in
both our classification and clustering experiments. For amplitude embeddings, the
balanced accuracy of the classification went from 17% using the standard approach to
84.8% with this novel distance estimation method. With angle embedding, loading two
swap-tests into one circuit to execute in parallel, albeit an overall wider circuit, proved
to also have a large performance improvement over the amplitude encoding approach,
with a balanced classification accuracy of 73.3% and raw accuracy of 83.3%.

This work provides a first step into quantum clustering for practical, industrial use
cases, but still, there are questions to be answered. Future work will be to consider
other clustering algorithms such as k-medoids which use alternative distance met-
rics, considering other quantum approaches for distance estimation. Indeed, many
algorithms require a distance calculation step, and so benchmarking their quantum
performance leaves many possibilities for future work.

Although it is well known that quantum computing is in its early stages of devel-
opment, it is important to investigate what boundaries exist in relation to non-trivial
problems that move beyond fundamental algorithm proofs-of-concept. Clustering, and
particularly distance estimation, is widely used in various industrial applications. With

81

3. Networked Quantum Computing

this work, we have tested a large set of experiments that can be performed on the
quantum cloud using only the core features of the platform.

Quantum technology is continuously and rapidly improving, and we expect that
as NISQ-era quantum computers mature, these types of analysis and industry-driven
use-case studies will continue to be necessary to provide valuable insight into how they
will be used for real-life applications.

3.2. Distributed Quantum Computing

Section based on the article: "Quantum Algorithms and Simulation for Parallel and
Distributed Quantum Computing"

Scaling quantum computers up to levels where practical quantum algorithms can
be executed will require several technological breakthroughs. In the present state of
technology, scaling quantum computers past the 100-qubit mark has proven challenging
[104]. Even when quantum computers can support a large number of qubits in a
single system, if current error correction methods like surface codes are used, the
number of control signals required to perform error correction will scale with the
number of qubits, potentially bottle-necking logical instructions for an algorithm’s
execution[7]. To overcome these obstacles, a potential solution is to instead create
smaller-scale quantum computers and interlink them using a quantum network to
perform quantum algorithms over a distributed system. The benefit of using smaller,
interlinked quantum processors is the ability to perform larger quantum circuits on
more robust and controllable quantum processors albeit with the added—potentially
easier— problem of using distribution methods. When one can use networked quantum
computers, an additional ability to use parallelism in algorithm design is enabled.

When moving from monolithic to distributed quantum computers, a variety of
challenges arise. Indeed, there are many technological challenges to overcome in
building distributed quantum computers. A naturally arising problem to consider in
this perspective is performing two-qubit operations between qubits that are physically
separated between two quantum computers. To perform two-qubit operations with
monolithic quantum technologies, generally, the two qubits are physically near each
other, and if not, swap gates are applied to bring them near enough, known as the
qubit routing problem [105]. On the other hand, for two-qubit operations between
distributed qubits, one needs a new technique for transporting the control information
between devices. Possible options are to physically transmit qubits via a potentially
noisy and lossy medium [106], using quantum teleportation [107, 108], transferring
control information to a flying qubit [109, 110], or using the method introduced in [111]
using one entangled pair and two bits of classical communication as seen in Fig. 3.16.

Once a method of performing non-local two-qubit gates is selected, quantum circuits
designed for monolithic systems need to then be remapped to a logically equivalent
distributed version. To perform the remapping, one starts with the topology of the
networked quantum computers, each with its own quantum processor chip structures.
A monolithic circuit is converted such that any multi-qubit operation involving qubits

82

3. Networked Quantum Computing

located on different processors is replaced with a logically equivalent set of instructions
orchestrating the additional tasks needed for the non-local operation. This remapping
problem has been addressed in a variety of ways [112–117], but until distributed
quantum computing becomes more standardized, the most applicable method for
generating and optimizing distributed circuits remains an open problem.

The next problem arising is how to design and develop a control system for a
distributed system of quantum computers. Already a step in this direction is the
concept of cloud quantum computing which takes user input—usually as a circuit—
and a software layer converts the input into control instructions for a single quantum
computer [100, 118]. The quantum computer performs the computation, and the
results are sent back to the user via a communication network. For a distributed
system of quantum computers, additional network connections are needed between the
quantum computers. Moreover, the connections cannot simply be classical channels, but
quantum channels will be needed for either distributing entanglement or moving data-
containing qubits. Networked control systems for classical distributed systems have
been developed in various scenarios [119], for example in GPU clusters [120], but a key
problem that is not as critical for classical systems for computing is that the quantum
computers need to be highly time-synchronized to perform joint measurements, for one.
It is therefore a unique problem to design networked control systems for distributed
quantum computers. Proposals addressing such control systems are found in [112, 121].

Finally, once the ability to perform distributed quantum algorithms is enabled, one
can then start to consider the various quantum algorithms that can benefit from being
distributed and parallelized. Such examples have been considered such as distributed
Shor’s algorithm [111], Quantum Phase Estimation (QPE) [122], and accelerated Vari-
ational Quantum Eigensolver (VQE) [112]. Further, a mathematical framework for
expressing and analyzing distributed quantum algorithms has been developed in [123].
Now that the hardware technology is beginning to catch up with the theory, what re-
mains is to better understand what advantages exist if any, especially while considering
the cost of execution in a distributed setting.

In this work, we investigate two angles for distributed quantum computing. We con-
sider firstly a formalization of parallel and distributed quantum programs and consider
a collection of quantum algorithms fitting this formalization. Next, we introduce a
novel software simulation tool for simulating distributed quantum algorithms called
Interlin-q. Interlin-q is a Python library built on top of QuNetSim [56]—a quantum
network simulator—which generates and simulates the control steps needed in an asyn-
chronous setting to simulate distributed quantum algorithms. The overall goal of the
platform is to provide a tool for validating algorithms for distributing quantum circuits
and testing control systems. In addition, one can use Interlin-q to simulate parallel and
distributed algorithms to then benchmark the approaches for their distribution and
parallelization efficiency. In this thesis, we provide an overview of the software library
in its current state and some demonstrations. Overall, interlinking quantum computers
to perform distributed quantum algorithms will inevitably be an important part of
quantum computing in the coming future. This thesis aims to shed light on the open
problems and foreseeable benefits of distributed quantum computing, an increasingly
important topic for the future of quantum computing.

83

3. Networked Quantum Computing

When moving from monolithic to distributed quantum computers a variety of
challenges arise. Indeed, there are many technological challenges to overcome in
building distributed quantum computers. A naturally arising problem to consider in
this perspective is performing two-qubit operations between qubits that are physically
separated between two quantum computers. To perform two-qubit operations with
monolithic quantum technologies, generally, the two qubits are physically near each
other, whereas for two-qubit operations between distributed qubits, one needs a new
technique for transporting the control information. Possible options are to physically
transmit qubits via a potentially noisy and lossy medium, using quantum teleportation,
transferring control information to a flying qubit as in the recent experiment [109], or
using the method introduced in [111] using one entangled pair and two bits of classical
communication as seen in Fig. 3.16.

With the ability to perform distributed two-qubit gates, quantum circuits designed for
monolithic systems need to be remapped to the logically equivalent distributed version.
Additionally, the control system for a monolithic system needs to be modified to support
a network interface to communicate control instructions within the distributed network.
The ability to synchronize and control a distributed system of quantum computers
to orchestrate them on a very precise schedule will also be required. Proposals to
solve these problems have been developed [112–114, 121], where communication
protocols and distributed circuit compilation are considered. With the ability to generate
equivalent non-local circuits, one can then start to consider quantum algorithms that
can benefit from being distributed and parallelized. Such examples of distributed
Shor’s algorithm [111], Quantum Phase Estimation (QPE) [122], and α-VQE [112] have
been considered.

In this thesis, we investigate two angles for distributed quantum computing. We con-
sider firstly a formalization of parallel and distributed quantum programs and consider
a collection of quantum algorithms fitting this formalization, all gaining a potential
run-time speed up when parallelized. Next, we introduce a novel simulation tool for
simulating distributed quantum algorithms. We introduce our software framework
Interlin-q which enables the simulation of distributed algorithms. Interlin-q is a Python
library built on top of QuNetSim [56], which generates and simulates the control steps
needed in an asynchronous setting to simulate distributed quantum algorithms. We
provide an overview of the software library in its current state and a demonstration
overview. Interlinking quantum computers to perform distributed quantum algorithms
will inevitably be an important part of quantum computing in the coming future. This
thesis aims to shed light on the open challenges and foreseeable benefits of distributed
quantum computing, an increasingly important topic currently seeing relatively little
research attention.

3.3. Monolithic to Distributed Algorithms

Section based on articles: "Distributed Quantum Computing and Network Control
for Accelerated VQE" and "Quantum Algorithms and Simulation for Parallel and
Distributed Quantum Computing"

84

3. Networked Quantum Computing

To start our investigation of distributed quantum algorithms, we generalize the
concept of mapping monolithic quantum algorithms to distributed quantum programs
and scheduling them for execution. Executing a distributed quantum algorithm on
a distributed quantum computer has general preparation and execution stages: 1)
Allocate logical qubits within the network of quantum computers; 2) Remap circuits
for the possibly distributed qubit assignment; 3) Generate a schedule for the control
operations; 4) Distribute and execute the schedule; and 5) Merge the outputs. Some
quantum algorithms, which we investigate in the next section, have a particular struc-
ture that allows them to gain large “horizontal" speedups when parallelized, whereas
other quantum algorithms requiring many logical qubits can more readily be executed
on nearer-term quantum computers via a distributed quantum computer. To model
this staged process of preparation and execution, we start with a QPU structure as
a collection of integers Q = [q1, ..., qk] representing a network of k QPUs where each
QPU i has qi ∈N logical qubits. In this model, it is implied that the quantum network
topology is completely connected and entanglement units are created during runtime.
With this, we define a quantum parallel program.

Definition 17 (Parallel Program). A program P is the instruction set needed to perform a
monolithic execution of a quantum circuit including the logical circuit and the number of times
to repeat the execution of the circuit. A schedule S(i) is a mapping from an execution-round
number i to sets of integers, where |S(i)| is always the number of QPUs in the network.
The k-th set of S(i) represents the programs Pi ⊂ {Pj}n

j=1, where there are n programs total
to run, executing at time i on QPU k where two distinct sets in S(i) are not necessarily
disjoint. A collection of programs {Pj}n

j=1, a function M : On 7→ O for O the output of a
program which acts as a central merging function, and a schedule forms a parallel program
P = {{P1, ..., Pn}, S(i), M}.

Definition 18 (Distributed Program). Given QPUs Q = [q1, ..., qk], a distributed program
dP is a program P where the circuit execution instructions of P are assigned to qubits from
multiple distinct QPUs from Q. In this framework, it implies there exists an i where there are
at least two distinct sets both containing P.

To generate P , the collection of programs and schedule, Algorithm 8 is used. Input
to Algorithm 8 is 1) The specifications of the distributed quantum computers Q =

[q1, ..., qn]; 2) The circuit input to the program with width w, that is, the number of
qubits simultaneously needed to run the circuit; 3) An algorithm A which takes Q as
input and determines an allocation for w logical qubits or determines no allocation
exists; 4) A collection of monolithic programs {Pi}n

i=1. The output of the algorithm is
a schedule for executing a distributed program {{dPi}n

i=1, S(i), M}. In Fig. 3.15 is a
depiction of how such a system could perform.

Example 1. Let {P1, ..., P10} be a collection of programs that run circuits with width w = 4 and
Q = [10, 10]. If A is an algorithm that greedily allocates qubits, then the output of Algorithm 8
is: S(0) = {{1, 2, 3}, {3, 4, 5}}, S(1) = {{6, 7, 8}, {8, 9, 10}} and {dP1, ..., dP10}, where dP3

and dP8 are distributed between the two QPUs and the other programs run monolithically.

To generate P , the collection of programs and schedule, Algorithm 8 is used. Input
to Algorithm 8 is 1) The specifications of the distributed quantum computers Q =

85

3. Networked Quantum Computing

Algorithm 8 Distributed Quantum Algorithm Scheduler
Input: QPUs Q = [q1, q2, ..., qk], w the circuit width, qubit allocation algorithm A,
programs {P1, ..., Pn}. Assume ∀i ≤ k, w ≤ qi.
Output: P = {{dP1, ..., dPn}, S(i)}, dPj the distributed program for circuit execution j,
S(i) the schedule for r rounds.

1: a← 0; i← 0; dP← {}; A← {};
2: for circuit c ≤ n do
3: Allocate w qubits within current Q with A
4: if an allocation exists then
5: A⇐ allocation ▷ Append the allocation to A
6: reduce the available qubits in Q based on allocation
7: a← a + 1
8: else if no allocation exists or c = n then
9: Use allocations A to distribute a circuits

10: dP⇐ Generate a distributed programs
11: S(i)← {c− a, ..., c}
12: Reset Q; A← {}; a← 0; i← i + 1;

i = 0

S(i)

QPU1 QPU2 . . . QPUk

γ̂

M(γ1, ..., γn)

dP
s(i)1

dP
s(i)2

dP
s(i)k

i + 1

i ≤ r

γ
s(i)1

γ
s(i)2

γ
s(i)k

Figure 3.15.: A depiction executing a parallel program. The system starts at time i = 0,
loading the programs specified by S(i) to the respective QPUs until all r
rounds are run. The outputs of the distributed programs are accumulated
in an output vector γ̂ during execution. Finally, M maps the collection of
n outputs γ̂ to a single output.

86

3. Networked Quantum Computing

[q1, ..., qn]; 2) The circuit input to the program with width w, that is, the number of
qubits simultaneously needed to run the circuit; 3) An algorithm A which takes Q as
input and determines an allocation for w logical qubits or determines no allocation
exists; 4) A collection of monolithic programs {Pi}n

i=1. The output of the algorithm is
a schedule for executing a distributed program {{dPi}n

i=1, S(i), M}. In Fig. 3.15 is a
depiction of how such a system could perform.

Iterative quantum algorithms mapped to this model and scheduled using Algo-
rithm 8 stand to face the same “horizontal speedup" as mentioned—a run-time speedup
achieved by allocating more quantum processors to run in parallel. Influencing this
speedup is the algorithm used to allocate qubits—A in Algorithm 8—for distributed
processing. The choice of algorithm that solves this problem can come in a variety of
flavors. For example, an allocation algorithm that simply chooses qubit allocations
randomly will likely introduce more non-local gates, potentially diminishing potential
speedups due to the needed additional logic, whereas one which considers the topology
and connectivity of the quantum processor can minimize the number of non-local gates.
Alternatively, [124] addresses qubit allocation to reduce the circuit width in a circuit
using a technique called “circuit cutting” to run parts of a circuit independently and
then uses classical post-processing to combine outputs. Their algorithm further aims to
minimize the classical post-processing overhead. One can use the technique to define
parallel programs to then execute the overall circuit over a cluster of QPUs.

With an optimal allocation algorithm, the speedup of the parallelization for the
algorithms we investigate is not found by a reduction in algorithm complexity, but from
running multiple iterations of an algorithm simultaneously reducing the run-time of
execution. This type of speedup is commonly defined as the ratio between the run-time
of one process running an algorithm and the run-time of p parallel processes running
a parallelized version [125]. We also note that in classical distributed computing,
the concept known as Amdahl’s law is used to predict the theoretical speedup [126,
127]. The law predicts that eventually, the communication latency between many
processors will diminish the reduced runtime of parallel processing. Indeed this applies
to distributed quantum computing as well, but still, there are advantages to be gained
as analyzed in [128].

Future work will require a deeper investigation into how much of a horizontal
speedup can be gained in the purely quantum setting, and which parameters influence
the speedup. One of the parameters that will play a large role will be—as with classical
distributed computing—the topology of the network, but indeed some parameters
will exist only in the quantum setting for distributing algorithms. We plan to further
investigate the effects of two such parameters: 1) The quality of created entanglement
and 2) Entanglement distribution protocols; each of which will affect the performance
of non-local control gates. If the entanglement generation rate is low—which could be
the case when using deterministic entanglement generation (roughly in the ∼ 100 ms
regime [66])—then there could be long waiting times during execution. Moreover, when
the quality of the entanglement is low (but high enough to be useful), many repetitions
of the algorithm could be needed to produce meaningful results. A full investigation
will be necessary especially for developing optimized distributed circuit compilation
algorithms.

87

3. Networked Quantum Computing

3.3.1. Parallel and Distributed Quantum Algorithms

In this section we describe some examples of quantum algorithms that can be mapped
to the parallelized model from the previous section, and hence can benefit from hori-
zontal speedup. The property that each of the following algorithms has in common
is the quantum part of the algorithm can be split up across multiple QPUs to run
in parallel and the classical outputs can then be merged to produce the same result
as if the quantum part was instead run iteratively. The types of algorithms use tech-
niques like output counting or have linear properties that distribute straightforwardly.
We investigate some such examples and explore some of the expected benefits and
disadvantages.

Variational Quantum Eigensolver

Computing the eigenvalues of certain quantum operators can be challenging for classical
computers due to the exponential scaling in the dimensions of the operators with
the increase in the number of quantum states of the system. QPE allows one to
compute such eigenvalues in a much more efficient manner but requires a coherent
fully-connected quantum computer to produce good estimates. Consequently, the
Variational Quantum Eigensolver [129] (VQE) was proposed as a low-depth alternative,
using a hybrid model containing classical optimization and quantum computing. As per
the name, VQE belongs to the family of Variational Quantum Algorithms (VQA) [130],
a group of hybrid algorithms that include a quantum circuit as a subroutine. VQE
uses a classical computer to fine-tune the parameters of the “ansatz" preparation
circuit. In VQE, by tuning the parameters to the ansatz circuit one can minimize
an expectation value and use this as an estimate for the minimum eigenvalue. The
algorithm is built on the fact that certain Hamiltonian operators can be decomposed into
a polynomial number of terms of simpler Pauli operators. As a result, the evaluation
of the expectation value of such Hamiltonians reduces to a linear combination of the
expectation values of these simpler operators. With this, one can simply measure the
different qubits as per the observables in each term to obtain the term’s expectation
value in constant time and then recombine to find an overall estimate.

In its standard form, VQE iteratively performs this, but it can benefit from using
a cluster of quantum processors in two different ways. The general workflow would
be to dispatch some terms as well as the respective parameters to each quantum
processor, which would then compute the expectation value of the terms, and then the
dispatching node would aggregate the results from each of the different processors.
After carrying out the classical optimization step generating the new parameters for the
ansatz, the dispatcher would then send the new parameters to the quantum processors
to repeat the process. The second advantage comes from the fact that the Hamiltonian
governing a molecule requires more quantum systems to simulate as the complexity
of the molecule increases. By using a cluster of interlinked quantum computers, one
can simulate larger Hamiltonians using the interlinked smaller quantum computers.
Indeed, with an approximately 48 qubit Hamiltonian, it is predicted to be infeasible for
a classical computer to simulate [131], which could be achievable with an interlinked
cluster of quantum computers in the future.

88

3. Networked Quantum Computing

We now frame this algorithm in the setting of the previous section. For a Hamiltonian
H = ∑n

i=1 ciLi, where each ci ∈ R and Li ∈ {I, σx, σy, σz}⊗w, is a tensor product of w
Pauli matrices (or identity), we can form a collection of programs {Pi}n

i=1 where each
Pi is the combined w width ansatz preparation circuit, generating

∣∣ψj
〉

for the jth
iteration, prepended before the respective circuit for Li with N repetitions. The merging
function M is simply to reassemble the linear combination, where M applies the
respective the coefficient ci, computing the estimate for ∑n

i=1 ci⟨ψj|Li|ψj⟩. This type
of parallelization has been investigated in depth in [132], showing up to a 100-fold
improvement in algorithm execution efficiency in experiment in comparison to iterative
methods. Indeed many variational quantum algorithms have this same structure [130,
132] and can be parallelized similarly, making it more feasible for executing the class of
algorithms on near-term devices.

Low-Depth Quantum Amplitude Estimation

Already considered in 2002 by Bassard et al. [133], Quantum Amplitude Estimation
(QAE) remains one of the fundamental algorithms for quantum computing, as it
adds, for one, a significant performance speed-up for Monte-Carlo methods [134].
An issue to overcome to use QAE with near-term quantum computers is to greatly
limit the circuit depth. In its original form, QAE uses a combination of QPE and
Grover’s search [86], where QPE, with no additional assumptions, uses circuits that
deepen proportionally to the inverse of the precision [133]. Moreover, QPE requires an
application of the inverse-QFT algorithm requiring a high-depth and highly-connected
quantum processor. To overcome these issues, proposals for low-depth, QFT-free QAE
have been proposed [135–137].

From these approaches, we focus on the algorithm called the “Power Law Amplitude
Estimation" (PLAE) algorithm proposed in [136, Algorithm 2.1]. PLAE works by
using a maximum likelihood estimation routine where for each number of queries
mk ∈ K ≡ {⌊k(1−β)/2β⌋ : k ≤ K}—with K bounded above by a constant that grows
depending on the desired accuracy and β ∈ (0, 1]—a circuit making mk sequential
oracle calls is executed on a quantum computer. For each mk, the circuit making mk
queries executes N times, measuring the output of a single qubit, essentially performing
tomography. Once all of the K circuits execute, a Bayesian update step is performed
iteratively on the K statistics outputs.

In the framework of the previous section, there is a clear parallelization to make for
this problem. We can define a program Pk for each k ≤ K to be the oracle circuit of width
w with mk oracle queries and N repetitions. The output γk of Pk is the accumulated
statistics of performing mk oracle queries. The Bayesian update task is used for the
merging function M. Once all {γk}K

k=1 are collected, a phase estimate is made based on
the original algorithm. In this way, one can split the load of executing the K circuits
across multiple quantum computers, thereby gaining a horizontal speedup. A further
parallelization that can be made is to duplicate programs Pk on multiple QPUs, using
the same oracle query but dividing the number of circuit repetitions across the QPUs
to then merge the counting statistics for each oracle type. Algorithms using Bayesian
update methods via counting as with this version of QAE have been proposed in other

89

3. Networked Quantum Computing

modified quantum algorithms [138], and further investigation for this algorithm class
could prove fruitful.

Quantum k-Means Clustering

Clustering data into groups based on the properties of the data can be used to find
correlations between the data features. k-Means clustering is an unsupervised machine
learning algorithm used to perform such clustering [48]. The k-Means algorithm takes
as input a collection of unlabeled data, or feature vectors, and outputs k clusters, where
in each cluster are the data points that minimize the distance to a computed centroid
point. The algorithm runs for several iterations, improving the centroid locations
to minimize the average distance between the points in the cluster at each step. A
distance metric is used to determine how far apart two data points are from each other.
Classically, the usual method for measuring the distance is to simply take the Euclidean
distance. For feature vectors of length N, computing Euclidean distance requires O(N)

steps. Using the quantum encoding known as amplitude encoding, one can encode N
length vectors into O(log2 N) qubits, an exponential decrease for encoding, assuming
one can load quantum states into a quantum random access memory [84]. With this
encoding, one can perform a swap test to compute an estimate for the Euclidean
distance between two feature vectors. The swap test performs proportionally to the
number of qubits used in the encoding and can lead to—in theory—an exponential
decrease in the number of operations used to compute distance. Quantum k-means
clustering is especially interesting as it is suitable for near-term quantum devices [90,
139].

Because each feature vector is compared to each of the k clusters based on the
algorithm of [48], n distance estimates are made for each of the k centroids. To
parallelize this we can consider programs {Pij}n,k

i=1,j=1 where each program computes
the distance between feature vector i and centroid j. The circuit for each Pij is the one
described in [99], which loads two feature vectors using amplitude encoding and an
additional ancilla qubit for performing the swap test. The merging function M collects
the outputs of i · j programs grouping the circuit outputs in i vectors of length j such
that the closest centroid can be determined. With this, one can then update the centroid
positions classically and repeat the process until convergence is reached, or a maximum
number of iterations are performed.

For a purely parallel version of k-Means clustering, the horizontal speedup will scale
linearly according to the number of quantum processors until the scale of connectivity
comes into play according to Amdahl’s law. When moving to the distributed setting,
where the number of features cannot be encoded in a single QPU, it becomes important
for determining the overall run time to consider how the classical data is encoded
in the quantum computer. Indeed, depending on how one performs encoding it
could be that no quantum advantage is achieved for clustering [88]. If a standard
quantum state preparation algorithm is used to perform amplitude encoding across a
distributed system of quantum computers, then an exponential number of control gates
will be used for state preparation with the number of features, but only a logarithmic
number of control gates for performing the swap-test. Alternatively, with an angle

90

3. Networked Quantum Computing

encoding, only a linear number of control gates are needed for state preparation, but
also a linear number of control gates for the swap test, hence no quantum advantage.
Moreover, the more control gates needed across a distributed system will result in more
classical communication and entanglement generation. The full effect of quantum state
preparation across distributed systems will be of interest for future work, especially
adapting novel preparation methods as in [140] for distributed systems.

3.3.2. Decomposing α-VQE

As an example of using this approach to parallelize and distribute a quantum algorithm
explicitly, we take the α-VQE [138] and remap it for a distributed architecture. A
problem to overcome when dealing with near-term quantum computing devices is
that the ability to run deep circuits is greatly reduced due to the low coherence
time of qubit systems without error correction. A classical-quantum hybrid class of
algorithms called “variational quantum algorithms” allows running reduced depth
circuits performing some of the algorithms on near-term quantum hardware and
some on classical hardware. In particular, the variational quantum eigensolver (VQE)
algorithm is a variational hybrid-quantum algorithm that can be used to find the
minimum eigenvalue of a chemical Hamiltonian. It uses a quantum portion of the
hardware to estimate the eigenvalues for a particular Ansatz of Pauli operations
combining to form the Hamiltonian. VQE uses the quantum system to determine an
expectation value and these expectation values are then combined to find an expectation
value of the full Hamiltonian [129].

Using classical optimization techniques, various Ansätze – plural of Ansatz – are pre-
pared with the goal of finding an estimate of the eigenstate with the lowest eigenvalue.
The drawback of VQE is that the number of times the Ansatz state and expectation
value needs to be prepared is proportional to 1/ϵ2, where ϵ is the desired precision,
which could lead to long run-times [129]. Another way to estimate eigenvalues of
unitary operations is using the quantum phase estimation (QPE) algorithm explained
more in-depth in Section 3.3.4. The advantage of using QPE is that the number of times
the experiment is conducted to find the estimate is proportional to a constant. The
downside is of course that the circuit depth grows proportionally to 1/ϵ.

As quantum hardware technologies improve, it will allow for longer coherence times
of qubits and in turn, allows for deeper quantum circuits. To make use of this ability,
and to “squeeze” as much power out of the available quantum hardware, Wang et. al
proposed the Accelerated VQE (α-VQE) algorithm [138]. We again attempt to squeeze
more power out of our quantum hardware by considering how one could implement
α-VQE for a distributed quantum computer.

When using VQE for quantum chemistry applications, it is common to prepare
parameterized circuits that generate entangled Ansatz states. A commonly used Ansatz
is the unitary coupled cluster Ansatz [141], which grows in the number of qubits
required to prepare the Ansatz as Hamiltonian complexity increases. A critical part of
using a distributed quantum computer for quantum chemistry is therefore preparing
Ansatz states over an array of quantum computers. When distributing any quantum
circuit across devices, the main complication that arises is when a controlled two-qubit

91

3. Networked Quantum Computing

Figure 3.16.: Circuit diagram for a non-local CNOT gate between |ψ1⟩ and |ψ2⟩ where
(a) is the Cat-Entangler sequence and (b) the Cat-Disentangler sequence.

gate needs to be applied across two QPUs. There are two approaches we consider here.
We assume that only entanglement and classical communication are used to achieve
this. Alternatively to this, we could consider physically moving qubits between QPUs
but this is a much noisier task and we ignore this option. We consider two approaches:
Teleporting one of the two qubits to the other QPU so that they are on the same QPU
and then performing the two-qubit gate on one QPU locally, the second approach
is to use the mechanism introduced in [142] where Yimsiriwattana et. al introduce
“cat-entangle” and “cat-disentangle” protocols seen in Fig. 3.16.

Comparing these two approaches in terms of the number of operations needed,
we find that using the approach of Yimsiriwattana et. al is more efficient. To use
teleportation in a distributed system, we would require 2 Bell pairs to teleport the qubit
from one QPU and back again. Using the method of Yimsiriwattana et. al requires just
1 Bell pair to perform a non-local control gate and this Bell pair can also be used to
perform multiple control gates when the control qubit is the same as is done in [122]
for distributed quantum Fourier transform.

Using the approach of Yimsiriwattana et. al, in the first subsection we consider how,
given a collection of QPUs and an electronic molecular Hamiltonian, we can generate
a schedule that can be used to estimate the expectation value of the Hamiltonian.
We develop two approaches for solving this: the first is a greedy algorithm and the
second uses constraint programming. In the next subsection, we consider how we can
perform the needed α-QPE step that is required for estimating expectation value over a
distributed system and merge the ideas to produce a complete version of a distributed
α-VQE.

3.3.3. Scheduling Hamiltonians

An electronic molecular Hamiltonian H can be written as a sum of a polynomial
number (with respect to the system size) of Pauli matrices in the form of Eq. (3.3.1),
where each Pi ∈ {I, σx, σy, σz}⊗n is a tensor product of qubit n Pauli operators (or the
identify), called a Pauli string, and each ai ∈ R,

H = ∑
i

aiPi. (3.3.1)

92

3. Networked Quantum Computing

To use a networked quantum computer more effectively, we wish to use a parallelized
and distributed approach to expectation value estimation. We motivate the approach as
follows. Given the linear nature of estimating ⟨ψ|H|ψ⟩, we can break up the summation
into its pieces. We need to prepare an n qubit Ansatz for each piece of the sum to
estimate each ⟨ψ|Pi|ψ⟩ independently to later rejoin the expectation values to estimate
⟨ψ|H|ψ⟩. Given the distributed QPU architecture, we need to allocate the qubits in such
a way that Ansatz states can be prepared for each Pi in the sum. Later, the coefficients
ai can be merged to produce a single value for ⟨ψ|H|ψ⟩.

For Hamiltonians that require a large number of qubits, in this subsection, we
consider methods that distribute the expectation calculation of the Pauli strings between
a given distributed quantum computer. Here we model a collection of quantum
processors {QPU1,...,QPUm} as a collection of qi ∈N qubits (respectively), all of which
are located in the same device. Given a set of QPUs and a Hamiltonian in the form
of a summation of Pauli strings, a distributed layout of the qubits with the required
allocation of communication qubits is produced.

We enforce the following restrictions. Because the goal is to run α-VQE, we know
ahead of time that one additional qubit (additional to the qubits in the Ansatz) is
reserved for each Ansatz to perform α-QPE. On top of this, we need to reserve qubits for
entanglement between QPUs which is necessary when an Ansatz is split between QPUs.
The worst case for this occurs when there is a three-qubit control gate (equivalent to a
Toffoli gate) where the chain qubits are allocated on different QPUs while performing
α-QPE. In this case, since we are using the method of cat-entangling and disentangling,
we need to reserve 2 qubits from each QPU for entanglement. We depict such a
distribution in Figure 3.17. We formalize this as a problem:

Problem 1 (Ansatz Distribution Problem). Given a Hamiltonian H = ∑n
i=1 aiPi where each

Pauli string Pi ∈ {I, σx, σy, σz}⊗ni and a collection of m QPUs described by the number of
qubits on the system [q1, q2, ..., qm], output a series of rounds that can be used to estimate, for a
given Ansatz |ψ⟩, the expectation ⟨ψ|H|ψ⟩. To prepare an Ansatz, when Pi is split between
two QPUs, 2 qubits from each QPU have to be allocated to perform non-local operations for
preparing the Ansatz |ψ⟩ across two or more QPUs. Moreover, 1 qubit needs to be reserved for
α-QPE. The solution to this problem outputs a schedule of distributions in which one can run
over the distributed system to obtain an estimate to ⟨ψ|H|ψ⟩.

For the task of distributing the qubits, we take various approaches to this problem.
In its essence, this problem is a resource allocation problem. We can therefore gain
insight from common solutions to such problems. Common approaches for resource
allocation problems are greedy algorithms and constraint programming. We propose
an algorithm for each approach in this section.

Greedy Ansatz Distribution

In the greedy algorithm approach, we greedily fill the QPUs with as many Ansatz states
as can possibly fit and for the remaining needed qubits, we split them across the QPUs
reserving the needed qubits as needed. When the QPUs cannot fit any more Ansätze,
the execution of those estimations is moved to the next round. In detail, we propose

93

3. Networked Quantum Computing

Figure 3.17.: Distribution of a 11-qubit Ansatz on three QPUs with 6 qubits each. One
qubit is reserved for α-QPE in green. Communication qubits are reserved
in orange. The Ansatz qubits are in red. Two qubits are reserved for
communication to accommodate for any control-control gates that could
occur when running α-QPE that need to cross QPUs.

Algorithm 9. We refer to an algorithm called doesNotFit which simply runs a similar
logic as the main algorithm but just ensures a distribution exists for one particular
Ansatz. We refer the reader to Appendix A, Algorithm 15 for the detailed algorithm.

Constraint Programming Approach

As another approach to solving Problem 1, we use constraint programming. The
trade-off with constraint programming is that setting up a collection of constraints is
generally straightforward forward but solving constraint problems on a finite domain
is generally NP-complete, trading simplicity for time. We construct the multi-objective
constraint program in detail in Constraint Program 8. Using this constraint program
repeatedly, we can produce a schedule by running the constraint program on the
maximum number of Ansätze that fit in the system and using a solution from the
output, once per round, until all Ansätze are covered.

3.3.4. Distributing α-VQE

As discussed in earlier sections, The variation quantum eigensolver (VQE) is a varia-
tional algorithm that uses a combination of quantum and classical components and
can be used to estimate ground state energies in electric molecular Hamiltonians. To
perform chemical calculations, VQE is used with a statistical sampling sub-routine to
estimate expectation values with a given Ansatz with a classical optimizer to pick the
parameters to minimize the expectation value. In [138], a generalization of VQE is
proposed, called α-VQE. The generalization replaces the statistical sampling step with
a subroutine called α-QPE, which for the selection of α ∈ [0, 1] can behave as VQE does,

94

3. Networked Quantum Computing

Algorithm 9 Greedy Ansatz Distribution
Input:

• List of QPU sizes Q = [q1, q2, ..., qm].
• n the qubits for Ansatz
• p the number of Pauli strings to distribute
• Parameters for recursion defaulted to schedule = {} and round = 1

Output: An Ansatz distribution schedule used to compute ⟨ψ|H|ψ⟩ for an Ansatz |ψ⟩ of size n qubits.
GreedyDistribution(Q, n, schedule, round):
1: if p = 0 or n = 0 then
2: return schedule
3: Q′ ← copy(Q) = {q′1, ..., q′m} ▷ Copy Q for modification
4: schedule[r]← [] ▷ Initialize the schedule for this round
5: couldNotFit← 0
6: for i ∈ 1, ..., p do
7: sort(Q′)
8: if doesNotFit(n, Q′) then
9: if round = 1∧ i = 1 then exit ▷ The Ansatz does not fit, problem cannot be solved

10: couldNotFit← coundNotFit + 1
11: continue
12: distribution← [0 for ∈ {1, .., m}] ▷ A vector of m zeros
13: for j ∈ {1, ..., |Q′|} do
14: curAllocation← [0 for ∈ {1, .., m}]
15: possibleQPUs← Q′|{1,...,j} ▷ Restrict to the first j available QPUs
16: if j = 1 then ▷ No split needed
17: k← QPUNumber(possibleQPUs[1]) ▷ The QPU index
18: curAllocation[k]← possibleQPUs[1]− 1
19: else
20: k← QPUNumber(possibleQPUs[1]) ▷ The QPU index
21: curAllocation[k]← possibleQPUs[1]− 3
22: for q′s ∈ possibleQPUs|{2,...,j} do
23: curAllocation[s]← q′s − 2 ▷ Reserve 2 qubits from the QPUs

24: if sum(curAllocation) ≥ n then ▷ An allocation is possible
25: remaining← n
26: iteration← 1
27: for q′s ∈ possibleQPUs do
28: t← min{remaining, curAllocation[s]}
29: distribution[s]← t
30: remaining← remaining− t
31: if iteration = 1 then ▷ Remove the respective qubits from the first QPU
32: if j = 1 then
33: q′s ← q′s − t− 1
34: else
35: q′s ← q′s − t− 3

36: else
37: q′s ← q′s − t− 2

38: if remaining = 0 then break

39: iteration← iteration + 1
40: break
41: for q′s ∈ Q′ do
42: if q′s = 0 then delete q′s
43: schedule[r].add((i, distribution))
44: return GreedyDistribution(Q, n, couldNotFit, schedule, round + 1)

95

3. Networked Quantum Computing

but also can become more efficient by choosing α > 0, which requires the ability to run
deeper circuits on quantum hardware.

In this section, we take the proposed α-VQE in [138] and map it to a distributed
system. The main theme in this section is applying non-local control gates over
separated QPUs. We follow the approach of Refs. [114, 142] using entanglement and
classical communication to perform control gates across distributed systems, relying
on the pre-allocated qubits from the previous section to hold the entanglement across
devices.

Distributing α-QPE

The quantum phase estimation (QPE) algorithm is an essential ingredient to many
popular quantum algorithms – one such being Shor’s algorithm. First discussed by
Kitaev in [143], QPE is used to estimate the phase of a quantum state |ψ⟩ that appears
after applying a specific unitary operation U to it, where |ψ⟩ is an eigenstate of U.
Specifically, QPE aims to estimate the phase ϕ in U |ψ⟩ = e2iπϕ |ψ⟩ with high probability.
In Fig. 3.18, we depict a circuit representation of QPE applied to a qubit |ψ⟩ where n
qubits are used to estimate ϕ.

Here, we adapt a modified version of QPE developed in [138] called α-QPE for a
distributed system. α-QPE is a modified version of rejection filtering phase estimation
(RFPE) whose circuit diagram is given in Fig. 3.19. α-QPE uses a free parameter α that
is chosen depending on the available circuit depth on the specific hardware running the
algorithm. With this α, M and θ are selected as M = 1/σα and θ = µ− σ. Here, σ and
µ are parameters for a normal N (µ, σ2) prior distribution in the first round of α-QPE
for sampling values of ϕ, the “eigenphase” in U |ϕ⟩ = e±iϕ |ϕ⟩. Here U is modified to
be a rotation operator that rotates an Ansatz |ψ⟩ by an angle ϕ in the plane spanned
by {|ψ⟩ , P |ψ⟩}, where P is a Pauli string. More precisely, with the goal of estimating
| ⟨ψ|P|ψ⟩ |, given an Ansatz preparation circuit R := R(λ) for some parameter vector
λ ∈ Rn and a reflection operator Π := I− 2 |0⟩⟨0|, U := RΠR†PRΠR†P† and the circuit
depicted in Fig. 3.19 is executed to obtain a value E. When E is obtained, rejection
sampling is performed to produce a posterior distribution, which can be shown to
again be normal, in which to again sample values of ψ. This process is repeated until
sufficient accuracy is reached. Once an estimate for ϕ is obtained, one can recover
| ⟨ψ|P|ψ⟩ | using the relation | ⟨ψ|P|ψ⟩ | = cos(ϕ/2). In [138], mechanisms to recover
the sign of ⟨ψ|P|ψ⟩ are provided.

In this subsection, we tackle three key steps in to adapt α-QPE for a distributed
system: The first is mapping the state preparation circuit R(λ) across multiple QPUs,
the second is then to map U to a distributed system, and the third, performing the
controlled operation in Fig. 3.19. We solve these in order. The solution to the first
task takes Ansatz preparation circuit R(λ) and develops a mechanism such that it
can be applied when some qubits are physically separated. Here we consider R(λ)
a variational form, a parameterized circuit used to prepare an Ansatz. We give an
algorithm to achieve this in Algorithm 10.

The high-level idea of Algorithm 10 is, given the circuit representation of R(λ) as a
series of layers, where each layer is a collection of gates in a layer of the circuit, and

96

3. Networked Quantum Computing

|0⟩ H · · · •

QFT−1
n

...
...

|0⟩ H • · · ·

|0⟩ H • · · ·

|ψ⟩ /m U20
U21 · · · U2n−1 |ψ⟩

Figure 3.18.: Circuit diagram for QPE with unitary operation U and eigenstate |ψ⟩.

|0⟩ H Z(Mθ) • H E ∈ {0, 1}

|ϕ⟩ /m UM

Figure 3.19.: Circuit diagram for RFPE. Z(Mθ) := diag(1, e−iMθ).

a mapping of qubits, to search for any control gates where the control and target are
physically separated between two QPUs. When found, insert, between the current layer
and the next layer in the circuit, the necessary steps to perform the control gate in a
non-local way using the cat-entangling method. We also ensure that entanglement is
established between the two QPUs ahead of time by pre-pending an entanglement
generation step. As an optimization, the cat-disentangler step can be shifted to a later
layer if the non-local control gate has the same control qubit and no operations on that
control qubit in between controlled gates. Note that we can generate a distributed R(λ)†

in the same way. From the previous subsection, the proposed solutions to Problem 1
ensure that there are two qubits reserved on each QPU for the entanglement qubits
needed for non-local operations. Producing the layering of a circuit can be done in a
straightforward way and we assume that this structure is the input to the algorithm.
We depict an example of running the algorithm in Fig. 3.20.

The next step is to map U := RΠR†PRΠP†R† to a distributed system. One obser-
vation that can be made immediately is, since P is a Pauli string, P† = P, so there
are no additional steps needed to map P†. P is a separable operation (i.e. there are
no 2 qubit gates) and therefore we can apply each piece of P in a single layer with
no added inter-QPU communication. For mapping R(λ)† to a distributed system, as
discussed, given an R(λ) as a circuit that is not distributed, we can obtain R(λ)†. To
obtain the mapping, we can run Algo. 10 with R(λ)† as the input with the same
Ansatz distribution. Next, we consider the n qubit reflection operator Π which can be
decomposed (locally) as a series of single qubit gates and CNOT operations. We can
therefore again use Algo. 10 to map a provided reflection Π to a distributed architecture
given the Ansatz distribution as input.

For the control part of α-QPE, we consider the controlled version of U, c−U, because
of the structure of U, one can see that the only operation that needs control is in the
reflection Π since if Π is not applied, c−U is reduced to the identity. Here it will be
the case that we need to execute control-control gates (CC-gates). If the Ansatz is split
between QPUs, then two qubits need to be reserved on each QPU to accommodate for

97

3. Networked Quantum Computing

Figure 3.20.: An example of running the DistributedRemapper algorithm.

CC-gates. This is guaranteed by the scheduling algorithm in the previous subsection
and there will always be two free qubits reserved such that we can apply Algo. 10
again after adding a control connection to each gate of the circuit representing Π the
distributed form, excluding the previously added non-local steps, to produce a circuit
that achieves the controlled version of Π.

The remaining steps of α-QPE are the two complications that arise which are dis-
cussed in [138] Section 2b. At each iteration of α-QPE the Ansatz |ψ⟩ = 1/

√
2(|ϕ⟩+

|−ϕ⟩) needs to be collapsed into either |ϕ⟩ or |−ϕ⟩. In [138], Wang et. al propose a
statistical sampling method in which one can apply a constant number of iterations to,
with high confidence, both estimate the sign of ⟨ψ|P|ψ⟩ and ensure that | ⟨ψ|P|ψ⟩ | > δ.
When this bound holds, then with high confidence, |ψ⟩ can be efficiently collapsed
to either one of |ϕ⟩ or |−ϕ⟩. Once this is performed, we apply the α-QPE procedure
as normal. If high confidence cannot be achieved, then instead of using the α-QPE
circuitry, statistical sampling continues. Statistical sampling in this setting implies
repeatedly preparing |ψ⟩, applying the single layer Pauli string P, to estimate ⟨ψ|P|ψ⟩.
When the bound does not hold, statistical sampling is performed until ⟨ψ|P|ψ⟩ is
estimated with sufficient precision in the normal VQE sense. We follow the method
of Wang et. al but use the modified R(λ) circuit needed to prepare the Ansatz over a
distributed quantum computer. We write this whole procedure in Algorithm 12.

Definition 19 (Schedule). A schedule S is a collection of r lists where each element of a list
contains the distribution of qubits on the m QPUs. Each distribution is a list of qubit allocations
on each QPU qi ∈ {0, ..., Qj} where Qj is the number of qubits on QPU j. If the Ansatz is not
allocated in a round r′ ∈ {1, ..., r}, it does not appear in the distribution list. The structure of a

98

3. Networked Quantum Computing

schedule is as follows:

S = {
1 : [[q1, ..., qm]1, ..., [q1, ..., qm]n1], 2 : [[q1, ..., qm]n1+1, ..., [q1, ..., qm]n2],

..., r : [[q1, ..., qm]nr−1+1, ..., [q1, ..., qm]nr]

}

The subscripts on the qubit count lists represent the index of the Pauli being estimated.

Distributed α-VQE

To conclude the mapping of a localized, monolithic version of α-VQE to the distributed
version, we need to replace the α-QPE subroutine with the distributed α-QPE version
from the previous section. For completeness, we write distributed α-VQE as an
algorithm in Algorithm 13.

Analysis

In this section, we analyze the properties of the distributed quantum circuits in relation
to the Ansatz size. First, we compare the duration of computation using three methods
of performing the estimates of the expectation values: estimating in parallel, on one
single QPU the size of the Ansatz, and using parallel and distributed computing. When
running in parallel, one Pauli string is estimated per QPU. The limitation is that the
Ansatz can be only as big as the smallest QPU, minus the qubit for α-QPE. In the single
QPU case, we assume the full Ansatz can fit on the QPU, and therefore no gates are
distributed. Finally, in the distributed and parallel case, Pauli strings are estimated
similarly to the parallel case, but multiple Ansätze can be placed on a single QPU as
well as split between multiple QPUs with distributed control gates.

To get an estimate for the number of gates used, we analyze the pieces of the U
operator defined in the previous section. The reflection operator Π has the equivalent
cost, up to 2n single qubit gates to an (n + 1)-qubit Toffoli gate [138, Section II.B].
Without ancilla qubits, currently, the circuit depth to implement such a gate grows
linearly O(n) [144] with improved linear scaling with 1 ancilla qubit [145]. When ⌈ n−2

2 ⌉
ancilla qubits are available, the depth can scale as O(log n) [146] to implement with
6n− 6 CNOT gates. The additional ancilla qubits to decrease the circuit depth could be
considered in the Ansatz distribution phase from Subsection 3.3.3, and we leave it to
future work to analyze this change. Here we assume no additional ancilla qubits. For
the Ansatz preparation R(λ), in most of the applications to date, the circuit depth is
Ω(n) [147], meaning it has a tight upper and lower bound proportional to the number
of qubits, which could be the most significant overhead in this process.

We demonstrate the time trade-off. In Fig. 3.21 we assume we have a QPU cluster
with 5 QPUs each with 10 qubits. We determine a rough upper bound on the number
of gates needed to perform distributed computing and summarize the time weight and
gate quantity scaling in Table 3.4. In Fig. 3.22, we show the maximum number of qubits
that an Ansatz can be composed of using four different-sized QPUs and with respect
to adding additional QPUs of that size to the distributed system.

99

3. Networked Quantum Computing

Operation Execution time weight Quantity scaling
CNOT 5 O(n4 · log n)
Single qubit gate 1 O(n4 · log n)
Measurements 2 O(n4 · log n)
Entanglement generation 8 O(n4 · log n)
Classical communication 2 O(n4 · log n)
Output merging 3 O(m)

Table 3.4.: The time scaling of gates. n represents the number of qubits in the Ansatz
and m the number of QPUs. The execution time weights are derived from
[148] for superconducting qubits. The quantity scalings are based on a
Bravyi-Kitaev mapping [149].

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

Ansatz size

W
ei

gh
te

d
ti

m
e

Distributed
One QPU
Parallel

Figure 3.21.: This plot is of a weighted time using the greedy distribution of the Ansatz
for growing Ansatz sizes with 5 QPUs each with 10 qubits. The green line
shows the timing for running 1 Ansatz per QPU. It cuts off at 9 qubits.
The orange line is if all 50 qubits were on 1 QPU. The blue line is if we
use a distributed Ansatz over the 5 QPUs.

100

3. Networked Quantum Computing

2 4 6 8 10 12 14

0

500

1,000

1,500

2,000

Number of QPUs

M
ax

im
um

A
ns

at
z

si
ze

10 Qubits
50 Qubits
100 Qubits
150 Qubits

Figure 3.22.: The maximum Ansatz size that would fit on a distributed system of QPUs.
The maximum Ansatz size is given by ∑n

i=1 qi − 2n− 1 with n QPUs with
qi > 2 qubits on QPU i.

Applications for Quantum Chemistry

In this section, we take an example of an electronic molecular Hamiltonian for the
chemical H2. To estimate the Hamiltonian for this molecule with 2 electrons and 2
active orbitals, we require 4 qubits when using a Bravyi-Kitaev transformation. We
can quickly obtain the Hamiltonian using the Pennylane Python library [150]. The
Hamiltonian in this case, under the Bravyi-Kitaev transformation, is of the form,

H =
15

∑
i=1

aiPi, (3.3.2)

where we are concerned with the number of elements in the sum and less so about
the constant factors and therefore to perform α-VQE, we will need to estimate 15 Pauli
strings. In this example, we will consider a distributed quantum system of 3 QPUs each
containing 9 qubits. If we use these parameters as input to the algorithms in Section
3.3.3, the output configuration would be the one depicted in Figure 3.23. In one round,
4 Ansäzte can fit across this distributed system, and so at least 4 rounds need to be
executed. We can use the same allocation for the first 3 rounds and in the last round
eliminate the distributed Ansatz to reduce the need for cross-communication between
QPUs.

For the Ansatz preparation, we use the circuit R(λ) depicted in Fig. 3.24 (a). From
the 4 Ansätze, three of them will be able to run the α-QPE step without distribution
of the Ansatz. The fourth Ansatz is on the other hand distributed and will need to
use the circuit in Fig. 3.24 (b) for preparation. For simplicity, we include arbitrary
qubit rotations which are represented by the R(λ1, λ2, λ3) gates, where λi ∈ [−π

2 , π
2] for

i ∈ {1, 2, 3}. Next, we need to perform the reflection operation Π described in Section
3.3.4, whose circuit is shown in Figure 3.25 (a). An equivalent circuit is also shown
which decomposes the 4-qubit Toffoli gate into a series of controlled and single-qubit

101

3. Networked Quantum Computing

Figure 3.23.: A distributed Ansatz of size 4 on three QPUs with 9 qubits. The green
outlined qubits are reserved for running α-QPE. The red outline qubits are
for the Ansätze. The orange outlined are qubits reserved for entanglement
between QPUs for non-local gates. One qubit is left idle.

gates. We again need a distributed version of the reflection operation to support the
Ansatz which is distributed. We show this circuit in 3.25 (b). Here we introduce gates
for the cat-entangler and cat-disentagler sequences. Here, 4 qubits are allocated for
performing the non-local gates. Now, for running α-QPE, we need a circuit for c−Π,
which is the control part of c−U. Here is where it is critical to have 2 entanglement
qubits for each splitting of the Ansatz on each QPU since, as seen in Figure 3.26, there
are control-control gates that occur across QPUs. With this collection of gates, we can
run α-QPE and therefore using the algorithm in Section 3.3.4 run α-VQE.

3.3.5. System Architecture and Engineering

Because it will be difficult to construct large, monolithic quantum computers in the
near future, it will be a viable option to instead connect smaller quantum computers to-
gether using a network in a distributed manner. One can therefore consider networked
control systems (NCSs) to manage the distribution of resources for running quantum
algorithms. Such a system could allow for more flexibility regarding hardware configu-
rations and the ability to add more devices while minimizing integration overheads
dynamically. An NCS is a network of devices connected using the network to perform
a specific mutual task orchestrated by a control system [151, 152]. Among the other
thing, NCSs are used to perform distributed or parallel computing, control a fleet of
robots or drones, or smart grid systems deployed in modern cities [153].

Networked control systems can have various architectures for the control system
part. These systems can either have a centralized controller where communications
amongst the nodes are restricted to a local area network (LAN) or a decentralized
controller system that is connected via an internet or wide area network (WAN). These
two scenarios resemble how distributed quantum computers could potentially be

102

3. Networked Quantum Computing

|0⟩ X R(λ1)

|0⟩ X R(λ2)

|0⟩ R(λ3) • •

|0⟩ R(λ4) •

(a) Circuit for R(λ), λi ∈ [− π, π]3, i ∈ {1, ..., 4}.

(b) Circuit for a distributed R(λ). The red dashed lines represent the individual QPUs.

Figure 3.24.: Distributed circuit mapping for R(λ).

103

3. Networked Quantum Computing

X • X

X • X

X • X

X H H X
=

X • • • • X

X • • • • X

X • • • • • X

X R(0, 0, π
2) R(0, −π

2 , 0) R(0, 0, π
2) R(0, −π

2 , 0) R(0, 0, π
2) R(0, −π

2 , 0) R(0, 0, π
2) X

(a) Circuit representation of reflection Π.

(b) Circuit representation of distributed Π. The square gates in the 4 qubit gates represent the cat-entangler/disentager
sequence.

Figure 3.25.: Distributed circuit mapping for reflection Π.

104

3. Networked Quantum Computing

|0⟩ H Z(θM) • H

·

M
E ∈ {0, 1}

.

X • • • • X

X • • • • X

X • • • • • X

X R(0, 0, π
2) R(0, −π

2 , 0) R(0, 0, π
2) R(0, −π

2 , 0) R(0, 0, π
2) R(0, −π

2 , 0) R(0, 0, π
2) X

(a) To run α-QPE, one needs to perform a controlled U operation M times, where U = RΠR†PRΠR†P. The
control portion to consider is c−Π. We depict the c−Π part, where the other parts of U are applied
before and after what is depicted, which do not need to be controlled.

(b) Distributed c−Π. The square gates in the 4 qubit gates represent the cat-entangler/disentager sequence.

Figure 3.26.: Distributed circuit mapping for c−Π.

105

3. Networked Quantum Computing

networked. In the first case, one can consider a single owner of multiple quantum
devices where all of the quantum devices are located in the same room or building,
specifically, the network owner would know the network topology and information
about the hardware in the network. In the second setting, multiple quantum computers
located possibly far apart are potentially connected by multi-hop connections where the
owner of the hardware between the hops is possibly different. Here, more advanced
protocols that consider security and robustness will be needed potentially leading to a
fully-fledged quantum Internet.

To use a network of distributed quantum computers efficiently, one must develop
robust communication protocols such that communication and control between the
quantum devices in the network are efficient and reliable. In this section, we consider
quantum systems with classical control and separated quantum processing units. We
consider a QPU to be a combination of a three-layered system depicted in Fig. 3.27.
The QPU in this case is a layered system with inputs and outputs to a communication
network through a classical computer or a CPU. The CPU interfaces with the network
as well as controls the FPGA based on the control instructions from the network which
in turn controls the qubits to perform quantum operations on the qubit layer. Qubit
measurements and other classical messages are transmitted back to the network via a
reversed path.

We consider the two different network configurations described and get into more
detail about how these systems could be implemented in practice. We list the communi-
cation requirements needed to perform distributed quantum computations. We explore
some available protocols to achieve these requirements under two scenarios. In the first
one, there is a centralized controller of the system, and communication to devices is
classical information and quantum entanglement can be sent directly to other quantum
processors without routing. The second case is when control over the network is not
centralized but has a single user. We then propose a control system using Deltaflow.OS
to orchestrate distributed quantum computing.

In this section, we discuss two possible network architectures for distributed quantum
computing control systems. The major difference between the two systems is the
centralization of the control. In the first system, we consider a distributed architecture
with centralized control. In the second, the control is split such that each QPU in the
system has its control. In this section, we describe these two systems in depth. In later
sections, we go into detail regarding the communication requirements needed to run
the systems and the potential protocols to achieve them.

Centralized-Controlled Distributed Quantum Systems

The first distributed quantum computing scenario we consider is depicted in Fig. 3.28.
This scenario is one where there is a single controller, and the quantum hardware
behaves only according to the instructions that are fed from this controller. The QPU
systems are connected to the controller via a classical network and further, they are
connected both classically and quantumly – so that they can generate entanglement
amongst themselves. The main idea here is that the CPUs in the network have a static
IP and can be accessed by centralized control. The finer synchronization between the

106

3. Networked Quantum Computing

QPU

CPU

FPGA

Qubits

Figure 3.27.: Internal layering of a QPU. We assume there is a layered architecture. The
CPU instructs the FPGA which in turn controls and measures the qubits.
The CPU also interfaces with the network.

QPU nodes is delegated to the CPU controlling the FPGA layer of the QPU from the
centralized control ahead of execution time. The CPUs control the FPGAs and the
FPGAs communicate over fixed low-latency links. This latency can be accounted for
the control instruction scheduling. At a small and medium size, this network scheme
will be best suited, but when many nodes are added to the network, a system with a
distributed control is better suited, which we discuss in the next subsection.

Decentralised-Controlled Distributed Quantum Systems

With a decentralized control system, the nodes in the network are no longer in a
“master-slave” relationship because the hardware is no longer controlled by a single
entity. Resources in this setting need to be requested from various parties and there is
no guarantee that the requested resource will be available at the time of the request.
Access to the controllers is hidden behind a firewall and their IP, MAC, and inner
network configuration is potentially not exposed. We assume that the QPUs are offered
by various vendors that have agreed to offer a base set of services: They provide access
to quantum hardware for a maximum amount of time per instruction set execution,
they offer classical communication input and output to a pre-specified IP address
where the communication stream is established before execution, and they allow for
remote entanglement to be established between quantum devices on specified quantum
hardware. In this case, the control information between QPUs is needed and we will
need a low-latency protocol that works in the network layer so that the control messages
can be routed.

3.4. Networked Control and Algorithm Scheduling

3.4.1. Distributed Quantum Algorithm Scheduling

For networked quantum hardware to execute instructions synchronously, a method of
dictating to the devices when the instructions should be executed is needed. In this
section, we propose a temporal operation schedule, that is, a schedule of the operations
with precise timestamps for execution. These schedules can then be sent to each QPU
in the network with a time to begin execution. Because quantum gates generally have

107

3. Networked Quantum Computing

QPU 1 QPU 2 · · · QPU n

Classical Network

Controller

Controller Communication Controller Communication

EntanglementEntanglement

Low-LatencyLow-Latency

Figure 3.28.: A networked control system with a centralized controller. The triangular
arrowheads represent classical connections, and the diamond-shaped
arrowheads represent quantum connections used for establishing EPR
pairs. Here we assume the network between the QPUs is completely
connected in terms of quantum and classical connections, that is, each
QPU has the same connections as any other QPU. In the completely
connected network, this network is single-use for transmitting with low
latency. Moreover, each QPU is connected to a common bus line that
handles all the latency-tolerant message exchanges among the nodes.

QPU 1 QPU 2 QPU n

Classical Network

Entanglement Network

Controller 1 Controller 2

· · ·

· · · Controller n

Figure 3.29.: An inter-networked distributed quantum computer with decentralized
controllers. Here, some independent controllers control their respective
quantum processing systems. Entanglement is generated with an entan-
glement network requiring possibly multi-hop entanglement routing. The
controller is placed between the QPU and the quantum network since in
this scenario, a quantum processing layer will be needed.

108

3. Networked Quantum Computing

an upper bound for how long they take to execute, we can use this information when
generating the schedule. Here, we assume that all gates have a known execution time as
well and that latency times for classical communication and entanglement generation
are known. We formalize the problem as follows:

Problem 2 (Distributed Quantum Algorithm Scheduling). Given a distributed circuit as a
series of gate layers, where each layer contains a collection of gates to be applied on the qubits in
the system, and the gate times (i.e. the amount of time it takes to perform the gate) of each gate
for each QPU in the system, produce a temporal gate execution schedule such that the following
constraints are obeyed:

1. Sending and receiving classical communication or entanglement between two parties
occurs at the same time for the sending and the receiving parties.

2. One qubit operation occurs per time instance per qubit for the duration of the gate time
(i.e. no overlapping gates).

3. At the start of a controlled operation, both qubits need to be available to perform the
control gate (i.e. one qubit cannot have a gate operation ongoing).

At the start of the problem, it is assumed that all nodes in the distributed system have synchro-
nized clocks. We assume routes for any multi-hop communication or entanglement generation
are already established and are already calculated into the communication time bounds. Moreover,
it is assumed that swap gates are not considered in the scheduling and are assumed included in
the worst-case gate times provided.

Comparing and creating a hybrid temporal planning approach with constraint
programming for quantum circuit scheduling has been investigated in [154] for the
max-cut problem. The difference here is the level of compilation is deeper as they
include swap operations since they limit to nearest-neighbor interactions between
the qubits. A temporal planning and constraint programming approach is therefore
sensible. Here, we do not enforce nearest-neighbor interaction and assume this process
is included in the worst-case timings for two-qubit gates for swapping qubits to their
nearest neighbor if needed and remapping the index of the qubit so it does not have
to be swapped back. We assume at the end of each layer of gates, each qubit will be
free to be operated on and no swapping is needed therefore do not use any constraint
programming.

The output of the schedule for each QPU will have the form of Table 3.6. Table 3.5 is
an intermediate schedule that is used before splitting the schedules for each QPU. For
a list of all possible commands and their descriptions, see Appendix A. We approach
this problem as follows. We start with high-level instructions which are entanglement
generation, single qubit gates, classical communication, and control gates. We generate
an instruction list using this gate set. We then take the high-level circuits and break
them down into finer control instructions. Once the full schedule is created, we can split
the instructions such that the instruction schedule is for a single QPU. The instruction
sets can then be sent to their respective QPUs and the algorithm can start. To ensure
gates are performed in the correct order, we layer the circuits as done in the previous
section and schedule the circuits layer by layer, iteratively constructing a full schedule.
In complete form, we propose Algorithm 14.

109

3. Networked Quantum Computing

Command QPUs Time
CTRL[G, qID, qID] QPU1 T1

GEN_ENT[qID, qID] QPU1, QPU2 T2

CLASSICAL[cID] QPU3, QPU2 T3
...

...
...

SINGLE[G, qID] QPU5 Tn

Table 3.5.: Ti is the time to execute the particular gate. The first step of Algorithm 14
generates a table of gates with QPU information before filtering the gates for
each QPU for execution.

Command Time
CTRL[G, qID, qID] T1

SEND_ENT[QPU, qID] T2

REC_CLA[QPU, cID] T3
...

...
SINGLE[G, qID] Tm

Table 3.6.: Ti is the time to execute the particular gate. The output of Algorithm 14 will
generate a collection of schedules in this form for each QPU.

3.4.2. Protocols

To run a distributed quantum algorithm with a distribute quantum computer using the
architectures proposed in the previous section, certain communication requirements
are needed to ensure execution is possible. Protocols for controlling networked systems
exist in practice in the centralized and decentralized cases, and we explore some
examples of them in this section.

The first requirement considered is the classical communication between the con-
trollers and the QPUs. Here what is needed is a method for sending the computation
instructions to the QPUs which can be done at slower latency, as well as a method for
sending low-latency control bits between the QPUs. We explore methods for achieving
this in the two cases. Clock synchronization is a commonly used scheme in distributed
control systems. We consider an example of architectures using clock synchroniza-
tion on a large scale. Lastly in the multi-vendor case, we discuss the certification
steps needed to ensure multiple vendors can execute distributed quantum algorithms
cooperatively.

Selecting the specific hardware that can execute these protocols is left to future work
as tasks such as entanglement generation is still in a primitive state and may not exist
to the extent we need for years to come. Also, as qubit technologies improve, the need
for as-low-as-possible latency could be loosened, and other protocols could be used in
replacement. Here we explore examples that could potentially achieve what is needed
to perform distributed quantum computing.

110

3. Networked Quantum Computing

Classical Communication

To run distributed quantum algorithms, there are specific non-local tasks that need to
be carried out by the distributed system such as receiving control commands, sending
measurement results to the controller, and sending qubit measurements between the
QPUs at low latency to perform non-local control gates. In this section, we explore
communication protocols that can be used by the control system to accomplish running
distributed algorithms. Here we explore some examples of existing protocols that exist
at an industry level.

For the centralized control case, we neglect the routing of information and assume
each node is connected both classically and quantumly to another. As discussed, we
propose that there is a classical network connecting the QPUs to a centralized controller
forming a “master-slave” relationship with the additional network of dedicated con-
nections between the QPUs for the sole purpose of low-latency communication. This
communication does not go through the CPU of the QPU, but directly between the
FPGAs to perform the non-local gates.

When using a centralized control system, to perform slower communications between
the QPUs and the controller one could consider two options. The first is to simply
connect the CPU portions of the network to the controller using a local area network
and communicate using TCP/IP from the controller to the QPUs. In this case, one
would need to closely monitor that communication traffic does not overwhelm the
network. Another approach that has this feature built-in is to use a protocol often used
in industrial control systems. The Modbus communication protocol [155]. Modbus
is an open protocol used in a centralized controller master-slave setting as is this
centralized controller setting. It is a messaging structure that allows heterogeneous
devices to communicate with a centralized controller and receive control messages
from the controller. The Modbus protocol can be used over a local network using
TCP/IP making it easier to install into existing commonly used Ethernet networks.
With Modbus, the controller can send the control instructions to the CPU portion of
each QPU which can be sent to the FPGA to perform the portion of the quantum
algorithm. With Modbus, the controller can also receive the qubit measurement results
from the QPUs once the algorithm is complete.

For low-latency communication of short messages (< 1 byte) between FPGAs there
are existing methods that can be used to communicate at the ultra-low latency range
(< 1 ms). In the high-performance computing domain, FPGA networks for ultra-low
latency, and high bandwidth communication are realized. Here we need to consider
that the FPGAs may be meters apart. Connecting the FPGAs with, for example, 10
Gigabit Ethernet for sending short messages and using custom communication protocol
and small form-factor pluggable (i.e. SFP+) transceivers, the latency of 300 nanoseconds
is possible for each link [156]. With fiber, the latency can be even further reduced.

Another approach that can be integrated again comes from the industrial control
domain. Industrial control, especially in the power sector faces issues where some
devices need constant monitoring, and reacting to the changes needs to be done at
very fast speeds. A method used is the Mirrored Bits [157] protocol. Mirrored Bits
is a communication protocol for ultra-low latency communication adding additional

111

3. Networked Quantum Computing

latency of approximately 200 µs for message processing in addition to the latency
from transmitting signals over the communication link. Mirrored Bits could be used
in this setting to transmit qubit measurement data. The devices that perform the
Mirrored Bits protocol which is manufactured by Schweitzer Engineering Laboratories
are programmable and can trigger different routines on the FPGA depending on the
input bit. These devices are commonly used to frequently monitor sensor data to
trigger emergency shut-offs as fast as possible, for example.

In the decentralized case, a dedicated wide area network could be established between
the vendors such that a link-layer (of the OSI model) protocol is used for the classical
control information between the QPUs. Low latency communication can be achieved
using the link-layer protocol called the Generic Object Oriented Substation Event
(GOOSE). In particular, IEC 61850 is a GOOSE Ethernet protocol meeting time-sensitive
communications and high-speed performance requirements of automation applications.
At the link layer over an Ethernet network experimental results show GOOSE can be
used to transmit in the 0.5 ms scale [158]. When routing is involved, naturally, the
latency will grow. If TCP/IP protocols used over the Internet are considered, then it is
unlikely one could create any latency guarantees. If instead there are dedicated wide
area networks with routing, one could consider the network-layer version of GOOSE
called Routable GOOSE [159]. In [158], R-GOOSE is analyzed over a wide area network
using a particular data distribution service and was shown to transmit with an average
latency of around 8 ms.

Overall, there can be much to learn from looking into the power automation industry,
as many low-latency and fast reaction systems have been developed which have
carryover into distributed quantum computing. These protocols have been tested for
robustness and security and could potentially fit well for doing distributed quantum
computing over a wide area network. Moreover, networking FPGAs

Clock Synchronization

For centralized control, the assumptions of clock synchronization and full connectivity
at a small scale are not overly restrictive. High precision clock synchronization can be
achieved even in very large configurations (i.e. that comprise a large number of devices)
using methods such as in the White Rabbit Project [160]. White Rabbit is used at CERN
to synchronize over 1000 nodes with sub-nanosecond accuracy. This is achieved using
Ethernet with lengths of up to 10 km, with experiments demonstrating an average of
160 ps skew between similar clocks – regarding clock environmental variables such
as temperature – after several hours [161]. This protocol can be integrated into the
centralized controller case so that all of the hardware used has synchronized clocks.
Once the number of nodes in the network becomes large, routing and efficient network
topologies become critical.

In the decentralized case, the controllers will need to perform a coarse-grain time
synchronization via classical network synchronization protocols, and a fine-grain
synchronization, a precise notation of time can be shared. GPSs directly connected
to FPGAs can be a solution where shielding does not stop the incoming signals.
This process is common in distributed physical experiments such as in the Super-

112

3. Networked Quantum Computing

Kamiokande Detector [162] and the CERN-OPERA experiment [163]. Each node will
need to implement extra steps to guarantee that the timing information is constantly
accurate.

Entanglement Generation

To perform the non-local control gates needed in the distributed circuits, the ability
to share high-quality entanglement between quantum processors is critical. Entangle
generation has been achieved in various qubit technologies such as in optical pho-
tons, NV-centers, and superconducting qubits [164], but entanglement generation in
quantum networks is an ongoing research topic. We consider deterministic entan-
glement generation schemes such that there is a guaranteed entangled pair available
and shared between the quantum processors when it is needed. Experimental results
demonstrating deterministic delivery of entanglement using NV-centers in diamond as
qubits have been shown in [66], generating heralded entanglement at a rate of 39 hertz,
three orders of magnitude better than previously known results and guaranteeing
an entangled pair every 100 milliseconds with fidelity greater than 0.5 without pre-
or post-selection. Methods for improving the results further are also proposed. This
gives evidence that using entanglement to perform distributed quantum computing
can become more feasible using various qubit technologies. As technology regarding
entanglement generation and qubit stability improves, the deterministic entanglement
generation rate can be improved.

Customer-Vendor Certification

In the case of a decentralized controller, additional protocols are required to ensure that
all parties can execute the distributed quantum algorithms and an execution schedule
can be made such that non-local operations are performed synchronously. In this
setting, the user has no control over the quantum hardware, and therefore a protocol
for ensuring the user’s instructions can be executed is needed. We write in Protocol 10
a protocol for creating contracts between vendors and the user to ensure the desired
instructions are carried out as specified.

113

3. Networked Quantum Computing

Constraint Program 8 Constraint Programming Distribution
Input:

• Q = [q1, ..., qn], ∀i, qi ∈N a list of the number of qubits for each QPU in the system
• A ∈N the number of qubits in the Ansatz
• m ∈N the number of Ansätze to fit

Variables:
• xij ∈ {0, ..., A}: The number of qubits from Ansatz 0 ≤ i ≤ m placed on QPU j
• yij ∈ {0, 1}: The QPE qubit for Ansatz i on QPU j
• zijk ∈ {0, 2}: The number of qubits used to split Ansatz i between QPUs j and k

Objective Functions:

maximize ∑ij xij, minimize ∑ijk zijk

Constraints:

1. There’s only one QPE qubit per Ansatz:

n

∑
j=1

yij = 1, ∀i ∈ {1, ..., m}

2. If the Ansatz is split, then both QPUs use qubits:

zijk = zikj, ∀i ∈ {1, ..., m}, j, k ∈ {1, ..., n}, j ̸= k, j < k

3. Ansatz is completely covered with one QPE qubit:

n

∑
j=1

xij + yij = A + 1, ∀i ∈ {1, ..., m}

4. Qubits allocated do not exceed the number of qubits on the QPU. Note we can recycle
the splitting qubits for multiple splits of the same Ansatz.

m

∑
i=1

xij + yij + max
k∈{1,...,n}

k ̸=j

zijk ≤ qj, ∀j ∈ {1, ..., n}

5. The Ansatz fits on one QPU or it is split:

max
i∈{1,...,A}

xij = A ∧
n

∑
j=1

zijk = 0 ∨∣∣{xij : j ∈ {1, ..., n}, xij ̸= 0}
∣∣− 1 = |{zijk : j, k ∈ {1, ..., n}, j ̸= k, zijk = 2}|/2,

∀i ∈ {1, ..., m}

6. The QPE qubit exists on a QPU with Ansatz qubits:

∃j ∈ {1, ..., n} xij ̸= 0∧ yij ̸= 0, ∀i ∈ {1, ..., m}

114

3. Networked Quantum Computing

Algorithm 10 Local to Distributed Circuit
Input:

• A circuit representation of unitary U where U is a list of gates. Each list represents a
layer in the circuit. Gates have the form Gate(ID) or CONTROL(G, ID1, ID2) where G is
the gate to applied using control qubit with ID1 and target qubit ID2. The ID in the form
(i, j) where i is the QPU and j the qubit on that QPU.

• A qubit layout map qubitMap on a collection ID tuples of the form (ID1, ID2).
Output: An equivalent circuit that accommodates non-local controlled gates.
DistributedRemapper(U, qubitMap):

1: remappedCircuit← [[]] ▷ Add a placeholder layer in case an extra first layer is needed
2: for layerl ∈ U do
3: modi f iedLayers← [[]× 8]
4: for gate ∈ layerl do
5: if gate is CONTROL then
6: ((i, j), (s, t))← gate.qubits
7: if i = s then
8: modi f iedLayers[0].add(gate) ▷ Same QPU, no need to non-localize
9: continue

10: if Entanglement is not established between QPUs i and s then
11: remappingl−1.add(Ent((i, e1), (s, e2)) ▷ Add ent. gen. as previous layer

12: modi f iedLayers[0].add(CNOT((i, j), (i, e1)))
13: modi f iedLayers[1].add(ci ← measure((i, e1)))
14: modi f iedLayers[2].add(cs ← classicalCommunication(i, s, ci))
15: modi f iedLayers[2].add(classicalCtrlX(ci, (i, e1))
16: modi f iedLayers[3].add(classicalCtrlX(cs, (s, e2))
17: modi f iedLayers[4].add(Control − G((s, e2), (s, t))
18: n← 0
19: ▷ Get series of control gates with same control qubit, target qubits on QPU s
20: for seriesGate ∈ GetSeriesCGates(U, layerl , s, (i, j)) do
21: n← n + 1
22: ((,), (, t′))← seriesGate.qubits
23: modi f iedLayers.add([], 4 + n) ▷ Add empty list at index 4 + n
24: modi f iedLayers[4 + n].add(Control − G′((s, e2), (s, t′))
25: remove seriesGate ▷ No need to distribute in next iterations of parent loop

26: modi f iedLayers[5 + n].add(H(s, e2))
27: modi f iedLayers[6 + n].add(cs ← measure(s, e2))
28: modi f iedLayers[6 + n].add(classicalCtrlX(cs, (s, e2)))
29: modi f iedLayers[6 + n].add(cs ← classicalCommunication(s, i, cs))
30: modi f iedLayers[7 + n].add(classicalCtrlZ(ci, (i, e1))
31: else
32: modi f iedLayers[0].add(gate)
33: remappedCircuit.addAll(modi f iedLayers) ▷ Assume empty layers are ignored

34: return remappedCircuit

115

3. Networked Quantum Computing

Algorithm 11 GetSeriesControlGates
Input:

• U the circuit as described in Algorithm 10
• layerll the current layer to decompose in U
• s the QPU for the target qubit
• (i, j) the control qubit

Output: The series of gates directly following from layer l that are control gates with with
control qubit (i, j).
GetSeriesCGates(U, layerl , s, (i, j)):

1: layers← {layerl+1, ..., layern} ⊆ U ▷ Skip current layer
2: gates← []
3: for layers ∈ layers do
4: for gate ∈ layers do
5: if gate is CONTROL and gate = (, (i, j), (s,)) then ▷ Same control and target qubit
6: gates.add(gate)
7: else
8: return gates
9: return gates

Algorithm 12 Distributed α-QPE
Input:

• S: A schedule (defined in Definition 19) providing the qubit mapping of an Ansatz of
size n for p Pauli strings on m QPUs.

• A = [a1, ..., an]: The vector constants for each Pauli string.
• U = [U1, ..., Un]: The circuits for α-QPE
• P = [P1, ..., Pn]: The Pauli operators associated with each Ui

Output: The value of the expectation value estimations of the p Paulis
Distributed α-QPE(S, A, U, P):

1: estimates← []
2: for r ∈ S do
3: roundO f Estimates← RunAQPERound(S(r), U)
4: estimates.addAll(roundO f Estimates) ▷ Order of estimates is fixed

5: return A · estimates ▷ Return the scalar product
RunAQPERound(S(r), U):

1: estimates← Array(|S(r)|) ▷ Initalize |S(r)| length array
2: in parallel for p ∈ S(r) do
3: success← Bound | ⟨ψ(λ)|Pp|ψ(λ)⟩ | away from 0 and 1 using [138, Appendix C, Stage I]
4: if success then
5: Perform [138, Appendix C, Stage II] to collapse |ψ⟩ to either |ϕ⟩ or |−ϕ⟩
6: estimates[p]← Perform α-QPE using distributed circuits with c−Up or c−U†

p depend-
ing on collapsed |ψ⟩

7: else
8: estimates[p]← Estimate ⟨ψ(λ)|Pp|ψ(λ)⟩ with statistical sampling using constant distri-

bution circuits using the Ansatz distribution p
9: await all

10: return estimates

116

3. Networked Quantum Computing

Algorithm 13 Distributed α-VQE
Input:

• A list of QPU sizes Q = [q1, q2, ..., qm]
• H the Hamiltonian H = A · P = ∑n

i=1 aiPi
• R(λ) The Ansatz preparation circuit

Output: An estimate for ⟨ψ(λ)|H|ψ(λ)⟩, |ψ(λ)⟩ the state prepared by circuit R(λ).
Distributed α-VQE(Q, H, R(λ))

1: q← Number of qubits needed for R(λ)
2: p← Number of Paulis for H
3: S, map← Ansatz schedule from an algorithm proposed in Section 3.3.3
4: dR(λ)← DistributedRemapper(R(λ), map)
5: dR(λ)† ← DistributedRemapper(R(λ)†, map)
6: dΠ← DistributedRemapper(Π, map)
7: c−Π← Add control connections to dΠ from pre-allocated α-QPE qubit
8: c− dΠ← DistributedRemapper(c−Π, map)
9: for Pi ∈ P do

10: dPi ← DistributedRemapper(Pi, map)
11: c− dUi ← Combine distributed circuits dR(c− dΠ)dR†dPidR(c− dΠ)dPidR†

12: c− dU ← [c− dU1, ..., c− dUn]
13: dP← [dP1, ..., dPn]
14: ⟨ψ(λ)|H|ψ(λ)⟩ ← Distributed α-QPE(S, A, c− dU, dP)
15: return ⟨ψ(λ)|H|ψ(λ)⟩

117

3. Networked Quantum Computing

Algorithm 14 Distributed Scheduler
Input:

• QPUs the collection of QPUs in the system
• C = {l1, ..., ln} the circuit to schedule as a series of layers where each li =

{g1, ..., gm}.
• gateTime a mapping of gate names to time the gate takes to execute for each QPU.

Output: A schedule of gate operations for each QPU to run.
1: layerEndtime← 0
2: gateSchedule← []

3: for li ∈ C do ▷ Make a first pass schedule based on the layers of the circuit
4: for gj ∈ li do
5: gateSchedule.add((gj, QPUs(gj), layerEndtime))

6: layerEndtime← maxj(gateTime(gj)) + layerEndtime

7: QPUSchedules← {}
8: for QPU ∈ QPUs do ▷ Split the schedules so each QPU has its own
9: QPUSchedule← []

10: for step ∈ gateSchedule do
11: if QPU ∈ QPUs(step) ∧ |QPUs(step)| = 1 then
12: QPUSchedule.add(step)
13: else if gate(step) = GEN_ENT then
14: if QPU = QPUs(step)[0] then ▷ Sender QPU
15: QPUSchedule.add(SEND_ENT[QPUs(step)[1], qID], time(step))
16: else ▷ Receiver QPU
17: QPUSchedule.add(REC_ENT[QPUs(step)[0], qID], time(step))

18: else ▷ The other non-local gate is classical transmission
19: if QPU = QPUs(step)[0] then ▷ Sender QPU
20: QPUSchedule.add(SEND_CLA[QPUs(step)[1], cID], time(step))
21: else ▷ Receiver QPU
22: QPUSchedule.add(REC_CLA[QPUs(step)[0], cID], time(step))

23: QPUSchedules[QPU]← QPUSchedule

24: return QPUSchedules

118

3. Networked Quantum Computing

Protocol 9 Entanglement Validation
Vendor 1

1: Generate N entangled pairs with Vendor 2
2: Measure all of the owned halves
3: Send t < N randomly selected measurements to Vendor 2 without stating which

qubits were measured
4: Receive t bits from Vendor 2
5: If t bits not received, abort
6: Send positions of measurements to Vendor 2
7: Receive positions of measurements from Vendor 2 and compare measurements
8: Send acknowledgment if comparison passes, else send negative acknowledgment

Vendor 2
1: Generate N entangled pairs with Vendor 1
2: Measure all of the owned halves
3: Send t < N randomly selected measurements to Vendor 1 without stating which

qubits were measured
4: Receive t bits from Vendor 1
5: If t bits not received, abort
6: Send positions of measurements to Vendor 1
7: Receive positions of measurements from Vendor 1 and compare measurements
8: Send acknowledgment if comparison passes, else send negative acknowledgement

119

3. Networked Quantum Computing

Protocol 10 Contract Creation Protocol
User

1: Assume it is known how many qubits exist on each available QPU for each QPU
provider

2: Generate non-local circuits
3: Request gate and classical communication latency times of gates from each QPU

provider
4: Generate a gate execution schedule using Algorithm 14
5: Send executions schedules for the respective QPUs to the respective vendor along

with current system time
6: Await confirmation messages from all vendors
7: If any vendor responds negatively, broadcast abort
8: Gather all latest start times and broadcast start time as the minimum over all latest

start times
9: Await acknowledgements from all vendors, broadcast abort if any do not arrive,

otherwise broadcast start signal
Vendor

1: Await request from user for gate times and respond accordingly
2: Await gate execution schedule
3: Validate that instructions can execute within allotted time frame for the user,

respond to user if negative
4: If there are instructions with classical communication to an IP address, perform a

handshake with other IP, respond to user if negative
5: If there are instructions with entanglement, perform entanglement validation pro-

cedure in Protocol 9, respond to user if negative
6: With other IPs, perform clock synchronization, respond to user if negative
7: When all checks pass, respond positively to user with latest possible start time of

execution adjusted for user system time difference
8: Await start time confirmation, send acknowledgement to user, and await for final

acknowledgement from user

120

4. Software Frameworks for Quantum
Networks

To develop novel applications and protocols for quantum networks, access to a quantum
network is necessary to validate and benchmark. Generally, access to a quantum
network is hard to come by as 1) Quantum network technology is very much still
in development 2) The quantum network technology that exists is not at the quality
that it is expected to be in for future networks and 3) Setting up quantum networks
is a laborious undertaking. To overcome the lack of physical hardware, the next best
approach is to simulate and emulate the networks, so that when the technology catches
up, the applications can already be developed and studied to then be adapted later to
the hardware, knowing that the applications will work.

In this section, we review three various simulation frameworks. The first, QuNetSim
is a high-level quantum network simulator designed for developing and verifying quan-
tum networks. Next, we introduce Interlin-q, a framework built on top of QuNetSim
which can be used to perform simulations of distributed quantum computing. And
finally, the third framework, QontainerNet, is a merger between QuNetSim and Mininet
which can be used to perform simulations of quantum-enhanced communication
networks.

4.1. An Overview of Quantum Network Simulators

Section based on the article: "QuNetSim: A Software Framework for Quantum
Network"

A detailed list of quantum software libraries hosted at [165] contains approximately
100 different flavors of quantum simulation software. Most of these are directed at
simulating quantum computation and circuitry on various hardware configurations
with various levels of realism. With regards to quantum networking, as far as we know
at this time, there are five publicly available quantum network simulators: SimulaQron
[166], NetSquid [43], SQUANCH [167], QuISP [168], and SeQUeNCe [169]. Of these,
all libraries are freely available. SQUANCH, QuISP, SeQUeNCe, and SimulaQron are
open-source under the MIT license or 3-Clause BSD License. NetSquid uses a license
restricting its use for educational and non-commercial research and development
purposes. Indeed, some simulators simulate quantum key distribution [170, 171], but
these are single-use case simulators and do not allow for arbitrary application layer
protocols and we do not compare them to QuNetSim for that reason.

SimulaQron [166] is a simulator that can be used for developing quantum internet
software. It simulates several quantum processors that are located at the end nodes of
a quantum network and are connected by simulated quantum links. The main purpose
of SimulaQron is to simulate the application layer of a network; tasks such as routing
are left to the user to implement using their approach if needed. SimulaQron further
offers the ability to run simulations across a distributed system, that is, simulations can

121

4. Software Frameworks for Quantum Networks

be set up to run on multiple computers. What we found slightly lacking in SimulaQron
is a way to easily synchronize the parties regarding qubit arrival. A key difference
in QuNetSim is that it adds a layer of synchronization. Built into QuNetSim is the
approach of acknowledging when information arrives at the receiver. One can more
naturally write protocols in a standard way, where one handles the information arriving
or not before proceeding. SimulaQron also has hosts which have features like sending
qubits, establishing EPR pairs, and sending classical information. To simplify the task
of developing protocols on top of existing protocols, we try to include more built-in
tasks such as sending teleportation qubits, establishing a GHZ state, and establishing a
secret key using Quantum Key Distribution (QKD).

NetSquid [43] is a powerful event-driven quantum network simulator. It can simulate
the physical properties of quantum devices like quantum gates and memory, noise, and
loss of a quantum channel, and time-dependent quantum state decoherence. NetSquid
can be used as a benchmarking tool that can be used to test the robustness of quantum
network protocols against the physical and link layer effects of the network. NetSquid
uses a modular approach for network configuration, allowing users to customize their
simulations in many ways. A key strength of NetSquid is its ability to incorporate the
time-dependent effects of quantum systems. With these features comes a layer of added
complexity that falls to the user. To use NetSquid to its full extent, the user should
have a fairly good understanding of the hardware structure of a quantum network.
QuNetSim is designed to develop quantum protocols and test them for correctness over
networks, and not for benchmarking against the physical properties of the network
more easily. This greatly reduces the need to understand quantum networks at a deep
level but does remove the ability to benchmark quantum networking protocols against
any hardware specifications. One could use both NetSquid and QuNetSim together to
develop their ideas as a first prototyping step with QuNetSim and then benchmark the
protocols in NetSquid to see how it performs with the added physical models.

SQUANCH (Simulator for Quantum Networks and Channels) [167] achieves similar
functionality as SimulaQron but allows for customizable physical layer properties and
error models. It allows for creating simulations of distributed quantum information
processing that can be parallelized for more efficient simulation. It is designed specif-
ically for simulating quantum networks to test ideas in quantum transmission and
networking protocols. SQUANCH can be used to simulate many qubits and can allow
a user to add their error models, which we think allows for a more realistic quantum
network simulator. SQUANCH also allows one to separate the quantum and classical
networks of a complete network and as well as adding length-dependent noise to the
channel. A key difference between SQUANCH and QuNetSim is that in SQUANCH, as
far as we know, a node can run one set of instructions at a time and not more in parallel.
This may not be so restrictive, but in multiparty protocols, it may become challenging to
develop all of the behavior in one set of instructions. QuNetSim allows one to develop
multiparty protocols one at a time and run them in parallel. Further, synchronization
between parties is again potentially an issue with SQUANCH. QuNetSim gives each
Host an addressable quantum memory such that given an ID, they can fetch a qubit
and can manipulate it as desired. In SQUANCH one should initialize their qubits
before the start of the simulation whereas with QuNetSim qubits are initialized at run

122

4. Software Frameworks for Quantum Networks

time. We think this adds more flexibility when writing protocols and allows for more
natural logic in the code.

QuISP (Quantum Internet Simulation Package) [168] is also an event-driven simula-
tion of quantum repeater networks. The goal of QuISP is to simulate a full Quantum
Internet consisting of up to 100 networks of up to 100 nodes each and 100 qubits at
each node. Its focus is on protocol design and studying emergent behaviors of complex,
heterogeneous networks at a large scale while keeping the physical layer as realistic
as possible. In comparison to QuNetSim, QuISP uses a different approach regarding
how qubits are simulated. The quantum state vector of the qubits in the system is
not represented. To simulate a large-scale network as QuISP does it is not possible to
store the state information of many qubits mutually entangled, as the size of this vector
grows exponentially quickly in the number of entangled qubits. Instead, QuISP stores
the errors applied to the qubits which simplify the qubit data structure. In QuNetSim,
to get a better sense of the network’s effects, we do provide the qubit state vector, albeit
with the trade-off that large-scale simulations that are possible with QuISP are not with
QuNetSim. QuISP also follows “RuleSet” paradigm for programming the logic of the
network [172]. QuNetSim uses standard Python programming to define the actions in
the network, in line with the goal of simplicity.

SeQUeNCe [169] is a discrete-event quantum network simulator as are QuISP and
NetSquid. It is customizable, so users can define the network topology, the hardware
parameters of the nodes, and the actions the nodes take regarding storing qubits.
SeQUeNCe has physical models built in and follows a modularized design with
cross-module communication to allow for flexibility of the simulation. In this regard
SeQUeNCe and NetSquid are the most similar in the collection. In comparison to
QuNetSim, again the main difference is QuNetSim is not a discrete-event simulator
and focuses on simplifying protocol development rather than benchmarking.

4.2. QuNetSim: A Software Framework for Quantum Networks

Section based on the article: "QuNetSim: A Software Framework for Quantum
Network"

A quantum network is a network of physical devices that can transmit quantum
information and distribute quantum entanglement amongst themselves. As develop-
ments are made towards realizing a standardized quantum internet, the first stages
of which are likely to be available in the near future [64, 173], there is a stronger
need to be able to efficiently develop and test quantum networking protocols and
applications. Recently, there has been much effort into developing quantum simulation
software for quantum computing [165], whereas simulation software for quantum
networks has received considerably less attention and there are very few available tools
that exist capable of addressing a need for emulation. QuNetSim is especially suited
because it provides built-in tools for asynchronous tasks. A need has therefore arisen
for advanced quantum network simulation and emulation tools. The initial release of
QuNetSim fills this need by providing a lightweight, easy-to-use, open-source, quantum

123

4. Software Frameworks for Quantum Networks

network simulation framework that is in principle also able to interact with laboratory
equipment.

As it has been done for the classical Internet with, for example, the NS-3 [174] and
Mininet [175] platforms, work towards a similar open-source simulation platform with
many contributors should be developed for quantum networking. Although there
have been developments in quantum network simulators, as we discuss in Section 4.1,
presently, we think there is a gap between network simulators that work on a low level
and network simulators that are easy to use and can be used in a testing phase of
protocol development for quantum networks.

The goal for QuNetSim is to provide a high-level framework that allows users to
quickly develop quantum networking protocols without having to invest time in purely
software-related tasks, like managing threading and synchronization, writing thread-
safe logic, or repeatedly implementing basic protocols that can be used as building
blocks for new protocols. QuNetSim further aims to provide an open-source simulation
platform offering a high degree of freedom to attract contributors, enabling even
more simulation possibilities. As a consequence of meeting these goals, the learning
curve needed to begin developing protocols for quantum networks is flattened, since
QuNetSim makes it easier to write them. QuNetSim allows users to create examples of
quantum networking protocols that are along the lines of how protocols are developed
as a first stage for research papers, which helps to develop protocols as well as educate
students about quantum networks. In the examples we provide, we see how there is
an almost one-to-one correspondence between how protocols are written in quantum
network protocol research papers and how simulations are developed in QuNetSim.
In future releases, we aim to subsequently professionalize the emulation capabilities
of QuNetSim. Although the currently limited availability of off-the-shelf hardware
components for quantum networks leaves the network engineer with many unfulfilled
needs, QuNetSim offers, at least in principle, already today the possibility for using
hardware in the loop. Future emulation goals implement this behavior.

4.2.1. Overview of QuNetSim

The current main purpose of QuNetSim, as the name suggests, is to simulate quantum
networks. To this end, we aim to allow for the writing and testing of robust protocols
for multi-hop quantum transmission with various network parameters and configu-
rations. QuNetSim allows users to create network configurations of nodes connected
via classical or quantum links and then program the behavior of each node in the
network as they choose. To simulate the asynchrony of networks, QuNetSim runs in
a multi-threaded environment using first-in-first-out queues for packets. The gener-
ally challenging programming problem of managing multiple threads is simplified
as QuNetSim provides the methods to synchronize the nodes in the network even
when they are all performing their actions independently and asynchronously. Further,
QuNetSim comes with many built-in protocols such as teleportation, EPR generation,
GHZ state distribution, and more, over arbitrary network topologies, that make it easier
to develop more complex protocols, using the basic ones as a toolbox. It also provides
an easy way of constructing a complex network topology such that one can design and

124

4. Software Frameworks for Quantum Networks

test routing algorithms for quantum networks.
QuNetSim uses a network layering model inspired by the OSI model [15]. It nat-

urally incorporates control information together with any payload type but is open
to modifications where control information is explicitly transmitted separately from
the payload. In future quantum network implementations, likely, the exact OSI model
layering model will not be used and it could be that new layers are introduced. For
example, an already proposed network layering includes a “connectivity layer” between
the link and physical layer [16]. We anticipate that the basic concept of layering of
classical communication networks will be carried over to quantum networks, so that
included will be the layers such as application, transport, and network. Quantum
information carriers will be encoded into some form of packets which will then be
routed through the network to the desired destination. In its initial form, QuNetSim
implements the network layer and assumes link- and physical layers deliver error-free
bit- and qubit transmission capabilities. While it is relatively straightforward to model
link layer (in the sense of a logical but potentially not error-free qubit channel between
two nodes) behavior in QuNetSim, the modeling of a physical layer (in the sense of e.g.
a continuous-variable quantum system) is currently not considered as within the scope
of QuNetSim. By design, the accurate modeling of lower layers is left to simulators that
are better suited for that task.

In Fig. 4.1, we depict the high-level design structure of QuNetSim. At this depth,
it resembles a virtual connection between two nodes in a classical network, where
“virtual connection” means that node A has the perspective that it is directly connected
to node B even though the information sent from A is routed through the network with
potentially many relaying hops. In the figure, the two nodes are connected (virtually) by
a classical channel, represented by the green lines, and a quantum channel, represented
by the red lines. Both modes of communication are processed through the same layering
mechanism as the network can route both kinds of information but makes decisions
based on the payload of the packets. This allows users to use the same programming
logic for sending classical messages as for sending quantum, leaving it to the lower
layers to work out the differences.

4.2.2. Assumptions Made in QuNetSim

Although much research is directed at building a quantum internet, or more generally
and abstractly a network of nodes with the ability to create, distribute, and store
quantum states, currently such a network does not exist nor are the features of a
quantum internet yet to be standardized. To build a simulation software framework as
general as possible while attempting to keep it simple, we, therefore, make only a few
assumptions that we think will most likely be met by future quantum networks.

QuNetSim assumes that both classical- and quantum information transmitted via
future quantum networks will use signal processing that is modeled based on quantum
mechanics. However, following the principles of network layering, not all information
that is available at the lower layers can be accessed by the upper layers. Therefore,
the class quantum_connection in QuNetSim is assumed to model an error-free logical
qubit channel between network Hosts where the physical means of transmitting a

125

4. Software Frameworks for Quantum Networks

A B

Application

Transport

Network

Figure 4.1.: A design depiction of QuNetSim. Here the green line represents a classical
channel and the red a quantum channel. QuNetSim attempts to simulate
the process of moving both classical and quantum packets through a set
of network layers as does the classical Internet. Here Host A has a virtual
connection to Host B, and so all of their communication is processed one
layer at a time. QuNetSim does not explicitly incorporate features of the
higher layers like the link layer or the physical layer.

qubit necessarily involve also sending – potentially classical – control information such
as desired destination node, type of error correction applied, and synchronization
information all of which might even rely on an exchange of information via a feedback
loop from receiver to sender. In future networks, not every connection between network
nodes will necessarily be able to transmit quantum information. Therefore, QuNetSim
offers the additional class classical_connection which allows the transmission of
classical data alone.

Another assumption we make is that quantum nodes will be able to detect that a
qubit has arrived in their qubit storage. The practical methods (e.g. heralding) used to
achieve this functionality are left open. QuNetSim aims to make it easy to synchronize
between Hosts and therefore we allow acknowledgment of the arrival of qubits. Since
QuNetSim simulates up to the network layer, we assume that the lower layers of the
quantum network will be able to provide protocols to accomplish this. This is different
from current quantum key distribution networks that simply measure the qubits as
they arrive without storage. The measurement output acts as a herald but, also destroys
the incoming photon’s quantum state.

QuNetSim is a tool for protocol development in quantum communication networks
modeled based on a structure similar to current classical communication networks. The
state of the quantum internet is still very primitive and although we attempted to design
QuNetSim in a way that safeguards against future physical implementations, it is still
difficult to foresee how a quantum internet will be designed and implemented and

126

4. Software Frameworks for Quantum Networks

which features it will and will not have. We, therefore, do not claim that a simulation
implemented in QuNetSim is guaranteed to work in a future quantum internet, but
we hope that by using it one can more easily envision and experiment with possible
quantum networks.

4.2.3. Limitations of QuNetSim

QuNetSim provides a high-level framework for developing quantum protocols. There
are, however, some limitations in the current implementation. QuNetSim relies on
existing qubit simulators (see section 4.2.4) which in some cases perform well and
in some cases do not. This causes QuNetSim to periodically run more slowly than
desired and, because we are using full qubit simulators, where the alternative is error
tracking only as it is in QuISP [168], running large-scale simulations can consume
much of the user’s computer’s resources. We have found that QuNetSim works well
for smaller-scale simulations using ten to fifteen Hosts that are separated by a small
number of network hops. QuNetSim tends to reach its limits when many entangled
qubits are being generated across the network with many parallel operations. As this is
an ongoing project, we will investigate performance improvements as a priority during
future iterations. Moreover, QuNetSim does not aim at perfect physical realism, and so
the physical properties of quantum networks are mostly neglected. One can although
in principle recover physical realism by integrating QuNetSim with physical devices as
described earlier.

4.2.4. Using QuNetSim

In this section, we introduce the key features of QuNetSim for implementing protocols.
A full set of documentation is also available [176].

A foundational data structure used in QuNetSim is the Qubit. When a Qubit is
created, it is created with a specified Host and gets assigned a unique ID. A qubit is
generated by using Qubit(host). Once a qubit is created by a Host, logic gates can
be applied to it, it can be stored, or it can be transmitted to another Host. To send a
qubit to another Host, one can send it directly or by using teleportation. The two Qubit
methods that accomplish this are:

• send_qubit
• send_teleport

Hosts can easily establish entangled qubits with other Hosts in QuNetsim with two
Host methods. Built-in, Hosts can generate EPR pairs with another Host or a GHZ or
W-state with many Hosts. To do so, the following Host methods are in place:

• send_epr
• send_ghz
• send_w

Hosts can send classical messages in three ways; they can send an arbitrary string
over a classical connection, a binary message via superdense coding, or classically
broadcast messages through the network. These are accomplished with the following
Host methods:

127

4. Software Frameworks for Quantum Networks

• send_classical
• send_superdense
• send_broadcast

Sending a message using superdense coding [58] requires that a quantum channel is
also available between Hosts, as it requires a pre-established EPR pair.

For synchronization between communicating Hosts, it is sometimes beneficial to
wait for acknowledgment from the receiving Host. “Waiting” in QuNetSim implies
blocking a line of code. Waiting for an acknowledgment is possible for all sending
methods which is done by setting the flag in the methods called await_ack. By setting
the flag to false, the Host does not wait before executing the actions that follow and
there is no thread blocking done. Moreover, it can be specified how long a Host should
wait for acknowledgments by setting the max_ack_wait Host property. QuNetSim uses
real-time for this, so this parameter is the number of seconds to wait. When await_ack
is false, an acknowledgment is still sent, but there is no waiting. One can further specify
that no acknowledgment should be sent by using the no_ack flag in sending methods.

Hosts can be programmed to retrieve an incoming classical or quantum message and
also wait for it to arrive. When a classical or quantum message arrives, it is stored at
the Host in its respective memory structure – there is a distinct memory for classical
and quantum information. Hosts have the option to fetch the data from their memories
so that actions can be performed on it. These methods are:

• get_classical
• get_data_qubit
• get_epr
• get_ghz
• get_w

Much like awaiting acknowledgments, Hosts can wait until a message or qubit arrives
for a fixed amount of time before proceeding. For each “get” method, there is a
parameter wait=n where n is a floating point number of seconds to wait. For example,
get_epr(’Alice’, wait=5) will wait for five (real) seconds for an EPR to arrive from
Alice.

In near-future quantum hardware, it is expected that quantum memories will be
limited in their ability to store large numbers of qubits. QuNetSim supports limiting
the number of qubits stored at a Host. The number of entangled qubits and data qubits
can be limited separately or a limit for the combined number of qubits can be set. The
Host methods for setting the limits are:

• set_epr_memory_limit
• set_data_qubit_memory_limit

These parameters will enforce that no more than the set number of qubits can be stored.
When the limit is reached, the qubits are lost when they arrive.

To construct a network of Hosts, Hosts methods are provided for adding and
removing connections. Connections in QuNetSim are uni-directional and can be either
purely classical, purely quantum, or both classical and quantum. For example, if two
Hosts are connected by only a classical connection, then qubits cannot be transmitted
between the two Hosts. These Host methods are:

• add_c_connection

128

4. Software Frameworks for Quantum Networks

• add_q_connection
• add_connection

Connections can also be removed at run time with
• remove_connection
• remove_c_connection
• remove_q_connection.

Hosts can eavesdrop on communications. This is accomplished by firstly setting the
following Host properties to true:

• c_relay_sniffing
• q_relay_sniffing

From there, a custom Python function can be run to manipulate the payload of the
relaying packets. To do this, functions are set to the Host properties:

• c_relay_sniffing_fn
• q_relay_sniffing_fn

These features allow Hosts to intercept the qubits that pass through them en route and
manipulate them by measuring them or performing a unitary operation on them before
relaying them onward. With classical messages, the Hosts can manipulate the classical
payloads, changing the messages for example.

Hosts are initialized in an “off” state and so to start Hosts one uses the start Host
method. Once started, Hosts can run custom protocols using the run_protocol method
taking any Python-written function as a parameter. We will see examples of this in the
next section. A running protocol can be blocking or non-blocking. The Python thread
object containing the running protocols is provided and can be handled by the user as
desired.

Building the network topology is also a critical part of every simulation. QuNetSim
uses a Network singleton object to abstract the classical and quantum networks. Once
the network topology is established between the Hosts, Hosts are added to the network
using the Network method add_host. The network builds a graph structure using the
connections of the Host to be used for routing. As we will see in the next section, this
involves adding Hosts to the network and then calling the Network method start.

Networks can be programmed to run custom routing functions for the classical and
quantum messages separately. By default, the network uses shortest-path routing for
packets in the network, but by setting the following Network properties:

• quantum_routing_algo
• classical_routing_algo

the Network will use any other routing algorithm. The output needs just be an ordered
list which is the path to the receiver. The network can re-route at each hop as well by
setting the use_hop_by_hop flag accordingly.

Overall, with these features, one can already develop a variety of protocols with
varying network topologies. Further, by programming eavesdropping Hosts, one can
easily test protocols against malicious third parties, programming various attacks, as is
the norm in the development of QKD protocols.

129

4. Software Frameworks for Quantum Networks

Quantum Backends

QuNetSim relies on open-source qubit simulators that we use to simulate the physical
qubits in the network. At the current stage, we are using three-qubit simulators that
each have their benefits: CQC/SimulaQron [19], ProjectQ [177], EQSN [178], and
recently QuTiP [179]. EQSN is the default backend and it is created by the TQSD group.
Users are free to change the backend of QuNetSim to use different qubit simulators
and we also explain how new backends can be easily added in our full documentation
[176].

Other than SimulaQron/CQC, using these quantum simulators independent of
QuNetSim removes the ability to easily mimic transporting of quantum information in
a network setting. For example, one can indeed implement a simulation of quantum
teleportation in ProjectQ. With only a quantum circuit alone, which ProjectQ uses for
simulation input, one may not immediately know that the circuit represents a multi-
party network protocol. In QuNetSim, one program multiple entities independently,
clarifying the network aspects. With the circuit model, there is also no aspect of waiting
and eavesdropping, both of which are available in QuNetSim. SimulaQron most closely
resembles QuNetSim, but QuNetSim adds a lair of synchronization, such as waiting for
arrivals and acknowledgment to the Hosts, on top of SimulaQron and adds additional
network features as mentioned in the earlier section.

Each backend has advantages and disadvantages and we give a general benchmarking
overview in Table 4.1. The advantage of using ProjectQ is that it is the fastest in terms of
the run-time of the three implemented backends. We have found, however, that it tends
to slow when there is a high volume of qubit entanglement and is less robust when
protocols run for longer durations. ProjectQ is not designed to run in a multi-threaded
environment and so we observed run-time errors when many measurements are made
on qubits in multiple threads. We predict that there could be some additional thread
synchronization done here to prevent these errors. Generally, these are not major issues
and can be avoided by slowing the simulation slightly using the delaying mechanisms
built-in to QuNetSim. EQSN and CQC both work well in terms of threading and
processing speed, but are indeed slower in speed than ProjectQ. They are generally
more reliable under many qubit operations and tend not to be affected as quickly
when many entangled states are being generated. QuTiP currently shows the best
performance. It is optimized in terms of representing a density matrix with as little
data as possible as well as not using a single matrix to represent the entire quantum
system. This allows for generating many qubits, even with bi-partite entanglement,
efficiently. Overall, the user can use the same code for their network simulation and
easily change the underlying quantum simulation backend to find the one that best
suits their needs. In future iterations, we aim to integrate more qubit backends to allow
for an even more diverse set of simulation possibilities.

4.2.5. Design Overview of QuNetSim

QuNetSim aims to allow for the development of simulations that contain enough
realism that applications of quantum networks can be developed, tested, and debugged
for a proof of principle step. With this in mind, we have designed the software such that

130

4. Software Frameworks for Quantum Networks

Backend Teleportation Superdense GHZ State
ProjectQ 102± 30 82± 15 N/A

EQSN 283± 33 296± 72 2765± 245
CQC 301± 75 533± 70* 215± 17*

QuTiP 111± 28 92± 2 351± 40

Table 4.1.: Benchmark of the various backends with different networking tasks. Various
protocols are run over networks with ten hops between the end nodes. Listed
is the average duration in milliseconds to run the specified protocol 10 times
repeating the procedure 30 times over to collect the samples. The GHZ
state is distributed to 9 other Hosts from the first Host in the chain. The
benchmarking is done using an average laptop with a 2.7 GHz Dual-Core
Intel Core i5 processor with Python version 3.6.4. * represents tested with
just 2 nodes to work with the benchmarking tool.

we remove the need for the large overhead of setting up new simulations and added
built-in features that are potentially repeated across many simulations. Another design
aspect we aim for is that a prior deep level of understanding of quantum networks and
software development should not be required to use QuNetSim. To allow for as many
users as possible to develop their applications, we keep the functionality at a high
level such that protocols written with QuNetSim are as easy or easier to understand
as the protocols written in scientific papers. QuNetSim allows users to merge various
protocols which can be easily modified and simulated or chained together to run in
parallel or sequential configurations.

The general architecture layout of QuNetSim is depicted in Fig. 4.2. Here there are
three network nodes, which are Hosts in QuNetSim. Hosts A and B are connected via
a communication link as are Hosts B and C. As in a classical network, Hosts run such
that they sit idle awaiting any incoming packets and then act when packets arrive, or
optionally they can be programmed to act during idle periods. Hosts in QuNetSim
run applications asynchronously and transfer quantum and classical messages to other
Hosts in the network. In the figure, Host A runs an application that sends a packet to
Host C. Host A has no direct connection to Host C, and therefore its information must
be routed through B to arrive at C. In a layered network architecture, since Host A is
running on the application layer, it should not be concerned with how the information
arrives at C, and the transport layer has to prepare metadata of the application’s action
and the network layer to route the information to C if a route exists.

The transport layer prepares the information sent from A for the network by encoding
necessary information in a packet header such as the sender and receiver IDs, the
protocol, and the packet sequence number. As the layering of quantum networks
is not specified yet, the transport layer of QuNetSim has only a few responsibilities.
For example, it can be used to ensure the availability of pre-established entanglement
between network Hosts before executing protocols such as dense coding or teleportation.
The transport layer processes incoming and outgoing packets as a layer between the
network and the Hosts. Defined in the transport layer is a set of protocols so that
packets are encoded and decoded properly. Once information is encoded into a packet,

131

4. Software Frameworks for Quantum Networks

A

B

C

Transport

Network Network

Transport

Figure 4.2.: An example of a communication process in QuNetSim with three Hosts.
In this example, there are three Hosts, A, B, and C. Hosts A and B are
connected via a 2-way channel (represented by the dashed line), as are Hosts
B and C. When Host A executes an application that transmits information
to Host C, since there is no direct connection, the information must first
be routed through Host B. QuNetSim uses a layered approach like the
Internet. First, application data is filtered through a transport preparation
layer so that the information packet is prepared for the network. From
there, the transport layer packet is put into the network. The network also
encodes the packet with its header information and begins to route the
packet through the network. The network packet is moved first to Host B,
and Host B relays the data to Host C to complete the transmission.

the transport layer moves the packet to the network. In the current state of QuNetSim,
the transport layer is not configurable, other than the ability to disable the check for
EPR pairs for the built-in teleportation and superdense coding features. In the next
major release of QuNetSim, we aim to allow users to define their packet structures and
have a more configurable transport layer behavior.

Once the packet is added to the network the network layer routes it to the destination
receiver. The path from A to C is through B and so a transport layer packet is encoded
in a network packet and then moved through B to C. When Host B receives a packet
from A, since it is not the intended receiver, it relays the network packet onward.
Finally, when the network packet arrives at C the packet is unpacked in the network
layer and again in the transport layer. The payload can then be processed according to
the decoded information in the header. This separation of responsibility per layer is
a fundamental element of the QuNetSim design. The network of QuNetSim behaves
much like the network on the Internet with some key differences. In QuNetSim,
the network is composed of two separate but parallel networks, one for quantum
information and one for classical information. When quantum information is sent from
a Host, the network routes it through the quantum links in the network as it does for
classical information. Another responsibility of the network layer that differs from the
classical setting is that the network layer is responsible for establishing an EPR pair
between nodes that do not share a direct connection via an entanglement swapping
routine. It can trigger a chain of Hosts to perform an entanglement swapping so that in
the end, the sender and the intended receiver will share an EPR pair.

132

4. Software Frameworks for Quantum Networks

QuNetSim does not currently go above the network layer in terms of the simulation
of quantum networks. As more features are developed, the code structure allows us to
replace pieces that we currently omit, such as link layer functionality. We do, however,
allow the user to integrate their qubit channel models, and in subsequent versions will
incorporate this into the design such that these things will be easy to change.

We now discuss the software implementation of QuNetSim. The QuNetSim frame-
work is developed in the Python programming language [180] as a software library. It
uses Python’s multi-threading library to simulate the asynchronous network behavior.
Each Host has a processing queue and runs in a thread so that when a Host performs
an action the actions run in a first-in-first-out ordering. These actions are then pro-
cessed in the transport layer where the header information contains sender and receiver
information, along with information on how to process the payload. The processed
packet is put into the network for routing. The network acts like a Host where it has a
packet queue that is being monitored for changes. Once a packet is put into the queue,
it is analyzed and processed.

In the network packet can be a signal to generate entanglement between Hosts
before executing a given task. Since the swap procedure—as mentioned above—
consumes a large number of communication resources, and since this reflects on
the run-time of QuNetSim, the default behavior of QuNetSim is to first check if
it is possible to form a SWAP chain from sender to receiver. If it is possible to
form an entanglement swap chain, then all corresponding Bell measurements and
the transmission of classical messages associated with executing the entanglement
swap protocol will not be performed explicitly. Instead, only the result of the protocol
(deletion of the consumed EPR pairs and establishment of an EPR pair between sender
and receiver) is directly provided to the backend. This way, the execution time of the
already well-known procedure is not contradicting the design goal of efficient protocol
testing. If no EPR pair is needed the payload is checked for the type of data it contains.
A network in QuNetSim contains two directed graphs to represent disjoint networks
for the respective data types. If the packet payload is classical data, it is routed over the
classical network and if it is quantum data it is routed via the quantum network. By
default, the routing algorithm is the shortest path, but it can be changed via parameter
settings. We see an example of how this is done in Section A. Currently, in QuNetSim
there are simple error models available that can be turned on as an optional feature.
The error models are configured as network property and include packet loss and Pauli
errors applied to Qubits en route. A more complex treatment of the link layer will be
considered in future iterations of QuNetSim.

Finally, the packet arrives at the receiver Host after being routed in the network. The
payload is then processed at the receiver side according to the header information. Once
processed, the classical or quantum data is stored in either the classical memory of the
Host or in one of the two quantum memories. There are two quantum memories, as this
allows users to more easily distinguish between qubits that arrive as qubits encoded
by the sender or qubits specifically generated using one of the built-in entanglement
generation Host methods.

In summary, QuNetSim implements a layered model of component objects much
like the OSI model [15]. The Host and network components are implemented using

133

4. Software Frameworks for Quantum Networks

(a) (b)

(c)

Figure 4.3.: The architecture used in Interlin-q: The client (a) constructs a circuit input
designed for a monolithic quantum computer and sends it to the controller
(b). The controller remaps the circuit for the pre-defined but arbitrarily
distributed system and generates the execution schedule. Once complete,
the respective control instructions are sent to the quantum computers in (c).
The quantum computers execute the schedule and send the results back to
the controller who processes the results to send back to the client.

threading and observing queues. The queues are monitored constantly and queue
changes trigger an event. Extensive use of threading allows each task to wait without
blocking the main program thread, which simulates the behavior of sending information
and waiting for an acknowledgment or expecting information to arrive for some time
from another Host.

4.3. Interlin-q: A Distributed Quantum Computing Simulator

Section based on the article: "Quantum Algorithms and Simulation for Parallel and
Distributed Quantum Computing"

In this section, we introduce our novel distributed quantum algorithm simulation
framework Interlin-q. Interlin-q is a Python framework allowing the simulation of
networked quantum computers executing a quantum algorithm distributed over a
user-specified topology. The goal of Interlin-q is not to perform high-performance
computing, but rather to test and verify the necessary steps of distributing circuits
and generating control instructions. The tool is meant for validating these tasks by
executing them in this simulated environment and collecting various statistics regarding
the number of resources. We begin by summarizing the architecture of Interlin-q and
explaining its inner workings. In the next section review demonstrations.

4.3.1. Design Principles

The simulated architecture of Interlin-q consists of three types of network nodes: The
client node, the controller node, and the computing node. In Fig. 4.3 is a depiction
of the assumed architecture of Interlin-q. We base the design principles of Interlin-
q on these node types, as a distributed quantum system will likely follow such an
architecture. The responsibilities of each node type are as follows:

134

4. Software Frameworks for Quantum Networks

Client Node: The client is a user terminal node where the user of the system inputs
the program information in a similar way as described in the previous section. A
monolithic circuit is specified along with the merging function. This information is
then passed forward to the controller node which continues the execution process.
Once execution is complete, the controller node returns the results of the program after
performing the merging function to the client node. This isolation of the client node
removes the need for the user of the system to know the underlying architecture of the
distributed quantum computer.

Controller Node: The controller node is the conductor which orchestrates the
distributed system of quantum computers. It is aware of the distributed topology
and the quantum processor architecture of each node in the network and therefore
can define allocations for qubits for circuit execution. Once the program information
from the client node is provided, the controller node can perform Alg. 8 to prepare
for execution and awaits outputs from each program. Once outputs are received, the
controller merges the results accordingly and responds to the client node.

Computing Nodes: The computing nodes execute quantum algorithms based on
the instructions provided by the controller node. A computing node can prepare and
perform logical operations on qubits, store qubits, and shared EPR pairs, and also
perform any classical post-processing. Computing nodes further can communicate with
other computing nodes in the network to share EPR pairs or transmit classical infor-
mation. Computing nodes are networked via both a classical network for transmitting
purely classical data and a quantum network for generating entanglement amongst
themselves. Networked computing nodes also share a synchronized clock to maintain
synchronization, important for two-qubit operations and joint measurements. Once
execution is complete, the measurement results are sent back to the controller node.

4.3.2. Simulated Setup and Preprocessing

To implement these design principles, Interlin-q has Python classes to represent the
controller and client nodes specified in the previous subsection where the client node is
assumed to be the user of Interlin-q. Further, abstractions of circuits are developed for
automatic circuit remapping. To create the simulated distributed computing environ-
ment, the user first initializes the computing nodes and a controller node. The network
is initialized and configured using QuNetSim, thereby defining network nodes and
topology. In its current state, Interlin-q will assume that the computing node forms a
complete network and that each is connected to the controller node. Because of this,
Interlin-q has a built-in function for generating the network where future work involves
allowing for various network topologies.

To initialize a computing node using the respective class, one specifies the number of
qubits and optionally the duration of the various quantum gates, or gate times, for the
gates that the computing node supports. The latter is especially useful when connecting
a network of quantum computers each realized using different qubit technologies, for
example connecting one QPU based on superconducting with one using trapped ions,
where the two technologies differ greatly in gate times. With known gate times, precise
algorithm execution schedules can be generated [112]. Within Interlin-q is a simulated

135

4. Software Frameworks for Quantum Networks

synchronized clock. Each of the computing nodes shares a singleton clock object and
function such that each tick of the clock, depending on the execution time of their
instruction, perform a specific operation. The set of instructions is generated dependent
on the gate times. The computing nodes and the nodes and their qubits are assigned
unique IDs to be used for circuit creation.

A controller node is also initialized by the user and the collection of computing nodes
is passed as an initialization parameter to the controller. To create a simulation, a user
generates a monolithic circuit as a parameter to give to the controller where built-in
Interlin-q is a feature to remap it to the distributed computing nodes. In the current
state of development of Interlin-q, a custom circuit class is used to both enable the
distribution of the circuit but also to simplify the user input process. The circuit model
we used is composed of qubits and layers, the standard circuit model for quantum
computing. To create a circuit in Interlin-q, a user, acting as the client node, specifies
the gates for circuit qubit by qubit. Once the circuit object is created, it is passed to
the controller and then automatically distributed based on the network of computing
nodes. Built-in to the controller node is the conversion of the circuit model to a layered
model, where a new layer is created for each i ≤ w where w is the longest sequence of
gates in the circuit. With the layering generated, the controller performs an algorithm
equivalent to [112, Alg. 3]. To summarize the referenced algorithm, Interlin-q processes
the circuit layers one by one and determines if any of the gates are distributed across
distinct QPUs. If found, the necessary logic to create an equivalent distributed circuit is
filled. This is done repeatedly until all non-local control gates are generated, forming
an equivalent distributed circuit.

With the now remapped circuit, the controller node generates an execution schedule,
creating the instructions to distribute to send to each computing node. To generate
the list of control operations, an equivalent algorithm to [112, Alg. 7] is implemented.
For each gate in the remapped circuit, the algorithm maps it to a logical instruction,
including any gate parameters, and also marks the control instruction with a timestamp.
In practice, the networked QPUs would use a reference clock to execute instructions
to maintain the needed synchrony for distributed instructions. This logic is simulated
in Interlin-q using a custom shared clock class. The collection of control instructions
is given an integer timestamp so that during execution the multi-threaded simulation
performs according to the control instruction order. To complete the preprocessing
stage, the controller completes the generation of the execution schedules according to
Alg. 8 and transmits a broadcast message to the computing nodes.

4.3.3. Execution

Execution begins when the controller node broadcasts the instruction sets to the com-
putation nodes. Because Interlin-q is built on QuNetSim, the simulated environment
runs multi-threaded, with each node in the network running in its thread. The com-
putation nodes, therefore, await control messages to perform their tasks. Once the
specific scheduling message is received by the computing nodes, they begin carrying
out the instructions chronologically depending on the timestamp of the instructions.
An instruction is either completely local or can be non-local. A non-local instruction

136

4. Software Frameworks for Quantum Networks

is performed according to Fig. 3.16, where entanglement is generated between two
computing nodes and used to transmit control information. The schedule will be such
that at the same time instance, one node will wait for an EPR pair to arrive followed by
a classical bit, performing their part of the cat-entangler while the other will send the
EPR pair, measure their half and send the results onward. Once the instructions are all
carried out by each computing node, the time moves forward by one unit. In reality,
this clock will be independent of computing nodes, and gate times will know such that
precise time schedules can be generated. When the set of instructions is completed,
the computing nodes transmit their measurement outcomes back to the controller and
receive a new set of instructions if there are more to receive, otherwise, the controller
proceeds to merge the outputs and can output the results to the simulation.

4.3.4. Related Platforms

Related to this project are platforms that use batched circuit execution in a parallelized
system. As far as we know, the only such example publicly available as part of the
Qiskit Runtime Services offered by IBM is called “circuit-runner” [181]. The circuit-
runner service takes as input a collection of un-optimized, pre-compiled quantum
circuits and sends them to the IBM cloud service to be executed on their network
of quantum computers and simulators. Once arrived, the circuits are optimized and
compiled online, and executed on the selected hardware backend. Once execution is
complete the output information for the circuits such as measurement results, duration,
and more is sent back to the user. This sequence of steps for executing batch circuits
is much like the steps for how one uses Interlin-q. Indeed, behind the scenes, IBM’s
circuit-runner service could be using distributed quantum computing when it becomes
available and run much like the structure Interlin-q is built on. In terms of using a
circuit-runner for running parallelized quantum circuits, one could make use of the
paradigms introduced in Section 3.3.1. Where Interlin-q differs is that it opens the
“black-box” into how the quantum computers are interacting behind the scenes. By
adding a simulated quantum network, a user can investigate precisely how a networked
quantum computer executes a distributed quantum program.

Interlin-q is built on top of the quantum network simulator QuNetSim [56] mainly
due to its real-time simulation design. Indeed other quantum network simulators
exist but are built more towards simulating the hardware properties of quantum
networks rather than a focus on application development. Other than QuNetSim,
another viable quantum network simulation platform is SimulaQron [166] which also
runs in real-time, the key differences which are detailed in [56]. We focus on real-time
simulators because of the key design principle of Interlin-q which is the shared clock.
The shared clock controls the execution of each thread executing instructions, which is
more aligned with a distributed quantum system, rather than knowing the execution
schedule ahead of time as discrete-event simulators do, such as in NetSquid [182] and
SeQUeNCe [183]. Indeed, using such discrete-event-based simulators for benchmarking
would be a valuable extension of Interlin-q, but our current focus is on the verification
of distributed quantum algorithms and estimating their resources.

137

4. Software Frameworks for Quantum Networks

4.4. ComNetsEmu with QuNetSim

Section based on the article: "Integrating Quantum Simulation for Quantum-
Enhanced Classical Network Emulation"

To simulate the transmission protocol proposed in the previous section, we have
integrated a quantum link layer and physical layer simulator with the classical network
emulator ComNetsEmu [53]. From an implementation viewpoint, the quantum lower
layers act as a sort of “man-in-the-middle” between the network nodes communicating.
This software logical entity intercepts network packets en route and converts the
incoming data to binary data as it would for a link layer. Using the binary format,
we simulate the qubit data frame construction described in the previous section and
transmit the qubits using QuNetSim [56]. With QuNetSim, we model a quantum
point-to-point channel. The end nodes of this channel perform quantum tasks such as
qubit encoding, transmission, storage, retrieval, and decoding. The two end-nodes run
in a multi-threaded QuNetSim application running Protocol 1.

To integrate ComNetsEmu and the QuNetSim simulation, we use a bridge interface
responsible for moving traffic generated in ComNetsEmu to the QuNetSim application
and back again. With ComNetsEmu, the quantum simulation part of the program is
“containerized” in a Docker environment. Docker uses “containers” to isolate code and
all its dependencies in virtual computing environments [53]. ComNetsEmu simplifies
the deployment of containers specifically to simulate communication networks. One can
configure the IP addresses of these containers and monitor the incoming and outgoing
traffic flow of the container. Using ComNetsEmu, the bridge interface is deployed
in a container, which runs QuNetSim as an application and monitors the network
traffic like a “man-in-the-middle”. The bridge is configured such that it routes all
network-layer traffic to a particular queue and it is configured to monitor the incoming
traffic arriving in this queue. When packets arrive, they are disassembled into binary
strings and processed in the QuNetSim application. The quantum channel running
in the QuNetSim application converts the binary strings into data frames constructed
as in Fig. 2.14, using Algorithms 1 and 2, and transmits them over the channel to the
QuNetSim Host representing the receiver’s link layer. Within the QuNetSim application,
the destination receives the qubits and decodes the frames according to Algorithm 3
and reconstructs the binary string once the end of the data frame is detected. Once
completed, the network-layer packet is reassembled and sent to the bridge to proceed
with routing.

4.4.1. Quantum Communication Network Simulation

The area of hybrid classical-quantum networks is a novel domain, with many open
challenges remaining. To the best of our knowledge, no tool exists yet with the ability to
emulate a classical network with additional quantum technological features. However,
in the domain of quantum network simulation platforms, there have been many very
recent developments [56, 166, 168, 169, 182]. A detailed overview of these platforms
can be found in [56] and [57, Chapter 6.5]. The available quantum network simulators

138

4. Software Frameworks for Quantum Networks

are developed for a variety of use cases and use various simulation methodologies as
well. Here, we consider those which use real-time and not discrete-event simulation.
The reason for this is that much of the challenge of programming the logic that reacts
to events originating in another system—in this case ComNetsEmu—is handled with
a real-time simulator. Real-time network simulations do not necessarily terminate
when no events are pending in the simulation, and the CPU resources for keeping
the program alive are minimal. Regarding the quantum network simulators that use
real-time simulation, there are QuNetSim and SimulaQron [166]. SimulaQron is a
quantum network simulator used for developing applications and runs in a multi-
processed environment. QuNetSim runs in a multi-threaded environment in a single
process and has many of the same features of SimulaQron, with the additional features
that come from its design principle of mimicking the idle periods in a network. In
contrast to SimulaQron, this brings the feature that nodes in the network are by default
always running idly, waiting for incoming events to process. Thus, in QuNetSim, by
default, one can program the network nodes to react—in real-time— to incoming events
generated in ComNetsEmu, making this software a suitable choice for the integration.
An additional feature of QuNetSim is the control over how qubits that are transmitted
are accessed at the receiving node. In QuNetSim, the arriving qubits are automatically
stored at the receiving node, and the receiving node can then act on the stored qubits
while more qubits continue to arrive. As far as we can tell, such a feature would need
to be developed as an additional layer in SimulaQron. Overall, this makes QuNetSim
a more suitable choice for the type of integration into a network emulator, as it is
described here.

4.4.2. Assumptions Made in the Integration

Using an entanglement-assisted classical-quantum network requires new protocols to
make use of the additional abilities of the network. We assume: 1) At each interface
between a communication link and a network node, qubits can be stored in and
retrieved from a quantum memory; 2) In each interface, EPR pairs can be generated
with a heralding success signal and transmitted to the corresponding interface at
another node via an error-free quantum channel; 3) Each interface in the network can
perform a controlled Pauli-X gate (CNOT), Bell measurements, and the Pauli gates on
qubits; 4) Interfaces can generate and transmit qubits on demand; 5) Joint measurements
at each interface can distinguish the four EPR pairs; 6) Each interface can forward
classical messages to other interfaces in the same node. A possible way of achieving
these functionalities in a practical demonstration is by using the connectivity and link
layers proposed in [16]. The classical upper layers remain unchanged.

With these assumptions, the link layer can transmit a data frame of qubits such that
the receiver can interpret whether to measure data or store EPR pairs. The link layer
protocol on the receiver side can also reconstruct the classical information packet. The
assumptions are tailored such that a) problems at the physical layer are abstracted
away from the integration, b) the creation of complex quantum states via the network
is limited such that simulations remain feasible c) the maximum flexibility is provided
between network interfaces.

139

4. Software Frameworks for Quantum Networks

Thus the link layer resulting from our integration is capable of demonstrating the
GEWI protocol. For this protocol to work, long qubit storage times are required. The
recent progress in this domain shows store-and-retrieve rates of 90% for 10 µs for 225
individually accessible memory cells, with a proposal to extend the duration into the
seconds range [184], which are in a range that can be useful to benefit from variations
in classical traffic load.

This first implementation of a proof-of-concept of a quantum network simulator
integrated into a classical emulator trades simplicity and flexibility for practicality: the
true benefits of entanglement-assisted data transmission can be expected to arise in
very specific transmission systems exploiting quantum effects right at the physical layer
[5], and these applications do not necessitate a conversion into qubits as achieved via
[16] which is used in our initial integration.

4.4.3. Simulation Setup and Configuration

The simulation is an integration of a quantum link layer and physical layer simulator
offered by QuNetSim [56], with the classical network emulator ComNetsEmu [53].
The code for this work can be found at [185]. From an implementation viewpoint,
the quantum lower layers act as a “man-in-the-middle” between the communicating
network nodes. This software entity intercepts network packets en route and converts
the incoming data to binary data, as it would for any link layer. Using the binary
format, a qubit data frame is constructed and transmitted using QuNetSim, with which
we model a quantum point-to-point channel. The end nodes of this channel perform
quantum tasks, such as qubit encoding, transmission, storage, retrieval, and decoding.
The two end nodes run in a multi-threaded QuNetSim application, which can run any
communication protocol.

To integrate ComNetsEmu and the QuNetSim simulation, a bridge interface is used,
responsible for moving traffic generated in ComNetsEmu to the QuNetSim application
and back again. With ComNetsEmu, the quantum simulation part of the program is
“containerized” in a Docker environment. Docker uses “containers” to isolate code and
all its dependencies in virtual computing environments [53]. ComNetsEmu simplifies
the deployment of containers specifically, to simulate communication networks. One
can configure the IP addresses of these containers and monitor the incoming and
outgoing traffic flow of the container. Using ComNetsEmu, the bridge interface is
deployed in a container, which runs QuNetSim as an application and monitors the
network traffic like a “man-in-the-middle”.

The bridge is configured such that it routes all the network-layer traffic to a particular
queue and it is configured to monitor the incoming traffic arriving in this queue.
When packets arrive, they are disassembled into binary strings and processed in the
QuNetSim application. The quantum channel running in the QuNetSim application
converts the binary strings into data frames and transmits them over the channel
to the QuNetSim Host, representing the receiver’s link layer. Within the QuNetSim
application, the destination receives the qubits and decodes the frames according to the
particular algorithm, and reconstructs the binary string once the end of the data frame
is detected. Once completed, the network-layer packet is reassembled and sent to the

140

4. Software Frameworks for Quantum Networks

bridge to proceed with routing.

4.4.4. Simulations of Bursty Network Traffic with Entanglement Assistance

As a proof of concept using the simulation framework for quantum-enhanced classical
networks, we analyze the capacity of a single quantum link between two devices where
one device communicates periodically with data bursts, separated by idle periods of
fixed duration. Here we require no network routing and focus just on the single link.
This type of data traffic profile is commonly found in Internet of Things (IoT) networks,
specifically sensor networks[186]. To simulate this, we program the sender to perform
periodic bursts of data packet transmissions to the receiver using superdense coding
and then transmit EPR frames between data bursts, as described in the protocols in
the previous section. The output statistics of the simulation provide a count of the
occurrences of the various simulation events, such as the number of transmissions
made over the fiber and the number of EPR pairs generated. We accumulate these
statistics for various simulation parameters and show the results in Fig. 4.4.

First, we simulated the effects of varying the number of qubits an EPR frame is
composed of, with a fixed number of 10 EPR frames sent between bursts. The number
of data packets in a single burst is also a simulation variable, where each data packet
is composed of 168 classical bits. The upper plot in Fig. 4.4 shows the trends of the
average amount of data sent per transmission for varying both the length of the EPR
frame as well as the number of packets in a burst. The trends show that—as one
could expect—when fewer data packets are sent in a single burst, and an EPR frame is
composed of more EPR pairs, the number of bits per transmission will more rapidly
approach two. In the next simulation scenario, we simulated the transmission of data
packets where a varying number of EPR frames were generated in the idle times also
considering EPR frames of fixed length. The results are depicted in the lower plot of
Fig. 4.4. As expected, when there is more time to generate EPR frames between data
transmissions, the average capacity of the channel increases.

To reconfirm these results, by exploiting the periodicity in the setup, we can find
analytic expressions matching our simulation as follows: Let B be the number of
packets in a burst, E the EPR frames per burst, D the bits in the packet, and L the EPR
pairs in an EPR frame. Then, the transmission time of one data burst is calculated to
equal EL + (DB− 2EL) whenever EL < BD/2 and the number of bits per transmission
is C(B, E, D, L) = BD/(DB− EL) when EL < BD/2, and C(B, E, D, L) = 2 otherwise.
We add the analytical result to the plots with a dashed line and we see all the data
points very closely matching the trends.

4.4.5. Conclusions and Outlook

In summary, we have demonstrated an integration of the classical network emulator
ComNetsEmu with a quantum link layer, simulated using QuNetSim. As a proof-of-
concept, we presented a classical-quantum link-layer protocol for transmitting classical
information over a quantum network at an accelerated data rate, using pre-established
quantum entanglement, where entanglement is generated during idle times in the
network under a bursty network traffic model.

141

4. Software Frameworks for Quantum Networks

0 2 4 6 8 10 12 14
0.5

1

1.5

2

EPR frame size (8 qubits)

A
vg

.b
it

s
pe

r
da

ta
qu

bi
t

1 Packet Bursts 3 Packet Bursts
5 Packet Bursts 10 Packet Bursts

· Simulation
Analytical

0 1 2 3 4 5 6 7 8
0.5

1

1.5

2

Number of EPR packets sent between bursts

A
vg

.b
it

s
pe

r
da

ta
qu

bi
t

1 Packet Bursts 3 Packet Bursts
5 Packet Bursts 10 Packet Bursts

· Simulation
Analytical

Figure 4.4.: Upper: Bursty traffic with varying EPR frame length with 10 EPR frames
between bursts using superdense coding. Lower: Bursty traffic with varying
numbers of EPR frames between 168-bit packet bursts with 160-qubit EPR
frames using superdense coding.

Future work will consider other scenarios where data is transmitted in a more
continuous stream. Using this network emulator, we plan to take the proposed encoding
schemes of [187], which uses a “trade-off coding” approach, combining classical data
with entanglement-assisted communication in a single transmission, achieving higher
communication rates in some cases. In [188], there is another approach where only the
receivers of the classical transmission share entanglement, which is used for message
decoding. Using our simulation tool, we plan to test explicit protocols for each setting.

Because of the software architecture of QuNetSim, future work will also allow us to
increase the level of realism in the quantum simulation, and to run such protocols on
physical hardware without much change to the simulation code, as these synchroniza-
tion tasks are abstracted away in QuNetSim. Overall, integrating quantum features into
classical network emulators paves the way for classical network engineers to investigate
their use cases in a familiar setting but with the additional features offered by quantum

142

4. Software Frameworks for Quantum Networks

networks, creating a tool for testing novel applications on quantum-enhanced networks.

143

5. Conclusion and Outlook
Quantum computing and communication are rapidly developing fields and, in this the-
sis, we have explored a relatively small portion of the potential applications. Research
and development for classical computing and communication solutions are decades
ahead of quantum networks, and so the fate of the future of quantum networks ulti-
mately boils down to how big of an advantage the applications bring. The applications
we have covered in this work have been focused on entanglement-assisted classical net-
works and their surrounding protocols and in networked quantum computers. Indeed
we must approach this coming quantum revolution in computing and communication
with both optimism and skepticism.

Using entanglement-assisted communication for general-purpose communication
networks would lead to a large drop in communication rates for decades to come, as
current fiber networks can transmit gigabytes of data per second. Indeed, the best rates
achieved in quantum communication scenarios for quantum key distribution have so
far been in the kilobytes per second domain, and distributing keys is far easier than
arbitrary quantum message transmission. Moreover, moving from point-to-point to end-
to-end communication would require a strong technological advancement in quantum
repeater technology, assumed to be as difficult to build as a quantum computer itself.
On the other side, for quantum computing, it is still not clear when the technology will
be good enough or have enough qubits to solve problems at a large enough scale to be
practical. Networking quantum computers for distributed quantum computing will
bring yet further challenges in distributed control systems and algorithms for resource
allocation, also requiring the ability to transmit high-quality entangled pairs.

The development timeline of revolutionary technologies tends to begin with a high
level of skepticism and backtracking, but as history has shown, sometimes by pushing
on with development despite the doubt, the uncertainty in the practicality of the
technology begins to clear. Quantum networks have the potential to enable higher
transmission rates for some known communication scenarios and quantum computers
have the potential to perform certain computational tasks faster than any classical
system. Building these technologies despite current skepticism will either prove the
skeptics correct or lead to breakthrough technologies. In either case, a clear answer
will form, where currently one is not known, a worthwhile pursuit in the scientific
approach.

In this thesis, we investigated novel quantum communication and computing appli-
cations in depth to paint a clearer picture of how these technologies can be used in the
future. We investigated various network layers for entanglement-enhanced quantum
networks, thinking about entanglement distribution and generation strategies that
can be applied to other scenarios requiring entanglement. For distributed quantum
computing, we worked in two unique settings: cloud quantum computing, and dis-
tributed quantum computing. We explored the use of quantum clustering algorithms
for an unsupervised learning problem related to energy grid clustering, using only
cloud-based quantum computing. For distributed quantum computing, we designed
generalized algorithms for distributing and scheduling quantum algorithms over a

144

5. Conclusion and Outlook

network of quantum computers, with proposed architectures of the network and the
control.

These applications have been shown to work in principle, but moving to an engi-
neering setting, it is important to verify and test their correctness in many settings,
especially as many protocols will need to be invented to put the applications to practice.
We, therefore, developed various simulation environments that can be used to further
explore these applications. QuNetSim is a software framework that allows for high-level
quantum communication applications to be developed in a programmatic setting. Using
QuNetSim, we have enabled further simulations, developing two more libraries built
on top of QuNetSim, Interlin-q, and QontainerNet. These simulation platforms are an
important initial step in the direction of building industry-level simulation frameworks
and showing that such software is possible drives the field further.

Quantum technologies continue to develop and evolve. The level of interest in
quantum science is growing ever faster, creating a new market in computing and
communication technologies. The field is young and uncertain and so leveraging
the interest level now to continue to push research and invention is an important
step to ensuring a long lifetime for quantum science to come. Approaching the field
of quantum technology with both skepticism and optimism is important, but few
revolutionary technologies have justified their existence without struggle. With this
work, we aim to shine an optimistic light on the field, showing the power of quantum
technology, and planting a seed for future quantum scientists.

145

A. QuNetSim Example Simulations
In this section, we cover three examples using QuNetSim. The first example is an
explanatory example that demonstrates establishing a network and sending qubits be-
tween Hosts in the network. The next example is of establishing quantum entanglement
between two parties where the knowledge of which Hosts share the entangled pair is
anonymous to all but the two Hosts. This is based off of the protocol in reference [189].
In the final example, we establish a network and define a custom routing mechanism.
In this example, Hosts are constantly generating entanglement when possible, and
super-dense encoded messages are then transmitted between parties using the route
with the most established entanglement. This routing concept is further established in
reference [190].

A.1. Sending Data Qubits

We demonstrate here the simple task of sending qubits that have been encoded with
information, or as they are called in QuNetSim, “data" qubits. We send the qubits from
Host A to Host D over the network in Fig. A.1.

1 # Network is a singleton
2 network = Network.get_instance()
3 # Start the network with the nodes defined above
4 network.start()
5

6 # Define the Hosts
7 host_A = Host(’A’)
8 # Define the Host’s connections
9 host_A.add_connection(’B’)

10 # Start the Host
11 host_A.start()
12

13 host_B = Host(’B’)
14 host_B.add_connections([’A’, ’E’])
15 host_B.start()
16

17 host_E = Host(’E’)
18 host_E.add_connections([’B’, ’D’])
19 host_E.start()
20

21 host_D = Host(’D’)
22 host_D.add_connection(’E’)
23 host_D.start()
24

25 # Add the Hosts to the network to build the network

146

A. QuNetSim Example Simulations

26 # graph
27 network.add_hosts([host_A, host_B, host_E, host_D])

Next, we want to generate the protocols for A and D to run. Protocols are the
functionality of a Host. Protocols are very flexible with the only exception being that
the protocol function must take the Host as the first parameter. Below is a sample
protocol and code to launch the protocol for a Host. In this example, Host A is sending
five data qubits to D.

1 def sender(host, receiver):
2 """
3 Sends 5 qubits to Host *receiver*.
4 Args:
5 host (Host): The Host object running the protocol
6 receiver (str): The name of the receiver
7 """
8 for i in range(5):
9 # The Host creates a qubit

10 qubit = Qubit(host)
11 # Perform a Hadamard operation on the qubit
12 qubit.H()
13 # The Host sends the qubit to the receiver
14 # and awaits an ACK from the receiver that
15 # the qubit arrived for some fixed amount of time.
16 ack_arrived = host.send_qubit(receiver, qubit,
17 await_ack=True)
18 if ack_arrived:
19 print(’Qubit sent successfully.’)
20 else:
21 print(’Qubit did not transmit.’)

A protocol for receiving qubits must also be written.

1 def receiver(host, sender):
2 """
3 Sends 5 qubits to Host *receiver*.
4 Args:
5 host (Host): The Host object running the protocol
6 receiver (str): The name of the sender
7 """
8 for i in range(5):
9 # The Host awaits a data qubit for 10 seconds maximum

10 qubit = host.get_data_qubit(sender, wait=10)
11 # If the qubit arrived, measure it
12 if qubit is not None:
13 m = qubit.measure()
14 print("%s received qubit in state %d"
15 % (host.host_id, m))

147

A. QuNetSim Example Simulations

Figure A.1.: The network depiction for example A.

16 else:
17 print("Qubit did not arrive.")

To run the protocols, we have the following lines of code:

1 # A runs the sender protocol with D
2 host_A.run_protocol(sender, (’D’,))
3 # D runs the receiver protocol A
4 host_D.run_protocol(receiver, (’A’,))

In summary, with these code snippets, we can simulate the transmission of five qubits
from A to D over the network in Fig. A.1. Of course, this simple example is intended to
give a gentle introduction to how QuNetSim works. In the next examples, we develop
more complex protocol simulations to see further the simplicity of using QuNetSim to
write quantum network simulations.

A.2. GHZ-based Quantum Anonymous Distribution

In this example, we will demonstrate how to simulate an instance of GHZ-based
quantum anonymous transmission [189]. The goal of the protocol is to hide the
creation of an entangled pair between two parties. This protocol implementation
demonstrates the simplicity of translating a protocol from a high-level mathematical
syntax into a simulation using QuNetSim. The protocol involves establishing GHZ
states amongst n parties as well as broadcasting measurement outcomes. These types
of tasks would involve a relatively high level of software synchronization to program
a simulation from scratch. Here we demonstrate that in QuNetSim, synchronization
logic is programmatically kept at a high level.

As a first step, as always, we generate a network. Below is the code to generate such
a network which is depicted in Fig. A.2.

1 network = Network.get_instance()

148

A. QuNetSim Example Simulations

Figure A.2.: The network depiction for example B.

2 network.start()
3

4 host_A = Host(’A’)
5 host_A.add_connections([’B’, ’C’, ’D’, ’E’])
6 host_A.start()
7

8 host_B = Host(’B’)
9 host_B.add_c_connections([’C’, ’D’, ’E’])

10 host_B.start()
11

12 host_C = Host(’C’)
13 host_C.add_c_connections([’B’, ’D’, ’E’])
14 host_C.start()
15

16 host_D = Host(’D’)
17 host_D.add_c_connections([’B’, ’C’, ’E’])
18 host_D.start()
19

20 host_E = Host(’E’)
21 host_E.add_c_connections([’B’, ’C’, ’D’])
22 host_E.start()
23

24 network.add_hosts([host_A, host_B, host_C,
25 host_D, host_E])

The next step is to write the behavior of the GHZ distributor, which in this example
is Host A. QuNetSim provides a function for distributing GHZ states so the function
distribute simply takes the distributing Host as the first parameter and the list of
receiving nodes as the second. One notices that the flag distribute has been set to
true in the send_ghz method call. This tells the sending Host that it should not keep
part of the GHZ state, rather, it should generate a GHZ state amongst the list given
and send it to the parties in the node list, keeping no part of the state for itself.

149

A. QuNetSim Example Simulations

1 def distribute(host, nodes):
2 """
3 Args:
4 host (Host): The Host running the protocol
5 nodes (list): The list of nodes to distribute the
6 GHZ to
7 """
8 # distribute=True => don’t keep part of the GHZ
9 host.send_ghz(nodes, distribute=True)

The next type of behavior we would like to simulate is that of a node in the group that
is not attempting to establish an EPR pair. In the anonymous entanglement protocol,
the behavior of such a node is to simply receive a piece of a GHZ state, perform a
Hadamard operation on the received qubit, measure it, and broadcast to the remaining
participating parties the outcome of a measurement in the computational basis. Below
we see how to accomplish this. In the node function, the first parameter is, as always,
the Host that is performing the protocol. The second is the ID of the node distribution
of the GHZ state, which in this example, is Host A. The Host fetches its GHZ state
where, if it is not available at the time, they will wait ten seconds for it, accomplished
by setting the wait parameter. If they have not received part of the GHZ state, then
the protocol has failed, otherwise, they simply perform the Hadamard operation on
the received qubit, measures it, and broadcast the message to the network. QuNetSim
includes the task of broadcasting as a built-in function and therefore the task of sending
classical messages to the whole network is simplified to one line of code.

1 def node(host, distributor):
2 """
3 Args:
4 host (Host): The Host running the protocol
5 distributor (str): The ID of the distributor
6 for GHZ states
7 """
8 q = host.get_ghz(distributor, wait=10)
9 if q is None:

10 print(’failed’)
11 return
12 q.H()
13 m = q.measure()
14 host.send_broadcast(str(m))

We implement next the behavior of the party in the protocol acting as one end of
the EPR link that we label the sender. Here we take three parameters (other than the
Host running the protocol), the ID of the distributor, the receiver that is the holder of
the other half of the EPR pair, and an agreed-upon ID for the EPR pair that will be
generated. In QuNetSim, qubits have IDs for easier synchronization between parties.
For EPR pairs and GHZ states, qubits share an ID, that is, the collection of qubits would
all have the same ID. This is done so that when parties share many EPR pairs, they can

150

A. QuNetSim Example Simulations

easily synchronize their joint operations. The sender protocol is the following: first,
they receive part of a GHZ state, select a random bit and then broadcast the message
so that they appear as just any other node. They then manipulate their part of the GHZ
state according to what the random bit was. If the bit was 1, then a Z gate is applied.
The sending party can then add the qubit as an EPR pair shared with the receiver. This
EPR pair can then be used as if the sender and receiver established an EPR directly.

1 def sender(host, distributor, receiver, epr_id):
2 """
3 Args:
4 host (Host): The Host running the protocol
5 distributor (str): The ID of the distributor
6 for GHZ states
7 receiver (str): Who to teleport the qubit to after
8 EPR is established
9 epr_id (str): The ID for the EPR pair established

10 ahead of time
11 """
12 q = host.get_ghz(distributor, wait=10)
13 b = random.choice([’0’, ’1’])
14 host.send_broadcast(b)
15 if b == ’1’:
16 q.Z()
17

18 host.add_epr(receiver, q, q_id=epr_id)
19 qubit_to_send = Qubit(host)
20 host.send_teleport(r, qubit_to_send)
21 host.empty_classical()

Finally, we establish the behavior of the receiver. The receiver here behaves as follows:
First, to mask their behavior they randomly choose a bit and broadcast it to the network.
Once complete, they await the remainder of the broadcast messages. In QuNetSim,
classical messages are stored as a list in the classical field. Since there are three other
parties, other than the receiver themself, they await the other three messages. Once
they arrive, the receiver computes a global parity operation by taking the XOR of all
received bits along with their own random choice. With this, the receiver can apply a
controlled Z gate which establishes the EPR pair with the correct sender. They simply
add the EPR pair and complete the protocol.

1 def receiver(host, distributor, sender, epr_id):
2 q = host.get_ghz(distributor, wait=10)
3 b = random.choice([’0’, ’1’])
4 host.send_broadcast(b)
5

6 messages = []
7 # Await broadcast messages from all parties
8 while len(messages) < 3:

151

A. QuNetSim Example Simulations

9 messages = host.classical
10

11 parity = int(b)
12 for m in messages:
13 if m.sender != s:
14 parity = parity ^ int(m.content)
15 if parity == 1:
16 q.Z()
17

18 # Established secret EPR, add it
19 host.add_epr(sender, q, q_id=epr_id)
20

21 # Await a teleportation from the anonymous sender
22 q = host.get_data_qubit(s, wait=10)

The last step of writing a QuNetSim simulation is to run the protocols for each
desired Host. Below, we let Host A act as the GHZ state distributor, B and C are neutral
parties running the node behavior, D acts as the sender and E acts as the receiver. The
following code initiates the simulation.

1 epr_id = ’12345’
2 host_A.run_protocol(distribute, ([’B’, ’C’, ’D’, ’E’],))
3 host_B.run_protocol(node, (’A’,))
4 host_C.run_protocol(node, (’A’,))
5 host_D.run_protocol(sender, (’A’, ’E’, epr_id))
6 host_E.run_protocol(receiver, (’A’, ’D’, epr_id))

A.3. Routing with Entanglement

In this example, we demonstrate how one can use QuNetSim to test a custom routing
algorithm. We consider the network shown in Fig. A.3. The example here uses the
approach of [190] for choosing the route and using dense coding for classical message
transmission. For this example, we assume the network is using entanglement resources
to transfer classical information via superdense coding from Host A to Host B. The
sending and receiving parties must first establish an EPR pair to send messages via
superdense coding. The sender performs a specific set of operations on its half of the
EPR pair and then transmits it through the network. When the receiver received the
qubit, it performs a specific set of operations such that it recovers two bits of classical
information. What is important here is that A and B are separated by one hop. To share
an EPR pair, an entanglement swap routing has to be made.

The strategy for this routing algorithm is to first build a graph of the entanglement
shared amongst the Hosts in the network. The strategy, since superdense coding
consumes entanglement pairs, will then be to route information through the path
that contains the most entanglement. In this example, we show how this can be
accomplished. As always, we first generate the network topology.

152

A. QuNetSim Example Simulations

Figure A.3.: The network depiction for example C.

1 nodes = [’A’, ’node_1’, ’node_2’, ’B’]
2 network.use_hop_by_hop = False
3 network.use_ent_swap = True
4 network.set_delay = 0.1
5 network.start(nodes)
6

7 A = Host(’A’)
8 A.add_connections([’node_1’, ’node_2’])
9 A.start()

10

11 node_1 = Host(’node_1’)
12 node_1.add_connections([’A’, ’B’])
13 node_1.start()
14

15 node_2 = Host(’node_2’)
16 node_2.add_connections([’A’, ’B’])
17 node_2.start()
18

19 B = Host(’B’)
20 B.add_connections([’node_1’, ’node_2’])
21 B.start()
22

23 network.add_hosts([A, node_1, node_2, B])

1 def generate_entanglement(host):
2 """
3 Generate entanglement if the Host is idle.
4 """
5 while True:
6 # Check if the Host is not processing
7 if host.is_idle():
8 for connection in host.quantum_connections:
9 host.send_epr(connection)

1 def routing_algorithm(network_graph, source, target):
2 """
3 Entanglement based routing function.
4

5 Args:

153

A. QuNetSim Example Simulations

6 network_graph (networkx.DiGraph): The directed graph
7 representation of
8 the network.
9 source (str): The sender ID

10 target (str): The receiver ID
11 Returns:
12 (list): The route ordered by the steps in the route.
13 """
14

15 # Generate entanglement network
16 entanglement_network = nx.DiGraph()
17 nodes = network_graph.nodes()
18 # A relatively large number
19 inf = 1000000
20 for node in nodes:
21 host = network.get_host(node)
22 for connection in host.quantum_connections:
23 num_epr_pairs = len(host.get_epr_pairs(connection))
24 if num_epr_pairs == 0:
25 entanglement_network
26 .add_edge(host.host_id,
27 connection,
28 weight=inf)
29 else:
30 entanglement_network
31 .add_edge(host.host_id,
32 connection,
33 weight=1. / num_epr_pairs)
34

35 try:
36 return nx.shortest_path(entanglement_network,
37 source,
38 target,
39 weight=’weight’)
40 except Exception as e:
41 print(’Error getting route.’)

We can now begin to simulate the network using this configuration. In this simulation,
the nodes in the middle are sending entanglement to the other nodes as often as they
can, establishing the most EPR pairs while they are free to do so. We start them on this
process as so:

1 node_1.run_protocol(generate_entanglement)
2 node_2.run_protocol(generate_entanglement)

Now we tell the network to use a different routing algorithm for the quantum
information in the network:

154

A. QuNetSim Example Simulations

1 network.quantum_routing_algo = routing_algorithm

Finally we trigger Host A to begin transmitting 100 messages via superdense coding
to Host B.

1 choices = [’00’, ’11’, ’10’, ’01’]
2 for _ in range(100):
3 m = random.choice(choices)
4 A.send_superdense(’B’, m, await_ack=True)

155

B. Interlin-q Example Simulations

B.1. Distributed Quantum Phase Estimation

In this example, we demonstrate a version distributed QPE using the circuit configura-
tion as depicted in Fig. B.1. In this simulated architecture, we place the measurement
qubits on one quantum computer (the upper portion of the circuit), and the qubit
whose phase to estimate on another (the lower portion). In this case, the control unitary
gates, since they are non-local, will need additional instructions added to perform them
correctly. In this example, we see we just need to build the circuit as it is depicted, and
Interlin-q will then perform the circuit remapping and carry out the execution of the
instructions.

|0⟩ H •

QFT−1
n|0⟩ H •

|0⟩ H •

|1⟩ U20
U21

U22

Figure B.1.: Circuit diagram for QPE with unitary operation U for this example.

To start the example, we import the necessary libraries and initialize the configuration:

1 import numpy as np
2 # QuNetSim Components
3 from qunetsim.components import Network
4 from qunetsim.backends import EQSNBackend
5 # Interlin-q Components
6 from interlinq import ControllerHost, Circuit, ComputingHost, Constants,

Qubit
7

8 # Initializing network objects
9 network = Network.get_instance()

10 network.start()
11 controller_host = ControllerHost(
12 host_id="controller",
13 backend=EQSNBackend()
14)
15 # Create a network of distributed QPUs
16 computing_hosts, q_map = controller_host \
17 .create_distributed_network(
18 num_computing_hosts=2,
19 num_qubits_per_host=3
20)
21 # Start the controller and create the network

156

B. Interlin-q Example Simulations

22 controller_host.start()
23 network.add_host(controller_host)
24 network.add_hosts(computing_hosts)

We make use of QuNetSim’s network object and add the controller and computing
nodes to the network. The create_distributed_network ControllerHost method will
generate a completely connected network topology and in this case specifically, with
two ComputingHosts each with three qubits. The next step is to define the protocol
logic for each of the network nodes:

1 def computing_host_protocol(host):
2 """
3 Protocol for the computing host
4 """
5 host.receive_schedule()
6 host.send_results()
7

8 def controller_host_protocol(host, q_map, input_gate):
9 """

10 Protocol for the controller host
11 """
12 # Generate the circuit for QPE
13 circuit = qpe_circuit(q_map, input_gate)
14 host.generate_and_send_schedules(circuit)
15 # Block until measurement results arrive
16 host.receive_results()
17 meas_results = host.results["QPU_1"]["val"]
18 output = [0] * 3
19 print(results)
20 for qubit in meas_results.keys():
21 output[int(qubit[-1])] = meas_results[qubit]
22 decimal_value = 0
23 output.reverse()
24 for i, bit in enumerate(output):
25 decimal_value += ((2 ** i) * bit)
26 phase = decimal_value / 8
27 print("The estimated phase is {0}".format(phase))

The actions of the computing host generally have the same structure which is to await
instructions from the controller and then send the measurement results back to the
controller. The controller on the other hand takes as input the network topology
(assumed to be completely connected) and a unitary which to use for the phase
estimation step. The controller uses the information to then generate the circuit,
generate control instructions, and then send it to the computing nodes, awaiting the
measurement results to perform the post-processing step. To generate the circuit:

1 def phase_gate(theta):
2 return np.array([[1, 0], [0, np.exp(1j * theta)]])

157

B. Interlin-q Example Simulations

3

4 def quantum_phase_estimation_circuit(q_map, client_input_gate):
5 """
6 Returns the monolithic circuit for the quantum phase estimation

algorithm
7 """
8 phase_qubit = Qubit(computing_host_id=’QPU_0’, q_id=q_map[’QPU_0’][0])

9 phase_qubit.single(Operation.X)
10 meas_qubits = []
11

12 for q_id in q_map[’QPU_1’]:
13 q = Qubit(computing_host_id=’QPU_1’, q_id=q_id)
14 q.single(Operation.H)
15 meas_qubits.append(q)
16 for i, q in enumerate(meas_qubits):
17 for _ in range(2 ** i):
18 q.two_qubit(Operation.CUSTOM_CONTROLLED, phase_qubit,

client_input_gate)
19 # Inverse Fourier Transform
20 meas_qubits.reverse()
21 for i, q in enumerate(meas_qubits):
22 for j, q2 in enumerate(meas_qubits[:i]):
23 q2.two_qubit(Operation.CUSTOM_CONTROLLED, q, phase_gate(-np.

pi * (2 ** j) / (2 ** i)))
24 q.single(gate=Operation.H)
25 # Measure the qubits
26 for q in meas_qubits:
27 q.measure()
28 return Circuit(q_map, qubits=meas_qubits +
29 [phase_qubit])

Finally, to begin execution and wait for results:

1 # For phase = 1/3
2 input_gate = np.array([
3 [1, 0],
4 [0, np.exp(1j * 2 * np.pi / 3)]
5])
6 t1 = controller_host.run_protocol(
7 controller_host_protocol,
8 (q_map, input_gate))
9 computing_hosts[0].run_protocol(computing_host_protocol)

10 computing_hosts[1].run_protocol(computing_host_protocol)
11 t1.join()
12 network.stop(True)

158

B. Interlin-q Example Simulations

0 2 4 6 8 10 12

0

1,000

2,000

Num. Measurement Qubits

N
um

.O
pe

ra
ti

on
s

Monolithic
Distributed

Figure B.2.: The number of operations required to perform quantum phase estimation
on one qubit with varying levels of precision when using a distributed
system of two QPUs.

Since the backend simulator we selected, EQSN, is a noiseless simulator, we need just
use one shot to get an estimate of the phase. The output, in this case, is: “The estimated
phase is 0.375” as expected for a 3-bit estimation. In this simulation, we can gather
statistics about how much communication is involved in the network to execute the
algorithm. For the example, we have used 3 measurement qubits, but by changing the
parameter num_qubits_per_host, we can adjust the number of measurement qubits.
In Fig. B.2, we plot the number of total operations needed, including the number of
gates, entanglement generation, and classical communication between the nodes to
execute the algorithm, comparing a monolithic version to a distributed version when the
measurement qubits are separated as in Fig. B.1. In this case, many control operations
can be performed via small amounts of classical communication and entanglement
because the control information for each measurement qubit for non-local gates can be
transferred using one EPR pair and two classical messages.

159

C. Additional Material

Algorithm 15 Does Not Fit
Input:

• Q = [q1, ..., qn] the collection of QPUs in the distributed system, non-increasingly sorted
by number of available qubits

• A the size of the Ansatz
Output: If the Ansatz can fit in the distributed QPU Q
DoesNotFit(Q, A)

if Q is empty then
return true

for qi ∈ Q do
curAllocation← [0, ..., 0] ▷ Allocate n element array of 0s
possibleQPUs← {q1, ..., qi} ⊆ Q
if i == 1 then

k← QPUNumber(possibleQPUs[1]) ▷ The QPU index
curAllocation[k]← q1 − 1

else
State k← QPUNumber(possibleQPUs[1]) ▷ The QPU index
curAllocation[k]← q1 − 3
for qj ∈ {q2, ..., qi} do

k← QPUNumber(possibleQPUs[j]) ▷ The QPU index
curAllocation[k]← qj − 2

if sum(curAllocation) ≥ A then
return f alse ▷ The Ansatz does fit

return true

160

Bibliography
[1] E. Gibney. “The quantum gold rush”. In: Nature 574.7776 (2019), pp. 22–24.

[2] P. W. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th annual symposium on foundations of computer science.
Ieee. 1994, pp. 124–134.

[3] R. Renner. “Security of quantum key distribution”. In: International Journal of
Quantum Information 6.01 (2008), pp. 1–127.

[4] L. Salvail, M. Peev, E. Diamanti, R. Alléaume, N. Lütkenhaus, and T. Länger.
“Security of trusted repeater quantum key distribution networks”. In: Journal of
Computer Security 18.1 (2010), pp. 61–87.

[5] S. Guha, Q. Zhuang, and B. A. Bash. “Infinite-fold enhancement in communi-
cations capacity using pre-shared entanglement”. In: 2020 IEEE International
Symposium on Information Theory (ISIT). IEEE. 2020, pp. 1835–1839.

[6] D. A. Lidar and T. A. Brun. Quantum error correction. Cambridge university press,
2013.

[7] E. Campbell, A. Khurana, and A. Montanaro. “Applying quantum algorithms
to constraint satisfaction problems”. In: Quantum 3 (2019), p. 167.

[8] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan. “Practical challenges in quantum key
distribution”. In: npj Quantum Information 2.1 (2016), pp. 1–12.

[9] H. Shi, Z. Zhang, and Q. Zhuang. “Practical route to entanglement-enhanced
communication over noisy bosonic channels”. In: 2020 Conference on Lasers and
Electro-Optics (CLEO). IEEE. 2020, pp. 1–2.

[10] J. S. Bell. “On the einstein podolsky rosen paradox”. In: Physics Physique Fizika
1.3 (1964), p. 195.

[11] A. S. Holevo. “Bounds for the quantity of information transmitted by a quantum
communication channel”. In: Problemy Peredachi Informatsii 9.3 (1973), pp. 3–11.

[12] R. Van Meter, R. Satoh, N. Benchasattabuse, T. Matsuo, M. Hajdušek, T. Satoh, S.
Nagayama, and S. Suzuki. “A Quantum Internet Architecture”. In: arXiv preprint
arXiv:2112.07092 (2021).

[13] P. K. Tysowski, X. Ling, N. Lütkenhaus, and M. Mosca. “The engineering of a
scalable multi-site communications system utilizing quantum key distribution
(QKD)”. In: Quantum Science and Technology 3.2 (2018), p. 024001.

[14] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin, S. Schauer,
A. Poppe, C. Pacher, et al. “Quantum key distribution: a networking perspective”.
In: ACM Computing Surveys (CSUR) 53.5 (2020), pp. 1–41.

[15] H. Zimmermann. “OSI reference model-the ISO model of architecture for open
systems interconnection”. In: IEEE Transactions on communications 28.4 (1980). doi:
10.1109/TCOM.1980.1094702, pp. 425–432. doi: 10.1109/TCOM.1980.1094702.

161

10.1109/TCOM.1980.1094702
https://doi.org/10.1109/TCOM.1980.1094702

Bibliography

[16] A. Pirker and W. Dür. “A quantum network stack and protocols for reliable
entanglement-based networks”. In: New Journal of Physics 21.3 (2019). doi: 10.
1088/1367-2630/ab05f7, p. 033003. doi: 10.1088/1367-2630/ab05f7.

[17] C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd. “Design and analysis
of communication protocols for quantum repeater networks”. In: New Journal of
Physics 18.8 (2016), p. 083015.

[18] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang.
“Optimal architectures for long distance quantum communication”. In: Scientific
reports 6 (2016), p. 20463.

[19] A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpędek, M. Pompili,
A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho, et al. “A link layer
protocol for quantum networks”. In: Proceedings of the ACM Special Interest
Group on Data Communication. SIGCOMM ’19. doi: 10.1145/3341302.3342070.
Beijing, China: Association for Computing Machinery, 2019, pp. 159–173. isbn:
9781450359566. doi: 10.1145/3341302.3342070.

[20] S. Bose, V. Vedral, and P. L. Knight. “Multiparticle generalization of entanglement
swapping”. In: Physical Review A 57.2 (1998), p. 822.

[21] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher. “Concentrating
partial entanglement by local operations”. In: Physical Review A 53.4 (1996),
p. 2046.

[22] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K.
Wootters. “Purification of noisy entanglement and faithful teleportation via
noisy channels”. In: Physical review letters 76.5 (1996), p. 722.

[23] W. Kozlowski, A. Dahlberg, and S. Wehner. “Designing a quantum network
protocol”. In: Proceedings of the 16th International Conference on emerging Networking
EXperiments and Technologies. 2020, pp. 1–16.

[24] R. Van Meter and S. J. Devitt. “The Path to Scalable Distributed Quantum
Computing”. In: Computer 49.9 (2016), pp. 31–42. doi: 10.1109/MC.2016.291.

[25] S. DiAdamo, M. Ghibaudi, and J. Cruise. “Distributed Quantum Computing
and Network Control for Accelerated VQE”. In: IEEE Transactions on Quantum
Engineering 2 (2021), pp. 1–21. doi: 10.1109/TQE.2021.3057908.

[26] Z. Zhang and Q. Zhuang. “Distributed quantum sensing”. In: Quantum Science
and Technology (2020).

[27] R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams. “Quantum clock
synchronization based on shared prior entanglement”. In: Physical Review Letters
85.9 (2000), p. 2010.

[28] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck,
D. Englund, T. Gehring, C. Lupo, C. Ottaviani, et al. “Advances in quantum
cryptography”. In: Advances in Optics and Photonics 12.4 (2020), pp. 1012–1236.

[29] R. Bassoli, H. Boche, C. Deppe, R. Ferrara, F. H. Fitzek, G. Janssen, and S.
Saeedinaeeni. Quantum Communication Networks. Vol. 23. Springer, 2021.

162

10.1088/1367-2630/ab05f7
10.1088/1367-2630/ab05f7
https://doi.org/10.1088/1367-2630/ab05f7
10.1145/3341302.3342070
https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1109/MC.2016.291
https://doi.org/10.1109/TQE.2021.3057908

Bibliography

[30] J. Nötzel and S. DiAdamo. “Entanglement-enhanced communication networks”.
In: 2020 IEEE International Conference on Quantum Computing and Engineering
(QCE). IEEE. 2020, pp. 242–248.

[31] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin,
and G. Rempe. “A quantum-logic gate between distant quantum-network mod-
ules”. In: Science 371.6529 (2021), pp. 614–617.

[32] R. Quan, Y. Zhai, M. Wang, F. Hou, S. Wang, X. Xiang, T. Liu, S. Zhang, and
R. Dong. “Demonstration of quantum synchronization based on second-order
quantum coherence of entangled photons”. In: Scientific reports 6.1 (2016), pp. 1–
8.

[33] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J.
Yin, J.-G. Ren, Z. Chen, et al. “An integrated space-to-ground quantum com-
munication network over 4,600 kilometres”. In: Nature 589.7841 (2021), pp. 214–
219.

[34] S. Hao, H. Shi, W. Li, J. H. Shapiro, Q. Zhuang, and Z. Zhang. “Entanglement-
Assisted Communication Surpassing the Ultimate Classical Capacity”. In: Phys.
Rev. Lett. 126 (25 2021), p. 250501. doi: 10.1103/PhysRevLett.126.250501.

[35] M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers, P. C. Humphreys, R. N.
Schouten, R. F. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse,
et al. “Realization of a multinode quantum network of remote solid-state qubits”.
In: Science 372.6539 (2021), pp. 259–264.

[36] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. “Entanglement-
assisted capacity of a quantum channel and the reverse Shannon theorem”. In:
IEEE Transactions on Information Theory 48.10 (2002), pp. 2637–2655.

[37] P. Mandayam, K. Jagannathan, and A. Chatterjee. “The Classical Capacity of
Additive Quantum Queue-Channels”. In: IEEE Journal on Selected Areas in Infor-
mation Theory 1.2 (2020), pp. 432–444. doi: 10.1109/JSAIT.2020.3015055.

[38] J. Nötzel and S. DiAdamo. “Entanglement-Assisted Data Transmission as an
Enabling Technology: A Link-Layer Perspective”. In: 2020 IEEE International
Symposium on Information Theory (ISIT). Vol. 1. 2. IEEE. IEEE, 2020, pp. 1955–1960.
doi: 10.1109/ISIT44484.2020.9174366.

[39] M. M. Wilde, P. Hayden, and S. Guha. “Quantum trade-off coding for bosonic
communication”. In: Physical Review A 86.6 (2012), p. 062306.

[40] I. B. Djordjevic. “On Entanglement Assisted Classical Optical Communications”.
In: IEEE Access 9 (2021), pp. 42604–42609.

[41] V. Semenenko, X. Hu, E. Figueroa, and V. Perebeinos. “Entanglement generation
in a quantum network with finite quantum memory lifetime”. In: arXiv preprint
arXiv:2110.01061 (2021).

[42] S. DiAdamo, J. Nötzel, S. Sekavčnik, R. Bassoli, R. Ferrara, C. Deppe, F. H.
Fitzek, and H. Boche. “Integrating Quantum Simulation for Quantum-Enhanced
Classical Network Emulation”. In: IEEE Communications Letters (2021), pp. 1–5.
doi: 10.1109/LCOMM.2021.3115982.

163

https://doi.org/10.1103/PhysRevLett.126.250501
https://doi.org/10.1109/JSAIT.2020.3015055
https://doi.org/10.1109/ISIT44484.2020.9174366
https://doi.org/10.1109/LCOMM.2021.3115982

Bibliography

[43] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira
Filho, M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, et al. “NetSquid,
a NETwork Simulator for QUantum Information using Discrete events”. In:
Communications Physics 4.1 (2021), pp. 1–15. doi: 10.1038/s42005-021-00647-8.

[44] J. R. Jackson. “Networks of waiting lines”. In: Operations research 5.4 (1957),
pp. 518–521.

[45] F. P. Kelly. “Networks of queues”. In: Advances in Applied Probability (1976),
pp. 416–432.

[46] H. Chen and D. D. Yao. Fundamentals of queueing networks: Performance, asymp-
totics, and optimization. Vol. 4. Springer, 2001.

[47] L. Clarke, I. Glendinning, and R. Hempel. “The MPI message passing interface
standard”. In: Programming environments for massively parallel distributed systems.
Springer, 1994, pp. 213–218.

[48] S. Lloyd. “Least squares quantization in PCM”. In: IEEE transactions on informa-
tion theory 28.2 (1982), pp. 129–137.

[49] S. Kar and B. Swenson. “Clustering with distributed data”. In: arXiv preprint
arXiv:1901.00214 (2019).

[50] G. Oliva, R. Setola, and C. N. Hadjicostis. “Distributed k-means algorithm”. In:
arXiv preprint arXiv:1312.4176 (2013).

[51] J. Qin, W. Fu, H. Gao, and W. X. Zheng. “Distributed k-means algorithm and
fuzzy c-means algorithm for sensor networks based on multiagent consensus
theory”. In: IEEE transactions on cybernetics 47.3 (2016), pp. 772–783.

[52] D. M. Powers. “Evaluation: from precision, recall and F-measure to ROC, in-
formedness, markedness and correlation”. In: arXiv preprint arXiv:2010.16061
(2020).

[53] F. H. P. Fitzek, F. Granelli, and P. Seeling, eds. Computing in Communication
Networks - From Theory to Practice. 1st ed. Vol. 1. 1. Elsevier, Jan. 1, 2020. isbn:
9780128209042. published.

[54] J. Nötzel and S. DiAdamo. “Entanglement-enhanced communication networks”.
In: 2020 IEEE International Conference on Quantum Computing and Engineering
(QCE). IEEE. 2020, pp. 242–248.

[55] J. Nötzel. “Entanglement-Enabled Communication”. In: IEEE Journal on Selected
Areas in Information Theory 1.2 (2020), pp. 401–415. doi: 10.1109/JSAIT.2020.
3017121.

[56] S. DiAdamo, J. Nötzel, B. Zanger, and M. M. Beşe. “QuNetSim: A Software
Framework for Quantum Networks”. In: arXiv:2003.06397. Vol. 2. 2020, pp. 1–12.
doi: 10.1109/TQE.2021.3092395. arXiv: 2003.06397 [quant-ph].

[57] R. Bassoli, H. Boche, C. Deppe, R. Ferrara, F. H. P. Fitzek, G. Janßen, and S.
Saeedinaeen. Quantum Communication Networks. 1st ed. Springer, Jan. 2021. isbn:
978-3-030-62938-0.

164

https://doi.org/10.1038/s42005-021-00647-8
https://doi.org/10.1109/JSAIT.2020.3017121
https://doi.org/10.1109/JSAIT.2020.3017121
https://doi.org/10.1109/TQE.2021.3092395
https://arxiv.org/abs/2003.06397

Bibliography

[58] C. H. Bennett and S. J. Wiesner. “Communication via one-and two-particle oper-
ators on Einstein-Podolsky-Rosen states”. In: Physical review letters 69.20 (20 Oct.
1992). doi: 10.1103/PhysRevLett.69.2881, p. 2881. doi: 10.1103/PhysRevLett.
69.2881. url: https://link.aps.org/doi/10.1103/PhysRevLett.69.2881.

[59] J. Nötzel and S. DiAdamo. “Entanglement-Assisted Data Transmission as an
Enabling Technology: A Link-Layer Perspective”. en. In: 2020 IEEE International
Symposium on Information Theory. Virtual: IEEE, June 2020.

[60] F. Leditzky, M. A. Alhejji, J. Levin, and G. Smith. “Playing games with multiple
access channels”. In: Nature communications 11.1 (2020), pp. 1–5.

[61] A. Holevo and A. Kuznetsova. “The information capacity of entanglement-
assisted continuous variable measurement”. In: arXiv preprint arXiv:2004.05331
(2020).

[62] B. P. Williams, R. J. Sadlier, and T. S. Humble. “Superdense coding over optical
fiber links with complete Bell-state measurements”. In: Physical review letters
118.5 (2017), p. 050501.

[63] T. S. Humble, R. J. Sadlier, B. P. Williams, and R. C. Prout. “Software-defined
quantum network switching”. In: Disruptive Technologies in Information Sciences.
Vol. 10652. International Society for Optics and Photonics. 2018, 106520B.

[64] S. Wehner, D. Elkouss, and R. Hanson. “Quantum internet: A vision for the
road ahead”. In: Science 362.6412 (2018). doi: 10.1126/science.aam9288. doi:
10.1126/science.aam9288.

[65] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-end arguments in system
design”. In: ACM Transactions on Computer Systems (TOCS) 2.4 (1984), pp. 277–
288.

[66] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J.
Twitchen, M. Markham, and R. Hanson. “Deterministic delivery of remote
entanglement on a quantum network”. In: Nature 558.7709 (2018), pp. 268–273.

[67] A. Reiserer, S. Ritter, and G. Rempe. “Nondestructive detection of an optical
photon”. In: Science 342.6164 (2013), pp. 1349–1351.

[68] G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. Raimond, and S.
Haroche. “Seeing a single photon without destroying it”. In: Nature 400.6741
(1999), pp. 239–242.

[69] S. R. Sathyamoorthy, T. M. Stace, and G. Johansson. “Detecting itinerant single
microwave photons”. In: Comptes Rendus Physique 17.7 (2016), pp. 756–765.

[70] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters. “Mixed-state
entanglement and quantum error correction”. In: Physical Review A 54.5 (1996),
p. 3824.

[71] D. Gavinsky. “On the role of shared entanglement”. In: arXiv preprint quant-
ph/0604052 (2006).

165

10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.69.2881
https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288

Bibliography

[72] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. “Entanglement-
assisted classical capacity of noisy quantum channels”. In: Physical Review Letters
83.15 (1999), p. 3081.

[73] J. Nötzel and S. DiAdamo. “Entanglement-Enabled Communication for the
Internet of Things”. In: 2020 International Conference on Computer, Information and
Telecommunication Systems (CITS). 2020, pp. 1–6. doi: 10.1109/CITS49457.2020.
9232550.

[74] C. Crépeau, D. Gottesman, and A. Smith. “Secure multi-party quantum com-
putation”. In: Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 2002, pp. 643–652.

[75] A. K. Ekert. “Quantum cryptography based on Bell’s theorem”. In: Physical
review letters 67.6 (1991), p. 661.

[76] I. Maric, R. D. Yates, and G. Kramer. “Capacity of interference channels with
partial transmitter cooperation”. In: IEEE Transactions on Information Theory 53.10
(2007), pp. 3536–3548.

[77] U. Pereg and Y. Steinberg. “The arbitrarily varying broadcast channel with
causal side information at the encoder”. In: IEEE Transactions on Information
Theory 66.2 (2019), pp. 757–779.

[78] B. Chor and E. Kushilevitz. “A communication-privacy tradeoff for modular
addition”. In: Information Processing Letters 45.4 (1993), pp. 205–210.

[79] M. Hayashi and T. Koshiba. “Verifiable Quantum Secure Modulo Summation”.
In: arXiv preprint arXiv:1910.05976 (2019).

[80] S. Popescu and D. Rohrlich. “Causality and nonlocality as axioms for quantum
mechanics”. In: Causality and locality in modern physics. Springer, 1998, pp. 383–
389.

[81] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopou-
los, C. Eichler, A. Wallraff, L. Geck, et al. “The engineering challenges in quan-
tum computing”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE. 2017, pp. 836–845.

[82] Quantum Services. url: https://www.ibm.com/quantum-computing/services.

[83] M. Schuld and F. Petruccione. Supervised learning with quantum computers. Vol. 17.
Springer, 2018.

[84] S. Lloyd, M. Mohseni, and P. Rebentrost. “Quantum algorithms for supervised
and unsupervised machine learning”. In: arXiv preprint arXiv:1307.0411 (2013).

[85] H. Buhrman, R. Cleve, J. Watrous, and R. De Wolf. “Quantum fingerprinting”.
In: Physical Review Letters 87.16 (2001), p. 167902.

[86] L. K. Grover. “A fast quantum mechanical algorithm for database search”. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
1996, pp. 212–219.

[87] M. Plesch and Č. Brukner. “Quantum-state preparation with universal gate
decompositions”. In: Physical Review A 83.3 (2011), p. 032302.

166

https://doi.org/10.1109/CITS49457.2020.9232550
https://doi.org/10.1109/CITS49457.2020.9232550
https://www.ibm.com/quantum-computing/services

Bibliography

[88] E. Tang. “Quantum Principal Component Analysis Only Achieves an Exponen-
tial Speedup Because of Its State Preparation Assumptions”. In: Physical Review
Letters 127.6 (2021), p. 060503.

[89] S. U. Khan, A. J. Awan, and G. Vall-Llosera. “K-means clustering on noisy
intermediate scale quantum computers”. In: arXiv preprint arXiv:1909.12183
(2019).

[90] S. Johri, S. Debnath, A. Mocherla, A. Singh, A. Prakash, J. Kim, and I. Kerenidis.
“Nearest centroid classification on a trapped ion quantum computer”. In: npj
Quantum Information 7.1 (Aug. 2021), p. 122. issn: 2056-6387. doi: 10.1038/
s41534-021-00456-5.

[91] V. Kumar, G. Bass, C. Tomlin, and J. Dulny. “Quantum annealing for combinato-
rial clustering”. In: Quantum Information Processing 17.2 (2018), pp. 1–14.

[92] D. Arthur et al. “Balanced k-means clustering on an adiabatic quantum com-
puter”. In: Quantum Information Processing 20.9 (2021), pp. 1–30.

[93] K. Benlamine, Y. Bennani, A. Zaiou, M. Hibti, B. Matei, and N. Grozavu. “Dis-
tance estimation for quantum prototypes based clustering”. In: International
Conference on Neural Information Processing. Springer. 2019, pp. 561–572.

[94] K. Benlamine, Y. Bennani, N. Grozavu, and B. Matei. “Quantum Collaborative
K-means”. In: 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE. 2020, pp. 1–7.

[95] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash. “q-means: A quantum
algorithm for unsupervised machine learning”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019. url: https://
proceedings.neurips.cc/paper/2019/file/16026d60ff9b54410b3435b403afd226-
Paper.pdf.

[96] C.-H. Nguyen, K.-W. Tseng, G. Maslennikov, H. Gan, and D. Matsukevich.
“Experimental SWAP test of infinite dimensional quantum states”. In: arXiv
preprint arXiv:2103.10219 (2021).

[97] Initialize. url: https://qiskit.org/documentation/stubs/qiskit.extensions.
Initialize.html.

[98] R. LaRose and B. Coyle. “Robust data encodings for quantum classifiers”. In:
Physical Review A 102.3 (2020), p. 032420.

[99] D. Kopczyk. “Quantum machine learning for data scientists”. In: arXiv preprint
arXiv:1804.10068 (2018).

[100] A. Cross. “The IBM Q experience and QISKit open-source quantum computing
software”. In: APS March Meeting Abstracts. Vol. 2018. 2018, pp. L58–003.

[101] R. Parekh, A. Ricciardi, A. Darwish, and S. DiAdamo. “Quantum Algorithms
and Simulation for Parallel and Distributed Quantum Computing”. In: arXiv
preprint arXiv:2106.06841 (2021).

167

https://doi.org/10.1038/s41534-021-00456-5
https://doi.org/10.1038/s41534-021-00456-5
https://proceedings.neurips.cc/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://qiskit.org/documentation/stubs/qiskit.extensions.Initialize.html
https://qiskit.org/documentation/stubs/qiskit.extensions.Initialize.html

Bibliography

[102] R. L. Thorndike. “Who belongs in the family?” In: Psychometrika 18.4 (1953),
pp. 267–276.

[103] L. Van der Maaten and G. Hinton. “Visualizing data using t-SNE.” In: Journal of
machine learning research 9.11 (2008).

[104] J. Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2
(2018), p. 79.

[105] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and S. Sivarajah.
“On the qubit routing problem”. In: arXiv preprint arXiv:1902.08091 (2019).

[106] K. R. Brown, J. Kim, and C. Monroe. “Co-designing a scalable quantum computer
with trapped atomic ions”. In: npj Quantum Information 2.1 (2016), pp. 1–10.

[107] M. Zomorodi-Moghadam, M. Houshmand, and M. Houshmand. “Optimizing
teleportation cost in distributed quantum circuits”. In: International Journal of
Theoretical Physics 57.3 (2018), pp. 848–861.

[108] R. Van Meter, K. Nemoto, and W. Munro. “Communication links for distributed
quantum computation”. In: IEEE Transactions on Computers 56.12 (2007), pp. 1643–
1653. doi: 10.1109/TC.2007.70775.

[109] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin,
and G. Rempe. “A quantum-logic gate between distant quantum-network mod-
ules”. In: Science 371.6529 (2021), pp. 614–617. issn: 0036-8075. doi: 10.1126/
science.abe3150. eprint: https://science.sciencemag.org/content/371/
6529/614.full.pdf. url: https://science.sciencemag.org/content/371/
6529/614.

[110] A. Serafini, S. Mancini, and S. Bose. “Distributed quantum computation via
optical fibers”. In: Physical review letters 96.1 (2006), p. 010503.

[111] A. Yimsiriwattana and S. J. Lomonaco Jr. “Distributed quantum computing:
A distributed Shor algorithm”. In: Quantum Information and Computation II.
Vol. 5436. International Society for Optics and Photonics. 2004, pp. 360–372. doi:
10.1117/12.546504.

[112] S. DiAdamo, M. Ghibaudi, and J. Cruise. “Distributed Quantum Computing
and Network Control for Accelerated VQE”. In: IEEE Transactions on Quantum
Engineering 2 (2021), pp. 1–21. doi: 10.1109/TQE.2021.3057908.

[113] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi. “Compiler Design for
Distributed Quantum Computing”. In: IEEE Transactions on Quantum Engineering
2 (2021), pp. 1–20. doi: 10.1109/TQE.2021.3053921.

[114] J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio. “Optimal local implemen-
tation of nonlocal quantum gates”. In: Physical Review A 62.5 (2000), p. 052317.
doi: 10.1103/PhysRevA.62.052317.

[115] O. Daei, K. Navi, and M. Zomorodi-Moghadam. “Optimized Quantum Circuit
Partitioning”. In: International Journal of Theoretical Physics 59.12 (2020), pp. 3804–
3820.

168

https://doi.org/10.1109/TC.2007.70775
https://doi.org/10.1126/science.abe3150
https://doi.org/10.1126/science.abe3150
https://science.sciencemag.org/content/371/6529/614.full.pdf
https://science.sciencemag.org/content/371/6529/614.full.pdf
https://science.sciencemag.org/content/371/6529/614
https://science.sciencemag.org/content/371/6529/614
https://doi.org/10.1117/12.546504
https://doi.org/10.1109/TQE.2021.3057908
https://doi.org/10.1109/TQE.2021.3053921
https://doi.org/10.1103/PhysRevA.62.052317

Bibliography

[116] P. Andres-Martinez and C. Heunen. “Automated distribution of quantum circuits
via hypergraph partitioning”. In: Physical Review A 100.3 (2019), p. 032308.

[117] R. G Sundaram, H. Gupta, and C. R. Ramakrishnan. “Efficient Distribution of
Quantum Circuits”. In: 35th International Symposium on Distributed Computing
(DISC 2021). Ed. by S. Gilbert. Vol. 209. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021, 41:1–41:20. isbn: 978-3-95977-210-5. doi: 10.4230/LIPIcs.
DISC.2021.41. url: https://drops.dagstuhl.de/opus/volltexte/2021/
14843.

[118] S. J. Devitt. “Performing quantum computing experiments in the cloud”. In:
Physical Review A 94.3 (2016), p. 032329.

[119] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli.
“State-of-the-art in heterogeneous computing”. In: Scientific Programming 18.1
(2010), pp. 1–33.

[120] S. Mittal and J. S. Vetter. “A survey of CPU-GPU heterogeneous computing
techniques”. In: ACM Computing Surveys (CSUR) 47.4 (2015), pp. 1–35.

[121] T. Häner, D. S. Steiger, T. Hoefler, and M. Troyer. “Distributed Quantum Com-
puting with QMPI”. In: arXiv preprint arXiv:2105.01109 (2021).

[122] N. M. Neumann, R. van Houte, and T. Attema. “Imperfect distributed quantum
phase estimation”. In: International Conference on Computational Science. Springer.
2020, pp. 605–615.

[123] M. Ying and Y. Feng. “An algebraic language for distributed quantum comput-
ing”. In: IEEE Transactions on Computers 58.6 (2009), pp. 728–743.

[124] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi. “CutQC: using
small quantum computers for large quantum circuit evaluations”. In: Proceedings
of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 2021, pp. 473–486.

[125] M. J. Quinn. Parallel computing theory and practice. McGraw-Hill, Inc., 1994.

[126] G. M. Amdahl. “Validity of the single processor approach to achieving large
scale computing capabilities”. In: Proceedings of the April 18-20, 1967, spring joint
computer conference. 1967, pp. 483–485.

[127] M. D. Hill and M. R. Marty. “Amdahl’s law in the multicore era”. In: Computer
41.7 (2008), pp. 33–38.

[128] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd,
and M. Stather. “Efficient distributed quantum computing”. In: Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 469.2153 (2013),
p. 20120686. doi: 10.1098/rspa.2012.0686.

[129] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A.
Aspuru-Guzik, and J. L. O’brien. “A variational eigenvalue solver on a photonic
quantum processor”. In: Nature communications 5.1 (2014), pp. 1–7. doi: 10.1038/
ncomms5213.

169

https://doi.org/10.4230/LIPIcs.DISC.2021.41
https://doi.org/10.4230/LIPIcs.DISC.2021.41
https://drops.dagstuhl.de/opus/volltexte/2021/14843
https://drops.dagstuhl.de/opus/volltexte/2021/14843
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213

Bibliography

[130] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R.
McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles. Variational Quantum
Algorithms. 2020. arXiv: 2012.09265 [quant-ph].

[131] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo, M.
Broughton, B. B. Buckley, D. A. Buell, et al. “Hartree-Fock on a superconducting
qubit quantum computer”. In: arXiv preprint arXiv:2004.04174 369.6507 (2020),
pp. 1084–1089.

[132] C. N. Self, K. E. Khosla, A. W. Smith, F. Sauvage, P. D. Haynes, J. Knolle, F.
Mintert, and M. Kim. “Variational quantum algorithm with information sharing”.
In: arXiv preprint arXiv:2103.16161 (2021).

[133] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. “Quantum amplitude amplifica-
tion and estimation”. In: Contemporary Mathematics 305 (2002), pp. 53–74.

[134] A. Montanaro. “Quantum speedup of Monte Carlo methods”. In: Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 471.2181 (2015),
p. 20150301.

[135] Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto.
“Amplitude estimation without phase estimation”. In: Quantum Information
Processing 19.2 (2020), pp. 1–17.

[136] T. Giurgica-Tiron, I. Kerenidis, F. Labib, A. Prakash, and W. Zeng. “Low depth al-
gorithms for quantum amplitude estimation”. In: arXiv preprint arXiv:2012.03348
(2020).

[137] D. Grinko, J. Gacon, C. Zoufal, and S. Woerner. “Iterative quantum amplitude
estimation”. In: npj Quantum Information 7.1 (2021), pp. 1–6.

[138] D. Wang, O. Higgott, and S. Brierley. “Accelerated variational quantum eigen-
solver”. In: Physical review letters 122.14 (2019), p. 140504. doi: 10.1103/PhysRevLett.
122.140504.

[139] S. U. Khan, A. J. Awan, and G. Vall-Llosera. “K-means clustering on noisy
intermediate scale quantum computers”. In: arXiv preprint arXiv:1909.12183
(2019).

[140] I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva. “A divide-and-conquer
algorithm for quantum state preparation”. In: Scientific Reports 11.1 (2021), pp. 1–
12.

[141] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-
Guzik. “Strategies for quantum computing molecular energies using the unitary
coupled cluster ansatz”. In: Quantum Science and Technology 4.1 (2018), p. 014008.

[142] A. Yimsiriwattana and S. J. Lomonaco Jr. “Generalized GHZ states and dis-
tributed quantum computing”. In: arXiv preprint quant-ph/0402148 (2004).

[143] A. Y. Kitaev. “Quantum computations: algorithms and error correction”. In:
Russian Mathematical Surveys 52.6 (1997), p. 1191.

[144] M. Saeedi and M. Pedram. “Linear-depth quantum circuits for n-qubit Toffoli
gates with no ancilla”. In: Physical Review A 87.6 (2013), p. 062318.

170

https://arxiv.org/abs/2012.09265
https://doi.org/10.1103/PhysRevLett.122.140504
https://doi.org/10.1103/PhysRevLett.122.140504

Bibliography

[145] Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang. “Decompositions of
n-qubit Toffoli gates with linear circuit complexity”. In: International Journal of
Theoretical Physics 56.7 (2017), pp. 2350–2361.

[146] D. Maslov. “Advantages of using relative-phase Toffoli gates with an application
to multiple control Toffoli optimization”. In: Physical Review A 93.2 (2016),
p. 022311.

[147] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan.
“Low-depth quantum simulation of materials”. In: Physical Review X 8.1 (2018),
p. 011044.

[148] K. Michielsen, M. Nocon, D. Willsch, F. Jin, T. Lippert, and H. De Raedt. “Bench-
marking gate-based quantum computers”. In: Computer Physics Communications
220 (2017), pp. 44–55.

[149] J. T. Seeley, M. J. Richard, and P. J. Love. “The Bravyi-Kitaev transformation for
quantum computation of electronic structure”. In: The Journal of chemical physics
137.22 (2012), p. 224109.

[150] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M.
Arrazola, C. Blank, A. Delgado, S. Jahangiri, et al. “Pennylane: Automatic
differentiation of hybrid quantum-classical computations”. In: arXiv preprint
arXiv:1811.04968 (2018).

[151] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. “A Survey of Recent Results in
Networked Control Systems”. In: Proceedings of the IEEE 95.1 (2007), pp. 138–162.
doi: 10.1109/JPROC.2006.887288.

[152] T. C. Yang. “Networked control system: a brief survey”. In: IEE Proceedings-
Control Theory and Applications 153.4 (2006), pp. 403–412.

[153] M. S. Mahmoud and Y. Xia. Networked control systems: cloud control and secure
control. Butterworth-Heinemann, 2019.

[154] K. E. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, and J. Frank. “Comparing
and integrating constraint programming and temporal planning for quantum
circuit compilation”. In: arXiv preprint arXiv:1803.06775 (2018).

[155] A. Swales et al. “Open modbus/tcp specification”. In: Schneider Electric 29 (1999).

[156] WhichNAS. 10Gbase-T vs. SFP+ - Which is the Best 10G Network Solution for Small
Businesses. June 2020. url: https://whichnas.com/10gbase-t-vs-sfp-which-
is-the-best-10g-network-solution-for-small-businesses/.

[157] K. Behrendt and K. Fodero. “Implementing MIRRORED BITS Technology Over
Various Communications Media”. In: SEL Application Guide 12 (2001).

[158] T. A. Youssef, M. M. Esfahani, and O. Mohammed. “Data-Centric Communica-
tion Framework for Multicast IEC 61850 Routable GOOSE Messages over the
WAN in Modern Power Systems”. In: Applied Sciences 10.3 (2020), p. 848.

[159] A. Apostolov. “R-GOOSE: what it is and its application in distribution automa-
tion”. In: CIRED-Open Access Proceedings Journal 2017.1 (2017), pp. 1438–1441.

171

https://doi.org/10.1109/JPROC.2006.887288
https://whichnas.com/10gbase-t-vs-sfp-which-is-the-best-10g-network-solution-for-small-businesses/
https://whichnas.com/10gbase-t-vs-sfp-which-is-the-best-10g-network-solution-for-small-businesses/

Bibliography

[160] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez. “White rabbit: A PTP
application for robust sub-nanosecond synchronization”. In: 2011 IEEE Interna-
tional Symposium on Precision Clock Synchronization for Measurement, Control and
Communication. IEEE. 2011, pp. 25–30.

[161] T. Włostowski. “Precise time and frequency transfer in a White Rabbit network”.
PhD thesis. Instytut Radioelektroniki, 2011.

[162] S. Fukuda, Y. Fukuda, T. Hayakawa, E. Ichihara, M. Ishitsuka, Y. Itow, T. Kajita,
J. Kameda, K. Kaneyuki, S. Kasuga, et al. “The super-kamiokande detector”.
In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 501.2-3 (2003), pp. 418–462.

[163] C. R. Contaldi. “The OPERA neutrino velocity result and the synchronisation of
clocks”. In: arXiv preprint arXiv:1109.6160 (2011).

[164] B. C. Sanders. “Review of entangled coherent states”. In: Journal of Physics A:
Mathematical and Theoretical 45.24 (2012), p. 244002.

[165] Q. O. S. Foundation. List of Open Quantum Projects. 2020. url: https://qosf.
org/project%5C_list/.

[166] A. Dahlberg and S. Wehner. “SimulaQron - a simulator for developing quantum
internet software”. In: Quantum Science and Technology 4.1 (2018). doi: 10.1088/
2058-9565/aad56e, p. 015001. doi: 10.1088/2058-9565/aad56e.

[167] B. Bartlett. “A distributed simulation framework for quantum networks and
channels”. In: arXiv preprint arXiv:1808.07047 (2018).

[168] T. Matsuo, C. Durand, R. Satoh, R. Van Meter, S. Shigeya, S. Nagayama, T. Satoh,
N. Tatetani, M. Nakai, S. Metwalli, T. Ladd, L. Aparicio, and P. Pathumsoot.
QuISP - Quantum Internet Simulation Package. 2020. url: https://aqua.sfc.
wide.ad.jp/quisp%5C_website/.

[169] X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, and M. Suchara.
“SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks”.
In: arXiv preprint arXiv:2009.12000 (2020).

[170] M. Mehic, O. Maurhart, S. Rass, and M. Voznak. “Implementation of quantum
key distribution network simulation module in the network simulator NS-3”. In:
Quantum Information Processing 16.10 (2017). doi: 10.1007/s11128-017-1702-z,
pp. 1–23. doi: 10.1007/s11128-017-1702-z.

[171] R. Chatterjee, K. Joarder, S. Chatterjee, B. C. Sanders, and U. Sinha. “qkdSim,
a Simulation Toolkit for Quantum Key Distribution Including Imperfections:
Performance Analysis and Demonstration of the B92 Protocol Using Heralded
Photons”. In: Phys. Rev. Applied 14 (2 2020). doi: 10.1103/PhysRevApplied.
14.024036, p. 024036. doi: 10.1103/PhysRevApplied.14.024036. url: https:
//link.aps.org/doi/10.1103/PhysRevApplied.14.024036.

[172] T. Matsuo. “Simulation of a Dynamic, RuleSet-based Quantum Network”. In:
arXiv preprint arXiv:1908.10758 (2019).

[173] H. J. Kimble. “The quantum internet”. In: Nature 453.7198 (2008). doi: 10.1038/
nature07127, pp. 1023–1030. doi: 10.1038/nature07127.

172

https://qosf.org/project%5C_list/
https://qosf.org/project%5C_list/
10.1088/2058-9565/aad56e
10.1088/2058-9565/aad56e
https://doi.org/10.1088/2058-9565/aad56e
https://aqua.sfc.wide.ad.jp/quisp%5C_website/
https://aqua.sfc.wide.ad.jp/quisp%5C_website/
10.1007/s11128-017-1702-z
https://doi.org/10.1007/s11128-017-1702-z
10.1103/PhysRevApplied.14.024036
10.1103/PhysRevApplied.14.024036
https://doi.org/10.1103/PhysRevApplied.14.024036
https://link.aps.org/doi/10.1103/PhysRevApplied.14.024036
https://link.aps.org/doi/10.1103/PhysRevApplied.14.024036
10.1038/nature07127
10.1038/nature07127
https://doi.org/10.1038/nature07127

Bibliography

[174] G. F. Riley and T. R. Henderson. “The ns-3 network simulator”. In: Modeling and
tools for network simulation. Springer, 2010, pp. 15–34.

[175] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg. “Mininet-
WiFi: Emulating software-defined wireless networks”. In: 2015 11th International
Conference on Network and Service Management (CNSM). doi: 10.1109/CNSM.2015.
7367387. IEEE. 2015, pp. 384–389. doi: 10.1109/CNSM.2015.7367387.

[176] S. DiAdamo, J. Nötzel, B. Zanger, and M. Mert Beşe. QuNetSim: A Software Frame-
work for Quantum Networks. 2020. url: https://tqsd.github.io/QuNetSim.

[177] D. S. Steiger, T. Häner, and M. Troyer. “ProjectQ: an open source software
framework for quantum computing”. In: Quantum 2 (2018). doi: 10.22331/q-
2018-01-31-49, p. 49. doi: 10.22331/q-2018-01-31-49.

[178] B. Zanger and S. DiAdamo. EQSN: Effective Quantum Simulator for Networks.
2020. url: https://github.com/tqsd/EQSN_python.

[179] J. R. Johansson, P. D. Nation, and F. Nori. “QuTiP: An open-source Python
framework for the dynamics of open quantum systems”. In: Computer Physics
Communications 183.8 (2012). doi: 10.1016/j.cpc.2012.02.021, pp. 1760–1772.
doi: 10.1016/j.cpc.2012.02.021.

[180] G. Van Rossum et al. “Python Programming Language.” In: USENIX annual
technical conference. Vol. 41. 2007, p. 36.

[181] IBM. Qiskit Runtime Services. 2021. url: https://quantum-computing.ibm.com/
services?program=circuit-runner.

[182] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira
Filho, M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, et al. “NetSquid,
a NETwork Simulator for QUantum Information using Discrete events”. In:
Communications Physics 4.1 (2021), pp. 1–15.

[183] X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, and M. Suchara.
“SeQUeNCe: a customizable discrete-event simulator of quantum networks”. In:
Quantum Science and Technology 6.4 (2021), p. 045027.

[184] Y. Pu, N. Jiang, W. Chang, H. Yang, C. Li, and L. Duan. “Experimental realization
of a multiplexed quantum memory with 225 individually accessible memory
cells”. In: Nature communications 8.1 (2017), pp. 1–6.

[185] S. Sekavčnik, S. DiAdamo, J. Nötzel, and R. Bassoli. QontainerNet. 2021. url:
https://github.com/tqsd/QontainerNet.

[186] G. M. Dias, M. Nurchis, and B. Bellalta. “Adapting sampling interval of sensor
networks using on-line reinforcement learning”. In: 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT). 2016, pp. 460–465. doi: 10.1109/WF-IoT.2016.
7845391.

[187] M.-H. Hsieh and M. M. Wilde. “Trading classical communication, quantum
communication, and entanglement in quantum Shannon theory”. In: IEEE
Transactions on Information Theory 56.9 (2010), pp. 4705–4730.

173

10.1109/CNSM.2015.7367387
10.1109/CNSM.2015.7367387
https://doi.org/10.1109/CNSM.2015.7367387
https://tqsd.github.io/QuNetSim
10.22331/q-2018-01-31-49
10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://github.com/tqsd/EQSN_python
10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://quantum-computing.ibm.com/services?program=circuit-runner
https://quantum-computing.ibm.com/services?program=circuit-runner
https://github.com/tqsd/QontainerNet
https://doi.org/10.1109/WF-IoT.2016.7845391
https://doi.org/10.1109/WF-IoT.2016.7845391

Bibliography

[188] U. Pereg, C. Deppe, and H. Boche. “Quantum broadcast channels with cooperat-
ing decoders: An information-theoretic perspective on quantum repeaters”. In:
Journal of Mathematical Physics 62.6 (2021), p. 062204.

[189] M. Christandl and S. Wehner. “Quantum anonymous transmissions”. In: In-
ternational Conference on the Theory and Application of Cryptology and Informa-
tion Security. doi: 10.1007/11593447_12. Springer. 2005, pp. 217–235. doi:
10.1007/11593447_12.

[190] J. Nötzel and S. DiAdamo. “Entanglement-Enhanced Communication Net-
works”. In: 2020 IEEE International Conference on Quantum Computing and En-
gineering (QCE). doi: 10.1109/QCE49297.2020.00038. 2020, pp. 242–248. doi:
10.1109/QCE49297.2020.00038.

174

10.1007/11593447_12
https://doi.org/10.1007/11593447_12
10.1109/QCE49297.2020.00038
https://doi.org/10.1109/QCE49297.2020.00038

	List of Articles in This Thesis
	Abstract
	Contents
	Introduction
	Modeling and Manipulating Quantum Systems
	Quantum Communication Networks

	Entanglement-Assisted Communication in Quantum-Enhanced Networks
	A Physical Layer Analysis
	A Link-Layer Protocol for Quantum-Enhanced Classical Networks
	Network-Layer Protocols for Entanglement Redistribution
	Entanglement-Assisted Cooperation in MIMO Channel Settings

	Networked Quantum Computing
	Quantum Computing in the Cloud
	Distributed Quantum Computing
	Monolithic to Distributed Algorithms
	Networked Control and Algorithm Scheduling

	Software Frameworks for Quantum Networks
	An Overview of Quantum Network Simulators
	QuNetSim: A Software Framework for Quantum Networks
	Interlin-q: A Distributed Quantum Computing Simulator
	ComNetsEmu with QuNetSim

	Conclusion and Outlook
	QuNetSim Example Simulations
	Sending Data Qubits
	GHZ-based Quantum Anonymous Distribution
	Routing with Entanglement

	Interlin-q Example Simulations
	Distributed Quantum Phase Estimation

	Additional Material
	Bibliography

