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Zusammenfassung

In den letzten Jahren hat die Verwendung bildbasierter Finite-Elemente-Analysen (FEA)
zur Bewertung des Bruchrisikos in menschlichen Knochen an Bedeutung gewonnen. Bei
der herkömmlichen Finite Element Analyse muss die Geometrie durch ein geeignetes Netz
diskretisiert werden. Bei komplexen dreidimensionalen Geometrien kann die Generierung
eines für die Analyse geeigneten Netzes eine schwierige und zeitaufwändige Aufgabe sein.
In dieser Arbeit wird die Anwendbarkeit der Finite-Cell-Methode (FCM) für die Simulati-
on der Wirbelknochenmechanik untersucht. Die FCM kombiniert die Immersed-Boundary-
Idee mit den Vorteilen Finiter Elemente hoher Ordnung, wodurch sie in der Lage ist,
Probleme mit komplexen Geometrien ohne den Aufwand der Netzgenerierung genau zu
lösen.
Es wird eine neue Validierungsstudie für die FCM-Analyse vorgestellt, in der Modelle
von vier menschlichen Wirbelkörpern untersucht werden, die auf Mikro-CT-Bilddaten
basieren. Die numerischen Vorhersagen der Verschiebungsfelder werden mit der in Kom-
pressionsversuchen gemessenen Verformung verglichen. Die Analyse der Ergebnisse zeigt
eine sehr gute Übereinstimmung zwischen den experimentellen Daten und den FCM-
Vorhersagen, was das Potenzial der FCM als Simulationswerkzeug für mikro-CT-basierte
Analysen unterstreicht.
Für Gebiete mit mehreren Materialien verschlechtert sich das Konvergenzverhalten der
FCM. In dieser Arbeit wird eine Behandlung von Materialgrenzflächenproblemen im Rah-
men der FCM vorgeschlagen. Es wird gezeigt, dass die Verwendung eines Domänenzer-
legungsansatzes in Verbindung mit einem hp-Verfeinerungsschema zu einer deutlichen
Verbesserung der Konvergenzraten führt. Eine Anwendung des vorgeschlagenen Schemas
für die Simulation eines hochaufgelösenten Wirbel-Schrauben-Modells wird vorgestellt.
Darüber hinaus wird ein numerisches Verfahren für die Einbeziehung von Kräften aus
Muskel-Skelett-Modellen in die FCM vorgeschlagen. Ein numerisches Beispiel, das ein
Wirbelsäulensegment betrachtet, demonstriert die Möglichkeiten des vorgeschlagenen An-
satzes.



Abstract

In recent years, the use of image-based finite element analysis (FEA) to assess the risk of
fracture in human bones has been gaining importance. In conventional FEA, the geome-
try needs to be discretized by a suitable mesh. For complex three-dimensional geometries,
the generation of an analysis-suitable mesh can be a difficult and time-consuming task.
This thesis investigates the applicability of the finite cell method (FCM) to the simula-
tion of vertebral bone mechanics. The FCM combines the immersed-boundary idea with
the benefits of high-order finite elements, which enables it to accurately solve problems
involving complex geometry without the burden of mesh generation.
A new validation study for FCM analysis of vertebral bodies is presented, where models
of four human samples that are based on micro-CT imaging data are examined. The nu-
merical predictions of the displacement fields are compared to the deformation measured
in compression experiments. Analysis of the results shows very good agreement between
the experimental data and the FCM predictions, which underlines the potential of the
FCM as a simulation tool for micro-CT-based analysis.
For domains with multiple materials, the convergence behavior of the FCM deteriorates.
In this work, a treatment for material interface problems in the framework of the FCM is
proposed. It is shown that the use of a domain decomposition approach in conjunction
with an hp-refinement scheme leads to a significant improvement of the convergence rates.
An application of the proposed scheme for the simulation of a high-resolution vertebra–
screw model is presented. Additionally, a numerical technique for the inclusion of loads
stemming from musculoskeletal models in the FCM is proposed. A numerical example
which considers a spinal segment demonstrates the capability of the proposed approach.
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1

Chapter 1

Introduction

1.1 Motivation

Osteoporosis compromises bone strength, increasing the risk of fractures with severe
health consequences. Vertebral fractures are a major clinical problem that is associ-
ated with with increased mortality. As osteoporosis is an age-related disease, the ongoing
demographic shift toward a more elderly population means that the number of individuals
with vertebral fractures will continue to increase [127].
Reliable patient-specific estimates of vertebral strength should improve diagnosis and
management of osteoporosis. Therefore, the development of a biomechanical simulation
method for the prognosis of insufficiency fractures is of major interest. This method needs
to be able to provide accurate predictions of the mechanical response of the patient’s bones
to estimate the risk of fracture. The mechanical response of the vertebra is determined
by its geometry and the bone mass density [51]. Hence, a patient-specific approach is
necessary for an individualized treatment, which takes the variable geometry and material
properties into consideration. Additionally, due to variations in the spine’s geometry,
e.g. in patients with spinal deformities such as scoliosis, the considered loads which
act on the vertebrae also need to be estimated differently for each patient. Hence, a
reliable simulation tool for patient-specific biomechanical analysis needs to be robust in
dealing with different geometries and boundary conditions. Furthermore, biomechanical
simulations could be used to gain a better understanding of bone–implant interaction.
Hence, they could be a useful instrument in designing better implants, and to aid surgeons
in their decision-making and planning of operations.
The finite element method (FEM) is ubiquitous in engineering practice as a simulation
tool for structural mechanics [111, 16]. In recent years, the use of finite element analysis
for the prediction of the mechanical behavior of bones has been gaining importance [210].
Subject-specific FE models based on quantitative computed tomography (QCT) images
have been used to predict in vitro vertebral strength, with better accuracy in comparison
to conventional prediction methods solely based on analysis of the bone mineral den-
sity [47, 51]. Research in the application of FE analysis to the simulation of vertebral
bone mechanics has also addressed the anisotropy of bone’s material properties [187], and
the simulation of large deformations and failure [110, 42].



2 1. Introduction

However, there are some challenges in conventional FE analysis that hinder its applica-
bility as an automated simulation tool for subject-specific biomechanical analysis. FE
analysis requires the discretization of the geometry by a suitable mesh. In continuum-
level voxel-based FEM, the segmented CT images can be directly converted into grids
of hexahedral finite elements [47]. This approach can be highly automated, and allows
for a direct mapping of the material parameters to the finite elements. However, its res-
olution is limited by the low resolution of clinical CT scans, resulting in a very coarse
geometric description. The Cartesian voxel grid-based meshes have jagged boundaries
with re-entrant corners which induce artificial singularities and limit the numerical accu-
racy. Higher fidelity approximations with higher numerical accuracy can be obtained for
the same scans by considering a linear, or higher-order, approximation of the geometry, as
demonstrated in [253, 193]. Unfortunately, the task of three-dimensional mesh generation
can be a complex and time-consuming one that is hard to automate [46]. Moreover, the
standard h-version of the FEM relies on low-order basis functions, making it numerically
less efficient than higher-order approaches [237], which have been also demonstrated to
be very well suited for continuum-level biomechanical analysis [270].
On the microstructural level, the micro-voxel based finite element method (µ-FEM) has
been used to provide better understanding of the influence of the trabecular microstructure
on the bone’s mechanical behavior [246], and to simulate bone–implant interaction [261].
Whereas µ-FEM models of bone can be used to perform highly accurate numerical simu-
lations, they can be numerically very expensive due to the one-to-one mapping of micro-
voxels and hexahedral finite elements, which limits their applicability to the analysis of
whole vertebral bodies. High resolution µ-FEM models typically have several tens to hun-
dreds of millions of degrees of freedom, which require high performance/supercomputing
resources [9, 2, 3].
Fictitious domain, or immersed boundary methods have emerged as an alternative to the
boundary conforming FEM. These methods are attractive because they avoid complex
mesh generation, and allow the use of solvers that take advantage of structured meshes.
One example of this class of methods is the finite cell method (FCM), which was intro-
duced in [190], combining the fictitious domain concept with high-order basis functions.
The main idea is to extend the originally complex geometry by a fictitious domain to a
much simpler shape, which can be easily meshed using a Cartesian grid. The use of high-
order basis functions, which smoothly extend into the fictitious domain, allows the FCM
to achieve exponential rates of convergence for smooth problems. The FCM has been in-
vestigated and successfully applied in various problems, including three-dimensional solid
mechanics [70], shell mechanics [199],linear thermoelasticity [278], geometrical nonlineari-
ties [219], contact mechanics [23, 24], implicit and explicit elastodynamics [67, 76, 121, 86].
In the field of biomechanics, continuum-level FCM models of the human femur have been
validated in an in vitro study, showing high correlation between the numerical predictions
and the experiments [209]. The FCM has also been used for the microstructural analysis
of trabecular bone [249]. In particular, the flexibility of the FCM in dealing with complex
geometry, and in handling different types of geometric description make it very promising
as an automatic simulation kernel.
For problems with smooth solutions, the FCM achieves exponential convergence for
uniform p-refinement, which has been demonstrated in numerous numerical investiga-
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tions [190, 70, 30, 219, 278]. However, for non-smooth problems the convergence behavior
of the FCM significantly deteriorates. In problems with material interfaces, the displace-
ment field is piecewise smooth, exhibiting a kink (C0-continuity) at the material interface.
In the FCM, the edges and faces of the Cartesian mesh do not exactly match the material
interfaces. Within a finite cell, the smooth polynomial basis functions are unable to rep-
resent the discontinuity across the material interface, which causes an oscillatory solution
and reduces the convergence rate. Moreover, singularities and high solution gradients
require local refinement of the mesh to limit the approximation error, which does not fit
with the Cartesian grid nature of the FCM mesh. These problems need to be adequately
treated in order to unlock the FCM’s potential as a simulation tool for biomechanics.

1.2 Objectives

In the scope of this work, we address these challenges as we investigate the applicability
the FCM for the numerical simulation of the mechanics of vertebral bone. The FCM will
be used for image-based structural analysis, with the geometry and material properties
of the vertebral bone originating from CT scans.
We present a new validation study of micro-CT-based FCM analysis of whole vertebral
bodies. To validate the numerical method, the predictions of the simulations are compared
to the results of mechanical experiments.
Concerning the application of FCM to non-smooth problems, we investigate the combi-
nation of the FCM with a domain decomposition technique to resolve the weak disconti-
nuity at material interfaces, and a local mesh refinement scheme. We verify the proposed
approach using a series of numerical benchmarks, and apply it for the simulation of a
vertebra–implant system.
In a patient-specific biomechanical simulation framework, realistic boundary conditions
could be provided by multibody simulations of musculoskeletal models. In these simula-
tions, biomechanical joints are idealized as points. Accordingly, the resulting loads are
given as concentrated forces and moments. In this work, we tackle another challenge fac-
ing the FCM, as we propose a numerical approach for the consideration of concentrated
loads in patient-specific FCM vertebra models.
We hypothesize that, owing to its inherent flexibility in dealing with geometry, the FCM
has great potential as a simulation tool for biomechanical analysis. As an immersed
boundary method, the FCM can be used for simulations of complex geometry without
mesh generation. The use of high-order basis function, together with the weak enforcement
of interface conditions, and the multi-level hp-refinement scheme ensures high accuracy,
even for non-smooth problems.

1.3 Outline

This thesis is organized as follows: In Chapter 2 we present a literature review of finite
element analysis of vertebral bone. We start by summarizing the relevant background
information on the anatomy of the spine and the biomechanics of vertebral bone. Then, we



4 1. Introduction

present a survey of the different types of FEM models used in literature for the simulation
of biomechanics of the vertebra.
In Chapter 3, we present the finite cell methods and its application in the simulation
of bone mechanics. Starting with a summary of the theory of linear elasticity and the
respective governing equations, we present the fundamentals of the finite element method,
and the extension to its p-version. We then present the concept of the finite cell method
as an extension of the p-version of the FEM with an embedded domain approach. We give
special attention to image-based finite cell analysis. Finally, we review previous efforts in
the application of the FCM for bone mechanics, its verification and validation.
In Chapter 4, we present a validation study for micro-CT-based FCM models of human
vertebral bodies. The study makes use of digital volume correlation techniques to quantify
the displacements occurring due to compression of vertebral bodies during a compression
experiment. The measured displacements are used to define the boundary conditions for
the FCM models, and to validate the predictions of the FCM models.
In Chapter 5, we propose a numerical technique for the efficient simulation of embedded
material interface problems using the FCM in conjunction with a coupling method and a
local refinement scheme. We present a series of numerical benchmarks of material interface
problems—in two and three dimensions—to verify the proposed method.
In Chapter 6, we present two applications of the FCM for solving problems including
material interfaces in bone mechanics. The first application presents a numerical technique
for the inclusion of loads stemming from musculoskeletal models into patient-specific FCM
models. The second application shows the potential of the FCM with multi-level hp-
refinement for the simulation of vertebrae with pedicle screws, and demonstrates that the
proposed method can be used to solve material interface problems involving very complex
geometry.
Finally, in Chapter 7, we present a summary of the scientific conclusions of the work
presented in this dissertation and discuss possibilities for further development in future
work.
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Chapter 2

Finite element analysis of vertebral
bone: a literature review

In this chapter, we discuss previous efforts in the application of conventional finite element
analysis for the simulation of vertebral bone. We start by summarizing the basic anatomy,
structure and function of the human spine. Following that, we discuss the structural me-
chanics of the vertebra, the loads which are considered in biomechanical simulations and
the mechanical properties of vertebral bone. Finally, we present a literature review of
conventional finite element simulations of vertebral biomechanics, pointing out the differ-
ent scales of biomechanical models, and the various numerical modeling and discretization
techniques.

2.1 Anatomy of the spine

In the following, we present a brief introduction to the anatomy of the human spine. For
further in-depth information, the interested reader is referred to [170, 25].

2.1.1 Spinal column

The vertebral column serves to support the human body in the upright posture, while
allowing for movement and locomotion. Additionally, it surrounds and protects the spinal
cord which is housed within the vertebral canal [170].
The adult spine is composed of 24 separate bony vertebrae, together with five fused
vertebrae which form the sacrum and four fused vertebrae which form the coccyx (the
tailbone). The spine can be divided into three main regions as shown in Figure 2.1: the
cervical (neck), thoracic (chest), and lumbar (trunk) spine. In this work, we focus on the
lower thoracic and lumbar regions.
Adjacent vertebra are separated by intervertebral discs, with the exception of the first
and second cervical vertebrae. At the rear (posterior), spinal muscles attach to the bony
processes of the vertebrae. Ligaments extend along the vertebral column at the front
and at the back. They are made of fibrous connective tissue which joins the vertebrae to
restrict movement and prevent damage to the vertebral column [170].
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Figure 2.1: Anatomy of the spinal column, reproduced from [25].
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In the sagittal plane (viewed from the side), the vertebral column has an S-shaped curved
shape, with lordotic curves in the cervical and lumbar regions (convex forward), and a
kyphotic curve in the thoracic spine (concave forward). These curves give it increased
flexibility and better shock-absorbing capacity, while maintaining adequate stiffness and
stability at the intervertebral joint level. When viewed from the back, a normal spine
is vertically straight. If the spine shows an abnormal lateral curvature, this indicates a
condition named scoliosis [25].

2.1.2 Vertebrae

The vertebrae are the building blocks of the vertebral column. Figure 2.2 depicts the
anatomy of a lumbar vertebra. The vertebra can be divided into three functional compo-
nents: the vertebral body, the pedicles and the posterior elements.

Figure 2.2: Anatomy of a typical lumbar vertebra, reproduced from [170].

The vertebral body mainly serves the function of weight bearing and is roughly cylindrical
in shape. It is composed of a trabecular core surrounded by a cortical bone shell. The
microstructure of trabecular (also called cancellous) bone consists of a network of rods
or plates called trabeculae, whereas cortical (or compact) bone is a highly dense bone.
The superior and inferior endplates of the vertebral body are composed of a thin layer
of cortical bone, and are dedicated to supporting loads transferred from the adjoining
intervertebral discs.
The two pedicles connect the vertebral body and the posterior elements which project
from the vertebral arch. The vertebral body and the vertebral arch form the vertebral
canal, which houses the spinal cord. The posterior elements of the vertebra are the laminae
and the processes. They form a very irregular mass of bone, with various protruding bars
of bone. The articular processes of neighboring vertebrae can interlock to resist forward
sliding and twisting of the vertebral bodies. The spinous and transverse processes provide
areas for muscle attachments, and act as levers to magnify the action of the attached
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muscles. The laminae serve to transmit the forces from the spinous and inferior articular
processes, providing stability in the horizontal plane [25]. However, the posterior elements
have little contribution to vertebral strength in axial compression [108].
While all vertebrae share this general structure, specific characteristics of individual ver-
tebrae vary along the vertebral column. The cervical vertebrae are the smallest and
lightest. The thoracic vertebrae are larger in comparison, and contain facets at which the
ribs connect to the vertebral column. The lumbar vertebrae are the largest, as they need
to support more weight [170].

2.1.3 Intervertebral discs

The intervertebral discs lie between the vertebrae and form the major joints of the verte-
bral column. Their principal functions are to transmit loads between the vertebral bodies,
and to allow and restrain motion at the interbody joints. Discs are bounded anteriorly
and posteriorly by ligaments [170].
The two main components of the disc are the annulus fibrosus and the nucleus pulposus,
as depicted in Figure 2.3. The annulus fibrosus is a composite structure consisting of
concentric lamellae of collagen fibers with alternating orientations, which are embedded
in a proteoglycan gel matrix. The annulus fibrosus encloses the nucleus pulposus, which
is a highly viscous gelatinous mass. The discs are separated from the adjoining vertebral
bodies by thin cartilaginous plates [170].

Figure 2.3: Anatomy of the intervertebral disc, reproduced from [197].

2.2 Biomechanics of the vertebra

In this section, we discuss the structural mechanics of the vertebra and the mechanical
properties of vertebral bone. More details on the rich subject of vertebral biomechanics
are found in [180, 48, 130, 224].



2.2. Biomechanics of the vertebra 9

2.2.1 Structure of vertebral bone

Bone is a complex material with a multi-scale hierarchical structure. This structure makes
it efficient in load bearing, as it results in a high strength to weight ratio [48]. As men-
tioned in the previous section, the vertebral body is composed of a cortical shell which is
reinforced by a trabecular core. This structure has the advantage of being lightweight, due
to the porous trabecular core, while having high compressive strength. In compression,
the vertical trabeculae reinforce the cortical shell to carry the load, while the horizontal
trabeculae maintain stability by creating transverse tension (lateral support) [25].

Microstructure of cortical bone

At the microscale, cortical bone is very dense, with a porosity of approximately 6%.
The thickness of the vertebral shell is in the range a few hundred µm. Blood vessels in
the cortical bone are surrounded by osteons, which are composed of concentric rings of
calcified matrix called lamellae. Osteons can be several millimeters long and they run
parallel to the long axis of the bone [224].

Microstructure of trabecular bone

Trabecular bone is usually found in bones that are loaded in compression. It has a
foam-like microstructure, with an interconnecting network of microscopic lamellae, called
trabeculae. They are surrounded by bone marrow which has little mechanical role except
perhaps in high-energy impact. Trabeculae range from 50 to 300 µm in thickness, and
their spacing is in the order of 1 mm. The orientation of the trabecular network depends
on the loading direction in the bone, with a principal direction along which mechanical
stiffness and strength are greatest, leading to an anisotropic behavior. In the vertebral
body, the principal orientation is along the inferior–superior axis [224].

2.2.2 Vertebral loading

The vertebra is mainly loaded through the adjacent intervertebral discs. Additionally,
spinal muscles attach to the vertebral processes and act to stabilize the spinal column.
The effect of muscle forces can significantly influence the results of biomechanical analysis
of the spine [259]. The spine is loaded with a combination of compression, bending
and torsion. Flexion, extension and lateral bending movements result in compressive and
tensile stresses in the intervertebral disc as illustrated in Figure 2.4, whereas axial rotation
subjects the disc to shear stresses [258].
The compressive load is transferred between the vertebral endplates through the nucleus
pulposus and the annulus fibrosis. In a non-degenerated disc, hydrostatic pressure builds
up within the nucleus and acts on the endplates and the annular ring. In an aging
spine, the disc degenerates and the nucleus loses its water content and is not capable of
building up sufficient pressure. As a result, the endplates are subjected to less pressure at
the center, and the load distribution shifts towards the posterior endplate and vertebral
arch [168].
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(a) Axial compression (b) Bending

Figure 2.4: Stresses in the intervertebral disc, reproduced from [258]

2.2.3 Mechanical properties of vertebral bone

An accurate description of the material properties is essential for reliable modeling of
the mechanical behavior of bone. The material properties of vertebral bone can be
characterized at different length scales. Here, we distinguish between the tissue- and
continuum-level properties. Tissue-level mechanical properties describe the mechanical
behavior of the constituent material independently of microscopic porosity, whereas the
coarser continuum-level mechanics describe the overall mechanical response of the bone
structure.
Several studies which have investigated the tissue-level material properties of cortical
and trabecular bone suggest that the mechanical properties of the two types of bone are
highly similar on the tissue level. The values for the Young’s modulus estimated for the
longitudinal direction using acoustic and nano-indentation experiments range between 16
and 22 GPa [132, 245, 202, 204].
On the continuum-level, the mechanical behavior of trabecular bone exhibits an initial
linear elastic regime, followed by a nonlinear yield region where failure initiates. The final
post-yield phase occurs when the trabeculae reach their ultimate stress in compression
(ductile failure), or abruptly ends due to fracture in tension (brittle failure). Generally,
trabecular bone is weaker in tension than in compression. However, this asymmetry is
rather small for the spine and can be neglected [130]. The stress–strain response of verte-
bral trabecular bone samples shows that the yield point is reached at strains less than 1.0%
both in tension and compression, and reach the ultimate strains in compression at less
than 2.0%. Under tensile loading, trabecular bone fractures at a strain of approximately
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1.5% [140].
Vertebral bone is anisotropic in both stiffness and strength. Mean values of Young’s
modulus and strength along the inferior–superior axis have been reported to be around 3
times higher than in the transverse directions [130]. While this anisotropy is considered
mild in comparison with fiber-reinforced composites, its biomechanical influence on whole
bone strength could be significant, especially for complex off-axis load scenarios.
An important characteristic of trabecular bone is its heterogeneity which leads to wide
variations in its apparent (continuum-level) mechanical properties. In the vertebra, this
mainly results from local variations in the bone volume fraction and the microstructural
architecture. This results in large variations in the Young’s modulus (from 50 MPa to
over 700 MPa) and the bone strength (from about 0.5 MPa to 5 MPa) [130].
The stiffness of trabecular bone depends primarily on the bone volume fraction or its
apparent density, which is defined as the product of the bone volume fraction and tissue
density (approximately constant around 2.0 g/cm3). However, an exact form of this E–ρ
relationship has not been unequivocally determined [102]. Other variables significantly
influence this relationship including the anatomical site of the bone specimen [173], the
loading direction, and testing method [224]. Similarly, bone strength also depends on
the density, as there is a strong linear correlation between the stress at which trabecular
bone fails and the corresponding Young’s modulus [130]. For trabecular vertebral bone,
Kopperdahl et al. [141] reported density–mechanical property regressions that are based
on mechanical testing of 45 vertebral bodies. These relationships are commonly used in
QCT-based biomechanical models of the human spine.

2.3 Biomechanical finite element analysis of

vertebral bone

The finite element method (FEM) represents the current state-of-the-art in biomechan-
ical simulations of bone [210]. Since the 1980s, there have been numerous efforts in the
application of the FEM to the simulation of bone mechanics [112]. Substantial research
has been devoted to the development of material models, medical image processing tech-
niques, and the development of novel finite element technologies. Detailed reviews of the
application of FE analysis in bone research are found in [120, 210]. The fundamentals of
the theory of linear elasticity and the FEM are presented in Section 3.2 and Section 3.3,
respectively. In the following, we present an overview of previous efforts in the application
FEM for the biomechanical analysis of vertebral bone.
Subject-specific numerical models of bone need to capture the relevant geometric details
and corresponding material properties of the actual structure. To this end, geometric de-
scriptions that are reconstructed from medical images are used. FE modeling approaches
of bone can be grouped into two major categories, based on the length scale in which the
geometry and the biomechanics are considered: continuum-level, and microstructural FE
models. Both approaches are based on three-dimensional reconstructions of the geometry
that can be obtained non-destructively using computed tomography (CT) or magnetic
resonance imaging (MRI) [156, 153].
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2.3.1 Continuum-level FE analysis

Continuum-level FE models consider the heterogeneous material properties of the trabec-
ular bone but do not include the microstructural details [210]. Most commonly, they are
based on quantitative CT (QCT) scans which have a resolution of about 1 mm.
Computed tomography is a non-invasive medical imaging technique used to obtain detailed
internal three-dimensional images of the body. A CT scanner uses a rotating X-ray source
and special digital X-ray detectors, which are located directly opposite the X-ray source. A
three-dimensional image is obtained as a series of cross-sectional two-dimensional images,
where the X-ray attenuation value of the tissue at each point in the slice is computed. A
voxel is a volume element corresponding to a pixel in a two-dimensional slice. CT image
calibration can be used to convert the attenuation values to equivalent density [103].
To reconstruct the geometry of the vertebra from a CT scan, a segmentation is carried
out. This is the process of detecting and identifying separate structures in the image, and
labeling the voxels accordingly. Depending on the size and resolution of the scan, it can
be a tedious and time-consuming task that requires considerable manual effort. Hence, a
lot of research effort has been dedicated for the development of automatic segmentation
algorithms for the vertebra [221].
The intervertebral discs transmit forces between the spinal segments, and including their
influence is important for realistic modeling of the boundary conditions. Ligaments and
muscles attached to the bone also exert forces which could be significant to the outcome
of the biomechanical analysis. One possibility is to extend the model to also include finite
element models of the ligaments and the discs, which consider the geometric and material
nonlinearities [255]. Alternatively, musculoskeletal models of the spine can be used to
model the dynamic behavior and define the boundary conditions to the FE analysis of
the bone, as discussed in Section 6.1 in detail.

Voxel-FEM

In the voxel-based finite element method (voxel-FEM), the finite element meshes are
automatically generated from the segmented CT images, where each voxel in the three-
dimensional image is converted to an 8-noded hexahedral (brick) finite element. To model
the heterogeneity of the bone, E–ρ relationships are used to assign a separate Young’s
modulus for each elements corresponding to the voxel’s density value. This simple ap-
proach was originally introduced by Keyak et al. [134] to carry out CT image-based FE
analysis of the femur. Voxel-FEM analysis holds the advantage of being fully automated,
requiring no manual modeling effort, while providing numerical predictions with good
accuracy. However, the voxel-based description of the surface geometry gives jagged sur-
faces with re-entrant corners, which lead to a lower accuracy in comparison to modeling
approaches that consider a smooth description of the geometry, as shown in a comparative
study of femur models [253].
Voxel-FEM models of vertebral bodies were presented by Crawford et al. [47] in a study
which validated FEM predictions of vertebral strength. In that study, the authors con-
sidered 13 human vertebral bodies which were scanned with QCT (0.674 mm voxel size),
which does not resolve the trabecular microstructure (see Figure 2.5). The E–ρ relation-
ship developed by Kopperdahl et al. [141] was used to assign the transverse isotropic
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material properties. The vertebral strength determined in experiments was positively
correlated with the FE measures of strength (R2 = 0.86), which demonstrated the better
performance of voxel-FEM models in predicting vertebral compressive strength in com-
parison to the existing state of the art, which was solely based on analysis of the bone
density.

Figure 2.5: The distribution of axial elastic moduli in a voxel-based finite element model
of a vertebral body. The finite element dimensions are 1 × 1 × 1.5 mm3. Reproduced
from [47]

Voxel-FEM models of vertebral bodies have been extensively used to study the mechanics
of vertebral bone, and to assess vertebral strength as influenced by osteoporosis [131, 40,
139, 4]. A more accurate prediction of the mechanical response, especially for cases with
off-axial loading, can be obtained using more complex material models which account for
the bone’s anisotropy. In [34], a fabric-based model [286] was used in voxel-FEM analysis
to predict damage accumulation in vertebral bodies under combined loads. Nonlinear
continuum-level voxel-FEM models were also developed to study vertebral fractures and
damage [52, 38].

h-FEM

A more sophisticated FEM modeling approach considers the smooth surface geometry of
the bone. To that end, a boundary-representation (B-rep) surface model is reconstructed
from the segmented CT images. This be achieved for example using the marching cubes al-
gorithm. An unstructured mesh of the B-rep model can then be generated using standard
meshing algorithms. Hexahedral and tetrahedral elements are commonly used for h-FEM
simulations of bone mechanics [253]. For biomechanical analysis of the femur, it has been
shown that quadratic tetrahedral elements (with 10 nodes) achieve higher accuracy and
computational efficiency in comparison to linear four-noded tetrahedra [193].
For density-based models, the material properties are defined voxel-wise. In finite element
analysis, the material properties are evaluated during numerical integration at specified
points within the element. Unlike voxel-FEM which uses a one-to-one mapping between
voxels and finite elements, h-FEM models with unstructured meshes require a specialized
strategy for material mapping. Whereas earlier modeling approaches employed an average
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element density [280], it was demonstrated that a voxel-wise interpolation of the “Young’s
modulus continuum field” provides significantly more accurate predictions [239].
For biomechanical simulations of the vertebra, the use of unstructured h-FEM meshes al-
lows for a more detailed modeling approach. Structural shell elements can be more readily
used to model the cortical shell, which are coupled to the tetrahedral finite elements used
to model the trabecular core [37]. They also allow for more flexibility in the definition
of the boundary conditions [155], and modeling contact at the vertebral endplates. Fig-
ure 2.6 shows a detailed h-FEM model of a vertebral segment [42] which illustrates these
points. Continuum-level h-FEM models were also used in conjunction with anisotropic

Figure 2.6: h-FEM vertebral models A) Mesh for a whole spine segment, including inter-
vertebral discs. B) Mesh with PMMA embedding of center vertebra endplates. Repro-
duced from [42].

material models to study the damage mechanisms and fracture risk in vertebral bod-
ies [37, 39, 20]. Nonlinear models accounting for large strain compression and damage
were also developed and used in h-FEM models to accurately predict experimental failure
patterns in vertebral bodies [110, 109, 42]

p-FEM

An alternative simulation approach for the biomechanical analysis of bone is given by the
p-version of the finite element method (p-FEM). In this approach, high-order polynomials
are used as basis functions to approximate the solution. This results in a more favorable
convergence behavior, which allows for more accurate and efficient simulations in com-
parison to the standard h-FEM. However, the p-FEM requires special attention for the
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geometric modeling and mesh generation [237]. To ensure accurate numerical predictions,
the smooth geometry needs to be accurately described by high-order elements which can
represent the curvature. For image-based bone simulations, this requires additional pro-
cessing of the segmented CT scans to identify the boundaries of the bone, and apply
boundary smoothing to create solid models of the bone, which are finally subdivided
into finite elements with curved boundaries. This geometry reconstruction and meshing
pipeline is illustrated in Figure 2.7.

Figure 2.7: Continuum-level p-FEM vertebra modeling pipeline, reproduced from [192].

In the field of bone mechanics, the p-FEM was first applied for the biomechanical analy-
sis of the human tibia, showing realistic predictions of stresses and displacements under
static loading [175]. Several validation studies were presented for subject-specific p-FEM
analysis of the femur, showing very good agreement between the p-FEM predictions and
the experiments [273, 244]. Both isotropic material models based on E–ρ relationships,
and anisotropic models based on micromechanical approaches were shown to be applica-
ble [272]. Similarly, p-FEM models of the humerus were validated through comparison to
experiments. In direct comparison to standard h-FEM models generated using Abaqus,
p-FEM models were shown to be more numerically efficient [49]. Further applications for
the simulation of hip prosthesis were also presented in [271, 129]. For p-FEM simulations
of the vertebra, preliminary work presented in [192] reported realistic results that are
close to experimentally and numerically reported values in the literature.

2.3.2 Microstructural FE analysis

Microstructural finite element models are based on high-resolution images that resolve the
details of the trabecular microstructure. Such images can be obtained using micro-CT
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scanners, which resolve the trabecular microstructure of bone samples at a resolution in
the order of 10–50 µm. High-resolution peripheral QCT (HR-pQCT) scanners have also
seen technological advancements in recent years, which enable scanning of the extremities
of the musculoskeletal system with a resolution of 55 µm [159]. Currently, such resolutions
are not possible in vivo for the human vertebra, which hinders the possibility of clinical
assessment of bone strength using microstructural FE models. However, such models
have been essential in gaining a better understanding of bone micromechanics and the
different contributions of the vertebra’s structural components, as well as bone–implant
and bone–cement interactions.

h-FEM

On a microstructural level, carrying out FE analysis based on boundary-fitted meshes
can be very challenging. The foam-like trabecular microstructure has a complex three-
dimensional geometry, which makes the generation of analysis-suitable finite element
meshes very difficult [162]. To that end, the high-resolution CT images first need to
be segmented to identify the trabecular structure. Then, it is often necessary to exclude
regions of bone that are disconnected from the main structure, as they would lead to
singular stiffness matrices. Based on the segmentation mask, a surface model of the bone
can be reconstructed e.g. using the marching cubes algorithm. Finally, the surface repre-
sentation can be then used to generate the FE mesh with linear or quadratic tetrahedral
elements with element sizes in the range of 20–80 µm.
Due to this level of complexity, boundary-fitted microstructural FE models are often
limited to analysis of small specimens of trabecular bone. However, they can be used to
simulate very complex stress states with high local accuracy. Applications include the
modeling of trabecular bone damage and fracture [95], and the micromechanical damage
modeling in bone–cement interfaces [115, 282].

µ-FEM

An alternative approach that does not require the generation of boundary-fitted meshes is
the micro-voxel finite element method (µ-FEM), which is considered the current gold stan-
dard for simulation of the micromechanics of bone [106, 247, 246]. Similar to continuum-
level voxel-FEM described in the previous section, it relies on the conversion of each voxel
to a hexahedral finite element, but with voxel size in the range of 20-80 µm. However, on
the microstructural-level trabecular bone is considered homogeneous and isotropic, and
hence each element is assigned the same tissue Young’s modulus. This assumption is
sufficient for predicting the apparent elastic properties of trabecular bone specimens, as
reported in several studies [247, 148, 251, 266]. It has also been shown that µ-FEM models
and continuum-level h-FEM models that were enhanced by an anisotropic density-fabric-
based material model and subject-specific cortical shell modeling provided equivalent
structural predictions [187, 186].
Due to the high resolution necessary to accurately represent the complex geometry of
the trabecular microstructure using a voxel grid, µ-FEM models result in systems with
a very large number of unknowns, making them computationally expensive. Hence, they
were limited to studying small samples of bone. High-resolution models of whole vertebral
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bodies have hundreds of millions of degrees of freedom, which required supercomputing re-
sources [3, 2, 9]. Figure 2.8 shows the µ-FEM model of a vertebral body modeled at 30 µm
resolution, which was presented in [2]. The complexity of the trabecular microstructure
and the large size of the model are obvious.

Figure 2.8: µ-FEM model of vertebral body modeled at 30 µm resolution, reproduced
from [2].

With high-performance computing resources becoming more available, and with advances
in algorithms for the solution of very large linear systems, µ-FEM analysis of larger bone
specimens is becoming more feasible [45]. It has been an important tool in understanding
the mechanics of the vertebra, e.g. how the cortical shell contributes to vertebral body
stiffness [17]. Convergence studies of the linear elastic models of the µ-FEM verified the
numerical predictions of the displacements and the strains [33]. Models of vertebral bodies
have also been validated through comparison to mechanical experiments [45], which we
discuss in detail in Chapter 4.
The µ-FEM has also been extensively used to study bone–implant mechanics and pedicle-
screw fixation [262, 242, 35], where the high spatial resolution is necessary for accurate
modeling. Nonlinear µ-FEM models have also been applied to accurately predict failure of
trabecular bone [178, 250] and model its behavior post-yield [251]. Fields [79] presented an
application of nonlinear µ-FEM analysis of the vertebra to study failure mechanisms, and
the different contributions of the trabecular bone, the cortical shells and the endplates.





19

Chapter 3

The finite cell method for
biomechanical analysis of bone

In this chapter, we present a review of the finite cell method (FCM) for the simulation
of bone mechanics. Starting with the necessary theoretical background, we present a
brief summary of the theory of linear elasticity which is used to model the mechanical
behavior of bones. Following that, we present the fundamentals of the finite element
method (FEM), and discuss the standard h- and high-order p-versions. We explain the
concept of the FCM as an immersed boundary method that is based on the p-version of
the FEM and discuss its special aspects. Finally, we review previous work in literature
where the FCM was applied for the simulation of bone mechanics.

3.1 Introduction

For problems that involve complex geometries in engineering practice, subdividing the
domain into boundary-conforming finite elements remains a challenging task that can
constitute a severe bottleneck in the simulation process [46]. This is especially relevant for
problems in biomechanics, where only an implicit description of the geometry originating
from tomography scans is available.
In the p-version of the finite element method, the use of high-order basis functions leads to
a more desirable convergence behavior, allowing for more efficient simulations in compari-
son to the classical h-FEM. However, mesh generation of complex geometry presents even
more challenges for the p-version of the FEM. In comparison to low order FEM meshes,
meshes used for p-FEM analysis are typically composed of fewer but larger elements. To
ensure an accurate numerical solution, the geometric mapping in the p-version needs to
represent the curved element boundaries with sufficient accuracy. For cases involving com-
plex geometry, creating a suitable mesh for the p-version with accurately curved elements
can be prohibitively difficult. A mesh generator for thin structures which can accurately
represent the curved boundaries was presented in [233]. However, general curved meshing
of bulky volumetric structures is more challenging [234]. For p-FEM applications in bone
mechanics, an additional step of reconstructing a smooth surface representation from the
tomography images is necessary. A mesh based on the curved boundary-representation
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model can be subsequently generated [272], describing the geometry by curved hexahedral
and tetrahedral elements.

Immersed boundary methods, also known as fictitious or embedded domain methods,
have emerged as an alternative to the classical boundary-conforming FEM to avoid com-
plex mesh generation. Notable examples of this class of methods include Cut-FEM [98],
extended and generalized FEM [82] and weighted extended B-spline approximation [105].
These methods circumvent the challenging task of mesh generation by extending the do-
main of interest beyond the boundaries of the object’s physical domain to a bounding box
with a simple shape which can be trivially meshed. The finite cell method (FCM), which
was introduced in [190], combines the fictitious domain idea with the p-version of the
FEM. The use of high-order basis functions, which smoothly extend into the fictitious do-
main, allows the FCM to achieve exponential rates of convergence for smooth problems.
The FCM has been investigated and successfully applied in various problems, includ-
ing three-dimensional solid mechanics [70], linear thermoelasticity [278], geometrically
nonlinear problems [219], contact mechanics [23, 24], implicit and explicit elastodynam-
ics [67, 76, 121, 86] and topology optimization [69, 90].

A remarkable feature of the FCM is its ability to handle different types of geometric
representations. In the FCM, the geometric representation is only needed during the
numerical integration of the weak form. Therefore, the implicit geometric representation
only needs to be able to determine whether a given point lies inside or outside the exact
geometry: the so-called point membership test (or inside-outside test) [190]. The FCM
can hence be used with virtually any type of geometric representation: constructive solid
geometry (CSG) [256, 200], boundary representation (B-Rep) provided by CAD mod-
els [76], voxel representations [70], and point clouds [142]. Furthermore, a methodology
for handling flawed models using the FCM has been presented in [257], allowing direct
computations on CAD models containing geometric and topological flaws. This flexibility
and robustness of the FCM in dealing with geometric models makes it an ideal choice for
an automated simulation pipeline based on medical images. Moreover, using the FCM
allows for an easy combination of different geometric types of descriptions, such as using
voxel models for biological tissues and CAD models for implants, as demonstrated in this
work in Section 6.2.

3.2 Theory of linear elasticity

The field of continuum mechanics deals with the mechanical behavior of solid bodies. Here,
the solid bodies are regarded as continuous masses rather than sets of discrete particles.
Under certain assumptions regarding the kinematics and constitutive relationship, a linear
elastic behavior is deduced. This section provides a brief summary of the fundamental
concepts of continuum mechanics and the theory of linear elasticity, which are required to
describe the subsequent finite element formulations. Comprehensive details on the subject
can be found in [157, 26, 227]. The notation used in this thesis closely follows the work
of Bonet and Wood [26].
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Figure 3.1: Reference and current configurations

3.2.1 Kinematics

Kinematics describe the motion and deformation of the solid body in space without con-
sidering the forces that cause this transformation. In the initial configuration, a material
point can be defined by its position X within the domain Ω0 ⊂ R

3. The boundary of the
domain in the reference configuration is denoted by ∂Ω0. The position of the material
point in the current configuration at time t is given by x ∈ Ω. A continuous and one-to-
one mapping function ϕ describes the transformation from the reference to the current
configuration

x = ϕ(X, t), (3.1)

as illustrated in Figure 3.1.
Two traditional viewpoints are considered to describe the motion. The first one is the
Lagrangian (material) description, where the motion of the material material is described
with respect to its position in the reference configuration X; that is, the observer is fixed
to the material point. The second viewpoint is the Eulerian (spatial) description, which
is usually used in fluid mechanics, considers the current configuration as the observer’s
position is fixed in space. In this work, we follow the Lagrangian description.
The position vectors X and x are defined using a Cartesian basis

X = Xiei (3.2a)

x = xiei. (3.2b)

The displacement field u is introduced as the difference between the two vectors

u = u(t) = x − X = [u, v, w]⊤ . (3.3)
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The deformation can be characterized using the deformation gradient tensor F . The
linear mapping between infinitesimal line elements in the initial configuration dX and in
the current configuration dx is carried out by

dx = F · dX. (3.4)

The deformation gradient tensor is given by

F =
∂x

∂X
=

∂ (X + u)

∂X
= I +

∂u

∂X
= I + ∇Xu, (3.5)

where ∇X denotes the gradient with respect to the initial configuration, and I is the
second-order identity tensor.
The unsymmetric deformation tensor F describes the total transformation including any
rigid body rotations. Hence, strain measures are introduced to characterize the local
deformation excluding rigid body motions. The Green-Lagrange strain tensor E charac-
terizes this deformation in terms of the change of length of a line element, and is given
by

E =
1

2

(
F ⊤F − I

)
=

1

2

(
∇Xu + ∇Xu⊤ + ∇Xu⊤∇Xu

)
. (3.6)

Unlike F , the Green-Lagrange strain tensor E is symmetric and vanishes for pure rigid
body transformations. For small deformations, i.e. ‖∇Xu‖ � 1, the high-order terms
in (3.6) can be neglected. Linearization of E leads to the symmetric infinitesimal strain
tensor ε

ε =
1

2

(
∇Xu + ∇Xu⊤

)
≈ E. (3.7)

In this work, we follow the assumption of small deformations to study the mechanical
behavior of bones and metal implants. This is considered sufficient for studying the
apparent properties of bone under small loads, but would not be a valid for studying
bone damage and failure, where large deformations need to be taken into account, as
shown e.g. in [110, 42].

3.2.2 Stress

Stress is a physical quantity which describes the internal interactions between neighboring
material particles within a continuum due to deformation. Considering the force df acting
on a surface element da of the deformable body in its current configuration. The surface
traction t is defined as the force per unit area

t =
df

da
. (3.8)

Cauchy’s stress theorem relates the traction vector to the outward pointing unit normal
vector on da, denoted by n, through the Cauchy stress tensor σ

t = σ · n. (3.9)
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The tensor consists of nine components that define the stress state at a point due to the
deformation:

σ =





σxx τxy τxz

τyx σyy τyz

τzx τzy σzz



 (3.10)

Figure 3.2 depicts the sign convention for the Cauchy stress tensor. The tensor is sym-
metric, σ = σ⊤, which can be shown to be the result of the conservation of angular
momentum [26].
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Figure 3.2: Sign convention of stress tensor components

3.2.3 Equilibrium equation

The linear momentum of the deformable body Ω is defined as

L =

∫

Ω

ρẋ dΩ. (3.11)

The conservation of linear momentum, as stated by Newton’s second law of motion,
postulates that the rate of change of L in time is equal to the sum of all forces applied
to the body

∂

∂t

∫

Ω

ρẋ dΩ =

∫

Ω

b dΩ +

∫

∂Ω

t dΓ, (3.12)

where b and t are the body force and the surface traction acting on the body. Using
Cauchy’s stress theorem (3.9), and applying the divergence theorem and the law of con-
servation of mass gives Cauchy’s first equation of motion

∇ · σ + b = ρü ∀x ∈ Ω. (3.13)

For quasistatic problems, the inertia forces are much smaller than the internal forces and
can therefore be neglected

∇ · σ + b = 0 ∀x ∈ Ω. (3.14)
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3.2.4 Constitutive relationship

In continuum mechanics, constitutive models connect the kinematic variables (strains) to
the stresses, which makes it possible to compute all the unknowns of the boundary-value
problem [107]. These models describe the material’s behavior in response to deformation.
A material is called elastic if its stress state depends only on the current deformation
state; i.e. it is independent of the deformation history. Elastic deformation is completely
reversible, meaning that the material returns to its undeformed state after unloading—in
contrast to plastic deformation which is permanent. In case of small elastic deformations,
a linear constitutive relationship is given by the generalized Hooke’s law:

σ = C : ε. (3.15)

Here, the linear elastic material tensor C is a fourth order tensor relating the Cauchy
stresses to the infinitesimal strain tensor. If the material behavior is also assumed to be
isotropic, i.e. independent of the material’s orientation with respect to the load, C is
given as

C = λ I ⊗ I + 2µ I
sym, (3.16)

where I
sym denotes the fourth order symmetric identity tensor. The Lamé constants λ

and µ can be defined in terms of the Young’s modulus E and the Poisson ratio ν

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1 − 2ν)
. (3.17)

In this work, we apply isotropic linear elastic material models for bone tissue and metal
implants. As discussed in Section 2.3, these assumptions are justified for simple load
cases.

3.2.5 Boundary-value problem

A boundary-value problem for (3.14) involves imposing boundary conditions on the dis-
placement function u on the boundary ∂Ω. Here, we consider two types of boundary
conditions: Dirichlet (or essential) boundary conditions which specify the values of the
primary variable u, and Neumann (or natural) boundary conditions which specify the val-
ues of the derivative. To incorporate both types of conditions, we assume that the bound-
ary admits the decomposition into two distinct parts ∂Ω = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅,
as illustrated in Figure 3.3.
The boundary-value problem is stated in its strong form as:
Given b : Ω → R

3, t̂ : ΓN → R
3, û : ΓD → R

3, find u : Ω → R
3 such that:

∇ · σ + b = 0 ∀x ∈ Ω, (3.18a)

u = û ∀x ∈ ΓD, (3.18b)

σ · n = t̂ ∀x ∈ ΓN , (3.18c)

where û is the prescribed value for the displacement on the Dirichlet boundary and t̂ is
the prescribed value for the traction on the Neumann boundary.
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Ω

ΓD

ΓN

Figure 3.3: Boundary-value problem on Ω

3.3 The finite element method

Finding closed-form solutions to the strong form of the boundary-value problem (3.18)
defined by the partial differential equations and boundary conditions is only possible in
a few cases—when the geometry and boundary conditions are very simple. For prob-
lems of practical relevance, numerical approaches are commonly used to estimate the
solution. Such approaches include the finite difference method [241], boundary element
methods [28, 128] and the finite element method (FEM), which is most commonly applied
for engineering problems in solid mechanics [16, 111].
In the FEM, a weak form of the boundary-value problem is considered, and the solution
is approximated using piecewise-continuous (multivariate) polynomials. The domain of
interest is partitioned into a set of elements, which are used to define the basis functions.
In comparison to other numerical schemes, the FEM holds an advantage in its ability
to deal with complex geometry and boundary conditions. An important aspect is the
possibility for local mesh refinement to accurately describe solution features. Moreover,
the FEM formulation leads to a computationally efficient analysis due to the sparsity of
the resulting systems of equations. In this section, we briefly present the fundamentals of
the FEM and its p-version. More detailed discussion can be found e.g. in the textbooks
by Hughes [111], Bathe [16], Zienkiewicz et al. [285] and Szabó and Babuška [237].

3.3.1 Weak form

To define the weak form of the problem, we first need to characterize two classes of
functions. The first is composed of trial functions u, which are required, by definition,
to satisfy the Dirichlet boundary conditions (3.18b) on ΓD. Furthermore, the derivatives
of the trial functions are required to be square-integrable over Ω. We denote the trial
function space by S

S = {u ∈
[
H1(Ω)

]3 | u = û ∀x ∈ ΓD}, (3.19)

where H1(Ω) is the Sobolev space of first order [201].
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Similarly, we define the second class of functions v, which are called the test or weighting

functions, to be the homogeneous counterpart of S
V = {v ∈

[
H1(Ω)

]3 | v = 0 ∀x ∈ ΓD}. (3.20)

The weak form is obtained by multiplying the equilibrium equation (3.14) by a test
function v ∈ V(Ω) and integrating over Ω

∫

Ω

(∇ · σ) · v dΩ +

∫

Ω

b · v dΩ = 0. (3.21)

Using the product rule of differentiation:

∇ · (σ · v) = (∇ · σ) · v + σ : ∇v, (3.22)

we can rewrite the equation (3.21) as
∫

Ω

σ : ∇v dΩ =

∫

Ω

b · v dΩ +

∫

Ω

∇ · (σ · v) dΩ. (3.23)

Making use of the symmetry property of the Cauchy stress tensor, we can define the
integral on the left-hand side in terms of the infinitesimal strain tensor instead of the
gradient

σ : ∇v = σ : ε(v). (3.24)

Applying the divergence theorem gives
∫

Ω

∇ · (σ · v) dΩ =

∫

∂Ω

σ · n · v dΓ =

∫

ΓD

σ · n · v dΓ

︸ ︷︷ ︸
=0

+

∫

ΓN

σ · n · v dΓ. (3.25)

Note that the integral over ΓD vanishes due to the definition of the test functions (3.20).
Finally, the weak formulation of the boundary value problem reads:
Given b : Ω → R

3, t̂ : ΓN → R
3, û : ΓD → R

3, find u ∈ S(Ω) such that:

B(u, v) = F(v) ∀v ∈ V(Ω) (3.26a)

with

B(u, v) =

∫

Ω

ε(u) : C : ε(v) dΩ (3.26b)

and

F(v) =

∫

Ω

b · v dΩ +

∫

ΓN

t̂ · v dΓ (3.26c)

The Lax–Milgram Lemma [29] states that if B is a continuous and coercive bilinear form,
and F is a continuous linear form, then the variational problem has a unique solution.
These conditions are fulfilled if the elasticity tensor C is bounded away from zero and
infinity. It can be shown that these properties also carry over to the discrete form of the
variational problem [41].
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3.3.2 Galerkin’s approximation method

The Galerkin method is used to obtain approximate solutions to boundary-value problems
based upon weak formulations. The first step in the solution approach is to construct
finite-dimensional approximations of the function spaces S and V , denoted by Sh and Vh,
which are defined such that

Sh ⊂ S (3.27)

and Vh ⊂ V . (3.28)

Next, we address the mismatch between Sh and Vh in the case of inhomogeneous Dirichlet
boundary conditions, i.e. if û 6= 0. Following the derivation presented in [111], for each
function uh

0 ∈ V , we construct a function uh ∈ S by

uh = uh
0 + ûh, (3.29)

where ûh is a given function satisfying the prescribed Dirichlet boundary condition.
Hence, the (Bubnov)–Galerkin form of the boundary-value problem reads:
Given b, t̂, û as before, find uh = uh

0 + ûh, where uh
0 ∈ Vh such that:

B(uh
0 , vh) = F(vh) − B(ûh, vh)

= F̂(vh) ∀vh ∈ Vh (3.30)

In the Bubnov–Galerkin approach, the same space is used to construct both the trial and
test functions. The finite-dimensional subspace Vh can be spanned by a finite number of
basis functions. Since the trial and test functions are vector-valued functions, we introduce
the basis function matrix

N =





Nu 0 0

0 N v 0

0 0 Nw



 =





N1 . . . Nn 0 . . . 0 0 . . . 0
0 . . . 0 N1 . . . Nn 0 . . . 0
0 . . . 0 0 . . . 0 N1 . . . Nn



 . (3.31)

For simplicity, we use the same basis functions {N1, N2, ..., Nn} for all vector components
u, v and w of the trial and test functions. In general, a different basis could be used for each
vector component. The trial and test functions are constructed as a linear combination
of the basis functions N i and the coefficient vectors

uh
0 =

N∑

i=1

N idi, (3.32a)

vh =
N∑

i=1

N ici, (3.32b)

where N = 3n is the total number of unconstrained degrees of freedom.
Substituting the approximations (3.32) into the Galerkin form of the boundary-value
problem (3.30)

B
(

N∑

i=1

N ici,
N∑

j=1

N jdj

)

= F̂
(

N∑

i=1

N ici

)

(3.33)
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Using the (bi)-linearity properties of B and F , (3.33) becomes

N∑

i=1

ciGi = 0 (3.34)

where

Gi =
N∑

j=1

B (N i, N j) dj − F̂ (N i) . (3.35)

As the Galerkin equation (3.30) holds for all vh, the coefficients ci 6= 0. As a result, it
follows that each Gi = 0 for i = 1, . . . , N

N∑

j=1

B (N i, N j) dj = F̂ (N i) . (3.36)

In this form, all terms are known except for dj. This constitutes a system of N equations
with N unknowns, which expresses the matrix form of the boundary-value problem

Kd = f (3.37)

with

Kij = B(N i, N j), (3.38)

fi = F̂(N i) (3.39)

where K is the stiffness matrix, f the load vector, and d the displacement vector. Solv-
ing this system of equations provides the approximate solution to the boundary-value
problem.

3.3.3 Voigt notation

For a more concise formulation with simpler structure, we use the Voigt notation in the
following. This notation exploits symmetry to transform the second-order stress and strain
tensors to vectors, and the fourth-order elasticity tensor to a square matrix [111, 26].
In this notation, the Cauchy stress tensor (3.10), which is symmetric, is expressed as a
vector of its six unique components

σ̄ = [σxx, σyy, σzz, τxy, τyz, τzx]⊤ (3.40)

Similarly, the infinitesimal strain tensor is transformed to a vector

ε̄ = L u = [εxx, εyy, εzz, γxy, γyz, γzx]⊤ , (3.41)
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where L denotes the differential operator matrix:

L =
























∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
























. (3.42)

Note that a factor of 1
2

was eliminated from the shear components γxy,γyz and γzx.
The constitutive equation (3.15) in Voigt notation reads:

σ̄ = C · ε̄, (3.43)

where C is the elasticity matrix relating the stress and strain vectors. In the case of linear
isotropic elasticity, it is given by

C =
E

(1 + ν)(1 − 2ν)















1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2















. (3.44)

The bilinear form B can be rewritten as

B(u, v) =

∫

Ω

ε̄(u) · C · ε̄(v) dΩ =

∫

Ω

[L u]⊤ · C · [L v] dΩ. (3.45)

3.3.4 Linear finite element approximation

In the FEM, the basis functions Ni of the space Vh are defined in an element-wise manner.
To that end, the domain Ω is partitioned into nel non-overlapping subdomains, which we
refer to as finite element domains Ωe, or simply elements, with e = 1, . . . , nel. We call
the collection of finite elements a mesh. Typical element shapes for two-dimensional
meshes are quadrilaterals and triangles. Figure 3.4 depicts a quadrilateral finite element
mesh. For three-dimensional problems, common element types are hexahedra (bricks),
tetrahedra, as well as triangular prisms (pentahedra).
For elasticity, the basic convergence requirements are that the shape functions be [111]



30 3. The finite cell method for biomechanical analysis of bone

Ω
(-1,-1) (1,-1)

(-1,1) (1,1)

x

y

Figure 3.4: A two-dimensional quadrilateral mesh and mapping from a reference element

1. smooth (i.e. at least C1) within the element domain Ωe

2. C0-continuous across the element boundaries Γe

3. complete (can exactly represent all rigid motions).

Piecewise linear basis functions (and their generalizations in higher dimensions) defined
on the finite element domains satisfy these requirements. The linear basis functions are
associated to the nodes, which are defined at the vertices (corners) of the finite element
domains.
For the three-dimensional case, we consider the standard trilinear hexahedral element,
which has eight nodes that are connected by twelve edges. The local coordinates ξ are
defined in the standard integration domain Ω✷ = [−1, 1]3. The nodal shape functions
are defined in the local coordinate space as

Ni =
1

8
(1 + ξiξ) (1 + ηiη) (1 + ζiζ), i = 1, . . . , 8 (3.46)

where ξi = (ξi, ηi, ζi) denotes the local coordinates (±1, ±1, ±1) of node i.
The function Q defines the mapping between the local coordinates ξ of the standard
element and the corresponding global coordinates x, as illustrated in Figure 3.4. For the
trilinear hexahedral element, this is given by

x = Q(ξ) =
8∑

i=1

Ni(ξ) xi, (3.47)

where xi are the global coordinates (xi, yi, zi) of node i. The Jacobian matrix for this
mapping reads

J =
∂x

∂ξ
=












∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ












=
8∑

i=1

xi ⊗ ∂Ni(ξ)

∂ξ
. (3.48)

Following the isoparametric concept, the same functions used to describe the geometry
are used to construct Vh and approximate the trial and test functions [111]. To this
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end, the shape function matrix N defined in (3.31) is assembled from the element shape
functions Ni. Substituting the finite element approximation into the weak form (in Voigt
notation) (3.45) yields the matrix form of the boundary-value problem.
Since the shape functions are defined element-wise, the weak form integrals are also eval-
uated for each element, and assembled to a global system of equations:

K =

nel

A
e=1

Ke (3.49)

f =

nel

A
e=1

f e, (3.50)

where A is the assembly operator, and Ke and f e respectively denote the element stiffness
matrix and force vector, which are given by

Ke =

∫

Ωe

B⊤CB dΩ (3.51)

f e =

∫

Ωe

N⊤ b dΩ +

∫

Γe
N

N⊤ t̂ dΓe
N . (3.52)

Here, B denotes the strain-displacement matrix

B = L N =
[
B1 B2 . . . Bn

]
, (3.53)

where each block is given by

Bi =

























∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂z
∂Ni

∂y

∂Ni

∂x
0

0
∂Ni

∂z

∂Ni

∂y
∂Ni

∂z
0

∂Ni

∂x

























. (3.54)

In order to compute the derivatives of the shape functions with respect to x, the chain
rule is applied:












∂Ni

∂x
∂Ni

∂y
∂Ni

∂z












=












∂ξ

∂x

∂η

∂x

∂ζ

∂x
∂ξ

∂y
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∂y
∂ξ

∂z

∂η

∂z

∂ζ

∂z























∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ












= J⊗1












∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ












. (3.55)
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3.3.5 The p-version of the FEM

In the FEM, higher numerical accuracy is attained by increasing the number of degrees
of freedom. In the standard h-version of the FEM this is achieved by spatially refining
the mesh, thereby decreasing the element size h. In the p-version, degrees of freedom are
added by increasing the polynomial order p of the basis functions without changing the
mesh.
The standard shape functions for finite elements are given by the Lagrange polynomi-
als [111], shown for a one-dimensional case in Figure 3.5a. For each polynomial degree p,
a separate set of shape functions is defined. In order to improve the approximation by
increasing p, the basis functions need to be replaced.

p = 1

p = 2

p = 3

(a) Lagrange basis

p = 1

p = 2

p = 3

(b) Hierarchic basis

Figure 3.5: One dimensional high-order shape functions

The hierarchic basis functions based on the integrated Legendre polynomials are given
by [237]

N1 =
1

2
(1 − ξ) (3.56a)

N2 =
1

2
(1 + ξ) (3.56b)

Ni = φi⊗1(ξ), i = 3, ..., p + 1 (3.56c)

with

φj(ξ) =

√

2j − 1

2

∫ ξ

⊗1

Lj⊗1(x)dx =
1√

4j − 2
(Lj(ξ) − Lj⊗2(ξ)), j = 2, 3, ... (3.57)

where Lj(ξ) are the Legendre polynomials, which are defined by:

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n, x ∈ (−1, 1), n = 0, 1, 2, ... (3.58)

or using the recursion formula:

Ln(x) =
1

n
[(2n − 1)xLn⊗1(x) − (n − 1)Ln⊗2(x)], x ∈ (−1, 1), n = 2, 3, 4, ... (3.59)

with

L0(x) = 1, (3.60)

L1(x) = x. (3.61)
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In contrast to the standard Lagrange basis, the integrated Legendre polynomials consti-
tute a hierarchic basis, which can be seen in Figure 3.5b. This means that the set of basis
functions for a certain polynomial order p contains all the functions for the lower orders.
This allows for a p-refinement where the mesh is kept fixed, and for local adaptation of
the polynomial degree. Moreover, using the integrated Legendre polynomials as basis
functions leads to well-conditioned linear systems of equations, as their derivatives are
orthogonal by definition.
For higher dimensions (2D and 3D), basis functions are constructed by taking the tensor
product of the one-dimensional basis functions [237].

N2D
i,j (ξ, η) = N1D

i (ξ) N1D
j (η) (3.62)

N3D
i,j,k(ξ, η, ζ) = N1D

i (ξ) N1D
j (η) N1D

k (ζ). (3.63)

Figure 3.6 illustrates the high-order basis functions for a quadrilateral element.
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(c) Quadratic internal mode

Figure 3.6: Two dimensional p-version shape functions

Considering the three-dimensional case, the tensor product structure gives the high-order
shape functions for hexahedral elements. Each of the resulting shape functions can be
directly associated to a topological component (node, edge, face, interior) of the underly-
ing element. Furthermore, the tensor product space can be reduced, without sacrificing
completeness, by excluding some of the face and interior modes. The four types of modes
are defined as follows:

• Nodal modes: the trilinear shape functions

NNi

1,1,1(ξ, η, ζ) =
1

8
(1 − ξi ξ) (1 − ηi η) (1 − ζi ζ) i = 1, . . . , 8 (3.64)

are the standard shape functions for the isoparametric hexahedral (brick) ele-
ment (3.46).

• Edge modes: there are (pr − 1) functions per edge, where pr is the polynomial
order in the direction of the edge, r ∈ {ξ, η, ζ}. If we consider, for example, edge
E1 (see Figure 3.7), the corresponding edge modes are given by

NE1
i,1,1(ξ, η, ζ) =

1

4
(1 − η) (1 − ζ) φi(ξ) i = 2, . . . , pξ (3.65)
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Figure 3.7: Standard high-order hexahedral element, reproduced from [68].

• Face modes: are the product of two high-order polynomials along the two local
directions of a face, and a linear blending term in the third orthogonal direction.
Hence, they vanish at all nodes and edges. For face F1, the corresponding modes
are defined as

NF1
i,j,1(ξ, η, ζ) =

1

2
(1 − ζ) φi(ξ) φj(η) (3.66)

The total number of face modes differ between the tensor product and trunk spaces

tensor space trunk space
i = 2, . . . , pξ

j = 2, . . . , pη

i = 2, . . . , pξ − 2

j = 2, . . . , pη − 2

i + j = 4, . . . , max {pξ, pη}

• Internal modes: are the product of three high-order shape functions, They are
purely local to the element, and vanish on all nodes, edges and faces.

N int
i,j,k(ξ, η) = φi(ξ) φj(η) φk(ζ) (3.67)

The trunk space also includes fewer internal modes than the tensor product space
with the same polynomial degrees.

tensor space trunk space
i = 2, . . . , pξ

j = 2, . . . , pη

k = 2, . . . , pζ

i = 2, . . . , pξ − 4

j = 2, . . . , pη − 4

k = 2, . . . , pζ − 4

i + j + k = 6, . . . , max {pξ, pη, pζ}
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The p-version of the FEM exhibits a more favorable convergence behavior compared to
low-order approximations [237]. For problems with smooth solutions, the p-FEM achieves
exponential convergence in the energy norm under p-refinement. Hence, it is able to attain
numerical solutions with much higher accuracy compared to uniform h-refinement in low-
order FEM which can only have algebraic convergence. This exponential convergence
rate can even be obtained for non-smooth problems, if the p-version is combined with an
adequate local mesh refinement. Moreover, high-order finite elements are more immune
to locking behavior, and are more robust against mesh distortion.
Despite these desirable convergence properties, the p-version of the FEM does not yet
enjoy widespread use in industry. Some challenges are presented by the application of the
p-version to larger classes of problems, e.g. nonlinear problems found in elastoplasticity
or contact mechanics. It has, however, been shown that the p-version can be successfully
used in these problems, and even outperform the standard h-version [181, 101]. A major
obstacle remaining for the p-version is the handling of complex geometrical models, which
are abundant in practical engineering problems. To fully utilize the high-order approx-
imations, isoparametric p-finite elements need to use a high-order approximation of the
geometry. To that end, it is possible to use the blending function method [88], where the
function Q has additional terms accounting for the curved edges and faces. Unfortunately,
this could be prohibitively difficult for cases with complex geometry, which hinders the
applicability of the p-version of the FEM in practice.

3.4 Immersed boundary approach

Immersed boundary methods are an alternative to conventional finite elements that en-
ables simulations involving complex (or evolving) geometry without boundary-conforming
mesh generation. The main idea of these methods is to augment the physical domain of in-
terest Ωphy with a fictitious domain Ωfict to form a simple-shaped domain Ω̂ = Ωphy ∪Ωfict.
The boundary-value problem is extended such that it is defined over Ω̂ which can be
trivially meshed. This approach is illustrated in Figure 3.8.

Ωphy

ΓD

ΓN

Ωphy

Ωfict

ΓD

ΓN

Figure 3.8: Main concept of the FCM following [190]

In order to recover the original boundary-value problem (3.26), the influence of the ficti-
tious domain on the weak form is penalized. To that end, we define an indicator function
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α as

α(x) =

{

1 ∀x ∈ Ωphy

ε � 1 ∀x ∈ Ωfict.
(3.68)

Using this indicator function, we can rewrite the bilinear form as

B(u, v) =

∫

Ωphy

ε̄(u) · C · ε̄(v) dΩ +

∫

Ωfict

ε̄(u) · ε C · ε̄(v) dΩ

=

∫

Ω̂

ε̄(u) · α C · ε̄(v) dΩ. (3.69)

An intuitive interpretation of this penalization is the application of a void material with
negligible stiffness in the fictitious domain. The scaling factor for the material parameters
ε is chosen as small as possible—clearly for ε = 0 the original problem is recovered—yet
large enough to prevent extreme ill-conditioning of the resulting stiffness matrix. Typical
values for ε range between 10⊗4 and 10⊗15. The linear form F(v) is extended by zero in
the fictitious domain Ωfict.
The FCM combines the immersed boundary approach with high-order finite element dis-
cretization. The extended domain, which has a simple shape, is subdivided into a uniform
Cartesian grid of high-order finite elements, which we will call finite cells. In finite cells
that are cut by the boundary of the physical domain, the FCM solution smoothly extends
into the fictitious domain. Similar to high-order FE analysis, the finite cell mesh consists
of relatively large finite cells. To achieve a higher numerical accuracy, the polynomial de-
gree of the basis functions is increased for a fixed mesh (p-refinement). For problems with
smooth solutions, the FCM achieves exponential rates of convergence for p-refinement on
uniform Cartesian meshes [190, 70, 219].
For image-based simulations, discretization using Cartesian FCM grids has several advan-
tages. The grids can be chosen to be axis-aligned with the voxel grids, and the finite cell
sizes can be chosen as an exact multiple of the voxel dimensions, such that each finite cell
is ‘composed’ of a set of voxels. This allows for a more efficient and accurate numerical
integration, as described in the next section. However, the use of uniform Cartesian grids
is not suitable for non-smooth problems with locally high gradients or singularities, as
such problems require local mesh refinement [215]. Alternative versions of the FCM make
use of unstructured tetrahedral or polygonal meshes where local refinement is possible.
Another possibility explored in this work is the application of the hp-version of the FEM
to refine the FCM meshes, which is presented in Section 5.3.
Considering the choice of high-order basis functions, several possibilities exist. Typical
choices are the integrated Legendre polynomials described in the previous section, as
well as B-Splines used in isogeometric analysis [219]. For applications in high frequency
dynamics, another possibility is the use of Lagrange interpolation polynomials based on
the Gauss-Lobatto quadrature points [67, 121, 86]. These functions hold the advantage
that suitable mass lumping schemes are available, making it possible to fully exploit the
advantages of explicit time-integration schemes.
The combination of the immersed boundary approach and high-order basis functions
requires special attention for the numerical integration of the weak form, enforcement of
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the boundary conditions and solution of the linear system. We discuss these aspects in
the remaining part of this chapter.

3.5 Numerical integration

In general, the integrals of the weak form (3.51) cannot be analytically evaluated. In the
FEM, the Gauss-Legendre quadrature is usually applied for their numerical evaluation. In
a one-dimensional setting, the integral of a function f is approximated by the quadrature
rule

∫ 1

⊗1

f(ξ) dξ ≈
n∑

i=1

f(ξi)wi, (3.70)

where ξi denote the quadrature points at which f is evaluated, and wi are the correspond-
ing weights [237]. Using n integration points, the quadrature rule can be used to integrate
a polynomial of order up to 2n−1 exactly. For smooth functions, Gauss-Legendre quadra-
ture can converge exponentially. However, for functions with singularities, the convergence
is slower. The Gauss-Legendre quadrature rule can be also used for integrals over surfaces
or volumes

∫ 1

⊗1

∫ 1

⊗1

f(ξ, η) dξdη ≈
m∑

j=1

n∑

i=1

f(ξi, ηj) wiwj (3.71)

∫ 1

⊗1

∫ 1

⊗1

∫ 1

⊗1

f(ξ, η, ζ) dξdηdζ ≈
l∑

k=1

m∑

j=1

n∑

i=1

f(ξi, ηj, ζk) wiwjwk =
N∑

i=1

f(ξi) Wi.

(3.72)

For the three-dimensional integral, we combine the triple summation to a single sum over
N = n × m × l, whereas Wi denotes the combined weights of the quadrature points. To
evaluate an integrand over Ω, a change of variables is carried out

∫

Ω

f(x) dΩ ≈
N∑

i=1

f(x(ξi)) Wi det J(ξi), (3.73)

where the Jacobian matrix J (3.48) accounts for the mapping.
Standard Gauss-Legendre quadrature can be used for accurate and efficient integration
of smooth functions. However, in the FCM, the integrals of cells that are cut by the
boundary of the physical domain are discontinuous due to the penalization of the mate-
rial parameters (3.69). Hence, standard Gauss-Legendre quadrature cannot be directly
applied to evaluate the integrals [190]. The challenge of integrating discontinuous func-
tions is faced by immersed boundary approaches, as well as partition of unity methods,
the generalized (G-FEM) and extended (XFEM) finite element methods [83].
Several approaches have been developed for accurate evaluation of the discontinuous do-
main integrals in the FCM. A straightforward possibility is to use a fine grid of integration
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sub-cells to partition each finite cell, with the Gauss-Legendre quadrature applied for each
sub-cell [190, 268]

∫

Ω

f(x) dΩ ≈
M∑

j=1

N∑

i=1

f(x(ξi)) Wi det J(ξi) det J̃ j, (3.74)

where J̃ j considers the mapping between the integration sub-cells and the finite cell. This
approach is very well suited for image-based FCM models, where the material parameters
are also defined on a voxel grid. Defining the integration sub-cell grid to correspond to
the voxel grid enables direct FCM simulation using the image data with minimal pre-
processing. An example of such an integration grid is illustrated in Figure 3.9.

Figure 3.9: FCM mesh of a vertebral body showing the underlying voxel-grid

Another advantage of this integration approach for the voxel-based FCM is the possibility
of pre-computation. Here, the integration points and their mapping Jacobian are identical
among all finite cells—only differing in the material properties which are defined voxel-
wise. Hence, a pre-computation of the stiffness matrix on a voxel-level is possible, which
can be used to drastically reduce the computational effort of the voxel-based FCM as
presented by Yang et al. [268] and Groen et al. [90].

An alternative scheme for composed integration applies recursive sub-division of the fi-
nite cells cut by the boundary, leading to a spacetree of integration sub-cells [219]. The
spacetree approach is robust and easy to implement. It is generally well suited for models
of complex CAD geometry which have a homogeneous material distribution, e.g. med-
ical implant. More sophisticated integration schemes have been developed to efficiently
evaluate the discontinuous domain integrals for the FCM. These schemes include the
blended partitioning using the smart-octree [143, 144], moment-fitting [123], adaptively
weighted quadratures [1, 240], and quadratic re-parametrization for the tetrahedral finite
cell method [235] and a special technique where the volume integrals are transformed to
surface integrals [65]
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3.6 Enforcement of boundary conditions

In the FCM, the boundary does not coincide with the edges and faces of the discretization
mesh. Hence, the boundary conditions cannot be enforced in the classical manner followed
in conventional FEM. In the following, alternative techniques for imposing boundary
conditions in the FCM are discussed.

3.6.1 Neumann boundary conditions

Similar to conventional FEM, homogeneous Neumann boundary conditions are automati-
cally satisfied in the FCM. For heterogeneous Neumann boundary conditions, the bound-
ary integral over the Neumann boundary ΓN needs to be evaluated. However, as ΓN is
not resolved by the boundaries of the finite cells (edges in 2D, faces in 3D), the integral
cannot be numerically evaluated over the element’s boundaries as usually done in conven-
tional FEM. Hence, an additional surface mesh for the boundary is introduced, which is
only used to evaluate the traction integrals. Here, we emphasize that this surface mesh
is not used to define additional basis functions, and doesn’t introduce additional degrees
of freedom. Figure 3.10 illustrates a surface mesh within a finite cell. For FCM analysis
in 3D, a suitable surface mesh can be provided, for example, by surface tessellation of
CAD models. Alternatively, for implicit geometry descriptions, the marching cubes al-
gorithm can be used to automatically generate surface descriptions that can be used to
evaluate the surface integrals, as demonstrated in [24, 22]. Considering geometric models
stemming from medical images, this approach can be conveniently used together with the
segmented models, as demonstrated in the next chapter.

Figure 3.10: Surface mesh for evaluation of boundary integrals, reproduced from [70].

Later in this work (in Section 6.1.3), we present a numerical approach for the weak
imposition of concentrated (point) forces and moments for the FCM.

3.6.2 Dirichlet boundary conditions

The imposition of Dirichlet conditions in the FCM presents an additional challenge. In
conventional FEM, Dirichlet conditions are enforced by manipulating the corresponding
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entries of the stiffness matrix and the load vector [77]. To that end, the degrees of freedom
are classified as either unknown or prescribed. The system of linear equations can be
then reduced to solve for the unknown degrees of freedom taking the contribution from
the prescribed values into account. Clearly, this approach is not applicable for immersed
boundary discretizations where the Dirichlet boundary ΓD is not directly resolved by
the mesh. There are, however, several possibilities to weakly impose Dirichlet boundary
conditions in immersed boundary methods—including the use of Lagrange multipliers [11,
99, 85] the penalty method [12, 284] and Nitsche’s method [78, 97, 18, 278, 209].

The penalty method

To weakly enforce the Dirichlet boundary conditions using the penalty method, the weak
form (3.69) and (3.26c) is modified:

B̂(u, v) = B(u, v) + β

∫

ΓD

v · u dΓ (3.75a)

F̂(v) = F(v) + β

∫

ΓD

v · û dΓ, (3.75b)

where β is a scalar penalty parameter. This modification adds the weighted residual

Wp = β

∫

ΓD

v · (u − û) dΓ

to the weak form of the equilibrium equation. If β is chosen to be large compared to the
entries of the stiffness matrix, u − û = 0 will be approximately satisfied on ΓD. This
method can be mechanically interpreted as a distributed spring with very high stiffness β
which acts along the Dirichlet boundary to enforce the prescribed displacements. Similar
to the Neumann case, a separate surface mesh is needed for the numerical integration of
the penalty terms over ΓD.
The penalty method is popular since it is easy to implement and involves a single scalar
parameter. However, the accuracy of the method depends on the chosen value of the
penalty parameter β, which is influenced by the material parameters, the size of the finite
cells as well as the polynomial degree of the shape functions. The penalty method is
also inconsistent, as it slightly modifies the original problem. The exact solution is hence
only attainable using an infinite penalty parameter. Nevertheless, this approach delivers
sufficiently accurate solutions without severe conditioning problems, making it suitable
for several engineering applications of the FCM [218, 219]. In this work, we follow this
approach.

Nitsche’s method

An alternative approach, which is commonly applied in immersed boundary methods,
is the weak enforcement of essential boundary conditions using Nitsche’s method [179].
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Here, the weak form is modified as follows:

B̃(u, v) = B(u, v) −
∫

ΓD

(σ(u) · n) · v dΓ −
∫

ΓD

(σ(v) · n) · u dΓ + λ

∫

ΓD

v · u dΓ

(3.76a)

F̃(v) = F(v) −
∫

ΓD

(σ(v) · n) · û dΓ + λ

∫

ΓD

v · û dΓ. (3.76b)

The first additional boundary integral in (3.76a) stems from applying the divergence
theorem–see (3.25). In the case of immersed boundary discretizations, it is not guaranteed
to vanish on ΓD as the test functions v are not restricted to be zero at the (immersed)
Dirichlet boundary. The second additional term in (3.76a) and the first additional term
in (3.76b) are introduced to retain the symmetry of the resulting stiffness matrix. The
remaining terms are similar to the penalty terms introduced in (3.75a) and (3.75b), with
λ being a scalar stabilization parameter. These terms are introduced to retain coercivity
of the bilinear form after subtracting the other terms.
This approach has also been applied to weakly enforce Dirichlet boundary conditions in
the FCM [278, 207]. Unlike the penalty method, it is variationally consistent. However,
finding the optimal value for the stabilization parameter λ in each finite cell that is cut by
ΓD is challenging. Moreover, as the stabilization parameter additionally depends on the
shape and size of the cut cell, it is generally not bounded, which motivates the introduction
of additional stabilization, e.g. using ghost penalty [56]. Alternative parameter-free ap-
proaches were also investigated for the weak imposition of Dirichlet boundary conditions
in the FCM [138, 217].

3.7 Solution of system of linear equations

After applying the boundary conditions and constraints, the remaining step is to solve the
system of equations (3.37). For systems of linear equations, solution procedures can be
classified as direct and iterative solvers. Direct solvers based on Gaussian elimination, such
as LU, QR and Cholesky factorization, can be used to solve systems of linear equations
with high precision. For sparse linear systems, such as those arising in finite element
analysis, the numerical effort for the solution using direct methods strongly depends on
the fill ratio and the bandwidth. Hence, renumbering the equations to minimize the
bandwidth can reduce the total computational cost. However, direct solvers can be very
expensive to use for very large systems, as they have a complexity of O(N3). Moreover,
they have high memory requirements to store the factorized matrices, which are generally
not sparse. This imposes a hard limit on the maximum problem size that can be solved.
Regarding iterative solvers, the most commonly used methods in structural FE analysis
are based on the conjugate gradient method. The time complexity for the conjugate
gradient method is determined by the condition number and the number of non-zeros of
the stiffness matrix. For FE analysis, it is well-known that the condition number increases
with the number of unknowns, the dimensionality of the problem, and the polynomial
degree p of the shape functions [285, 73]. The condition number is also influenced by the
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boundary conditions and the material distribution within the element. For large well-
conditioned linear systems, iterative methods can be more computationally efficient than
direct methods. Moreover, they generally require considerably less storage in comparison
to direct methods, as they do not need to store the factorized matrices. Nevertheless,
direct methods could prove more feasible for small linear problems with multiple right-
hand sides, e.g. in linear elastodynamics [16], where the factorized matrix can be reused
for the forward/backward substitution at each time-step.
In the FCM, penalization of the stiffness within the fictitious domain (3.69) leads to ill-
conditioning of the system of linear equations. The analysis carried out by de Prenter
et al. [58] reveals that the ill-conditioning stems either from basis functions being small
on finite cells with small volume fractions, or from basis functions being quasi-linearly
dependent on such cells. Furthermore, it was shown that the condition number is inversely
proportional to the smallest cut cell volume fraction, and that the inverse proportionality
scales with the power of 2p, explaining why the problem is more severe for high-order
FCM discretizations. This limits the applicability of iterative linear solvers for the FCM
and renders the use of direct solvers necessary. Owing to the high accuracy achievable
by the employed high-order basis functions, and its flexibility in dealing with complex
geometry, FCM discretizations lead to smaller linear systems compared to conventional
FEM (for a given accuracy) which can be solved using direct methods. Nevertheless, the
high memory requirements of direct solvers prevents the use of the FCM to model larger
problems. To overcome this limitation, there have been several efforts dedicated to the
development of preconditioners tailored for the FCM.
Preconditioners improve the conditioning of the system of linear equations which in
turn improves the performance of iterative solvers. Considering the linear system
Kd = f (3.37), the non-singular preconditioning matrix S is sought such that SK

has a smaller condition number than K. The symmetrically preconditioned system is
then solved instead:

SKS⊤d̃ = Sf (3.77)

d = S⊤d̃. (3.78)

De Prenter et al. [58] also developed an effective algebraic preconditioner for the FCM,
named the Symmetric Incomplete Permuted Inverse Cholesky (SIPIC), which applies
diagonal scaling to the applied basis followed by local Gram–Schmidt orthonormalization.
The diagonal scaling treats ill-conditioning due to small basis functions on finite cells
with small volume fractions, whereas the orthonormalization addresses the quasi-linear
dependence of the basis functions. Numerical investigation of the performance of SIPIC
shows that it considerably improves the conditioning of FCM systems, which enables the
use of iterative solvers for larger systems, and is more robust than other competitive
preconditioning schemes, e.g. incomplete Cholesky preconditioning.
In further work, an Additive-Schwarz type preconditioner for the FCM was pre-
sented [117], which enables the iterative solution of large-scale multi-level hp-refined finite-
cell systems in an efficient and parallel-scalable manner. The general idea of Additive-
Schwarz preconditioning schemes is to approximate the inverse matrix, K⊗1, through the
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inversion and summation of sub-matrices of K:

S =
∑

I∈ℐ

R⊤

I K⊗1
I RI . (3.79)

Here, I denotes a block (a set of indices) of basis functions in the set of blocks I, and
multiplying with RI ,the restriction matrix, restricts K to the indices in I. The choice of
which blocks of basis functions I to locally invert determines the effectiveness of the pre-
conditioner. For the FCM, choosing I to include basis functions with small contributions,
and those functions which could become quasi-linearly dependent treats the underlying
cause for ill-conditioning. Selecting blocks of basis functions for finite cells whose volume
fraction is below a set threshold leads to a robust and effective preconditioner. Further
research proposes the use of multigrid methods for more efficient preconditioners for the
FCM [57, 118].
Another technique that is commonly applied in the p-version of the FEM to improve the
efficiency of the solution procedure is known as static condensation [237]. This technique
makes use of the hierarchical structure of the stiffness matrix to reduce the size of the
global system of equations. Nodal, edge and face modes are considered as external modes,
since they contribute to more than one element. In contrast, internal (bubble) modes
only contribute to a single element, and do not introduce coupling between neighboring
elements. Therefore, it is possible to condense the stiffness contributions of the internal
modes on the element level, and thereby reduce the size of the system to be solved.
To that end, the system of linear equations (3.37) can be expressed as:

[
Kee Kei

K⊤

ei Kii

] [
de

di

]

=

[
f e

f i

]

, (3.80)

where Kii represents the stiffness contributions from the internal modes, Kee represents
the contributions from the external modes, and Kei represents the coupling between the
internal and external modes. Solving (3.80) for the internal unknowns di results in

di = K⊗1
ii

(
f i − K⊤

eide

)
. (3.81)

Substituting the result into the first equation of (3.80) gives the reduced system
(
Kee − KeiK

⊗1
ii K⊤

ei

)
de = f e − KeiK

⊗1
ii f i (3.82)

K*de = f *. (3.83)

Here, K* and f * are the condensed stiffness matrix and the corresponding load vector.
As the internal modes account for a major part of the linear system, especially for high-
order discretizations, the condensed system has a much smaller size. It is important to
note that the inversion of Kii in (3.82) can be performed on element-level, i.e. prior to
the assembly of the global system of equations—which is much cheaper than inverting the
assembled block corresponding to the internal modes. After solving the condensed system,
the internal degrees of freedom can be recovered by solving (3.81). Static condensation
has also been applied to improve the efficiency of direct solvers for applications of the
FCM in topology optimization [90].
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3.8 Previous work and validation

The FCM has been previously utilized for the simulation of bone mechanics, and the
numerical predictions of the FCM models for subject-specific continuum-scale models of
femur were validated. The first work addressing this topic was presented by Ruess et al.
[209]. Therein, the authors presented a verification study of the FCM for analysis of
inhomogeneous isotropic materials, demonstrating that the FCM retains the favorable
convergence properties of p-FEM models with the same geometric description. The au-
thors also present a validation study of a subject-specific continuum-level FCM model of a
human femur. A mechanical experiment had been carried out to measure the deformation
due to a force applied to the femoral head. There, the displacements were measured at
predefined points on the surface of the bone and the strains were measured using strain
gauges. The subject-specific FCM model was based on QCT scans of the fresh-frozen
femur. Analysis of the computed results showed a very good overall correlation between
the experiments and the simulation (R2 > 0.97). Moreover, the numerical results were of
similar accuracy to the predictions of a conforming p-FEM simulation—which had been
previously presented in [273]—despite the fact that the QCT-based FCM model does not
consider a smooth surface description, which requires a large modeling effort to generate,
and is necessary for boundary-conforming p-FEM analysis. The p-FEM and FCM models
and the results of the validation study are shown here in Figure 3.11. Further work by
Schillinger [214] demonstrated that, for the same femur model, the B-Spline version of
the FCM obtains results of similar accuracy to the p-version of the FCM.
In related work, Yang et al. [268] presented an efficient numerical integration tech-
nique for the voxel-based FCM, which exploits the similarity of the finite cells within
a uniformly discretized domain which we described earlier (see Section 3.5). Using the
pre-computation scheme, real-time updates to the patient-specific bone simulation were
made possible, which enabled applications for interactive implant planning in orthopedics
through computational steering [267].
Another application of the FCM for bone mechanics was presented by Wille et al. [260] in
an investigation of the uncertainties in bone material properties and loads. To that end,
the authors utilized the FCM as a “black box” solver to perform personalized analyses
and compute the deformations given the geometry, loads and material properties. As the
stochastic analysis using polynomial chaos expansion—and more so the verification with
a Monte Carlo simulation—required a large number of simulation runs (more than 10,000
simulations) with different stochastic parameters, the high computational efficiency of the
voxel-based FCM with pre-computation made it very-well suited for this application.
Whereas these efforts considered continuum-level bone models based on QCT scans, Ver-
hoosel et al. [249] presented a microstructural modeling approach for the FCM. This
approach considers micro-CT based models of trabecular bone, reconstructs a smooth ge-
ometry of the microstructure using a B-Spline approximation, then applies goal-oriented
local refinement to compute the apparent elastic properties of bone samples.
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(a) Experimental setup and p-FEM model

(b) FCM model (c) Validation results

Figure 3.11: Femur-model validation study, adapted from [209]
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Chapter 4

Micro-CT-based finite-cell analysis of
vertebral bodies: a validation study

In this chapter, we present a new validation study of the finite cell method (FCM) for
bone mechanics. We study FCM models of four human vertebral bodies that are based on
micro-CT imaging data, and compare the numerical predictions of the displacement fields
to the deformation measured in compression experiments. We employ digital volume cor-
relation (DVC) to estimate the local displacement fields of the compression experiments.
The DVC data is interpolated on the boundary and used to define the displacement
boundary conditions for the FCM models, whereas the interior DVC displacements are
compared to the numerical predictions of the FCM models. Analysis of the results shows
very good agreement between the DVC data and the FCM predictions for all components
of the displacements of all examined specimens (0.73 < R2 < 0.97, slope of the regression
line = 0.91–1.14). The results illustrate the potential of the FCM as a simulation tool for
micro-CT based analysis, as an attractive alternative to the well-established µ-FEM.
The work presented in this chapter was carried out as part of a collaboration project. The
contributions and efforts of Alexander Valentinitsch1, Peter Föhr2, Klaus Achterhold3,
Franz Pfeiffer3, Jan S. Kirschke1 and Martin Ruess4 are gratefully acknowledged. Part of
this work was presented in [74].

4.1 Introduction

Bone has complex hierarchical structure [48]. Numerical studies of bone mechanics at a
micro-scale provide a better understanding of the biomechanical behavior of trabecular
bone. To that end, the discrete micro-architecture of trabecular bone needs to be resolved
by the mechanical analysis. This is especially important in studying the mechanical
interaction of bone and implants, as the discrete nature of the trabecular bone affects the
local distribution of peri-implant strains [261, 263].

1Department of Neuroradiology, Technical Univeristy of Munich
2Department of Sports Orthopaedics, Technical Univeristy of Munich
3Chair of Biomedical Physics, Technical Univeristy of Munich
4Faculty of Mechanical and Process Engineering, Düsseldorf University of Applied Sciences
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The current state of the art for numerical analysis of cancellous bone is the micro-CT-
based finite element method (µ-FEM)[106, 247, 246]. This relies on the conversion of
micro-computed tomography (micro-CT) images into 3D finite element meshes. Thereby,
specimen-specific numerical models are generated, where the geometry and material prop-
erties are based on high-resolution imaging data.
Validation of numerical methods in biomechanics is of crucial importance to their utility
and clinical relevance [5]. Typically, the numerical predictions are compared to the data of
a validation experiment (gold standard). The validation of micro-scale numerical analysis
of trabecular bones presents significant challenges. Unavoidable imperfections in the setup
of the validation experiment lead to false assumptions of the boundary conditions given
to the numerical model and diverging results [31]. Moreover, only apparent quantities
of the trabecular bone (such as strength and stiffness) can be directly measured in the
validation experiments, whereas local quantities (such as displacements and strains) can
only be directly measured at the surface of the bone using conventional techniques such
as optical sensors and strain gauges [89].
There have been several efforts towards the verification and validation of µ-FEM for the
biomechanical analysis of trabecular bone. A verification study of large scale µ-FEM
models of trabecular bone tissue shows the convergence of local displacements and strains
for linear analysis [33]. Validation studies of µ-FEM mainly deal with apparent measures
(strength and stiffness) [191, 36, 266], as the measurement of local quantities within the
trabecular microstructure is not trivial.
An increasingly popular technique for use in validation of biomechanical models is digi-
tal volume correlation (DVC) [189, 188]. Here, two volumetric images (micro-CT scans)
of the unloaded specimen and the specimen under load are processed to estimate dis-
placement and strain maps. It has been demonstrated that DVC can be reliably used to
estimate local displacement fields for trabecular bone if sufficient resolution is used [50].
A validation study of µ-FEM analysis of trabecular bone by Zauel et al. [281] shows high
correlation (R2 = 0.97) between the DVC data for the displacements and µ-FEM predic-
tion, albeit only for the component in the loading direction. Further work by Chen et al.
[32] shows that the replication of boundary conditions by the interpolation of the DVC
data at the boundary of the specimens yields excellent agreement of the µ-FEM predic-
tions and the interior DVC data, for all components of the displacement field (R2 = 0.99,
slope = 0.98 – 1.07). Further investigation of µ-FEM models of porcine vertebrae by
Costa et al. [45] shows results of similar accuracy for models of porcine vertebral bodies.
Another study investigating µ-FEM models of mouse tibia using the same approach of
interpolating DVC measurements to provide the boundary conditions found correlation
between the predicted displacements and experimental measurements with higher but
still reasonable errors (0.69 < R2 < 0.90, slope = 0.50–0.97) [183]. The use of DVC to
replicate the displacement boundary conditions has also been applied for the validation of
the displacements predicted by continuum-level FE models of the scapula based on quan-
titative CT (QCT) images [146], and for the validation of the strains of continuum-level
models of the humeral head [145] and the scapula [147]. In other work, DVC procedures
have also been used to study the mechanics of whole bones [113], bone-implant models
[14], cement-augmented bones [283] and to assess micro-damage progression in vertebral
bodies [243].
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There are, however, some difficulties with the µ-FEM that limit its applicability for the
analysis of whole vertebral bodies. Due to the one-to-one mapping of micro-voxels and
hexahedral finite elements, high resolution µ-FEM models typically have several tens to
hundreds of millions of degrees of freedom, which require high performance/supercom-
puting resources [9, 2, 3].

Moreover, studies involving µ-FEM models of vertebral bodies often exclude the end-
plates to simplify the application of the boundary conditions. However, including the
endplates can improve the accuracy of the numerical models, as they have been shown
to contribute to the vertebral strength [167]. Further, failure of vertebrae loaded via
healthy intervertebral discs is often initiated in the endplates [166], and they can also be
utilized to incorporate more complex boundary conditions through coupling to models of
the intervertebral disc [42].

The finite cell method (FCM), as described Chapter 3, is an alternative to conventional fi-
nite element methods. Due to the application of higher-order shape functions and special-
ized integration techniques, the FCM can use much coarser meshes without compromising
the accurate resolution of complex boundary shapes or local material features. Similar to
the µ-FEM, it relies on trivial mesh generation, whereas material properties are assigned
voxel-wise. Thereby, the FCM can be used to resolve the trabecular structure without
complex mesh generation procedures. Moreover, within the framework of the FCM, es-
sential boundary conditions can be imposed on surfaces of complex geometry in a flexible
manner using weak imposition methods [207]. Furthermore, it has been demonstrated
that using a pre-integration technique yields higher computational efficiency for the FCM
in comparison to conventional low-order voxel-FEM [268, 90].

In this work, we present a new validation study for the FCM. Here, we consider micro-CT-
based FCM (µ-FCM) models of four human vertebral bodies. The validation experiments
use DVC to estimate the displacement fields within the vertebral bodies under axial com-
pression. We follow an approach, similar to the one presented by Costa et al. [45], to
interpolate the DVC data at the boundary. We validate the µ-FCM models by demon-
strating a high correlation between the DVC estimations and the numerical predictions
of the displacement fields.

The µ-FCM models in our study consider the whole height of the vertebral bodies (in-
cluding the intact endplates)—in contrast to the µ-FEM models presented by Costa et al.
which only cover the middle 50% of the total height of each vertebral body. We use a
penalty method to weakly impose the interpolated DVC displacements at the automat-
ically reconstructed surfaces of the endplates and the cortical shells. As an embedded
domain approach, the µ-FCM models require virtually no modelling effort. Furthermore,
the method requires significantly less degrees of freedom to achieve the same numerical
accuracy—compared to conventional low order FEM—owing to the higher-order shape
functions. We propose the µ-FCM as an attractive alternative to the well-established µ-
FEM, that can be used to perform micro-CT based analysis of whole bone specimens
with high accuracy for a moderate computational effort—without the need for high-
performance computing resources.
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4.2 Materials and methods

Micro-CT scans of four human vertebral body specimens were obtained first while ap-
plying a small preload, and later while applying additional axial compression. A digital
volume correlation (DVC) procedure was applied on the two sets of micro-CT scans to
estimate the displacement fields caused by the axial compression loading. µ-FCM models
based on the preloaded scans were used to numerically predict the displacements. Trilin-
ear interpolation of the DVC displacement fields at the endplates and the cortical shells
of the vertebral bodies was used to define the displacement boundary conditions for the
µ-FCM models. Finally, the internal DVC displacement fields were compared to the nu-
merical predictions for validation. The workflow of our study is depicted in Figure 4.1.

Micro-CT

Pre-loaded specimen

Binary image

Finite cell model

Displacement field

Specimen under load

Digital volume correlation

Boundary

Internal

Displacement field
Boundary conditions

Comparison

Figure 4.1: Workflow of the validation study, following [32, 45]

4.2.1 Compression experiment and image acquisition

A validation experiment was carried out to measure the deformation of specimens of
human vertebral bodies under axial compression.∗ Four human vertebral bodies were used
for the experiment — one lumbar and three thoracic vertebral bodies from four different
donors. Details about the specimens, height and bone volume fraction (BV/TV), are
listed in Table 4.1. Two additional vertebral bodies were initially scanned, but were later
excluded from our study as they had pre-existing fractures.
The vertebral bodies used for the validation experiment are fresh frozen specimens. They
had been first prepared by removing the intervertebral discs and the surrounding soft tis-
sue. The transverse and spinous processes were also removed, as our study only considers
the deformation within the vertebral bodies. Next, the vertebral bodies were embedded
at their end-plates in a layer of dental cement and additionally embedded in polymethyl

∗The experiments were designed and carried out at the Department of Sports Orthopaedics, TUM,
by Peter Föhr and Alexander Valentinitsch. Their efforts are gratefully acknowledged.
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Table 4.1: Specimen data

# Segment no. Height[mm] Voxel size [µm] BV/TV [%]
1 L3 25.2 65 20.0
2 T12 24.6 65 26.0
3 T12 23.1 65 25.9
4 T12 23.9 60 21.6

methacrylate (PMMA). This embedding provides a homogeneous surface on which to
apply the compression load.
A specially designed in situ compression jig was used to apply axial pressure, which is
shown in Figure 4.2a. The compression jig is designed to fit within the micro-CT scanner
(Figure 4.2b), and is used to apply a uniform pressure throughout the duration of the
scan (approximately 3 hours).

(a) Compression device1 (b) Phoenix/GE v|tome|x s240 micro-CT scan-
ner at the Munich School of BioEngineering2

Figure 4.2: Experimental setup

The compression jig including the bone specimens were scanned using a micro-CT scanner.
For each specimen, two scans were made: the first scan applying a small compression
load to avoid moving artifacts during the scan, which we refer to in the following as the
“preloaded scan”. The second scan was made with the specimen under an additional axial
compression load of 180 kg—the “loaded scan”. To compensate for the initial relaxation
after applying the load, the applied load was re-adjusted every 5 minutes over the first
20 minutes until a steady value of 180 kg was obtained.
The tomography was performed with a Phoenix/GE v|tome|x s240 micro-CT scanner.†

For the tomographic reconstruction with filtered back projection (FBP), the proprietary
datos|x reconstruction software was used. The v|tome|x s240 scanner is equipped with an

1Image taken by Peter Föhr
2Image taken by Klaus Achterhold
†Image acquisition was carried out at the Munich School of BioEngineering, by Klaus Achterhold. His

efforts are gratefully acknowledged.
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XS 240D direct tube. For all measurements, the peak voltage of the tube was 200 kVp
and the current 200 µA. The spot size of the X-ray tube is automatically adjusted with
the power to prevent damage of the anode. The voltage and current values were chosen
to optimize the polychromatic tube spectrum with respect to the transmission through
the bone and compression jig and an acceptable spot size compared to the effective recon-
structed voxel sizes of 60 µm and 65 µm (compare Table 4.1). A rule of thumb estimate of
the spot size gives about 40 µm for the given power of 40 W. An additional filter of 1.8 mm
of copper was used to absorb low energy parts of the polychromatic X-ray spectrum and
prevent beam hardening artifacts in the reconstruction.
A total of 1601 projections of 6 seconds duration followed by a 1 second skipped projection
were collected for 360° rotation of the samples with an amorphous silicon DXR 250 RT
detector (GE) equipped with a caesium iodide (CsI) scintillator. The skipped projection
ensures decay of the scintillator afterglow for the next sample orientation angle. The
temperature stabilized detector has a pixel pitch of 200 µm, 1000 × 1000 pixel and 14
bit depth. With the geometric magnification of 3.33 and 3.08 the above mentioned voxel
sizes of 60 and 65 µm were obtained respectively.

4.2.2 Digital volume correlation‡

Next, a digital volume correlation (DVC) procedure was carried out between the preloaded
and loaded scans to estimate the displacement fields resulting from the compression load.
To this end, the software package elastix [136, 223] was used in the current work.
The DVC procedure consists of a rigid, followed by an elastic registration. Image regis-
tration is applying a transformation to a source image to match it to a target image. It is
often formulated as an optimization problem, seeking the transformation which minimizes
a cost function representing the difference between the source and target images [137].
For the rigid registration, the images are only transformed through translation and rota-
tion. This was carried out to align the preloaded (source) and loaded scans (target). The
reference planes for the rigid registration were chosen at the mid-height of the vertebral
bodies, as demonstrated in Figure 4.3.

(a) Unloaded scan: A (b) Loaded scan: B (c) Difference image: B − A

Figure 4.3: Rigid registration

Here, we point out the air bubbles which are visible within the trabecular structure in
the images. As some of the air bubbles moved between the scans, special attention was
necessary to eliminate their influence on the registration. Hence, a separate segmentation

‡Image processing was carried out at the Department of Neuroradiology, TUM, by Alexander Valen-
tinitsch. His efforts are gratefully acknowledged.



4.2. Materials and methods 53

mask for the air bubbles was created to exclude them from the process. To physically
eliminate the air bubbles, the samples would need to be submerged in a saline solution,
and the compression jig would need to be made watertight. However, this was not carried
out in this work to avoid the risk of leakage and damage to the scanner.
Next, the elastic registration procedure was carried out to estimate the displacement
field. In the current work, this is achieved by applying affine transformations (translation,
rotation, scaling and shearing) to the images. The transformations were carried out on
patches of the images of size 60 × 60 × 60 voxels, which are overlapping by 30 voxels
in each direction. A numerical solution to the optimization problem provides the affine
transformations for the elastic registration. The relatively large patch size is necessary to
ensure that there are enough physical features to be identified in the transformed patch.
Finally, the resulting affine transformations were utilized to estimate the displacement
field within the overlapping sub-patches. The results were stored as regular grids with
nodes at the centers of the sub-patches, which we refer to in the following as the “DVC
grids”. An example of the displacement field approximated from the elastic registration
is shown in Figure 4.4.

Figure 4.4: Digital volume correlation: displacement field

4.2.3 Micro-CT-based finite cell models

For the numerical analysis, we employ the FCM, as described in Chapter 3. Unlike
previous validation studies of the FCM which considered continuum-level numerical mod-
els [209], the work presented here considers microstructural models . To this end, the
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geometric model and the material properties for the numerical models are based on the
micro-CT scans of the preloaded specimens.

Pre-processing—Segmentation

The first step in setting up the numerical models is to perform a segmentation of the
micro-CT scans. Here, the segmentation only needs to consider the outer boundary of
the vertebral bodies, without distinction between the trabeculae and the marrow within
the bone’s structure. An example of such a segmentation is shown in Figure 4.5. The
segmentation is used in conjunction with the CT image to identify the physical domain
inside the region of interest—the so-called point membership test. The segmentation is
also used to generate a surface tessellation for the enforcement of the boundary condi-
tions. In the current study, the segmentation was carried out using a partially automated
approach. First, a specimen-specific threshold was manually identified to delineate the
cortical and trabecular bone regions. The automated algorithm used a connectivity filter
followed by morphological closing (dilation followed by erosion) operation to extract a
filled cortical shell. Noise was reduced by applying a median filter. The segmentations
were then manually revised using ITK-SNAP [274] to ensure an accurate representation of
the boundaries. For the current work, the quality of the segmentation is of greater im-
portance, as they are used to identify the physical domain, and later utilized to generate
surface meshes which are used to apply the boundary conditions.

Figure 4.5: Segmentation in ITK-SNAP
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µ-FCM discretization

The micro-CT scans of the pre-loaded vertebra together with the matching segmentations
were used to generate the µ-FCM models using our in-house finite-cell framework AdhoC++.
The bounding box of the region of interest in each scan was discretized using a regular
grid of finite cells. The dimensions of the finite cells were chosen as an integer number
of voxels in each spatial direction. In this study, we used 14 × 14 × 14 voxels per finite
cell. A polynomial order p = 3 with the trunk space was chosen [71]. All finite cells
that were completely inside the fictitious domain were excluded from the models. This
excluded mostly cells that were outside the vertebral body yet within the bounding box
of the defined region of interest, or in some cases cells that were within larger “voids”
inside the trabecular structure. Excluding these cells reduces the size of the numerical
model, and improves the condition number of the system’s stiffness matrix. The resulting
µ-FCM models had between 50 and 56 thousand finite cells, and approximately 1.1 to 1.3
million degrees of freedom. An example of the resulting models is presented in Figure 4.6.

(a) µ-FCM mesh (b) Section view

Figure 4.6: FCM discretization of specimen #1

Here, we elaborate on the suitability of the chosen parametrization of the µ-FCM meshes.
The finite cell sizes (910µm for specimens #1-3 and 840µm for specimen #4) were chosen
such that they resolve the trabecular structure, defined by a length parameter equal to
the sum of the trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp). In other
words, the meshes are fine enough such that a single finite cell does not contain several
trabeculae. This can be observed in the detailed view of the mesh for specimen #1,
shown in Figure 4.6b. With a moderately low polynomial degree, a parametrization with
several trabeculae per finite cell would induce nonphysical coupling between the separate
trabeculae, as shown e.g. by Coradello et al. [44] in the context of shell analysis using
the FCM. This would significantly overestimate the stiffness of the trabecular structure.
Another example of such artificial stiffness induced in finite cell models by the mismatch
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between the polynomial order and the spatial resolution of the material description was
observed in the context of topology optimization [90]. This is avoided here through an
appropriate choice of the finite cell size.

Unlike common practice in µ-FEM analysis of trabecular specimens, we made no special
considerations to ensure that the trabecular structures were well-connected or exclude
non-connected regions to avoid singular stiffness matrices. This was not necessary for our
study, since the µ-FCM models enclosed the whole vertebral bodies.

For the numerical integration we utilized grids of sub-cells which match the voxel grids of
the µ-CT images. Here, the resolution of the µ-CT scans allows to geometrically resolve
the trabecular structure. Hence, the material properties were assigned voxel-wise. A
threshold value for each scan was selected manually by inspection of the images and the
intensity histograms. Voxels with intensity above the threshold were assigned material
properties of the bone tissue with Young’s modulus E = 17 GPa and ν = 0.3 [245].
Note that we do not use different material parameters for the cortical shell. The higher
(macroscopic) stiffness in this part results from the higher local density, i.e. the larger
number of filled voxel per unit volume compared to the spongy trabecular region. Voxels
that were outside of the segmentation, or with an intensity below the threshold were
assigned a fictitious material, with Efict = 1 × 10⊗7 GPa and νfict = 0.3.

Since all elements of the µ-FCM mesh are of identical shape and size, differing only in the
material parameters of linear elasticity defined for each voxel, it is possible to significantly
improve the computational performance by means of a pre-integration [268].

Boundary conditions

In the current work, the boundary conditions are defined to replicate the experimental
displacements (estimated using DVC) on the boundary in a similar approach to the work
of Costa et al. [45], where we use a trilinear interpolation of the DVC data on the bound-
ary. In contrast to Costa et al., we apply the displacement boundary condition on the
whole physical boundary of the vertebral bodies. The Dirichlet boundary conditions were
enforced weakly using the penalty method.

The surface meshes used to define the boundary and evaluate the penalty terms were
created using the marching cubes (MC) algorithm [154]. To this end, our implementation
of MC in AdhoC++ was used to generate the isosurfaces of the domains defined by the
segmentations. An example of the generated surface meshes is presented in Figure 4.7.
As the voxel grids of the CT-images were aligned with the µ-FCM grids, the resulting
triangles of the reconstructed surfaces did not have additional intersections with the faces
of the finite cells—meaning that each triangle lied completely within a single cell, as shown
in the detail view in Figure 4.7b. This allows for an accurate evaluation of the surface
integrals that can be easily parallelized to improve computational performance.

For the weak enforcement of the boundary conditions, the choice of the penalty value, βD,
is influenced by the parameters of the finite cell discretization (element size and polynomial
degree), as well as the material parameters. In this work, the penalty parameter was
chosen empirically as βD = 1 × 109.
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(a) Surface mesh (b) Detail view

Figure 4.7: Surface mesh of specimen #1

4.2.4 Comparison and statistics

To validate the µ-FCM models, we compare the numerical approximations of the interior
displacement fields to the DVC data from the experiment. The comparison is carried out
pointwise at selected nodes of the DVC grid.

We performed a linear regression analysis to assess the correlation between the displace-
ment fields. For each component (in the x-, y- and z-directions), the slope, intercept
and coefficient of determination R2 were reported for each specimen. Additionally, we
recorded the absolute root mean square error (RMSE), and the relative RMSE, which
was normalized w.r.t the absolute maximum value from the DVC measurements for each
field component and each specimen.

We carried out the comparison at the nodes of the DVC grid that lie within the physical
structure of the µ-FCM models. To identify these nodes, we filtered the nodes where the
average value of the image intensity (bone density) in their close proximity is above a
certain threshold. Similar to the approach presented by Costa et al. [45], we excluded
the nodes of the DVC grid that are too close to the boundary, as the displacement fields
described by these nodes were used to define the boundary conditions of the µ-FCM
models. In our study, we interpolated the DVC data at the geometric boundaries to
impose the Dirichlet boundary conditions. Hence, we needed to filter out the nodes that
lie in the proximity of the boundaries from the comparison to remove their influence on
the linear regression analysis. In this work, this filtering was carried out by utilizing a
scaling (affine transformation) of the geometries of the vertebrae. Nodes that were outside
of the 80% scaled geometries of the domains defined by the segmentations were excluded
from the comparison.

To mitigate the influence of outliers on the results of the regression analysis, we excluded
points with Cook’s distance [43] higher than five times its mean value for each component
of the displacement field of each specimen. This filtering process finally left 734, 919, 663
and 754 comparison nodes of the DVC grids of the four specimens.
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4.3 Results

The simulations based on the µ-FCM models were performed using our in-house soft-
ware framework AdhoC++. To solve the resulting systems of linear equations we applied
the parallel direct solver Intel® Pardiso which is provided as part of the Intel Math
Kernel Library [114]. All simulations were run on two eight-core Intel® Xeon® E5-2690
@ 2.9 GHz CPUs, and a maximum memory of 192 GB. Run-time for the largest model
was approximately 40 minutes.
Surface triangulations of the trabecular microstructure were reconstructed for sagittal
sections making use of the IsoVolume filter in the visualization package ParaView [10].
The DVC results were interpolated, and projected onto the recovered surface of the seg-
mentation. The numerically approximated displacement fields are shown in Figure 4.8.
At the boundaries of the vertebral bodies, it can be clearly seen by inspection of the
contour plots that the displacements of the µ-FCM models closely match the interpolated
values of the DVC measurements. This indicates the effectiveness of the proposed ap-
proach for the enforcement of the boundary conditions. Within the interior regions , it
can be observed that the predicted displacement fields of the µ-FCM models exhibit very
similar patterns to the interpolated DVC data. The absolute values of the displacements
are largest for the z-component, which corresponds to the axial direction, where the com-
pression was applied. The displacement fields have smaller components in the transverse
directions—mostly sub-voxel magnitude. The results of the linear regression analysis are
presented in Table 4.2, and the scatter diagrams comparing the predicted displacements
and the DVC data are shown in Figure 4.9.

Table 4.2: Results of linear regression analysis

Spec.
#

Com-
ponent

Number of
points (%)

Slope Intercept
[µm]

R2 RMSE
[µm]

RMSE
%

1
ux 714 (97.3%) 0.99 -1.44 0.93 7.07 7.54

uy 710 (96.7%) 0.97 -5.61 0.91 10.2 4.63

uz 703 (95.7%) 0.99 -3.02 0.97 16.4 3.79

2
ux 900 (97.9%) 1.07 -0.01 0.93 3.06 5.16

uy 900 (97.9%) 1.09 1.02 0.96 3.48 7.37

uz 889 (96.7%) 1.14 -0.61 0.96 4.17 4.65

3
ux 641 (96.7%) 0.91 -2.22 0.86 2.32 8.59

uy 658 (99.2%) 1.09 1.03 0.93 3.24 9.72

uz 638 (96.2%) 1.14 -1.83 0.96 3.37 5.49

4
ux 714 (94.7%) 1.00 0.04 0.86 3.19 8.81

uy 734 (97.3%) 1.13 0.19 0.73 4.92 13.7

uz 725 (96.2%) 1.13 -1.78 0.94 4.42 4.26

The filtering according to the Cook’s distance criterion eliminated 0.8% - 5.3% of the DVC
grid nodes. Excluding the outliers, the regression analysis shows that all components of
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(a) Specimen 1

(b) Specimen 2

Figure 4.8: Comparison of numerical approximation of displacements using µ-FCM (top
row) and the DVC data (bottom row), units are voxel-size.
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(c) Specimen 3

(d) Specimen 4

Figure 4.8: Comparison of numerical approximation of displacements using µ-FCM (top
row) and the DVC data (bottom row), units are voxel-size – (continued)
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Figure 4.9: Linear regression analysis for displacement fields, units are voxel-size
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the displacement fields predicted by the µ-FCM models were highly correlated and in very
good agreement with the values estimated by DVC for all specimens, with coefficients of
determination 0.73 < R2 < 0.97. The slopes of the linear regression ranged between
0.91 and 1.14. Most analyses (except for specimen #1) had a slope slightly above 1.0.
The absolute values for the intercepts are small relative to the displacements (maximum
5.61 µm).
It is observed that the relative root mean square error (RMSE) in the z-component (axial)
of the displacement (3.79 − 5.49%) is lower than the relative RMSE for the transverse (x-
and y-components) for all of the tested specimens. The reported values for the relative
RMSE are below 10% for all displacement components of specimens #1–3. However, for
the y-component of specimen #4 a relative RMSE of 13.7% is reported. For this specific
case, it can be seen that the absolute values of the displacements are the lowest among
all displacement components of all of the tested specimens. Yet the error is an order of
magnitude smaller than the resolution of the micro-CT scan.

4.4 Discussion

The results of the validation study show a very good agreement between the displace-
ment fields predicted by the µ-FCM models and the experimental DVC measurements.
The combination of the penalty method for the weak imposition of essential boundary
conditions with the trilinear interpolation of the DVC measurements has been shown to
be a simple yet effective approach for replicating the experimental boundary conditions
for the µ-FCM analyses.
A high correlation was observed in the regression analyses of all displacement field com-
ponents of all four specimens. For the majority of the linear regression analyses, a slope
with value slightly larger than 1.0 was reported. This suggests that the µ-FCM models
overestimate the stiffness of the trabecular structure to some extent. Further refinement
of the µ-FCM models by using a higher polynomial order (p-refinement) or decreasing the
finite cell size (h-refinement) would improve the accuracy of the numerical approximation
of the displacements.
The relative RMSE reported by the linear regression analysis for all components of the
displacement field was below 10% for all of the examined specimens, with the exception
of the y-component for specimen #4, which had relative RMSE of 13.7%. It can also be
observed in Figure 4.8d that the estimated DVC displacement field for the y-component
(middle column) exhibits some nonphysical oscillations. This component of specimen
#4 also has the weakest correlation (R2 = 0.73) between the numerical predictions and
the DVC data for all of the examined specimens. For this specific case, it was observed
that the absolute values of the displacements are the lowest from all components of all
tested specimens. Hence, it is more difficult for the DVC algorithm to estimate the
displacement field, where the displacements are a small fraction of the voxel size (the
resolution of the micro-CT images). Similar observations were reported by Oliviero et al.
[183] for a validation study of micro-CT based µ-FEM models of mouse tibia using DVC.
Larger displacements would be easier to detect, but require higher compression loads,
which increases the risk of fracturing the specimens during the validation experiment.
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By contrast, the relative RMSE reported for the z-components, which corresponds to the
axial loading direction, were lower than the transverse directions for all four specimens.
The axial components of the displacement fields had the highest absolute values, and
hence, are more easily identified by the DVC algorithm.
In comparison, the results of the µ-FEM validation study reported in the work of Costa
et al. [45] show even better agreement between the DVC measurements and the numerical
predictions of the µ-FEM models, with 0.89 < R2 < 0.99 and maximum relative RMSE
of 5.20%. Here, we highlight some differences between the two studies that we believe
explain this better accordance. Firstly, Costa et al. used micro-CT images with higher
resolution (38.6–39 µm compared to our images with 60–65 µm). Secondly, their study
used specimens of porcine vertebrae, which have higher strength. Hence, they were able
to apply higher compression loads on the vertebral bodies (up to 308 kg). The resulting
displacements in the axial direction were as high as 420 µm, approximately 11 times the
voxel size. In comparison, in our study we were limited to 180 kg compression load to avoid
fractures in the human specimens, and the largest displacements in the axial direction were
around 360 µm, or 6 times the voxel resolution. Therefore, in our study the displacement
fields due to the compression load were more difficult to detect by the DVC algorithm.
Additionally Costa et al. excluded the vertebral endplates, omitting the regions with the
most complex loading conditions. Compared to our approach, this results in more uniform,
but less physiological loading patterns, making their results less transferable to in-vivo
conditions. Moreover, Costa et al. used very high resolution µ-FEM models with up to
962 million degrees of freedom which deliver extremely accurate results, whereas our µ-
FCM models were limited to a moderate polynomial degree p = 3, giving accurate models
with a moderate computational cost—the µ-FCM models had approximately 1.3 million
degrees of freedom, and required significantly less computational resources.
There are, however, a few limitations of our study. Firstly, the sample size of the vertebral
specimens which we examined is small (n = 4). The detailed analysis required for the
validation study makes a large sample size not feasible. Considering the solution of the
numerical models, the main limitation was imposed by the use of a direct solver for
the linear systems of equations. Direct solvers have large memory requirements, which
limited our models to a moderately low polynomial order. In the study, we only used a
linear elastic, isotropic material model for the bone material. However, this was effective
in showing the applicability of the FCM for micro-CT-based analysis. More involved
material models are also applicable in the framework of the FCM.
The current validation study only examined the predictions of the displacement field.
Validation of the strains is more challenging, firstly from the experimental side, as the
registration algorithms require coarser grids to have enough physical features to iden-
tify the displacements, which in turn limits their applicability for the pointwise valida-
tion of strain fields. A qualitative comparison presented by Costa et al. [45] shows that
strains predicted by high resolution µ-FEM models exhibit similar patterns to the DVC
estimations, albeit with much higher spatial resolution. Quantitative validation of nu-
merically predicted strain fields using QCT-based continuum-level FE models and DVC
measurements also show lower accordance in comparison to the validation of the displace-
ments [145, 147, 146]. Secondly, to provide numerically accurate predictions of the strain
fields on a microstructural level, the µ-FCM models need to be further refined.
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To study the effect of further refinement on the accuracy of the predictions—by either
increasing the polynomial order (p-refinement) or reducing the size of the finite cells (h-
refinement)—the use of an iterative solver is necessary. To this end, an Additive-Schwarz
type pre-conditioner has been shown to be an effective approach for µ-FCM analysis,
which can enable the solution of larger systems with moderate memory requirements [117].
For a more accurate estimation of the displacement field resulting from the compression
load using DVC, a B-Spline registration can be employed, which is able to describe the
deformation with higher accuracy than the affine registration used in this work [206].
To summarize, in this work, we have presented a new validation study for the micro-CT
based finite cell method (µ-FCM). We have shown that the µ-FCM provides accurate
predictions of the displacements when the boundary conditions of the experiment are
replicated from the DVC measurements. Our results corroborate the findings of Chen
et al. [32] and Costa et al. [45] despite using different finite element approaches. In
conclusion, the results presented in this study illustrate the potential of the µ-FCM as an
attractive alternative simulation approach that provides accurate results for a moderate
computational effort, and flexibility in dealing with complex geometry.
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Chapter 5

The finite cell method for material
interface problems ∗

In this chapter, a numerical discretization technique for solving three-dimensional material
interface problems involving complex geometry without conforming mesh generation is
presented. The finite cell method (FCM) is used for the numerical approximation of the
solution without a boundary-conforming mesh. Weak discontinuities at material interfaces
are resolved by using separate FCM meshes for each material sub-domain, and weakly
enforcing the interface conditions between the different meshes. Additionally, a recently
developed hierarchical hp-refinement scheme is employed to locally refine the FCM meshes
in order to resolve singularities and local solution features at the interfaces. Thereby,
higher convergence rates are achievable for non-smooth problems. A series of numerical
experiments with two- and three-dimensional benchmark problems is presented, showing
that the proposed hp-refinement scheme in conjunction with the weak enforcement of the
interface conditions leads to a significant improvement of the convergence rates, even in
the presence of singularities.

5.1 Introduction

In engineering problems, an accurate resolution of domains with discontinuous material
properties is often required to ensure a reliable design. Possible applications include the
simulation of multi-phase materials, composite structures and biomechanical problems,
where different tissues—often in combination with implants—are considered.
Problems of linear elasticity show a reduced regularity at the material interfaces, where
the displacement field is in general only C0-continuous. This fits perfectly to the classical
finite element method (FEM) using a C0-continuous approximation space [111, 16], as
long as the material interface is matched exactly by edges (2D) or faces (3D) of the
finite element mesh. However, this requires that the mesh generator is able to follow
the material interfaces exactly, which can be cumbersome in cases of complex geometry.
Moreover, high curvatures and kinks along the interfaces induce high solution gradients

∗The following chapter is based on [75]. The main scientific research as well as the textual elaboration
of the publication was performed by the author of this work.
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and singularities. This requires local mesh refinement for an accurate solution, which
makes the task of mesh generation even more challenging.
To avoid complex mesh generation, embedded or fictitious domain methods have emerged
as an alternative to the boundary-conforming FEM. The finite cell method (FCM) is an
example of this class of method that combines the immersed boundary approach with
high-order basis functions. Thereby, the FCM can be used for mechanical simulations
involving very complex geometry without generating a boundary conforming mesh, as ex-
plained in Chapter 3. For problems with smooth solutions, the FCM achieves exponential
convergence thanks to the underlying high-order approximation.
Unfortunately, the standard FCM loses some of its attractive approximation properties
for domains with multiple materials [218, 122]. There are two main challenges facing the
FCM for embedded interface problems:

(1) The approximate solution within a finite cell is a polynomial (C∞-continuous)
whereas the exact solution is only C0-continuous. The inability of the smooth
polynomials to represent the discontinuity across the material interface yields an
oscillatory solution and a reduction of the convergence rate.

(2) The use of a uniform Cartesian grid is not suitable for problems with locally high
gradients or singularities, which are expected for material interfaces with complex
geometry, as such problems require local mesh refinement.

To handle the first challenge, the numerical approximation needs to be able to reproduce
a C0-continuous solution. Several finite element approaches emerged that are suitable to
handle weak discontinuities without generating an interface-conforming mesh. Two major
approaches are the partition of unity enrichment and the weak coupling of non-matching
discretizations.
Partition of unity methods (PUM) [169], such as the generalized and extended finite
element methods (GFEM, XFEM) [236, 82] enhance the numerical solution by enriching
the basis with specially constructed functions to approximate the weakly discontinuous
solutions [171, 81]. Recent developments in XFEM and GFEM for material interface
problems include the use of adaptive mesh refinement in conjunction with the level-set
method [149, 150], and the interface-enriched GFEM [230, 231, 229, 212, 213]. The local
enrichment approach was combined with the FCM as presented by Joulaian and Düster
for two-dimensional problems [122]. This combination leads to a significant improvement
in the convergence rates of the FCM. However, the efficient and robust application of
PUM enrichments to complex three-dimensional geometries remains a challenge.
The weak coupling approach allows for non-matching discretizations of the sub-domains,
and it enforces the interface conditions in a weak sense. To that end, it is possible to
apply the penalty method, Lagrange multipliers or Nitsche’s method [179]. Nitsche’s
method is commonly used to weakly enforce interface conditions, as presented by Hansbo
and Hansbo [96], and further developed by Dolbow and Harari [63, 7, 6, 116, 217]. The
weak coupling approach has also been applied in the context of the FCM, using Nitsche’s
method [208, 235], or based on a parameter-free coupling method [138]. There, it has been
shown that a weak enforcement of the interface conditions enables the FCM to recovers
its favorable convergence properties for piecewise smooth problems.
To address the second challenge, the finite cell mesh needs to be locally refined. Alter-
native versions of the FCM make use of unstructured meshes, and apply a local mesh
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refinement to resolve local solution features [248, 64, 66]. However, these mesh-based re-
finement approaches sacrifice the uniform grid structure of the FCM, which is particularly
useful for image-based geometries that are common in biomechanical applications.

An attractive alternative is the application of the hp-version of the FEM for the non-
uniform refinement of the underlying FCM meshes. The classical hp-FEM [91–93] is a
powerful method which uses a combination of h- and p-refinement to efficiently approxi-
mate non-smooth solutions. The main idea is to sub-divide the elements close to the sin-
gularities in a recursive manner, in order to achieve a geometrical progression of element
size. The resulting mesh has low order elements of small size close to the singularities,
and high order elements of larger size further away from the singularities to approximate
the smooth solution. While numerically efficient, hp-FEM for two- and three-dimensional
problems requires to constrain the hanging nodes, which demands for a sophisticated
discretization kernel [232, 60].

A simpler variant, which we employ in this work, is the recently introduced multi-level
hp-version of the FEM [277, 275]. Instead of the classical refine-by-replacement concept,
where an element is replaced by a set of smaller elements, the multi-level hp-FEM super-
poses the refined element with a hierarchy of overlay meshes. Using a simple formulation,
in which homogeneous Dirichlet boundary conditions are enforced on the overlay meshes,
the multi-level hp-FEM avoids the need to constrain hanging nodes. Thereby, it offers
a simpler implementation for arbitrary hanging nodes, making it readily applicable to
three-dimensional problems [276]. The multi-level hp-FEM has also been applied to co-
hesive fracture modeling [279], and to phase-field fracture modeling [176], demonstrating
its efficiency for propagating phenomena.

In this chapter, we apply the FCM in conjunction a weak enforcement of interface condi-
tions and the multi-level hp-refinement scheme to solve material interface problems. This
combination of these numerical techniques enables us to handle complex three-dimensional
geometries, without the need for mesh generation. We demonstrate that the multi-level
hp-scheme is very well-suited for the resolution of geometry induced stress concentrations,
and presents a natural compliment to the FCM’s strategy to avoid mesh generation.

This chapter is organized as follows: Section 5.2 offers a brief review of the finite cell
method for embedded interface problems. In Section 5.3, we outline the multi-level hp-
refinement scheme, and elaborate on the refinement strategy applied for material interface
problems. In Section 5.4, we present a series of numerical experiments of embedded
interface problems with geometry-induced stress concentrations. The results demonstrate
the improved approximation accuracy of coupled FCM with multi-level hp-refinement.
The chapter closes with a concluding outlook in Section 5.5.

5.2 Embedded interface problems in the FCM

In this section, we present a brief review of the finite cell method for material interface
problems, outlining the main concept of the method—including a coupling formulation
that allows to weakly impose the interface conditions among sub-domains.
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5.2.1 Model problem

We consider an open and bounded d-dimensional domain, denoted as the physical domain
Ωphy ⊂ R

d, d ∈ {2, 3}, with the boundary ∂Ωphy = ΓD ∪ ΓN , and ΓD ∩ ΓN = ∅ [208]. The
physical domain Ωphy is subdivided into n disjoint, open, and bounded subsets Ω(k)

Ωphy =
n⋃

k=1

Ω(k), Ω(i) ∩ Ω(j) = ∅ for i 6= j. (5.1)

The sub-domains Ω(k) are separated by internal boundaries Γij, denoting the material in-
terfaces between Ω(i) and Ω(j). The model is governed by the partial differential equations
of linear elastostatics, given in the strong form of the boundary value problem by:

∇ · σ(i) + b(i) = 0 ∀x ∈ Ω(i), i = 1, . . . , n (5.2a)

σ(i) = C
(i) : ε(u(i)) ∀x ∈ Ω(i), i = 1, . . . , n (5.2b)

ε(u(i)) =
1

2

(

∇u(i) + ∇u(i)⊤
)

∀x ∈ Ω(i), i = 1, . . . , n, (5.2c)

where σ(i) is the stress tensor, b(i) is the body load, C(i) is the elastic material tensor, ε is
the strain tensor, and u(i) is the displacement vector of the sub-domain Ω(i). The system
is subject to the boundary conditions:

u(i) = û(i) ∀x ∈ Γ
(i)
D , i = 1, . . . , n (5.3a)

σ(i) · n(i) = t̂
(i) ∀x ∈ Γ

(i)
N , i = 1, . . . , n, (5.3b)

where û(i) are the prescribed displacements on the Dirichlet boundary, t̂
(i)

are the pre-
scribed tractions on the Neumann boundary, and n(i) denotes the outward facing normal
vector on the sub-domain’s boundary ∂Ω(i) (see Figure 5.1), and

Γ
(i)
D = ΓD ∩ ∂Ω(i) (5.4a)

Γ
(i)
N = ΓN ∩ ∂Ω(i). (5.4b)

Additionally, the following interface conditions apply along Γij:

u(i) = u(j) ∀x ∈ Γij, (5.5a)

σ(i) · n(i) = −σ(j) · n(j) ∀x ∈ Γij. (5.5b)

The first interface condition ensures the kinematic compatibility between the sub-domains,
whereas the second condition prescribes the equilibrium of normal traction across the
interfaces.

5.2.2 Weak enforcement of interface conditions

For material interface problems, the standard FCM—where a single mesh is used to dis-
cretize the entire extended domain—requires additional means to maintain its attractive
approximation properties. The solution exhibits a weak discontinuity across the interface
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Figure 5.1: Coupling of non-matching FCM meshes, following [208].

(a kink in the displacement field), and this discontinuity cannot be well represented by
the high-order polynomial basis functions used in the FCM. This leads to an oscillatory
solution in the cells cut by the material interface, and the convergence is reduced to a
slow algebraic rate.
To overcome this challenge, we use a separate FCM mesh for each extended sub-domain:

Ω̂(i) = Ω(i) ∪ Ω
(i)
fict, (5.6)

and couple the FCM meshes to weakly impose the interface conditions, as presented
in [208]. Figure 5.1 illustrates this approach for two sub-domains. The use of a separate
set of basis functions for each sub-domain allows the discretization to approximate the
strain fields with different gradients on each sub-domain. Additionally, the coupling of the
FCM meshes recovers the weak discontinuity (jump in the strain field). Thereby, the FCM
is able to recover its exponential convergence rates for piecewise-smooth problems [208,
138]. Moreover, this makes it possible to use discretizations with different resolutions in
each sub-domain, which allows for a higher numerical efficiency. However, this multiple-
mesh approach requires an additional discretization of the material interfaces Γij for the
integration of the coupling terms along the interfaces. Fortunately, the discretization of
the interface for integration is considerably less demanding than FEM mesh-generation
for multiple sub-domains.
Several methods can be applied for the weak coupling of the non-matching discretizations.
A commonly used approach, which has also been applied in the context of the FCM, is
the application of Nitsche’s method [208]. It is variationally consistent, but requires the
estimation of additional stabilization parameters. In the present work, we use a pure
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penalty approach for the coupling of FCM meshes, and for the weak enforcement of
Dirichlet boundary conditions. The penalty method is inconsistent, and the accuracy
depends on the choice of the penalty parameters. However, it is easy to implement—and
it delivers sufficiently accurate solutions (for engineering purposes), as demonstrated by
the numerical experiments presented in Section 5.4.
Finally, the weak form of the coupled FCM problem reads:

Find u(i) ∈ S(Ω̂(i)), i = 1, . . . , n such that:

B̂(u, v) = F̂(v) ∀v(i) ∈ V(Ω̂(i)) (5.7)

with:

B̂(u, v) =
∑

i

∫

Ω̂(i)

ε(v(i)) : α(i)(x) C
(i) : ε(u(i)) dΩ

+
∑

ij
i<j

βij

∫

Γij

[[v]]ij · [[u]]ij dΓ +
∑

i

β
(i)
D

∫

Γ
(i)
D

v(i) · u(i) dΓ (5.8a)

F̂(v) =
∑

i

∫

Ω̂(i)

v(i) · α(i) b(i)(x) dΩ +
∑

i

∫

Γ
(i)
N

v(i) · t̂
(i)

dΓ

+
∑

i

β
(i)
D

∫

Γ
(i)
D

v(i) · û(i) dΓ (5.8b)

where v(i) are the test functions in the space of admissible functions V(Ω̂(i)), and

α(i)(x) =

{

1 ∀x ∈ Ω(i)

ε(i) � 1 ∀x ∈ Ω
(i)
fict.

(5.9)

The two penalty parameters, βij and βD control the weak enforcement of the kinematic
compatibility condition across Γij and of the Dirichlet boundary condition, respectively.
Here, [[u]]ij denotes the jump operator

[[u]]ij = u(i) − u(j). (5.10)

The choice of the penalty parameters influences the accuracy of the numerical solution.
Values that are too small lead to a large error in the imposed conditions (observed in
the levelling-off of the convergence curves), whereas values that are too large yield an
ill-conditioned system of equations [12, 254, 8]. In the numerical examples that follow in
this paper, the penalty parameters are chosen heuristically, starting with an initial value
of E · 103, where E is the Young’s modulus of the stiffest material. In case the resulting
error in the imposed condition is too large, the penalty value is increased stepwise by one
order of magnitude.
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5.3 Multi-level hp-refinement

For problems with local solution characteristics such as stress concentration and singu-
larities, hp-refinement is a powerful method of discretization, as it is more efficient than
uniform h- or p-refinement [91–93]. Smaller elements with low polynomial degree close
to the singularities are able to capture the local solution and confine the discretization
error, whereas large elements with high polynomial degree are best suited to describe the
smooth solution further away from singularities.
However, the Cartesian grid nature of the FCM discretization does not easily incorporate
local mesh refinement without having to introduce hanging nodes. In this work, we apply
the multi-level hp-refinement scheme to locally refine FCM grids, without the difficulties
of constraining hanging nodes. Thereby, the method is able to achieve higher convergence
rates, while retaining the advantages of using Cartesian finite cell grids. This section pro-
vides a brief review of the multi-level hp-FEM and elaborates on the refinement strategy
used for material-interface problems.

5.3.1 Basic refinement concept

The principal idea of the multi-level hp-FEM is to enhance the local approximation of the
solution through a local superposition of coarse base elements in the refinement zones with
finer overlay elements. The final approximation u is the sum of the base mesh solution ub

and the fine-scale overlay solution uo. This refine-by-superposition approach is related to
the pioneering work of Mote [174]. This concept was applied in the context of hp-domain
decomposition, to overlay coarse p-FEM meshes with fine linear h-elements [198], and in
the hierarchic hp-d-scheme, which adds several layers of linear overlay meshes [215].
The multi-level hp-scheme generalizes the hierarchic overlay idea of the hp-d scheme by
introducing high-order overlay meshes. Here, the support of the high-order basis functions
is chosen on the finer overlay meshes—instead of the base discretization, as illustrated
in Figure 5.2. This corresponds to an h-refinement of the high-order basis functions, as
the size of their support is reduced. This limited support—combined with an adequate
geometric grading—has the desirable effect of confining the (global) pollution error in
the smallest elements around the singularities. This is not the case for the linear over-
lay approach presented in [198] and the hierarchic hp-d linear overlays [215], as the
error propagates in the large base elements of the base mesh [277]. Consequently, the
multi-level hp-FEM leads to superior convergence rates for problems with singularities
and sharp features. Numerical experiments demonstrate that the multi-level hp-FEM
converges exponentially, for problems including vertex and edge singularities in two and
three dimensions [277, 276, 279].
The multi-level hp-FEM avoids the implementational burden of constraining hanging
nodes. A simple implementation is possible, wherein two requirements are satisfied to
ensure convergence: compatibility of the discretization, and linear independence of the
basis functions. The overlay meshes, generated by recursive sub-divisions of the base
mesh, are geometrically incompatible. To guarantee compatibility of the discretization,
homogeneous Dirichlet boundary conditions are prescribed on the boundary of each layer
of overlay meshes. This maintains a C0-continuous approximation by construction. To
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Figure 5.2: Conceptual idea of the multi-level hp-method [276].

ensure linear independence of the basis functions, the high-order shape functions on over-
lay elements are excluded from their respective parent elements, as demonstrated in Fig-
ure 5.2. The fulfillment of these requirements leads to a simple yet powerful discretization
technique, that exploits the benefits of the hp-FEM without the burden of constraining
hanging nodes. Additionally, using a suitable data structure in an object-oriented frame-
work allows for a dynamic update of the overlay meshes without introducing a noticeable
computational cost [276]. For an in-depth discussion of the multi-level hp-FEM for two-
and three-dimensional problems, with elaboration of their implementational aspects, the
interested reader is referred to [277, 276, 275]

5.3.2 Refinement strategy

In general, stress concentration and sharp solution features can be caused either by sudden
changes in the boundary conditions, the applied body load, or sharp geometric features—
such as re-entrant corners. In this work, we mainly consider stress concentrations induced
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by sharp geometric features of the material interfaces. To resolve such features, an a

priori refinement scheme is applied. Here, the design of the discretization is guided by
existing knowledge of the solution features, based on engineering experience.

h-refinement

Typically, hp-mesh design includes a geometric progression of elements towards the singu-
larities, with small linear elements close to the singularities, and increasing element size as
well as increasing polynomial orders away from the singularities. In the framework of the
multi-level hp-FEM, the high-order overlay meshes are generated by recursive bisection
of the base mesh. To geometrically grade the mesh towards a point P x = (px, py, pz), for
each leaf element K, the point is mapped into the index space of the element Ω� = [−1, 1]d

as follows:

P ξK
= Q⊗1

K (P x), (5.11)

where P ξK
= (pξ, pη, pζ) are the local coordinates of P x in the index space of the leaf-

element K, and QK(x) denotes the geometric mapping between the global and local
spaces. The element is sub-divided if the mapped point lies within an extended index
space Ω̂�, which is larger than Ω�

P ξK
∈ Ω̂�. (5.12)

Typical choices for Ω̂� are between [−1.25, 1.25]d and [−2, 2]d. Thereby, not only the ele-
ments containing P x are refined, but possibly also the neighboring elements. By carrying
out several recursive refinement steps, this approach produces a geometrically graded
mesh—with decreasing element size towards the point of interest, as demonstrated in
Figure 5.3. For Cartesian grid meshes, which are used in the FCM, this inverse mapping
carries a trivial computational cost.

P

(a) k = 0 (b) k = 1 (c) k = 2 (d) k = 3

Figure 5.3: Mesh grading towards P using an extended index space Ω̂� = [−1.25, 1.25]2.
An element is refined if P lies within its extended space (drawn with dashed lines).

p-distribution

The distribution of the polynomial degree p across the layers determines the convergence
properties of the hp-discretization. The optimum p-distribution is not known a priori.
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In one case, the high-order basis functions can be kept on the base mesh, and only linear
basis functions are used on the overlay meshes (Figure 5.4a). This case corresponds to
the hierarchical hp-d scheme [215], as a special case of the multi-level hp-scheme. The
linear overlay meshes introduce a moderate number of additional unknowns. However,
the large support of the high-order basis functions causes the global error to propagate
through the domain, yielding a minimal improvement in the convergence rates [277].
On the other end of the spectrum, the high-order basis functions are all shifted to the high-
est (finest) overlay mesh (Figure 5.4b). Obviously, this uniform multi-level hp-approach
introduces significantly more unknowns. However, with the limited support of the high-
order functions, the discretization error is confined to the smallest elements, which yields
superior convergence properties.
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Figure 5.4: Comparison of different approaches for hierarchical, high-order refine-
ment [276].

In this work, we adopt the uniform multi-level hp-refinement approach, which is equiva-
lent to uniform p-elevation on a geometrically graded mesh. This scheme has been shown
to be robust and efficient, although it might not be optimal regarding the approximation
error for a number of degrees of freedom. For singular problems, the uniform multi-
level hp-refinement shows exponential convergence in the pre-asymptotic range, which
can be extended by increasing the refinement depth [277, 276]. For boundary conforming
problems, an a posteriori error estimator for multi-level hp-FEM coupled with a smooth-
ness indicator was developed [53], where automatically generated multi-level hp-FEM
discretizations with non-uniform p-distributions further improved the efficiency.

5.4 Numerical experiments

In this section, we examine a series of benchmarks involving material interfaces where
the geometry induces high solution gradients and singularities. This includes the two-
dimensional benchmark of a plate with an elliptical inclusion, where we perform a sys-
tematic study of the influence of the numerical integration accuracy on the quality of the
approximation. The second benchmark considers a circular plate with a sharp inclusion,
where the kink in the material interface introduces a vertex singularity. In three dimen-
sions, we examine the problem of an embedded ellipsoidal inclusion, as well as a singular



5.4. Numerical experiments 75

benchmark of a cylinder with an embedded cubical inclusion, which causes a vertex-edge
singularity. In all examples, we examine the p-convergence and the numerical approxima-
tion of the first derivatives of the solution. For more details on the benchmarks and the
reference solutions, the interested reader is referred to [220].

5.4.1 Plate with an elliptical inclusion

Problem setup

The first material interface benchmark we study is a plane stress problem of a plate Ω(1)

with an embedded elliptical inclusion Ω(2), which has a large aspect ratio, ry/rx = 0.15,
and a moderate stiffness ratio to the plate, E(2)/E(1) = 10 (see Figure 5.5a). The dis-
placement field within the plate is distorted by the curved inclusion, leading to high stress
concentration in the plate. The stress concentration is amplified by the high curvature of
the interface at the major axis of the ellipse (points A and C) as shown in Figures 5.5c
and 5.5b. The displacement field within the elliptic inclusion remains smooth. The exact
solution for the displacements is piecewise-analytic, i.e. it can be exactly represented by
a Taylor expansion in each sub-domain. An overkill solution was obtained for reference
using a conforming p-FEM mesh which has 26 elements with a uniform polynomial degree
p = 30 and 47 102 degrees of freedom. In the conforming mesh, the elements at the in-
terface are blended on the ellipse’s exact geometry using a quasi-regional mapping [135].
For the setup shown here, the strain energy obtained using the overkill discretization is

Uex = 9.10131116644 × 10⊗2. (5.13)
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(a) Benchmark setup (b) Reference ux displacement (c) Reference σxx stress

Figure 5.5: Plate with elliptical inclusion
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Discretization

The problem was solved numerically based on the FCM and a weak enforcement of the
interface conditions. Two separate FCM meshes were used to discretize the plate and the
inclusion. A base discretization matching the outer boundary of the plate with 4×4 finite
cells was used. The same parametrization was used for the inclusion’s mesh, excluding
cells that do not intersect the ellipse’s domain, leaving 2 × 2 finite cells—as shown in
Figure 5.6. The ellipse’s dimensions and the mesh parameters are setup such that the
mesh does not exactly match points A or C for any number of recursive bisection steps.
To adequately describe the local solution in the plate, the mesh was locally refined using
the uniform multi-level hp-refinement scheme. The mesh was refined a priori, with a
geometrically driven grading towards points A and C, as described in Section 5.3.2. The
FCM mesh of the inclusion was left without local refinement, as the solution within the
inclusion Ω(2) is smooth. The use of different mesh resolutions for the two sub-domains
is possible thanks to the weak coupling approach, and leads to an improved numerical
efficiency, as the refinement stays local to the region of interest. To avoid ill-conditioning
of the stiffness matrices, the fictitious domain in both meshes was assigned a low stiffness
of Efict = E(1) ·10⊗11, νfict = 0.3. Since the exterior boundary of the plate’s mesh conforms
to the true geometry, the Dirichlet and Neumann boundary conditions were enforced in
a conventional manner.
For the numerical integration of the finite cells, two possibilities were considered. The
first approach employs a recursive sub-division algorithm for integration sub-cells that are
intersected by the geometric boundary, resulting in a spacetree—as shown in [219], for ex-
ample. The second approach considered is the blended partitioning following [143], where
the cut cells are automatically partitioned into boundary-conforming quadrilaterals and
triangles, which are blended on the exact geometry. It needs to be pointed out that this
approach produces geometry-conforming sub-cells to be used for numerical integration.
Yet, it cannot be used in general to generate an analysis-suitable FEM mesh, as it does
not need to satisfy requirements on shape and regularity at cell edges and faces, e.g. at
the transition to the neighboring cells. This approach shares some similarities with the
method presented by Fries et al. [83, 84, 184]. The integration meshes for both considered
approaches are displayed in Figure 5.6.
The penalty method was used to weakly couple the two meshes at the material interface
as described in Section 5.2.2. The penalty parameter β12 = 107 was chosen empirically.
For the numerical integration of the interface coupling terms, a linear discretization of
the embedded interface was generated using a marching squares algorithm [160]. The
marching squares implementation uses the implicit geometric description of the ellipse
and a grid of ng × ng points per sub-cell (leaf element) of the plate’s mesh, yielding
a total of nseg linear segments, as can be seen in Figure 5.7a. An advantage of this
approach is that the resulting segments do not cross the finite-cell boundaries, resulting
in a more accurate evaluation of the interface integral, which the terms of which are only
C0-continuous. Additionally, the segments have the same size relative to the leaf element
in which they lie. Consequently, the non-uniform resolution of the FCM mesh carries over
to the discretization of the interface.
An extension to this approach generates high-order segments using Lagrange interpolation
polynomials with degree pseg, by adding (pseg − 1) interpolation nodes within the linear
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(a) Spacetree partitioning, m = 4, follow-
ing [215]

(b) Blended partitioning, following [143]

Figure 5.6: Domain discretization for the plate and the inclusion, refinement depth k = 4.
The finite cells’ edges are drawn with thick black lines, whereas the integration meshes
are drawn with thin blue lines.

segments. The implicit geometry description was used in conjunction with a line-search
method to correctly place the additional interpolation points on the interface. This ap-
proach finally yields a high-order boundary discretization, as shown in Figure 5.7b (note
that the figure shows only the extreme nodes). For a more detailed description of this
high-order interface recovery algorithm, the reader is referred to [24]. This convenient
approach for embedded boundary parametrization highlights another advantage of using
Cartesian grids for the finite cell meshes and the same mesh parameters for both domains
- in contrast to using unstructured FCM meshes, where the generation of cell-conforming
boundary segments would be more challenging.
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(a) Linear segments (straight), pseg = 1

(b) Quadratic segments (curved), pseg = 2

Figure 5.7: Discretization of the elliptical interface, ng = 4, nseg = 72

Numerical solution

Figure 5.8 shows the numerical approximation of the axial stresses σxx obtained using the
FCM with weak coupling and multi-level hp-refinement. The plots shown here are the
superposition of the solutions from the physical part of each domain, whereas the solution
in the fictitious domain is omitted. Without applying any local refinement (Figure 5.8a),
the FCM with weak coupling is able to reproduce the overall solution characteristics.
However, the approximation for the stresses exhibits severe oscillations. In particular,
the four finite cells in the plate’s mesh that are intersected by the interface are affected
by the high curvature of the concave geometry at points A and C, leading to stress
concentration. This local solution characteristic cannot be represented well by the smooth
basis functions of the coarse mesh, which leads to an oscillatory approximation of the
stresses. Figure 5.8b depicts the numerical approximation obtained with the multi-level
hp-scheme, using two levels of overlay meshes with uniform p-distribution. Applying
local refinement to the FCM mesh of the plate improves the numerical approximation
significantly. The solution benefits from the local support of the high-order basis functions
with C0-continuity, and the oscillations in the stresses are confined to the cells on the
finest overlay mesh. Increasing the refinement depth with k = 4, the quality of the
approximation improves further.
Figure 5.9 examines the stresses along the cutting line B-D (see Figure 5.5a) in closer
detail. Since the cutting line is orthogonal to the ellipse’s boundary, the exact solution
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(a) p = 8, no refinement (b) p = 4, k = 2 (c) p = 4, k = 4

Figure 5.8: Plate with elliptical inclusion: numerical approximation of the axial stresses
σxx

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

100

200

300

400

500

Ω(2) Ω(1)

x-coordinate

σ
x

x

reference

p = 8, no ref.

p = 6, k = 4

Figure 5.9: Plate with elliptical inclusion: numerical approximation of the axial stresses
σxx along cutting line B-D

for σxx is continuous along the cutting line. Hence, jumps in the numerical approxi-
mation of the stresses, either at the interface or at element boundaries, correspond to
the approximation error directly. The numerical approximation obtained without local
refinement exhibits severe oscillations and a large jump at the interface. Due to the cou-
pling condition, the oscillations extend into both domains. Due to the oscillations, the
maximum stresses are overestimated and the local stress distribution is misrepresented.
Applying multi-level hp-refinement to the plate’s FCM mesh enhances the quality of the
approximation appreciably, as the oscillations are mainly restricted to the finite cells on
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the finest overlay mesh. The zoomed plot at the interface reveals the fine-scale features
of the solution in the plate. The local solution characteristics are not fully resolved by
the refined mesh with k = 4, which suggests that this problem would benefit from further
local refinement.

Influence of domain integral accuracy

To assess the accuracy of the numerical integration for the domain integral, Figure 5.10
compares the error in σxx along cutting line B-D, based on multi-level hp-refinement of
the plate’s mesh with k = 4, polynomial degree p = 6, and different domain partitioning
schemes. The error here is calculated with respect to the reference solution generated
using the overkill p-FEM discretization. The blended partitioning approach gives a highly
accurate evaluation of the domain integrals, as it uses the exact geometric description of
the interface. Using the spacetree partitioning scheme with a depth m = 2 leads to
high approximation errors. The error is highest in the finite cell from inclusion’s mesh,
which is attributed to the coarser spatial resolution of the integration, as demonstrated
by Figure 5.6a. The high error propagates through the mesh, carrying over to finite
cells which are not cut by the material interface, and to the other mesh through the
coupling condition. Increasing the depth m of the spacetree reduces the approximation
error appreciably. Using depth m = 7, the achieved accuracy is comparable to that of the
blended partitioning approach.
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Figure 5.10: Error in σxx along cutting line B-D with different domain integration schemes,
p = 6, k = 4
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Influence of interface integral accuracy

To evaluate the effect of the integration accuracy of the interface integral, Figure 5.11
plots the local distribution of the approximation error for the von-Mises stresses σeq along
the interface in the plate. Using a grid dimension of ng = 4 for the marching squares
implementation, nseg = 72 linear segments are generated (see Figure 5.7a). However, this
linear discretization of the curved interface introduces artificial stress singularities at the
interpolation nodes between the segments, as the segments touch at the extreme nodes
but have discontinuous normals, which introduces artificial kinks at the interpolation
nodes. At ellipse parameter t = 0 (point C), the artificial singularity takes over the
approximation error, causing the entire solution to diverge. To reduce the error at the
interface, h-refinement of the interface’s discretization is carried out by refining the grid
for the marching squares. Figure 5.11a shows the resulting error distribution with ng =
{4, 8, 16, 32, 64}, which yields nseg = {72, 136, 280, 564, 1120}. The h-refinement of the
segments delivers a uniform decrease in the approximation error, with a maximum error
in σeq of approximately 3% using 1120 segments.
Alternatively, p-refinement of the interface segments using Lagrange polynomials, as de-
scribed earlier, leads to a faster convergence as demonstrated by Figure 5.11b. Using 72
quadratic segments already decreases the error significantly, as the high-order discretiza-
tion approximates the tangents at the interpolation nodes with better accuracy, as shown
in Figure 5.7b. Increasing pseg further from 3 to 4 in this example, gives a marginal im-
provement in accuracy, indicating that the numerical integral at the interface converges.
The remaining approximation error is attributed to the FCM discretization with p = 8,
and k = 6. The two refinement schemes for the interface discretization converge to the
same local error distribution.
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Figure 5.11: Error in σeq along the interface using different interface discretizations, p = 8,
k = 4
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Convergence study

A uniform p-refinement study was carried out to assess the overall convergence behavior
of multi-level hp-refinement in conjunction with weak coupling. Figure 5.12a shows the
relative error in the energy norm for different refinement depths

||e||E =

√

|Unum − Uex|
Uex

· 100%, (5.14)

where Unum denotes the numerically approximated strain energy, and Uex denotes the
reference strain energy. For this study, the blended approach is used for the domain
integration, in conjunction with a high-order parametrization of the interface. As the
exact solution is piecewise-analytic, FCM with a weak enforcement of the interface condi-
tions converges exponentially under uniform p-elevation, even without applying any local
refinement. For a more detailed analysis of the convergence rates, Figure 5.12b shows
the convergence plot in a log-√ scaling. Here, the linear plots characterize exponential
convergence in the form [238]:

||e||E ≤ C exp
(
γN θ

)
with θ =

1

2
, (5.15)

where C is a positive constant, and γ is a negative constant describing the convergence
rate. Increasing the refinement depth with the multi-level hp-scheme for this example
leads to a steeper convergence rate γ, allowing for a higher gain in accuracy. To achieve
an engineering accuracy of 1% error, the discretization with k = 4 needs approximately
five times less the degrees of freedom than the non-refined case.
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Figure 5.12: Plate with elliptical inclusion: p-convergence for multi-level hp-refinement
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5.4.2 Bi-material inclusion corner

In the next study, we consider a singular material-interface benchmark problem adapted
from [269]. The two-dimensional temperature problem is governed by the Poisson equa-
tion:

κ(i) ∇2φ(i) = −1 ∀x ∈ Ω(i) (5.16)

φ = 0 ∀x ∈ ΓD, (5.17)

where φ(i) denotes the temperature, κ(i) the thermal diffusivity, Ω(i) and ΓD are defined
as shown in Figure 5.13a. Here, the material interface Γ12 has a sharp corner, inducing a
vertex singularity. Moreover, the intersection of the material interface with the Dirichlet
boundary ΓD for the applied boundary condition introduces two additional weak singu-
larities, where the solution exhibits reduced continuity.

Ω(1)

Ω(2)

ΓD

R
ϑ

r

θ

R = 1, ϑ = π/2

κ(1)
= 1, κ(2)

= 10

(a) Benchmark setup (b) Reference temperature φ (c) Reference heat flux |q|

Figure 5.13: Bi-material inclusion corner

The exact solution to this problem is given in radial coordinates (r, θ) by [133] :

φ(r, θ) = A1r
λ1h1(θ) + A2r

λ2h2(θ) + O(r2), (5.18)

where A1 and A2 are scalar constants, h1(θ) and h2(θ) are smooth sinusoidal functions
and

λ1 = 0.731691779, λ2 = 1.268308221. (5.19)

For reference, an overkill solution was generated using a conforming p-FEM with exact
blending, where the mesh was geometrically graded towards the vertex singularity. The
reference mesh has 21 elements with polynomial degree p = 30 and 18 991 degrees of
freedom. The strain energy for the setup shown here is

Uex = 1.0168443145 × 10⊗1. (5.20)
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Using the FCM with weak coupling, separate meshes were used for the disc and the
inclusion, as shown in Figure 5.14. Unlike the previous example, where the stress con-
centration in the plate was caused by the concave geometry, the singularities affect the
solution in both sub-domains. Consequently, both meshes need local refinement to resolve
the singularities. The meshes were graded towards the vertex singularity, and the two
weak singularities on the boundary. The same refinement depth was applied to all three
refinement points. Here, the discretizations match the singularities with nodes of the
FCM mesh.

(a) Inclusion (b) Disc

Figure 5.14: Bi-material inclusion corner: discretization with refinement depth k = 6

The penalty method was used to couple the FCM meshes along the straight material
interface. Additionally, the embedded Dirichlet boundary condition was weakly enforced
on Γ

(i)
D in each mesh using the penalty method with βD = 107. The weak enforcement

of the boundary conditions does not influence the convergence behaviour, provided that
the penalty parameter is chosen large enough [254]. The fictitious domain was penalized
with κfict = κ(1) · 10⊗9. Note that this value is higher than in the previous example, and
was chosen to have a lower condition number to allow the use of high polynomial degrees,
up to p = 10, in the convergence studies. The blended partitioning approach was used to
numerically evaluate the domain integral. The coupling integral was evaluated on linear
segments, whereas the weak Dirichlet boundary conditions were integrated over curved
segments, automatically generated with the same approach described for the previous
example.
The magnitude of numerical solution for the heat flux, q(i) = κ(i)∇φ(i), is depicted in
Figure 5.15. For the first case, without any local refinement of the meshes, the numerical
approximations of the heat fluxes exhibit oscillations within the domain and jumps at
element boundaries. The oscillatory behavior is attributed to the inability of the smooth
polynomials to represent the high gradients in the vicinity of the singularities. For the
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(a) p = 4, no refinement (b) p = 4, k = 2 (c) p = 4, k = 4

Figure 5.15: Bi-material inclusion corner: numerical approximation of the flux |q|

second discretization, two levels of uniform high-order overlay meshes are used to grade the
meshes towards the three singularities.The C0-continuity of the high-order basis functions
limits the pollution error from the singularities at the finest refinement level, as revealed
in the zoomed plot. Using four refinement levels improves the solution further, as the
geometric progression of element size arrests the propagation of the error, while having
larger elements to describe the smooth solution away from the singularities.
Figure 5.16a shows the results of a p-elevation study carried out to assess the conver-
gence properties. Without applying local refinement, the convergence under p-elevation
is identified as being algebraic in the form

||e||E ≤ aNη, (5.21)

where a is a positive constant, and η is a negative constant indicating the convergence
rate. The estimate for η ≈ −λ1 matches the theoretical expectation for a discretization
where the vertex singularities are matched by nodes of the mesh [13]. With multi-level
hp-refinement the convergence behavior shows a pre-asymptotic range with a higher con-
vergence rate, and an asymptotic range, where the behavior returns to being algebraic
with the same rate η. Increasing the refinement depth k extends the pre-asymptotic range,
allowing for a significant decrease in the total approximation error. Changing the scaling
to a log- 3

√ in Figure 5.16b, the extended pre-asymptotic range appears linear, indicating
exponential convergence in the pre-asymptotic range.
Note the apparent leveling-off of the error in the energy norm around 10⊗2%, which is
attributed to the use of κfict 6= 0, adding a modeling error to the numerical approximation.
The introduced error in the energy norm is in the order of

√
κfict [54]. Using a smaller value

for κfict lowers the leveling-off threshold, at the cost of the conditioning of the system.
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Figure 5.16: Bi-material inclusion corner: p-convergence for multi-level hp-refinement

5.4.3 Cube with ellipsoidal inclusion

Next, we consider a three-dimensional example, which is a generalization of the benchmark
presented in Section 5.4.1. A linear elastic analysis is considered for a cube with an
embedded ellipsoidal (prolate spheroid) inclusion - depicted in Figure 5.17. The spheroidal
inclusion induces stress concentration in the cube around the two points on its major axis.
The solution within the spheroidal inclusion remains smooth.

x y

z Ω(1)

Ω(2)t̂ L

LL

E(1)
= 210 · 10

3, E(2)
= E(1) · 10,

ν = 0.3, |t̂| = 100, L = 1,

rx =
√

0.125, ry = rz = 0.25 · rx

Figure 5.17: Cube with ellipsoidal inclusion

Two FCM meshes were used to discretize the sub-domains, using a base discretization of
4 × 4 × 4 finite cells which match the outer boundaries of the cube. To resolve the stress
concentration, the cube’s mesh was refined towards the two points on the major axis of
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the spheroid, as shown in Figure 5.18. For the inclusion’s mesh, 2×2×2 elements remain
after excluding all cells that are completely in the fictitious domain. Finite cells that are
cut by the interface were further partitioned for integration using the spacetree approach
described earlier.
The penalty coupling terms were integrated over a surface triangulation, automatically
generated using marching cubes [154, 27, 160]. The implementation is a three-dimensional
extension of the high-order parametrization algorithm used in Section 5.4.1, where a grid
of ng × ng × ng points per sub-cell was used for the surface recovery. An example of the
resulting triangulation is shown in Figure 5.18. Note that the surface mesh is irregular
and that the triangles have severe aspect ratios. The high-order penalty terms are then
integrated over the triangles by collapsing one side of the integration domain (bi-unit
square) and mapping it to each triangle. As demonstrated by the two-dimensional ellipse
benchmark the linear parametrization needs a fine resolution to achieve accurate results.

(a) Cube (b) Ellipsoidal inclusion (c) Coupling surface

Figure 5.18: Discretization of cube and ellipsoid using k = 4 - Section view

The numerical approximation for the axial stresses σxx is depicted in Figure 5.19. Note
that half of the domain is removed to visualize the internal solution. For the unrefined
meshes, the approximated stresses exhibit oscillations and non-physical jumps at the
element boundaries. If the cube’s mesh, which is affected by the concave geometry, is
refined towards the two points, the stress concentration can be localized quickly. Similar
to the two-dimensional case, the solution within the ellipsoid remains smooth, and does
not require local mesh refinement.
The results show that the improvement in accuracy brought on by the multi-level hp-
refinement scheme also carries over to three-dimensional problems. The example also
demonstrates that a surface mesh for the interface discretization is easily obtained for
smooth implicit geometries. The surface mesh is only used to integrate the penalty terms,
and hence can be irregular or have severe aspect ratios, unlike what is required of an
analysis-suitable finite element mesh.
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(a) p = 8, no refinement (b) p = 6, k = 2 (c) p = 6, k = 4

Figure 5.19: Cube with ellipsoidal inclusion: numerical approximation of axial stresses

5.4.4 Cylinder with cubical inclusion

The last numerical benchmark for us to consider is a three-dimensional problem with a
vertex-edge singularity. We study a cylinder under axial tension, which has an embedded
cubical inclusion. Due to the symmetry of the problem, we consider only one-eighth of
the system. An overkill solution was generated for reference, using seven conforming
hexahedral p-FEM elements with exact blending, and a local refinement using the multi-
level hp-scheme. Using 5 levels of refinement and a polynomial degree p = 9, the overkill
discretization has 506, 199 degrees of freedom. The reference strain energy for the setup
shown in Figure 5.20a is

Uex = 1.037455 × 103. (5.22)

Two non-geometry-conforming FCM meshes were used for the cylinder and the cubical
inclusion. A coarse base discretization of 2 × 2 × 2 finite cells was used. The dimensions
of the mesh were setup in such a way that the edges of the FCM meshes do not exactly
coincide with the cube’s edges. Similar to the two-dimensional benchmark presented in
Section 5.4.2, the vertex-edge singularity affects the solution in both domains. Accord-
ingly, both meshes were refined towards the singular edges, as shown in Figure 5.21. The
symmetry boundary conditions were enforced in a classical manner on the corresponding
faces of the FCM meshes.
The numerical approximation for the von-Mises stresses, σeq, is shown in Figure 5.22 for
the cylinder and in Figure 5.23 for the cubical inclusion. The complete domain is clipped
diagonally to reveal the solution at the vertex-edge singularity. Note that the geometry
of the cylinder is rotated to show the solution along the singular edges. Whereas the
solution obtained without refinement is highly oscillatory, the local refinement with the
multi-level hp-scheme is able to confine the error to the finest level of sub-cells.
To assess the convergence behavior, a p-elevation study was carried out. The results,
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(a) Benchmark setup (b) Reference σeq in cylinder (c) Reference σeq in inclusion

Figure 5.20: Cylinder with cubical inclusion

(a) Cylinder (b) Cubical inclusion

Figure 5.21: Discretization of cylinder and cubical inclusion, k = 5

shown in Figure 5.24, indicate a slow algebraic rate for coupled FCM without refinement.
Applying a local refinement starting with k > 2, a pre-asymptotic range can be identified
as having a steeper convergence rate. This allows the discretization with k = 5 to achieve
an engineering accuracy of 1% error using a moderate polynomial order. This would
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(a) p = 8, no refinement (b) p = 4, k = 2 (c) p = 4, k = 5

Figure 5.22: Cylinder: numerical approximation of σeq

(a) p = 8, no refinement (b) p = 4, k = 2 (c) p = 4, k = 5

Figure 5.23: Cubical inclusion: numerical approximation of σeq

require at least an order of magnitude more degrees of freedom with uniform h- or p-
refinement. The pre-asymptotic convergence is also characterized as algebraic, albeit with
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Figure 5.24: Cylinder with cubical inclusion: p-convergence for multi-level hp-refinement

a higher rate. For vertex-edge singularities, an anisotropic refinement scheme is necessary
to attain exponential convergence [13], which was not applied in this work. However, this
is not always feasible for the general case of embedded vertex-edge singularities, where the
(possibly curved) singular edges might not be parallel to edges of the mesh. Nevertheless,
the improved algebraic convergence brought on by the multi-level hp-refinement allows
for a significant reduction of the approximation error.

5.5 Discussion

In this chapter, we demonstrated that the application of the multi-level hp-scheme for
local refinement in the finite cell method in conjunction with weak enforcement of the in-
terface conditions constitutes an efficient and robust approach for the solution of material
interface problems involving complex geometries. Several numerical benchmarks of two-
and three-dimensional material interface problems show that the convergence behavior is
significantly improved by the multi-level hp-refinement scheme for problems with stress
concentration and singularities. The results also show that the proposed approach can
provide an accurate approximation of the stresses at the material interface, and highlight
the importance of a high-order accurate geometric description of the interface and the
boundaries.
This combination of numerical methods can be used for mechanical simulations involving
material interface problems and very complex geometry while circumventing volumetric
mesh generation. Another advantage of using a separate discretization for each sub-
domain is the flexibility in refining each mesh separately, i.e. the local refinement of
one mesh doesn’t necessarily propagate across the interface—as demonstrated in Sec-
tion 5.4.1—which can lead to more efficient discretizations.
In this work, we have used the penalty method for the weak imposition of the Dirichlet
boundary conditions and interface constraints. With a suitable choice for the penalty pa-
rameter and an accurate surface representation, we have demonstrated that the interface
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conditions can be enforced with sufficient accuracy. However, the approximation error
depends on the penalty parameter. For a more robust methodology, more sophisticated
weak enforcement methods can be implemented, e.g. Nitsche’s method [208, 217].
These methods modify the weak form with additional surface integrals over the interface.
For the numerical integration of these terms, a surface mesh of the material interface needs
to be generated. Fortunately, this is a task of lower difficulty than generating an interface-
conforming volumetric mesh. However, for geometries where a surface representations
might not be available, e.g. geometries represented by point clouds, alternative methods
for the weak imposition of boundary and interface conditions need to be considered.
Another limitation of the current implementation is the inability to perform anisotropic
mesh refinement—i.e. the mesh can only be locally refined concurrently in all spatial
directions. For three-dimensional problems with vertex-edge singularities, anisotropic re-
finement is necessary to achieve exponential convergence. Future research should investi-
gate the applicability of anisotropic refinement in the context of the multi-level hp-scheme
together with the embedded domain approach.
In this work, we have used a priori refined meshes, where we applied geometric grading
towards locations where singularities and high solution gradients were expected, and we
have used uniform polynomial degrees within the meshes. More efficient discretizations
can be achieved through adaptation of the polynomial degree in addition to automatic
local mesh refinement. To that end, the development of a posteriori error estimators is
necessary, which is the subject of current research [62].
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Chapter 6

Applications of the FCM for material
interfaces in bone mechanics

In this chapter, we present two applications of the FCM for the numerical solution of
problems with material interfaces in bone mechanics. In the first application, we present
a numerical technique to incorporate loads stemming from musculoskeletal models of the
spine into patient-specific finite cell analysis. The second application demonstrates the
applicability of the FCM in combination with the multi-level hp-refinement scheme for
the simulation of vertebrae with pedicle screws.

6.1 Combination with musculoskeletal models

Musculoskeletal models can be used to provide more realistic boundary conditions to
patient-specific numerical models of bone. In the context of the FCM, the consideration
of concentrated loads stemming from musculoskeletal models presents a challenge. In this
work, we present a numerical approach to include such loads in FCM models. This is
achieved by applying the loads on a separate load-transfer mesh which is weakly cou-
pled to the original discretization. We present a numerical example which illustrates the
applicability of the proposed approach to patient-specific FCM models.
This section is based on work that was done in the master’s thesis [185] of Oguz Ozto-
prak1, which was supervised by the author of this work. This was carried out as part
of a collaboration project. The contributions and efforts of Alexander Valentinitsch2,
Amirhossein Bayat2, Tanja Lerchl3 and Jan S. Kirschke2 are gratefully acknowledged.

6.1.1 Introduction

Osteoporosis compromises bone strength, increasing the risk of vertebral fractures with
severe health consequences. The development of an accurate and reliable patient-specific
numerical model for the biomechanical analysis of the vertebra would be beneficial for

1Chair for Computational Modeling and Simulation, TUM
2Department of Neuroradiology, TUM
3Associate Professorship of Sport Equipment and Sport Materials, TUM
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the prediction of fractures and supporting medical professionals in choosing a suitable
treatment. The mechanical stresses in the vertebra are determined by its geometry and—
locally— the bone density. Moreover, accurate modeling of the boundary conditions has
a great influence on the predictive ability of the numerical models [119].
Musculoskeletal models are a valuable tool used to study the relationship between body
motion and internal biomechanical forces. In a musculoskeletal model, the human body
is modeled as a multibody dynamic system, in which bones are characterized as rigid
segments connected by joints, muscles as tensile actuator elements connecting the bony
segments and ligaments as passive elastic structures that connect the articulating bones
and keep the joints assembled [15]. The dynamic simulation of the musculoskeletal models
determines the motion of the body segments and calculates the forces in the muscles
and the joints. Patient-specific musculoskeletal models can also be created based on the
patient’s individual geometry reconstructed from medical images, e.g. quantitative CT
scans [151].
There have been several efforts in the combination of musculoskeletal models and patient-
specific finite element analysis for biomechanical analysis, which allows for more realistic
loading scenarios, especially taking into account muscle forces. Commonly, the two sim-
ulations are considered separately, assuming the bones to be rigid in the multibody sim-
ulation. The loads calculated using the musculoskeletal model are then used as external
loads in the subsequent FE analysis. In [152], this decoupled approach was followed for
the simulation of the lumbar spine to estimate the loads on the intervertebral discs, and
FE analysis of the discs was carried out to calculate their deformation. Kamal et al. [126]
also followed this approach for patient-specific analysis of the spine to estimate the forces
and the resulting stresses on the growth plates of vertebrae in patients with scoliosis. In
[125], musculoskeletal simulations are used to estimate muscle and joint contact forces,
which are combined with adaptive mechanobiological finite element analysis to predict
femoral growth in children.
Alternatively, concurrent musculoskeletal dynamic simulations and finite element analysis
can be used to model more complex scenarios, where the deformation of the bones or the
joints need to be considered in the musculoskeletal model [94]. In [225], a coupling of
musculoskeletal models with the finite element analysis of deformable joints was used for
the mechanical analysis of knee replacement. As the FE models typically have significantly
more degrees of freedom than the musculoskeletal models, concurrent simulations are
much more computationally expensive.
The incorporation of loads estimated using musculoskeletal models into FCM models
presents some challenges. As the joints typically used in the models are idealized as
points [264], the loads resulting from the solution of the multibody dynamics are repre-
sented as concentrated forces and moments. In three-dimensional solid models, point loads
induce singularities [77], which require special attention in the numerical discretization. It
is considered a better practice to model the surface loads as distributed tractions [77, 87].
Point forces can be modeled as uniformly distributed tractions. However, for surfaces of
complex geometry, special attention is needed if the point where the load is applied does
not coincide with the centroid of the load surface. Furthermore, modeling concentrated
moments on surfaces of arbitrary geometry is not straightforward, especially if an exact
surface description is not available. It is also not possible to directly incorporate moments
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in three-dimensional solid elements which are formulated in terms of the displacements
as the primary variables (degrees of freedom), with the respective external forces—in
contrast to beam and shell elements which have rotational degrees of freedom [77, 111].
For conventional finite elements, there are several approaches to incorporate concentrated
moments in models that use three-dimensional solid elements. A common approach in-
volves the use of rigid beam elements which are coupled to the nodes of the solid FE
mesh at the load surface [87]. The moment load is applied to the beam elements (which
is possible due to their rotational degrees of freedom), and is transferred to the nodes of
the solid mesh through the coupling constraints. A similar approach is to use an addi-
tional mesh of shell elements to discretize the load surface, and couple the shells to the
solid elements [228, 87]. In the context of fictitious domain methods, embedded shell
finite elements have been investigated by Schillinger et al. [216]. However, only examples
including distributed pressure loads were presented. A downside of this approach is the
need to generate an analysis-suitable finite element mesh with shell elements for the load
surface.
In this work, we propose a numerical approach for the consideration of concentrated
loads in patient-specific FCM vertebra models. Here, the load surfaces at the endplates
are extended using load-transfer blocks which have very high stiffness. The load-transfer
blocks are discretized using separate meshes that are weakly coupled to the FCM mesh of
the vertebra to account for the material interface. The concentrated loads are modeled as
distributed tractions on the surfaces of the blocks which have a simple geometry. The idea
is similar to the approaches described above, but uses a solid model for coupling instead
of beams or shells. It is also related to the “stiff strip” method, which was suggested as
a simple approach to impose embedded boundary conditions for FCM models [190, 70],
but includes an adequate treatment of the weak discontinuity at the material interface.

6.1.2 Musculoskeletal models

Musculoskeletal models of the spine are an example of multibody dynamic systems. Multi-
body systems are defined as a system of interconnected bodies, where the joints constrain
the relative motion of the bodies, and springs and dampers act as compliant elements [226].
The bodies have mass and moment of inertia, whereas the interconnections are assumed
to be massless.
In musculoskeletal models of the spine, the vertebrae are modeled as rigid bodies. The
intervertebral discs are often modeled as three degrees-of-freedom spherical joints located
in the center of the joints between the vertebrae, that allow relative rotation of the
vertebrae [59]. More sophisticated models consider the discs as nonlinear spring-damper
systems with six degrees-of-freedom, resulting in reaction forces and moments, and the
viscoelastic parameters are determined from the disc’s geometry [151]. Muscles are defined
as unilateral force elements that can only exert force in tension, and their mechanical
properties are modeled using a Hill-type muscle model (a spring in series with a spring-
damper in parallel). Ligaments are modeled as nonlinear spring-dampers, similar to
muscles but as passive elements [15]. To that end, the geometry of the muscles and
ligaments are modeled by line elements, and the points of origin and insertion (attachment
to the bone) are defined in the model. Moreover, contact between the vertebral segments
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can be calculated using a polygon contact model [104]. An example of a musculoskeletal
model of the lumbar spine is shown in Figure 6.1.

Figure 6.1: Musculoskeletal model of the lumbar spine, reproduced from [195]

The combined translational and rotational motion of a rigid body can be characterized by
the Newton–Euler equations, or Lagrange’s equations [264]. These relate the motion of
the center of gravity of the rigid body to the forces and moments acting on it. Considering
a system of n interconnected rigid bodies which have nq degrees of freedom, the equation
of motion can be expressed as:

Mq̈(t) + G(q)⊤λ = F (q, q̇, t) (6.1a)

g (q) = 0. (6.1b)

Here, q(t) ∈ R
nq is a vector that comprises the coordinates for position and orientation of

all rigid bodies in the system at time t. The system is subject to nλ constraints represented
by the vector g. The rectangular matrix

G(q) =
∂g(q)

∂q
∈ R

nλ×nq

is called the constraint Jacobian, and λ are the additional Lagrange multipliers. The mass
matrix, M ∈ R

nq×nq , describes the mass and moment of inertia properties of the rigid
bodies, whereas the vector F (q, q̇, t) ∈ R

nq describes the applied (external) and internal
forces due to motion at the joints with elastic or damping elements.
The solution to the constrained equation of motion (6.1) defines the motion and general-
ized forces of the multibody system. The equation system can be solved numerically by us-
ing time-integration methods, e.g. Newmark’s method or Runge-Kutta schemes [55, 226].
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In this work, the musculoskeletal models of the spine treat the vertebrae as rigid bodies.
An independent biomechanical analysis using the FCM is carried out, using the forces
estimated from the musculoskeletal model, to calculate the elastic deformation in the
bone, which is not considered in the multibody dynamic system. As the stiffness of
bone is considerably higher than that of the joints modeling the intervertebral discs, the
modeling error introduced by this assumption should not be significant.

6.1.3 Weak enforcement of concentrated loads

Here, we propose a numerical approach for the inclusion of point loads resulting from
musculoskeletal models into FCM models. The modeling of point loads on surfaces having
arbitrary geometry presents some challenges for the FCM. Representing concentrated
forces as surface tractions that are uniformly distributed over the whole load surface
(inhomogeneous Neumann boundary conditions) is a possibility for simple geometries.
However, if the concentrated force does not coincide with the centroid of the load surface,
then this approach would be inconsistent, as it introduces additional moments due to
the eccentricity. Moreover, modeling concentrated moments as spatially varying tractions
becomes challenging for surfaces with complex geometry, especially if an exact surface
description is not available.
Furthermore, modeling techniques which are commonly used in conventional FEM to
model concentrated moments in three-dimensional solid models often rely on adding con-
straints to the nodes of the FE mesh on the load surface. However, in embedded domain
methods, such as the FCM, the geometric boundary of the object is not resolved by the
edges and nodes of the mesh, which hinders the applicability of such techniques.
In the proposed approach, we extend the problem at the load surface, ΓN , by adding a
surrogate load-transfer block, which is coupled to the original domain Ωphy at the original
load surface. The load-transfer block, ΩLT, is defined such that it matches the load surface
and extends beyond the original domain to a simple geometry with flat surfaces. The block
is assigned a linear elastic material that has a very high stiffness compared to bone. The
material interface is treated by using separate FCM discretizations for Ωphy and ΩLT, and
weakly enforcing the interface condition as explained in the previous chapter. A load
equivalent to the concentrated load is then defined on the flat surface of the surrogate
load-transfer block and integrated as an inhomogeneous Neumann boundary condition.
The concept is illustrated in Figure 6.2.
This numerical approach has been investigated in the master’s thesis of Oztoprak [185].
Therein, the method was verified using numerical examples of solid models of beams sub-
jected to concentrated loads. The verification study shows that moments can be applied
on embedded surfaces of FCM models using the coupling approach with similar accuracy
to a more direct approach, where the moment is modeled as a distributed traction. Fur-
thermore, it was shown that the approach is applicable to minimally restrained problems,
where balanced loads are applied to the body, and Dirichlet constraints are only necessary
to restrict the rigid body modes. A numerical example of a combined musculoskeletal of
a mobile spinal segment with an FCM model was also presented, which we discuss in the
following.
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Figure 6.2: Load interface mesh, adapted from [185]

6.1.4 Numerical example

As a proof of concept, we present a simple example of the combination of a musculoskeletal
model with the FCM. The analysis considers a single spinal segment, where a multibody
dynamic simulation is used to determine the reactions at the joint and the support. The
reaction forces and moments are then applied as loads in the FCM models of the vertebrae
to predict the mechanical stresses.

Geometry

A clinical QCT-scan of the spine of a healthy patient who does not suffer from spinal
deformities was used in this example.∗ The QCT scan provides the data to define the
geometry and the local bone density for the patient’s spine. For an accurate estimation
of the bone density distribution, the scan was calibrated through use of the phantoms
provided by the manufacturer of the scanner. The complete scan consists of 1533 × 512 ×
81 voxels with a voxel size of 0.318×0.318×2 mm3. Here, the x-, y- and z-axes correspond
to the longitudinal, sagittal and frontal axes, respectively.
As a first step, the QCT scans were segmented to identify the geometry of each vertebra
separately. Additionally, the location of the centroid of each intervertebral disc and the
tangent vectors to the spinal axis were estimated from the scans and recorded. A surface
description of the vertebrae was reconstructed from the segmentation using the marching
cubes algorithm [154]. The segmented surfaces were further processed (trimming and
smoothing) to generate a surface description for the endplates (shown here in Figure 6.3),
which is necessary for the imposition of boundary conditions and coupling constraints.

∗Image acquisition and processing were carried out at the Department of Neuroradiology, TUM. The
efforts of Amirhossein Bayat and Alexander Valentinitsch are gratefully acknowledged.
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(a) Surface model (b) Surface meshes for the endplates

Figure 6.3: Segmented L4 and L5 vertebrae

Musculoskeletal model†

The musculoskeletal model considers a single mobile spinal segment (L4–L5), comprised
of the two vertebrae and the intervertebral disc. Here, we do not consider the L5–S1 joint
in the musculoskeletal model, i.e., the L5 vertebra is fixed relative to the sacrum. The
multibody system was modeled using the software Simpack (Dassault Systèmes). The
geometry models of the segmented vertebrae were imported as surface triangulations.
The mass properties and moment of inertia tensors of the vertebrae were estimated based
on the reconstructed geometry.
Two points were defined as special “markers” corresponding to the centroids of the L3–L4
and L4–L5 intervertebral discs. The top marker (L3–L4) is used to define the point where
external load is applied. The intermediate marker (L4–L5) is used to define a mechanical
joint, which models the intervertebral disc as a nonlinear spring damper system. The
stiffness and damping coefficients of the joint were calculated depending on the disc’s
individual geometry [151]. The model of the multibody system is shown in Figure 6.4.

Constraints and boundary conditions

For this model, we only study the movement in the sagittal plane (x-y). The spinal
segment is fixed at the bottom, i.e. at the inferior endplate of the L5 vertebra, whereas
the L4 vertebra has three degrees of freedom (translation in x- and y-directions, and
rotation around the z-axis). Similarly, the spring-damper element connecting L4 and L5
has three degrees of freedom. At the top marker (L3–L4), the segment is subjected to a
constant vertical load of 500 N and a harmonic moment around the sagittal axis with an
amplitude of 10 N · m and a period T = 2π s. The model does not consider muscle or
ligament forces in the analysis.

†Musculoskeletal modeling was carried out at the Associate Professorship of Sport Equipment and
Sport Materials, TUM, by Tanja Lerchl. Her efforts are gratefully acknowledged.
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Figure 6.4: Illustration of the musculoskeletal model in the multibody simulation software
Simpack (Dassault Systèmes), adapted from [185]

Numerical solution of the multibody system

The multibody dynamic system for the musculoskeletal model was solved for a total
simulation timespan of 10 seconds using an implicit time integration scheme and a time-
step size Δ𝑡 = 0.01 s (1000 time-steps). The computed reactions at the joint and at the
support (forces and moments) were recorded, as well as the position and the orientation of
the L4 vertebra. The results were exported in a delimited text file using the .csv format.
The results were verified by evaluating the equilibrium equation (6.1) for each body at
each time step. It was also observed that the dynamic (D’Alembert) forces due to the
acceleration of the L4 vertebra were negligible, as they were several orders of magnitude
smaller than the applied loads and the resulting reactions at the joint and at the support.
This affirms the modeling assumptions for the quasistatic analysis of the elastic FCM
model of the bone in a non-inertial reference frame, where each time step is analyzed
independently and the D’Alembert forces are neglected, only taking into account the
external load and the reactions at the joint and the support.
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FCM model‡

The FCM model of the elastic bone considers each vertebra separately. The bounding
box for each vertebra was discretized by a uniform grid of finite cells with 4 × 4 × 4 voxels
per finite cell. Using the segmentation, cells within the bounding box that lie completely
outside the physical domain of the vertebra were identified and excluded from the FCM
model. This filtering left 10,970 and 13,414 finite cells for the L4 and L5 vertebrae models,
respectively. Sagittal sections through the FCM meshes are shown in Figure 6.5.

(a) The discretization of L4 (b) The discretization of L5

Figure 6.5: The FCM discretization of the vertebrae, reproduced from [185].

The material properties of the bone’s model were assigned voxel-wise. As the material
description of the vertebrae is based on a clinical QCT scan, where the resolution of the
images does not resolve the trabecular microstructure, a continuum-level material model
was used for the bone. Here, we used the heterogeneous material model described by the
linear E–ρ relationship introduced by Kopperdahl [141]:

E = −34.7 + 3230ρ, (6.2)

where E is the local Young’s modulus in MPa, and ρ is the equivalent mineral density
in g/cm3. The equivalent density was obtained from the QCT numbers (Hounsfield units)
using the scan’s calibration parameters. As the Kopperdahl model can give a negative
elastic modulus for voxels with very low density, a cutoff threshold for ρ = 0.01 g/cm3 was
set. Voxels that are outside the segmentation of the vertebrae (in finite cells that are cut by
the boundary), or within the cancellous region of the bone with an equivalent density that
is lower than the cutoff threshold were assigned a “void material” with Efict = 10⊗4 MPa
and Poisson ratio ν = 0.3.
For the L4 vertebra, the loads considered are the external loads (constant vertical load, and
the harmonic sagittal moment), and the reaction force and moment from the intervertebral
disc. The loads acting on L5 are the reaction force and moment from the disc at the
superior endplate, and the reactions at the fixed support at the inferior endplate. The

‡The model was implemented by Oguz Oztoprak in [185]. His efforts are gratefully acknowledged.
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non-inertial reference frame for each vertebra is set in its initial configuration. As the
L4 vertebra changes its orientation during the course of the analysis (rigid rotation), the
vertical load applied on the top is accordingly transformed.
To apply the concentrated loads in the FCM model, the proposed method of coupling
additional load-transfer blocks to the load surfaces was employed. To that end, for the
L4 two additional domains were defined, which extend above and below the endplates.
For L5, only one load-transfer block was defined to apply the loads from the joint, as the
inferior endplate was fixed (Dirichlet boundary condition). The geometry of the blocks
were implicitly defined as cuboids that were rotated to align with the tangent vectors of
the spinal axis at the centroids of the intervertebral discs. A Boolean difference operation
was used to remove the overlap between the blocks and the embedded vertebrae. The load-
transfer blocks were assigned a linear elastic material with Young’s modulus E = 107 MPa,
and Poisson ratio ν = 0.3—approximately 3 orders of magnitude stiffer than cortical bone.
The bounding boxes of the blocks were discretized by Cartesian grids of finite cells of the
same size and orientation as the FCM meshes of the bones. This added a total of 5,521
and 3,165 finite cells to the FCM models of L4 and L5, respectively. Using a polynomial
degree p = 4, the complete models have approximately 900 thousand and 600 thousand
degrees of freedom. The FCM discretization of the blocks are shown in Figure 6.6.

(a) The discretization of L4 with two load
interfaces

(b) The discretization of L5 with one load-
ing interface

Figure 6.6: The FCM discretization of the loading interfaces, reproduced from [185].

To apply the distributed loads, rectangular load surfaces were defined on the flat load-
transfer blocks. The load surfaces are centered at the previously defined markers which
represent the centroids of the intervertebral discs. The forces are applied to the load
surfaces as uniformly distributed surface tractions, whereas the moments are applied as
varying tractions. Thereby, the application of the loads is consistent with the muscu-
loskeletal model.
The load-transfer blocks were coupled to the FCM meshes of the vertebrae at the interfaces
defined by the endplates. To that end, the penalty method was applied, as described in the
previous chapter. The penalty terms were numerically integrated using the surface meshes
of the endplates, shown in Figure 6.3. Additionally, the clamped boundary condition at
the inferior endplate of L5 was weakly enforced, also employing the penalty method. The
penalty parameter was chosen empirically as β = 1015.
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As only external loads were applied on L4 without defining a support, it was necessary
to constrain its rigid body modes. Here, the external loads are in equilibrium, so the
constraints were only applied to remove the six rigid body modes (3 translations and 3
rotations) to result in a stiffness matrix with full rank. This is accomplished by constrain-
ing six displacement components at four points as described e.g. in [77] (see Figure 6.7).
To that end, Dirichlet constraints were applied on four points of the L4 vertebra using
a penalty approach. The constraint points were selected such that they lie within the
physical domain of the FCM model, i.e. within the bone with full stiffness. As the ex-
ternal loads are in static equilibrium, there are no reaction forces exhibited at the point
constraints.

(a) Constraining a three-dimensional body,
reproduced from [77].

(b) Four points used to constrain L4

Figure 6.7: Suppressing rigid body modes for the vertebra

Numerical solution of the FCM model

The FCM analysis was carried out using our in-house high-order framework AdhoC++. The
quasistatic analysis considers each time-step independently. Therefore, the system of lin-
ear equations for the coupled meshes was set up and the Dirichlet constraints were applied,
then the system was solved with a new right-hand side for each time-step representing a
new load-case.
The penalization of the stiffness in the fictitious domain leads to ill-conditioning of the
resulting stiffness matrices. Additionally, the high stiffness contrast between the bone and
the load-transfer blocks, and the use of the penalty method for the weak imposition of
Dirichlet boundary conditions and constraints exacerbate the ill-conditioning. Hence, the
use of a direct solver for this application is necessary. We used the parallel direct solver
Pardiso provided as part of the Intel Math Kernel Library [114].
Fortunately, the use of a direct solver provides an advantage for the purpose of this
application. As we need to solve the same linear system with multiple right-hand sides,
the main cost of using a direct solver, namely the factorization of the constrained system
matrix, is incurred just once for the whole analysis. Hence, we can cache the factorized
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matrix and only carry out the forward and backward solution steps for each right-hand
side.
Running on a six-core Intel® Core™ i5 9600K @4.6 GHz CPU, the quasistatic analysis of
the L4 vertebra required a run-time of approximately 3 minutes to integrate the stiffness
matrix and 3 minutes for the Cholesky factorization of the matrix. For each load-case (cor-
responding to a time-step of the multibody dynamic simulation), the forward/ backward
solution requires approximately 3 seconds. Solving the FCM analysis for 50 time-steps
for the whole timespan (∆t = 0.2 s), the whole computation, including post-processing
(numerical computation of the stresses and writing the result files disk), takes under 20
minutes for each vertebra.

Results

A surface mesh for a sagittal section through the vertebrae was generated using
ParaView [10]. This mesh was used for the visualization of the numerically calculated
von-Mises stresses, which are shown for the L4 vertebra at three different time-steps in
Figure 6.8, alongside the respective animations of the multibody dynamic simulation.
Here, the vertebra is shown in the initial configuration, which is used for the quasistatic
analysis as a non-inertial reference frame. The elastic deformations of the vertebra are
scaled by a factor of 30 for better visibility.
In the first time-step (Figure 6.8a), the L4 vertebra is subjected to the vertical load,
and the corresponding reaction force and moment at the joint. Note that a moment is
necessary at the joint to balance the couple of the applied force and the reaction force,
which are not vertically aligned, as the loading marker is slightly in front of the joint
marker (see Figure 6.4). Hence, in the first time-step the vertebra is subjected to both
axial compression and bending in the sagittal plane. The computed stresses show high
stresses (compression) at the anterior (front) portion of the cortical shell, whereas at
the posterior part of the shell the tensile stresses caused by the bending are partially
compensated by the axial compression load. Here, we point out that the model neglects
the actions of muscle and ligaments which stabilize the spinal segment. Including these
forces in the analysis could significantly influence the results, as demonstrated in [259].
The second time-step shown (Figure 6.8b) corresponds to the state where the applied har-
monic sagittal moment has the maximum magnitude (10 N.m.), and the joint is in flexion.
Here, the stresses state is more dominated by the bending, compared to the first-time step.
The computed stresses at the anterior part of the cortical shell are significantly higher,
whereas the posterior part of the shell exhibits higher stresses in tension. Whereas the
annulus fibrosus is able to transmit tensile forces [25], this result was possibly exaggerated
due to the missing ligament forces.
In contrast, in the last time-step (Figure 6.8c), the applied moment has the maximum
magnitude in the opposite direction with the joint in extension. Here, the bending is
in the opposite direction, meaning that the anterior part of the shell is under tension,
whereas the posterior part is under compression.
Overall, the numerical prediction of the stresses agree well with the loading states. The
results do not exhibit large oscillations, and there are no discernible discontinuities at
the element boundaries, which indicates a low approximation error. The model includes
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(a) t = 0.01 s, vertical load

(b) t = 1.58 s, vertical load and maximum flexion

(c) t = 4.68 s, vertical load and maximum extension

Figure 6.8: Results of the combined musculoskeletal model and FCM analysis of L4,
equivalent stresses
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singularities, e.g. at the outer edges of the boundaries of the endplates, and at the re-
entrant corner of the pedicle. Local refinement of the meshes to treat these singularities
would further reduce the approximation error. For a more extensive discussion of the
results and the setup of this example, the interested reader is referred to [185].

6.1.5 Discussion

In this application, we have presented a numerical approach for the inclusion of concen-
trated loads in patient-specific FCM models of the vertebra. The results demonstrate the
applicability of the FCM as part of a pipeline for patient-specific biomechanical modeling,
where the forces are calculated using musculoskeletal models.
The proposed approach provides a convenient way of including the concentrated loads in
a way that is consistent with the musculoskeletal simulation. No additional assumptions
are introduced by this approach, and it requires no additional modeling effort. Hence,
it is well suited as part of an automated workflow, where the estimated forces from the
musculoskeletal simulation are directly input to the FCM simulation kernel without the
need for additional manual post-processing.
There are, however, some limitations to the proposed approach. As the load-transfer
blocks are modeled by three-dimensional solid elements, the additional coupling leads to
a significant increase in the size of the linear system. In comparison, coupling approaches
which utilize beam or shell elements to apply constraints on the load surfaces result in
a marginal increase of the total number of degrees of freedom. Further work should
investigate the applicability of coupled FCM–shell elements for the imposition of moment
loads in FCM models. Additionally, the very stiff material assigned to the load-transfer
block adds a constraint to the deformation of the load surface which prevents warping
deformation, that is out of plane deformation caused by torsional loads on non-circular
cross sections. Fortunately, such deformations are not a dominant mode in the intended
use-case of this approach—namely the simulation of the biomechanics of the spine.
Future work should address the use of local refinement, e.g. through the use of the multi-
level hp-scheme as described in the previous chapter, which would lead to more efficient
computations. Especially the load-transfer meshes can benefit from local refinement at
the coupling interface. Further optimization of the computational performance could be
achieved by using axis aligned FCM meshes for the load-transfer blocks. In this work,
all FCM meshes were aligned to the scan. Rotating the FCM meshes for the blocks
to match their orientation (aligned with the tangent vectors of the spinal axis at the
respective markers) would significantly reduce the number of cut cells, thereby reducing
the computational cost.
More complex musculoskeletal models consider several vertebral segments, which also
makes it necessary to include muscles and ligaments to stabilize the model. These are
modeled as nonlinear force elements and passive elastic elements that are attached to
the bone at single points. The resulting point forces are more challenging to include
in the model, in contrast to the forces resulting from the intervertebral discs, which are
distributed over the endplates. A possible approach to include such forces in FCM models
is to distribute the muscle forces over small patches on the surface, and applying local
mesh refinement at the points of attachment.
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6.2 Vertebra–screw simulation

The numerical simulation of vertebra–screw systems is of high importance. An adequate
resolution of the trabecular microstructure at the bone–implant interface is necessary,
which makes accurate simulations very computationally intensive and necessitates the use
of high-performance computing resources. In the work presented in the following section,
we apply the FCM in conjunction with the multi-level hp-refinement scheme—as outlined
in the previous chapter—to resolve the bone–implant interfaces in finite-cell analysis of
vertebrae with pedicle screws. Local refinement allows us to resolve the microstructure
at the interface at a moderate computational cost. A numerical example is presented to
illustrate the applicability of the numerical scheme for the solution of a high-resolution
vertebra–screw model.

6.2.1 Introduction

Pedicle screw rod instrumentation is a widespread surgical procedure used to treat a
diverse range of spinal disorders [252]. Through spinal fusion, two or more vertebrae
are permanently joined to treat instabilities or correct spinal deformities, e.g. scoliosis
(abnormal lateral curvature of the spine) [164]. To this end, two screws are inserted
posteriorly through the pedicles into each vertebral body. The pedicle screws are joined
together with metal rods that restrict relative motion of the vertebrae, thereby stabilizing
the spine. In interbody fusion, the intervertebral disc is additionally removed and replaced
by a bone graft contained within a metallic cage, which bonds the two vertebrae together.
For corrective surgeries, forces are applied to the screws and rods in order to correct the
abnormal curvature. An X-ray image of a fused vertebral segment is shown in Figure 6.9.

(a) Schematic showing fusion rods [21] (b) X-ray image of fused L5 and S1 [205]

Figure 6.9: Spinal fusion of a vertebral segment
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The decision of how and when to perform surgery is a highly subjective one based on
the surgeon’s experience. It has been demonstrated in clinical trials that surgery is not
beneficial for patients with unspecific back pain [158]. However, for many other patients
spinal fusion is still indicated due to conditions like spondylolisthesis, spinal canal stenosis,
fractures or tumors [177]. Despite the extensive use of pedicle screw fixation, issues such
as screw loosening and breakage are recurring complications [194]. Particularly in elderly
patients with poor bone quality due to osteoporosis, anchorage of the pedicle screws
remains challenging [182].
The anchorage of pedicle screws depends mainly on the local quality of the trabecular bone
at the screw’s interface. To improve anchorage, the mechanical strength of this interface
can be enhanced, e.g. through the use of bone cement [124], or screws with hydroxyap-
atite coating [100]. Furthermore, surgery-related parameters (screw size, orientation and
insertion points) should be optimized to achieve better anchorage.
Finite element analysis of bone–implant interaction is a valuable tool in studying the
fixation of implants. Numerical models can predict pull-out strength [262, 61], also for
different loading conditions [35]. Furthermore, FE models can be used to assess the
stability of the interfaces resulting from different configurations (e.g. variable screw sizes
[196, 165, 222] and angles [172]), which can be used to assist surgeons in achieving better
outcomes.
However, accurate finite element simulations of fused vertebrae with pedicle screws can be
very challenging. As the anchorage depends mainly on the interaction between the screws
and the trabecular bone in the peri-implant region, the stability of the implants depends
on the local trabecular microstructure [261]. Hence, spatially resolving the trabecular mi-
crostructure is necessary for an accurate simulation of the bone–screw interface [263]. It
has also been shown that finite element models with simplified screw geometry underesti-
mate the resulting mechanical stresses [222]. The geometry of the trabecular microstruc-
ture can be resolved from micro-CT or HR-pQCT scans. Currently, such scans cannot be
performed in vivo for the human vertebra, which limits the possibility of patient-specific
FE analysis. Nevertheless, simulations that are based on in vitro models are useful in
gaining a better understanding of bone–implant interaction.
The very complex geometry of the bone–screw interface presents a challenge for finite
element modeling, as generating an analysis suitable mesh at a microstructural level is
a difficult task [162]. To that end, a surface triangulation of the trabeculae is gener-
ated, and used together with the CAD model of the implant to generate a boundary
conforming tetrahedral mesh. In studies dealing with the numerical modeling of dental
implants, generating quadratic tetrahedral meshes for small volumes of interest surround-
ing the screws already generates around 10 million elements with 30 million degrees of
freedom [265, 161, 163]. Including bone-cement in the model, or assigning different ma-
terial properties for the peri-implant zone would make this even more challenging.
Alternatively, high-resolution micro-voxel FEM (µ-FEM) models based on micro-CT im-
ages which resolve the trabecular microstructure can be used for numerical studies of
bone–implant interfaces [262, 242, 211, 35]. µ-FEM models are considered the current gold
standard for the simulation of vertebra–screw interaction. As described in Section 2.3.2,
the µ-FEM directly converts voxels of the micro-CT scan to hexahedral finite elements.
Thereby, it can resolve the geometry of the trabecular microstructure without complex
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mesh generation procedures. As the µ-FEM is voxel-based by definition, the model of the
screws, typically implicit geometrical CAD models have to be voxelized. Since µ-FEM
models have meshes with very small element sizes, local solution features such as stress
concentration and singularities in the peri-implant region are also adequately represented.
However, due to the very high resolution of the models origination from micro-CT scans
and the uniform element-size in µ-FEM models, the resulting finite element systems for
models of regions of interest are very large (typical in the range of hundreds of millions
of degrees of freedom), making the use of supercomputing power often necessary [80].
Hence, in many published studies, e.g. [262, 263, 35], only part of the vertebra around the
screw can be modeled, applying simplified boundary conditions at the surfaces bounding
the volume of interest, which limits the applicability of µ-FEM modeling of more complex
configurations involving multiple vertebrae.
To address these shortcomings, in this work we use the finite cell method (FCM) for the
simulation of vertebra–screw mechanics. This approach provides several benefits making
it very suitable for the task. Similar to the µ-FEM, the FCM requires a low human
modeling effort in setting up the simulations, as the FCM does not require the generation
of boundary-conforming meshes. As demonstrated in Chapter 4, FCM models based on
high-resolution CT images can accurately simulate the biomechanical behavior of vertebral
bodies. Furthermore, with an adequate approach to deal with the weak discontinuity
at the material interface, and employing local refinement as necessary, the FCM can
accurately model the bone–screw interface using a moderate number of degrees of freedom.
Additionally, thanks to the inherent flexibility of the FCM in utilizing various types of
geometric descriptions, no additional effort is required for the re-parametrization of the
geometries of either the bone or the screws. In the following, we outline the proposed
simulation approach, and present a numerical simulation of a vertebra with two pedicle
screws.

6.2.2 Vertebra–screw FCM model

Here, we assume that the screw is in full contact with the bone at the interface, and treat
the contact as a material interface problem. We use linear elastic material models for
both the bone and the screw. The material interface problem is treated numerically in
the framework of the FCM as described in Chapter 5. The workflow of our simulation
approach is illustrated in Figure 6.10.
We use two separate geometric descriptions for the vertebra and the screws. For the
vertebra, the geometry and the local material properties are described by a CT scan
with sufficiently fine resolution to distinguish the trabecular microstructure, e.g. a micro-
CT or high-resolution peripheral quantitative CT (HR-pQCT) scan. Segmentation of
the high resolution scan is necessary in order to identify the structure of the vertebra
within the scan without the surrounding soft tissue. The binary image resulting from the
segmentation is used in conjunction with a threshold filter of the original scan to create
an image-based FCM model, as presented in Chapters 3 and 4.
The FCM model for the screws is based on a B-Rep model created using CAD software.
In the context of FCM, the geometric models only needs to provide a reliable point mem-
bership test. To that end, the B-Rep model, which describes the bounding surfaces of the
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Figure 6.10: Workflow of coupled FCM analysis of the vertebra–screw model
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screw as trimmed NURBS patches can be directly used with a ray-casting algorithm. This
is possible if the B-Rep model is free of modeling flaws. However, using the exact surface
description provided by the NURBS surfaces can be computationally expensive. Instead,
a water-tight surface triangulation of the CAD model can be used for the ray-casting-
based point membership test. An alternative approach was presented by Wassermann
et al. [257], where flawed CAD models can be directly used for the point membership
test.
Here, we highlight the fact that the FCM for interface material problems can be used
to easily combine different types of material descriptions in a single model. There is no
need to generate a boundary-conforming mesh, and the geometrical model is used for the
numerical integration of the element matrices. Hence, the FCM bone–implant requires no
additional effort for geometry re-parametrization, in contrast to conventional approaches
employing p-FEM, where a B-Rep model of the CT-based bone geometry needs to be
first generated [129], or voxel based µ-FEM analysis where the implant’s geometry is
voxelized [262].
The FCM models of the vertebra and the screws are then combined in a single analysis.
We use separate discretizations for the bounding box of each object, which is embedded
in a regular grid of finite cells. The screws are then positioned within the vertebral body
using a CAD software. In the FCM grid describing the vertebra, the bone tissue displaced
by the screws is accounted for through a Boolean difference operation. Here, cannulated
screws require additional attention to remove the bone tissue within their hollow shafts.
To resolve singularities and stress concentration caused by the geometry, material interface
and boundary conditions, we use the multi-level hp-refinement to locally refine the FCM
meshes as described in the previous section. Here, the coupled FCM approach allows us
to refine each mesh independently. We refine the meshes a priori guided by the geometry.
Within the mesh for the vertebra, we expect singularities at the bone–screw interface, at
the re-entrant corner of the pedicle, and at the intersections with the shafts of the screws
at the points of insertion. For the meshes of the screws, we expect singularities around
the threads—especially at the concave geometry at the roots of the threads—and at the
shafts where the contact zone ends. Additionally, clamped boundary conditions induce
singularities. Accordingly, we apply a local refinement on each mesh towards its expected
singularities as described in Section 5.3.2.
The overlapping multi-level hp-FCM meshes are then weakly coupled at the bone–screw
interfaces. To that end, we use the penalty method as described in Section 5.2. Other
coupling methods, such as e.g. Nitsche’s method, are also applicable here. For the
numerical integration of the penalty terms along the material interface, surface meshes
can be easily generated from the CAD model of the screw.
The boundary conditions are applied to each mesh separately. Depending on the load-case
being studied, forces and/or moments are applied to the screws, whereas the vertebra is
fixed. Since the CAD models of the screws have well-defined surfaces for load-application,
defining the forces and moments as distributed tractions is easily achieved. The tractions
are included in the respective meshes of the screws as inhomogeneous Neumann boundary
conditions. For the numerical integration, surface meshes for load-bearing surfaces can
be easily generated utilizing the CAD models. Dirichlet boundary conditions are weakly
enforced, also using the penalty method. For the numerical integration, a surface mesh
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of the endplates can be generated using the marching cubes algorithm and the segmented
binary image.

6.2.3 Numerical example§

In the following, we present an example of a vertebra–implant simulation using the multi-
level hp-FCM. It is noteworthy that the numerical model considers the whole vertebra
with the local refinement resolving the microstructure at the interface.

Setup

We consider a lower thoracic vertebra into which two cannulated pedicle screws are in-
serted. We use the FCM with the weak coupling approach to solve the interface problem,
and employ multi-level hp-refinement to resolve the high gradients around the threads of
the screws.

The geometry of the vertebra originates from a CT scan with high spatial resolution,
carried out for a formalin-fixated specimen of the eleventh thoracic vertebra of an 84-
year-old donor. She had dedicated her body for educational and research purposes to the
local Institute of Anatomy prior to death, in compliance with the local institutional and
legislative requirements. Images were acquired by using a whole-body 256-row CT scanner
(iCT, Philips Medical Care, Best, The Netherlands) after 24 hours of degassing. Scan
parameters were a tube voltage of 120 kVp, a tube load of 585 mAs, an image matrix of
1024 × 1024 pixels, and a field of view of 150 mm. Transverse sections were reconstructed
with an interpolated voxel size of 146 × 146 × 146 µm3, and the intensity values of the
CT images were calibrated with a reference phantom (Mindways Osteoporosis Phantom,
San Francisco, CA, USA) to derive calcium hydroxyapatite values in (mg/cm3).

The geometric model of the screws is a B-Rep CAD model of a Viper2-Screw (DePuy
Synthes, Umkirch, Germany), kindly provided to us by the manufacturer.

The material properties for the vertebra were resolved on the voxel level, as a threshold
was set to the intensity values to distinguish the trabecular structure. The voxels that
are identified as inside the bone were assigned a Young’s modulus E(1) = 10 GPa, and
Poisson ratio ν = 0.3, which are commonly used parameters in HR-pQCT based voxel
FEM [186]. The material of the screws is titanium with E(2) = 100 GPa and ν = 0.3.

The considered load case simulates a pull-out test, where the vertebral body is clamped
and the screws are pulled axially outwards—as depicted in Figure 6.11. The Dirichlet
boundary conditions are defined as clamping of superior and inferior end-plates, whereas
the Neumann boundary condition is defined on the screws head, as a uniformly distributed
axial force.

§This section is based on work that was published in [75]. The main scientific research as well as the
textual elaboration of the publication was performed by the author of this work.
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(a) Geometry
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(b) Boundary conditions

Figure 6.11: Pull-out test

Discretization

hp-FCM

The complete model of the vertebra–screw system was setup virtually by combining both
geometric models as described in the following. First, the CT-scan was segmented using
ITK-SNAP [274] to obtain a separate model of the vertebral body without the surrounding
tissue. This segmentation only considers the outer boundary of the vertebra, and does
not distinguish between cortical and trabecular bone.
The CAD model of the screws was suitably positioned in the same coordinate space. To
carry out the point membership test on the CAD model, a watertight surface triangulation
of the screws was created using Rhinoceros [203]. The surface triangulation was then
utilized by a ray tracing algorithm [19], to determine whether a given integration point
lies within the screws’ geometry.
The first FCM mesh is used to discretize the embedding domain of the vertebral body. The
mesh is axis-aligned with the CT-scan. The FCM model uses the geometric description
based on the voxel data, as presented in [209, 268]. The geometry is defined by applying a
threshold to the CT-scan to define the bone-structure and subtracting the screws through
a Boolean operation. To account for the hollow shafts of the screws, an additional cylinder
at the central axis of each screw was subtracted. The numerical evaluation of the domain
integrals performs an intersection of the voxel grid with the refined FCM mesh to give
the integration sub-cells. This is necessary as the number of voxels per spatial direction
for one finite cell is not a power of two.
To resolve the stress concentration, the mesh is refined using the multi-level hp-scheme
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towards the cusps of the screws’ threads (concave geometry) and towards the re-entrant
corner at the pedicle. The second FCM mesh is used to discretize the embedding domain
of the screws. This mesh is refined towards the roots of the screws’ threads, where
stress concentration within the screws is expected. The spacetree scheme is used for the
numerical integration on the second mesh.
The complete discretization results in a total of 1, 322 finite cells for first mesh and 155
finite cells for the second mesh. Using polynomial degree p = 3 and k = 3 refinement
levels, the discretization has approximately 1.13 million degrees of freedom. The final
refined meshes are depicted in Figure 6.12.
To control the ill-conditioning of the stiffness matrices, the fictitious domain in both
meshes is given a stiffness of Efict = 10⊗4 GPa and νfict = 0.3. The FCM model contains
badly cut cells, which are expected in cases involving complex geometry, resulting in an
ill-conditioned matrix even with relatively low polynomial degrees [58]. Hence, the chosen
fictitious stiffness is relatively high. Nevertheless, as discussed at the end of Section 5.4.2,
the introduced modeling error is expected to be much lower than the approximation error
for this complex model.

(a) Vertebra (b) Screws

Figure 6.12: Discretization using FCM

Material interface

The penalty approach (see (5.8a)) was used to couple the meshes with β12 = 109. To
integrate the coupling terms, a fine surface triangulation for the bone-screw interfaces was
created using Rhinoceros, by meshing the outer surfaces of the screws. For an accurate
and efficient evaluation of the surface integral, the triangulation was intersected with the
refined finite cell grid, as shown in Figure 6.13. The triangles were then associated to
the finite cell pairs from the two meshes, such that the coupling terms were added to the
assembled stiffness matrices only once per finite-cell pair.
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(a) STL triangulation

(b) Intersected triangulation

Figure 6.13: Discretization of coupling surface

Boundary conditions

Dirichlet boundary conditions were applied at the superior and inferior end-plates of the
vertebra. These were weakly enforced using the penalty method, with the penalty terms
integrated over a surface triangulation. The surface description was generated using
the marching cubes algorithm and the segmentation. The penalty value was selected
empirically, βD = 107. The Neumann boundary conditions modeling the axial load on the
screws were applied on a surface mesh created from the CAD model. The surface mesh
was also intersected with the faces of the refined FCM mesh, to allow for a more accurate
evaluation of the Neumann integral.

Solution and numerical results

The resulting system of linear equations was solved using the parallel direct solver Intel®

Pardiso which is provided as part of the Intel Math Kernel Library [114]. The simulation
was run on two eight-core Intel® Xeon® E5-2690 @ 2.9 GHz CPUs. The model takes
approximately 40 minutes for the integration, solution and post-processing. Visualization
was carried out using ParaView [10] on the same hardware.
The surface of the trabecular bone was recovered using ParaView, for an axial and a
sagittal section. The recovered surface was used for the plots shown here. The computed
displacements are depicted in Figure 6.14. It can be observed that the applied boundary
conditions are fulfilled, and that the displacement field appears continuous across the
interface.
The von-Mises stresses calculated for the screws and the bones are depicted in Figure 6.15
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(a) Sagittal section (b) Axial section

Figure 6.14: Vertebra with pedicle screws: numerical approximation of displacements

for a sagittal and an axial section. The numerically approximated stresses are continuous
within the screw’s geometry, with no discernible jumps at element boundaries or large
scale oscillations. This indicates a low discretization error.
High stresses are visible in the neck region between the applied load and the vertebra.
Additionally, a bending stress distribution is observed for the helical thread, with the
maximum stress occurring at the roots of the thread. In the vertebra, the stress concen-
tration is localized around the screws, and at the pedicle’s re-entrant corner, which is a
common site of fracture initiation. Similar stress distribution patterns were also reported
for simulations using µ-FEM models [261, 263, 211, 35]. Altogether, it can be concluded
that the numerical results are mechanically plausible, and correspond well to the applied
load case.

6.2.4 Discussion

In this application, we demonstrated that the FCM for material interface problems in con-
junction with the multi-level hp-refinement scheme is directly applicable for the simulation
of geometrically complex vertebra–screw models. Furthermore, we demonstrated that the
flexible nature of the FCM in dealing with different types of geometric description allows
for an easy combination of the image-based model of the vertebra and the CAD-based
model of the screws. Together with the first application presented in this chapter, the
results showcase the potential of the FCM as an efficient tool for the accurate simulation
of material interface problems in bone mechanics.
As an embedded domain method, the FCM is able to resolve the complex geometries of
the trabecular microstructure, and that of the detailed CAD-model, without the need
for time-consuming mesh generation procedures. Using the weak coupling approach,
the FCM can also represent the weak discontinuity at the material interface, thereby
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(a) Sagittal section

(b) Axial section

Figure 6.15: Vertebra with pedicle screws: numerical approximation of von-Mises stresses
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recovering its favorable convergence properties. Employing the multi-level hp-scheme for
local refinement allows us to accurately represent the complex stress state at the bone–
screw interface using a moderate number of degrees of freedom (approx. 1 million degrees
of freedom), while considering the whole vertebra with two pedicle screws. Furthermore,
using separate meshes for each object allows for an effortless combination of different
types of geometrical description without need for any re-parametrization (voxelization of
the screw, surface meshing of the vertebral body).
There are, however, some limitations to our proposed approach for the simulation of
vertebra–screw models. We used a linear elastic material model for both the bone and
screws, which is used in the current gold standard of µ-FEM simulations. However, this
oversimplifies some aspects of the problem. For instance, it has been recently shown that
pre-stresses in the bone induced by the insertion process are significant and need to be
included in the models for an accurate simulation [72]. More sophisticated contact models
also allow for interface de-bonding for a more realistic scenario [61].
Moreover, due to the ill-conditioning of the stiffness matrices resulting from the FCM
discretization, we are restricted to the use of direct linear system solvers, which limits
the size of the largest system we can solve. The simulation of larger and more complex
configurations—involving several vertebrae and fusion rods—would estimate the loads on
the screws more realistically. To be able to solve larger models, or models with higher
resolution, the use of an iterative solver is necessary. Recent work shows that using a
multi-grid approach as a pre-conditioner is an effective approach for multi-level hp-refined
FCM grids [118].
The results presented in this application suggest that the FCM can be directly applied for
the numerical simulation of similar bone–implant problems. For example, the simulation
of femurs with implanted stems should be easily applicable with the proposed scheme,
presenting even fewer challenges. Another application with a very similar setup is the
simulation of dental implants, which can make use of the FCM to easily model problems
involving several layers of materials.
In this work, we have used a priori refined meshes, with a geometrically-driven local refine-
ment towards points where singularities are expected. The use of automatic refinement
based on an error estimator would help to further improve the numerical efficiency of the
proposed method. The development of error estimators for the FCM is a topic of active
current research [62].
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Chapter 7

Conclusion

7.1 Summary and conclusion

In this thesis, we have investigated the suitability of the finite cell method (FCM) as
a simulation tool for the biomechanical analysis of the human vertebra, and proposed
effective solutions to overcome its limitations.
We presented a new validation study for the FCM, which considered micro-CT-based mod-
els of human vertebral bodies. The validation experiments used digital volume correlation
to estimate the displacement fields within the vertebral bodies under axial compression.
The boundary conditions for the FCM models were interpolated from the DVC data and
weakly enforced using the penalty method. The numerical predictions of the displace-
ments were compared to the DVC measurements of the internal fields for validation. The
results show a very good agreement between the FCM simulations and the experiments,
underlining the potential of the micro-CT-based FCM as an attractive alternative simu-
lation approach to the well-established µ-FEM.
We also presented a numerical discretization technique using the FCM for solving three-
dimensional material interface problems involving complex geometry. We proposed the
combination of the FCM with a weak coupling approach to treat the issues caused by
the weak discontinuity. Additionally, we applied the multi-level hp-refinement scheme to
locally refine the FCM meshes in order to resolve singularities and local solution features
at the interfaces. A series of numerical experiments with two- and three-dimensional
benchmark problems was presented, showing that the proposed refinement scheme in
conjunction with the weak enforcement of the interface conditions leads to a significant
improvement of the convergence rates. To showcase the potential of the proposed combi-
nation of methods, we presented an application considering the high-resolution simulation
of a vertebra with pedicle screws.
Additionally, we proposed a numerical approach for the weak enforcement of concentrated
(point) loads in the FCM. This allows to consider boundary conditions stemming from
patient-specific musculoskeletal models, which we demonstrated in a proof-of-concept nu-
merical example which considered a single spinal segment.
In conclusion, we have demonstrated that the FCM is a powerful discretization technique
with great potential a simulation tool for biomechanical analysis. When combined with an



120 7. Conclusion

adequate method for the treatment of weak discontinuities and a suitable scheme for local
mesh refinement, the FCM can be used to carry out accurate high-resolution simulations
for a moderate computational cost. A particularly attractive feature is its flexibility in
handling different types of geometric representation, allowing for an effortless combination
of image-based bone models with CAD-models of implants.

7.2 Outlook

The results presented in this thesis open the door for exploring further applications of
the proposed numerical approach, but also highlight some limitations which should be
addressed by future research.
Whereas our validation study for the µ-FCM considered microstructural models, further
validation studies should also consider continuum-level patient-specific FCM models of
vertebra which are based on clinical QCT images. This would bring the method closer to
clinical applications.
The definition of realistic boundary conditions is important to ensure the reliability of
patient-specific clinical models. To that end, more detailed multibody simulations are
necessary. Moreover, accounting for the degeneration of the intervertebral discs should
make the FCM models more realistic, as the discs’ degeneration causes a redistribution
of the load profile over the vertebral bodies.
In our study, we examined the numerical predictions of the displacements within the
trabecular structure. Validation of the strains has more significance to the estimation of
fracture risk, but is also considerably more challenging. From the experimental side, the
registration algorithms require coarser grids to have enough physical features to identify
the displacements, which in turn limits their applicability for the pointwise validation of
strain fields. Moreover, the FCM models would need to be further refined to provide
numerically accurate predictions of the strains.
In our opinion, the main limitation of the FCM stems from the ill-conditioning of the
stiffness matrices, caused by the penalization of the material parameters in the fictitious
domain. This prevents the use of iterative methods to solve the linear systems of equation.
In this work, we resorted to using a direct solver, which imposes a hard limit on the
maximum solvable problem size due to its high memory requirements. The development
of effective preconditioners for the FCM is necessary to unlock its potential to solve
more complex problems in higher resolution. Recent research suggests that Additive-
Schwarz [117] and multigrid approaches [118] can be effectively used as preconditioners
for the multi-level hp-refined FCM to enable the use of iterative solvers.
In this work, we have used isotropic linear elastic constitutive equations to model the
bone tissue, both in continuum and microstructural scales. We apply an inhomogeneous
material distribution, which allows us to capture the anisotropic behavior of bone on a
larger scale. Clearly, employing anisotropic material models should increase the scope of
validity and reliability of the numerical models, while being straightforward to include in
the framework of the FCM.



BIBLIOGRAPHY 121

Bibliography

[1] Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., and Rank, E. (2013).
Performance of Different Integration Schemes in Facing Discontinuities in the Finite
Cell Method. International Journal of Computational Methods, 10(03):1350002.

[2] Adams, M. F., Bayraktar, H. H., Keaveny, T. M., and Papadopoulos, P. (2004).
Ultrascalable Implicit Finite Element Analyses in Solid Mechanics with over a Half a
Billion Degrees of Freedom. In SC ’04: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing, pages 34–34.

[3] Adams, M. F., Bayraktar, H. H., Keaveny, T. M., and Papdopoulos, P. (2003). Ap-
plications of Algebraic Multigrid to Large-Scale Finite Element Analysis of Whole
Bone Micro-Mechanics on the IBM SP. In SC ’03: Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, pages 26–26.

[4] Allaire, B. T., Lu, D., Johannesdottir, F., Kopperdahl, D., Keaveny, T. M., Jarraya,
M., Guermazi, A., Bredella, M. A., Samelson, E. J., Kiel, D. P., Anderson, D. E.,
Demissie, S., and Bouxsein, M. L. (2018). Prediction of incident vertebral fracture
using CT-based finite element analysis. Osteoporosis International.

[5] Anderson, A. E., Ellis, B. J., and Weiss, J. A. (2007). Verification, validation and
sensitivity studies in computational biomechanics. Computer Methods in Biomechanics
and Biomedical Engineering, 10(3):171–184.

[6] Annavarapu, C., Hautefeuille, M., and Dolbow, J. E. (2012a). A robust Nitsche’s
formulation for interface problems. Computer Methods in Applied Mechanics and
Engineering, 225–228:44–54.

[7] Annavarapu, C., Hautefeuille, M., and Dolbow, J. E. (2012b). Stable imposition of stiff
constraints in explicit dynamics for embedded finite element methods. International
Journal for Numerical Methods in Engineering, 92(2):206–228.

[8] Apostolatos, A., Schmidt, R., Wüchner, R., and Bletzinger, K.-U. (2014). A Nitsche-
type formulation and comparison of the most common domain decomposition methods
in isogeometric analysis. International Journal for Numerical Methods in Engineering,
97(7):473–504.

[9] Arbenz, P., van Lenthe, G. H., Mennel, U., Müller, R., and Sala, M. (2008). A scal-
able multi-level preconditioner for matrix-free µ-finite element analysis of human bone
structures. International Journal for Numerical Methods in Engineering, 73(7):927–947.



122 BIBLIOGRAPHY

[10] Ayachit, U. (2015). The ParaView Guide: A Parallel Visualization Application. Kit-
ware, Inc., USA.

[11] Babuška, I. (1973a). The finite element method with Lagrangian multipliers.
Numerische Mathematik, 20(3):179–192.

[12] Babuška, I. (1973b). The Finite Element Method with Penalty. Mathematics of
Computation, 27(122):221–228.

[13] Babuška, I. and Guo, B. (1996). Approximation properties of the h-p version of
the finite element method. Computer Methods in Applied Mechanics and Engineering,
133(3-4):319–346.

[14] Basler, S. E., Mueller, T. L., Christen, D., Wirth, A. J., Müller, R., and van Lenthe,
G. H. (2011). Towards validation of computational analyses of peri-implant displace-
ments by means of experimentally obtained displacement maps. Computer Methods in
Biomechanics and Biomedical Engineering, 14(2):165–174.

[15] Bassani, T. and Galbusera, F. (2018). Chapter 15 - Musculoskeletal Modeling. In
Galbusera, F. and Wilke, H.-J., editors, Biomechanics of the Spine, pages 257–277.
Academic Press.

[16] Bathe, K. J. (2007). Finite Element Procedures. Prentice Hall, New Jersey.

[17] Bayraktar, H. H., Buckley, J. M., Adams, M. F., Gupta, A., Hoffmann, P. F., Lee,
D., Papadopoulos, P., and Keaveny, T. M. (2003). Cortical shell thickness and its
contribution to vertebral body stiffness. In ASME Bioengineering Conference, Key
Biscayne, Florida.

[18] Bazilevs, Y. and Hughes, T. J. R. (2007). Weak imposition of Dirichlet boundary
conditions in fluid mechanics. Computers & Fluids, 36(1):12–26.

[19] Bindick, S., Stiebler, M., and Krafczyk, M. (2011). Fast kd-tree-based hierarchical
radiosity for radiative heat transport problems. International Journal for Numerical
Methods in Engineering, 86(9):1082–1100.

[20] Blanchard, R., Morin, C., Malandrino, A., Vella, A., Sant, Z., and Hellmich, C.
(2016). Patient-specific fracture risk assessment of vertebrae: A multiscale approach
coupling X-ray physics and continuum micromechanics: Patient-specific fracture risk
assessment of vertebrae: A multiscale approach coupling X-ray physics and contin-
uum micromechanics. International Journal for Numerical Methods in Biomedical
Engineering, 32(9).

[21] Blausen Medical Communications, Inc. (2014). Medical gallery of Blausen Medical
2014.

[22] Bog, T. (2017). Frictionless Contact Simulation Using the Finite Cell Method. PhD
Thesis, Technische Universität München, Munich.



BIBLIOGRAPHY 123

[23] Bog, T., Zander, N., Kollmannsberger, S., and Rank, E. (2015). Normal contact with
high order finite elements and a fictitious contact material. Computers & Mathematics
with Applications, 70(7):1370–1390.

[24] Bog, T., Zander, N., Kollmannsberger, S., and Rank, E. (2017). Weak imposition
of frictionless contact constraints on automatically recovered high-order, embedded
interfaces using the finite cell method. Computational Mechanics.

[25] Bogduk, N. (2005). Clinical Anatomy of the Lumbar Spine and Sacrum. Elsevier
Health Sciences.

[26] Bonet, J. and Wood, R. D. (1997). Nonlinear Continuum Mechanics for Finite
Element Analysis. Cambridge University Press, Cambridge ; New York, NY, USA.

[27] Bourke, P. (1994). Polygonising a scalar field (Marching Cubes). http://

paulbourke.net/geometry/polygonise/.

[28] Brebbia, C. A. (1978). The Boundary Element Method for Engineers. Pentech Press,
London.

[29] Brenner, S. C. and Scott, L. R. (2008). The Mathematical Theory of
Finite Element Methods. Number 15 in Texts in applied mathematics. Springer, New
York, USA, 3rd edition.

[30] Cai, Q., Kollmannsberger, S., Mundani, R.-P., and Rank, E. (2011). The finite
cell method for solute transport problems in porous media. In Proceedings of the
International Conference on Finite Elements in Flow Problems.

[31] Chen, Y. (2016). Verification and Validation of MicroCT-Based
Finite Element Models of Bone Tissue Biomechanics. PhD Thesis, University of
Sheffield, United Kingdom.

[32] Chen, Y., DallAra, E., Sales, E., Manda, K., Wallace, R., Pankaj, P., and Viceconti,
M. (2017). Micro-CT based finite element models of cancellous bone predict accu-
rately displacement once the boundary condition is well replicated: A validation study.
Journal of the Mechanical Behavior of Biomedical Materials, 65:644–651.

[33] Chen, Y., Pani, M., Taddei, F., Mazzà, C., Li, X., and Viceconti, M. (2014). Large-
Scale Finite Element Analysis of Human Cancellous Bone Tissue Micro Computer
Tomography Data: A Convergence Study. Journal of Biomechanical Engineering,
136(10):101013–101013–7.

[34] Chevalier, Y., Charlebois, M., Pahr, D., Varga, P., Heini, P., Schneider, E., and
Zysset, P. (2008). A patient-specific finite element methodology to predict damage
accumulation in vertebral bodies under axial compression, sagittal flexion and combined
loads. Computer Methods in Biomechanics and Biomedical Engineering, 11(5):477–487.

[35] Chevalier, Y., Matsuura, M., Krüger, S., Fleege, C., Rickert, M., Rauschmann, M.,
and Schilling, C. (2018). Micro-CT and micro-FE analysis of pedicle screw fixation
under different loading conditions. Journal of Biomechanics, 70:204–211.

http://paulbourke.net/geometry/polygonise/
http://paulbourke.net/geometry/polygonise/


124 BIBLIOGRAPHY

[36] Chevalier, Y., Pahr, D., Allmer, H., Charlebois, M., and Zysset, P. (2007). Validation
of a voxel-based FE method for prediction of the uniaxial apparent modulus of human
trabecular bone using macroscopic mechanical tests and nanoindentation. Journal of
Biomechanics, 40(15):3333–3340.

[37] Chevalier, Y., Pahr, D., and Zysset, P. K. (2009). The role of cortical shell and
trabecular fabric in finite element analysis of the human vertebral body. Journal of
Biomechanical Engineering, 131(11):111003.

[38] Chevalier, Y., Quek, E., Borah, B., Gross, G., Stewart, J., Lang, T., and Zysset,
P. (2010). Biomechanical effects of teriparatide in women with osteoporosis treated
previously with alendronate and risedronate: Results from quantitative computed
tomography-based finite element analysis of the vertebral body. Bone, 46(1):41–48.

[39] Chevalier, Y. and Zysset, P. K. (2012). A Patient-Specific Computer Tomography-
Based Finite Element Methodology to Calculate the Six Dimensional Stiffness
Matrix of Human Vertebral Bodies. Journal of Biomechanical Engineering,
134(5):051006–051006–6.

[40] Christiansen, B. A., Kopperdahl, D. L., Kiel, D. P., Keaveny, T. M., and Bouxsein,
M. L. (2011). Mechanical contributions of the cortical and trabecular compartments
contribute to differences in age-related changes in vertebral body strength in men and
women assessed by QCT-based finite element analysis. Journal of Bone and Mineral
Research, 26(5):974–983.

[41] Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. Number 40
in Classics in applied mathematics. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

[42] Clouthier, A. L., Hosseini, H. S., Maquer, G., and Zysset, P. K. (2015). Finite element
analysis predicts experimental failure patterns in vertebral bodies loaded via interver-
tebral discs up to large deformation. Medical Engineering & Physics, 37(6):599–604.

[43] Cook, R. D. (1977). Detection of Influential Observation in Linear Regression.
Technometrics, 19(1):15–18.

[44] Coradello, L., D’Angella, D., Carraturo, M., Kiendl, J., Kollmannsberger, S., Rank,
E., and Reali, A. (2020). Hierarchically refined isogeometric analysis of trimmed shells.
Computational Mechanics.

[45] Costa, M. C., Tozzi, G., Cristofolini, L., Danesi, V., Viceconti, M., and Dall’Ara,
E. (2017). Micro Finite Element models of the vertebral body: Validation of local
displacement predictions. PLOS ONE, 12(7):e0180151.

[46] Cottrell, J. A., Hughes, T. J. R., and Bazilevs, Y. (2009). Isogeometric Analysis:
Toward Integration of CAD and FEA. John Wiley & Sons.

[47] Crawford, R. P., Cann, C. E., and Keaveny, T. M. (2003). Finite element models
predict in vitro vertebral body compressive strength better than quantitative computed
tomography. Bone, 33(4):744–750.



BIBLIOGRAPHY 125

[48] Currey, J. D. (2002). Bones: Structure and Mechanics. Princeton University Press.

[49] Dahan, G., Trabelsi, N., Safran, O., and Yosibash, Z. (2016). Verified and validated
finite element analyses of humeri. Journal of Biomechanics, 49(7):1094–1102.

[50] Dall’Ara, E., Barber, D., and Viceconti, M. (2014). About the inevitable compromise
between spatial resolution and accuracy of strain measurement for bone tissue: A 3D
zero-strain study. Journal of Biomechanics, 47(12):2956–2963.

[51] Dall’Ara, E., Pahr, D., Varga, P., Kainberger, F., and Zysset, P. (2012). QCT-based
finite element models predict human vertebral strength in vitro significantly better than
simulated DEXA. Osteoporosis International, 23(2):563–572.

[52] Dall’Ara, E., Schmidt, R., Pahr, D., Varga, P., Chevalier, Y., Patsch, J., Kainberger,
F., and Zysset, P. (2010). A nonlinear finite element model validation study based on
a novel experimental technique for inducing anterior wedge-shape fractures in human
vertebral bodies in vitro. Journal of Biomechanics, 43(12):2374–2380.

[53] D’Angella, D., Zander, N., Kollmannsberger, S., Frischmann, F., Rank, E., Schröder,
A., and Reali, A. (2016). Multi-level hp-adaptivity and explicit error estimation.
Advanced Modeling and Simulation in Engineering Sciences, 3(1):33.

[54] Dauge, M., Düster, A., and Rank, E. (2015). Theoretical and Numerical Investigation
of the Finite Cell Method. Journal of Scientific Computing, 65(3):1039–1064.

[55] de Jalon, J. G. and Bayo, E. (1994). Kinematic and Dynamic Simulation
of Multibody Systems: The Real-Time Challenge. Mechanical Engineering Series.
Springer-Verlag, New York.

[56] de Prenter, F., Lehrenfeld, C., and Massing, A. (2018). A note on the stability
parameter in Nitsche’s method for unfitted boundary value problems. Computers &
Mathematics with Applications, 75(12):4322–4336.

[57] de Prenter, F., Verhoosel, C. V., van Brummelen, E. H., Evans, J. A., Messe, C., Ben-
zaken, J., and Maute, K. (2020). Multigrid solvers for immersed finite element methods
and immersed isogeometric analysis. Computational Mechanics, 65(3):807–838.

[58] de Prenter, F., Verhoosel, C. V., van Zwieten, G. J., and van Brummelen,
E. H. (2017). Condition number analysis and preconditioning of the finite cell
method. Computer Methods in Applied Mechanics and Engineering, 316(Supplement
C):297–327.

[59] de Zee, M., Hansen, L., Wong, C., Rasmussen, J., and Simonsen, E. B. (2007).
A generic detailed rigid-body lumbar spine model. Journal of Biomechanics,
40(6):1219–1227.

[60] Demkowicz, L., Rachowicz, W., and Devloo, P. (2002). A Fully Automatic hp-
Adaptivity. Journal of Scientific Computing, 17(1-4):117–142.



126 BIBLIOGRAPHY

[61] den Abbeele, M. V., Valiadis, J.-M., Lima, L. V. P. C., Khalifé, P., Rouch, P.,
and Skalli, W. (2018). Contribution to FE modeling for intraoperative pedicle screw
strength prediction. Computer Methods in Biomechanics and Biomedical Engineering,
21(1):13–21.

[62] Di Stolfo, P. and Schröder, A. (2021). Reliable Residual-Based Error Estimation for
the Finite Cell Method. Journal of Scientific Computing, 87(1):12.

[63] Dolbow, J. and Harari, I. (2009). An efficient finite element method for embed-
ded interface problems. International Journal for Numerical Methods in Engineering,
78(2):229–252.

[64] Duczek, S., Duvigneau, F., and Gabbert, U. (2016). The finite cell method for
tetrahedral meshes. Finite Elements in Analysis and Design, 121:18–32.

[65] Duczek, S. and Gabbert, U. (2015). Efficient integration method for fictitious domain
approaches. Computational Mechanics.

[66] Duczek, S. and Gabbert, U. (2016). The finite cell method for polygonal meshes:
Poly-FCM. Computational Mechanics, pages 1–32.

[67] Duczek, S., Joulaian, M., Düster, A., and Gabbert, U. (2014). Numerical analysis
of Lamb waves using the finite and spectral cell methods. International Journal for
Numerical Methods in Engineering, 99(1):26–53.

[68] Düster, A. (2010). High Order FEM - Lecture Notes. Technical report, TU München,
Chair for Computation in Engineering.

[69] Düster, A., Parvizian, J., and Rank, E. (2010). Topology optimization based on the
finite cell method. PAMM, 10(1):151–152.

[70] Düster, A., Parvizian, J., Yang, Z., and Rank, E. (2008). The finite cell method
for three-dimensional problems of solid mechanics. Computer Methods in Applied
Mechanics and Engineering, 197(45–48):3768–3782.

[71] Düster, A., Rank, E., and Szabó, B. A. (2017). The p-version of the finite element
method and finite cell methods. In Stein, E., Borst, R., and Hughes, T. J. R., editors,
Encyclopedia of Computational Mechanics, volume 2, pages 1–35. John Wiley & Sons,
Chichester, West Sussex.

[72] Einafshar, M., Hashemi, A., and van Lenthe, G. H. (2021). Homogenized finite
element models can accurately predict screw pull-out in continuum materials, but not
in porous materials. Computer Methods and Programs in Biomedicine, 202:105966.

[73] Eisenträger, S., Atroshchenko, E., and Makvandi, R. (2020). On the condition num-
ber of high order finite element methods: Influence of p-refinement and mesh distortion.
Computers & Mathematics with Applications, 80(11):2289–2339.



BIBLIOGRAPHY 127

[74] Elhaddad, M., Kollmannsberger, S., Valentinitsch, A., Kirschke, J., Ruess, M., and
Rank, E. (2017). Micro-CT based finite cell analysis of vertebral bodies. In Engineering
Mechanics Institute Conference 2017.

[75] Elhaddad, M., Zander, N., Bog, T., Kudela, L., Kollmannsberger, S., Kirschke, J. S.,
Baum, T., Ruess, M., and Rank, E. (2018). Multi-level hp-finite cell method for em-
bedded interface problems with application in biomechanics. International Journal for
Numerical Methods in Biomedical Engineering, 34(4):e2951.

[76] Elhaddad, M., Zander, N., Kollmannsberger, S., Shadavakhsh, A., Nübel, V., and
Rank, E. (2015). Finite Cell Method: High-Order Structural Dynamics for Complex
Geometries. International Journal of Structural Stability and Dynamics, 15(7):1540018.

[77] Felippa, C. A. (2013). Introduction to Finite Element Methods. Lecture Notes,
Department of Aerospace Engineering Sciences, University of Colorado at Boulder,
Boulder, Colorado, USA.

[78] Fernández-Méndez, S. and Huerta, A. (2004). Imposing essential boundary conditions
in mesh-free methods. Computer Methods in Applied Mechanics and Engineering,
193(12-14):1257–1275.

[79] Fields, A. J. (2010). Trabecular Microarchitecture, Endplate Failure, and the
Biomechanics of Human Vertebral Fractures. PhD thesis, UC Berkeley.

[80] Flaig, C. and Arbenz, P. (2012). A Highly Scalable Matrix-Free Multigrid Solver
for µFE Analysis Based on a Pointer-Less Octree. In Lirkov, I., Margenov, S., and
Waśniewski, J., editors, Large-Scale Scientific Computing, Lecture Notes in Computer
Science, pages 498–506, Berlin, Heidelberg. Springer.

[81] Fries, T.-P. (2008). A corrected XFEM approximation without problems in blending
elements. International Journal for Numerical Methods in Engineering, 75(5):503–532.

[82] Fries, T.-P. and Belytschko, T. (2010). The extended/generalized finite element
method: An overview of the method and its applications. International Journal for
Numerical Methods in Engineering, 84(3):253–304.

[83] Fries, T.-P. and Omerović, S. (2015). Higher-order accurate integration of implicit ge-
ometries. International Journal for Numerical Methods in Engineering, 106(5):323–371.

[84] Fries, T. P., Omerović, S., Schöllhammer, D., and Steidl, J. (2017). Higher-
order meshing of implicit geometries—Part I: Integration and interpolation in cut el-
ements. Computer Methods in Applied Mechanics and Engineering, 313(Supplement
C):759–784.

[85] Gerstenberger, A. and Wall, W. A. (2010). An embedded Dirichlet formulation for 3D
continua. International Journal for Numerical Methods in Engineering, 82(5):537–563.

[86] Giraldo, D. and Restrepo, D. (2017). The spectral cell method in nonlinear earth-
quake modeling. Computational Mechanics, pages 1–21.



128 BIBLIOGRAPHY

[87] Gokhale, N. (2008). Practical Finite Element Analysis. Finite To Infinite.

[88] Gordon, W. J. and Hall, C. A. (1973). Transfinite element methods: Blending-
function interpolation over arbitrary curved element domains. Numerische Mathematik,
21(2):109–129.

[89] Grassi, L. and Isaksson, H. (2015). Extracting accurate strain measurements in bone
mechanics: A critical review of current methods. Journal of the Mechanical Behavior
of Biomedical Materials, 50:43–54.

[90] Groen, J. P., Langelaar, M., Sigmund, O., and Ruess, M. (2017). Higher-order multi-
resolution topology optimization using the finite cell method. International Journal for
Numerical Methods in Engineering, 110(10):903–920.

[91] Gui, W. and Babuška, I. (1986a). The h, p and h-p versions of the finite ele-
ment method in 1 dimension Part I: The error analysis of the p-version. Numerische
Mathematik, 49(6):577–612.

[92] Gui, W. and Babuška, I. (1986b). The h, p and h-p versions of the finite element
method in 1 dimension Part II: The error analysis of the h-and h-p versions. Numerische
Mathematik, 49(6):613–657.

[93] Gui, W. and Babuška, I. (1986c). The h, p and h-p versions of the finite element
method in 1 dimension Part III: The Adaptive h-p Version. Numerische Mathematik,
49(6):659–683.

[94] Halloran, J., Ackermann, M., Erdemir, A., and van den Bogert, A. (2010). Concur-
rent musculoskeletal dynamics and finite element analysis predicts altered gait patterns
to reduce foot tissue loading. Journal of biomechanics, 43:2810–5.

[95] Hambli, R. (2013). Micro-CT finite element model and experimental validation of
trabecular bone damage and fracture. Bone, 56(2):363–374.

[96] Hansbo, A. and Hansbo, P. (2002). An unfitted finite element method, based
on Nitsche’s method, for elliptic interface problems. Computer Methods in Applied
Mechanics and Engineering, 191(47-48):5537–5552.

[97] Hansbo, P. (2005). Nitsche’s method for interface problems in computational me-
chanics. GAMM-Mitteilungen, 28(2):183–206.

[98] Hansbo, P., Larson, M. G., and Larsson, K. (2017). Cut Finite Element Methods for
Linear Elasticity Problems. arXiv:1703.04377 [math].

[99] Hansbo, P., Lovadina, C., Perugia, I., and Sangalli, G. (2005). A Lagrange multiplier
method for the finite element solution of elliptic interface problems using non-matching
meshes. Numerische Mathematik, 100(1):91–115.

[100] Hasegawa, T., Inufusa, A., Imai, Y., Mikawa, Y., Lim, T.-H., and An, H. S. (2005).
Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in
the osteoporotic canine lumbar spine model: A pilot study. The Spine Journal: Official
Journal of the North American Spine Society, 5(3):239–243.



BIBLIOGRAPHY 129

[101] Heisserer, U. (2008). High Order Finite Elements for Material and Geometric
Nonlinear Finite Strain Problems. PhD thesis, Shaker, Aachen.

[102] Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., and Viceconti, M.
(2008). Mathematical relationships between bone density and mechanical properties:
A literature review. Clinical Biomechanics, 23(2):135–146.

[103] Herman, G. T. (2009). Fundamentals of Computerized Tomography:
Image Reconstruction from Projections. Springer, Dordrecht ; New York, 2nd
ed. 2010 edition edition.

[104] Hippmann, G. (2004). Modellierung von Kontakten komplex geformter Körper in
der Mehrkörperdynamik. Thesis, Technische Univeristät Wien.

[105] Höllig, K., Reif, U., and Wipper, J. (2001). Weighted extended B-spline approxi-
mation of Dirichlet problems. SIAM Journal on Numerical Analysis, 39(2):442–462.

[106] Hollister, S. J., Brennan, J. M., and Kikuchi, N. (1994). A homogenization sam-
pling procedure for calculating trabecular bone effective stiffness and tissue level stress.
Journal of Biomechanics, 27(4):433–444.

[107] Holzapfel, G. A. (2000). Nonlinear Solid Mechanics: A Continuum Approach for
Engineering. Wiley, Chichester, New York.

[108] Hongo, M., Abe, E., Shimada, Y., Murai, H., Ishikawa, N., and Sato, K. (1999).
Surface strain distribution on thoracic and lumbar vertebrae under axial compression.
The role in burst fractures. Spine, 24(12):1197–1202.

[109] Hosseini, H. S. (2013). Constitutive Modeling of Trabecular Bone in
Large Strain Compression. PhD thesis, University of Bern.

[110] Hosseini, H. S., Pahr, D. H., and Zysset, P. K. (2012). Modeling and experimental
validation of trabecular bone damage, softening and densification under large compres-
sive strains. Journal of the Mechanical Behavior of Biomedical Materials, 15:93–102.

[111] Hughes, T. J. R. (2000). The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis. Dover Publications, Mineola, NY.

[112] Huiskes, R. and Chao, E. Y. S. (1983). A survey of finite element analysis in
orthopedic biomechanics: The first decade. Journal of Biomechanics, 16(6):385–409.

[113] Hussein, A. I., Barbone, P. E., and Morgan, E. F. (2012). Digital Volume Correlation
for Study of the Mechanics of Whole Bones. Procedia IUTAM, 4:116–125.

[114] Intel (2017). Intel Math Kernel Library. http://software.intel.com/en-us/intel-mkl.

[115] Janssen, D., Mann, K. A., and Verdonschot, N. (2008). Micromechanical modeling
of the cement-bone interface: The effect of friction, morphology and material properties
on the micromechanical response. Journal of biomechanics, 41(15):3158–3163.



130 BIBLIOGRAPHY

[116] Jiang, W. and Dolbow, J. E. (2015). Adaptive refinement of hierarchical B-spline
finite elements with an efficient data transfer algorithm. International Journal for
Numerical Methods in Engineering, 102(3-4):233–256.

[117] Jomo, J., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C., Kollmanns-
berger, S., Kirschke, J., Nübel, V., van Brummelen, E., and Rank, E. (2019). Ro-
bust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite
Elements in Analysis and Design, 163:14–30.

[118] Jomo, J., Oztoprak, O., de Prenter, F., Zander, N., Kollmannsberger, S., and Rank,
E. (2020). Hierarchical multigrid approaches for the finite cell method on uniform and
multi-level hp-refined grids. arXiv:2010.00881 [cs, math].

[119] Jones, A. C. and Wilcox, R. K. (2007). Assessment of factors influencing fi-
nite element vertebral model predictions. Journal of Biomechanical Engineering,
129(6):898–903.

[120] Jones, A. C. and Wilcox, R. K. (2008). Finite element analysis of the spine: Towards
a framework of verification, validation and sensitivity analysis. Medical Engineering &
Physics, 30(10):1287–1304.

[121] Joulaian, M., Duczek, S., Gabbert, U., and Düster, A. (2014). Finite and spec-
tral cell method for wave propagation in heterogeneous materials. Computational
Mechanics, 54(3):661–675.

[122] Joulaian, M. and Düster, A. (2013). Local enrichment of the finite cell method for
problems with material interfaces. Computational Mechanics, 52(4):741–762.

[123] Joulaian, M., Hubrich, S., and Düster, A. (2016). Numerical integration of discon-
tinuities on arbitrary domains based on moment fitting. Computational Mechanics,
57(6):979–999.

[124] Kafchitsas, K., Geiger, F., Rauschmann, M., and Schmidt, S. (2010). Cement
distribution in vertebroplasty pedicle screws with different designs. Der Orthopäde,
39(7):679–686.

[125] Kainz, H., Killen, B. A., Wesseling, M., Perez-Boerema, F., Pitto, L., Aznar, J.
M. G., Shefelbine, S., and Jonkers, I. (2020). A multi-scale modelling framework com-
bining musculoskeletal rigid-body simulations with adaptive finite element analyses, to
evaluate the impact of femoral geometry on hip joint contact forces and femoral bone
growth. PLOS ONE, 15(7):e0235966.

[126] Kamal, Z., Rouhi, G., Arjmand, N., and Adeeb, S. (2019). A stability-based model of
a growing spine with adolescent idiopathic scoliosis: A combination of musculoskeletal
and finite element approaches. Medical Engineering & Physics, 64:46 – 55.

[127] Kanis, J. A., Burlet, N., Cooper, C., Delmas, P. D., Reginster, J.-Y., Borgstrom, F.,
Rizzoli, R., and on behalf of the European Society for Clinical and Economic Aspects of
Osteoporosis and Osteoarthritis (ESCEO) (2008). European guidance for the diagnosis



BIBLIOGRAPHY 131

and management of osteoporosis in postmenopausal women. Osteoporosis International,
19(4):399–428.

[128] Katsikadelis, J. (2016). The Boundary Element Method for Engineers and
Scientists. Theory and Application. Elsevier.

[129] Katz, Y., Lubovsky, O., and Yosibash, Z. (2018). Patient-specific finite element
analysis of femurs with cemented hip implants. Clinical Biomechanics, 58:74–89.

[130] Keaveny, T. M. and Buckley, J. M. (2006). Chapter 4 - Biomechanics of Vertebral
Bone. In Kurtz, S. M. and Edidin, A. A., editors, Spine Technology Handbook, pages
63–98. Academic Press, Burlington.

[131] Keaveny, T. M., Donley, D. W., Hoffmann, P. F., Mitlak, B. H., Glass, E. V., and
San Martin, J. A. (2007). Effects of teriparatide and alendronate on vertebral strength
as assessed by finite element modeling of QCT scans in women with osteoporosis.
Journal of Bone and Mineral Research: The Official Journal of the American Society
for Bone and Mineral Research, 22(1):149–157.

[132] Keaveny, T. M., Guo, X. E., Wachtel, E. F., McMahon, T. A., and Hayes, W. C.
(1994). Trabecular bone exhibits fully linear elastic behavior and yields at low strains.
Journal of Biomechanics, 27(9):1127–1136.

[133] Kellogg, R. B. (1974). On the poisson equation with intersecting interfaces.
Applicable Analysis, 4(2):101–129.

[134] Keyak, J. H., Meagher, J. M., Skinner, H. B., and Mote, C. D. (1990). Auto-
mated three-dimensional finite element modelling of bone: A new method. Journal of
Biomedical Engineering, 12(5):389–397.

[135] Királyfalvi, G. and Szabó, B. A. (1997). Quasi-regional mapping for the p-version
of the finite element method. Finite elements in analysis and design, 27(1):85–97.

[136] Klein, S., Staring, M., Murphy, K., Viergever, M. A., and Pluim, J. P. W. (2010).
Elastix: A Toolbox for Intensity-Based Medical Image Registration. IEEE Transactions
on Medical Imaging, 29(1):196–205.

[137] Klein, S., Staring, M., and Pluim, J. P. W. (2007). Evaluation of optimization meth-
ods for nonrigid medical image registration using mutual information and B-splines.
IEEE transactions on image processing: a publication of the IEEE Signal Processing
Society, 16(12):2879–2890.

[138] Kollmannsberger, S., Özcan, A., Baiges, J., Ruess, M., Rank, E., and Reali, A.
(2015). Parameter-free, weak imposition of Dirichlet boundary conditions and coupling
of trimmed and non-conforming patches. International Journal for Numerical Methods
in Engineering, 101(9):670–699.



132 BIBLIOGRAPHY

[139] Kopperdahl, D. L., Aspelund, T., Hoffmann, P. F., Sigurdsson, S., Siggeirsdottir,
K., Harris, T. B., Gudnason, V., and Keaveny, T. M. (2014). Assessment of incident
spine and hip fractures in women and men using finite element analysis of CT scans.
Journal of Bone and Mineral Research, 29(3):570–580.

[140] Kopperdahl, D. L. and Keaveny, T. M. (1998). Yield strain behavior of trabecular
bone. Journal of Biomechanics, 31(7):601–608.

[141] Kopperdahl, D. L., Morgan, E. F., and Keaveny, T. M. (2002). Quantitative com-
puted tomography estimates of the mechanical properties of human vertebral trabec-
ular bone. Journal of Orthopaedic Research: Official Publication of the Orthopaedic
Research Society, 20(4):801–805.

[142] Kudela, L., Kollmannsberger, S., Almac, U., and Rank, E. (2020). Direct structural
analysis of domains defined by point clouds. Computer Methods in Applied Mechanics
and Engineering, 358:112581.

[143] Kudela, L., Zander, N., Bog, T., Kollmannsberger, S., and Rank, E. (2015). Effi-
cient and accurate numerical quadrature for immersed boundary methods. Advanced
Modeling and Simulation in Engineering Sciences, 2(1):1–22.

[144] Kudela, L., Zander, N., Kollmannsberger, S., and Rank, E. (2016). Smart octrees:
Accurately integrating discontinuous functions in 3D. Computer Methods in Applied
Mechanics and Engineering, 306:406–426.

[145] Kusins, J., Knowles, N., Columbus, M., Oliviero, S., Dall’Ara, E., Athwal, G. S.,
and Ferreira, L. M. (2020a). The Application of Digital Volume Correlation (DVC) to
Evaluate Strain Predictions Generated by Finite Element Models of the Osteoarthritic
Humeral Head. Annals of Biomedical Engineering, 48(12):2859–2869.

[146] Kusins, J., Knowles, N., Ryan, M., Dall’Ara, E., and Ferreira, L. (2019). Perfor-
mance of QCT-Derived scapula finite element models in predicting local displacements
using digital volume correlation. Journal of the Mechanical Behavior of Biomedical
Materials, 97:339–345.

[147] Kusins, J., Knowles, N., Ryan, M., Dall’Ara, E., and Ferreira, L. (2020b). Full-field
comparisons between strains predicted by QCT-derived finite element models of the
scapula and experimental strains measured by digital volume correlation. Journal of
Biomechanics, 113:110101.

[148] Ladd, A. J. C., Kinney, J. H., Haupt, D. L., and Goldstein, S. A. (1998). Finite-
element modeling of trabecular bone: Comparison with mechanical testing and deter-
mination of tissue modulus. Journal of Orthopaedic Research, 16(5):622–628.

[149] Legrain, G., Allais, R., and Cartraud, P. (2011). On the use of the extended finite
element method with quadtree/octree meshes. International Journal for Numerical
Methods in Engineering, 86(6):717–743.



BIBLIOGRAPHY 133

[150] Legrain, G., Chevaugeon, N., and Dréau, K. (2012). High order X-FEM and levelsets
for complex microstructures: Uncoupling geometry and approximation. Computer
Methods in Applied Mechanics and Engineering, 241-244:172–189.

[151] Lehner, S., Wallrapp, O., and Senner, V. (2010). Use of headgear in football A com-
puter simulation of the human head and neck. Procedia Engineering, 2(2):3263–3268.

[152] Liu, T., Khalaf, K., Adeeb, S., and El-Rich, M. (2018). Effects of lumbo-pelvic
rhythm on trunk muscle forces and disc loads during forward flexion: A combined
musculoskeletal and finite element simulation study. Journal of Biomechanics.

[153] Liu, X. S., Zhang, X. H., Rajapakse, C. S., Wald, M. J., Magland, J., Sekhon,
K. K., Adam, M. F., Sajda, P., Wehrli, F. W., and Guo, X. E. (2010). Accuracy
of high-resolution in vivo micro magnetic resonance imaging for measurements of mi-
crostructural and mechanical properties of human distal tibial bone. Journal of Bone
and Mineral Research, 25(9):2039–2050.

[154] Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution
3D surface construction algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, pages 163–169, New York, NY. ACM
Press.

[155] Lu, Y., Maquer, G., Museyko, O., Püschel, K., Engelke, K., Zysset, P., Morlock,
M., and Huber, G. (2014). Finite element analyses of human vertebral bodies embed-
ded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc mod-
els provide equivalent predictions of experimental strength. Journal of Biomechanics,
47(10):2512–2516.

[156] Majumdar, S., Genant, H. K., Grampp, S., Newitt, D. C., Truong, V.-H., Lin,
J. C., and Mathur, A. (1997). Correlation of Trabecular Bone Structure with Age,
Bone Mineral Density, and Osteoporotic Status: In Vivo Studies in the Distal Radius
Using High Resolution Magnetic Resonance Imaging. Journal of Bone and Mineral
Research, 12(1):111–118.

[157] Malvern, L. E. (1977). Introduction to the Mechanics of a Continuous Medium.
Prentice Hall, Englewood Cliffs.

[158] Mannion, A. F., Brox, J. I., and Fairbank, J. C. T. (2013). Comparison of spinal
fusion and nonoperative treatment in patients with chronic low back pain: Long-term
follow-up of three randomized controlled trials. The Spine Journal: Official Journal of
the North American Spine Society, 13(11):1438–1448.

[159] Manske, S. L., Zhu, Y., Sandino, C., and Boyd, S. K. (2015). Human trabecular
bone microarchitecture can be assessed independently of density with second generation
HR-pQCT. Bone, 79:213–221.

[160] Maple, C. (2003). Geometric design and space planning using the march-
ing squares and marching cube algorithms. In 2003 International Conference on
Geometric Modeling and Graphics, 2003. Proceedings, pages 90–95. IEEE.



134 BIBLIOGRAPHY

[161] Marcián, P., Borák, L., Valášek, J., Kaiser, J., Florian, Z., and Wolff, J. (2014).
Finite element analysis of dental implant loading on atrophic and non-atrophic can-
cellous and cortical mandibular bone – a feasibility study. Journal of Biomechanics,
47(16):3830–3836.

[162] Marcián, P., Konečný, O., Borak, L., Valášek, J., Řehák, K., Krpalek, D., and
Florian, Z. (2011). On the level of computational models in biomechanics depending
on gained data from CT/MRI and micro-CT. Mendel, pages 455–462.

[163] Marcián, P., Wolff, J., Horáčková, L., Kaiser, J., Zikmund, T., and Borák, L. (2018).
Micro finite element analysis of dental implants under different loading conditions.
Computers in Biology and Medicine, 96:157–165.

[164] Maruyama, T. and Takeshita, K. (2009). Surgery for Idiopathic Scoliosis: Currently
Applied Techniques. Clinical Medicine. Pediatrics, 3:39–44.

[165] Matsukawa, K., Yato, Y., and Imabayashi, H. (2020). Impact of Screw Diameter
and Length on Pedicle Screw Fixation Strength in Osteoporotic Vertebrae: A Finite
Element Analysis. Asian Spine Journal.

[166] McBroom, R. J., Hayes, W. C., Edwards, W. T., Goldberg, R. P., and White,
A. A. (1985). Prediction of vertebral body compressive fracture using quantitative
computed tomography. The Journal of Bone and Joint Surgery. American Volume,
67(8):1206–1214.

[167] McKay, M., Jackman, T. M., Hussein, A. I., Guermazi, A., Liu, J., and Morgan,
E. F. (2020). Association of vertebral endplate microstructure with bone strength in
men and women. Bone, 131:115147.

[168] McNally, D. S., Shackleford, I. M., Goodship, A. E., and Mulholland, R. C. (1996).
In vivo stress measurement can predict pain on discography. Spine, 21(22):2580–2587.

[169] Melenk, J. M. and Babuška, I. (1996). The partition of unity finite element
method: Basic theory and applications. Computer Methods in Applied Mechanics
and Engineering, 139(1):289–314.

[170] Middleditch, A. and Oliver, J. (2002). Functional Anatomy of the Spine.
Butterworth-Heinemann, Edinburgh etc., second edition.

[171] Moës, N., Cloirec, M., Cartraud, P., and Remacle, J. F. (2003). A computational
approach to handle complex microstructure geometries. Computer Methods in Applied
Mechanics and Engineering, 192(28–30):3163–3177.

[172] Molinari, L., Falcinelli, C., Gizzi, A., and Di Martino, A. (2021). Effect of pedicle
screw angles on the fracture risk of the human vertebra: A patient-specific computa-
tional model. Journal of the Mechanical Behavior of Biomedical Materials, 116:104359.

[173] Morgan, E. F., Bayraktar, H. H., and Keaveny, T. M. (2003). Trabecular bone
modulus–density relationships depend on anatomic site. Journal of Biomechanics,
36(7):897–904.



BIBLIOGRAPHY 135

[174] Mote, C. D. (1971). Global-local finite element. International Journal for Numerical
Methods in Engineering, 3(4):565–574.

[175] Müller-Karger, C. M., Rank, E., and Cerrolaza, M. (2004). p-version of the finite-
element method for highly heterogeneous simulation of human bone. Finite Elements
in Analysis and Design, 40(7):757–770.

[176] Nagaraja, S., Elhaddad, M., Ambati, M., Kollmannsberger, S., De Lorenzis, L., and
Rank, E. (2018). Phase-field modeling of brittle fracture with multi-level hp-FEM and
the finite cell method. Computational Mechanics.

[177] National Guideline Centre (UK) (2016). Low Back Pain and Sciatica in Over 16s:
Assessment and Management. National Institute for Health and Care Excellence: Clin-
ical Guidelines. National Institute for Health and Care Excellence (UK), London.

[178] Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., and Keaveny, T. M. (2000).
High-resolution finite element models with tissue strength asymmetry accurately pre-
dict failure of trabecular bone. Journal of Biomechanics, 33(12):1575–1583.

[179] Nitsche, J. (1971). Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen
bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36(1):9–15.

[180] Nordin, M. and Ph. D. Frankel, V. H., editors (2001). Basic Biomechanics of the
Musculoskeletal System. Lippincott Williams & Wilkins, Philadelphia, subsequent edi-
tion edition.

[181] Nübel, V., Düster, A., and Rank, E. (2007). An rp-adaptive finite element method
for the deformation theory of plasticity. Computational Mechanics, 39(5):557–574.

[182] Okuyama, K., Sato, K., Abe, E., Inaba, H., Shimada, Y., and Murai, H. (1993).
Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the
mechanical stability. Spine, 18(15):2240–2245.

[183] Oliviero, S., Giorgi, M., and Dall’Ara, E. (2018). Validation of finite element models
of the mouse tibia using digital volume correlation. Journal of the Mechanical Behavior
of Biomedical Materials, 86:172–184.

[184] Omerović, S. and Fries, T.-P. (2017). Conformal higher-order remeshing schemes
for implicitly defined interface problems. International Journal for Numerical Methods
in Engineering, 109(6):763–789.

[185] Oztoprak, O. (2020). Enforcement of Boundary Conditions in FCM with
Applications to Biomechanics. Master’s Thesis, Technische Universität München,
München.

[186] Pahr, D. H., Dall’Ara, E., Varga, P., and Zysset, P. K. (2012). HR-pQCT-based
homogenised finite element models provide quantitative predictions of experimental
vertebral body stiffness and strength with the same accuracy as µFE models. Computer
Methods in Biomechanics and Biomedical Engineering, 15(7):711–720.



136 BIBLIOGRAPHY

[187] Pahr, D. H. and Zysset, P. K. (2009). A comparison of enhanced continuum FE with
micro FE models of human vertebral bodies. Journal of Biomechanics, 42(4):455–462.

[188] Palanca, M., Tozzi, G., and Cristofolini, L. (2016). The use of digital image corre-
lation in the biomechanical area: A review. International Biomechanics, 3(1):1–21.

[189] Palanca, M., Tozzi, G., Cristofolini, L., Viceconti, M., and Dall’Ara, E. (2015).
Three-dimensional local measurements of bone strain and displacement: Comparison
of three digital volume correlation approaches. Journal of Biomechanical Engineering,
137(7).

[190] Parvizian, J., Düster, A., and Rank, E. (2007). Finite cell method. Computational
Mechanics, 41(1):121–133.

[191] Pistoia, W., van Rietbergen, B., Lochmüller, E. M., Lill, C. A., Eckstein, F., and
Rüegsegger, P. (2002). Estimation of distal radius failure load with micro-finite el-
ement analysis models based on three-dimensional peripheral quantitative computed
tomography images. Bone, 30(6):842–848.

[192] Plitman, R., Trabelsi, N., and Yosibash, Z. (2011). Investigating the mechani-
cal response of a single vertebra using high order finite element analysis. In 17th
International Symposium on Computational Biomechanics, Ulm, Germany.

[193] Polgar, K., Viceconti, M., and O’Connor, J. J. (2001). A comparison between
automatically generated linear and parabolic tetrahedra when used to mesh a human
femur. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of
Engineering in Medicine, 215(1):85–94.

[194] Prud’homme, M., Barrios, C., Rouch, P., Charles, Y. P., Steib, J.-P., and Skalli,
W. (2015). Clinical Outcomes and Complications After Pedicle-anchored Dynamic or
Hybrid Lumbar Spine Stabilization: A Systematic Literature Review. Clinical Spine
Surgery, 28(8):E439.

[195] Putzer, M., Auer, S., Malpica, W., Suess, F., and Dendorfer, S. (2016). A numerical
study to determine the effect of ligament stiffness on kinematics of the lumbar spine
during flexion. BMC Musculoskeletal Disorders, 17(1):95.

[196] Qi, W., Yan, Y.-b., Zhang, Y., Lei, W., Wang, P.-j., and Hou, J. (2011). Study
of stress distribution in pedicle screws along a continuum of diameters: A three-
dimensional finite element analysis. Orthopaedic Surgery, 3(1):57–63.

[197] Raj, P. P. (2008). Intervertebral Disc: Anatomy-Physiology-Pathophysiology-
Treatment. Pain Practice, 8(1):18–44.

[198] Rank, E. (1992). Adaptive remeshing and h-p domain decomposition. Computer
Methods in Applied Mechanics and Engineering, 101(1–3):299–313.

[199] Rank, E., Kollmannsberger, S., Sorger, C., and Düster, A. (2011). Shell Finite Cell
Method: A high order fictitious domain approach for thin-walled structures. Computer
Methods in Applied Mechanics and Engineering, 200(45-46):3200–3209.



BIBLIOGRAPHY 137

[200] Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., and Düster, A. (2012).
Geometric modeling, isogeometric analysis and the finite cell method. Computer
Methods in Applied Mechanics and Engineering, 249-252:104–115.

[201] Reddy, B. D. (1997). Introductory Functional Analysis: With Applications to
Boundary Value Problems and Finite Elements. Number 27 in Texts in applied math-
ematics. Springer, New York, 1998 edition.

[202] Rho, J. Y., Tsui, T. Y., and Pharr, G. M. (1997). Elastic properties of human
cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials,
18(20):1325–1330.

[203] Robert McNeel (2017). Rhinoceros 3D. http://www.rhino3d.com/.

[204] Roy, M. E., Rho, J. Y., Tsui, T. Y., Evans, N. D., and Pharr, G. M. (1999).
Mechanical and morphological variation of the human lumbar vertebral cortical and
trabecular bone. Journal of Biomedical Materials Research, 44(2):191–197.

[205] Rudi, P. (2009). Röntgenaufnahme meiner durch Spondylodese versorgten Spondy-
lolisthesis. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Roe_

LWS_Spondylodese_L5-S1_seitlich.jpg – License: Creative Commons CC BY-SA
3.0.

[206] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., and Hawkes, D. J.
(1999). Nonrigid registration using free-form deformations: Application to breast MR
images. IEEE transactions on medical imaging, 18(8):712–721.

[207] Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., and Rank, E. (2013). Weakly
enforced essential boundary conditions for NURBS-embedded and trimmed NURBS
geometries on the basis of the finite cell method. International Journal for Numerical
Methods in Engineering, 95(10):811–846.

[208] Ruess, M., Schillinger, D., Özcan, A. I., and Rank, E. (2014). Weak coupling for
isogeometric analysis of non-matching and trimmed multi-patch geometries. Computer
Methods in Applied Mechanics and Engineering, 269:46–71.

[209] Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., and Rank, E. (2012). The finite cell
method for bone simulations: Verification and validation. Biomechanics and modeling
in mechanobiology, 11(3-4):425–37.

[210] Ruffoni, D. and van Lenthe, G. H. (2017). Finite Element Analysis in Bone Research:
A Computational Method Relating Structure to Mechanical Function. In Ducheyne,
P., editor, Comprehensive Biomaterials II, pages 169–196. Elsevier, Oxford.

[211] Ruffoni, D., Wirth, A. J., Steiner, J. A., Parkinson, I. H., Müller, R., and van
Lenthe, G. H. (2012). The different contributions of cortical and trabecular bone to
implant anchorage in a human vertebra. Bone, 50(3):733–738.

https://commons.wikimedia.org/wiki/File:Roe_LWS_Spondylodese_L5-S1_seitlich.jpg
https://commons.wikimedia.org/wiki/File:Roe_LWS_Spondylodese_L5-S1_seitlich.jpg


138 BIBLIOGRAPHY

[212] Safdari, M., Najafi, A. R., Sottos, N. R., and Geubelle, P. H. (2015). A NURBS-
based interface-enriched generalized finite element method for problems with com-
plex discontinuous gradient fields. International Journal for Numerical Methods in
Engineering, 101(12):950–964.

[213] Safdari, M., Najafi, A. R., Sottos, N. R., and Geubelle, P. H. (2016). A NURBS-
based generalized finite element scheme for 3D simulation of heterogeneous materials.
Journal of Computational Physics, 318:373–390.

[214] Schillinger, D. (2012). The P- and B-Spline Versions of the Geometrically Nonlinear
Finite Cell Method and Hierarchical Refinement Strategies for Adaptive Isogeometric
and Embedded Domain Analysis. PhD thesis, Technische Universität München, Mu-
nich.

[215] Schillinger, D., Düster, A., and Rank, E. (2012a). The hp-d-adaptive finite cell
method for geometrically nonlinear problems of solid mechanics. International Journal
for Numerical Methods in Engineering, 89(9):1171–1202.

[216] Schillinger, D., Gangwar, T., Gilmanov, A., Heuschele, J. D., and Stolarski, H. K.
(2018). Embedded shell finite elements: Solid–shell interaction, surface locking, and
application to image-based bio-structures. Computer Methods in Applied Mechanics
and Engineering, 335:298–326.

[217] Schillinger, D., Harari, I., Hsu, M.-C., Kamensky, D., Stoter, S. K. F., Yu, Y., and
Zhao, Y. (2016). The non-symmetric Nitsche method for the parameter-free imposition
of weak boundary and coupling conditions in immersed finite elements. Computer
Methods in Applied Mechanics and Engineering, 309:625–652.

[218] Schillinger, D. and Rank, E. (2011). An unfitted hp-adaptive finite element method
based on hierarchical B-splines for interface problems of complex geometry. Computer
Methods in Applied Mechanics and Engineering, 200(47-48):3358–3380.

[219] Schillinger, D., Ruess, M., Zander, N., Bazilevs, Y., Düster, A., and Rank, E.
(2012b). Small and large deformation analysis with the p- and B-spline versions of the
Finite Cell Method. Computational Mechanics, 50(4):445–478.

[220] Schröder, J., Wick, T., Reese, S., Wriggers, P., Müller, R., Kollmannsberger, S.,
Kästner, M., Schwarz, A., Igelbüscher, M., Viebahn, N., Bayat, H. R., Wulfinghoff, S.,
Mang, K., Rank, E., Bog, T., D’Angella, D., Elhaddad, M., Hennig, P., Düster, A.,
Garhuom, W., Hubrich, S., Walloth, M., Wollner, W., Kuhn, C., and Heister, T. (2021).
A Selection of Benchmark Problems in Solid Mechanics and Applied Mathematics.
Archives of Computational Methods in Engineering, 28(2):713–751.

[221] Sekuboyina, A., Husseini, M. E., Bayat, A., Löffler, M., Liebl, H., Li, H., Tetteh,
G., Kukačka, J., Payer, C., Štern, D., Urschler, M., Chen, M., Cheng, D., Lessmann,
N., Hu, Y., Wang, T., Yang, D., Xu, D., Ambellan, F., Amiranashvili, T., Ehlke, M.,
Lamecker, H., Lehnert, S., Lirio, M., de Olaguer, N. P., Ramm, H., Sahu, M., Tack, A.,
Zachow, S., Jiang, T., Ma, X., Angerman, C., Wang, X., Brown, K., Kirszenberg, A.,



BIBLIOGRAPHY 139

Puybareau, É., Chen, D., Bai, Y., Rapazzo, B. H., Yeah, T., Zhang, A., Xu, S., Hou,
F., He, Z., Zeng, C., Xiangshang, Z., Liming, X., Netherton, T. J., Mumme, R. P.,
Court, L. E., Huang, Z., He, C., Wang, L.-W., Ling, S. H., Huynh, L. D., Boutry,
N., Jakubicek, R., Chmelik, J., Mulay, S., Sivaprakasam, M., Paetzold, J. C., Shit, S.,
Ezhov, I., Wiestler, B., Glocker, B., Valentinitsch, A., Rempfler, M., Menze, B. H., and
Kirschke, J. S. (2021). VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images. Medical Image Analysis, 73:102166.

[222] Sensale, M., Vendeuvre, T., Schilling, C., Grupp, T., Rochette, M., and Dall’Ara,
E. (2021). Patient-Specific Finite Element Models of Posterior Pedicle Screw Fixation:
Effect of Screw’s Size and Geometry. Frontiers in Bioengineering and Biotechnology, 9.

[223] Shamonin, D. P., Bron, E. E., Lelieveldt, B. P. F., Smits, M., Klein, S., and Star-
ing, M. (2014). Fast Parallel Image Registration on CPU and GPU for Diagnostic
Classification of Alzheimer’s Disease. Frontiers in Neuroinformatics, 7.

[224] Sharabi, M., Wilke, H.-J., and Haj-Ali, R. (2018). Chapter 5 - The Vertebral Bone.
In Galbusera, F. and Wilke, H.-J., editors, Biomechanics of the Spine, pages 71–87.
Academic Press.

[225] Shu, L., Yamamoto, K., Yao, J., Saraswat, P., Liu, Y., Mitsuishi, M., and Sugita,
N. (2018). A subject-specific finite element musculoskeletal framework for mechanics
analysis of a total knee replacement. Journal of Biomechanics, 77:146 – 154.

[226] Simeon, B. (2013). Computational Flexible Multibody Dynamics. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[227] Slaughter, W. S. (2002). The Linearized Theory of Elasticity. Birkhäuser Basel.

[228] Smith, M. (2009). ABAQUS/Standard User’s Manual, Version 6.9. Dassault Sys-
tèmes Simulia Corp, United States.

[229] Soghrati, S. and Ahmadian, H. (2015). 3D hierarchical interface-enriched finite
element method: Implementation and applications. Journal of Computational Physics,
299:45–55.

[230] Soghrati, S., Aragón, A. M., Armando Duarte, C., and Geubelle, P. H. (2012).
An interface-enriched generalized FEM for problems with discontinuous gradient fields.
International Journal for Numerical Methods in Engineering, 89(8):991–1008.

[231] Soghrati, S. and Geubelle, P. H. (2012). A 3D interface-enriched generalized finite
element method for weakly discontinuous problems with complex internal geometries.
Computer Methods in Applied Mechanics and Engineering, 217–220:46–57.

[232] Šolín, P. and Červený, J. (2006). Automatic hp-Adaptivity with Arbitrary-Level
Hanging Nodes. Technical Report Research Report No. 2006-07, The University of
Texas at El Paso, Department of Mathematical Sciences.



140 BIBLIOGRAPHY

[233] Sorger, C., Frischmann, F., Kollmannsberger, S., and Rank, E. (2014). TUM.Ge-
oFrame: Automated high-order hexahedral mesh generation for shell-like structures.
Engineering with Computers, 30(1):41–56.

[234] Sorger, C. G. (2012). Generierung von Netzen für Finite Elemente hoher Ordnung in
zwei und drei Raumdimensionen. PhD thesis, Technische Universität München, Chair
for Computation in Engineering.

[235] Stavrev, A., Nguyen, L. H., Shen, R., Varduhn, V., Behr, M., Elgeti, S., and
Schillinger, D. (2016). Geometrically accurate, efficient, and flexible quadrature tech-
niques for the tetrahedral finite cell method. Computer Methods in Applied Mechanics
and Engineering, 310:646–673.

[236] Strouboulis, T., Copps, K., and Babuška, I. (2001). The generalized finite element
method. Computer methods in applied mechanics and engineering, 190(32):4081–4193.

[237] Szabó, B. A. and Babuška, I. (1991). Finite Element Analysis. John Wiley & Sons,
New York.

[238] Szabó, B. A., Düster, A., and Rank, E. (2004). The p-version of the finite element
method. In Stein, E., editor, Encyclopedia of Computational Mechanics. John Wiley
& Sons, Chichester, West Sussex.

[239] Taddei, F., Schileo, E., Helgason, B., Cristofolini, L., and Viceconti, M. (2007). The
material mapping strategy influences the accuracy of CT-based finite element models
of bones: An evaluation against experimental measurements. Medical Engineering &
Physics, 29(9):973–979.

[240] Thiagarajan, V. and Shapiro, V. (2014). Adaptively weighted numerical in-
tegration over arbitrary domains. Computers & Mathematics with Applications,
67(9):1682–1702.

[241] Thomas, J. W. (1995). Numerical Partial Differential Equations: Finite Difference
Methods. Springer, New York, 1st ed. 1995. corr. 2nd printing 1998 edition edition.

[242] Torcasio, A., Zhang, X., Oosterwyck, H. V., Duyck, J., and van Lenthe, G. H.
(2012). Use of micro-CT-based finite element analysis to accurately quantify peri-
implant bone strains: A validation in rat tibiae. Biomechanics and Modeling in
Mechanobiology, 11(5):743–750.

[243] Tozzi, G., Danesi, V., Palanca, M., and Cristofolini, L. (2016). Elastic Full-Field
Strain Analysis and Microdamage Progression in the Vertebral Body from Digital Vol-
ume Correlation. Strain, 52(5):446–455.

[244] Trabelsi, N., Yosibash, Z., Wutte, C., Augat, P., and Eberle, S. (2011). Patient-
specific finite element analysis of the human femur–a double-blinded biomechanical
validation. Journal of Biomechanics, 44(9):1666–72.



BIBLIOGRAPHY 141

[245] Turner, C. H., Rho, J., Takano, Y., Tsui, T. Y., and Pharr, G. M. (1999). The
elastic properties of trabecular and cortical bone tissues are similar: Results from two
microscopic measurement techniques. Journal of Biomechanics, 32(4):437–441.

[246] van Rietbergen, B. (2001). Micro-FE Analyses of Bone: State of the
Art. In Majumdar, S. and Bay, B. K., editors, Noninvasive Assessment of
Trabecular Bone Architecture and the Competence of Bone, Advances in Experimental
Medicine and Biology, pages 21–30. Springer US, Boston, MA.

[247] van Rietbergen, B., Weinans, H., Huiskes, R., and Odgaard, A. (1995). A new
method to determine trabecular bone elastic properties and loading using microme-
chanical finite-element models. Journal of Biomechanics, 28(1):69–81.

[248] Varduhn, V., Hsu, M.-C., Ruess, M., and Schillinger, D. (2016). The tetrahe-
dral finite cell method: Higher-order immersogeometric analysis on adaptive non-
boundary-fitted meshes. International Journal for Numerical Methods in Engineering,
107(12):1054–1079.

[249] Verhoosel, C., van Zwieten, G., van Rietbergen, B., and de Borst, R. (2015).
Image-based goal-oriented adaptive isogeometric analysis with application to the micro-
mechanical modeling of trabecular bone. Computer Methods in Applied Mechanics and
Engineering, 284:138–164.

[250] Verhulp, E., Rietbergen, B. V., Müller, R., and Huiskes, R. (2008a). Micro-finite ele-
ment simulation of trabecular-bone post-yield behaviour – effects of material model, el-
ement size and type. Computer Methods in Biomechanics and Biomedical Engineering,
11(4):389–395.

[251] Verhulp, E., van Rietbergen, B., Müller, R., and Huiskes, R. (2008b). Indirect
determination of trabecular bone effective tissue failure properties using micro-finite
element simulations. Journal of Biomechanics, 41(7):1479–1485.

[252] Verma, K., Boniello, A., and Rihn, J. (2016). Emerging Techniques for Posterior
Fixation of the Lumbar Spine. The Journal of the American Academy of Orthopaedic
Surgeons, 24(6):357–364.

[253] Viceconti, M., Bellingeri, L., Cristofolini, L., and Toni, A. (1998). A comparative
study on different methods of automatic mesh generation of human femurs. Medical
Engineering & Physics, 20(1):1–10.

[254] Vinci, C. (2009). Application of Dirichlet Boundary Conditions in the
Finite Cell Method. Master’s Thesis, Lehrstuhl für Computation in Engineering, Tech-
nische Universität München.

[255] Wagnac, E., Arnoux, P.-J., Garo, A., and Aubin, C.-E. (2012). Finite element anal-
ysis of the influence of loading rate on a model of the full lumbar spine under dynamic
loading conditions. Medical & Biological Engineering & Computing, 50(9):903–915.



142 BIBLIOGRAPHY

[256] Wassermann, B., Kollmannsberger, S., Bog, T., and Rank, E. (2017). From geo-
metric design to numerical analysis: A direct approach using the Finite Cell Method
on Constructive Solid Geometry. Computers & Mathematics with Applications.

[257] Wassermann, B., Kollmannsberger, S., Yin, S., Kudela, L., and Rank, E. (2019).
Integrating CAD and numerical analysis: ‘Dirty geometry’ handling using the Finite
Cell Method. Computer Methods in Applied Mechanics and Engineering, 351:808–835.

[258] White, A. A. (1990). Clinical Biomechanics of the Spine. Lippincott Williams &
Wilkins, Philadelphia, 2nd edition.

[259] Wilke, H. J., Wolf, S., Claes, L. E., Arand, M., and Wiesend, A. (1995). Stability
increase of the lumbar spine with different muscle groups. A biomechanical in vitro
study. Spine, 20(2):192–198.

[260] Wille, H., Ruess, M., Rank, E., and Yosibash, Z. (2016). Uncertainty quantifica-
tion for personalized analyses of human proximal femurs. Journal of Biomechanics,
49(4):520–527.

[261] Wirth, A. J., Goldhahn, J., Flaig, C., Arbenz, P., Müller, R., and van Lenthe,
G. H. (2011). Implant stability is affected by local bone microstructural quality. Bone,
49(3):473–478.

[262] Wirth, A. J., Mueller, T. L., Vereecken, W., Flaig, C., Arbenz, P., Müller, R.,
and van Lenthe, G. H. (2009). Mechanical competence of bone-implant systems can
accurately be determined by image-based micro-finite element analyses. Archive of
Applied Mechanics, 80(5):513–525.

[263] Wirth, A. J., Müller, R., and van Lenthe, G. H. (2012). The discrete nature of
trabecular bone microarchitecture affects implant stability. Journal of Biomechanics,
45(6):1060–1067.

[264] Wittenburg, J. (2008). Dynamics of Multibody Systems. Berlin-Springer.

[265] Wolff, J., Narra, N., Antalainen, A.-K., Valášek, J., Kaiser, J., Sándor, G. K.,
and Marcián, P. (2014). Finite element analysis of bone loss around failing implants.
Materials & Design, 61:177–184.

[266] Wolfram, U., Wilke, H.-J., and Zysset, P. K. (2010). Valid µ finite element models
of vertebral trabecular bone can be obtained using tissue properties measured with
nanoindentation under wet conditions. Journal of Biomechanics, 43(9):1731–1737.

[267] Yang, Z., Kollmannsberger, S., Düster, A., Ruess, M., Garcia, E. G., Burgkart, R.,
and Rank, E. (2012a). Non-standard bone simulation: Interactive numerical analysis
by computational steering. Computing and Visualization in Science, 14(5):207–216.

[268] Yang, Z., Ruess, M., Kollmannsberger, S., Düster, A., and Rank, E. (2012b). An
efficient integration technique for the voxel-based finite cell method. International
Journal for Numerical Methods in Engineering, 91(5):457–471.



BIBLIOGRAPHY 143

[269] Yosibash, Z. (1997). Numerical analysis on singular solutions of the Poisson equation
in two-dimensions. Computational Mechanics, 20(4):320–330.

[270] Yosibash, Z. (2012). P-FEMs in biomechanics: Bones and arteries. Computer
Methods in Applied Mechanics and Engineering, 249-252:169–184.

[271] Yosibash, Z., Katz, A., and Milgrom, C. (2013). Toward verified and validated FE
simulations of a femur with a cemented hip prosthesis. Medical Engineering & Physics,
35(7):978–987.

[272] Yosibash, Z., Trabelsi, N., and Hellmich, C. (2008). Subject-Specific p-FE Anal-
ysis of the Proximal Femur Utilizing Micromechanics-Based Material Properties.
International Journal for Multiscale Computational Engineering, 6(5):483–498.

[273] Yosibash, Z., Trabelsi, N., and Milgrom, C. (2007). Reliable simulations of the
human proximal femur by high-order finite element analysis validated by experimental
observations. Journal of Biomechanics, 40(16):3688–3699.

[274] Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., and
Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures:
Significantly improved efficiency and reliability. NeuroImage, 31(3):1116–1128.

[275] Zander, N. (2017). Multi-Level Hp-FEM: Dynamically Changing High-Order Mesh
Refinement with Arbitrary Hanging Nodes. PhD Thesis, Technische Universität
München, München.

[276] Zander, N., Bog, T., Elhaddad, M., Frischmann, F., Kollmannsberger, S., and Rank,
E. (2016). The multi-level hp-method for three-dimensional problems: Dynamically
changing high-order mesh refinement with arbitrary hanging nodes. Computer Methods
in Applied Mechanics and Engineering, 310:252–277.

[277] Zander, N., Bog, T., Kollmannsberger, S., Schillinger, D., and Rank, E. (2015).
Multi-level hp-adaptivity: High-order mesh adaptivity without the difficulties of con-
straining hanging nodes. Computational Mechanics, 55(3):499–517.

[278] Zander, N., Kollmannsberger, S., Ruess, M., Yosibash, Z., and Rank, E. (2012).
The Finite Cell Method for linear thermoelasticity. Computers & Mathematics with
Applications, 64(11):3527–3541.

[279] Zander, N., Ruess, M., Bog, T., Kollmannsberger, S., and Rank, E. (2017). Multi-
level hp-adaptivity for cohesive fracture modeling. International Journal for Numerical
Methods in Engineering, 109(13):1723–1755.

[280] Zannoni, C., Mantovani, R., and Viceconti, M. (1999). Material properties assign-
ment to finite element models of bone structures: A new method. Medical Engineering
& Physics, 20(10):735–740.



144 BIBLIOGRAPHY

[281] Zauel, R., Yeni, Y. N., Bay, B. K., Dong, X. N., and Fyhrie, D. P. (2006). Com-
parison of the linear finite element prediction of deformation and strain of human can-
cellous bone to 3D digital volume correlation measurements. Journal of Biomechanical
Engineering, 128(1):1–6.

[282] Zhang, Q.-H., Tozzi, G., and Tong, J. (2014). Micro-mechanical damage of trabec-
ular bone–cement interface under selected loading conditions: A finite element study.
Computer Methods in Biomechanics and Biomedical Engineering, 17(3):230–238.

[283] Zhu, M.-L., Zhang, Q.-H., Lupton, C., and Tong, J. (2016). Spatial resolution
and measurement uncertainty of strains in bone and bone–cement interface using dig-
ital volume correlation. Journal of the Mechanical Behavior of Biomedical Materials,
57:269–279.

[284] Zhu, T. and Atluri, S. N. (1998). A modified collocation method and a penalty
formulation for enforcing the essential boundary conditions in the element free Galerkin
method. Computational Mechanics, 21(3):211–222.

[285] Zienkiewicz, O., Taylor, R., and Zhu, J. (2005). The Finite Element Method:
Its Basis and Fundamentals. Butterworth-Heinemann, 6th edition.

[286] Zysset, P. K. (2003). A review of morphology–elasticity relationships in human tra-
becular bone: Theories and experiments. Journal of Biomechanics, 36(10):1469–1485.


	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	2 Finite element analysis of vertebral bone: a literature review
	2.1 Anatomy of the spine
	2.1.1 Spinal column
	2.1.2 Vertebrae
	2.1.3 Intervertebral discs

	2.2 Biomechanics of the vertebra
	2.2.1 Structure of vertebral bone
	2.2.2 Vertebral loading
	2.2.3 Mechanical properties of vertebral bone

	2.3 Biomechanical finite element analysis of vertebral bone
	2.3.1 Continuum-level FE analysis
	2.3.2 Microstructural FE analysis


	3 The finite cell method for biomechanical analysis of bone
	3.1 Introduction
	3.2 Theory of linear elasticity
	3.2.1 Kinematics
	3.2.2 Stress
	3.2.3 Equilibrium equation
	3.2.4 Constitutive relationship
	3.2.5 Boundary-value problem

	3.3 The finite element method
	3.3.1 Weak form
	3.3.2 Galerkin's approximation method
	3.3.3 Voigt notation
	3.3.4 Linear finite element approximation
	3.3.5 The p-version of the FEM

	3.4 Immersed boundary approach
	3.5 Numerical integration
	3.6 Enforcement of boundary conditions
	3.6.1 Neumann boundary conditions
	3.6.2 Dirichlet boundary conditions

	3.7 Solution of system of linear equations
	3.8 Previous work and validation

	4 Micro-CT-based finite-cell analysis of vertebral bodies: a validation study
	4.1 Introduction
	4.2 Materials and methods
	4.2.1 Compression experiment and image acquisition
	4.2.2 Digital volume correlation
	4.2.3 Micro-CT-based finite cell models
	4.2.4 Comparison and statistics

	4.3 Results
	4.4 Discussion

	5 The finite cell method for material interface problems
	5.1 Introduction
	5.2 Embedded interface problems in the FCM
	5.2.1 Model problem
	5.2.2 Weak enforcement of interface conditions

	5.3 Multi-level hp-refinement
	5.3.1 Basic refinement concept
	5.3.2 Refinement strategy

	5.4 Numerical experiments
	5.4.1 Plate with an elliptical inclusion
	5.4.2 Bi-material inclusion corner
	5.4.3 Cube with ellipsoidal inclusion
	5.4.4 Cylinder with cubical inclusion

	5.5 Discussion

	6 Applications of the FCM for material interfaces in bone mechanics
	6.1 Combination with musculoskeletal models
	6.1.1 Introduction
	6.1.2 Musculoskeletal models
	6.1.3 Weak enforcement of concentrated loads
	6.1.4 Numerical example
	6.1.5 Discussion

	6.2 Vertebra–screw simulation
	6.2.1 Introduction
	6.2.2 Vertebra–screw FCM model
	6.2.3 Numerical example
	6.2.4 Discussion


	7 Conclusion
	7.1 Summary and conclusion
	7.2 Outlook

	Bibliography

