
Technische Universität München
TUM School of Computation, Information and Technology

Robot Systems in Industrial Applications: From
Trajectory Optimization and Computer Vision to

Grasp Planning

Jianjie Lin

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology der 
Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Daniel Cremers

Prüfer*innen der Dissertation:

1. Prof. Dr.-Ing. habil. Alois C. Knoll

2. Prof. Dr.-Ing. Torsten Kröger

Die Dissertation wurde am 11.04.2022 bei der Technischen Universität München eingereicht und durch die 
TUM School of Computation, Information and Technology am 17.04.2023 angenommen.





Abstract

A modern robotic system is a multidisciplinary product, encompassing various aspects from
modern engineering methods to environmental perception. It plays a crucial role in the
realization of robot automation. The motivation behind this thesis is to demonstrate that
autonomous robot tasks can be described and solved through trajectory planning, environ-
ment sensing, and grasp planning. Approaches based on teach-in concepts or predefined
parameters often lead to long development cycles that are unsuitable for flexible and modu-
lar small and medium-sized factory environments. Additionally, the drive to minimize human
intervention and achieve automation has prompted me to further enhance critical aspects of
robotics technology. In this work, I will develop and upgrade intelligent robotic systems by
improving trajectory planning, environmental perception, and grasp planning separately.

The first component I need to improve is trajectory planning, based on an analysis of cur-
rent robotic systems. Unlike most state-of-the-art approaches, which only consider kinematic
constraints and acceleration values or utilize spline-based methods, I utilize the well-known
trapezoidal acceleration profile (seven-segment model) as the fundamental model and ex-
tend it to a multi-waypoint scenario. The computational complexity of a multi-waypoint
trapezoidal acceleration model exponentially increases with the number of waypoints gen-
erated by a collision-free motion planning algorithm. To reduce computational complexity, I
follow the principle of model predictive control and solve the trajectory optimization problem
by decomposing it into a series of subproblems with a set of nonlinear constraints. I solve
each subproblem iteratively, significantly reducing the complexity. Furthermore, I extend
the standard trajectory planning application by considering the trajectory blending scenario,
which aims to reduce trajectory overshooting.

The perception of the environment is a crucial aspect enabling autonomous robotic oper-
ations. This thesis primarily focuses on a 3D world capable of semantically describing reality.
I propose and develop new algorithms within a deep learning framework to address classical
problems in the computer vision domain, such as 3D object classification, pose estimation,
and 3D point cloud completion. These algorithms aim to overcome the limitations of other
state-of-the-art methods. When it comes to 3D point cloud classification, there exists an
inherent problem related to rotation properties. Most deep learning-based approaches re-
quire large datasets to mitigate this rotation invariant problem. However, I propose a new
approach by introducing the concept of a spherical harmonics rotation-invariant descriptor.
This novel approach drastically reduces the training dataset requirement and outperforms
other state-of-the-art methods. Pose estimation has been dominated by iterative closest point
(ICP) based approaches. However, these algorithms heavily rely on a precise initial guess
for the search of corresponding points. Otherwise, the iteration process can easily become
stuck in a local minimum or a saddle point. To address this challenge, I introduce Gaus-
sian Process Implicit surfaces (GPIS), which eliminates the need for searching corresponding
points. Instead, it considers point registration as a surface-to-surface approach. I formulate
the point estimation problem as a constrained manifold optimization problem. Obtaining a
complete view of the point cloud representing an object is highly challenging in real-world
applications due to limited sensor resolution, occlusion, and camera angles. In this thesis, I
propose a transformer-based point cloud completion method, inspired by the manifold idea
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that assumes points from the same object layer lie on the same manifold layer. This approach
significantly aids in recovering incomplete point clouds, greatly assisting grasp planning to
find suitable grasp poses.

The final core component of this thesis is grasp planning. RGB-based grasp planning
constrains the grasp in the vertical direction, simplifying the pick and place task significantly.
However, the nature of 3/4-DOF constraints limits the integration of motion planning, as mo-
tion planning algorithms aim to explore all possible directions to generate an optimal motion
trajectory. This limitation has motivated researchers to explore a more general approach,
known as 6-DOF grasp, which allows for grasping in arbitrary directions. To address the
grasp planning problem, this thesis proposes two methods. In industrial applications, objects
are often represented as CAD models, which provide valuable geometry information for find-
ing suitable grasp poses. I utilize the Gaussian process implicit surface to describe the object
by uniformly sampling the CAD models. I incorporate the Alternating Direction Method of
Multipliers (ADMM) and Bayesian optimization techniques to optimize an appropriate grasp
pose. Moreover, considering the significant advancements in 6-DOF grasp learning networks,
I also explore the application of transformer-based networks for grasping. I introduce my
LiePFormer-GraspNet network, which predicts grasps directly from the point cloud input.

In summary, this work makes valuable contributions to the fields of trajectory planning,
point cloud-based environment perception, and grasp planning, without being restricted to a
specific robot system.



Zusammenfassung

Ein modernes Robotersystem ist ein multidisziplinäres Produkt, das von modernen Inge-
nieurmethoden bis zur Umweltwahrnehmung reicht. Es ist ein wesentlicher Bestandteil der
Realisierung der Roboterautomatisierung. Meine Motivation besteht darin, zu zeigen, dass
autonome Roboteraufgaben in Bezug auf Trajektorienplanung, Umgebungserfassung und
Greifplanung beschrieben und gelöst werden können. Ansätze, die auf Teach-In-Konzepten
oder vordefinierten Parametern basieren, führen zu langen Entwicklungszyklen, die für flex-
ible und modulare kleine und mittelständische Unternehmen ungeeignet sind. Um men-
schliche Eingriffe zu minimieren und den Zweck der Automatisierung zu erreichen, hat mich
dies außerdem dazu veranlasst, alle Aspekte der Robotertechnologie weiter zu verbessern. In
dieser Arbeit werde ich das intelligente Robotersystem entwickeln und verbessern, indem ich
die Trajektorienplanung, Umgebungswahrnehmung und Greifplanung optimiere.

Die Trajektorienplanung ist die erste Komponente, die ich basierend auf Beobachtungen
aktueller Robotersysteme verbessern muss. Im Gegensatz zum modernsten Ansatz, der nur
die kinematischen Randbedingungen der Beschleunigung berücksichtigt oder splinebasierte
Ansätze verwendet, nutzen wir als Grundmodell das weit verbreitete trapezförmige Beschle-
unigungsprofil (Sieben-Segment-Modell) und erweitern es für Szenarien mit mehreren Weg-
punkten. Die Rechenkomplexität des trapezförmigen Beschleunigungsmodells mit mehreren
Wegpunkten steigt exponentiell mit der zunehmenden Anzahl von Wegpunkten, die unter
Verwendung eines kollisionsfreien Bewegungsplanungsalgorithmus erzeugt werden. Um die
Rechenkomplexität zu reduzieren, folge ich dem Prinzip der modellprädiktiven Steuerung,
um das Trajektorienoptimierungsproblem zu lösen, indem ich es in eine Reihe von Teilprob-
lemen zusammen mit einem Satz nichtlinearer Nebenbedingungen zerlege. Wir lösen jedes
Teilproblem iterativ, wodurch die Komplexität deutlich reduziert werden kann. Darüber hin-
aus erweitern wir die Standardanwendung zur Trajektorienplanung um das Trajektorien-
Blending-Szenario, das darauf abzielt, das Überschwingen der Trajektorie zu reduzieren und
weiterhin zur Kollisionsvermeidung genutzt werden kann.

Die Techniken der Umgebungswahrnehmung ermöglichen eine autonome Robotik. Diese
Arbeit konzentriert sich hauptsächlich auf eine 3D-Welt, die die Realität semantisch beschreiben
kann. Ich präsentiere neue Algorithmen für die Klassifizierung von 3D-Objekten, die Schätzung
von Positionen und die Vervollständigung von 3D-Punktwolken im Bereich der Computer Vi-
sion innerhalb eines Deep-Learning-Ansatzes, um die Unzulänglichkeiten aktueller Metho-
den anzugehen. Aufgrund des inhärenten Problems der Rotationseigenschaft bei der Klassi-
fizierung von 3D-Punktwolken erfordern die meisten modernen Deep-Learning-basierten An-
sätze einen großen Datensatz, um das Problem der Rotation zu mildern. Ich schlage eine neue
Methodik vor, indem ich das Konzept des rotationsinvarianten Deskriptors der sphärischen
Harmonischen einführe, das den Trainingsdatensatz drastisch reduzieren und den Stand der
Technik übertreffen kann. Im Bereich der Posenschätzung dominieren iterative Nearest-Point
(ICP)-basierte Ansätze. Die Suche nach entsprechenden Punkten im ICP-basierten Algorith-
mus erfordert jedoch eine sehr gute anfängliche Schätzung. Der Iterationsprozess kann an-
sonsten leicht in einem lokalen Optimum oder einem Sattelpunkt stecken bleiben. Um dieses
Problem zu mildern, verwende ich die Gaussian Process Implicit Surfaces (GPIS), die die
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Suche nach entsprechenden Punkten entfernen können und die Punktregistrierung als einen
Oberfläche-zu-Oberfläche-Ansatz betrachten. Wir stellen das Punktschätzungsproblem als ein
Optimierungsproblem auf einer Beschränkungsmannigfaltigkeit dar. Basierend auf Beobach-
tungen aus realen Anwendungen ist es aufgrund begrenzter Sensorauflösungen, Okklusion
und Kamerawinkeln schwierig, eine vollständige Ansicht einer Punktwolke eines Objekts zu
erhalten. Diese Arbeit schlägt eine transformatorbasierte Methode zur Vervollständigung von
Punktwolken vor, die die Idee aus der Mannigfaltigkeitstheorie übernimmt, dass alle Punkte
aus gleichen Objektschichten derselben Mannigfaltigkeitsschicht angehören. Der vorgeschla-
gene Ansatz kann die unvollständige Punktwolke wiederherstellen, was die Greifplanung bei
der Suche nach einer geeigneten Lösungsgreifpose erheblich unterstützen kann.

Die letzte Kernkomponente dieser Arbeit ist die Greifplanung. RGB-basierte Greifplanung
schränkt das Greifen in vertikaler Richtung ein. Diese Art des Greifens kann das Problem der
Pick-and-Place-Aufgabe dramatisch vereinfachen. Die Beschränkung auf 3/4-DOF reduziert
jedoch das Potenzial zur Integration in eine Bewegungsplanung, da diese Algorithmen ver-
suchen, alle möglichen Richtungen zu untersuchen, um eine gute Bewegungsbahn zu erzeu-
gen. Aufgrund dieser Einschränkung wurden in der Forschung allgemeinere Ansätze mit
sechs Freiheitsgraden untersucht, die einen Griff in beliebiger Richtung ermöglichen. Diese
Dissertation schlägt zwei Methoden vor, um das Greifplanungsproblem anzugehen. In in-
dustriellen Anwendungen werden die meisten Objekte als CAD-Modelle dargestellt. Daher
kann ich diese Geometrieinformationen verwenden, um eine Greifpose zu finden. Ich ver-
wende die Gaussian Process Implicit Surface, um das Objekt zu beschreiben, indem ich CAD-
Modelle gleichmäßig abtaste und die Alternating Direction Method of Multipliers (ADMM)
und Bayes’sche Optimierung integriere, um eine geeignete Greifpose zu optimieren. Darüber
hinaus untersuchen wir mit den jüngsten massiven Fortschritten in graphbasierten Lernnet-
zwerken mit sechs Freiheitsgraden auch die Struktur des transformatorbasierten Netzwerks
zum Greifen. Wir schlagen unser LiePFormer-GraspNet-Netzwerk vor, um das Greifen durch
direktes Einspeisen der Punktwolke vorherzusagen.

Zusammenfassend liefert diese Arbeit wertvolle Beiträge auf dem Gebiet der Trajekto-
rienplanung, der punktwolkenbasierten Umgebungswahrnehmung und der Greifplanung, die
unabhängig von einem spezifischen Robotersystem sind.
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Chapter 1

Introduction

With the progress of society and the gradual development of automation, robots have touched
every aspect of our life. The shape of an industrial robot manipulator can be seen everywhere,
from factories producing a small industrial parts to the research and development of aircraft.
Moreover, the rapid growth of robotic systems has brought a lot of convenience to people and
made many difficult, tedious, repetitive tasks simpler and automated. In recent years, robot
research has become increasingly powerful and stable with advanced hardware devices, im-
proved sensor accuracy, and the in-depth exploration of the theory and practical application
of robots by previous related works. However, there are still many unsolved problems in the
area of robotics. Many researchers are trying to combine diverse fields to solve some tricky
practical applications. For the same purpose, this thesis aims to develop and improve the
algorithms in those fields, from planning, to environment perception, to enable an intelli-
gent robotic system. The algorithms proposed in this work cover many different disciplines,
from linear algebra, geometry, optimization algorithms, and software architecture to deep
learning. They constitute the critical idea of the whole work proposed in this dissertation.

1.1 Perspectives

Intelligent agents should be capable of perceiving their environment and interacting with
objects, such as moving, grasping and placing an object or using more available tools to
achieve goals. In the robotic domain, it is formalized as a manipulation problem, and can
be interpreted as a multi-step task consisting of sequential actions that involve interactions
with objects in the scene. Research on robot grasping and manipulation dates back to 1970,
a rime when science fiction classic Westworld staged intelligent human-shaped robots in a
fictitious film. This science fiction tells a world in which human guests and robots have
no essential differences in behavior and emotional expression, except the robot grasping is
not yet perfect. The challenge of robotic grasping is evident. Consider a pick-and-place
problem in the warehouse scenario, illustrated in Fig. 1.1: the robot firstly needs to perceive
the environment for recognizing and localizing the desired object, then determine a grasp
configuration for picking the object. In the next step, it is required to pick up the object in
a robust fashion, and move it to a new location considering the kinematic constraints. The
whole process needs to ensure no part of the robot collides with the environment. This simple
scenario can become extremely challenging due to the infinite variability of real world. For
example, if the lighting condition is not good enough for the vision system to detect the
objects; if the grasped objects lack the physical information such as weight, size, surface
texture, etc; if the path to the goal position is blocked by some obstacles; if other objects
occupy the goal position, etc. Those uncertainties and unpredictability in the real world
make robust manipulation extremely difficult.

1



2 1 Introduction

Figure 1.1: Concept: advanced robots working in a warehouse (Image source from PYMNTS)

(a) (b)

Figure 1.2: Amazon Robotics Challenge: (a) is the winner of Amazon Robotics Challenge 2017 and was designed
by the MIT MCube Lab and the Princeton Vision and Robotics Group, (b) is proposed with Dex-Net4 and was
designed by the Berkeley AUTOLAB.

In the past decade, multiple robotic grasping and manipulation competitions involving
robot manipulations of varying degrees of complexity have been held to advance research in
the field. Those competitions had several different focuses, such as pure grasping, manipula-
tion, assembly, or even mobile robotic operation. Amazon saw the potential in robotics that
is targeted at ensuring automated customer order placement and product delivery tasks. In
2015, it launched the Amazon Robotics Challenge 1, which became known as the Amazon
Picking Challenge (Fig. 1.2)s. This challenge aims to bring robotics researchers from industry
and academia together to solve as many critical questions as possible about how robots can
robustly grasp and handle objects. The automated warehouses from Amazon have already
succeeded in removing the walking and searching for objects, but it still remains a challenge

1http://pwurman.org/amazonpickingchallenge/2015/

http://pwurman.org/amazonpickingchallenge/2015/
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(a) (b) (c) (d)

Figure 1.3: The manipulation task board of the Robotic Grasping and Manipulation Competitions at IROS 2017-
2021

to pick a cargo automatically. Another ongoing robotic competition is held by IROS 2,3,4,5,
shown in Fig. 1.3, which involves multiples tracks, and the difficulty of each task also in-
creased year by year. This also witnessed the progress over the past decade in machine
learning, computer vision science. Moreover, the updated hardware has enabled robots to
handle a more complex set of objects robustly. An intelligent robot system with the desired
outcomes and behaviors needs to be designed from several perspectives, such as perception,
planning, and control. The following sections will explain the key ingredients that motivate
this work.

1.1.1 Robot motion

Nowadays, human activities in many areas are gradually supported or replaced by robots due
to the incredible versatility and flexibility of robots, such as fire search and rescue activities,
space exploration, or cargo transporting. Path planning and trajectory planning are the key
ingredients of robotics (or more generally the automation domain), which attempts to move
a robot from the initial state to the destination position while avoiding collision with obsta-
cles in the environments. Path planning merely generates a series of geometries waypoints
without considering any specified time law. Trajectory planning aims to assign a time law
to the geometric path under consideration of kinematic constraints (position, velocity, accel-
eration, jerk, etc.). Therefore, path planning typically precedes trajectory planning. In this
work, I focus the efforts on optimizing a trajectory where the waypoints is generated by the
off-the-shelf path planning module. The output of the trajectory planner is represented in
the form of a sequence of values of position, velocity, acceleration and jerk (the derivative of
acceleration), where these kinematic parameters can be interpreted in terms of operational
space or joint space. In most cases, the trajectories are planned in the joint space since the
robotic control actions are executed on joints. Planning in the operational space requires the
kinematic inversion of the transform parameter defined on the end-effector, which imposes
more complexity. However, the planned trajectory in joint and operational spaces does not
exhibit the same geometric properties due to the nonlinearities introduced from the forward
kinematics. For example, a straight-line trajectory in joint space is typically not straight in
the operational space. No matter in which space, the laws of motion resulting from the tra-
jectory planning must not generate forces and torques at the joints that are not compatible
with the given constraints. In particular, the generated trajectories should have the continuity
of joint acceleration to obtain a limited jerk. Such a trajectory can be used to avoid exces-

2http://www.rhgm.org/activities/competition_iros2017
3https://rpal.cse.usf.edu/competition_iros2019
4https://rpal.cse.usf.edu/competition_iros2020
5https://rpal.cse.usf.edu/competition_iros2021

http://www.rhgm.org/activities/competition_iros2017
https://rpal.cse.usf.edu/competition_iros2019
https://rpal.cse.usf.edu/competition_iros2020
https://rpal.cse.usf.edu/competition_iros2021
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sive accelerations of the actuators and vibrations of the mechanical structure and avoid the
excitation of the resonance frequencies of the robot. Three different optimality criteria are
typically applied when generating a trajectory: minimum execution time, minimum energy,
and minimum jerk. Among them, the minimum time trajectory, which can reduce the length
of production cycles, attracts a lot of consideration in the robotic literature. However, the
complexity of optimizing a time-optimal trajectory is significantly increased with the num-
ber of intermediate points and level-of-detail (i.e., trajectories represented by a curve whose
derivatives are continuous up to a certain degree). Robot manufactures have already offered
dedicated modules to allow direct specification of trajectories using the CAD models or given
waypoints. Various algorithms integrated into these dedicated modules can be used to gen-
erate a series of offline trajectories, where those algorithms are written using the same set
of vendor-specific programming languages in the teach-in method. However, the standard
trajectory algorithms offered by the many manufactures consider the constraints only up to
the acceleration but neglect the jerk, which may lead to considerable wear in the mechanical
structure of the robot. The proposed algorithms can work as complementary to algorithms
offered by the manufactures if the real time interface with respect to the position, velocity,
etc is provided by those manufactures, such as Universal robot. They are used to generate
a trajectory by passing through or blending over waypoints under consideration jerk limita-
tions. I use the trapezoidal acceleration profile, also denoted as the seven-segment profile,
as the fundamental trajectory profile, which is widely used in robotic trajectory research [8,
77].

1.1.2 Perceiving the environment

Just like the sensory organs in humans responsible for tasks such as vision, hearing, touch,
taste, or smell, robot perception plays a crucial role in enabling a robot to complete tasks
in complex environments. Furthermore, robot perception grounds the application of robots
in the real world and empowers robots to explore, navigate and manipulate objects based
on sensory data. They penetrate every stage of applications, starting from high-level intelli-
gent robot manipulation down to the lower-level closed-loop control. A significant amount
of related work has been dedicated to solving the various vision challenges over the past
years. Computer perception has also arrived at a new milestone, along with the substantial
improvement in 3D acquisition technologies and reduced prices of commercial sensors. How-
ever, addressing the amount of information acquired by multiple sensors is extremely difficult
due to noisy and redundant sensory data. In addition, the robot can be placed in varying en-
vironment, and a less constrained environment introduces more challenges to perceive. The
world itself is not unique but ambiguous: some objects are easily confused since they share
a similar geometric outline, such as lemon and normaler tennis ball; Some objects can not
be easily distinguished in RGB images in some shooting angles, e.g., remote control and cell
phone when facing down; some objects are partially obscured by other objects, so their ac-
tual shape is unknown; even the detection of the same object at a different posture (position
and orientation) in the same world coordinate can fail. All these factors contribute to the
difficulty of understanding the world from the perspective of perception.

Classical computer vision topics such as object detection and pose estimation are the foun-
dations of vision-based robot manipulation, which attracts a lot of attention, especially in the
scope of deep neural networks. Traditional approaches use mesh surfaces or combinations
of primitive shapes to describe three-dimensional objects and deploy hand-crafted features
or constraints to interpret the interactions between objects. The representation in the form
of primitive shapes, due to their inherent geometric nature, can alleviate the data processing
inefficiency problem. Deep learning-based shape analysis and synthesis algorithms are de-
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veloped mainly for voxel grids, point clouds, and implicit functions and then extract ISO sur-
faces marching cubes for visualization. I dedicate the efforts in the computer vision domain
to recognize and estimate physical instances of objects which are acquired via 3D camera and
stored as a raw point cloud. The proposed algorithm for the object detection network is not
limited to a standard classification task but also enables rotation-invariant detection, which
is lacking in most other point cloud-based networks. Moreover, I propose a novel pose esti-
mation algorithm using Gaussian Process Implicit Surfaces, which enables the utilization of
a Lie-algebra manifold optimization and avoids the corresponding search step in the classical
iterative closest point algorithm. To facilitate grasp planning, I introduce a shape completion
algorithm to mitigate the problem that robots capture only partial point cloud information
with a single depth camera.

1.1.3 Robot manipulation and grasping

Robot hands are often inspired by nature, in particular prehensile, multi-fingered appendages
situated at primates’ upper extremities (arms). The hand is denoted as a grasping organ that
exhibits excellent mobility and flexibility in the digits and the whole organ. The ultimate
goal of robot hand research is to have human-like dexterity, which can perform versatile
and dexterous grasping tasks on arbitrary objects, seamlessly adapt to object properties and
the task’s requirements, and transfer learned manipulated skills to arbitrary objects. Over
the past decades, a huge amount of work has been dedicated to the research on robotic
manipulation and grasping, with impressive progress. However, there is still a long way to
go before arriving atthe ultimate goal.

Object manipulation relies on reliable path and trajectory planning as well as adequate
perceptual capabilities, which is a prerequisite for many industrial applications, such as flex-
ible manufacturing and construction in collaboration with human experts. The structure en-
vironment is already challenging due to complexity of the associated high-dimensional state
space, such as the objects appearance, position, texture, grasp force, etc. Robotic systems
have become very mature in performing repetitive industrial tasks such as pick-and-place op-
erations, car assembly, welding, or spray painting. These applications typically are created
using procedures such as the teach-in method, where a series of instructions are formulated
with a vendor-specific programming language. The tightly controlled environment simpli-
fies the robotic manipulation problem. However, the world is not a predictable assembly
line. The unstructured environment confronted more challenge than the structured envi-
ronment in that the object properties are not prior knowledge and first need to be obtained
using external sensors. Apart from ambiguous and uncertain perceptual information, phys-
ical interaction with the outside world faces an inherent uncertainty in how objects react
to touch. Some robotic companies improve the manipulation skills via improved hardware
designs, such as designing grippers ranging from pincer-like appendages (parallel grippers)
to human-like hands (multi-fingered grippers) and equip them with tactile sensors. Rapid
advances in machine learning push forward the progress in grasping as well. Therefore,
robotics researchers use machine learning or data-driven approaches to empower the robots
to identify and grasp objects independently. In this work, two algorithms are proposed for
handling the grasping problems. In the first approach, a Bayesian optimization along with
the Gaussian Process Implicit Surfaces is utilized to figure out the 6D grasp configuration. In
the second approach, a point cloud transformer neural network is proposed to process the
objects, which will be further used to predict a 6D grasp configuration.



6 1 Introduction

Figure 1.4: Combining the different key ingredients of this work to create a intelligent robotic system architecture

1.2 Architecture for an intelligent robot system

Considering all aspects involved in designing an intelligent robotic system, this work aims to
integrate all aforementioned key ingredients to form a final robotic system structure. Recall
the scenario in the warehouse as depicted in Fig. 1.1: A robot is assigned a task to grasp
a package and place it on a shelf while avoiding any obstacle. I propose and design an in-
telligent robot system as illustrated in Fig. 1.4, to achieve this warehouse-like transporting
task, where the system structure in principle follows the sense-plan-act paradigm. Compared
with standard industrial robot applications, such as car-assembly, which only execute pre-
instructed offline programs without interacting with human coworkers, an intelligent robot
system that respond to dynamic environments requires artificial intelligence support. The
task description in the traditional teach-in method requires several additional aspects to ac-
complish the task, such as specifying the position and orientation of objects or the grasp
configuration concerning the object. In contrast, only the kinematic constraints and desired
objects are required as input in the task description for an intelligent robot system. The robot
model is fundamental for controlling the robots, and it allows the robot to move along the
geometric path, that is generated by the path planning module. The geometric path in the
joint space or operational space is fed into the trajectory planning module. Then a trajectory
is optimized in terms of predefined criteria by obeying the kinematic constraints. Depth cam-
eras, or more general 3D sensors, are used to capture objects to ensure that the intelligent
robotic system is capable of reacting dynamically to the environment. Three main computer
topics are addressed in this system. A deep learning-based object classification neural net-
work is used to identify the object requested in the task description. The pose estimation
algorithm extracts the object from the raw sensory data and estimates its coordinates in the
world, which will then fed to the path and grasp planning module. An additional shape
completion neural network is introduced in the sense paradigm to enhance grasp planning
performance, which aims to enlarge the grasp configuration solution space by completing
the partial point cloud to additional geometric information. The grasp planning module is
contained in the plan-act-paradigm. The rapid advance in machine learning pushes forward
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Figure 1.5: Outline of thesis

the progress in robot manipulation. A data-driven and optimization-based grasp planning
module is employed to realize the manipulation task.

1.3 Contributions and Outlines

This work is structured in three parts: Introduction, robotic foundations, and algorithms as
demonstrated in Fig. 1.5. Part I explains the essential aspects and mathematical formulations
in developing the algorithms in a fully autonomous system. They are the core components
in a modular design and provide the foundations for later concepts. Furthermore, I divide
the sense-act-plan structure into three parts. In Part II, I develop two algorithms in the tra-
jectory planning domain, and compare them with various state-of-the-art approaches. Their
strengths and limitations in the context of time-optimal, straight-line performance and effi-
ciency are discussed and evaluated. The developed and modified trapezoidal acceleration-
based motion profiles in this thesis demonstrate their benefits in various challenging indus-
trial motion planning scenarios. Furthermore, one vital component in the context of the
sense-plan-act paradigm is depicted in Part III, where three different computer vision algo-
rithms are developed. The first scenario focuses on pose estimation utilizing the concept of
Gaussian Process Implicit Surfaces, with which I can describe the grasped object as an implicit
surface. The second one demonstrates a point cloud-based rotation invariant algorithm for
robust object classification. To further enhance the robotic manipulability, I introduce a point
cloud completion approach enabling a full object representation. In Part IV, two different
grasp planning algorithms are demonstrated in two intuitive and modular systems for indus-
trial application. The first proposed algorithm utilizes the machine learning approach for
optimizing a grasp configuration. In contrast, a transformer-based grasp detection approach
is presented for enhancing the grasp capability in the case of an unknown scenario.
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Theoretical Foundations and Models
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Chapter 2

Mathematical Preliminaries and Robotics Founda-
tions

Before discussing the topics of trajectory planning, environment perception, and grasp plan-
ning, some basic knowledge and principles need to be introduced that will be used through-
out the paper. In addition, this section aims to provide enough specific mathematical details
to derive algorithms beyond the scope of this thesis using the basic concepts and knowledge
examined here.

2.1 Rigid Body Motion

A rigid body [145] is a solid body in which no deformation is conducted, and a rigid motion
of an object is a continuous movement that preserves the distance between points regardless
of external forces or moments exerted on it at all times. The motion of a single rigid body
is considered as the relative motion of a body-fixed coordinate frame B with respect to an
inertial frame S, where the inertial frame S by convention is presented as the base frame or
world frame in the robotic application. Furthermore, a minimum of six numbers is required
to specify the position p ∈ R3 and orientation R ∈ R3 of a rigid body in the three-dimensional
Cartesian space (physical space). The translational position p is defined as composed of a set
of three orthonormal axes ox ,oy ,oz with its respective distance px , py , pz along the axes of a
corresponding reference frame:

p= pxox + pyoy + pzoz (2.1)

The notation psb is used to indicate the translational motion from the origin of the inertial
frame S to the origin of reference frame B, and orthogonal matrix Rsb = [r1, r2, r3] ∈ R3×3 is
applied to describe the rotation of frame B with respect to the world frame S, where ri is the
unit vector, and collinear to the ith coordinate direction of frame B. Since the columns of R
are mutually orthonormal, it follows

rT
i r j =

¨

0 if i ̸= j

1 if i = j
(2.2)

The determinant of R is defined as:

det(R) = rT
1(r2 × r3) (2.3)

In convention, all considered coordinates frame follows the right-hand principle. Therefore,
the rotation matrix has the determinant det(R) = +1. More generally, the special orthogonal

11
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group SO(n) is used to describe the set of all such rotation matrices, and it has the following
property:

SO(n) = {R : R ∈ Rn×n,RTR= RRT = I, det(R) = 1} (2.4)

where n= 3 with SO(3) ∈ R3×3 is rotation matrix defined in three-dimensional space.
A group G is defined as a set of elements and an binary operation ◦ on two elements by

satisfying the following properties:

• Closure: If g1, g2 ∈ G, then g1 ◦ g2 ∈ G

• Associativity: If g1, g2, g3 ∈ G, then (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3)

• Identity: There exists an identity element, e, such that g ◦ e = e ◦ g = g for every g ∈ G

• Inverse: For each g ∈ G, there exists a (unique) inverse, g−1 ∈ G, such that g ◦ g−1 =
g−1 ◦ g = e

The SO(3) is known as a rotation group under the operation of matrix multiplication. There-
fore, I can define the binary operator ◦ as the matrix multiplication, and the identity element e
is the identity matrix. Furthermore, it can be shown that a rotation matrix represents a rigid
body transformation, since it preserves the distance and orientation. However, the SO(3) is
not closed under the operation of addition, since adding two rotation matrix can not result
in a valid rotation matrix:

R1,R2 ∈ SO(3)⇏ R1 +R2 ∈ SO(3) (2.5)

Note that, the zero matrix is not a valid rotation matrix: 0 /∈ SO(3). I can draw a conclusion
that SO(3) is not a vector space of R3×3

2.1.1 Euler angles representation for rotation matrix

Rotation matrix [33, 163, 178] has nine elements, which imposes six independent constraints
since the columns of R are mutually orthonormal. Thereby, only three elements are necessary
to describe a rotation matrix. An essential rotation representation is a rotation about one of
the axes of a coordinate system, such as about the x-, y-, or z-axis. And it results in the
rotation matrix with cos(θ ) = c and sin(θ ) = s in the sense of right-hand rule as

Rx(θ ) =





1 0 0
0 c −s
0 s c



 , Ry(θ ) =





c 0 s
0 1 0
−s 0 c



 , Rz(θ ) =





c −s 0
s c 0
0 0 1



 (2.6)

The other rotation matrix can be obtained from these three using matrix multiplication

R= Rz(α)Ry(β)Rx(δ) (2.7)

This order of matrix multiplication is so called yaw, pitch, and roll rotation representation.
The other order of matrix multiplication such as ZY Z

′
or ZX Z

′
are also frequently used in

the robotic application. A known Gimbal Lock problem in the Euler angle presentation can
result in a loss of a degree of freedom. Besides, this representation of rotations has another
disadvantage that small changes in rotation can result in significant angular changes in the
proximity of singularities.
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2.1.2 Quaternion for rotation matrix

Unit quaternions [29, 85, 112, 158] is an alternative parameterization of rotation that can be
used to prevent those problems as mentioned above by introducing a normal unit constraint.
Formally, a quaternion Q ∈H is a 4-tuple written in the form

Q= q0 + q1i + q2 j + q3k, qi ∈ R, i = 0, · · · , 3 (2.8)

where q0 ∈ R is the scalar component of Q, and q = (q1, q2, q3) ∈ R3 is the vector compo-
nent. The symbols i, j, k satisfy the following identities with the quaternion multiplication
operator (·) :

i2 = j2 = k2 = i jk = −1 (2.9a)

i · j = k, j · i = −k (2.9b)

j · k = i, k · j = −i (2.9c)

k · i = j, i · k = − j (2.9d)

Multiplication of these symbols i, j, k are distributive and associative but not commutative.
The magnitude of a quaternion Q can be described as:

∥Q∥2 = Q ·Q⋆ = q2
0 + q2

1 + q2
2 + q2

3 (2.10)

where Q⋆ is the conjugate of a quaternion Q as (q0,−q). It can be easily derived that the
reciprocal of a non-zero quaternion Q−1 is defined as = Q⋆

∥Q∥2 . The product between two
quaternions is a combination of inner product and cross product between two vectors: Let
Q= (q0,q), P= (p0,p) be quaternions, and the their product is defined as

Q · P= (q0p0 − qp, q0p+ p0q+ q× p) (2.11)

The unit quaternion is a subset of quaternion, by setting a unit magnitude of Q as q2
0+q2 = 1.

I can further reformulate the quaternion with cos(θ )2 = q2
0, sin(θ )2 = q2. Therefore, I have

the unit quaternion in the form of

Q=
�

cos(
θ

2
),u sin(

θ

2
)
�

(2.12)

where u ∈ R3 represents the unit axis of rotation with its corresponding angle θ ∈ R. It is
straightforward to derive the angle θ and u for a quaternion Q= (q0,q) with

θ = 2cos−1 q0, u=

¨ q
sin(θ/2) , if θ ̸= 0

0,otherwise
(2.13)

A quaternion rotation is defined as
�

0
z
′

�

= Q

�

0
z

�

Q−1 (2.14)

where z ∈ R3 is defined in the global coordinate system, and z
′ ∈ R3 is the same vector defined

in the body fixed coordinates. This unit quaternion rotation can be algebraically manipulated
into a matrix rotation as z

′
= Rz, therefore, I can derive the rotation matrix in terms of unit

quaternion with

R(Q) =





q2
0 + q2

1 − q2
2 + q2

3 2(q1q2 + q3q0) 2(q1q3 − q2q0)
2(q1q2 − q3q0) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q1q0)

2(q1q3 + q2q0) 2(q2q3 − q1q0) q2
0 − q2

1 − q2
2 + q2

3



 (2.15)



14 2 Mathematical Preliminaries and Robotics Foundations

The advantage of using unit quaternion for presentation a rotation matrix is that the repre-
sentation of a rotation as a quaternion (4 numbers) is more compact than the representation
as an orthogonal matrix (9 numbers). Furthermore, for a given axis and angle, one can di-
rectly construct the corresponding quaternion, and conversely, for a given quaternion one
can easily read off the axis and the angle.

2.1.3 Lie algebra for rotation matrix

The Lie group SO(3) represents a rotation matrix, and has its corresponding Lie algebra {˘=
φ∧ ∈ R3×3|φ ∈ R3}, which is interpreted as a vector space. The operator (.)∧ can further
convert this vector φ to a skew-symmetric matrix Φ in eqn. (2.16).

Φ= φ∧ =





0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0



 ∈ R3×3, φ ∈ R3 (2.16)

The inverse of the operator (.)∧ is defined as (.)∨ and leads to φ = Φ∨. The exponential
map will convert the Lie algebra so(3) to the Lie group SO(3) utilizing the matrix exponential
formulas: R= eφ

∧

eA = I+A+
1
2!

A2 +
1
3!

A3 + · · ·=
∞
∑

n=0

1
n!

An (2.17)

R= eφ
∧
=
∑∞

n=0

1
n!

�

φ∧
�n
= eθa∧ = cosθ I+ (1− cosθ )aaT + sinθa∧

where the angle θ is defined as ∥φφφ∥ and the axis a = φφφ
θ is interpreted as unit-length axis

of rotation. The identity I ∈ R3×3 can be rewritten in term of a with aaT − a∧a∧. It can
be shown that R = e(θ+2πm)a∧ , which indicates that mutually isomorphic Lie groups have
mutually isomorphic Lie algebras, but the converse does not necessarily hold. However, by
limiting the angle of rotation as |θ | ≤ π, each rotation R in Lie group SO(3) has a unique
solution θ in lie algebra so(3), and the calculation can be done:

tr(R) = tr
�

cosθ I+ (1− cosθ )aaT + sinθa∧
�

(2.18a)

= cosθ tr(I)
︸︷︷︸

3

+(1− cosθ ) tr
�

aaT
�

︸ ︷︷ ︸

aTa=1

+ sinθ tr
�

a∧
�

︸ ︷︷ ︸

0

(2.18b)

= 2 cosθ + 1 (2.18c)

It can be solved with

θ = cos−1
�

tr(R)− 1
2

�

+ 2πm (2.19)

and I will pick a value which lies inside |θ | ≤ π, and the axis is solved based on the factor
that Ra= a, namely a is the eigenvector of R with the eigenvalue is equal to 1.

2.1.4 Rigid body transformations

The spatial configuration of a rigid body is considered as a combination of translation p and
rotation matrix R, which can be denoted as special Euclidean group SE(3) :

SE(3) = {(p,R) |p ∈ R3,R ∈ SO(3)} (2.20)
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In a similar vein to the rotation matrix, a transformation matrix transfers the coordinates of
a point from one frame to another. Let pa, pb ∈ R3 be the coordinates of a point p relative to
frames A and B, respectively. The geometry relation between pa and pb can be described as:

pa = pab +Rabpb (2.21)

The mapping gab = (pab,Rab) is specified as the configuration of the frame B relative to the
frame A. Hence, The equation (2.21) is reformulated in the way of matrix multiplication as

�

pa
1

�

=

�

Rab pab
0 1

��

pb
1

�

= T

�

pb
1

�

(2.22)

where T is the homogeneous representation of gab ∈ SE(3). The inversion of T can be derived
as

T−1 =

�

RT
ab −RT

abTab
0 1

�

(2.23)

Similar to the SO(3), SE(3) is also not a vectorspace of R4×4 [72, 156]. SO(3) and SE(3)
are known to be matrix Lie group, which is also a differential manifold with the property
that the group operations are smooth. The exponential map will convert the SE(3) to its
corresponding lie algebra, denoted as se(3), and the Logarithm map will vice versa.

2.2 Robotic Forward Kinematics

The kinematics of a robot manipulator [112, 159] can be schematically represented as a
kinematic chain of rigid bodies (links) connected by means of revolute q or prismatic joints.
In the case of revolute joints, the joint q describes the angle between two adjacent links while
a prismatic joint is represented by the linear displacement between the two adjacent links.
Notice that, the angle of revolute joint can also be thought as an element of the set S1, a unit
circle [121].

The joint space Q of a manipulator is composed of all possible values of the joint vari-
ables q of the robot, which can also be interpreted as configuration space:

q= (q1, . . . , qn)
T ∈Q (2.24)

The task of forward kinematic of a robot is to determines the configuration of tool frame,
attached to end-effector, by given the joint configuration. The joint twist E [112] is described
as in the case of resolute joint as

E =
�−ωi × qi

ωi

�

(2.25)

where ωi ∈ R3 is the unit vector aligned to the joint axis and qi is the arbitrary point on the
joint axis. By given the joint configuration q and the based reference T(0), I can have the
forward kinematics map by using the product of exponentials formula

T(q) = eÊ1q1eÊ2q2 . . .eÊnqnT(0) (2.26)

The exponential terms eÊiqi ∈ SE(3), i ∈ [1, . . . , n] has the following formula:

eÊiqi =



























�

eω̂iqi (I− eω̂iqi )(ωi × vi) +ωiω
T
i viqi)

0 1

�

, for∥ωi∥= 1

�

I viqi

0 1

�

, for∥ωi∥= 0

(2.27)
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(a) (b)

Figure 2.1: (a):A model of an industrial manipulator with six degrees of freedom. The coordinate systems of
its links are shown with arrows in red, green, and blue for the corresponding x, y, and z axis [142].(b): Exact
measurements of manipulator from CAD data provided by manufacturer. The image shows the distances between
the joint axes required for a kinematic description of the robot.(Source from Robotic Library)

where vi in the case of pure rotation is defined as −ωi × qi [104, 112, 121], and the expo-
nential term eω̂iqi can be computed with the equation (2.18a)

2.2.1 Modeling with Denavit-Hartenberg parameters

By given the based frame S and a tool frame T , which can be arbitrarily attached to the link,
the concept of twist shown in the previous section can provide a complete parameterization
solution to obtain the forward kinematic, or more specially, the homogenous transformation
matrix between these two frames. To simplify the representation of the forward kinematic
of robots, a further conversion of parameterization method came into being. A commonly
used convention for selecting frames of reference in robotics applications is the Denavit
and Hartenberg (D-H) convention which was introduced by Jacques Denavit and Richard S.
Hartenberg [32] and is the de facto standard in robotics. This convention presented the first
minimal representation for a line with only four parameters compared to the six in a univer-
sal transformation. In this convention, each homogeneous transformation Ti is represented
as a product of four basic transformations (pure rotation Rot and pure translation Trans) with

Tli−1,li = Rot(zi−1, qi) · Trans(zi−1, di) · Trans(x i , ai) ·Rot(x i ,αi) (2.28)

=







cos qi − sin qi 0 0
sin qi cos qi 0 0

0 0 1 0
0 0 0 1













1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1













1 0 0 an
0 1 0 0
0 0 1 0
0 0 0 1













1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1







=







cos qi − sin qi cosαi sin qi sinαi ai cos qi
sin qi cos qi cosαi − cos qi sinαi ai sin qi

0 sinαi cosαi di

0 0 0 1






=

�

R p
0 1

�

(2.29)
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where the four quantities qi , ai , di ,αi are parameters associated with link i and joint i. I
consider this transformation as a combination of two axial screw transformations. In some
books, the D-H parameterization can also be described as

Tli−1,li = Trans(zi−1, di) ·Rot(zi−1, qi) · Trans(x i , ai) ·Rot(x i ,αi)

due to the matrix multiplication of Rot(zi−1, qi) · Trans(zi−1, di) is equal to Trans(zi−1, di) ·
Rot(zi−1, qi). These four parameters qi , ai , di ,αi are denoted as joint angle, link length, link
offset, and link twist, respectively. Furthermore, only the joint angle qi is a variable, and rest
of them are constant parameters based on the robot geometric description. As discussion
in the book [104], by properly choice of the origin and the coordinate axes, the number of
presentation of a homogenous transformation can be reduced to four. The equation (2.28)
requires the axis x i of a frame both intersecting and perpendicular to the axis zi−1. The
kinematics of the mechanism can be written as

Tst = Tl0,l1(q1) · Tl1,l2(q2) . . .Tln−1,ln(qn)Tln t (2.30)

This equation (2.30) is a general formula for the forward kinematics map of an open-chain
manipulator in terms of the relative transformations between adjacent link frames. An real
implementation example is illustrated in the Fig. 2.1.

The relationship between the twist coordinates for the joints of a robot manipulator and
the D-H parameter is not simple one-to-one mapping problem. As described in [112], I
defined the Ei,i−1 is the twist for the i-th link relative to the previous link frame. Then the
following formula can be conducted as

Tli−1,li (qi) = eÊi−1,iqi Tli−1,li (0) (2.31)

Therefore, the forward kinematic map can be described as

Tst(q) = eÊ0,1q1Tl0,l1(0) · eÊ1,2q2Tl1,l2(0) . . .eÊn−1,nqnTln−1,ln(0) (2.32)

Furthermore, I can rewrite the equation (2.32) as

Tst(q) = eÊ0,1q1Tl0,l1(0)e
Ê1,2q2 T−1

l0,l1
(0)Tl0,l2(0)

︸ ︷︷ ︸

Tl1,l2 (0)

. . .Tl0,ln−1
(0)eÊn−1,nqn T−1

l0,ln−1
(0)Tl0,ln(0)

︸ ︷︷ ︸

Tln−1,ln (0)

(2.33)

= eÊ0,1q1
�

Tl0,l1(0)e
Ê1,2q2T−1

l0,l1
(0)
�

. . .
�

Tl0,ln−1
(0)eÊn−1,nqnT−1

l0,ln−1
(0)
�

Tl0,ln(0) (2.34)

The adjoint transformation

AdT =

�

R p̂R
0 R

�

∈ R6×6 (2.35)

is a 6×6 matrix, which transforms twists from one coordinate frame to another. By using this
adjoint transformation, I have the following formula I define adjoint transformation as

TeÊqT−1 = eÖAdTEq (2.36)

Therefore, I can reformulate the equation (2.32) as

Tst(q) = eÊ0,1q1e
ÛAdTl0,l1

(0)E1,2q2 . . .e
ÛAdTl0,ln−1

(0)En−1,nqnTl0,ln(0) (2.37)

By comparison between equation (2.26) and (2.37), I can immediately obtain

Ei = AdTl0,li
(0)Ei−1,i (2.38)

This formula verifies that the twist Ei is the joint twist for the i-th joint in its reference con-
figuration and written relative to the base coordinate frame. Furthermore, if a manipulator
is parameterized with D-H parameter, I can use the equation (2.31), (2.38) to compute the
twist Ei.
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2.2.2 Robotic kinematic constraints

The kinematic constraints are imposed in the trajectory generation or grasp planning in terms
of joint position q, velocity q̇, acceleration q̈, and jerk

...
q , which can be mathematically

modeled as inequality constraints:

qmin ≤ q≤ qmax (2.39a)

q̇min ≤ q̇≤ q̇max (2.39b)

q̈min ≤ q̈≤ q̈max (2.39c)
...
q min ≤ ...

q ≤ ...
q max (2.39d)

In addition to the kinematic constraints, the manipulability [115, 189, 190] describes the
ability of a robot which can reach or change the position freely in the workspace. The
measurement of the manipulability can be characterized with the Jacobian of the manip-
ulator J(q) ∈ Rm×n, where m ≤ n indicates the dimension of an workspace, and the number
of robot joint q is denoted as n. The manipulability conditions is imposed as:

maxrank(q) = m (2.40)

The satisfied condition of (2.40) implies that the degree of the redundancy of this manipula-
tor is n−m. In the case of unsatisfied condition of (2.40), especially in some joint value q⋆,
the rank of the Jacobian is less than dimension of the workspace, and I can conclude that
the manipulator falls in a singular state det (J(q⋆)). Therefore, the quantitative measure of
manipulability is defined

w=
Æ

det (J(q)JT(q)) (2.41)

The physical interpretation of the manipulability measure is to specify the volume of an
ellipsoid, which can be computed with the singular value decomposition [74]. The scale
value w can be further used to find an optimal posture [190].

2.3 Trajectory planning

A classical problem in robot motion planning aims at determining a motion profile that al-
lows a robot to follow a given trajectory within a certain accuracy in the shortest possible
time. Moreover, in most industrial applications, besides the requirement of time-optimal,
the quality of a trajectory in terms of straight-line movement, jerk-limited is also vital for
extending the life cycle of a robot and avoiding collision. Two trajectory types are typically
applied in the real application: interpolation and approximation. In the case of interpolation,
the trajectory will exactly pass through all the given waypoints, while in the approximation,
the trajectory will blend the waypoints with a prescribed tolerance. I can’t simply say which
method is better because each has its application area. This section will introduce some basic
interpolation trajectory generation models by giving the waypoints, which are created by the
motion planning algorithm.

2.3.1 Implicit and parametric form

Commonly, two methods are chosen to present a curve in geometric modeling: implicit equa-
tions and parametric functions. The implicit form describes a curve lying in the two coordi-
nate plane (e.g x y-plane) with the

f(x , y) = 0 (2.42)
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This equation encodes the implicit relationship between these two coordinate variables,
which can be considered as the set of zeros of a function of two variables. The implicit
representations [154] facilitate the computation of intersection points by evaluating whether
a point lies on a specific curve. In contrast to the implicit representation, parametric form
separately consider each coordinate on a curve as an explicit function of an independent
parameter

C(u) =
�

x(u), y(u)
�

(2.43)

where C(u) is a vector-valued function of the independent variable u. It is universally recog-
nized that the parametric form is convenient to generate points along a curve. In the sense
of a trajectory generation, the variable u can be interpreted as a time variable, and the C(u)
is considered as the path traced out by a particle in terms of time. It is difficult to maintain
that one formulation is superior to the other one. Moreover, the conversion between implicit
and parametric equation is possible in some special cases. In the reminder of this section, I
will mainly focus on the formulation in terms of parametric form. A trajectory of the particle
is represented by the parameterized curve p(t) =

�

px(t), py(t), pz(t)
�

.

2.3.2 Trajectory with polynomial expression

The trajectory can be straightforwardly parameterized with a polynomial function

p(t) = a0 + a1 t1 + a2 t2 + . . .+ an tn (2.44)

by given the coefficient ai. The boundary conditions are used to determine the coefficient ai.
The smoothness of a trajectory is dependent on the polynomial degree n: For example, in
the case of linear trajectory, which has highest degree of 1, I can have a constant velocity
trajectory, and in the case of parabolic trajectory, which has the highest degree of 2, I can
create a constant acceleration trajectory.

In general, the boundary conditions on the point-to-point trajectory in a one dimensional
case entail initial and final position, velocity, acceleration, jerk conditions. Mathematically, I
can specify these boundary conditions:

k!ak + (k+ 1)!ak+1 t j + . . .+
n!

(n− k)!
an tn−k

j = p(k)
�

t j

�

(2.45)

where p(k)(t j) is the k-th time derivative of the polynomial p(t) at a given instant t j. For
a n+ 1 conditions, I can rewrite the (2.45) in the way of matrix multiplication:

Ma= b (2.46)

where a ∈ Rn+1 collects all unknown coefficients with the corresponding derivative coeffi-
cients M ∈ R(n+1)×(n+1). The vector b ∈ Rn+1 collects the boundary conditions for determining
the polynomial coefficients. Therefore, it is straightforward to compute the a by multiplying
the inverse the matrix M with the b.

There are typically two approaches for the case of multiple waypoints: The first one is to
use a high degree polynomial function to fit all values at once, which, however, can easily
result in a Runge’s phenomenon. Runge’s phenomenon [146] is a problem of oscillation at
the edges of an interval that occurs when using polynomial interpolation with polynomials of
a high degree over a set of equispaced interpolation points. Spline interpolation is an alterna-
tive approach for the multiple waypoints that can avoid the problem of Runge’s phenomenon.
It fits low-degree polynomials to small subsets of the values: for example, fitting nine cubic
polynomials between each of the pairs of ten points, instead of fitting a single degree-ten
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polynomial to all of them. A flexible strip is then bent across each of these weights, resulting
in a pleasingly smooth curve. The weights are the polynomial coefficients, which bend the
line to pass through each data point without any erratic behavior or breaks in continuity.

2.3.3 Trajectory with cubic spline

The cubic spline interpolation [106] is a special case for spline interpolation, which gives an
interpolating polynomial that is smoother and has a minor error than some other interpolat-
ing polynomials. The problem of cubic spline can be formulated as follows: Given a set of n+1
data points, denoted as (t i , pi) , i ∈ [1, n+ 1], where tmin = t0 < t1 . . . < tn−1 < tn = tmax , a
cubic spline function S(t i) is composed of n polynomial functions:

S(t) =































C1(t), tmin ≤ t ≤ t1
...
Ci(t), t i−1 ≤ t ≤ t i
...
Cn(t), tn ≤ t ≤ tmax

(2.47)

where Ci(t) is a third degree polynomial, defined by ai(t − t i)3+ bi(t − t i)2+ ci(t − t i)+ di , i ∈
[0, n] with ai ̸= 0. The first and second derivatives of n cubic functions are vital for the
interpolation process.

C
′
i(t) = 3ai(t − t i)

2 + 2bi(t − t i) + ci (2.48a)

C
′′
i (t) = 6ai(t − t i) + 2bi (2.48b)

The cubic spline S(t) is determined by determining each cubic polynomial coefficients. Be-
sides, for generating a smooth trajectory, I need to impose the constraints at the connection
points.

Ci(t i−1) = x i−1,and, Ci(t i) = x i , i ∈ [1, n] (2.49a)

C
′
i(t i) = C

′
i+1(t i), i ∈ [1, n− 1] (2.49b)

C
′′
i (t i) = C

′′
i+1(t i), i ∈ [1, n− 1] (2.49c)

The equation(2.49a) imposes the constraints that the piecewise function S(t) will interpolate
all data points. The equation (2.49a) (2.49b) and (2.49c) imply that the spline function will
be continuous on the interval [t0, tn]. Built on those constraints, I have n+n+(n−1)+(n−1) =
4n− 2 conditions, and the equation is rewritten in terms of acceleration Mi = C

′′
i (t i):





















1 4 1 0 . . . 0 0 0 0
0 1 4 1 . . . 0 0 0 0
0 0 1 4 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 4 1 0 0
0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1





















︸ ︷︷ ︸

A





























M1
M2
M3
M4
...

Mn−3
Mn−2
Mn−1
Mn





























︸ ︷︷ ︸

M

=
6

T2
i





















x1 − 2x2 + x3
x2 − 2x3 + x4
x3 − 2x4 + x5

...
xn−4 − 2xn−3 + xn−2
xn−3 − 2xn−2 + xn−1
xn−2 − 2xn−1 + xn





















︸ ︷︷ ︸

B

(2.50)
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where Ti = t i − t i−1. Furthermore, the relationship between the Mi and the cubic polynomial
coefficients ai are formulated as following:

ai =
Mi+1 −Mi

6Ti
(2.51a)

bi =
Mi

2
(2.51b)

ci =
x i+1 − x i

Ti
− Mi+1 + 2Mi

6
Ti (2.51c)

di = x i (2.51d)

The coefficient matrix A has the size of (n−2)× n, which is an under-determined matrix. For
finding a unique cubic spline function, two additional boundary conditions are required to
complete the computation. There are three common types of boundary conditions:

1. Given the initial and final velocity v0, vn:

C
′
1(t0) = c1, C

′
n(tn) = cn (2.52)

2. Given the initial and final acceleration a0, an:

C
′′
1(t0) = M1 = 2b1, C

′′
n(tn) = Mn = 2bn (2.53)

3. The spline function is a periodic function by imposing the constraints of the initial and
end position, velocity, acceleration:

C1(t0) = Cn(tn) (2.54a)

C
′
1(t0) = C

′
n(tn) (2.54b)

C
′′
1(t0) = C

′′
n(tn) (2.54c)

Based on the equation (2.51a)-(2.51d), the additional boundary equations can be integrated
to the equation (2.50) for determining a unique cubic spline function.

The aforementioned method considers the data points t i , x i as a preconditions, where
the way-points x i can be either manually predefined based on some specific applications
or generated by using the motion planning algorithm. And the time instants t i is used to
perform the interpolation process of the points x i, and it can be chosen in different ways
with different result. In the most common techniques, I use a unitary interval by setting

t0 = 0, tn = 1 (2.55)

and I define the distribution of intermediate time instants as

t i+1 = t i +
di

d
,withd =

n−1
∑

i=0

di (2.56)

Different choice of di leads to different properties of cubic spline:

• By choosing di =
1

n−1 , equally spaced point, I can have a highest speed trajectory profile

• By choosing di = |x i+1 − x i|1/2, I can reduce the acceleration
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However, the aforementioned approaches do not consider the physical constraints such as
kinematic constraints, which is vital for a robotic application. Therefore, for considering the
kinematic constraints, it is convenient to turn the problem into an optimization problem aim-
ing at minimizing the whole travel time by limiting the maximum kinematic constraints [21,
94]:

min T =
n
∑

i

Ti = tn − t0 (2.57a)

s.t: |C′i(t)|< vmax (2.57b)

|C′′i (t)|< amax (2.57c)

|C(3)i (t)|< jmax (2.57d)

The maximum velocity value |C′i(t)| can exist at the time knot t i , t i+1 or at the t̃ i ∈ [t i , t i+1],
where C

′′
i ( t̃ i) = 0, therefore, the maximum velocity constraint can be formulated as

|C′i(t)|< C
′
i,max(t) =max

�|C′i(t i)|, |C
′
i(t i+1)|, |C

′
i( t̃ i)|

	

< vmax (2.58)

The acceleration constraints exists only at the time knots t i or t i+1, since it is linear function.

|C′′i (t)|< C
′′
i,max(t) =max

�|C′′i (t i)|, |C
′′
i (t i+1)|

	

< amax (2.59)

The jerk constraint is denote as C(3)i,max(t) =
C
′′
i (t i+1)−C

′′
i (t i)

Ti+1
This is a nonlinear optimum problem

with a linear objective function, solvable with classical techniques of operational research.
It is also possible solve the problem in a iterative way by scaling the time interval for sat-
isfy the constraints [94], which however can only find a local optimum solution, since the
modification occurs only in the local segment. Let

λv =max
i
λv,i , with λv,i = max

t i<t<t i+1

C
′
i,max(t)

vmax
(2.60a)

λa =max
i
λa,i , with λa,i = max

t i<t<t i+1

C
′′
i,max(t)

amax
(2.60b)

λ j =max
i
λ j,i , with λ j,i = max

t i<t<t i+1

C(3)i,max(t)

jmax
(2.60c)

There have two ways for scaling the cubic spline. In the first method, I can scale the whole
time interval with the same scale factor λ

T̃i = λTi , with, λ=max
�

1,λv ,
Æ

λa, 3
q

λ j

	

(2.61)

to arrive the maximum speed or the maximum acceleration. For obtaining a minimum time,
I need to optimize each segment separately with

T̃i = λi Ti , with, λi =max
�

1,λv,i ,
Æ

λa,i ,
3
q

λ j,i

	

(2.62)

Due to the scaling of the time interval, it can result in a discontinuous at the joints be-
tween two contiguous tracts. It is necessary to iteratively recompute the spline coefficients
with T̃i using the equation (2.50), until no variation between T̃i and Ti exits, more specif-
ically λi = 1, i ∈ [0, n]. The initial value of time distribution Ti can be computed based on
equation (2.56),
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2.3.4 Trajectory with B-Spline

The cubic spline limits the highest derivative of a trajectory. A higher degree of splines is
required to ensure a continuous jerk or even higher-order derivative such as snap. Instead
of using piece-wise higher degree polynomials, which is described as a power-based form of
a curve, it is preferable to express the spline function in the way of B-form [31, 130], also
called B-spline. The power-based form of the curve is numerically not stable and prone to
round-off error if the coefficients vary significantly in magnitude. Besides, the algorithms for
processing trajectory lacks geometry interpolation. Therefore it is challenging to design the
shape by changing the coefficients of a polynomial.

Basis-spline [31, 41, 130] curves (commonly called B-spline curves) extends the concept
of the Bezier curves, which has the following form:

S(u) =
m
∑

i=0

Pi fi,p(u), with umin ≤ u≤ umax (2.63)

where Pi is indicated as the control points which form the control polygon and fi,p describes
the basis function with the degree of p with the knot vector u, where the knot vector is defined
as a vector of [u0, u1, . . . , unknot

] with ui ≤ ui+1. The knot span is defined as the difference
between two consecutive knots: ui+1 − ui. The constraint imposing on the basic function fi,p
in terms of the de Boor [14] recursion formula is formulated as

fi,0(u) =

¨

1, ui < u< ui+1

0, otherwise
(2.64a)

fi,p(u) =ω
p
j (u) fi,p−1(u) +

�

1−ωp
i+1(u)

�

fi+1,p−1(u), p > 0 (2.64b)

where the weights ωi is defined as

ωi,p(u) =

¨ u−ui
ui+p−ui

, ui+1 ̸= ui

0,otherwise
(2.64c)

Furthermore, the basic function is normalized between the first and last knot
m
∑

j

fi,p(u) = 1,∀u ∈ [u0, unknot
] (2.65)

From the aforementioned equations, it can be concluded that each basic function fi,p is
nonzero only on a limited number of sub-intervals [ui , ui+p+1], instead of entire domain.
This is the local support feature, therefore, the changing of Pi affects the shape of curve only
on the sub-intervals. The intuitive geometry interpretation behind the control points with a
normalized basic function is to blend the curve to lie within the convex hull of its control
points. It can be mathematically formulated as

S(u) ∈ ConvexHull
�

Pi−p, . . . ,Pi

�

, u ∈ [ui , ui+1] (2.66)

Furthermore, the derivative of basic function can be mathematically formulated in follow-
ing:

f
′
i,p =

p
ui+p − u j

fi,p−1(u)−
p

ui+p+1 − ui+1
fi+1,p−1(u) (2.67)

Furthermore, I repeat the differentiation of (2.67) to the k-th derivative of fi,p(u)

f(k)i,p =
p

ui+p − ui
f(k−1)
i,p−1 (u)−

p
ui+p+1 − ui+1

f(k−1)
i+1,p−1(u) (2.68)
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where f(k−1)
i,p−1 and f(k−1)

i+1,p−1(u) can be rewritten in terms of fi,p−k, . . . , fi+k,p−k. Therefore, the
generalization of (2.68) can be described as:

fk
i,p =

p!
(p− k)!

m
∑

j=0

ak, j fi+ j,p−k, with k ≤ q (2.69a)

with

a0,0 = 1, ak,0 =
ak−1,0

ui+p−k+1 − ui
(2.69b)

ak, j =
ak−1, j − ak−1, j−1

ui+p+ j−k+1 − ui+ j
, j = 1 . . . , k− 1, ak,k =

−ak−1,k−1

ui+p+1 − ui+k
(2.69c)

where the denominators of ak, j is nonzero, otherwise ak, j is set to zero.
In sense of geometry, the knot vector determines where and how the control points affect

the shape of curves. The number of knot vector is chosen based on the number of control
points m plus curve order p+ 1:

nknot = m+ p+ 1 (2.70)

Typically there have three different choice to determine the knot vectors: uniform, open-
uniform and non-uniform. In generally, I can describe the distribution of a knot vector in the
way of (2.71):

(u0, . . . , ul−1
︸ ︷︷ ︸

l knots

, ul , . . . , unknot−l−1
︸ ︷︷ ︸

nknot−2l internal knots

, unknot−l , . . . , unknot
︸ ︷︷ ︸

l knots

) (2.71)

The multiplicity of a vector, denoted as L, is defined as the number of coinciding internal
knots, therefore if all the internal knots are distinct, it implies that L = 1.

• The uniform distribution of a knot vector means the knot span is identical, and L = 1.

• The open-uniform B-spline, also denoted as clamped B-spline, requires the l-th equal
knots at each begin and end, which can be formally described as ui = u0 for 0 ≤ i < l,
ui+1−ui = constant for l ≤ i ≤ nknot− l−1 and ui = unknot

for nknot− l−1< i < nknot. The
distribution of a knot vector in (2.71) by setting l = p+1 is the case of multiplicity L =
p+ 1.

• The non-uniform distribution of a knot vector has only one constraint: ui ≤ ui+1. The
non-uniform rational B-spline, also called NURBS, is one example of non-uniform B-
spline, which is commonly used in computer graphics for representing curves and sur-
faces, which shows a great flexibility and precision for processing both analytic and
modeled shapes.

Recall that the B-spline is used to interpolate a trajectory by given the points qi with desired
degree p

S(uk) = qk, k = 0, . . . , n (2.72)

Therefore, to compute the control point Pi , i ∈ [0, m], I can stack the n+ 1 equations to build
a linear system with

qk =
�

f0,p(uk), f1,p(uk), . . . , fm,p(uk)
�









P0
P1
...

Pm









, k = 0, . . . , n (2.73)
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Figure 2.2: The seven-segment motion profiles at axis k between the waypoint i and i+1. The profile is split into
three phases, where t i,0 to t i,3 is the acceleration phase, ∆t i,3 is the cruising phase, and t i,4 to t i+1,0 = t i,7 is
the deceleration phase.

The relationship between the number of control points m and the waypoints n can be formu-
lated as

m=

¨

n+ p− 1, if p is odd
n+ p, if p is even

(2.74)

It is straightforward to see that the n + 1 equations can not be used to determine m + 1
unknown control points by given the knot vectors. To generate a unique trajectory solution,
p or p+ 1 additional constraints have to be imposed. Similar to cubic spline, apart from the
constraints via points, the velocity S(uk)(1) and acceleration S(uk)(2) at the initial u0 and final
points un are assisted to determine the coefficients.

S(uk)
(i) =

�

f(i)0,p(uk), f
(i)
1,p(uk), . . . , f(i)m,p(uk)

�









P0
P1
...

Pm









(2.75)

It is worth noticing that in the case of the number of free parameters less than the desired con-
ditions, additional knots can be added in any position of knot vector. By preserving the shape
of curve, additional control points are need to be inserted according to the equation (2.70).
In the sense of trajectory generation, I can consider the knot spans ∆t i = ui+1−ui as traveling
time between two adjacent joints, and using the same optimization formulation in (2.57a).

2.3.5 Trajectory with trapezoidal acceleration profile

The trapezoidal acceleration profile, also called the seven-segment trajectory, comprises seven
different tracts with a constant jerk, described as a polynomial function with a degree of 3.
The prominent distinction between the trapezoidal acceleration profile and cubic spline is
that the cubic spline can be considered as one segment profile with a constant jerk. The
illustration (Fig. 2.2) consists three distinguished phases: acceleration (Ta = t3 − t0), cruis-
ing (Tv = t4 − t3) and deceleration (Td = t7 − t4) phase. With the trapezoidal acceleration
profile, it is desired to generate a trajectory that makes it possible to reach the maximum
value of jerk, acceleration and velocity, and result in a minimum traveling time T between
two points (q1, q0).

Point-To-Point trajectory in one dimension

For sake of simplicity, I assume that q1 > q0, and a desired displacement h= q1−q0 with initial
and final velocity (v0, v1) and acceleration (a1 = a0 = 0). It is crucial to verify if a trajectory
can be performed by considering the condition of displacement and various velocities. There
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are total four situations to verify if a trajectory can be calculated by checking the following
condition

(vlim − v0) jmax < a2
max (2.76)

(vlim − v1) jmax < a2
max (2.77)

In the case of vlim = vmax, if the condition (2.76) holds, it implies that the acceleration can
not arrive the maximum value amax, as a consequence, the t1 is determined as

t1 =

√

√

√(vlim − v0)
jmax

, Ta = 2t1, t2 = t1 (2.78)

otherwise

t1 =
amax

jmax
, Ta = t1 +

vlim − v0

amax
(2.79)

Following the same strategy, the deceleration segment t5 − t4 can be computed by replacing
the velocity v0 in the (2.78) or (2.79) with the final velocity value v1 by checking the condition
in (2.77). In the end, I can determine the time interval in the cruising phase: Tv t4 − t3 with
the following formula:

Tv =
q1 − q0

vlim
− Ta

2
(1+

v0

vlim
)− Td

2
(1+

v1

vlim
) (2.80)

The precondition vlim = vmax will be violated if the Tv is less than zero. It implies that the
maximum velocity can not be reached by given conditions. Therefore, I need to reduce
the vlim that is smaller than the maximum velocity, and neglect the cursing phase with Tv = 0
in the meantime. I firstly assume that the maximum acceleration can be arrived in this case,
therefore, it is straightforward to compute the time interval with

t1 = t5 − t4 = T j =
amax

jmax
(2.81a)

Ta =
C1 − 2v0 +

p
∆

2amax
(2.81b)

Td =
C1 − 2v1 +

p
∆

2amax
(2.81c)

where

C1 =
a2

max

jmax
(2.81d)

p
∆= C2

1 + 2(v2
1 + v2

0 ) + amax

�

4(q1 − q0)− 2
amax

jmax
(v0 + v1)

�

(2.81e)

To verify if the assumption of arriving the maximum acceleration is satisfied, the condition
of Ta > 2T j and Td > 2T j should be evaluated. The violated state implies that the maximum
acceleration can not be achieved. It requires to scaling the maximum acceleration as alim =
λamax with 0< λ < 1, which can result in a non-optimal but acceptable solution. The choice
of scaling factor λ is needed to recursive adjust until the conditions Ta > 2T j and Td > 2T j
both are satisfied. There still exist two extreme cases Ta < 0 or Td < 0, which means no
acceleration phase or no deceleration phase, respectively. The non-acceleration Ta = 0 and
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non-cruising Tv = 0 phase trajectory requires an necessary condition v0 > v1, and it generates
a trajectory with

Td = 2
q1 − q0

v1 + v0
(2.82a)

t5 − t4 =
jmax (q1 − q0)−

q

jmax

�

jmax (q1 − q0)
2 + (v1 + v0)

2 (v1 − v0)
�

jmax (v1 + v0)
. (2.82b)

Furthermore, in the same way, I can generate a trajectory with non-deceleration and non-
cruising phase

Ta = 2
q1 − q0

v1 + v0
(2.83a)

t1 − t0 =
jmax (q1 − q0)−

q

jmax

�

jmax (q1 − q0)
2 − (v1 + v0)

2 (v1 − v0)
�

jmax (v1 + v0)
. (2.83b)

The aforementioned approach is based on the precondition of q1 > q0. To reuse the those
equations, I can formulate the conditions by introducing the sign function as σ = sign(q1−q0):

q̂0 = σq0, q̂1 = σq1, v̂0 = σv0, v̂1 = σv1

The resultant trajectory is need to be transformed by multiplying with the sign factor σ.

Multi-waypoints trajectory in multi-dimensions

The above approach is well-established for generating point-to-point trajectories, but it does
not directly extend to the multiple waypoint case. This model’s unique advantages motivate
us to explore the broader applications of this model further. Multiple waypoint trajectories are
more demanding in practical applications. For example, I must ensure that the motion of each
joint dimension is synchronized at each waypoint during a task. For this reason, I propose an
optimization-based solution in [100] for more complex and practical applications. Compared
to previous work [56, 77, 102] that synchronized motion at each waypoint only, I impose
a more stringent requirement that the motion of each dimension is synchronized at each
segment. This requirement brings at least two benefits to the robot. First, by sharing the
three motion phases of each dimension, the trajectory becomes smoother. In particular, by
sharing the same constant velocity phase, the robot manipulator can perform tasks requiring
high precision and stability in this phase, such as gluing and painting. Secondly, since the
motion of each dimension has the same time period, the search space in the optimization is
reduced, thus increasing the efficiency

I use (pk
0, pk

1, ..., pk
n−1) to denote waypoints in the kth dimension (k < m), where m is

the number of degrees of freedom, n is the total number of waypoints, and pk
i denotes the

position of waypoint i in the kth dimension. For paths in configuration space, pk
i presents the

joint position. In the case of paths in Cartesian space, this refers to the Cartesian position. The
trajectory between any two consecutive waypoints is modeled as a trapezoidal acceleration
or a seven-segment acceleration profile.

I consider a trajectory between pk
i and pk

i+1. A typical trajectory profile is shown in Fig. 2.2,
where the motion time is divided into seven segments or three phases. The acceleration phase
from t i,0 to t i,3 has an increasing velocity. It is followed by the constant velocity phase from
t i,3 to t i,4. The velocity is decreasing in the final deceleration phase from t i,4 to t i,7 = t i+1,0.
The jerk profile has a fixed value of zero in the three time segments (t i,1, t i,2), (t i,3, t i,4), and
(t i,5, t i,6) due to a constant acceleration in these segments. I denote the acceleration, velocity
and position at t i,h as ai,h, vi,h, and pi,h, respectively. The jerk in the segment (t i,h−1, t i,h) is
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labeled as ji,h with h ∈ [0, . . . , 6]. Then, for the time t ∈ (t i,h, t i,h+1), the time segment can be
defined as ∆t = t − t i,h. The acceleration, velocity, and position profiles can be derived from
the previous segment (t i,h−1, t i,h) as:

jk
i,h+1(t) = jk

i,h+1 , (2.84a)

ak
i,h+1(t) = ak

i,h + jk
i,h+1∆t , (2.84b)

vk
i,h+1(t) = vk

i,h + ak
i,h∆t +

1
2

ji,h+1∆t2 , (2.84c)

pk
i,h+1(t) = pk

i,h + vk
i,h∆t +

1
2

ak
i,h∆t2 +

1
6

ji,h+1∆t3 . (2.84d)

As mentioned in section 2.2.2, the motion should not violate the kinematic constraints of
the robot in any segment. Note that the acceleration is a monotonic function that varies with
time and is piecewise smooth. Therefore, in order to guarantee the kinematic constraints
within a segment, I only need to ensure that the kinematics at both ends of this segment
satisfy the constraints. With the kinematic constraints considered, the motion time of the
robot manipulator through all waypoints can be minimized in terms of time t i,h and stiffness
ji,h, which can be expressed as follows.

pk(t i,7) = pk(t i+1,0) = pk
i+1 (2.85a)

vk(t0,0) = vk(tn,0) = 0 (2.85b)

ak(t0,0) = ak(tn,0) = ak(t i,3) = 0 (2.85c)

jk
i,h = 0 , ∀h ∈ [1,3, 5] (2.85d)

|ak(t i,h)| ≤ ak
max , ∀h ∈ [0, . . . , 6] (2.85e)

|vk(t i,h)| ≤ vk
max , ∀h ∈ [0, . . . , 6] (2.85f)

| jk
i,h| ≤ jk

max , ∀h ∈ [0,2, 4,6] (2.85g)

At the initial and final points, i.e., at t0,0 and tn,0, the acceleration and velocity are equal
to zero. Setting ak(t i,3) = 0 guarantees that the velocity will remain constant during the
constant velocity phase. In (2.85), since vk(t0,0) and ak(t0,0) are equal to zero and pk

1 is
known, the whole trajectory can be generated based on t i,h and jk

i,h. As jk
i,h is equal to zero

∀h ∈ [1,3, 5], the unknown variables are t i,h ∀i ∈ [0, . . . , n− 1] and ∀h ∈ [0, . . . , 6], as well as
jk
i,h ∀i ∈ [0, . . . , n− 1] and ∀h ∈ [0, 2,4, 6]. Therefore, the total number of unknown variables

is 7 (n− 1) for the time variables and 4 (n− 1) for the jerk variables.
Optimization Problem Formulation: The trajectory generation can be formulated as

a nonlinear and nonconvex constrained optimization problem that can be solved using a se-
quential quadratic programming algorithm. The algorithm decomposes the nonconvex prob-
lem into a sequential convex problem. I use NLOpt’s SLSQP [76] solver [64] for this purpose.
With the high dimensionality of the configuration space and the large number of waypoints,
the complexity of the optimization problem and optimization space increases significantly. A
good initial estimate of the trajectory can significantly affect the convergence of the optimiza-
tion procedure. I address this problem using the concept of model predictive control (MPC).
The objective of the constrained optimization problem is to optimize the entire trajectory in
time by using a trapezoidal acceleration model. The optimization parameters X for this prob-
lem include the time and jerk values for each trajectory segment. The acceleration, velocity
and position can be derived automatically by (2.84) using these values. For generating a
time-optimal trajectory, I formulate the objective function in terms of ∆t i,h = t i,h − t i,h−1 for
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Figure 2.3: The waypoints have been decomposed into n− 2 batches. Each batch consists of three waypoints,
where the former and last two waypoints (bold lines) are respectively overlapped with their former and subsequent
batches.

every value of h and i:

f (X ) =
i=n−1
∑

i=0

h=6
∑

h=0

∆t i,h (2.86a)

where X = ({t0, . . . , ti , . . . , tn−1}, {j0, . . . , ji , . . . , jh}) , (2.86b)

ti = {∆t i,0, . . . ,∆t i,6} , (2.86c)

ji = {{ j0i,0, j0i,2, j0i,4, j0i,6}, . . . , { jm−1
i,0 , jm−1

i,2 , jm−1
i,4 , jm−1

i,6 }} . (2.86d)

Besides the objective function, the constraints also play an important role in solving this
problem. Roughly, the constraints comprise nonlinear inequality and equality constraints as
well as lower and upper bounds.

minimize
X

f (X ) (2.87a)

subject to lb≤ X ≤ ub (2.87b)

c(X )≤ 0 (2.87c)

ceq(X ) = 0 (2.87d)

The multidimensional trapezoid model consists of 7n + 4nm optimization variables, a total
of 14mn nonlinear inequality constraints, and mn+ nm nonlinear equality constraints.

Model predictive control inspired optimization approach: The optimization problem
has high computational complexity due to a large number of degrees of freedom and way-
points. It is not realistic to optimize all waypoints within one optimization step. However, the
waypoints can be divided into consecutive batches. The remaining problem is then to connect
all the individual batches. Directly connecting all batches will result in a zero velocity at all
connecting points. In order to avoid this situation, I adopt the idea behind Model Predictive
Control (MPC) approaches [167]. As shown in Fig. 2.3, I first need to set a receding horizon.
I use a value of two for this, therefore only the next two waypoints pi and pi+1 will be taken
into account at waypoint pi−1 and the batch contains the waypoint set {pi−1, pi , pi+1}. The
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(a) (b) (c) (d) (e)

Figure 2.4: Trajectories for different interpolation models on path planning use cases for (a)–(d) a Kuka LWR next
to a table with a parallel gripper and (e) a Kuka KR60-3 next to a wall and three columns with a vacuum gripper.
In (a)-(b) is the result of Linear parabolic, and in (c),the cubic spline is used, and (d)-e applies the trapezoidal
acceleration profile

batch including these three waypoints is used as an input for the optimization solver, but
only the result between pi−1 and pi will be used and the result between pi and pi+1 will be
discarded. However, I can still use this result as initial guess for the next optimization step,
since the next batch will contain the waypoints {pi , pi+1, pi+2}. Hence, every batch shares two
waypoints with its former and subsequent batch. In this way, the trajectory profile between
two overlapping waypoints can be predicted by optimizing the former batch and updated by
optimizing the subsequent batch. As shown in Fig. 2.3, the whole set of waypoints has been
successively decomposed into n− h batches, where h is the receding horizon.

Experimental evaluations: I evaluate the performance of the proposed optimization
approaches and two state-of-the-art approaches: Linear Parabolic interpolation [8] and Cubic
Splines [31]. The Linear Parabolic model divides each interpolation step into three parts: two
parabolic blends with the previous and next trajectory segments and a linear interpolation
with constant velocity in the middle. I test these approaches on two path planning examples
and present a detailed analysis of their performance and properties. For both the Cubic
Spline and Linear Parabolic models, I ensured that the acceleration and velocity limits of
each joint are satisfied by scaling the timescales of the trajectory segments. For the Trapezoid
Acceleration model, this is handled intrinsically by my optimization routine.

I show how I fulfill two key requirements of path planning algorithms, i.e., reaching
waypoints exactly and maintaining near-linear trajectories in the configuration space be-
tween successive waypoints. Fig. 2.4b–2.4d shows a path planning example for the Kuka
LWR consisting of seven waypoints indicated by green spheres. The interpolated trajectories
are shown by green lines. The trajectory calculated by the Cubic Spline model (Fig. 2.4c)
deviates significantly from a straight line interpolation between successive waypoints. The
trajectory from the Linear Parabolic method (Fig. 2.4b) follows a near-linear interpolation
but is clearly non-smooth. My method (Fig. 2.4d) satisfies both requirements. Cubic Spline
and Trapezoidal Acceleration methods are guaranteed to pass through all waypoints exactly.
Linear Parabolic interpolation blends around the waypoints and fails to hit inner waypoint
as demonstrated in Fig. 2.4a. The percentage of the trajectory segment that is blended influ-
ences this deviation from the waypoints. I set this to 20% for my experiments, resulting in
deviations of 0.0◦, 2.3◦, 1.3◦, 3.0◦, 4.5◦, 2.2◦, and 0.0◦ for the seven waypoints.

2.4 Grasp planning

This section will show a number of the fundamental models of grasp analysis and their grasp
quality criteria. In addition, several off-the-shelf simulation platforms related to grasp plan-
ning will be briefly introduced.
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Similar to the robot arm, the gripper (robot hand) can be considered as a series of kine-
matic chain, that is composed of a palm that serves as the common base for any number
of fingers, each with any number of joints. A grasp is defined as a set of contacts on the
object’s surface. This thesis considers only the precision grasp, where only the fingertips
contact with the models and manipulator constraints are neglected. The grasp model can
be mathematically described, which aims at predicting the interaction behavior between the
hand and object with various conditions arising from grasping. The grasp maintenance is
the most desirable behavior by handling the unknown disturbing forces and moments acting
on the object/workpiece. Therefore, planning a good/optimal grasp is vital in the robotic
applications that require to firmly hold an object and resist the external force [43, 116].

I define the finger joints with q = [q1, . . . , qnq
] ∈ Rnq , where nq is the number of joints,

and q are denoted as the vector of joint displacement. The torques in revolute joints or forces
in prismatic joints are described as τ = [τ1, . . . ,τnq

] ∈ Rnq , which arises from interaction at
the contacts between the object and hand. The wrench is defined as 6-dimensional vector by
concatenation the force vector and torque vector as

wi = [f
T
i ,τi]

T (2.88)

where τi is computed as λ(ci − r) × fi, acting on the object at the contact ci and its refer-
ence point r. The center of mass is typically chosen as reference point, to give it a physical
meaning.

2.4.1 Grasp closure properties

In general, a final grasp is capable of resisting the disturbance so that it can prevent the grasp
from sliding the force in the contact i and its corresponding wrenches wi, and any disturbing
forces or wrenches wext. Therefore, the whole system should have lied in the equilibrium
state [15]:

i=N
∑

i=0

wi +wext = 0 (2.89)

Various quality criteria can be used to judge a given grasp configuration. Form and force
closure are two typical characterizations of grasp restraint, which can enable the grasp equi-
librium regardless of the direction of the counter force. A grasp is considered as form-closure
if the held object can not move, even infinitesimally, when the hand grasps an object with its
locked finger joint and fixed palm in place. From the geometrical interpretation, form closure
is a set of mechanical constraints imposed on a rigid body to disable the rigid body motion
in any direction, and the object motion is completely independent of friction. Therefore, a
form-closed grasp is desired when the works pieces are constrained independent of frictional
properties. Under the same condition, if the applied wrenches at the contacts can balance
any disturbing wrench wext, the grasp is called force-closure. Therefore I can also conclude
that form closure grasp is also a kind of force closure grasps.

Form closure

The form closure can be precisely described by introducing the implicit distance functionψi(u, q)
[4]

ψi(u,q)











= 0, if the contact on the surface
> 0, if contact breaks
< 0, if penetration occurs

,∀i ∈ [1, . . . , nc] (2.90)



32 2 Mathematical Preliminaries and Robotics Foundations

where u and q are the object and robot hand configuration, respectively. Mathematically
speaking, a grasp u, q satisfies the condition of form closure, if and only if the following
requirements is fulfilled.

ψi(u+ d u,q)≥ 0 =⇒ d u= 0 (2.91)

Force closure

Force closure is a relaxation of form closure by allowing the friction force to balance the
object wrench. It will reduce the number of contact points utilizing friction analysis. For
example, seven contact points are required for grasping a three-dimensional object with six
degrees of freedom under the form closure criteria. But only two contact points are needed to
satisfy the force closure condition if the gripper is modeled as soft fingers, and three contact
points are sufficient if the gripper is modeled as hard fingers. Therefore, roughly speaking,
the main distinction between the form and closure is whether the friction force is used to
help the grasp to hold an object. The Coulomb friction is the most commonly used friction
model, which is an approximated model for computing the dry friction

F f =
�

(Fi , fio) | Fi ≤ µi Fi,n

	

(2.92a)

Fi = ∥ fi − ( fi · ni) fi∥ (2.92b)

Fi,n = fi · ni (2.92c)

where F f ∈ R3 is the coulomb friction cone. The force Fi,n is the normal force exerted by
each surface at the contact point ci and contact normal ni with the corresponding friction
coefficients µi. In generally, the friction cones is simplified as polyhedral cones. One step
closed to force closure is defined as frictional form closure with

Gλ= −g
λ ∈ F

�

∀g ∈ Rnv (2.93a)

Where the G is the Grasp matrix, and the composite friction cone F defined as

F = F1 × · · · ×Fnc

= { fi ∈ Rm | fi ∈ Fi; i = 1, . . . , nc} (2.93b)

The force closure is stricter than the frictional form closure with the requirements of the full
rank of grasp matrix rank(G), and the intersection of nullspace of grasp matrix N (G) and
nullspace of hand Jacobian N (J) is None.

2.4.2 Grasp wrench space

However, the force closure is the only minimal quality requirement for a grasp. The equa-
tion (2.89) is the primary goal for a grasp using the wrench to compensate arbitrary distur-
bances or balance a special set of disturbances. Combining the equation (2.88) and (2.92),
the Cone Wrench space (CWS) [16] at the contact point ci has the following formula:

CWSci
=

�

wi | wi =

�

fi
λ (ci − r)× fi

�

∧ ∥fi − (fi · ni)ni∥ ≤ −µ (fi · ni)∧ ∥fi∥ ≤ 1} (2.94)

Let’s denote the Grasp Wrench Space (GWS) [16, 107, 109] as a set of all wrenches applied
to the object via the k grasp contacts

W =
¨

w | w=
k
∑

i=1

wi =
k
∑

i=1

Mi fi ∧wi ∈ CWSci
, fi ∈ Fi , i = 1, . . . , k

«

(2.95)
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where M = [M1, . . . , Mk] is the grasp map, which maps the local contact reference frame to
an object-defined global reference frame. The friction cone is commonly approximated as a
pyramid with m edges, besides, any force fi ∈ Fi can be written as positive linear combination
of unitary force fi j along the pyramid edges, denoted as primitive forces:

fi =
m
∑

j

αi j fi j ,αi j ≥ 0 (2.96)

The constraints of
∑m

j αi j ≤ 1 imposes the overall magnitude. The friction force can be
integrated into (2.95) leading to the final formulation as

W =
(

w | w=
k
∑

i=1

m
∑

j=1

αi, jwi, j , wi, j =

�

fi, j

λ
�

(ci − r)× fi, j

�

�

,
m
∑

j=1

αi, j ≤ 1, αi, j ≥ 0

)

(2.97)

where wi, j is interpreted as primitive wrenches. However, the computation of GWS (2.95)
can be pretty cumbersome in practice since it is challenging to find a linear combination of
finger force to compensate a disturbance wrench. The alternative is using the grasp wrench
hull W̃, which can be computed very efficiently

W̃ =
(

w | w=
k
∑

i=1

m
∑

j=1

αi, jwi, j , wi, j =

�

fi, j

λ
�

(ci − r)× fi, j

�

�

,
k
∑

i=1

m
∑

j=1

αi, j = 1,αi, j ≥ 0

)

(2.98)
The definition of a convex hull of a point set A = {a1, . . . , an} is the smallest convex object
containing A, which can be expressed as a convex combination of A with

x =
n
∑

i

λiai ,
n
∑

i

λi = 1,λi ≥ 0 (2.99)

Therefore, the constraints
∑k

i=1

∑m
j=1αi, j = 1 is imposed to create a convex hull of wrenches wi j,

resulting in a grasp wrench hull W̃. In addition, the property W̃ ⊆W holds by the definition.
I can rewrite (2.98) using the Minkowski sum

⊕

of primitive wrenches wi, j for the convex
hull operation, which gives an efficient way to compute the grasp wrench hull

W̃L∞ = ConvexHull

�

k
⊕

i=1

�

wi,1 . . .wi,k

	

�

(2.100)

where W̃L∞ describes the convex hull of a finite set of elements in R6.

2.4.3 Grasp quality

The definition and computation of form closure, force closure, and the grasp wrench space
imply that grasp configuration for an object is not unique. Therefore, a grasp quality metric
is necessary to rank different grasp configurations. Ferrari-Canny metric [43] is the most
commonly used criteria for evaluation. It defines the grasp quality measure as the largest
perturbation wrench that the grasp can resist in any direction. Mathematically speaking, the
grasp quality metrics is formulated as

QL∞ = inf
x∈∂ W̃L∞

∥x∥2 (2.101)
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(a) (b) (c) (d)

Figure 2.5: A list of state of the art simulator: (a) is the Graspit! simulator, (b) is the ISSAC simulator, (c) is the
mujoco simulator, and (d) is the pybullet simulator.

where ∂ W̃L∞ describes the boundary of W̃L∞ , and quality can be geometrically interpreted
as the radius x of the largest ball centered at the origin of the grasp wrench space inside the
grasp wrench hull. Physically, the optimal quality aims at minimizing the maximum force
exerted by any of the fingers to resist an arbitrary external wrench. This grasp quality is
widely used for the grasp synthesis. An alternative for obtaining the grasp quality is to sum
all the force exerted by the fingers to compensate the external wrench by reformulating the
Minkowski sum

⊕

in (2.100) with the union operator
⋃

W̃L1
= ConvexHull

�

k
⋃

i=1

�

wi,1 . . .wi,k

	

�

(2.102a)

QL1
= inf

x∈∂ W̃L1

∥x∥2 (2.102b)

The two qualities mentioned above depend on the reference point r, while the center of mass
is typically chosen as default and coherent with the system. However, in some cases, the
center of mass is difficult to be determined accurately. An alternative method is used to the
convex hull volume, which is independent of the reference point.

Qvolume = Volume(W̃) (2.103)

Hence the quality is independent of the reference point, but the drawback of this quality is
that it can not indicate if a grasp shows poor performance in a specific direction to resist
the external wrench. There are many other research [16, 101, 162] to mitigate the problem
arising from the reference-based or volume-based quality approach. The grasp quality metric
is applied to guide the grasp planning process by iteratively evaluating the quality. Therefore
besides the accuracy of computing the grasp quality, efficiency also plays a vital role in ac-
celerating the computation of the quality metric. The estimation of the convex hull requires
a number of resources. The de-facto standard approach uses the QuickHull algorithm [5],
which is proven to be efficient and widespread used in the industry. The procedure of com-
puting a quality is to construct the convex hull of grasp wrench space in six dimensions, and
based on the (2.101), the maximum radius of the ball is calculated. It is straightforward to
observe that a whole convex hull is computed in each iteration in this procedure, which is not
necessary. To accelerate the computation, only the closest face of a convex hull to the center
is sufficient for getting the radius. Many robot platforms have implemented the function of
grasp quality metric, such as Graspit! [108], which provides several robot hands and meth-
ods for grasp selection and simulation. ISSAC simulator [93] and Mujoco [172] and bullet
simulator [27] are states of the art physical engines and are attracted a lot of attention in the
past years, which can be exploited to simulate the physical interaction between the object
and robot hands and evaluate the grasp maintenance property.
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Chapter 3

Jerk-Limited Trajectories with Blending for Robot
Motion Planning

Chapter Summary

This chapter extends the previous work [100] by considering the trajectory blending sce-
nario. I presented two different approaches to generate a time local-optimal and jerk-limited
trajectory with blends for a robot manipulator under consideration of kinematic constraints.
The first approach generates a trajectory with blends based on the trapezoidal acceleration
model by formulating the problem as a nonlinear constraint and a non-convex optimization
problem. The resultant trajectory is locally optimal and approximates straight-line movement
while satisfying the robot manipulator’s constraints. The second approach is a combination
of a trapezoidal acceleration model with a 7-degree polynomial to form a path with blends.
It can be efficiently computed given the specified blending parameters. The same approach
is extended to Cartesian space. Furthermore, a quaternion interpolation with a high degree
polynomial under consideration of angular kinematics is introduced. Multiple practical sce-
narios and trajectories are tested and evaluated against other state-of-the-art approaches.

This chapter is a slightly modified version of peer-reviewed conference paper ©2021 IEEE.
Reprinted, with permission, from

• Lin, Jianjie, Rickert, Markus, and Knoll, Alois, “Parameterizable and Jerk-Limited Tra-
jectories with Blending for Robot Motion Planning and Spherical Cartesian Waypoints,”
IEEE International Conference on Robotics and Automation (ICRA) 2021

The images created, algorithms designed, data from experiments and text written by me in
this publication will be directly referenced in this chapter. The original version is referred
to 178

Contributions

I took a leading role in the writing and revising of the manuscript in this article. I have
made the following significant personal contributions to the formulation, implementation,
and evaluation of the algorithms in this paper: describing the trajectory planning problem
as a nonlinear optimization problem, proposing and designing a model-based predicate con-
trol based optimization procedure to solve the optimization complexity problem, being the
leading developer in the implementation of the algorithms, and being responsible for the
evaluation of the experiments.
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3.1 Introduction

Trajectory generation is a fundamental topic in the robotics community that deals with the
calculation of a time-optimal, smooth, jerk-limited, and accurate motion for a well-defined
task. Manually programming and optimizing paths for complex robot systems is no longer
viable when it comes to flexible production with small lot sizes and multiple robot manipu-
lators, a common use case in small and medium-sized enterprises [126]. In order to quickly
adapt to new processes, new paths have to be generated automatically by modern path plan-
ning algorithms that are able to calculate complex motions for multiple manipulators in a
narrow space. As cycle times should be as short as possible, globally optimal path plan-
ning algorithms [157] present a considerable advantage over classical algorithms that are
followed by a local optimization step. In order to avoid stopping at every waypoint in a
path, supporting various forms of blending is a desired property in a trajectory generation
algorithm to further increase the performance of a robot system. Kinodynamic path plan-
ning algorithms with velocity information however are proven to be PSPACE hard [34] and
therefore lead to a large increase in computation time. Industrial robot controllers and open-
source implementations commonly support blending via linear parabolic motions and cubic
spline interpolation. Trajectories based on linear parabolic blending, that only limit the ac-
celeration, suffer from infinite jerk around the blend waypoints [100]. Although cubic spline
interpolation can improve the smoothness of a path by limiting the jerk, it can result in a
more significant deviation of the straight-line movement. This is especially important when
calculating trajectories for position-based solutions in robot path planning. Trajectory gen-
eration without explicit error bounds in the path deviation can lead to undesired behavior.
Deviating too far from the collision-free solution path can result in collisions. Based on these
observations, I present two different approaches to generate a trajectory for following multi-
ple waypoints. They support an explicit upper bound in deviation and are jerk-limited around
the blended waypoints. In my previous work [100], I consider the situation of performing an
accurate motion for a robot manipulator by forcing the trajectory to precisely pass through all
waypoints, which are either manually specified or generated via a path planning algorithm.
In this work, I extend this to a more general application by considering blending around
the waypoints. In contrast to most state-of-the-art blending algorithms, the jerk limitation
is followed throughout the trajectory. In the same way as Haschke et al. [56] and Kröger et
al. [77], the trapezoidal acceleration profile is used to generate the trajectory between two
consecutive waypoints. As stated in [100], the trapezoidal acceleration profile increases the
optimization complexity while considering phase synchronization. In comparison to my pre-
vious work [100], I relaxed the objective function by introducing two additional weights to
control the distribution of acceleration, deceleration, and cruising phases, which reduces the
optimization complexity and shows a better performance from the perspective of straight-line
movement. I continue to utilize the principle of model predictive control [100] for optimizing
all waypoints by decomposing them into many consecutive waypoint batches and bridging
each two adjacent batches with an overlapping waypoint. In addition to the optimization
approach, I present another new approach that combines the trapezoidal acceleration model
with a high-degree polynomial to perform a blending trajectory in joint and Cartesian space.
Notably, quaternion interpolation is integrated and extended to a high degree polynomial,
which considers the angular jerk and results in a smooth quaternion trajectory.
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3.2 Related Work

Generating time-optimal and smooth trajectories has been studied for decades in the robotics
community. The proposed trajectory planning techniques are roughly divided into two cate-
gories: online and offline planning.

Online real-time trajectory generation is mainly used to deal with unforeseen events and
a dynamic and fast modification of the planned trajectory. Macfarlane et al. [102] proposed a
jerk-bounded fifth-order polynomial with parabolic blends between two waypoints. Haschke
et al.[56] presented an online trajectory planner by considering arbitrary initial kinematics
and stopping at each waypoint. Kröger et al. [77] extended the online planner in a more gen-
eral approach, which can handle arbitrary start and goal states. Lange et al. [84] proposed a
path-accurate and jerk-limited online trajectory generation in configuration space. However,
this cannot be easily extended to multiple waypoints and it is also not possible to blend the
trajectory around the target.

Offline trajectory planning is suitable for a well-defined task, such as assembly or welding
applications. The standard trajectory generator utilizes polynomials based on splines such
as cubic splines or polynomials of higher degrees to provide a jerk-bound smooth trajectory.
B-splines and their extension method [151] are also widely used to generate smooth trajec-
tories. Although polynomial-based and B-spline-based algorithms can generate a smooth tra-
jectory, they cannot fully explore the robot’s capabilities and show a significant deviation from
a straight line. Pham et al. [128] proposed a new approach based on reachability analysis for
the time-optimal path parameterization (TOPP) problem. Similarly, Nagy and Vajk [114] ap-
plied a linear programming-based (LP) solver to tackle TOPP. Furthermore, Barnett et al. [7]
introduced a bisection algorithm (BA) by extending the dynamic programming approaches
to generate a trajectory. However, those algorithms are expensive to perform a trajectory
with blends. Kunz et al. [81] proposed a path-following algorithm by adding circular blends
that consider the acceleration bounds in joint space. Dantam et al. [30] presented spherical,
parabolic blends by using the SLERP function, where no interpolation in a Cartesian pose is
considered. These algorithms however do not take jerk limitation into account.

3.3 Problem Formulation

The goal is to find a time-optimal, jerk-limited, and smooth trajectory that blends an in-
termediate waypoint without violating kinematic constraints. Furthermore, it is required to
minimize the deviation to a straight line in either joint or Cartesian space. The trapezoidal
acceleration-based trajectory model [100], also called seven-segment model, has the capabil-
ity to generate a smooth and jerk-limited trajectory. At segment h ∈ [0, · · · , 6], the kinematics
are formulated as (2.84) at the waypoint i in the axis k. The parameter ∆t i,h is the time
difference, defined as t i,h+1 − t i,h. For a phase synchronization [77] trajectory, position, ve-
locity, acceleration, and jerk in each axis at the same segment should be synchronized. The
time evolution of a position is interpreted by a third-order polynomial, which can increase
the smoothness of trajectories by bounding the jerk. In this paper, I present two approaches:
In the first approach, I extend my previous work, which enforces a precise pass through
all waypoints, denoted as TrajOpt-Pass-Joint (TOPJ), to generate a blending trajectory by
formulating it as a nonlinear constraint optimization problem, indicated as TrajOpt-Blend-
Joint (TOBJ). In the second approach, I combine the trapezoidal acceleration model with
a high-dimensional polynomial (7-degree) to generate a blending trajectory both in joint
space TrajPoly-Blend-Joint (TPBJ) and Cartesian space TrajPoly-Blend-Cart (TPBC).
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3.3.1 Blending by Optimization in Joint Space (TOBJ)

A blending trajectory is formulated as a nonlinear constraint optimization problem by apply-
ing a nonlinear optimization solver (SQP) [118].

Objective Function

The purpose of the objective function f is to find a trajectory that is optimal in time and
moves as linearly as possible in joint space as

f =
i=n
∑

i=1

�

λ3

�

�

(∆t i,acc +∆t i,dec)λ1

�2
+
�

∆t i,cruisλ2

�2�

+λ4

k=m
∑

k=1

(vk
i,3)

2 exp
�

−
∆t2

i,cruis

2σ2

�

�

,

(3.1)

where n is the number of waypoints, m are the degrees of freedom of a robot. The time in-
terval of the acceleration phase is indicated as ∆t i,acc, the cruising phase as ∆t i,cruis, and the
deceleration phase as∆t i,dec. The weight values λ1 and λ2 are used to control the distribution

of the acceleration/deceleration and cruising phase. The choice of
�

(∆t i,acc +∆t i,dec)λ1

�2
+

(∆t i,cruisλ2)2 has advantages over the formulation
�

(∆t i,acc +∆t i,dec)λ1 +∆t i,cruisλ2

�2
, which

avoids the product of (∆t i,acc +∆t i,dec)∆t i,cruis, so that acceleration/deceleration phase and
cruising phase cannot affect each other. On top of this, λ3 is used to minimize the whole
trajectory time. In this formulation, λ3 and λ1/λ2 conflict with each other. λ1/λ2 is used to
achieve a straight-line motion, while minimizing the time with λ3 requires a longer accelera-
tion/deceleration phase that can lead to an overshooting trajectory. In [100], the straight-line
deviation bound is added in the objective function. In this work, I relax this constraint by
emphasizing a straight-line in joint space. Furthermore, the overshooting is observed with

∆t i,cruis =
�

(pk
i,target − pk

i−1,0)−
�

∆pk
i,acc +∆pk

i,dec

�

�

/vk
i,3 , (3.2)

where ∆pk
i,acc =

∑h=2
h=0 pk

i,h(t i,h, vk
i,0, ak

i,0) and ∆pk
i,dec =

∑h=7
h=4 pk

i,h(t i,h, vk
i,4, ak

i,4, vk
i,7, ak

i,7). If the
time ∆t i,cruis is negative, the reached position overshoots the target. To eliminate this un-
desired behavior, the cruising phase should be omitted. Since ∆pk

i,acc +∆pk
i,dec has a longer

distance than pk
i,target−pk

i−1,0, I can reduce the cruising velocity vk
i,3 to shorten ∆pk

i,acc. Besides,
the trapezoidal end velocity vi,7 influences the position ∆pk

i,dec, which can be automatically

tuned by the optimization solver. I add a regular term (vk
i,3)

2 exp(−∆t2
i,cruis

2σ2 ) in the objective
function with σ, which controls the decay rate. It can be shown that at ∆t i,cruis ≈ 0, the reg-

ular term (vk
i,3)

2 exp(−∆t2
i,cruis

2σ2 ) is approximated as (vk
i,3)

2, and the velocity is reduced by mini-

mizing the objective function. In the case of ∆t i,cruis > 0, the Gaussian value exp(−∆t2
i,cruis

2σ2 ) is
exponentially decayed to zero, which has no effect on the cruising phase.

Kinematic Constraints

Instead of passing through the waypoints, I define a blending bound between two consecutive
line segments. Furthermore, I set a non-zero velocity and acceleration for each waypoint,
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except for the first and last waypoint. The constraints are described as

pk(t i,h1
) = pk

i+1,bl,start, h1 ∈ [4, . . . , 6] , (3.3a)

pk(t i+1,h2
) = pk

i+1,bl,end , h2 ∈ [0, . . . , 3] , (3.3b)

vk(t0,0) = vk(tn,0) = 0, ∆t i,h ≥ 0 , (3.3c)

ak(t0,0) = ak(tn,0) = ak(t i,3) = 0 , (3.3d)

| jk(t i,h)| ≤ jk
max , |ak(t i,h)| ≤ ak

max ,∀h ∈ [0, . . . , 6] (3.3e)

|vk(t i,h)| ≤ vk
max , |pk(t i,h)| ≤ pk

max ,∀h ∈ [0, . . . , 6] (3.3f)

pk
i,bl,lower ≤ pk

i+1,bl ≤ pk
i+1,bl,upper (3.3g)

where pk
i+1,bl,start is the start blending segment position at waypoint i+1 in axis k and pk

i+1,bl,end

is the end blending segment position at waypoint i + 1 in axis k. The variable pk
i,bl,lower,

pk
i,bl,upper is a lower and upper blending bound, respectively. The corresponding optimized

blending waypoint at i + 1 in axis k is indicated as pk
i+1,bl. The variable h1 and h2 are pre-

defined values that depend on the blending percentage. One relaxation of the jerk j con-
straint [56] is made by allowing double acceleration or deceleration phases: sign( j) is no
longer strictly defined as [±, 0,∓, 0,∓, 0,±] but changed to sign( j) = [±, 0,±, 0,±, 0,±]. This
relaxation allows reaching the next waypoint without slowing down.

Blending Bound Constraints

The blending constraint p i,bl,con is computed as p i+1+ ŷ rη, where ŷ is defined as ŷ2−ŷ1
∥ ŷ2−ŷ1∥ with

ŷ1 =
pi+1 − pi

∥pi+1 − pi∥
(3.4a)

ŷ2 =
pi+2 − pi+1

∥pi+2 − pi+1∥
(3.4b)

Additionally, r = li/(tanαi+1/2) with αi+1 = arccos( ŷ T
1 ŷ2) and

li =min
�∥p i+1 − p i∥

2
,
∥p i+2 − p i+1∥

2
,
δ sin(αi+1/2)
(1− cos(αi+1/2))

	

(3.5)

where δ is the predefined blending distance from qi+1. η is the percentage value for con-
trolling the blending bound. The deviation εbl = ∥p i,bl,con − p(t i,7)∥ is bound. Utilizing the
blending constraints, I have

pk
i,bl,lower =min{pk

i,bl,con, pk(t i,7)} (3.6a)

pk
i,bl,upper =max{pk

i,bl,con, pk(t i,7) (3.6b)

Model predictive based optimization Procedure

As shown in my previous work [100], the complexity of optimizing a trapezoidal accelera-
tion profile trajectory depends on the degrees of freedom and the number of waypoints. I
still apply the Model Predictive Control (MPC)-based optimization approach and divide all
waypoints into small batches by considering a horizon value and individually optimize each
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p0 p1 p2 p3 pn−3 pn−2 pn−1 pn

n= 0
p0 p1 p2

n= 1
p1,bl p2 p3

k = n− 1
pn−3,bl pn−2 pn−1

k = n
pn−2,bl pn−1 pn

waypoints

Figure 3.1: The waypoints are decomposed into n−H batches, where H is the horizon step. Each batch consists
of H + 1 waypoints, where the former and last two waypoints (bold lines) are respectively overlapping with their
former and subsequent batches. p1,bl is the optimized blending position.

batch. As a result, the computation complexity for each batch is fixed and depends on the
MPC horizon step H. In this work, I use H = 2. Only the solution of the first two waypoints p i
and p i+1 is kept and the kinematic information at waypoint i+1 works as the initial condition
for the next batch optimization. For a high-dimensional non-convex and nonlinear constraint,
a good initial guess is essential for an optimization solver that controls the gradient search
direction to a good local minimum or even to a global minimum. I use the same procedure for
find the initial guess as in my previous work [100]. In addition, I add a small Gaussian noise
perturbation for the initial point if the solver cannot converge and repeat the optimization
procedure until successful convergence to a predefined tolerance value.

3.3.2 Blending with Polynomial in Joint Space (TPBJ)

The second approach combines the trapezoidal with a high-dimensional polynomial to form
a blending path. The blending segment is described as a high-degree polynomial under
consideration of initial f0 = (p0, v0, a0, j0) and final f1 = (p1, v1, a1, j1) kinematic constraints.
These require a total of eight coefficients, therefore I utilize a 7-degree polynomial function
in one dimension:

f (t) = b7 t7 + b6 t6 + · · ·+ b2 t2 + b1 t + b0. (3.7)

The coefficients b0 - b3 can be computed using f0 with b0 = p0, b1 = v0, b2 =
a0
2 and b3 =

j0
6 .

The coefficients b4 to b7 depending on f1 and polynomial time t can be described as
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Due to this, x 1(t1, f0, f1) = A−1
1 (y1 − A2y2) with time matrices A1, A2. The polynomial is

simplified as
f (t, f0, f1) = [t

7, t6, t5, t4]x 1(t1, f0, f1) + h2(t, f0) , (3.9)
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where h2(t, f0) is described as 1
6 j0 t3+ 1

2 a0 t2+ v0 t + p0. Firstly, I assume that the initial f0 and
final f1 kinematic constraints are available. Therefore, f (t) depends only on the time t. To
find a polynomial blending trajectory that satisfies all kinematic constraints, I need to verify
the extreme point of the polynomial by computing the root of its derivative. For example, the
extreme point of jerk can be found at the position where the first derivative of the jerk (snap)
is equal to zero. In addition, a n-degree polynomial has at most n real roots. The constraints
can be mathematically formulated as

| f (n−1)(λ( f (n)))χλ(λ( f
(n)))| ≤ kmax , (3.10)

where f (n) is n-th derivative of f with n ∈ [1,4] and the corresponding constraints kmax ∈
[pmax, vmax, amax, jmax]. The root-finding function λ( f (n)) for a given polynomial is used to
find the extreme value position for f (n−1). χA(x) is the indicator function of A and will be set
to one if x ∈ [0, t], otherwise to zero. Note that if the χA(x) function is not derivable, the
gradient-based optimization solver will diverge. To find a time-optimal polynomial trajectory
that satisfies initial/final conditions and lies within the kinematic constraints, I iteratively
check the constraints (3.10) by adding a small delta to t = t +∆t, where in my case ∆t is set
to 0.001. Furthermore, to obtain the initial f0 and final f1 kinematics, I compute a Point to
Point (P2P) trapezoidal acceleration profile movement between each two waypoints, which
can be in joint space or Cartesian space, with zero initial and end conditions, and the com-
puted traveling time is indicated as t i−>i+1. After that, I predefine a blending percentage η
to set a start blending time tbstart

= (1 − η)t i−>i+1 and end blending time tbend
= ηt i+1−>i+2

for each two consecutive trajectories. By querying the trapezoidal model at tbstart
and tbend

, I
obtain the kinematics f0 and f1.

3.3.3 Blending with Polynomial in Cartesian Space (TPBC)

Utilizing the same principle, I extend the algorithm to the Cartesian space, which is widely
used in industrial applications. The benefits of planning trajectory in Cartesian space lies
in that I can exactly generate a straight-line trajectory in Cartesian space which can not be
achieved in the joint space since the forward kinematic is a nonlinear function. The blending
trajectory in Cartesian space requires separate blending for position and orientation. Inter-
polation of the Cartesian space is executed in the same way as described in Section 3.3.2. For
the orientation part, which has to consider a spherical interpolation, I apply the formulation:

h(t) = hi∆h(t) = hi

�

u(t) sin(θ (t)2 )
cos(θ (t)2 ) ,

�

(3.11)

where hi is the initial quaternion, and ∆h(t) transforms the quaternion from hi to h(t). The
Eigen axis between two quaternions is defined as u(t) = θ (t)/∥θ (t)∥ ∈ R3 with a rotation
angle θ (t) = ∥θ (t)∥. Therefore, the quaternion interpolation depends only on θ (t) ∈R3.

The time evolution function θ (t) can be described as polynomial, such as third-order
polynomial.

θ (t) = a3
1(x − 1)3 + a3

2 x(x − 1)2 + a3
3 x2(x − 1) + a3

4 x3 , (3.12)

It can also be easily converted to the standard polynomial formulation in (3.7) by using
constant matrix coefficients. To consider the angular velocity ω, angular acceleration ω̇, and
angular jerk ω̈ at the start and end state for the quaternion blending, the time evolution
function θ (t) is described as:

θ (t) = a7
1(x − 1)7 + a7

2 x(x − 1)6 + · · ·+ a7
8 x7 (3.13)
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with x = t−t0
t f −t0

∈ [0, 1]. Its roots and its derivative are computed at point x = 0 and x = 1.
The derivatives of θ can be defined as

θ̇ (t) = a6
1(x − 1)6 + a6

2 x(x − 1)5 + · · ·+ a6
7 x6 (3.14)

with the parameter ∆tan−1
i = (n−i+1)an

i +ian
i+1. The angular rate vectorω can be computed

as
ḣ =

1
2

hω

ω= 2h−1ḣ = 2∆h∆ḣ
(3.15)

where ∆ḣ can be derived as

∆ḣ =

�

u̇(t) sin(θ (t)2 ) +
1
2 u(t) cos(θ (t)2 )θ̇ (t)

−1
2 sin(θ (t)2 )θ̇ (t)

�

(3.16)

To simplify the formal, I will neglect the t in the following equations. and

θ̇ =
d∥θ∥

d t
=
θ T θ̇

θ
= uT θ̇

u̇(t) = w × u = (
θ × θ̇
θ2

)× u = (
u × θ̇
θ
)× u = −u × (u × θ̇

θ
)

(3.17)

Formal of angular velocity ω

Replacing the ∆ḣ in the equation (3.15), I can derive the relationship between ω ∈ R3

and θ̇ ∈R3 as
ω= uθ̇ − w + sin(θ )w × u + cos(θ )w (3.18)

where w = (u×θ̇ )
θ ∈ R3 and θ̇ = uT θ̇ is a scalar value. I further simplify ω with the skew-

symmetric matrix (·)× as

ω= (uuT − (1− cos(θ ))
θ

u×)θ̇ +
sin(θ )
θ

u×θ̇×u
︸ ︷︷ ︸

sin(θ )
θ (θ̇ (uT u)−u(uT θ̇ ))

= (uuT +
sin(θ )
θ
(I− uuT )− (1− cos(θ ))

θ
u×)θ̇

= Aω,1θ̇

(3.19)

Formal of angular acceleration ω̇

In the same way, I can compute the angular acceleration ω̇ and angular jerk ω̈. Furthermore,
the angular acceleration ω̇ is formulated as

ω̇= u̇θ̇ + uθ̈ + cosθθ̇w × u + sinθ ẇ × u + sinθw × u̇ − sinθθ̇w − (1− cosθ )ẇ

= uθ̈ + sinθ ẇ×u − (1− cosθ )ẇ + w×uθ̇ + (cosθθ̇w × u + sinθw × u̇ − sinθθ̇w )
︸ ︷︷ ︸

H1

(3.20)

Based on the equation (3.18), the term H1 can be further simplified as

ω× (uθ̇ − w ) = (uθ̇ − w )× (uθ̇ − w ) + (sinθw × u + cosθw )× (uθ̇ − w )

= 0+ (sinθw × u)× (uθ̇ − w ) + (cosθw )× (uθ̇ − w )

= sinθw × u × uθ̇ − sinθw × u × w + cosθθ̇w × u

= sinθw × u × uθ̇ + sinθw × u̇ + cosθθ̇w × u

(3.21)
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Based on the vector triple product (a× b)× c= b(c · a)− a(b · c). It leads to

w × u × u = u(u ·w)−w(u · u) = u(u ·w)−w= u(u · (u × θ̇ )
θ

)−w. (3.22)

Furthermore, scalar triple product of three vectors is defined as a·(b×c) = c·(a×b). Therefore
the equation of u · (u×θ̇ )θ = θ̇

θ · (u ×u) is equal to zero. As a result, ω× (uθ̇ −w ) = (cosθθ̇w ×
u + sinθw × u̇ − sinθθ̇w ) = H1. The equation (3.20) can be simplified as

ω̇= uθ̈ + sin(θ )ẇ×u − (1− cosθ )ẇ + w×uθ̇ +ω×(uθ̇ − w ) (3.23a)

with

ẇ = (θ×θ̈ − 2θ T θ̇w )/θ2 (3.23b)

θ̈ = (w×u)T θ̇ + uT θ̈ (3.23c)

By replacing the ẇ and θ̈ in the ω̇, the angular acceleration is derived as

ω̇= (uuT − (1− cosθ )θ×

θ2
)

︸ ︷︷ ︸

Aω̇,1,1

θ̈ +
sinθθ×θ̈ × u

θ2
︸ ︷︷ ︸

sinθu×θ̈×u
θ = sin(θ )

θ (θ̈ (uT u)−u(uT θ̈ ))=Aω̇,1,2

+ u(w×u)T θ̇ +
2sinθu×θ T θ̇w

θ2
+

2(1− cosθ )θ T θ̇w
θ2

+ w×uθ̇ +ω×(uθ̇ − w )
︸ ︷︷ ︸

Aω̇,2

(3.24)

By replacing u = θ
θ , the parameter Aω̇,1,1θ̈ +Aω̇,1,2 can be simplified as

Aω̇,1,1θ̈ +Aω̇,1,2 = (uuT +
sin(θ )
θ
(I− uuT )− (1− cos(θ ))

θ
u×)θ̈ = Aω̇,1θ̈ (3.25)

and Aω̇,2 is simplified as using u = θ
θ , θ̇ = uT θ̇

Aω̇,2 = uu̇T θ̇ +
2 sinθu×uT θ̇w

θ
+

2(1− cosθ )uT θ̇w
θ

+ w×uθ̇ +ω×(uθ̇ − w )

= uu̇T θ̇ +
2 sinθθ̇u×w

θ
+

2(1− cosθ )θ̇w
θ

+ w×uθ̇ +ω×(uθ̇ − w )

= u̇θ̇ +
2sinθθ̇u×w

θ
+

2(1− cosθ )θ̇w
θ

+ w×uθ̇ +ω×(uθ̇ − w )

(3.26)

The angular acceleration ω̇ can be reformulated as

ω̇= Aω̇,1θ̈ +Aω̇,2 (3.27)

Formal of angular Jerk ω̈

The angular jerk is defined as derivative of ω̇

ω̈= u̇θ̈ + u
...
θ + cosθθ̇ ẇ×u + sin(θ )ẅ×u + sin(θ )ẇ×u̇ − sinθθ̇ ẇ − (1− cosθ )ẅ

+ ẇ×uθ̇ + w×u̇θ̇ + w×uθ̈ + ω̇×(uθ̇ − w ) +ω×(u̇θ̇ + uθ̈ − ẇ )

= u̇θ̈ + u
...
θ + sinθ ẅ×u − (1− cosθ )ẅ + Aẅ ,a + Aẅ ,b (3.28a)
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with
...
θ = (ẇ×u + w×u̇)T θ̇ + (w×u)T θ̈ + u̇T θ̈ + uT

...
θ =

...
θ 1 + uT

...
θ (3.28b)

Aẅ ,a = ẇ×uθ̇ + w×u̇θ̇ + w×uθ̈ + ω̇×(uθ̇ − w ) +ω×(u̇θ̇ + uθ̈ − ẇ ) (3.28c)

Aẅ ,b = θ̇ cosθ ẇ×u + sinθ ẇ×u̇ − sinθθ̇ ẇ (3.28d)

ẅ =
θ2(θ̇

×
θ̈ + θ×

...
θ − 2θ̇

T
θ̇w − 2θ T θ̈w − 2θ T θ̇ ẇ )− 2(θ×θ̈ − 2θ T θ̇w )θθ̇

θ4

=
(θ̇
×
θ̈ + θ×

...
θ − 2θ̇

T
θ̇w − 2θ T θ̈w − 2θ T θ̇ ẇ )
θ2

− 2(θ×θ̈ − 2θ T θ̇w )θ̇
θ3

=
(θ̇
×
θ̈ − 2θ̇

T
θ̇w − 2θ T θ̈w − 2θ T θ̇ ẇ )

θ2
− 2(θ×θ̈ − 2θ T θ̇w )θ̇

θ3
+
θ×

...
θ

θ2

= Aẅ ,c +
θ×

...
θ

θ2
(3.28e)

Similarly, I can formulate the angular jerk ω̈ as

ω̈= Aω̈,1

...
θ +Aω̈,2 (3.29a)

where

Aω̈,1 = Aω,1 (3.29b)

Aω̈,2 = u̇θ̈ + u
...
θ 1 − (sinθu× + (1− cosθ ))Aẅ ,c + Aẅ ,a + Aẅ ,b (3.29c)

In summary, the quaternion trajectory blending is modeled as

θ (t0) = 0, θ (t f ) = uθ

θ̇ (t0) = A−1
ω,1ω0, θ̇ (t f ) = A−1

ω,1ω1

θ̈ (t0) = A−1
ω̇,1(ω̇0 −Aω̇,2), θ̈ (t f ) = A−1

ω̇,1(ω̇1 −Aω̇,2)
...
θ (t0) = A−1

ω̈,1(ω̈0 −Aω̈,2),
...
θ (t f ) = A−1

ω̈,1(ω̈1 −Aω̈,2) ,

where the initial and end conditions are obtained by querying the quaternion trapezoidal
acceleration profile. This process is similar to Section 3.3.2. I iteratively check the quater-
nion kinematics constraints in the same way as (3.10). I combine Cartesian position and
quaternion interpolation to form a trajectory with blends.

3.4 Experimental Evaluation

I compare the performance of the presented approaches in this paper with the work by Kunz
et al. [81] (TO-BAV), Pham et al. [128] (TOPP-RA) and my previous work [100]. The work
in [81] generates a trajectory with a designed circular blend under consideration of velocity
and acceleration bounds and the work [128] used the reachability-analysis (RA) to solve the
time optimal path parameterization (TOPP) problem. My previous work [100] generates
a trajectory by forcing a precise pass through all desired waypoints without stopping. For
the evaluation of the motion planning scene, the collision-free paths in the examples are
computed using the Robotics Library [142], which is also used for kinematic calculations and
simulation. In the evaluation, I set the weights in [100] and TOBJ as λ1 = 1.2, λ2 = 1,
λ3 = 5000, and λ4 = 10. All evaluations were performed on a laptop with a 2.6 GHz Intel
Core i7-6700HQ and 16 GB of RAM.
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(a) (b) (c)

Figure 3.2: Comparison of joint space trajectories for the ISO cube scenario. The plots show the first and second
DOF of different algorithms. The straight line reference in joint space is shown in red, the calculated joint trajectory
in blue with a TOPJ [100], b TOBJ, c TPBJ.

Figure 3.3: Industrial robot workcell with UR5 manipulators.

3.4.1 Evaluation of deviation from straight-line in joint space

For the first evaluation, I consider a subset of the well-known ISO 9283 [161] cube industrial
benchmark as shown in Fig. 3.2. Here, the robot’s end effector has to follow a number
of waypoints that are part of a two-dimensional rectangle inside a three-dimensional cube
while applying blending. The corresponding results are shown in Fig. 3.2. The previous work
TOPJ [100] in Fig. 3.2a completed the ISO cube task within 6.26 s by passing through all
waypoints and the generated trajectory has to deviate from the straight-line movement to
avoid stopping at each waypoint. For improving the quality of the trajectory, TOBJ presented
in this work extends the TOPJ by blending around the target position, which results in a
better straight-line movement and completed the ISO cube task with a shorter time of 6.1 s
due to a shortened path length. The polynomial based algorithm (TPBJ) can further reduce
the completion time to 5.94 s with a bigger blending circle radius.

3.4.2 Evaluation of the algorithm in a real robot workcell

I evaluate my algorithms on a Universal Robots UR5 robot manipulator as shown in Fig. 3.3
by looking at the actual velocity and current measured by the UR5 controller with an update
rate of 125 Hz over the native Real-Time Data Exchange protocol. I compare my approaches
against the algorithm developed by TO-BAV [81]. The evaluation results are illustrated in
Fig. 3.4. The maximum velocity and acceleration values are identical for all trajectory gener-
ators. The only difference is that [81] does not consider any jerk limitation. The remaining
algorithms limit the maximum jerk to a value of five times faster than the maximum veloc-
ity. I evaluate the computational complexity of each algorithm by running the experiment
40 times. TO-BAV [81] takes 0.263(50) s to generate a blending trajectory. The proposed
algorithm TrajPoly-Blend-Cart shows a similar computation time of 0.265(50) s. TPBJ is more
efficient with a computation time of 0.16(2) s and is 1.56x faster than TO-BAV. In comparison
to these three algorithms, the optimization-based approaches due to the non-convex and non-
linear constraints optimization formulation—have a computation time of 2.52(50) s in each
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(a) TO-BAV (b) TOPJ (c) TOBJ (d) TPBJ (e) TPBC

0 s 3.30 s
−1.8 rad/s

1.6 rad/s

(f) TO-BAV

0 s 3.83 s

−1.4 rad/s

1.1 rad/s

(g) TOPJ

0 s 3.80 s

−1.1 rad/s

1.0 rad/s

(h) TOBJ

0 s 3.56 s

−1.3 rad/s

1.2 rad/s

(i) TPBJ

0 s 4.36 s

−1.2 rad/s

0.9 rad/s

(j) TPBC

0 s 3.30 s
−2 rad

2 rad ·10−3

(k) TO-BAV

0 s 3.83 s
−2 rad

1.5 rad
·10−3

(l) TOPJ

0 s 3.80 s

−1.5 rad

1.5 rad
·10−3

(m) TOBJ

0 s 3.56 s

−1.5 rad

1.5 rad
·10−3

(n) TPBJ

0 s 4.36 s

−1.5 rad

1.5 rad
·10−3

(o) TPBC

0 s 3.30 s
−4 rad/s

0 rad/s

4 rad/s ·10−2

(p) TO-BAV

0 s 3.83 s

−2 rad/s
0 rad/s
2 rad/s

·10−2

(q) TOPJ

0 s 3.80 s

−2.1 rad/s
0 rad/s

2.1 rad/s
·10−2

(r) TOBJ

0 s 3.56 s

−2.5 rad/s
0 rad/s

2.5 rad/s
·10−2

(s) TPBJ

0 s 4.36 s

−2 rad/s
0 rad/s
2 rad/s

·10−2

(t) TPBC

Figure 3.4: A comparison of different trajectory profiles for the UR5 example. The individual plots show a–
e position, f–j velocity with the controller’s target (red) and actual (blue) value, and p–t corresponding velocity
differences.

batch optimization, with 86 DOF= 516 inequality constraints and (2H+3) DOF= 42 equality
constraints in one MPC-horizon step with H = 2. The computed trajectories are visualized in
a 3D environment [142] as shown in figs. 3.4a to 3.4e. The blending directly implemented
in Cartesian space follows a straight line. The other four algorithms have a similar trajectory
performance. It needs be pointed out that the blending mode in [100] is different from the
other algorithms, as it can pass precisely through all desired waypoints without stopping.
From the perspective of velocity performance, the result from [81] indicates a large gap be-
tween desired and real velocity which occurs at each turning point, shown in Fig. 3.4p, as
the robot controller is not able immediately to execute a trajectory that contains an infinite
jerk. The robot further shows higher peaks in the measured motor current as demonstrated
in Fig. 3.4k. If the maximum specified acceleration is further increased, the additional bur-
den on the motors may lead to hardware issues and a reduced lifetime. In contrast to this,
the algorithm presented in this work considers the jerk limitation. The robot controller can
follow the desired waypoints continuously and demonstrates reduced motor current values.
Figures 3.4g and 3.4h exhibit a clear period of cruising phase in comparison to the other
algorithms, as the objective function in the optimization step emphasizes a longer constant
velocity phase over the acceleration and deceleration phases. This behavior is desirable in
certain industrial robot task such as welding and gluing, as the cruising segments show a
smoother overall behavior compared to the other segments.
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Table 3.1: Benchmark results of path planning scenarios. The best results are highlighted in bold and smaller
values are better. The maximum blending deviation δ is set to 0.1. The jerk limitation used by TPBJ is set to 100x
and 500x of the maximal velocity constraints, denoted as TPBJ1 and TPBJ5, respectively. TOBJ is set to 100x.
Npoint describes the number of waypoint, tcomp is the computation time, and ttra is the traveling time. Lalg is the
traveling length, Lstra is the base straight-line length, and I present the percentage.

Scenario 1 (Npoint = 42) Scenario 2 (Npoint = 55) Scenario 3 (Npoint = 42) Scenario 4 (Npoint = 181)

Alg. TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5

tcomp 0.23 0.28 54.15 0.15 0.088 0.28 0.186 65.7 0.65 0.319 0.32 0.45 149.52 0.41 0.25 1.68 0.54 231.68 0.70 0.41
ttra 4.08 3.759 7.09 7.02 5.95 3.67 3.40 6.35 6.58 5.88 25.20 23.95 26.17 26.32 25.48 11.75 10.55 26.48 26.44 18.91

Lalg/Lstra 0.999 1.0027 0.997 1.0001 0.999 0.999 1.003 0.998 1.0001 0.998 0.998 1.174 0.997 1.001 0.997 0.996 1.001 1.001 1.001 0.997

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 3.5: Benchmarks on different motion planning scenarios. a a Comau Racer 7-1.4 moves to a workstation
with a parallel gripper. b a UR5 moving between two walls. c–d a Kuka KR60-3 next to a wall and 3 columns with
a vacuum gripper.

3.4.3 Comparison between TO-BAV, TOPP-RA and TPBJ

Since the trajectory generation from [81, 128] does not consider jerk constraints, the acceler-
ation immediately jumps to the peak value. Therefore, the velocity achieves extreme values
in a short time and increases the burden on the robot motor and leads to undesired behaviors
when following such a trajectory. The main benefit of my algorithm is that I can explicitly con-
sider the jerk when generating a much smoother trajectory. This smoothness naturally comes
at the cost of a longer execution time due to the additional jerk constraints. By varying the
maximum value for the jerk constraints, I can tune the trajectory profile to be slightly longer
with high smoothness or shorter and thus closer in runtime to [81]. In this section, I compare
the algorithm of [81, 128] and my polynomial-based one, as using an extreme jerk value in
the optimization-based one may not converge since the gradient value in jerk direction is not
at the same order of magnitude with other gradient values in the gradient vector. The results
are shown in Figs. 3.6a to 3.6o. The first column shows the results from TO-BAV [81], where
the velocity arrives at the peak value very quickly with execution time 2.2577 s. The second
column illustrates the results of TOPP-RA [128], which is forced precisely to pass through
desired waypoints with the traveling time 2.88 s. The other columns show the results of
the polynomial-based algorithm with increasing jerk limits, starting from 5, to 100, and fi-
nally 10 000 times the maximum velocity value. The respective trajectory travel time reduces
from a value of 3.577 s to 2.28 s and my algorithm gradually approaches the profile of [81],
while still limiting the jerk. From the perspective of computation time, TO-BAV takes 0.256 s
to generate the trajectory and TOPP-RA requires slightly less time with 0.244 s to obtain the
result. My algorithm is more efficient than these two algorithms with 0.165 s. I plot the first
and third DOF path without loss of generality, shown in the first row. TOPP-RA produces a
trajectory shown in Fig. 3.6b which has a noticeably bigger straight-line deviation in joint
space than other two algorithms. The bigger straight-line deviation can lead to a collision,
which is not desirable for the industrial application. From the perspective of velocity and
acceleration performance, the velocity profile from TOPP-RA shown in figs. 3.6g and 3.6l is
less smooth than TO-BAV and TPBJ and exhibits several vibration points.
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(a) Pos. (b) Pos. (c) Pos. (d) Pos. (e) Pos.

0 s 2.257 s
−2.6 rad/s

2.2 rad/s

(f) Vel.

0 s 2.887 s
−2.7 rad/s

2.2 rad/s

(g) Vel.

0 s 3.578 s

−1.31 rad/s

1.13 rad/s

(h) Vel.

0 s 2.328 s
−2.52 rad/s

2.19 rad/s

(i) Vel.

0 s 2.28 s
−2.25 rad/s

1.94 rad/s

(j) Vel.

0 s 2.257 s
−6.3 rad/s2

6.3 rad/s2

(k) Acc.

0 s 2.887 s
−6.3 rad/s2

6.3 rad/s2

(l) Acc.

0 s 3.578 s

−3.3 rad/s2

4.17 rad/s2

(m) Acc.

0 s 2.328 s
−6.9 rad/s2

6.31 rad/s2

(n) Acc.

0 s 2.28 s
−6.27 rad/s2

6.32 rad/s2

(o) Acc.

Figure 3.6: Comparison of results from TO-BAV [81] (the first column), TOPP-RA [128](the second column) and
TPBJ(from the third column to the last column) with increasing jerk constraints. a–e show the plot of first and
third DOF with generated trajectory (blue) and target straight-line path (red). f–j is the velocity profile. k–o is the
acceleration profile. In my approach, TPBJ gradually increases jerk constraints from jmax = {5,100, 10000}vmax.

3.4.4 Evaluation of computation complexity in motion planning scenarios

I evaluate the algorithms for generating trajectories in different path planning scenarios with
an increasing number of waypoints (from 42 to 181) and different point distribution char-
acteristics, as illustrated in Fig. 3.5. The paths are generated by using Robotic library [142],
and the resultant path is optimized with an advanced optimizer and given as a sequence of
waypoints in joint space. I compare my approaches against TO-BAV, which is currently a stan-
dard trajectory generator in the MoveIt! framework, and TOPP-RA. I summarize the results in
Table 3.1. Regarding computation time, TPBJ is faster in most scenarios apart from scenario
2. In comparison to TOBJ and TPBJ under the same jerk limitation (100x of maximal veloc-
ity constraints), they show a similar performance. However, if the jerk limitation is bigger
than 100x, TOBJ has a convergence problem, because jerk and time have huge differences
in numerical magnitude. In comparison to TO-BAV and TPBJ with jerk limitation set to 100x
and 500x of the maximum velocity constraint, I can conclude that with a higher jerk limi-
tation, TPBJ can significantly reduce the traveling time. This conclusion can be drawn from
subsection 3.4.3 as well. The trajectory optimizer TOPP-RA without jerk limitation gener-
ates a trajectory with minimal traveling time. From the perspective of straight-line deviation,
TOPP-RA generated a trajectory with significant overshooting in scenario 3 with 117.4% path
length with respect to a straight-line movement, since TOPP-RA utilizes cubic spline inter-
polation for path parameterization. The drawbacks of using cubic spline interpolation are
shown in [100]. The Cartesian space blending is not evaluated in motion planning scenes
since motion planning implemented in configuration space did not consider the singularity
problem, which can lead to a problem by inverse kinematics. The generated solutions from
a path planner are given as a sequence of waypoints in joint space. The final results are
illustrated in Fig. 3.7. For following the linearly interpolated solution path, TO-BAV of [81],
as well as TOBJ and TPBJ, presented here show similar performances. TrajOpt-Pass-Joint
from [100] has a small deviation due to its property of precisely following through the given
waypoints and adhering to a specified tolerance between them. From the perspective of time,
the trajectory generated by TO-BAV arrives at the goal in the shortest time, however with-
out considering jerk limitations. From the perspective of computation time, in the scenario
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(a) TO-BAV (b) TPBJ (c) TrajOpt-Pass-Joint (d) TOBJ

(e) TO-BAV (f) TPBJ (g) TrajOpt-Pass-Joint (h) TOBJ

Figure 3.7: Evaluation of trajectories in different motion planning scenarios, a–b a Kuka LWR next to a table with
a parallel gripper with 15 waypoints, e–f a Kuka KR60-3 next to a wall and three columns with a vacuum gripper
with 28 waypoints

a–b,TPBJ is 3x faster than the TO-BAV, and in the scenario e–f is 2.76x faster. By comparing
TrajOpt-Pass-Joint and TOBJ, I can see that under the premise of no collision, the blend-
ing options can provide a better trajectory performance from the perspective of straight-line
movement.

3.5 Conclusion

In this work, I have extended my previous work by including the capability to blend around
the target position. I have presented two different approaches to finding a time-optimal and
jerk-limited trajectory. In the first approach, the algorithm follows the same principle as in my
previous work by using a bridged optimization procedure, which reduces the computational
complexity to a linear complexity with respect to the number of waypoints and degrees of
freedom. In contrast to my previous work, I redesigned the objective function and blending
constraints to achieve a better straight-line movement in joint space and allow the trajectory
to blend around the target position. However, TOBJ has a convergence problem when the
jerk constraint exceeds 100x of the maximum velocity constraint due to the huge differences
in numerical magnitude between jerk und time. Further improvement will be left to future
work by using more advanced optimization strategies. The second approach combines a
trapezoidal trajectory with a seven-degree polynomial. In this approach, I compute a point-
to-point motion for every two waypoints by using a standard trapezoidal acceleration model.
By specifying a blend percentage, the seven-degree polynomial can be used to find a curve
segment around the target position. To find a time-optimal trajectory that fully considers all
kinematic constraints, I iteratively increase the trajectory time until these constraints are no
longer violated for all degrees of freedom. The second approach can be directly extended
to the Cartesian space by using the introduced quaternion interpolation algorithm. These
two approaches do not suffer from convergence problems and show good performance in my
experiments when compared against state-of-the-art approaches without jerk limitations.
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Chapter 4

Gaussian Process Implicit Surfaces based 6D Pose
Estimation

Chapter Summary

In this chapter, I proposed a surface-to-surface (S2S) point registration algorithm by exploit-
ing the Gaussian Process Implicit Surfaces for partially overlapping 3d-surfaces. Unlike tra-
ditional approaches, which separate the corresponding search and update steps in the inner
loop, I formulate the point registration as a nonlinear non-constraints optimization problem
which does not expect to find any corresponding points between two point sets. According
to the implicit function theorem, I form one point set as a Gaussian Process Implicit Surfaces
utilizing the signed distance function, which implicitly creates three manifolds. Points on the
same manifold share the same function value, indicated as {1; 0;−1}. In consequence, the
problem is converted to find a rigid transformation, which minimizes the inherent function
value. In the case of a partially overlapping 3D surface, the Fast Point Feature Histogram
(FPFH) algorithm is applied to both point sets and a Principal Component Analysis (PCA) is
performed on the result. Based on this, the initial transformation can then be computed. I
conduct experiments on multiple datasets to evaluate the effectiveness of my proposed ap-
proach against existing state-of-the-art methods.

This chapter is a slightly modified version of peer-reviewed conference paper ©2020 IEEE.
Reprinted, with permission, from

• Lin, Jianjie, Rickert, Markus, and Knoll, Alois, “6D Pose Estimation for Flexible Produc-
tion with Small Lot Sizes based on CAD Models using Gaussian Process Implicit Sur-
faces,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
2020

The images created, algorithms designed, data from experiments and text written by me in
this publication will be directly referenced in this chapter. The original version is referred
to 169

Contributions

I took a leading role in the composition and revision of the manuscript. I have made the fol-
lowing significant personal contributions in discussing and developing the ideas, implemen-
tation, and evaluation: introducing the GPIS to reformulate the 6D pose estimation problem
and designing a Lie-manifold optimization procedure for solving the GPIS based pose estima-
tion. I am the leading developer of the algorithm implementation and am responsible for the
experimental evaluation.
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4.1 Introduction

While the majority of European companies consists of small and medium-sized enterprises,
only a very limited number of them currently uses robot systems in their production. In
contrast to larger companies, they mainly deal with small lot sizes and constantly changing
production processes. Adapting a robot systems to new products and parts is however very
time-consuming and requires expert knowledge in robotics that is not commonly found in
shop floor workers [126]. While a number of modern robot systems currently on the mar-
ket proposes an easier programming concept based on reusable skills, these approaches still
require a manual adaptation to new processes. In contrast to this, approaches from ser-
vice robotics are able to automatically solve declarative goal specifications by using semantic
knowledge in combination with reasoning and inference [169].

Synthesizing robot programs based on semantic product, process, and resource descrip-
tions enables an automatic adaptation to new processes and involves handling the recognition
of objects and parts in the environment. These parts are typically designed in CAD systems
and described via a boundary representation [127]. In order to grasp them with a robot, a full
6D pose estimation is required. Given the small lot size production of SMEs with constantly
changing objects, it is not feasible to train object recognition models over a long period of
time. Recognizing these parts efficiently by directly using their CAD models during execution
is therefore essential in achieving short changeover times. Fig. 4.1 shows an example of such
an assembly use case for a mechanical gearbox together with a point cloud scene captured
by the 3D camera sensor attached to the robot.

Point registration is one of the main approaches in computing the pose transformation by
two given point sets and is widely used in MRI/CAT scan alignment [42] and robot manipu-
lation [131]. The problem is especially challenging when two noisy point sets only partially
overlap without initial alignment. A standard approach for point registration is based on the
Iterative Closest Point (ICP) algorithm [50, 155]. It is interesting due to its intuitive and
straightforward implementation. The identification of corresponding points follows a greedy
search algorithm that is subjective to local minima and identifies incorrect points for some
rotations. Furthermore, the success of ICP heavily relies on a good initial alignment. There
are many variants which aim at optimizing the process for correspondence search, such as
widening the convergence basin, heuristic global search, relaxed assignments, or distance
fields, which however often fail to achieve a better performance and typically follow the
principle of point to point (p2p) or point to surface (p2s) registration. Furthermore, with in-
creasingly powerful neural networks, many researchers started applying deep learning to the
problem of computing a pose transformation [78]. However, these approaches still follow
the concept of finding the corresponding point and use a RANASAC-based Perspective-n-
Point(PnP) algorithm to acquire the 6D pose. In addition, they require a large data set to
encode a surrogate task and cannot be transferred to another task efficiently. For a flexible
production application however, efficiency is a key factor required in any suitable algorithm.

This work, to the best of my knowledge, is the first one to consider the surface-to-
surface (s2s) point registration and to describe one surface as an implicit function by employ-
ing Gaussian process regression, also referred to as Gaussian Process Implicit Surfaces (GPIS).
I define three manifolds by borrowing the idea of signed distance functions (SDF) [196] with
values {1, 0,−1}. All points on a surface should have the same value of 0. Instead of search-
ing the corresponding points between two different point sets, the goal is now to find a rigid
transformation that makes function value zero by transferring the point using this transfor-
mation. I evaluate the presented GPIS-based point registration on multiple point sets. In
comparison to state-of-the-art algorithms, the presented approach can arrive at or exceed the
same accuracy. I prioritize robustness over convergence speed and my approach can achieve
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(a) (b)

Figure 4.1: Robot setup for assembling a gear box with (a) a lightweight robot and a 3D camera sensor, (b) point
cloud scene of mechanical gearbox parts on the table.

more robust results than most of the existing algorithms. The primary advantage in contrast
to other algorithms is that my approach does not require finding the corresponding point
iteratively. The initialization for the transformation can be calculated based on a FPFH and
PCA. The registration problem is efficiently solved with a Lie algebra-based Gaussian Newton
solver.

4.2 Related Work

6D pose estimation is widely used and extensively studied and point registration technology
is commonly used to find the spatial relationship between two point sets. Most of the ad-
vanced algorithms in this field are based on ICP and several variants exist [132, 155]. The
typical work flow for geometric registration consists of two stages: initial (global) alignment
and local refinement. Initial alignment is either based on simple Euclidean distance or on
more complex sampling-based algorithms that identify matching points by utilizing local ge-
ometrical descriptors like Fast Point Feature Histogram (FPFH) [53, 148]. RANSAC [138] can
be applied against outliers. In the following, the initial rigid transformation can be estimated
by using a least squared method or by using the branch-and-bound framework (BnB) [187],
which is a global optimization algorithm. In both cases, finding a good initial alignment
can be computationally expensive. After the initial alignment, local refinement is executed
by alternating the steps for finding the nearest neighborhood and the steps for updating the
transformation based on the greedy search algorithm. This is susceptible to local minima
and can only produce an accurate result with a good initialization. Several variants can be
used to improve the performance: Fitzgibbon et al. [44] proposed a Levenberg-Marquardt
algorithm that uses finite differences to optimize the objective function. Granger et al. [50]
applied Expectation-Maximization (EM) principles to consider Gaussian noise, which can im-
prove the robustness of local registration. Li et al. [91] utilize the Gaussian mixture model
to model the surface uncertainty so that it increases the robustness of the registration. My-
ronenko et al.[113] introduced Coherent Point Drift (CPD), which is agnostic as to the used
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transformation model and similar to GMM takes a probabilistic approach to the alignment of
point sets. Chavdar et al. [123] applied stochastic optimization to consider noise robustness,
outlier resistance, and optimal global alignment. Yang et al. [187] proposed Globally Opti-
mal ICP (Go-ICP) by using the Branch and Bound framework to derive the lower and upper
bound for the error function and to integrate a local ICP in the same frame. Guo et al. [53]
introduced the Fast Global Registration (FGR) algorithm that uses a scaled Geman-McClure
estimator to describe the error function, optimizes the objective function by using Block Co-
ordinate Descent, and applies FPFH to search the corresponding set before optimization.

All algorithms mentioned above share the requirement of finding the correct correspond-
ing pair. This is followed by using either greedy search or a global optimizer to get the final
rigid transformation. With continuous improvement in the field of deep learning, many re-
searchers began to learn the 6D pose directly by using RGB images [184]. However, a large
number of point sets is required to learn the surrogate task and the underlying relationship
between learned loss function and the pose accuracy is still unclear. Such an approach cannot
be easily deployed in a flexible production line.

4.3 Problem Formulation

The standard ICP algorithm aims to estimate a rigid transformation T= {R,p} between given
two point sets X = {xi}, i = 0, . . . , n and Y = {yi}, i = 0, . . . , m, that minimizes the object
function

E(T) =min
∑n

i=1

�

xi − Ty
arg min j=0,...,m

�

∥xi−Ty j∥2
�

�

(4.1)

by iteratively finding corresponding points. The objective function in (4.1) however is a non-
convex function and therefore susceptible to local minima. The basic ICP algorithm can be
formulated as:

1. Set the initial guess for the transformation T0 = {R0,p0} and P ′ = P, and closest point
dataset X ′ = {;}

2. Find point correspondence for each point p′i from the set P ′ to the set X by optimized
the object function j = argmink=0···Nx

d(p′i ,xk), and add x′j to X ′

3. Find alignment by optimizing 4.1 to find Tt = {Rt ,pt}, which can be solved by using
the singular value decomposition.

4. Apply alignment to update P ′ by p′i ← Rtp
′
i + pt to computer the Euclidean distance

error ei = ∥x′i − p′i∥
5. Update error to check if the loop will be break, otherwise go back to step 2

The implementation for ICP is straightforward, however the performance for ICP can not be
guaranteed for many application. There have some significant drawback for this implemen-
tation: Firstly, a good initial guess should be provided, otherwise the ICP will be convergent
to the local minimum. Secondly, at the step 2, searching for the closest point for each point p′i
by using the minimal Euclidean distance shares the similar idea of greedy search algorithms,
which can also be easily stuck in the local minimum, and step 2 is actually a non-convex op-
timization problem, which is quite expensive for computation. There have many variants for
ICP. like EM-ICP [50], LM-ICP [44], GMM-basedICP [91], Coherent Point Drift (CPD)[113],
all of these variants are trying to improve the performance step 2.

In this chapter, I consider the problem from a different angle: aligning two point sets
independent of corresponding points. I model one of the point set as an implicit surface,
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Figure 4.2: Different kernel functions that can be used for modeling a Gaussian Process Implicit Surfaces.

which can capture the local structure of the surface and then transfer another point set to
this implicit surface. I assume that all points on the same surface share the same function
value of 0. Then, the point registration problem is turned into finding a transformation that
minimizes the objective function

E(T) =
1
2

∑m

j=0



 f (Ty j ,X )




2
. (4.2)

4.4 Preliminary Knowledge

4.4.1 Gaussian Process Implicit Surfaces

In most robotics applications, sensing the environment is very important for knowing the
surrounding. There are many methods to describe the object in simulation or the real sce-
nario, for example, mesh with triangles, which are described as vertexes, and face. The data
format for standard mesh can be ply, obj, stl, or step file. However, such descriptions have
a drawback, which is discrete and can not be directly integrated into an objective function.
Many application is required to constraints the contact points on the surface. An alternative
solution for describing an object is the so-called Implicit surface [174]. According to the
implict function theorem, the implicit function can be formally described as:

f (x) = 0 , (4.3)

where f is a scalar function that takes an input x ∈ Rd and results in a d − 1 dimensional
manifold S. For point registration, I will constrain d to dimension 3. Many existing methods
can be used to describe the implicit surface, e.g., trimmed B-splines [58], transcendental
functions, or thin plate splines [37]. In this work, Gaussian Process Implicit Surfaces [181]
will be used to describe the 3D mesh surface. Unlike thin plate splines, shown in Fig. 4.2a,
the Radial Basis Function (RBF) kernel (Fig. 4.2b) can only describe a local patch whose
distribution will rapidly converge to zero when a point is not near the queried point and not
on the surface, which however is in contrast to my assumption. As an alternative, thin plate
splines will be selected via

ki j(r) = 2r3
dis + R3

Mdis − 3RMdisr
2
dis , (4.4)

with a maximum radius of RMdis inside the training point cloud sets X . The parameter rdis is
the distance between two points, which can be computed with following formula:

rdis = ∥xi − x j∥=

√

√

√

√

k=2
∑

k=0

(xi,k − x j,k)2 . (4.5)
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It can be computed as

RMdis =max
�∥xi − x j∥

	

,∀xi ,x j ∈ X . (4.6)

It can be straightforward derived that ki j(r) is bounded

0≤ ki j(r)≤ R3
Mdis (4.7)

and ki j(r) is rotation invariant due to the R∥xi − x j∥= ∥xi − x j∥.
Gaussian Process Implicit Surfaces can be considered as a standard regression problem,

which is expressed as
f∼N

�

0,K(X ,X ) +σTIσ
�

, (4.8)

where N denotes a normal distribution with the mean µ(X ) = 0 and variance K(X ,X )+σTIσ.
The covariance matrix K(., .) consists of ki j(xi ,x j) and σ corresponds to the noise.

The goal therefore is to predict the value by evaluating the following formulas for the
queried point y j:

f∗(y j|X ) = kT
∗
�

K+σTIσ
�−1

f= kT
∗α (4.9)

V (y j|X ) = k(y j ,y j)− kT
∗
�

K+σTIσ
�−1

k∗ . (4.10)

The kernel function k∗(X ,y j) is used to describe the correlation between source point set X
and target point set y j. The function value f∗(y j|X ) is a prediction of y j with the correspond-
ing variance, which is expressed as V (y j|X ) and can be used to evaluate the reliability of the
predicted value. For simplification, this value is not included inside the objective function.
The 3D model points according to SDF are denoted as

�

Xi ∈ X 0 | Xi = {xi ,σi , 0}
	

. To aid
the training of an implicit function, two additional point sets will be created:

�

Xi ∈ X 1 | Xi =
{xi ,σi , 1}	 lies outside the surface and

�

Xi ∈ X−1 | Xi = {xi ,σi ,−1}	 lies inside the surface.
How to generate these two additional point sets is presented in [90]. The final training point
sets consist of X = X 0 ∪ X 1 ∪ X−1 ∈ Rn×3.

After modeling the training point sets as the GPIS in the sense of a manifold, the objective
function E can be further expressed as

f j(y j|X ) = k j(X ,y j)
Tα=

∑n

i=0
k(xi ,y j)αi (4.11)

E =
1
2

∑m

j=0
f 2

j (y j|X ) =
∑m

j=0
αTk jk

T
j α , (4.12)

where m is the number of points in the target point cloud and n is the number of points
in the source point cloud. f j is the predictive value given by y j that is equal to zero if the
target point lies on the mesh surface. The main benefits of this formulation are that no
corresponding points between two point sets are required and that it converts the problem
into a standard nonlinear squares problem, which can be solved by standard convex solvers.

4.4.2 Lie algebra for optimization

The transformation matrix T consists of a rotation matrix R and a translation p. First of all,
I will describe some properties of the rotation matrix. R is a special orthogonal group SO(3),
which needs to satisfy the following condition:

�

R ∈ SO(3)|RRT = I, detR= 1
	

. The orthog-
onal condition imposes the constraints for the rotation matrix, which reduces the num-
ber of degrees of freedom to three. Unlike Lie group SO(3), the corresponding Lie alge-
bra so(3) = {Φ= φ∧ ∈ R3×3|φ ∈ R3} is a vector space with a skew-symmetric matrix Φ.

Φ= φ∧ =





0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0



 ∈ R3×3, φ ∈ R3 .
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The inverse of the operator (.)∧ is defined as (.)∨ and leads to φ = Φ∨. The exponential map
will convert the Lie algebra so(3) to the Lie group SO(3) by utilizing the matrix exponential
formulas: R= exp

�

φ∧
�

exp(A) = I+A+
1
2!

A2 +
1
3!

A3 + · · ·=
∞
∑

n=0

1
n!

An (4.13)

R= exp
�

φ∧
�

=
∑∞

n=0

1
n!

�

φ∧
�n
= exp(θa) = cosθ I+ (1− cosθ )aaT + sinθa∧, (4.14)

with R ∈ SO(3) and φ ∈ R3 , φ∧ ∈ so(3). Furthermore, the exp(φφφ∧) can be simplified as:

exp(φφφ∧) = exp(θa) = cosθ I+ (1− cosθ )aaT + sinθa∧ (4.15)

And θ = ∥φφφ∥ and a = φφφ
θ is interpreted as unit-length axis of rotation, and I ∈ R3×3 = aaT −

a∧a∧. It can be shown that R = exp
�

(θ + 2πm)a∧
�

, which indicates the singularity of lie
algebra, namely, it has no unique solution for the inverse of lie group, but if by limiting the
angle of rotation of |θ | ≤ π, each rotation R in lie group SO(3) has a unique solution θ in lie
algebra so(3), and the calculate can be done:

tr(R) = tr
�

cosθ I+ (1− cosθ )aaT + sinθa∧
�

(4.16)

= cosθ tr(I)
︸︷︷︸

3

+(1− cosθ ) tr
�

aaT
�

︸ ︷︷ ︸

aTa=1

+ sinθ tr
�

a∧
�

︸ ︷︷ ︸

0

(4.17)

= 2 cosθ + 1 (4.18)

it can be solved that

θ = cos−1
�

tr(R)− 1
2

�

+ 2πm (4.19)

and I will pick a value which lies inside |θ | ≤ π, and the axis can be solved by using Ra = a,
namely a is the eigenvector of R with the eigenvalue is equal to 1. Similar to the rotation
matrix, the transformation matrix T = exp(ξ∧) which can be interpreted in terms of Lie
groups SE(3) [72] with the corresponding Lie algebra se(3).

se(3) =

�

ξ=

�

ρ

φ

�

∈ R6,ρ ∈ R3,φ ∈ so(3),ξ∧ =
�

φ∧ ρ

0T 0

�

∈ R4×4

�

(4.20)

where ρ can be considered as translation but not equivalent in the translation in the SE(3),
and φ ∈ so(3) has the same meaning shown in the rotation matrix.

4.4.3 Jacobian of Lie Algebra

In this optimized formulation, the target point set is transferred by T to align the source
point set, which is embedded into f (X ). The gradient-based optimization uses the Jacobian
matrix to search for the minimum solution. In a pure rotation variance point registration,
the translational information can be neglected. I will describe in detail the gradient of R ŷ j =
∂ (Rŷi)
∂R , which is computed based on a gradient perturbation method R = exp(ψ∧)Rop with
ψ ∈ R3 and leads to two methods can be used to acquire the gradient:

1. Newton’s difference quotient, which requires Baker-Campbell-Hausdorff (BCH) for-
mula. The Jacobian matrix will be computed at each iteration, which is complicated.

∂ (R ŷi)
∂ φ

= lim
φ→0

exp
�

(φ +δφ)∧
�

ŷi − exp
�

φ∧
�

ŷi

δφ
(4.21)
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2. For the first method, Baker-Campbell-Hausdorff (BCH) formula [6] is applied to ap-
proximate the formula with small perturbation δφ:

exp
�

�

φ + J−1
l (φ)Jl(φ)δφ

�∧�
= exp

�

�

Jl(φ)δφ)
∧�exp(φ∧) (4.22)

The drawback of using BCH formula is that it requires to compute Jacobian matrix Jl at every
iteration, which is however computation complicated. Based on those observations, in this
paper, the left side perturbation method for calculation of gradient is applied:

∂ (Rŷ j)

∂ψ
= lim
ψ→0

exp(ψ∧)Ropŷ j −Ropŷ j

ψ

= lim
ψ→0

(I+ψ∧)Ropŷ j −Ropŷ j

ψ

= lim
ψ→0

−(Ropŷi)∧ψ
ψ

= −(Ropŷ j)
∧ , (4.23)

where a∧b = −b∧a. Furthermore, by taking into account the transformation information and
without consideration of translation, the kernel function k(y j) is adapted as k(Rŷ j) and is
approximated by using the first order of the Taylor series as:

ki(Rŷ j) = ki

�

exp(ψ∧)Ropŷ j

�

≈ ki(Ropŷ j) +
�∂ ki

∂ y j

�T

|y j=Rop ŷ j

∂Rŷ j

∂ψ
ψ (4.24)

≈ ki(Ropŷ j)
︸ ︷︷ ︸

βi, j

+
�∂ ki

∂ y j

�T

|y j=Rop ŷ j

�−(Ropŷ j)
∧�

︸ ︷︷ ︸

δi,j
T

ψ ,

where βi, j ∈ R,
� ∂ ki
∂ y j

�T ∈ R1×3, and δi,j
T ∈ R1×3 is the gradient vector conditioned on the y j. It

can be shown, that ki(Ry j) can be approximated as βi, j+δT
i, jψ, which can completely capture

the local curvature of the manifold.
In a similar vein, I apply the perturbation method for calculating the gradient of T and

consider the directional of the derivative of T with respect to the perturbation ε= [δφ,δρ] ∈
R6, which can be computed as

∂ (T p)
∂ ε

= lim
ε→0

exp
�

ε∧
�

exp
�

ξ∧
�

p − exp
�

ξ∧
�

p

ε

≈ lim
ε→0

�

I + ε∧
�

exp
�

ξ∧
�

p − exp
�

ξ∧
�

p

ε

= lim
ε→0

ε∧ exp
�

ξ∧
�

p

ε

= lim
ε→0

�

δφ∧ δρ

0T 0

��

Rp+ t
1

�

δξ

= lim
ε→0

�

δφ∧(Rp + t ) +δρ
0

�

ε
=

�

I −(Rp + t )∧

0T 0T

�

≜ (T p)⊙.

(4.25)

The operator (.)⊙ : R4→ R4×6 is defined as
�

ϵϵϵ

η

�⊙
=

�

ηI −ϵϵϵ∧
0T 0T

�

(4.26)
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Figure 4.3: The algorithm consists of three stages: In the first stage, two additional point sets X 1 and X 2 are
created to augment the original point set as X = X 0∪X 1∪X−1, which is used to form the implicit function GPIS.
In stage two, I compute FPFH for each point in the source and target point set and a cross-checking is executed to
identify a corresponding group. The PCA is utilized to compute the initial transformation by evaluating the objective
function. In the last stage, the alignment is optimized by a convex solver.

where ϵ ∈ R3 and η is a scalar that maps the vector space to a higher manifold. For
simplification, I omit xi in ki, j(xi ,Tŷ j) and use ki, j(Tŷ j) instead. The first order Taylor series
in kernel function, it can be approximated with respect to the perturbation ε as

ki(Tŷ j) = ki, j

�

exp(ε∧)Topŷ j

�

≈ ki, j(Topŷ j) +
�∂ ki, j

∂ y j

�T�
�

y j=Topŷ j

∂ Tŷ j

∂ ε
︸ ︷︷ ︸

∂ ki, j
∂ ε

ε (4.27)

= βi, j +δi,j
Tε ,

where βi, j = ki(Topŷ j) ∈ R,
� ∂ ki, j

∂ y j

�T ∈ R1×4 and δi,j
T =

�

∂ ki
∂ y j

�T�
�

y j=Topŷ j

�

(Tŷ j)⊙
� ∈ R1×6. The

derivative of the kernel function
∂ ki, j

∂ y j
in (4.27) is expressed as

∂ ki, j

∂ ri j
= 6ri j(ri j − RMdis),

∂ ri j

∂ y j
=

sign
�

y j − xi

� |y j − xi|
q

∥y j − xi∥2
(4.28a)

∂ ki, j

∂ y j
=
∂ ki, j

∂ ri j

∂ ri j

∂ y j
= 6ri j(ri j − RMdis)

sign
�

y j − xi

� |y j − xi|
q

∥y j − xi∥2

= 6(ri j − RMdis) sign
�

y j − xi

� |y j − xi| (4.28b)

It can be straightforward to adapt the derivative
∂ ki, j

∂ ri j
if the kernel function is changed.

4.5 GPIS-Based S2S Registration Algorithm

For the partially overlapping situation, the transformation matrix T is considered in the ker-
nel’s corresponding distance function with r = ∥xi − R ŷ j − p∥ = ∥xi − Tŷ j∥. Therefore, the
equation (4.11) is updated as f j = k j(X ,T ŷ j)Tα. By combining this with the approximation
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of the kernel function (4.27), the objective function (4.12) can be further simplified as

f j =
∑n

i=0
(βi, j +δ

T
i, jε)αn = kT

j (β ,δTε)α (4.29)

E(T) =
1
2

∑m

j=0
αTk j (β ,δTε)kT

j (β ,δTε)α , (4.30)

with kT
j (β ,δTε) =

�

β1, j +δT
1, jε, · · · , βn, j +δT

n, jε
� ∈ R1×n. As a result, (4.30) is converted to

a nonlinear quadratic equation with the approximated nonlinear kernel function k j(β ,δTε)
and the argument for this optimized problem is changed from the Lie group T ∈ SE(3) to the
perturbation variable of the Lie algebra ε ∈ se(3).

4.5.1 Gradient of objective function

By taking the derivative of E(T) with respect to εT, I get

∂ E(T)
∂ εT

=
∑m

j=0

∂
�

αTk j(β ,δTε)
�

∂ εT
kT

j (β ,δTε)α

=
∑m

j=0

�∑n

i=0

∂ (αiβi +αiε
Tδi)

∂ εT

�

kT
j (β ,δTε)α

=
∑m

j=0

�∑n

i=0
αiδi, j

�

kT
j (β ,δTε)α

=
∑m

j=0
J j

�∑n

i=0
βi, jαi +δ

T
i, jαiε

�

, (4.31)

where J j is defined as
∑n

i=0αiδi, j ∈ R6×1 and can capture the surface’s curvature by summing
up all gradients in the kernel function. I can further define X j =

∑n
i=0 βi, jαi. To get the opti-

mum perturbation ε⋆ at the current position, the formula ∂ E(T)
∂ εT is forced to be zero, leading

to
∑m

j=0
J j

∑n

i=0
δT

i αiε
⋆ = −

∑m

j=0
J jX j

Jε⋆ = −
∑m

j=0
J jX j (4.32)

ε⋆ = −J−1
∑m

j=0
J jX j , (4.33)

with J=
∑m

j=0 J jJ
T
j ∈ R6×6. T is therefore updated as

Top,h← exp
�

(ε⋆)∧
�

Top,h−1, (4.34)

which captures the local structural manifold by means of the Lie algebra. The optimization
process follows the principle of the Gauss-Newton algorithm. I can further adapt J as J +
λdiag(J), which is the LM algorithm.

4.5.2 Initial alignment using PCA and FPFH

A good initial guess for the optimization is important in order to guarantee a good result and
run-time. I present a new method for computing the initial alignment by employing the PCA
and FPFH [148] algorithms. First, a FPFH is calculated for each point in the two point sets,
which are referred to as F(X 0) and F(Y). I then embed F(X 0) into a k-d tree KdF(X 0) and a
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nearest neighbor search is performed for each feature F(y j) ∈ F(Y), such that G1 is a group
pair set of the results xi| j for the queries y j:

G1 =
�{y j ,xi| j} | KdF(X 0)

�

F(y j)
�

, ∀y j ∈ Y
	

. (4.35)

Subsequently, I embed F(Y) into another k-d tree KdF(Y) and perform a nearest neighbor
search for each result stored in G1, such that G2 is a group pair set of the results y j|i for the
queries xi| j that are stored in G1:

G2 =
�{xi| j ,y j|i} | KdF(Y)

�

F(xi| j)
�

, ∀xi| j ∈ G1

	

(4.36)

I only keep the subset G1 ∩ G2 that contains bidirectional nearest neighbors and refer to
these as X ′ and Y ′. Statistical analysis techniques are then applied to remove any out-
liers in these groups [149]. The final selected points are grouped together and are denoted
as Xgroup,FPFH ∈ RnFPFH×3 and Ygroup,FPFH ∈ RmFPFH×3. After this, a PCA is used to compute the
initial transformation TPCA between Xgroup,FPFH and Ygroup,FPFH. Given a point cloud P ∈ Rn×3,
PCA is performed by

∑�

Pi − P
� �

Pi − P
�T

n
= EΛET (4.37)

where Pi ∈ R3 is the ith point of P,P ∈ R3 is the center of P,E is the eigenvector matrix
composed of eigenvectors (e1,e2,e3) (a.k.a., principal axes), and Λ = diag (λ1,λ2,λ3) are
the corresponding eigenvalues (a.k.a.,principal values). By aligning the principal axes to the
three axes of the world coordinate, I obtain the canonical pose as Pcan = PE. The rotation-
invariant property of Pcan can be facilely derived as follows: By multiplying an arbitrary
rotation matrix SO(3), I can get an rotated version of P̂= RP

∑�

RPi −RP
� �

RPi −RP
�T

n
= R

 

∑�

Pi − P
� �

Pi − P
�T

n

!

RT = (RE)Λ(RE)T (4.38)

where RE becomes the new principal axes. Therefore, I can have an rotation invariant canon-
ical pose

(PRT)can = PRT ·RE= PE= Pcan (4.39)

However, the PCA-based transformation contains the sign ambiguities, since the eigenvector
with ± can satisfy the eigen decomposition. Consequently, There have totally 8 different
eigenvectors variants by by assigning different signs. Note, that TPCA has four different pos-
sibilities according to the right-hand rule (Fig. 4.4). In this four cases, the determinate of
(e1,e2,e3) is equal to one, see Table 4.1 For choosing the properly TPCA, I can evaluate the
formula

Tinit← min
k∈{0,···3}

∑m

j=0



 f (TPCA,kŷ j ,X )




2
, (4.40)

I select the transformation matrix Tinit that has the smallest function value. The whole process
is illustrated in Fig. 4.3 and the algorithm is summarized in Alg. 1.

4.6 Evaluation

In order to compare my algorithm against the state of the art, I evaluated it against other
registration algorithms regarding accuracy RMSE and time on the Stanford 3D Scanning
Repository’s Happy Buddha, Stanford Bunny, and Chinese Dragon [173] as well as Blender’s
Suzanne model. PCL-ICP [149] is the standard implementation of the ICP algorithm in the



66 4 Gaussian Process Implicit Surfaces based 6D Pose Estimation

Table 4.1: Determinants and geometric meanings of the eigenvector matrix by assigning different signs.

Determinant Geometric meaning

(+e1,+e2,+e3) 1 Rotation 4.4a
(−e1,−e2,+e3) 1 Rotation 4.4b
(+e1,−e2,−e3) 1 Rotation 4.4c
(−e1,+e2,−e3) 1 Rotation 4.4d
(−e1,+e2,+e3) −1 Improper rotation
(+e1,−e2,+e3) −1 Improper rotation
(+e1,+e2,−e3) −1 Improper rotation
(−e1,−e2,−e3) −1 Improper rotation

Algorithm 1 Optimization of transformation matrix by Gauss-Newton/Levenberg-Marquardt
algorithm
Require: X , Y, H
1: Modeling GPIS f (X ) ▷ Section 4.4.1
2: Compute FPFH features F(X 0) and F(Y) ▷ Section 4.5.2
3: Calculate G1 and G2 ▷ (4.35), (4.36)
4: {Xgroup,FPFH,Ygroup,FPFH} ← StaticalRemove(G1 ∩ G2)
5: T←PCA(Xgroup,FPFH,Ygroup,FPFH) ▷ (4.40)
6: Top,0← arg min

∑m
j=0 f (X ,Ty j)

7: for h= 1 : H do
8: Approximate ki(y j) ∀y j ∈ Y ▷ (4.27)
9: if Gauss-Newton then

10: Set J=
∑m

j=0 J jJ
T
j

11: end if
12: if Levenberg-Marquardt then
13: Set J=

∑m
j=0 J jJ

T
j +λdiag(S)

14: end if
15: calculate ε⋆ = −J−1

∑m
j=0 J j

∑n
i=0 βiαi ▷ (4.33)

16: Update Top,h ▷ (4.34)
17: if ∥ε⋆∥F ≤ ε then break
18: end if
19: end for
20: return Top⋆

Point Cloud Library, which is a local registration algorithm as it relies on a good initial align-
ment. SAC-IA-ICP [148] employs FPFH to get the initial alignment and then uses ICP to
iteratively align the two point clouds. It is therefore considered a global point registra-
tion algorithm. GoICP and its variant GoICPT with trimming [187] are global registration
algorithms that use the BnB algorithm in their implementations and also support partial
overlapping point registration. Global registration RANSAC (Gl.RANSAC) [197] requires no
initial alignment. Instead, it utilizes RANSAC for the initialization alignment by searching
corresponding points in the FPFH feature space. Fast Global Registration (FGR) is another
registration algorithm that utilizes FPFH for searching corresponding points. The algorithm
presented in this paper is labeled GPIS-S2SPR. In this section, three different experiments
were conducted. In order to reduce the computational burden, the tested point sets were
downsampled for every algorithm into small scale numbers (1500–2500) by using voxel fil-
tering. All evaluations were performed on a laptop with a 2.6 GHz Intel Core i7-6700HQ
and 16 GB of RAM.
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(a) (b) (c) (d)

Figure 4.4: The four possible coordinate systems for the PCA when computing the initial transformation matrix.
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Figure 4.5: RMSE for the Stanford Bunny with partial overlap (85%) without Gaussian noise: (a) GoICP,
(b) GoICPT (10%), (c) PCL-ICP, (d) Gl.RANSAC, (e) SAC-IA-ICP, (f) FGR, (g) GPIS-S2SPR.

4.6.1 RMSE for random transformations

For exploring the capability of my algorithm, I evaluated algorithms using the Stanford Bunny
point set with 50290.000 points without Gaussian noise and only partial overlap (85%). I
reduced the number points by applying a voxel grid filter with a size of 0.005 [149]. I ran
each algorithm on a set of 40 random transformation matrices (Fig. 4.5).

From the results, I can see that GoICP and its variant GoICP with trimming (10%), as sug-
gested in [187], performed worse in this experiment with median values of 0.110 and 0.108.
PCL-ICP was evaluated using an identity matrix as initialization and behaved slightly better
with a median value of 0.109 and a smaller variance in comparison to GoICP. Gl.RANSAC
showed significant improvement with a median value of 0.005 and SAC-IA-ICP achieved a
median value of 0.002. FGR achieved a median value of 0.001. In contrast to the previous
algorithms however, its mean value of 0.017 deviated from the median and is much higher.
This is due to its lack of robustness in handling large rotational changes, which is further
evaluated in the next experiment (Section 4.6.2). My algorithm showed the best overall
performance, with a median value of 0.001 and a small variance.

4.6.2 Rotation and translation invariance

Rotation and translation invariance are essential factors for point registration. I conducted
two experiments with the Stanford Bunny dataset to evaluate these two properties. For the
first experiment, I rotated the source point set 50.000◦ around the y axis and translated it with
a vector of [0.1,0.2, 0.3], as illustrated in the first row of Fig. 4.6. In the second one, I rotated
the point set 180.000◦ around the z axis without translation, as shown in the second row
of Fig. 4.6. The same initial alignment is used for each algorithm in both cases. I repeated
both experiments 40 times. The best results are shown in Fig. 4.6. PCL-ICP and FGR show
entirely different behaviors in these two cases, while they failed with a more than 0.1 RMSE
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.6: Stanford Bunny together with alignment results of selected algorithms for a–f 50.000◦ rotation around
the y axis and small translation, g–l 180.000◦ rotation around the z axis with translation set to zero. The first
column a g indicated Source/Target. From the second to last column are the algorithms for the comparison: PCL-
ICP, SAC-IA-ICP, FGR, GL.RANSANC, and GPIS-S2SPR.

value in the second case. For these two algorithms, I conducted further experiments with
different rotations. FGR failed with a high probability for high rotation values and I therefore
conclude, that FGR is not rotation invariant. SAC-IA-ICP showed no significant difference in
both experiments, achieving roughly the same mean value of 0.009. Gl.RANSAC also showed
similar performance in both cases with mean values of 0.003 and 0.006. In this experiment,
rotation and translation showed no significant effect in my GPIS-S2SPR approach, with an
approximate RMSE of 0.002.

4.6.3 Noise and overlap robustness

I evaluated the algorithms on all four point sets with the number of points varying from 30000
to 50000. Furthermore, I applied three different levels of noise based on a Gaussian distribu-
tion with variances set to 0, 0.00025, and 0.0005, respectively. I also evaluated the capability
of point registration in a partially overlapping scenario, where only a subset of the points
from the source point cloud is used for the target point cloud. Three different overlap fac-
tors were used in the experiments: 100%, 85%, and 65%. Furthermore, I used an identity
matrix for the initial alignment in each test to maintain identical conditions. Each algo-
rithm was executed 40 times for each configuration, leading to a total of 1440 times for all
possible combinations. The results with individual RMSE values ε and runtime t for each
configuration are listed in Table 4.2. The algorithms GoICP and GoICPT (10% trimming)
consistently showed the worst performance in all test cases with regard to the mean value of
RMSE and total computation time. The BnB algorithm in these algorithms is very expensive
to compute and the constant switch between ICP and BnB was not able to achieve a global
optimum solution. PCL-ICP was able to converge very fast but is susceptible to local min-
ima. SAC-IA-ICP achieved the best performance in case of an overlapping factor of 100%
with an RMSE of 0.001. However, the RMSE value increased drastically to 0.010 in case of a
partial overlap, Gl.RANSAC explores the corresponding points in terms of FPFH and showed
similar performance. FGR converged very fast but showed a bad performance in all exper-
iments for the reasons explained in Section 4.6.2. My GPIS-S2SPR algorithm does not rely
on identifying corresponding points and is therefore stable for different transformations. In
this experiment, the RMSE for GPIS-S2SPR is stable in terms of the overlapping factor and
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Table 4.2: Benchmark results for all algorithms on four different point sets with three levels of Gaussian noise and
three different overlap factors. The best RMSE value ε for each configuration is highlighted in green.

noise= 0.00000 noise= 0.00025 noise= 0.00050

1.00 0.85 0.65 1.00 0.85 0.65 1.00 0.85 0.65

ε t ε t ε t ε t ε t ε t ε t ε t ε t

B
un

ny
[1

73
]

PCL-ICP 0.081 0.5 0.090 0.4 0.067 0.3 0.046 0.4 0.082 0.6 0.046 0.3 0.069 0.4 0.107 0.6 0.073 0.3
GoICP 0.115 20.3 0.110 20.1 0.097 20.0 0.046 20.1 0.024 20.1 0.063 20.2 0.089 20.1 0.101 20.1 0.046 20.1

GoICPT 0.100 21.5 0.108 21.5 0.099 21.4 0.106 21.5 0.104 21.7 0.098 21.4 0.103 21.4 0.109 21.7 0.103 21.4
SAC-IA-ICP 0.001 6.1 0.002 5.6 0.010 7.1 0.001 6.6 0.002 6.1 0.011 8.2 0.001 7.0 0.003 6.4 0.011 7.9
Gl.RANSAC 0.001 1.6 0.005 1.7 0.005 2.3 0.001 1.7 0.005 1.8 0.005 1.9 0.001 1.7 0.005 1.9 0.005 2.3

FGR 0.017 0.4 0.009 0.4 0.017 0.3 0.004 0.4 0.007 0.4 0.020 0.3 0.004 0.4 0.007 0.4 0.015 0.3
GPIS-S2SPR 0.001 0.6 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.6 0.002 0.5 0.001 0.5 0.002 0.6 0.002 0.7

Su
za

nn
e

[1
1]

PCL-ICP 0.134 0.8 0.108 0.8 0.116 0.7 0.049 0.6 0.127 1.3 0.095 0.6 0.131 0.9 0.115 0.6 0.106 0.9
GoICP 0.089 23.5 0.055 21.6 0.086 22.0 0.089 21.8 0.081 21.8 0.089 21.8 0.064 21.8 0.072 21.7 0.117 21.5

GoICPT 0.092 23.2 0.059 21.5 0.084 21.5 0.079 21.6 0.071 21.7 0.097 21.7 0.045 21.5 0.091 21.6 0.062 21.5
SAC-IA-ICP 0.001 11.2 0.005 10.6 0.018 10.3 0.001 11.7 0.006 10.7 0.027 11.4 0.001 12.4 0.006 11.5 0.018 11.1
Gl.RANSAC 0.014 1.7 0.018 1.7 0.040 2.0 0.016 1.8 0.011 1.8 0.039 2.3 0.013 1.9 0.025 1.9 0.022 2.7

FGR 0.049 0.6 0.039 0.6 0.060 0.5 0.070 0.6 0.049 0.6 0.061 0.5 0.046 0.7 0.071 0.6 0.052 0.6
GPIS-S2SPR 0.003 0.8 0.002 1.1 0.002 1.1 0.001 4.3 0.002 2.1 0.002 1.8 0.002 1.3 0.003 1.2 0.002 1.6

D
ra

go
n

[1
73

]

PCL-ICP 0.087 0.5 0.100 0.3 0.079 0.4 0.090 0.2 0.065 0.3 0.096 0.4 0.071 0.5 0.082 0.5 0.101 0.4
GoICP 0.017 21.6 0.022 21.7 0.018 21.4 0.034 21.5 0.035 21.7 0.021 21.5 0.018 21.5 0.053 21.5 0.033 21.6

GoICPT 0.022 21.4 0.014 21.4 0.021 20.0 0.011 19.9 0.009 20.0 0.084 20.1 0.013 20.1 0.044 20.2 0.017 20.2
SAC-IA-ICP 0.001 5.9 0.003 5.3 0.009 4.8 0.001 6.0 0.003 5.4 0.009 4.9 0.001 6.5 0.004 5.8 0.009 5.2
Gl.RANSAC 0.001 2.1 0.005 2.6 0.005 2.9 0.001 2.3 0.005 2.5 0.004 2.8 0.001 2.6 0.005 2.5 0.005 2.8

FGR 0.012 0.5 0.022 0.5 0.024 0.4 0.012 0.5 0.016 0.4 0.017 0.4 0.021 0.5 0.015 0.5 0.013 0.4
GPIS-S2SPR 0.002 0.7 0.002 0.9 0.002 1.0 0.002 0.8 0.002 0.9 0.003 1.0 0.002 0.7 0.002 1.0 0.003 0.9

B
ud

dh
a

[1
73

]

PCL-ICP 0.094 0.2 0.086 0.4 0.110 0.3 0.095 0.5 0.076 0.2 0.071 0.2 0.124 0.4 0.047 0.4 0.064 0.4
GoICP 0.043 21.5 0.032 21.4 0.085 21.3 0.075 21.4 0.050 21.3 0.052 21.3 0.051 21.4 0.067 21.5 0.012 21.4

GoICPT 0.013 20.2 0.025 20.1 0.028 20.2 0.016 20.2 0.031 20.2 0.022 20.1 0.023 20.0 0.031 19.9 0.020 20.0
SAC-IA-ICP 0.001 5.5 0.007 5.2 0.009 6.3 0.001 6.2 0.014 7.3 0.017 7.4 0.001 6.7 0.011 7.5 0.015 6.2
Gl.RANSAC 0.002 1.1 0.005 1.3 0.006 1.8 0.002 1.0 0.005 1.4 0.006 1.6 0.002 1.1 0.005 1.5 0.005 1.8

FGR 0.022 0.4 0.022 0.4 0.019 0.3 0.016 0.4 0.019 0.4 0.015 0.3 0.024 0.4 0.022 0.4 0.021 0.3
GPIS-S2SPR 0.003 1.0 0.002 0.8 0.002 0.8 0.001 0.6 0.003 0.7 0.002 0.8 0.002 0.7 0.002 0.7 0.003 1.2

Table 4.3: Mean RMSE over all noise levels and overlap factors for all point sets and algorithms. The best result
is highlighted in green.

Data PCL-ICP GoICP GoICPT SAC-IA-ICP Gl.RANSAC FGR GPIS-S2SPR

Bunny 0.073 0.077 0.103 0.005 0.004 0.011 0.001
Suzanne 0.109 0.083 0.076 0.009 0.022 0.055 0.002
Dragon 0.086 0.028 0.013 0.004 0.004 0.017 0.002
Buddha 0.085 0.052 0.052 0.008 0.004 0.020 0.002

Mean 0.088 0.060 0.061 0.007 0.009 0.026 0.002

noise for all point sets. As it is able to consider noise in its formulation, the RMSE is approxi-
mated equal to 0.002 for all noise levels. Table 4.3 shows the total RMSE computed over all
possible combinations for each point set and algorithm. GPIS-S2SPR showed the best over-
all performance. In terms of computation time, it is not always the fastest approach, since
GPIS is time-consuming due to the computation of an inverse of the covariance matrix with
a complexity of O(m3).

4.6.4 Evaluation with scanned datasets

To further verify my algorithm, I evaluate the point sets from semantic-8 [54] and Urban
Scenes Velodyne Point Cloud Dataset [83]. The corresponding results are shown in Fig. 4.7.
I compare my algorithm with PCL-ICP in Fig. 4.7a, where the RMSE of PCL-ICP is 48 times
that of my algorithm. In Fig. 4.7b–4.7f, each sub-figure consists of two images, where the left
one is the initial state, and the right one is the result of point registration. It can be seen that
my algorithm can work in different scenarios, such as urban scenes [83] and different kinds
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(a) bildstein ICP/ours (b) bildstein (c) stgallencathedral6

(d) stgallencathedral1 (e) stgallencathedral3 (f) neugasse

Figure 4.7: Comparison between PCL-ICP and GPIS-S2SPR with examples from the large scale point cloud
classification dataset Semantic-8 [54]. In a, the alignment result of PCL-ICP is on the left and the result of GPIS-
S2SPR on the right. From b–f, left shows the initial pose of source and target point set, while right shows the result
of applying GPIS-S2SPR.

of buildings. Furthermore, I evaluate my algorithm with two additional point sets from [197]
and Shapenet [22], which are shown in Fig. 4.8. The source point sets in Fig. 4.8 are indicated
as blue points and the target point sets as orange points. The initial setting for source and
target point sets are demonstrated in Fig. 4.8a, 4.8b and 4.8c. From Fig. 4.8d, 4.8e, and 4.8f,
I can see that the alignment accuracy is very high in both point sets with an RMSE value of
0.002, 0.0001, and 0.0001, respectively.

4.7 Conclusion

I propose a new algorithm for a partially overlapping 3D surface registration algorithm. In
this algorithm, I abandon the traditional idea of point to point or point to plane correspon-
dence search to register the points. Instead, I view the 3D surface as a Gaussian Process
Implicit Surfaces, which utilizes the signed distance function to describe three manifolds.
Furthermore, I convert the point registration as a nonlinear least-squares problem to find a
rigid transformation between two point sets. For accelerating the optimization process, I use
a Principal Component Analysis (PCA) together with Fast Point Feature Histograms descrip-
tors to compute the initial transformation. Moreover, I derive the Jacobian matrix by applying
the Lie algebra perturbation method, which approximated the kernel function with the first-
order Taylor series. The whole optimization follows the principle of Gauss-Newton algorithm.
By slightly adapting the Jacobian matrix with a damping value, I can convert the algorithm
to Levenberg-Marquardt solver. My approach demonstrated a higher accuracy performance
and more robust rotation invariant properties compared to state-of-the-art methods.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Evaluation of GPIS-S2SPR with additional scanned point sets from [197] and Shapenet [22]. The first
row shows the initial setting for source and target pointsets. The second row shows the alignment results.





Chapter 5

Rotation Invariance Learning for Point Cloud Clas-
sification

Chapter Summary

Rotation invariance is a crucial property for 3D object classification, which is still a chal-
lenging task. State-of the- art deep learning-based works require a massive amount of data
augmentation to tackle this problem. This is however inefficient and classification accuracy
suffers a sharp drop in experiments with arbitrary rotations. I introduce a new descriptor that
can globally and locally capture the surface geometry properties and is based on a combina-
tion of spherical harmonics energy and point feature representation. The proposed descriptor
is proven to fulfill the rotation-invariant property. A limited bandwidth spherical harmonics
energy descriptor globally describes a 3D shape and its rotation invariant property is proven
by utilizing the properties of a Wigner D-matrix, while the point feature representation cap-
tures the local features with a KNN to build the connection to its neighborhood. I propose
a new network structure by extending PointNet++ with several adaptations that can hierar-
chically and efficiently exploit local rotation invariant features.

This chapter is a slightly modified version of peer-reviewed conference paper ©2021
IEEE. Reprinted, with permission, from

• Lin, Jianjie, Rickert, Markus, and Knoll, Alois, “Deep Hierarchical Rotation Invariance
Learning with Exact Geometry Feature Representation for Point Cloud Classification,”
IEEE International Conference on Robotics and Automation (ICRA), 2021

The images created, algorithms designed, data from experiments and text written by me in
this publication will be directly referenced in this chapter. The original version is referred
to 186

Contributions

I took a leading role in the writing and revising of the manuscript in this article. I have made
the following significant personal contributions to the formulation, implementation, and eval-
uation of the algorithms in this paper: identifying the problem in the point cloud-based ob-
ject classification, introducing the spherical harmonic based rotation invariance descriptor,
designing the neural network. I am the leading developer of the algorithm implementation
and am responsible for experimental evaluation
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5.1 Introduction

Convolutional neural networks (CNN) [86] have shown tremendous success in image pro-
cessing due to their translation-invariant capability of detecting local patterns regardless of
their position in the image and their ability to process regular data, such as image grids or
3D voxels. However, the more challenging rotation-invariant property is still missing in the
designed structure [25]. Data augmentation is a common approach to address this issue.
The infinite property of the rotation group however makes this approach less efficient and
comes with a high computational cost. A big neural network with rotation-augmented data
is required to generalize the data set. In 3D, geometric irregular data formats such as point
clouds increase the difficulty of handling the rotation transformation, while irregular data
formats suffer from a permutation problem N !. To address this issue and to inherit the ben-
efits of convolutional networks, which can process regular data formats, previous work such
as [26, 105] voxelized geometric shapes. [26, 75, 182] proposed a rotation-equivariant net-
work with newly designed spherical convolutional operators. However, the voxelization of
3D geometry induces a trade-off between resolution and computational cost. The pioneering
work PointNet used a spatial transformation network to learn an affine transformation, which
still did not fulfill the requirement. Inspired by CNNs, which use different receptive fields to
aggregate the local features, DGCNN used a dynamic k-nearest neighbors algorithm (KNN)
to exploit local information. However, its classification results still suffer a sharp drop in
rotation experiments. For alleviating the issue, I introduce two different rotation-invariant
features (RIF). The first one is spherical harmonics [69], which transform the Cartesian pose
to the spectral domain by using a non-commutative Fourier analysis methods and are related
to the power spectrum in the perspective of signal processing. The second feature can locally
describe the geometry relationship by creating a Darboux frame at each object point with a
KNN-graph. This geometry point feature is also utilized in the point feature histogram [150]
and fast point feature histogram [148]. The rotation-invariant feature aims at separating the
rotated point cloud and the network so that the input space is invariant to arbitrary rotation
perturbation. Furthermore, I design a new network structure that can hierarchically extract
the local features by applying the farthest point sampling strategy. The proposed network
structure is composed of RIMapping, PF Abstraction, and Classification blocks. In the RIMap-
ping block, rotation-invariant features are fed to a feature transformation network, which
maps the lower level feature to a high level embedding space. Two consequent abstraction
layers work on these high-level embedding features. For further exploiting the local geometry
information, a fully connected point feature graph is built on each cluster and the resultant
features are fed to a point feature transformation. Afterward, a global abstraction layer can
aggregate all previous embedding features together to obtain a global feature. The Classi-
fication block is a standard fully connected network to classify the objects. I evaluated my
proposed network on ModelNet40 with different experimental settings and achieve or exceed
most state-of-the-art approaches.

My primary contributions are two-fold: a) I introduce a novel geometry rotation-invariant
feature descriptor, which can globally and locally represent a 3D shape. b) a new rotation-
invariant classification network structure is designed, which can efficiently exploit local geo-
metric features.

5.2 Related Work

With recent good results from deep learning in image-based recognition, 3D visual recogni-
tion has also received more attention and rapid development. It benefits from deep learning
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Figure 5.1: The structure of the RIF-Net: The geometry RIF features compose of globally spherical harmonics
and locally simplified point feature rotation-invariant features, which are fed to my designed structure. The rotation
invariant feature separates the raw point cloud from the network. As a result, the RIF-net can classify the object
regardless of the rotation transformation in the world space

in extracting and learning geometric features more efficiently, but the recognition of 3D ge-
ometry differs from image-based recognition in many factors. One main aspect are the repre-
sentation formats, where 3D geometry uses various methods such as point cloud-based repre-
sentation, implicit surfaces based representation, or volumetric-based representations. These
different formats lead to different learning methods. In contrast, the imaged-based represen-
tation is interpreted in regular data, where the conventional CNN is designed to handle such
regular data. The permutation N ! is a common problem in the irregular data format. Based
on these observations, previous work seeks to utilize benefits from conventional CNNs by
voxelizing the 3D geometric shape [105, 135, 191, 198] or by using multi-view images [67,
135, 165]. However, the trade-off between the resolution and computational cost makes
generalization impossible. Most 3D convolutional neural networks sacrifice high resolution
to obtain fast calculations to build upon a shallow network. To alleviate the negative impact
of accuracy due to resolution, an Octet [143] is proposed by hierarchically partitioning the
space using a set of unbalanced octrees to exploit sparse input data.

In contrast to a volumetric representation, PointNet [134] is the first work that directly
feeds the point cloud into a set of shared MLP networks and uses the max pool operator to
extract global features. It shows a significant improvement in the perspective of 3D shape
reasoning and computational cost. PointNet, however, does not extract local information.
Follow-up work such as PointNet++ [136] progressively aggregated local features using the
farthest point sampling strategy. Moreover, DGCNN [177] introduced a dynamic KNN to
build a local graph and aggregated the edge features to obtain a better feature representa-
tion. A point-based neural network satisfies many properties, e.g., permutation invariance
with a shared MLP and max pool operator and translation equivariance with a relu opera-
tor [75]. This network is shown to solve many classical problems such as classification, part
segmentation, and instance segmentation. The rotation-invariant property is however still
missing in the designed structures. PointNet applies a spatial transformer network [60] to
predict an affine transformation matrix. Other work attempts to augment the data set by
generating a lot of SO(3) combinations. However, SO(3) is infinite, and data augmentation
wastes computational resources and cannot guarantee effectiveness. To alleviate this issue,
previous work proposed a rotation-equivalence network structure. [26, 39, 75] designed a
spherical-based convolutional operator utilizing the properties of spherical harmonics. [170]
proposed tensor field networks, which map point clouds to point clouds under the constraint
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of SE(3) equivariance by utilizing a spherical harmonics filter. Spherical representations for
3D data are not novel and have been used for retrieval tasks before the deep learning era [68,
69].

Spherical-based CNNs were initially designed for voxelized shapes and suffered a loss of
geometric information, as there is no bijection between R3 and 2-dimensional sphere S2 [23]
as mentioned above. Instead of proposing a new convolutional operator, [23] introduced
rigorously rotation-invariant (RRI) features by transforming the point from Cartesian space
into an embedding space and showed a good improvement in experiments. However, the RRI
features focus only on the local feature using the same dynamic KNN as DGCNN.

5.3 Geometric Rotation Invariant Feature Descriptor

The concepts of Rotation invariance and Rotation equivariance are susceptible to ambiguity.
To remove the ambiguity, the definition of these two concepts are formulated.

Definition 1: Rotation invariance A mapping function φ(·): V → V is considered as rota-
tion invariant, if ∀gi ∈ SO(3) and ∀q ∈ R3, it has property

φ(g1q) = φ(g2q) , (5.1)

Definition 2: Rotation equivariance A mapping function φ(·): V → V is considered as
rotation equivariance, if ∀gi ∈ SO(3) and ∀q ∈ R3, it has property

φ(g1q) = g1φ(q) , (5.2)

Pioneering works in processing point clouds are PointNet and DGCNN, where EdgeConv
from DGCNN and mini-PointNet from PointNet++ utilize the edge feature represented as
an implicit geometry feature by considering geometric constraints between points. It can be
mathematically formulated as

xi = max
j:(i,k)∈Ξ

fΘ(xi − x j ,xi) (5.3)

where xi is the Cartesian pose in pointNet++ and is high-level features in the DGCNN. In gen-
eral, the geometric point descriptor module helps to enhance the scattered point clouds using
additional internal geometric relations. The edge features xi − x j and pose point xi do not
satisfy the property described in (5.1). Furthermore, edge features under a dynamic KNN can
only represent the local geometric context for point clouds in the embedding space. For allevi-
ating this issue, two rotation-invariant descriptors will be introduced, that globally (spherical
harmonics descriptor) and locally (point feature descriptor) represent the geometry shape.

5.3.1 Rotation invariant spherical harmonics descriptor

Definition: Spherical harmonics define an orthonormal basis over the sphere, with the pa-
rameterization

(x , y, z) = (sin(θ ) cos(ϕ), sin(θ ) sin(ϕ), cos(θ )), (5.4)

where (x , y, z) is a location defined on a unit sphere with co-latitude θ and longitude ϕ and
the orthonormal basis function given by Rodrigues’ formula can be described as

Y m
l (θ ,ϕ) = Km

l Pm
l (cosθ )eimϕ , (5.5)
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with the normalized constant variable Km
l with

Km
l =

√

√(2l + 1)
4π

(l −m)!
(l +m)!

(5.6)

and the associated Legendre polynomials Pm
l . The parameters l and m are the spherical

harmonic degree and order, respectively. Furthermore, the order should satisfy the con-
straint −l ≤ m≤ l. The orthogonality property of spherical harmonics is shown as

∫ π

θ=0

∫ 2π

ϕ=0

Y m
l Y m′∗

l ′ sinθdϕdθ = δl l ′δmm′ (5.7)

It can be shown that all the above normalized spherical harmonic functions satisfy

Y m∗
l (θ ,ϕ) = (−1)mY−m

l (θ ,ϕ). (5.8)

where the superscript ∗ denotes complex conjugation. The real spherical harmonics are some-
times known as tesseral spherical harmonics. These functions have the same orthonormality
properties as the complex ones above. The harmonics with m> 0 are said to be of cosine type
and those with m < 0 of sine type. The reason for this can be seen by writing the functions
in terms of the Legendre polynomials Pm

l with Condon-Shortley phase convention as

Ylm =







(−1)m
p

2K l
|m|P

|m|
l (cosθ ) sin(|m|ϕ) if m< 0

q

2l+1
4π Pm

l (cosθ ) if m= 0
(−1)m

p
2K l

mPm
l (cosθ ) cos(mϕ) if m> 0

(5.9)

Moreover, for any rotation matrix R ∈ SO(3), the rotated SH Y m
l (R·) can be expressed as a

linear combination of other SHs of the same degree l

Y m
l (R·) =

l
∑

m′=−l

�

D(l)R [m, m′]
�∗

Y m′
l , (5.10)

where D(l)R [m, m′] ∈ C(2l+1)×(2l+1) is called the Wigner D-matrix. Note that the Wigner ma-
trices Dl are all orthonormal and irreducible representations of SO(3) [48], which considers
them as smallest representations possible. The elements for the (2ℓ+ 1)× (2ℓ+ 1) matrix Dℓ

of degree ℓ are
Dℓm,n(α,β ,γ) = eimαdℓm,n(β)e

inγ, (5.11)

where α,β ,γ are ZYZ Euler angles representing the rotation, −ℓ ≤ m, n ≤ ℓ, and dℓm,n(β) is

real and proportional to the Jacobi polynomial P(a,b)
k (cosβ), with k, a, b being functions of

ℓ, m, n. In accordance with the unitary of D(l)R , the energy within a subspace is preserved.
Therefore, for any given vector c ∈ C2l+1, the Wigner D-matrix shows a norm preservation
property [2, 140] as ∥D(l)R c∥= ∥c∥.

The theory of spherical harmonics says that any spherical function f(θ ,ϕ) is decomposed
as the sum of its harmonics:

f (θ ,ϕ) =
∞
∑

l=0

m=l
∑

m=−l

almY m
l (θ ,ϕ) , (5.12)

The associated Legendre polynomials is defined associated Legendre polynomials

Pm
l (x) = (−1)m2l

�

1− x2
�m/2

l
∑

k=m

k!
(k−m)!

xk−m

�

l
k

��

l+k−1
2
k

�

(5.13a)

P−m
l = (−1)m

(l −m)!
(l +m)!

Pm
l (5.13b)
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The coefficient am
l is described as

am
l =

∫

Ω

f (θ ,ϕ)Y m∗
l (θ ,ϕ)dΩ=

∫ 2π

0

dϕ

∫ π

0

dθ sinθ f (θ ,ϕ)Y m∗
l (θ ,ϕ)

Eqn. (5.12) can be seen as a kind of Fourier series on the sphere.

Information loss for a limited bandwidth

Since I cannot solve l → ∞, I limit the band l to a constant degree nsh,deg. The spherical
function can be simplified as

f (θ ,ϕ) =
nsh,deg
∑

l=0

m=l
∑

m=−l

almY m
l (θ ,ϕ) (5.14)

The information loss is defined as

Loss=











nsh,deg
∑

l=0

fl −
∞
∑

l=0

fl











2

. (5.15)

Furthermore, the numerical solution of coefficients am
l can be approximated by using the

Monte Carlo integration approach.

am
l =

4π
nsh,deg

nsh,deg
∑

j=0

f j (θm,φm)Y
m

l, j (θm,φm) (5.16)

Spherical Harmonics energy descriptor

Polygonal-based surface representations are typically described as Cartesian coordinates (x , y, z).
For spherical harmonics, the surfaces are represented by f(θ ,φ), therefore the mesh must be
transformed into spherical polar coordinates (r,θ ,φ) about the origin. In this case I define
f(θ ,φ) = r [120] with the energy spectrum descriptor of spherical harmonics [69]

Xsh( f ) = {∥ f0(θ ,ϕ)∥ ,∥ f1(θ ,ϕ)∥ , . . .} (5.17)

with the frequency components

fl =
�

al,−l Y
−l
l , al,−l+1Y−l+1

l . · · · , al,l Y
l

l

�

. (5.18)

Utilizing the norm preservation property of Wigner D-matrices [39, 69, 140], I can prove that
∥ fl∥ is a rotation-invariant descriptor.

5.3.2 Rotation invariant point feature descriptors

I employ point feature representations to encode the neighborhood’s geometrical properties,
which provides an overall point density and pose invariant multi-value feature. The surface
normal [147] is estimated by using PCA on the k-neighborhood. For each pair ps and qt with
qt ∈N (ps), Darboux frame at 〈ps,ns〉 is defined as

u= ns , v= (pt−ps)
∥pt−ps∥2 × u , w= u× v . (5.19)

The point features descriptor [149] is described as a quadruplet 〈α, φ, θ , dst〉 with

dst = ∥pt − ps∥2 , α= v · nt ,
φ = u · (pt−ps)

dst
, θ = atan2 (w · nt ,u · nt) .

(5.20)

Furthermore, I augment the distance rs =


ps





2 to the point feature, therefore, I get a
quintuple feature descriptor.
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Figure 5.2: a illustrates the Darboux frame between a point pair. b calculates the simplified point features of a
source point q with a KNN graph for each point pair. A fully connect point feature (PF) graph c is built on a given
source point qi .

Proof of rotation-invariant property

Given a point set S =
�

pi | p i ∈ Rn
	N−1

i=0 . It is obvious that the L2 norm is a rotation-invariant
operator Rn to R due to norm preservation: ∥Rx∥2

2 = ∥x∥2
2. It can be easily extended that the

inner product 〈·, ·〉 between two arbitrary points preserves the rotation-invariant property. In
addition, the cross product has the property Ra× Rb = R(a× b) under proper rotations R. I
define the Darboux frame at qi as a triple tuple: Oi = 〈ui ,vi ,wi〉. By applying a rotation matrix
to the point set, I can get q j = Rqi with the corresponding Darboux frame O j =




u j ,v j ,w j

�

. It
leads to

u j = Rui , (5.21a)

v j = R
(pt − ps)
∥pt − ps∥2

×Rui = Rvi , (5.21b)

w j = u j × v j = R(ui × vi) = Rwi (5.21c)

Based on these relation, I can conclude that O j = ROi = 〈Rui ,Rvi ,Rwi〉. As a result, the PF
descriptor is proven to be rotation-invariant:

dst, j = ∥pt, j − ps, j∥2 = ∥Rpt,i −Rps,i∥2 = dst,i = dst (5.22a)

α j =



v j ,nt, j

�

=



Rvi ,Rnt,i

�

=



vi ,nt,i

�

= αi (5.22b)

φ j =

�

u j ,
(pt, j − ps, j)

dst

�

=

�

Rui ,R
(pt,i − ps,i)

dst

�

= φi (5.22c)

θ j = atan2
�


w j ,nt, j

�

,



u j ,nt, j

��

= atan2
�


Rwi ,Rnt,i

�

,



Rui ,Rnt,i

��

= θi (5.22d)

5.3.3 Geometry rotation invariant feature-descriptor

The SH-energy and PF descriptors are shown to be rotation-invariant descriptors. The SH-
energy descriptor focuses on capturing the global features of the 3D shape and the PF descrip-
tor aims at describing the local features. It is straightforward to concatenate both descriptors
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Figure 5.3: The model architecture a consists of the RIMapping, PF Abstraction, and Classification blocks. In the
RIMapping block, a spherical harmonics energy descriptor and simplified point features (SPF) at each point are
computed to form a Geometry RIF descriptor, which is fed to a RIF Transformation to extract a high-level feature.
In the PF Abstraction Block, I have two PF Set Abstraction layers b together with a PF Global Abstraction layer c
to obtain a final global feature, which is used in a fully-connected Classification network.

and this results in the rotation-invariant feature (RIF)-descriptor at qi

Xri f ,i =
�

(Xsh,i , Xp f ,i,0), . . . , (Xsh,i , Xp f ,i,k)
�T

, (5.23)

where Xri f ,i ∈ Rk×(nsh+npf) with point feature descriptor

Xp f ,i, j = [di, j ,αi, j ,φi, j ,θi, j , rs,i] ∈ Rnpf , (5.24)

with npf = 5 and the spherical harmonics energy descriptor

Xsh,i =
�

∥ f0,i∥ , , . . . ,∥ fnsh,deg,i∥
�

∈ Rnsh , nsh = nsh,deg + 1 . (5.25)

The advantage of this formulation embodies that I can extract a high layer feature at each
point pair under KNN-Graph.

5.4 Network Architecture

The proposed rotation-invariant network consists of three blocks: RIMapping, PF Abstraction,
and Classification, where the latter is a feed-forward network. My main contributions are on
the design of the RIMapping and PF Abstraction blocks.

5.4.1 Pre-Alignment with Principal Component Analysis

In an experiment on rotation invariance, I transfer a point cloud set q with an arbitrary rota-
tion matrix R, resulting in a rotated clone q1 = Rq. According to [68], I pre-align each input q
based on the PCA to its principle axes, which are indicated as orthonormal coordinates R0,
with the formula of q1 = RT

0q. It can be shown that the PCA alignment for a rotated clone q1

with corresponding orthonormal coordinates R1 = RR0 leads to q2 = RT
1q1 = RT

0RTRq= RT
0q=

q1. Therefore, pre-alignment can reduce the impact of the rotation matrix on the network.
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5.4.2 RIMapping Block

The RIMapping block consists of the Geometry RIF descriptor and RIF Transformation. For
acquiring the rotation-invariant features, I leverage the spherical harmonics and point feature
representation with a KNN to enrich geometric features for the point cloud, which is repre-
sented as a rotation-invariant descriptor with a size of Rn×k1×(nsh+npf) and k1-neighborhood
that can globally and locally manifest a 3D shape. This descriptor provides low-level geomet-
ric clues for high-level geometric feature learning, realized with a RIF Transformation. The
RIF Transformation layer utilizes a mini PointNet (without input and feature transformation),
consisting of a set of shared Conv2d layers with kernel size equal to 1, to extract a global fea-
ture employing a max-pooling operator. The output of RIF Transformation is indicated as
embedding feature with a size of Rn×an . The PF Transformation has the same structure as
the RIF Transformation, apart from the different input sizes. Both Transformations intend to
aggregate the local details by calculating a weighted average of neighboring features through
a shared local fully-connected layer.

5.4.3 PF Abstraction Block

PF Set Abstraction

The extracted information from the RIMapping block is still insufficient for the precise clas-
sification task, as max-pooling can only describe an outline and some local details could be
omitted. To address the problem, I propose the PF Set Abstraction Layer to hierarchically
exploit the local features, which consists of the sampling layer, grouping layer, and PointNet
layer. PointNet++ inspires PF Set Abstraction. However, there are several significant adap-
tations inside the grouping layer. In the sampling layer, I use iterative farthest point sam-
pling (FPS) to obtain n2 points, indicated as Pi , i ∈ [0, · · · , n2]. Each point Pi is the center of a
local region Ci. In the sequence, a KNN graph is built at point Pi to obtain k1-neighborhood,
indicated as [P0,i ,P1,i , · · · ,Pk1,i], with i ∈ [0, · · · , n2]. In contrast to PointNet++, which com-
bines the point with the feature from the last layer and works as input for the PointNet layer,
I utilize a PF graph to convert a point to a rotation-invariant feature, where PF graph is a fully
connected graph (Fig. 5.2c) and built at each local region Ci. Then, I can get a feature with
a size of Rk1−1×npf for each point Pnk ,i in the region Ci. In the end, a new rotation-invariant
point feature for all local regions is obtained, indicated as fPF ∈ Rn2×k1×k1−1×npf . Sequentially,
I apply the PF Transformation to extract a feature for each local region. I concatenate the pre-
vious feature at each center point Pi with the newly extracted feature to form a new feature
representation and feed it to the PointNet layer.

PF Global Abstraction

The global abstraction is the successor layer to the PF Set Abstraction layer, which reduces
the original input cloud to X2 ∈ Rn1×3. I build a PF graph at the reduced point set and
concatenate it with its spherical energy descriptor, which leads to a new representation with
a size of Rn1×(n1−1)×(npf+nsh). In the sequence, I apply the RIF Transformation for extracting a
new feature representation. This new feature will concatenate with the feature from the PF
Set Abstraction layer. In the end, a mini PointNet is applied to obtain a global feature.
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Table 5.1: Comparison of rotation robustness on rotation-augmented ModelNet40 benchmark. My proposed
network shows the best performance in the settings z/SO(3) and SO(3)/SO(3). Note, values are given as a
percentage.

Method Input(size) z/z z/SO(3) SO(3)/SO(3)

PointNet [134] pc (1024× 3) 89.2 14.7 83.6
PointNet++ [136] pc (1024× 3) 89.3 28.6 85.0

VoxNet [105] voxel (303) 83.0 - 73.0
RotationNet 20x [67] voxel (20× 2242) 92.4 20.0 80.0

SO-Net [89] pc+normal (5000× 6) 92.6 21.1 80.2
DGCNN [177] pc (1024× 3) 92.2 33.5 81.1

Spherical CNN [39] voxel 2× 642 88.9 78.6 86.9
ClusterNet [23] pc (1024× 3) 87.1 87.1 87.1

ours(nsh,deg=20) pc(1024× 3) 88.4 88.6 88.5
ours(nsh,deg=30) pc(1024× 3) 88.6 88.7 88.8

5.5 Experiments

I evaluate my approach regarding rotation robustness and compare it with other state-of-
the-art methods. I use ModelNet40 [183] as data set for validating the effectiveness of the
proposed network structure. ModelNet40 consists of 40 categories in the form of CAD mod-
els (mostly human-made). I use the official split with 9843.000 shapes for training and
2468.000 for testing. I apply the farthest point sampling algorithm to obtain 1024.000 points
on mesh faces according to the face area and then shift and normalize the point into a unit
sphere with centroid on the origin. During training, I use Adam [71] for 200 epochs with an
initial learning rate of 10−3. The algorithm is implemented with PyTorch on Linux with one
GeForce RTX 2080Ti GPU.

5.5.1 Evaluation of rotation robustness

For evaluating the property of rotation robustness, I multiply each point cloud from Mod-
elNet40 with a randomly sampled rotation matrix. Based on the same principle as [39], I
evaluate my model using three different settings: a) training and testing with azimuthal ro-
tations (z/z), b) training and testing with arbitrary rotations (SO(3)/SO(3)), c) training with
azimuth rotations while testing with arbitrary rotations (z/SO(3)). The results are presented
in Table 5.1. It can be seen that most networks exhibit a sharp drop in performance in the
settings SO(3)/SO(3) and z/SO(3), in particular in the latter one. The network DGCNN [177]
shows an outstanding performance in the setting z/z with an accuracy of 92.200 %, while it
only achieves 21.100 % in z/SO(3). DGCNN applies the point directly for classification, which
changes dramatically when applying a rotation matrix in SO(3). As mentioned before, that
point cloud is not a rotation-invariant representation. This is also a common problem for
the PointNet-based network. The spherical CNN [39] uses a spherical harmonics-based con-
volution layer by rasterizing the point cloud, which shows a significant improvement in the
setting of z/SO(3). However, the difference between its best performance z/z and z/SO(3) is
still significant with a value of 10.300 %. ClusterNet [23] uses the RRI representation together
with a cluster abstraction to increase classification performance with a result of 87.100 % in
each setting. Note that the result of ClusterNet is directly cited from [23], as the code is
not available as open source. Table 5.1 demonstrates that my approach achieves the best
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Figure 5.4: (a) shows the point cloud with different noise levels and (b) shows the comparison results against
point perturbations on rotation setting z/z.

performance in the settings z/SO(3) and SO(3)/SO(3) with nsh,deg = 20, 30. The difference
in the results between each setting is very small, approximately 0.200 %. Based on these ob-
servations, I can conclude that my proposed network shows the best performance regarding
rotation robustness.

5.5.2 Robustness Tests

Evaluation of model against point cloud perturbation

For further evaluation of robustness against perturbation, I conducted experiments by adding
perturbation at each point. Many studies have shown that deep learning-based networks can
be fooled by using an adversarial attack. Following the same principle, I add a perturbation
value to each point with ∥δ∥< ε, where ε is set between 0.002 and 0.01, as shown in Fig. 5.4a.
The results are listed in Fig. 5.4b. It can be seen that in these two different perturbation levels,
my network with nsh,deg = 20 is more robust under perturbation when compared to PointNet
and PointNet++.

Evaluation of model against point cloud density

The point cloud density also plays an important role in the classification task. In this section,
I downsample ModelNet40 to different point densities in the range of 1024.000 to 128 by
using the farthest point sampling strategy (FPS) or random input droupout (DP). The down-
sampled point clouds are shown in Fig. 5.5a and the corresponding classification accuracy is
illustrated in Fig. 5.5b. It is worth noting that my proposed network is very robust against
point density changes in these three rotation setups, which decreases the classification ac-
curacy from 88.600 % to 82.700 % by FPS and varies from 88.600 % to 75.400 % by DP. In
comparison to DGCNN [177], the results vary from the 92.200 % to 79.200 % in z/z and
from 33.500 % to 26.500 % in z/SO(3). Under the same point density, my model shows no
significant change, which further verifies my model’s robustness.

Evaluation of model against partial point cloud

In reality, I can only get a partial point cloud by using a single stationary camera. To evaluate
the partial point cloud classification model, I train my model with a complete point cloud
and test against a partial point cloud. The partial point cloud is obtained by first deleting the
completed point cloud with a ratio ρ from 0.1 to 0.2 and then using iterative FPS (Fig. 5.6a).
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Figure 5.5: a shows the downsampled point cloud and b illustrates the comparison results of different point
densities in three rotation settings with FPS and DP.

(a)

0 0.1 0.2

60

70

80

90

Deletion ratio

A
cc

ur
cy

z/z(PointNet)
z/SO(3)(PointNet)

SO(3)/SO(3)(PointNet)
z/z(DGCNN)

z/SO(3)(DGCNN)
SO(3)/SO(3)(DGCNN)

z/z(ours)
z/SO(3)(ours)

SO(3)/SO(3)(ours)

(b)

Figure 5.6: a shows the partial point cloud with the deletion ratio ρ from 0.1 to 0.2 and b shows the results.

The results are illustrated in Fig. 5.6b. I compare my model with PointNet and DGCNN
under three rotation settings. Training and testing data set are rotated with a PCA algorithm
to reduce the impact of arbitrary rotation. From Fig. 5.6b, I can conclude that my model
shows the best performance and far exceeds the other two classification models in all three
experiments.

5.5.3 Ablation Studies

Analysis of architecture design

To evaluate my network architecture’s effectiveness, I use PointNet as the baseline and con-
nect my individually designed component to it. Note that I realign all data in this section with
PCA (Section 5.4.1). In Table 5.2, I can see that it shows a significant improvement when
compared to the original PointNet in the setting of z/SO(3) and that the average accuracy
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Table 5.2: Effectiveness of designed network block.

Method z/z z/SO(3) SO(3)/SO(3) mean

PointNet [134] 89.2 14.7 83.6 62.4
PCA+PointNet 80.9 80.9 80.8 80.84

RIMapping(nsh,deg=20)+PointNet 82.0 83.2 84.5 83.23
ours(without SH) 85.40 85.7 86.2 85.77

ours(nsh,deg=20) 88.4 88.6 88.5 88.5

Table 5.3: Effectiveness of maximum degree nsh,deg.

nsh,deg z/z z/SO(3) SO(3)/SO(3)

8 88.10 87.60 87.60
15 87.80 88.30 87.80
20 88.40 88.60 88.50
30 88.60 88.70 88.80

rate has increased about 18.000 %. Furthermore, I analyzed the effectiveness of the RIMap-
ping block by connecting it to PointNet. The results listed in Table 5.2 show that the accuracy
in z/SO(3) and SO(3)/SO(3) improved by 2.300 % and 3.700 %. Comparing my proposed net-
work’s worst performance shows that my PF Abstraction block helps in improving the final
accuracy in all three settings. I also evaluated the effectiveness of the spherical harmonics
energy descriptor. The results are listed in Table 5.2. Without the spherical harmonics energy
descriptor, the accuracy is worse when compared against my original design. However, it still
shows better performance when compared to the PointNet-based network.

Effectiveness of maximum degree of spherical harmonics

The spherical harmonics descriptor is an essential aspect of my network. Based on the in-
formation loss, a higher degree of spherical harmonics leads to a smaller information loss.
However, it will also increase the computational complexity to O(n2). For evaluating the ef-
fectiveness of the nsh,deg, I vary the degree. The results are listed in Table 5.3 and it can be
seen that the higher nsh,deg, the better the final classification accuracy.

5.6 Conclusion

I presented a rotation-invariant point cloud-based neural network, which utilizes a global
spherical harmonics feature and a local points feature to achieve rotation-invariant proper-
ties. Furthermore, a new neural network structure is designed, inspired by PointNet++, but
with several adaptations such as PF graph and PF Transformation. The network is applied to
3D object classification, but can be extended to part segmentation and instance segmentation.
Via several experiments, I have shown that my network can deal with arbitrary input orien-
tations and achieve competitive performance compared to other state-of-the-art approaches
on the ModelNet40 data set. Furthermore, my network shows robustness against point per-
turbations, point density, and partial point cloud.





Chapter 6

Point Cloud Transformer for Dense Point Cloud Com-
pletion

Chapter Summary

This chapter addresses the problem of the point cloud completion problem. Inferring a com-
plete 3D geometry given an incomplete point cloud is essential in many vision and robotics
applications. Besides, the irregular nature of point clouds makes this task more challenging.
This chapter presents a novel method for shape completion by investigating the point trans-
former structure. The inherent nature of permutation invariance of the attention mechanism
in the Transformer structure makes it well suited for learning point clouds. In addition, the
attention mechanism can effectively capture the local context within a point cloud and effi-
ciently exploit its incomplete local structure details. A morphing-atlas-based point generation
network further fully utilizes the extracted point Transformer feature to predict the missing
region using charts defined on the shape. Shape completion is achieved via the concatenation
of all predicting charts on the surface. Extensive experiments on the Completion3D and KITTI
data sets demonstrate that the proposed PCTMA-Net outperforms the state-of-the-art shape
completion approaches and has a 10% relative improvement over the next best-performing
method.

This chapter is a slightly modified version of peer-reviewed conference paper ©2021 IEEE.
Reprinted, with permission, from

• Lin, Jianjie, Rickert, Markus, Perzylo, Alexander, Knoll, Alois, “PCTMA-Net: Point
Cloud Transformer with Morphing Atlas-based Point Generation Network for Dense
Point Cloud Completion,” IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021

The images created, algorithms designed, data from experiments and text written by me in
this publication will be directly referenced in this chapter. The original version is referred
to 194.

Contributions

I took a leading role in the writing and revising of the manuscript in this article. I have
made the following significant personal contributions to the formulation, implementation,
and evaluation of the algorithms in this paper: identifying the necessity of point cloud com-
pletion in the real scenario, designing the transformer-and manifold-like neural network for
recovering the partial point cloud. I am the lead developer of the algorithm implementation
and responsible for experimental evaluation.
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6.1 Introduction

The use of point clouds as a format of shape representation has increased in the last years due
to the rapid development of 3D acquisition technologies such as Lidar and depth cameras.
The limited sensor resolution, occlusion, and camera angles however make it challenging
to obtain a point cloud representation of the complete shape of an object. As a result, the
acquired raw points are typically sparse, noisy, and miss large regions. On the other hand,
complete 3D shapes are essential in vision applications, such as semantic segmentation and
SLAM [19]. A complete 3D shape can improve the performance of CAD model-based point
registration [95] and enables more flexible grasp planning [175]. In this work, I focus on
completing partial 3D shapes that suffer from occlusion and limited sensor resolution. Previ-
ous work [51, 168, 188] principally followed the encoder-decoder paradigm framework by
extracting a latent global feature from an incomplete point cloud. Decoders leverage these
feature to predict missing regions. Benefiting from PointNet-based [134] feature extractor
networks, the task of shape completion made tremendous progress in recent years. However,
the extracted global features from PointNet ignore the geometric relationship within the point
clouds due to the max-pooling operation. As a result, these approaches suffer from a loss of
structural detail in the reconstruction.

The intuitive solution is to make up for the shortcomings of the PointNet by excavating
the semantic affinity within the point cloud. Therefore, I propose a novel framework named
Point Cloud Transformer with Morphing-Atlas-based Point Generation Network for Shape
Completion (PCTMA-Net) to address this problem. The Transformer [176] is a standard
framework for natural language processing and has been further extended to vision tasks
for image recognition [35], as well as point cloud classification and segmentation [52]. The
Transformer follows the encoder-decoder structure and consists of four main modules: input
embedding, positional encoding, (self-)attention mechanism, and positional feed-forward.
In this work, I apply only the encoder module and neglect the positional encoding module
due to the point cloud’s irregular nature. The Transformer’s central core is the attention
mechanism, which can generate refined attention features by leveraging the global context.
The attention weight between any two positions is updated by the dot product of query
and key vector. The weighted sum of all attention weights is the attention feature. The
concept of query, key, and value vector makes it possible to match and learn the global
context. The attention feature of each word is related to all input features. Furthermore, the
permutation invariant nature of softmax, dot product, and point-wise feed-forward network
makes it well-suited for point cloud learning. The offset attention mechanism introduced
in [52] uses the idea of the Laplacian matrix to improve the attention performance further.
In this work, I replace the original attention design with the offset attention mechanism.
The morphing-atlas-based point generation network is the decoder component in my overall
structure. The extracted global feature from the Transformer is further utilized to generate
the points. An atlas, as defined in topology, consists of a set of charts on a surface. Therefore,
I assume that a missing region of the surface can be recovered by a chart. Based on this
assumption, I duplicate the Transformer feature and concatenate it with a predefined grid.
I utilize the idea of multi-head attention by linearly projecting the concatenated features to
learn nchart different features, where each feature is responsible for generating a chart defined
on the surface. I quantitatively and qualitatively evaluated the proposed PCTMA-Net on the
Completion3D data set and demonstrate a 10% relative improvement over the next best-
performing method for the task of shape completion. Furthermore, the qualitative evaluation
on the KITTI data set shows that my proposed network is able to predict more structural
details than other state-of-the-art approaches.

My contributions are summarized as follows:
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1. I propose a novel shape completion framework named Point Cloud Transformer with
Morphing-Atlas-based point generation Network for shape completion, which is inher-
ently permutation-invariant and has the capability of learning the global context within
the point clouds and preserving structural details.

2. The integration of the concept of an atlas and the multi-head attention mechanism
leads to the generation of high-resolution, high-fidelity, and fine-grained shapes.

3. Extensive experiments are conducted on the Completion3D benchmarks, and the KITTI
data set, which indicate that the proposed networks remarkably outperforms other com-
petitive methods.

6.2 Related Work

Shape completion approaches made significant progress in recent years due to the rapid
development of deep learning and 3D acquisition technologies. I can roughly categorize
the existing work into volumetric-based and multilayer perceptron-based networks from the
perspective of network structure and the underlying 3D data representation.

Volumetric-based shape completion: The extension of CNN to 3D convolutional neural
networks can be used for dealing with a shape in the volumetric representation [186], [57].
Notable work such as 3D-Encoder-Predictor Networks (3D-EPN) [28] progressively recon-
struct the 3D volumetric shape. The work in [55] directly generates the high resolution 3D
volumetric shape by combining the global structure with the refinement of local geometry,
while [164] introduced a variational auto-encoder to learn a shape prior to inferring the la-
tent representation of complete shapes. GRNet [185] took one step further by introducing
Gridding and Gridding Reverse to convert between point clouds and 3D grids. However, a
quantization effect is introduced during the transformation of point clouds into a 3D volumet-
ric representation. The computational costs increase cubically to the resolution and therefore
make it more challenging to process fine-grained shapes.

Multilayer perceptron (MLP)-based shape completion: Point clouds can be directly
obtained by several acquisition techniques. It is much more efficient compared to the voxel-
based representation when processing costs are compared. Inspired by PointNet [134] and
its successor work [136],[177], several approaches use them for point cloud learning, as the
point-wise MLP enables the handling of irregular point clouds and aggregating features us-
ing a symmetric function. However, the PointNet network suffers from a loss of structure
details. The current state-of-the-art approaches for shape completion such as AtlasNet [51],
PCN [193] and Folding-Net [188] use PointNet as their baseline to extract global features
and to apply a decoder to predict the missing regions. Unlike PCN and FoldingNet, AtlasNet
completes the shape by generating surface elements utilizing the atlas concept. TopNet [168]
improves the decoder by using a hierarchical rooted tree. By combining reinforcement learn-
ing with an adversarial network, RL-GAN-Net [152] and Render4Completion [57] propose
a reinforcement learning agent-controlled GAN to improve the quality and consistency of
the generated complete shape. However, most of these studies suffer from information loss
on structural details, as they predict the whole point cloud only from a single global shape
representation. SA-Net [180] extended these approaches with a skip-attention mechanism to
preserve more structural details. PF-Net [59] introduced a point pyramid decoder to generate
a shape in different resolution levels.
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Figure 6.1: The overall structure of PCTMA-Net. The whole structure consists of a Transformer encoder and
morphing-atlas point generation decoder. The Transformer encoder aims to extract features from the input point
clouds by using an N× stacked encoder layer which consists of an attention mechanism and positional feed-
forward network. The morphing-atlas-based surface reconstruction decoder uses multi-chart point generation
networks for point cloud completion by concatenating the features from the Transformer encoder and mesh grid.

6.3 The Architecture of PCTMA-Net

6.3.1 Overview

The overall structure of PCTMA-Net is illustrated in Fig 6.1, which aims to learn a seman-
tic affinity within a partial point cloud by using a Transformer encoder. The complete 3D
shape is reconstructed with a morphing-atlas decoder utilizing the extracted feature from the
Transformer encoder. I formulate the whole shape completion pipeline as: Given a partial
point cloud, indicated as P with Nin points, where each point is represented in 3D coor-
dinates x = [x i , yi , zi], I first convert this partial point cloud into a feature vector F0 by a
PointNet. The difference to previous work [51, 188], which relies on only the global feature
for shape completion, is that I further utilize the Transformer encoder to process the feature
to obtain a piece of semantic affinity information for predicting the missing regions. The
extracted feature is later fed to the morphing-atlas point generator for completing the shape.

6.3.2 Point Cloud Transformer Encoder

The Transformer encoder of PCTMA-Net first transforms an incomplete point cloud to the fea-
ture space using an input embedding network. I then feed the extracted feature to N× stacked
encoder layers, where they share a similar philosophy of design as the original paper [176],
except for the attention mechanism. The purpose of the encoder layer is to learn a semanti-
cally rich and discriminate representation for each point. The encoder can be mathematically
formulated in the following: By given a partial point cloud P ∈ RNin×d with Nin points each
having a d-dimensional feature description, an embedding feature F0 is firstly learned with
an input embedding network, indicated as Fembedding. The difference to the embedding net-
work presented in [52] is that I defined Fembedding as a PointNet followed by a max-pooling
operator. As a result, I acquire a dmodel-dimensional embedding feature F0 ∈ Rdmodel instead
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of F0 ∈ Rdmodel×Nin[52]. It will improve the shape completion performance, as the F0 after
max-pool operator can reduce redundant information and make the training more efficient.
The global feature F0 is later fed to Fencoderi

:

Fi = Fencoderi
(Fi−1), i = [1, . . . , N] . (6.1)

Furthermore, I concatenate the features from each encoder layer and follow up by two cas-
cade LBR layers to form an effective global feature

Fe = BatchNorm(Fi ⊕ · · · ⊕ FN ) (6.2a)

FTE = LBR
�

LBR(Fe)
�

, (6.2b)

where Fi ∈ Rdmodel , Fe ∈ RN×dmodel and FTE ∈ Rdmodel . The operator ⊕ is denoted as concatena-
tion, and the function LBR represents a linear layer followed by BatchNorm and ReLU opera-
tors. The Fencoderi

consists of two sub-layers, namely self-attention mechanism and positional
forward feedback:

Fencoderi

�

Fi−1

�

= FFNi

�

attentioni(Fi−1)
�

, (6.3a)

FFNi(x) = LBRi,1

�

LBRi,0(x)
�

+ x . (6.3b)

The layer FFNi is a shared positional forward feedback network comprising two cascaded
LBRs with the size of [dff, dmodel], where dff = 2048 and dmodel = 1024.

Offset self-attention mechanism Self-attention is a mechanism that calculates the seman-
tic relationship between different elements within a sequence of data. In the context of point
cloud processing, attention is employed to build weights between every two positions in the
feature space. In comparison to k-nearest neighbors algorithms, the attention mechanism
has a larger receptive field. Furthermore, the attention mechanism’s permutation invari-
ant property makes it suitable for disordered, irregular data representation such as point
clouds. The work in [52] proposed the offset attention by utilizing the idea of a Laplacian
matrix L = D−E, where E is the adjacent matrix E and D is the diagonal matrix. The attention
mechanism is adopted as

Fsa,out = attention(Fsa,in) (6.4)

= LBR(Fsa,in − Fsa) + Fin .

The remaining part of the attention computation operators still follows the same design as
in the original paper [176]. Fsa in (6.4) concatenates the multi-head attention with the
following formulation:

Fsa = Linear(Fhead1
⊕ · · · ⊕ Fheadh

) , (6.5)

where the attention feature at the i-head Fheadi
, i ∈ [1, . . . , h] is formulated as

Fheadi
= softmax

� Q̂K̂T

p

dk

�

V̂ , (6.6)

with Q̂ = Linear(Q), K̂ = Linear(K), V̂ = Linear(V). The variables Q,K and V are projected
with a different linear layer, respectively. Following the same principle as the original paper, I
set Q= K= V= Fsa,in ∈Rdmodel . I reshape the linear projected query and key as Q̂, K̂ ∈Rdmodel×1

to obtain the attention weights A by matrix dot product via Q̂K̂T . I normalize A with
p

dk

to avoid large values in magnitude, where dk =
dmodel

h . The equation in (6.6) shows, that
the self-attention Fheadi

is equal to the weighted sums of the value vector Linear(V) using the
corresponding attention weights. The multi-head attention mechanism can jointly capture
information from different representation subspace at different positions [176]. Therefore,
it can efficiently preserve and capture the point cloud’s detailed topology and structure for
predicting the missing regions in comparison to [51, 168].
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6.3.3 Morphing-Atlas-Based Point Generation Network

At the first stage, the Transformer encoder extracts a global feature FTE for expressing an
incomplete point cloud. I then feed the extracted features into a morphing-atlas-based point
generator for predicting continuous and smooth shapes. Atlas is defined in the topology for
describing a manifold and an atlas is composed of each chart that, roughly speaking, describes
the local region of the manifold. In the context of 3D shapes, the manifold can be considered
as a shaped surface. Therefore, I can represent a 3D shape by combing all the charts. Based
on the Atlas concept, I define a chart as Ci and let a designed decoder Di learn to map a 2D
grid to a 3D surface. Furthermore, I introduce a hyper-parameter nchart to control the number
of charts defined on a shape to predict a smooth and high-resolution shape. The global
feature FTE ∈Rdmodel is duplicated Nout/nchart times and then concatenated with a mesh grid to
describe a new feature, denoted as FTE,1 ∈R(dmodel+2)×(Nout/nchart). It beneficial to linearly project
FTE,1 with different learned linear projections. This concept is similar to multi-head attention
by allowing the model to obtain the shape features from different representation subspaces
at different positions. Therefore, FTE,1 is duplicated nchart times and each FTE,1 is fed to an
MLP layer which produces a new hidden code, denoted as Fchart,i ∈ R(dmodel+2)×(Nout/nchart), i ∈
[1, . . . , nchart]. In the next step, for each single chart, I feed Fchart,i into a PointGenNetwork, as
illustrated in Fig. 6.2. In the end, all charts are concatenated to form a complete shape.

6.3.4 Evaluation Metrics

I apply the Chamfer distance (CD) [40] as a quantitative evaluation metric due to its efficient
computation compared to the earth mover’s distance [40]. The Chamfer distance measures
the mean distance between each point in one point cloud to its nearest neighbor in another
point cloud. Let SG = [x i , yi , zi]

nG
i be the ground truth and SR = [x i , yi , zi]

nR
i be the recon-

structed point by given a partial point cloud. nG and nR indicate the number of points in SG
and SR, respectively. The Chamfer distance dCD of SG and SR with L2 norm is formulated as

dCD =
1
nR

∑

x∈SR

min
y∈SG
||x − y||2 + 1

nG

∑

y∈SG

min
x∈SR
||x − y||2 . (6.7)

6.3.5 Implementation details

I implemented PCTMA-Net in PyTorch, where the model is optimized with an Adam optimizer
with β1 = 0.9 and β2 = 0.999, together with a CosineAnnealingLR scheduler. The number of
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Table 6.1: Point completion results on Completion3D with ground truth and input resolution (2048 points) com-
pared using Chamfer distance (CD) with L2 norm. The results are multiplied by 104. In my algorithm (PCTMA-Net),
I set meshgrid= 0.05. The best result is highlighted in green, and a lower value is better.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

AtlasNet (Nout = 2048) [51] 5.82 29.28 11.02 27.11 34.04 19.11 29.27 15.55 21.40
AtlasNet (Nout = 16384) [51] 5.50 19.89 9.23 21.17 30.99 15.34 21.67 14.64 17.31
FoldNet [188] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
FCN [193] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22
TopNet (Nout = 16384) [168] 5.85 21.27 10.03 20.09 22.98 14.65 24.25 11.78 16.36
PointNetFCAE (Nout = 2048) [1] 5.81 21.14 8.95 22.01 33.36 15.81 27.52 14.09 18.59
PointNetFCAE (Nout = 16384) [1] 4.00 16.70 6.24 14.63 18.15 10.99 15.77 8.55 11.88
SA-Net [180] 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22
GRNet (Nout = 2048) [185] 7.64 24.06 12.02 24.62 28.73 18.85 32.90 12.48 20.16
GRNet (Nout = 16384) [185] 3.79 14.86 6.71 12.74 13.73 11.05 15.43 6.50 10.60

Ours (nchart = 32, Nout = 2048) 3.60 14.67 7.03 14.04 20.61 10.66 18.01 7.62 12.03
Ours (nchart = 128, Nout = 10240) 3.16 13.53 6.58 13.21 12.93 10.29 14.25 6.98 10.11
Ours (nchart = 32, Nout = 16152) 3.38 13.00 6.12 12.72 11.87 9.18 12.43 7.17 9.48

encoder layers used in the Transformer encoder is set to 4, and I follow the original papers
by setting the multi heads in the offset attention mechanism to 8. I trained the network on
a Linux system with a 2.600 GHz Intel Core i7–6700HQ, 16.000 GB of RAM, and one Nvidia
RTX 2080 Ti GPU.

6.4 Experiments

I compare my proposed shape completion algorithm PCTMA-Net with other state-of-the-art
approaches on two large scale data sets: Completion3D [168] and KITTI [47]. The Chamfer
distance is employed as a metric in the evaluation.

6.4.1 Shape completion on Completion3D data set

Completion3D [168] from ShapeNet [22] offers a data set, which consists of 28974 training
samples and 800 point cloud evaluation samples with a point resolution of 2048 for training
and validation, respectively. In the comparison, I use different output resolutions and the
quantitative results are summarized in Table 6.1. Note that the results of FoldNet [188],
SA-Net [180], and PCN [193] are cited from the Completion3D benchmark leaderboard.
Table 6.1 shows that my PCTMA-Net algorithm outperforms the other methods in 6 out of
8 categories with the overall Chamfer distance of 9.480 for Nout = 16152.000 and nchart =
32. The qualitative visualization of completion results shown in Fig. 6.3 indicates that my
approach is able to predict more details. The performance in the quantitative and qualitative
evaluations proves the Transformer encoder and the morphing-atlas decoder’s effectiveness
for predicting and preserving the shape details.

6.4.2 Shape completion on robustness of input resolution

The input resolution can greatly affect the performance of a neural network. In this section,
I will study the robustness of input resolution on the different network structures. I down-
sample the evaluation data set from Completion3D to obtain four levels of input resolutions:
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Figure 6.3: Visualization of completion results on the Completion3D evaluation set.

256, 512, 1024, and 2048. The visualization of these four levels of input resolutions is shown
in Fig. 5.5a. All networks are trained on an input resolution of 2048 and output a fixed size
of 16384.000 points. For point resolutions less than 2048, I follow the principle in PCN [193]
to select points from the input randomly and pad the input cloud to raise the number of points
to 2048. I evaluate these four levels of input resolution on the Completion3D data set. The
quantitative illustration in Fig. 5.5b indicates that my network has the best robustness and
outperforms the other approaches in all four input resolutions experiments.

6.4.3 Shape completion on KITTI data set

For a further study of the application area, I conduct experiments on the KITTI data set [47],
which is collected from real-world Velodyne Lidar scans composed of 2401 highly sparse
point clouds. Note that the KITTI data set does not include the ground truth in a quantitative
evaluation. Therefore, I can only qualitatively visualize the shape completion results. Unlike
other work [168, 185], which trains the network with only the car category in ShapeNet [22]
and then evaluates the KITTI data set, I use the same trained network as in Section 6.4.1 for
evaluation. This evaluation strategy can show the capability of the generalization of one
network. The incomplete point clouds from KITTI have diverse input resolutions and are
highly sparse. I use the same strategy as in Section 6.4.2 to lift the number of points to
2048. Besides, I transform the incomplete point cloud by using the 3D bounding boxes to
get a point cloud that is distributed between [−0.5, 0.5]. The qualitative result illustrated
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Figure 6.4: In a the point resolution varies from 256, 512, 1024 to 2048. In b, I compare the proposed approach
against other state-of-the-art approaches on the Completion3D benchmarks. Lower values are better.

Input PointNetFCAEAtlasNet TopNet GRNet Ours

Figure 6.5: Qualitative completion results on the LiDAR scans from KITTI. The incomplete input point cloud is
extracted and normalized from the scene with its 3D bounding box.

in Fig. 6.5 indicates that my approach and PointNetFCAE can generate more detailed shape
information compared to the other methods.

6.4.4 Ablation Studies

In this section, I will study the effectiveness of my designed structure and chosen hyper
parameters. All studies are conducted on the Completion3D data set for consistency. Without
loss of generality and without special instructions, I set Nout = 10 240.000 and nchart = 32 in
the following experiment.

Effect of Transformer encoder

The Transformer encoder is the main core used in PCTMA-Net, which has two hyper param-
eters: the number of encoder layers nencoder and the number of heads h used in the attention
mechanism. In this section, I will study the effect on shape completion by varying different
combinations of these two parameters. I can conclude from Table 6.2, that I can achieve
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Table 6.2: The Chamfer distance (CD) on different hyper parameters in the Transformer encoder.

nencoder 2 4 6

h 4 8 4 8 4 8

CD (×104) 10.86 10.41 10.59 10.21 10.69 10.21

Table 6.3: The Chamfer distance (CD) on the number of charts.

nchart 8 32 128

CD (×104) 10.45 10.21 10.11
parameter (×106) 52.75 93.26 258.73

better shape completion performance with higher numbers of h and nencoder. Taking vari-
ous factors such as the network parameters into consideration, I set these hyper parameters
to h= 8 and nencoder = 4.

Effect of number of charts

The hyper parameter nchar is used to control the number of charts defined on a shape. In
this section, I will study the effectiveness of the number of charts. I summarize the results
in Table 6.3. It can be shown, that PCTMA-Net can result in a smaller Chamfer distance
with a greater number of charts. However, the parameters of the network will be increased
correspondingly, which is shown in the second row of Table 6.3.

Effect of grid strategy

In my proposed morphing-atlas decoder, the pointGenNet maps 2D grids to 3D surfaces. In
this section, I will use the plane grid for point generation, which introduces two additional
values. I can either randomly sample the value from [0, 1] or use a grid with a predefined
grid scale and grid size. The evaluation results on different grid strategies are listed in Ta-
ble 6.4. It can be shown, that the mesh grid method shows significantly better performance
in comparison to the randomly sampled grid methods. I further study the effectiveness of the
grid scale by using the same grid size. The results in Table 6.4 show that the mesh grid scale
from 0.05 to 0.5 has a similar performance.

Effect of metrics

Most existing work employs the Chamfer distance as a loss function due to its efficient com-
putation. The earth mover’s distance (EMD) is another option for point clouds with:

dEMD(SR, SG) =
1
|SG|

min
Φ:SR→SG

∑

X∈SR

||x −Φ(x)||2 , (6.8)

where Φ is the bijection function. In this section, I will study the effect on shape completion
of different training loss functions. The comparison results in Table 6.5 demonstrate, that for
a pure EMD loss function, the shape completion value with the metric of CD has the worst
performance. The utilization of CD and EMD in the loss function can reduce the Chamfer
distance value, and generate a more uniformly distributed point cloud than the pure CD loss
function. As EMD uses the bijection function to force the output to have the same density
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Table 6.4: The Chamfer distance (CD) on different grid types. In Meshgrid (k), k indicates the grid scale.

Grid type Rand grid Meshgird (0.5) Meshgrid (0.05)

CD (×104) 11.36 10.25 10.21

Table 6.5: The Chamfer distance (CD) on different loss functions.

Loss function EMD CD+EMD CD

CD (×104) 16.12 10.45 10.21

distribution as the ground truth for coping with the linear assignment problem. It hence can
generate a point cloud which is more discriminative to local details. However, EMD is much
more computationally expensive with approximately O(n2), where n is the number of point
cloud, compared to CD.

Effect of point generator

In this section, I study the effect of different point generators on shape completion, intro-
duced in FoldNet [188], TopNet [168], by attaching them to my Transformer encoder. The
results are summarized in Table 6.6. All of these three networks have improved to some de-
gree by using the Transformer encoder. FoldNet shows an improvement from 19.07 to 13.22,
TopNet improved from 16.36 to 13.49, and the performance of AtlasNet improved from 17.31
to 11.36.

6.5 Conclusion

I propose a novel network named PCTMA-Net for point cloud completion. Through its
encoder-decoder structure, PCTMA-Net can effectively capture features of local regions for
predicting missing shape parts. The utilization of the concept of an atlas further helps the
network to reconstruct a smooth shape with a predefined number of charts. I conducted
extensive experiments on the Completion3D and KITTI data sets to validate my proposed
network structure’s effectiveness. Via the experiments, I can conclude that my approach
outperforms other state-of-the-art approaches on these two large data sets.

Table 6.6: The Chamfer distance (CD) on different point generators. I abbreviate my Encoder as TE and connect
to different algorithm point generators.

Methods TE-FoldNet TE-TopNet TE-AtlasNet

CD (×104) 13.22 13.49 11.36
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Chapter 7

Gaussian Process Implicit Surface and Bayesian
Optimization based Grasp Planning

Chapter Summary

This chapter proposes a general algorithm that combines analytical grasp planning and Bayesian
optimization. I parameterize the object surface with the Gaussian Process Implicit Surface
for unifying the solving process. Besides, a two-stage optimization procedure is used to fig-
ure out the hand posture and hand finger configuration iteratively. The incorporation of
Bayesian Optimization and alternating direction method of multipliers is further investigated
in the grasp optimization loop. This chapter is a slightly modified version of peer-reviewed
conference paper ©2021 IEEE. Reprinted, with permission, from

• Lin, Jianjie, Rickert, Markus, and Knoll, Alois, “Grasp Planning for Flexible Production
with Small Lot Sizes using Gaussian Process Implicit Surfaces and Bayesian Optimiza-
tion,” IEEE International Conference on Automation Science and Engineering (CASE),
2021

The images created, algorithms designed, data from experiments and text written by me in
this publication will be directly referenced in this chapter. The original version is referred
to 162

Contributions

I took a leading role in the writing and revising of the manuscript in this article. I have
made the following significant personal contributions to the formulation, implementation,
and evaluation of the algorithms in this paper: utilizing the GPIS for describing the grasped
object, designing two-stage optimization procedure. I am the lead developer of the algorithm
implementation, and resposible for experimental evaluation.
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7.1 Introduction

Only a limited number of small and medium-sized enterprises in Europe use robot systems
in production, mainly dealing with small lot sizes and requiring a more flexible production
process. It is, however, very time-consuming and expensive to adapt a robot system to a
new production line, and it requires expert knowledge for deploying such a system, which,
however, is not commonly available in shop floor workers [126]. Intuitive programming is
currently proposed on the market for accelerating programming and remedying the problems
caused by a lack of expert knowledge. Moreover, the service robots use semantic knowledge
in combination with reasoning, and inference [169] to solve the declarative goal. Automat-
ically synthesizing a robot program based on the semantic product, process, and resource
descriptions enable an automatic adaptation to new processes. In this process, the recogni-
tion of objects and parts in the environments is involved, which is typically designed in CAD
systems and described via a boundary representation [127]. Due to the small lot size pro-
duction of SMEs, it is not feasible to train the objects over a long period of time by using the
data-driven approaches. Based on this observation, it will accelerate the deploying time if I
grasp the object firstly in a simulator with the CAD models and then transfer the preplanned
grasp to the real world with a 6D pose estimation [95]. Fig. 3.3 shows an example of such a
grasping use case for a mechanical gearbox together with a point cloud scene captured by the
3D camera sensor attached to the robot. Dexterous robotic grasping planning has been an ac-
tive research subject in the robotic community over the past decades. Grasping is essential in
many areas such as industrial factories and household scenarios. There have many different
kinds of robotic hands, i.e., traditional parallel-jaw grippers, complex multi-fingered hands,
or even vacuum-based end effectors. The goal of grasp planning aims to find a proper con-
tact on the object and an appropriate posture of the hand related to the object to maximize
grasp quality. This is a challenging task, especially for multi-fingered hands, due to different
kinds of object shapes, the complicated geometric relationship between robotic hands and
objects, and the high dimensionality of hand configurations. Grasp planning can be divided
into analytic approaches [9] on the one side and empirical or data-driven approaches on the
other side [13]. The analytic grasp synthesis approach is usually formulated as a constrained
optimization problem over criteria that measure dexterity, equilibrium, and stability and ex-
hibit a certain dynamic behavior. Besides, it requires the analysis of statically-indeterminate
grasps [9] and under-actuated systems. The latter describes hands, in which the number of
the controlled degrees of freedom is fewer than the number of contact forces, therefore fur-
ther increasing the complexity of grasp synergies. One common assumption made in analytic
methods is that precise geometric and physical models are available to the robot. Further-
more, optimizing grasp quality with constraints based on a convex optimization solver such
as SQP can not guarantee finding a good grasp. In contrast to analytic approaches, the em-
pirical or data-driven approaches rely on sampling the grasp candidate either from a data
set or by first learning a grasp quality and then selecting the best by ranking them accord-
ing to some specific metric. In this work, I will study how to optimize the palm pose and
contact point in the same framework by utilizing a global Bayesian optimization solver un-
der consideration constraints. Gaussian Process Implicit Surface Atlas (GPIS-Atlas) is used to
parameterize the diverse shape. Therefore the geometry information can be integrated into
the Bayesian optimization framework. Furthermore, GPIS-Atlas has the capability to describe
the perfect geometry model in the form of a CAD model or the noisy point clouds [181]. In
the work [95], the 6D pose is estimated between an object in the form of CAD model and the
corresponding point clouds taken from an Ensenso Camera. Therefore, for finding an appro-
priate grasp pose for this object, I can directly apply my Bayesian optimization framework
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with the CAD model instead of working on noisy point clouds. After that, I transform the
grasp pose using the 6D pose transformation from [95].

7.2 Related work

Multi-fingered hand grasp planning is still challenging due to the high dimensionality of hand
structure and complex graspable object shapes. Automatic grasp planning is a difficult prob-
lem because of the vast number of possible hand configurations. Several different approaches
have been proposed to find an optimal grasp pose over the past decades. Goldfeder et al. [49]
introduced a database-backed grasp planning, which uses shape matching to identify known
objects in a database with are likely to have similar grasp poses [49]. Ciocarlie et al. pre-
sented [24] Eigengrasp planning defines a subspace of a given hand’s DOF space and utilizes
the Simulated Annealing planner to find an optimized grasp. Miller et al. [107] proposed a
primitive shape-based grasp planning which generates a set of grasps by modeling an object
as a set of shape primitives, such as spheres, cylinders, cones, and boxes. Pelosso et al. [125]
use an approach based on Support Vector Machines that approximate the grasp quality with
a new set of grasp parameters. It considers grasp planning as a regression problem by given
a feature vector, which should be defined heuristically. With the continuous success of deep
learning vision, researchers utilize deep learning, also in combination with reinforcement
learning, to learn a grasp quality directly from an image via large training data sets [61].
Levine et al. [88] used between 6 and 14 robots at any given point in time to collect data in
two months and train a convolutional neural network to predict grasp success for a pick-and-
place task with a parallel-jaw gripper. Mahler et al. [103] proposed a Dex-Net-based deep
learning framework using a parallel-jaw gripper or vacuum-based end effector learn a grasp
policy based on millions of grasp experiments. Kalashnikov et al. [66] introduced a scal-
able self-supervised vision-based reinforcement learning framework to train a deep neural
network Q-function by leveraging over 580k real-world grasp attempts. However, the deep
learning-based algorithm can only take the 2d image as an input, and the trained neural net-
work cannot be easily transferred to another robotic hand configuration. Varley et al. [175]
obtained the geometry representation of grasping objects from point clouds using a 3D-CNN.
Ten et.al [124] is the state of the art 6 DOF grasp planner (GPD). Liang et.al. [92] proposed
an end-to-end PointNetGPD to detect the grasp configuration from a point sets. Mousavian
et al. introduced a 6DOF GraspNet by sampling a set of grasping using a variational autoen-
coder. In addition to deep learning, the Bayesian optimization-based algorithm in [119] can
consider uncertainty in input space to find a safe grasp region by optimizing the grasp qual-
ity. Furthermore, it utilizes unscented transformation-based Bayesian optimization (UBO), a
popular nonlinear approximation method, to explore the safe region. However, UBO consid-
ers only the palm pose optimization without considering the contact point. I present a grasp
planning approach in this work, where I combine Bayesian optimization with an analytical
approach. I use the Grasp Wrench Space (GWS) [43] as grasp quality metric, which calculates
the convex hull over discretized friction cones from the individual contact wrench spaces of
all contacts. Due to the GWS metric’s complexity, I explore the potential of Bayesian optimiza-
tion to optimize this highly-nonlinear grasp quality problem. Since the hand posture (hand
palm pose) and hand configuration can be considered separately because the finger’s con-
tact points on the object surface only depend on the hand posture and forward kinematics of
hand joints, I propose a dual-stage approach: In the first stage, I optimize the hand palm pose
without considering hand configuration, and in the second stage, I use the result of the first
stage and optimize the contact points on the object surface. My approach optimizes a hand
palm pose T ∈ SE(3) regarding its grasp quality. For this, I present the rotation in hyperspher-
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ical coordinates instead of a rotation matrix or quaternion. I further parameterize the object
surface as a Gaussian Process Implicit Surface (GPIS) [181] and use a k-D tree to find the
closest point between the current palm pose and object surface. Based on GPIS, I can further
compute a chart C and the corresponding normal vector NC on this nearest point. Utilizing
this chart, I can make a local adaption of the palm pose to find a better location concerning
the object surface. In the second stage, I convert the problem of solving constraints between
the contact points and the object surface to querying the GPIS given a known contact point.
Since the standard framework of Bayesian optimization cannot solve this constraint optimiza-
tion problem, I use the Alternating Direction Method of Multipliers (ADMM) [17] to assist
the contact point optimization by decomposing the whole problem into a set of subproblems.

7.3 Problem Formulation

In general, to define a grasp, I need two sets of variables: the intrinsic variables to define
the hand degrees of freedom (DOF) and the extrinsic variables to define the hand’s position
relative to the target object. Grasp planning is used to find the optimized contact points
and an associated hand configuration to maximize grasp quality. The contact point on the
object surface is denoted as c= [c1, · · · ,cn], where ci ∈ SE(3), and n is the number of fingers.
I will assume that contact happens on the fingertip, and one finger only has one contact
on the object surface O. The finger joint of the hand configuration is described as q =
[q1, · · · ,qm], where m is the DOF. Note that some finger joints are under-actuated (passive
joint). Therefore the number of finger joints is not equal to the DOF. The pose of the palm is
represented by Tpalm(R,p). Mathematically, the optimized problem can be formulated as:

max
c,q,Tpalm

Q(c,q,Tpalm) (7.1a)

s.t. c= FKpalm2c(q,Tpalm) ∈O (7.1b)

qmin,i ≤ qi ≤ qmax,i , i = 1 · · ·m , (7.1c)

where Q(c,q,Tpalm) is the GWS, which is a 6-dimensional convex polyhedron, the epsilon and
volume quality metric introduced by Ferrari and Canny [43]. The epsilon quality is defined
as the minimum distance from the origin to any of the hyperplanes defining the boundary
of the GWS. In contrast, the volume quality is the volume of GWS. FKpalm2c is the forward
kinematics from the palm pose to the contact points. The formulation (7.1b) constrains all
contact points on the object surface O. Furthermore, a contact is defined as any point where
two bodies are separated by less than the contact threshold εc, but not interpenetrating.
In this work, the object surface will be parameterized by using GPIS to easily check if the
contact point satisfies the constraint (7.1b). The problem in (7.1) is a high-dimensional
nonlinear constraint problem, besides the gradient of the objective function and constraints
cannot be analytically computed. Further, the convex optimization solver can only find a
local minimum. Based on those observations, Bayesian optimization is applied to find a near-
global optimization solution for these problems. Since the palm pose and contact point are
nearly independent, I can switch between optimizing the palm pose and the contact point.
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7.4 Bayesian Optimization for Grasp Planning

Bayesian optimization is a global optimization method, which can be used to solve the prob-
lem

xoptimized =max
x∈X fobj(x) , (7.2)

where the objective function fobj(x) is a black-box function or a function which is expensive
to evaluate and X ⊆ RD is a bounded domain. I use the Latin Hypercube Sampling (LHS) to
get the initial sampling, and save it as data set D0:t−1 =

�

(x0, y0) , . . . , (xt−1, yt−1)
	

, and learn
a Gaussian process model (GP). The essential step is to choose an appropriate acquisition
function. Here, I use Expected Improvement [65], which is defined as

EI(x) = E
�

max
�

fobj(x)− fobj(x
+), 0

��

, (7.3)

where E is the expectation function, fobj(x+) is the best observation with the location x+ so
far. The EI(x) can be evaluated analytically under the GP model as

EI(x) = 1
�

σ(x)
�

�

�

µ(x)− fobj(x
+)− ξ�Φ(Z) +σ(x)φ(Z)

�

, (7.4)

with Z = 1
�

σ(x)
�

�

µ(x)− fobj(x+)−ξ
σ(x)

�

, where 1(x) is the indicator function that is equal to 0 for
x ≤ 0 and equal to 1 otherwise. The mean µ(x) and standard deviation σ(x) are defined
in the GP posterior at x, and Φ and φ are the CDF (cumulative distribution function) and
PDF (probability density function) of the standard normal distribution. ξ is a parameter
which balances between the exploration and exploitation. The objective function in my al-
gorithm for optimizing the grasp contact points is grasp quality which consist of epsilon and
volume quality.

fobj(x) =
�

1(qε)qε +λqvolume

�

, (7.5)

where λ is a predefined parameter. The Matérn covariance function (ν = 5/2) is chosen
as kernel function for the Gaussian process model in the Bayesian optimization and can be
described as:

K5/2(d) = σ
2

�

1+
p

5d
ρ
+

5d2

3ρ2

�

exp

�

−
p

5d
ρ

�

(7.6)

with hyper parameter σ and length-scale ρ. The parameter d is the distance between two
query points. Since I need to optimize the palm pose, which is interpreted as a transfor-
mation. I define the distance between two transformation matrices as ∆T = ∥p1 − p2∥ +
∥ log(RT

1R2)∥F /
p

2, where the term ∥ log(RT
1R2)∥F /

p
2 is the geodesic distance defined in the

Riemann manifold. To optimize the hyperparameter, the algorithm RProp (Resilient Prop-
agation) [12] is applied, a popular gradient descent algorithm that only uses the signs of
gradients to compute updates and can dynamically adapt the step size for each weight inde-
pendently.

The object surface in my algorithm is described as a GPIS and every point lying on the
surface in the set X′ should satisfy the equality constraints X′ =

�

x ∈ R3 : fGPIS(x) = 0
	

. Fur-
thermore, the tangent space of each point on these surface will be computed by using

�∇ f T
GPIS(xi)

ΦT
i (xi)

�

Φi(xi) =

�

0
I

�

, (7.7)

where Φi(xi) ∈ R3×2 is the basis of tangent space at the location x and ∇ fGPIS(xi) ∈ R3×1 is the
gradient of implicit function for x. By using Φi(x), I can map xi to x′i with x′i = xi +Φi(xi)ui,
where ui ∈ R2×1 is a point in the local coordinate on this chart. The sample value x′i is shown
as black dots in Fig. 7.1a, the tangent vector on the chart is shown as red and green arrows,
while the blue arrow shows the normal vector.
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7.4.1 Hand Palm Pose Optimization (HPP-Opt)

To optimize the palm pose, I need to take the transformation Tpalm(R,p) ∈ SE(3) into account,
where the rotation matrix R can be interpreted by using a unit quaternion q. Since the
unit quaternion manifold MH is an Riemannian manifold, by virtual equality of MH and
4D unit hypersphere S3 =

�

x ∈ R3+1 : ∥x∥ = 1
	

, the quaternion q can be represented in
the hyperspherical coordinates with φ,ψ,θ where φ,ψ range over [0,π] and θ ranges over
[0, 2π). Employing hyperspherical coordinates, the constraints of q disappear. Therefore,
the palm pose optimization is converted to an unconstrained optimization, and it can be
mathematically formulated as

max
φ,ψ,θ ,tpalm

fobj

�

q,Tpalm(R(φ,ψ,θ ), tpalm)
�

. (7.8)

To reduce the search space, I constrain the palm pose between two bounding boxes, rep-
resented by an axis-aligned minimum bounding box (AABB), denoted as XAABB,i with i ∈
{1, 2}. The smaller one is shown as an orange cube in Fig. 7.1a. I define the variable
xpalm = [p,φ,ψ,θ]T ∈ R6×1. Sampling a point between two bounding box cannot be formu-
lated mathematically, therefore, I use an ellipsoid E1 = (a1, b1, c1, a0, b0, c0) to approximate
XAABB,1 and another ellipsoid E2 = (a2, b2, c2, a0, b0, c0) to approximate the bigger bounding
box XAABB,2. As the result, the palm pose sample t= [t x , t y , tz] can be formulated as

t x = a0 + r ∗ a1 sin(θ ) cos(φ) (7.9a)

t y = b0 + r ∗ b1 sin(θ ) sin(φ) (7.9b)

tz = c0 + r ∗ c1 cos(θ ) , (7.9c)

where m0 =
kmin,1+kmax,1

2 , m1 =
kmax,1−kmin,1

2 , m ∈ {a, b, c}, and k ∈ {x , y, z}. The parameter r is a
random variable which ranges over [1, rmax], where

rmax =

√

√

√

1
� a1 sin(θ ) cos(φ)

a2

�2
+
� b1 sin(θ ) sin(φ)

b2

�2
+
� c1 cos(θ )

c2

�2 . (7.10)

The parameter θ ranges over [0,π] and θ ranges over [0,2π). The two ellipsoids are shown
in Fig 7.1b. The problem in (7.8) can be solved by using Bayesian optimization, as shown in
Alg. 2. The solution found by Bayesian optimization is based on the probability of best grasp
distribution. To improve the performance, a local adaption based on GPIS-Atlas is proposed.

GPIS-Atlas based local adaption

The first step is to find the closest point from the current palm pose to the object using k-D tree
algorithm. Assuming I found the pose tclosest, a chart Ci with the center point tclosest is created

(a) (b)

Figure 7.1: Visualization of a Tangent space on a mug surface and b sampling for initial palm pose.
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Algorithm 2 Palm Pose Optimization HPP-Opt
Require: ndim, niter
1: Get LHS D0:t−1 =

�

(x0, y0) , . . . , (xt−1, yt−1)
	

2: Fit the Gaussian process Model p
�

y|x,D0:t−1

�

3: Optimized hyper Parameter Rrop
4: for t= 1 to niter do
5: xpalm,t = arg max

x
EI (x|D0:t−1)

6: Find a collision-free contact and get q,xpalm
7: G = GPISAtlas( fGPIS,xpalm)
8:

�

Gbest(xpalm,t ,q), ymax,t

	

= arg max
G

fobj(q,xpalm)

9: Add the new sample D0:t =
�

D0:t−1, (xpalm,t , ymax,t)
	

10: update Gaussian process model (GP)
11: end for
12: x+palm = argmax

xi∈x0:t

fobj (xi)

13: return x+palm

by solving (7.7). I denoted the outward unit normal vector of this chart Ci as Nclosest and the
robot hand posture is designed to orient to the direction of a chart normal NC. I apply the
following approaches to get the pose T. Assuming that the normal vector of hand in the initial
state points to the z-axis nz, the hand is currently in local frame H1 with rotation matrix WRH1

with respect to the world frame W. The next hand configuration should point to the normal
direction NC in local frame HCi

, therefore the corresponding rotation matrix WRHCi
can be

interpreted in angle-axis representation [naxis,θaxis] with θaxis = atan2(∥nz ×NC∥ ,nz ·NC) and
naxis = nz × NC. As a result, I can transform the local frame H1 to HCi

with the rotation
transformation as H1RHCi

= WRT
H1

WRHCi
. Furthermore, the translation of the palm pose is

defined as tpalm = tclosest + λNclosest. This means that the new palm pose xpalm is parallel to
the chart Ci with the distance ∥λ∥, as shown in Fig. 7.1a. The parameter is optimized so that
the hand is not colliding with the object. The whole transformation is defined as Tpalm =
T(I, tpalm)T(WRHCi

,0)T(Rz ,0). The transformation T(Rz ,0) is used to further guarantee no
collision. Furthermore, I can define a point set on the chart Ci as XCi

and randomly choose a
sample tsample ∈ XCi

as tclosest.

7.4.2 ADMM-Based Contact Point Optimization (ADMM-CP-Opt)

The contact point optimization is used to find a set of desired joints q for each finger and the
contact points c on the object surface. It can be described as

max
c,q

fobj(q,Tpalm) (7.11a)

s.t. c= FK(q,Tpalm), (7.11b)

| fGPIS(ck)| ≤ εc , k = 1 · · ·n (7.11c)

qk ∈ [qmin,k, qmax,k], k = 1 · · ·m , (7.11d)

where FK calculates the forward kinematics, and n represents the number of contact points
on the object surface. The parameter m is the DOF of a hand. A contact point is represented
as a transformation Tci

. However, each finger has fewer joints than 6, which results in an un-
derestimated system. Consequently, I cannot directly calculate the inverse kinematics based
on the contact points, and it is not possible to arbitrarily move the fingertip on the object
surface. To relax the constraints, I will not fix the palm pose, but constrain the palm pose on
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Algorithm 3 GPISAtlas() function for local adaption
Require: fGPIS, xpalm,current
1: Set t= xpalm,current(0 : 2)
2: Get tclosest = KD(tpalm,current)
3: Set G = {}, λ← 0, θz ← 0, λmax, nseed
4: Compute Chart Ci and Nclosest by equation 7.7
5: for n = 0 to nseed do
6: t′closest = tclosest + ˘i(tclosest)urand
7: while C doheckCollsion
8: tpalm = t′closest +λNclosest
9: if λ < λmax then

10: Tpalm = T1(I, tpalm)T2(WRHCi
,0)

11: λ← λ+∆λ
12: else
13: Rz = Angleaxis(0, 0,1,θz)
14: θz ← θz +∆θz

15: Tpalm = T1(I, tpalm)T2(WRHCi
,0)T3(Rz ,0)

16: end if
17: end while
18: Execute the Grasp, get hand configuration q
19: G = G ∪ {xpalm,q}
20: end for
21: return G

the chart Cpalm,i, which is parallel to chart Ci on the object surface, therefore Tpalm ∈ Cpalm,i.
Since the equality constraints cannot be solved by using Bayesian optimization, the Alternat-
ing Direction Method of Multipliers (ADMM) based Bayesian optimization [17] is utilized to
solve the contact pose optimization problem (7.11) with the new formulation

max
q∈B

fobj(q,Tpalm) + gc(q,Tpalm) , (7.12)

with gc(q,Tpalm) = µ
∑n

i=0 ci(q,Tpalm)2 and ci(q,Tpalm) =

�

�

�

�

fGPIS

�

FKi

�

q,Tpalm(R,p)
�

�

�

�

�

�

− εc. In

order to solve (7.12), ADMM introduces an auxiliary variable z, resulting in

max
q,z∈B

fobj(q,Tpalm) + gc(z,Tpalm) (7.13a)

s.t. q= z . (7.13b)

In the following, I neglect Tpalm in fobj and gc. By applying Augmented Lagrangian function
for equation (7.13), a new objective function is formulated as

Lρ(q,z,y) = fobj(q) + gc(z) +
ρ

2
∥q− z+

y
ρ
∥2

2
(7.14)

Therefore, I can solve fobj(q) and gc(z) by alternating over the following sub problems:

qk+1 = argmax
q

fobj(q) +
ρ

2
∥q− zk +

yk

ρ
∥

2

2
(7.15a)

zk+1 = argmax
z

gc(z) +
ρ

2
∥qk+1 − z+

yk

ρ
∥

2

2
(7.15b)

yk+1 = yk +ρ(qk+1 − zk+1) . (7.15c)

The optimal condition is defined as ∥qk+1 − zk+1∥2 ≤ εprimal and ∥ρ(zk+1 − zk)∥2 ≤ εdual,
where εprimal and εdual are two predefined optimality tolerances. Each sub problem is solved
by using Bayesian optimization. The algorithm is summarized in Alg. 4.
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Algorithm 4 ADMM-Based Contact Point Optimization (ADMM-CP-Opt)
Require: fGPIS, Tpalm(R, tpalm)
1: Compute Chart Ci and get Φi(tpalm) solving equation 7.7
2: for n = 0 to nseed do
3: t′ = tpalm +Φi(tpalm)urand
4: for iter = 0 to maxi ter do

5: Solve qk+1 = BOq

�

fobj(q) +
ρ
2 ∥q− zk + yk

ρ ∥
2

2

�

6: Solve zk+1 = BOz

�

gc(z) +
ρ
2 ∥qk+1 − z+ yk

ρ ∥
2

2

�

7: Update yk+1 = yk +ρ(qk+1 − zk+1)
8: Get ε1 =∥qk+1 − zk+1∥2, ε2 = ∥ρ(zk+1 − zk)∥2
9: if ε1 ≤ εprimal and ε2 ≤ εdual then break

10: end if
11: yk ← yk+1,zk ← zk+1

12: Update BOq, BOz
13: end for
14: end for
15: return qk+1,Tpalm(R, t′)

7.4.3 Integration of HPP-Opt and ADMM-CP-Opt

The HPP-Opt and ADMM-CP-Opt are in detail introduced in the previous section. This section
will integrate both optimizations in one framework and aim to find a near-global optimized
grasp. The integration process is summarized in Alg. 5. Since HPP-Opt does not consider
the hand finger configuration and the grasp is executed relying on the function of AutoGrasp
from Graspit! [108], I executed ADMM-CP-Opt by using the result of HPP-Opt. The final
solution combines the palm pose from HPP-Opt and the hand finger from ADMM-CP-Opt. It
can seem that the ADMM-CP-Opt hat at least the one solution as HPP-Opt.

7.5 Experiment evaluation

Simulation results are introduced in this section to verify the effectiveness of my algorithm.
The experiment is executed in the platform Graspit! [108] by using Barret hand Barret hand
hat three fingers, finger one hat two joints, where the last joint is under-actuated. Finger two
and three have one common joint. Each finger has three joints where both fingers have a
passive joint. Therefore the Barret hand fingers have totaled 4 DOFs. The hand palm pose is
denoted as a 6-dimensional vector. Therefore the whole Barret hand system has totaled 10
DOFs. The experiment’s graspable object is stored in the mesh file, such as one example: mug
The GPIS describes the object by using the mesh triangle verities as the input. My approach
achieves a 95% success rate on various commonly used objects with diverse appearances,
scales, and weights compared to the other algorithm. All evaluations were performed on a
laptop with a 2.600 GHz Intel Core i7-6700HQ and 16.000 GB of RAM.

7.5.1 Experiment on HPP-Opt

In this section, the algorithm HPP-Opt is compared with other grasp planning. The first grasp
planning approach is a simulated annealing grasp planner using an auto grasp quality en-
ergy as a search strategy, which behaves like a random grasp planning. The second approach
uses an EigenGrasp planner combined with a simulated annealing solver to guide potential
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Algorithm 5 Integration of HPP-Opt and ADMM-CP-Opt
Require: ndim, niter
1: Get LHS D0:t−1 =

�

(x0, y0) , . . . , (xt−1, yt−1)
	

2: Fit the Gaussian process Model p (y|x,D0:t−1)
3: Optimized hyper Parameter Rrop
4: for t= 1 to niter do
5: xpalm,t = arg max

x
EI (x|D0:t−1)

6: Find an no collision contact, and get q,xpalm
7: G1=GPISAtlas ( fGPIS, xpalm)
8: {Gbest(xpalm,t ,q), ymax,t}=argmax

G1

fobj(q,xpalm)

9: G2(x′palm,t ,q
′) = Admm-CP-Opt

�

fGPIS,Tpalm(xpalm,t)
�

10: y ′max,t = fobj(q′,x′palm)
11: Add new sample D0:t =

�

D0:t−1, (x′palm,t , y ′max,t)
	

12: update Gaussian process model (GP)
13: end for
14: x+palm = argmax

xi∈x0:t

fobj (xi)

15: return x+palm

Table 7.1: Evaluation of different grasp planning algorithm for all data sets. The results is an average of first 20
best Grasp Candidates. A greater value of epsilon and volume means a more stable grasp. The best result is
highlighted in green

Algorithms

random Alg EigenGrasp HPP-Opt ADMM-CP-Opt

quality qε qvolume qε qvolume qε qvolume qε qvolume

Mug 0 9.5352e-05 1.7281e-04 7.1981e-04 0.0555 0.0097 0.06 0.0161
Flask 0 3.9603e-05 4.9050e-04 2.0142e-04 0.0107 0.0014 0.0107 0.0026
Phone 0 3.9209e-05 0.0017 4.6942e-04 0.0142 0.0035 0.0142 0.0042
Sphere 0.0042 0.0019 0 0.0011 0.0495 0.0121 0.050 0.0279
Bishop 0 8.1935e-05 0.0012 9.7708e-05 0.0094 0.0011 0.0094 0.0016

quality energy. The Bayesian optimization and simulated annealing both are global optimiza-
tion solvers, where the latter one is a probabilistic technique for approximating the global
optimum of a given function. I compare the algorithms with different kinds of shapes. The
experiment is conducted in a fixed time of 20 seconds, and I average the first 20 best grasp
candidates. The best grasp candidate of mug and flask from whole grasp candidates are vi-
sualized in Fig. 7.2. The initial state of Barret hand and object are randomly defined, shown
in Fig. 7.2a and 7.2e. It can be seen that the hand configuration selected by random grasp
planning is skewed to the object, and contact points on the surface are not properly, and the
resulting quality is also worse. The results of EigenGrasp show a better solution where the
palm pose is trying to parallel to the object surface. The palm pose selected by HPP-Opt is
more reasonable in comparison to the other two algorithms. I show the quantitative result
is in table (7.1). In different kinds of geometry shapes, my algorithm can achieve a much
more stable grasp than other algorithms. The epsilon quality achieved by the first approach
is almost zero besides in the case of a sphere. The epsilon quality by Eigen grasps a minimal
value. On average, the epsilon quality of HPP-Opt is 28.5 times greater than Eigen grasp’s ep-
silon quality. And the HPP-Opt’s volume quality is 32.1417 times greater than Eigen Grasp’s
volume quality. Furthermore, I show the best grasp candidate from the first 20 best grasp
candidates in Table 7.2.
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(a) Mug: Initial (b) Random Alg (c) EigenGrasp (d) HPP-Opt

(e) Flask: Initial (f) Random Alg (g) EigenGrasp (h) HPP-Opt

Figure 7.2: Comparison of different Grasp planning Algorithm examples for different objects with the multi-fingered
hand

7.5.2 Experiment of integration HPP-Opt and ADMM-CP-Opt

In section 7.5.1, hand palm pose is optimized based on the Bayesian optimization algorithm
combing with local adaption, and hand finger configuration is set based on the function of
AutoGrasp from Graspit [108]. The principle of AutoGrasp is to close each hand finger DOF at
a rate equal to a predefined speed factor multiple with its default velocity, and the movement
is stopped at the contact point. Therefore ADMM-CP-Opt is used to assist the HPP-Opt to
find a better hand finger configuration. The comparison result is visualized in Fig. 7.3. In
the case (7.3a), fingers two and three are too close and grasp the bottom of the flask. As a
consequence, the resulting triangle has a small internal angle. Applying ADMM-CP-Opt splits
the fingers two and three by maximizing epsilon and volume quality and makes the resulting
triangle closer to the equilateral triangle with a more stable grasp. The same improvement
happen in the Fig. 7.3b - Fig. 7.3f as well. The solution founded by ADMM-CP-Opt is trying to

Table 7.2: The best grasp from 20 grasp candidates. The best result is highlighted in green

Algorithms

random Alg EigenGrasp HPP-opt ADMM-CP-Opt

quality qε qvolume qε qvolume qε qvolume qε qvolume

Mug 0 0.0012 0.0065 0.0011 0.1039 0.0151 0.1158 0.0340
Flask 0 0.0004 0.0130 0.0031 0.0449 0.0018 0.0452 0.0019
Phone 0 0.0004 0.0310 0.0007 0.0208 0.0198 0.0335 0.0006
Sphere 0.0844 0.0301 0 0.0086 0.0914 0.0362 0.1676 0.0728
Bishop 0 0.0012 0.0164 0.0004 0.0390 0.0020 0.0444 0.0045
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make the resulting triangle as closer as the equilateral triangle. In Table 7.1, ADMM-CP-Opt
improves the volume quality of HPP-Opt. And In table 7.2, ADMM-CP-Opt shows a better
grasp than HPP-Opt in most cases under epsilon and volume quality metrics.

(a) (b) (c)

(d) (e) (f)

Figure 7.3: The comparison result of HPP-Opt and ADMM-CP-Opt. In each sub figure, the left one is result of
HPP-Opt, and the right one is improved by using ADMM-CP-Opt

7.6 Conclusion

I propose a new algorithm for grasp planning with multi-fingered hands by optimizing the
hand palm pose and hand finger configuration separately. Using a global Bayesian optimiza-
tion solver, no initial configuration is required, which shows superiority over the convex opti-
mization solver. I propose a dual-stage optimization process by considering the independence
of the hand palm pose and finger configuration. In the first stage, I utilize a GPIS to describe
the graspable object so that collision checking of contact points can be integrated into the
optimization framework. Furthermore, the chart on the object surface can be computed us-
ing the GPIS, which can be used to explore the local information of objects. Two ellipsoids
are used to define the palm pose constraints domain. Relying on the first stage result, I apply
an ADMM based Bayesian optimization to optimize the contact points. The whole process
will switch between HPP-Opt and ADMM-CP-Opt. I collect the best 20 Grasps, and the final
grasp is selected by ranking the grasp candidates under consideration of epsilon and volume
quality. In this work, I describe only the object in GPIS. In future work, I can describe the
hand part into GPIS so that the collision checking can be converted to a problem by querying
the distance between two surfaces. Besides, the robot arm is not considered in the grasping
scenario. It will be interesting to integrate the constraints of robot arm manipulability in the
objective function.



Chapter 8

Point Transformer with Lie Algebra Grasp Repre-
sentation for an End-to-End 6-DOF Grasp Detection

Chapter Summary

With the recent massive progress in the 6-DOF Grasp learning network, grasp selection for
unseens objects attracts a lot of attention. However, most of the existing approaches consist
of a complex sequence pipeline for generating the potential Grasp. I propose an end-to-end
grasp detection network in this work to create a diverse and accurate 6-DOF grasp posture
based on pure point clouds. I adopt the hierarchical PointNet++ with a skip-connection
point transformer encoder block to extract contextual local region point features, called
LiePFormer-GraspNet, that efficiently generates a distribution of 6-DoF parallel-jaw grasps
directly from a pure point cloud. Furthermore, I introduce two different grasp detection loss
functions to enable a continuously differentiable property for the network. These two loss
functions give the neural network the ability to generalize to unseen objects, like generators.
Moreover, I train this GraspNet with the synthesized grasp data set ACRONYM containing 17
million parallel-jaw grasps and generalize well with an actual scanned YCB data set, which
contains 77 objects. Finally, I conducted experiments in the PyBullet simulator. As a result, I
demonstrate that my proposed grasp detection network can outperform most state-of-the-art
approaches regarding the grasp success rate.

113
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Figure 8.1: The visualization of the overall network pipeline. On the left side, one object from ACRONYM [38] is
randomly chosen for training the LiePFormer-GraspNet and outputs diverse grasp configurations and grasp quality
for regressing. A point cloud is taken for generating the grasping posture at the inference phase on the right side.

8.1 Introduction

Grasp detection is an essential task in robotic manipulation, especially in unstructured envi-
ronments such as warehouses or households. Analytical-based grasp approaches can achieve
a high grasp quality when provided with an accurate object model [97]. Nevertheless, it is
still difficult to generalize to unseen objects and most approaches are limited to simulations.
Data-driven approaches, especially machine-learning tools, can complement analytical-based
grasp approaches to significantly reduce the required amount of information of object models.
Most recent work represents a grasped object as an RGB image, so that the convolutional-
based network can be exploited to generate the grasp configurations. These works are clas-
sified as 3/4-DOF (degree of freedom) grasping and constrain the gripper vertically to the
objects (top-down grasp). This type of grasping can dramatically simplify the pick and place
task problem. However, the constraints nature of 3/4-DOF reduces the potential to integrate
motion planning, where motion planning algorithms try to explore all possible directions to
generate a good motion trajectory. This limitation inspired researchers to study a more gen-
eral approach (6-DOF grasp) [92, 110, 124, 137], enabling a grasp in an arbitrary direction.
The proposed approaches in [92, 124] sample the grasp configuration in terms of the region
of interest (ROI) and evaluate each sampled grasp configuration separately. However, the
whole process is time-consuming, as the number of generated grasp configurations increases.
In [110, 111], the variational auto-encoder (VAE) approach with an evaluation network is
introduced for generating diverse grasp configurations. This VAE replaces the heuristic ge-
ometry sampler in [92, 124], which can significantly simplify the generation process. An
evaluation network will further refine the candidate grasp configuration. I classify such ap-
proaches in [110, 111] as a two-stage approach. For further simplifying the grasp detection
algorithm, [62, 117, 137] proposed a one-stage strategy, which directly outputs the grasp
quality and grasp configuration at the same time. The proposed approaches in [117, 137]
consider the grasp detection problem as a one-to-one pose regression, heuristically selecting
the ground truth grasp configurations. The coarse-to-fine approach introduced in [62] takes a
step further by considering the grasp detection as a one-to-multiple pose regression problem
and requires a manual quantization of the grasp orientation for refinement.

In this work, I follow the one-to-one grasp pose regression strategy proposed in [117, 137],
since the quantized orientation refinement is not restricted to the deep learning framework.
I believe there is an infinite number of grasp configurations for an object that can grasp an
object and that the similarity of candidate grasp configuration and ground truth depends
on the distance between two grasp points. Based on this assumption, I propose the grasp
quality loss function, which obeys the Gaussian distribution. Furthermore, most related work
represents the orientation via Euler angles and later converts it to a rotation matrix. This
conversion is shown to be discontinuous. In addition, translation and rotation regression loss
are considered separately from each other. I utilize Lie algebra for representing a transforma-
tion matrix to overcome the discontinuous gradient problem and integrate the rotation and
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translation loss function into one. To generate diverse grasp configurations, I downsample
the point cloud into a predefined number of points and consider each downsampled point
as a grasp point. The grasp configuration is generated in terms of its corresponding grasp
point. My proposed 6-DOF grasp detection algorithm follows the deep learning framework.
It is trained with the synthetic data set ACRONYM [38] and evaluated with the scanned YCB
data set [20], where the data was taken with a commodity depth camera and saved as a
partial point cloud. I do not specify the object category for training. Instead, I utilize the
proposed network for the generalization of unseen objects. I reference the grasp network
as LiePFormer-GraspNet for two reasons. The first one is that I modify the hierarchically
PointNet++ with a stacked skip-connected point transformer encoder as the backbone. Two
separated MLP based networks are then used to predict the grasp quality and grasp config-
uration, respectively. The second reason is that the proposed network can directly output
the Lie algebra vector for representing the grasping posture. I rank the grasp quality at the
inference phase and select the highest grasp quality as the final candidate. Besides, I follow
the concept of GraspIt! [108] by moving the potential grasp configuration in the approach
direction until the gripper contacts the object. The overall structure of the network process
is illustrated in Fig. 8.1.

8.2 Related Work

Grasp selection or grasp estimation is used to estimate the grasp posture in the world coordi-
nate given the input sensor data, where the data can be image or point cloud. I can roughly
categorize the grasp selection approaches into analytical-based and data-driven based. A
common assumption in the analytical based grasp approach [9, 116] is that precise geomet-
ric and physical models of an object are available to the robot. In a large-scale industrial
application, the objects are typically modeled and available in CAD. However, in the un-
known scenario environment, such an assumption cannot be easily met. Moreover, surface
properties or friction parameters are also essential for the analytical-based approaches. Sev-
eral methods have tried to address these problems, such as in [194], where the author used
a particle filter for an estimate of the surface parameter. In previous work [97], the authors
proposed a novel approach with the combination of Gaussian Process implicit surfaces and
Bayesian optimization for computing a grasp configuration, which can exploit the GPIS to
model the object with noise implicitly. However, the approaches mentioned above are still
limited to simulation and also error-prone.

The success of deep learning inspired researchers to exploit neural network structures
for grasp detection. I can roughly categorize the deep learning-based grasp approaches
into 2D planar grasp and 6-DOF grasp. In the 2D planer grasp, the researcher utilized a
five-dimensional vector for presenting robotic grasps posture [63, 87], which are rectan-
gles with a position, orientation and size: (x , y,θ , h, w). In the deep learning framework,
three ways are typically applied for obtaining the oriented rectangle-based grasp configura-
tion: classification-based [87], regression-based [80], and detection-based approaches [141].
However, the 2D planer grasp restricts the grasp in the direction of top-down. The 6-DOF
grasp provides more possibilities to interact with the objects and considers the flexibility of
the robotic manipulator in an environment. Grasp Pose Detection (GPD) proposed in [124]
samples diverse candidate grasps around the region of interest (ROI). The generated grasp
posture is then fed into an adopted CNN, which is classified from the perspective of grasp
score. The PointNetGPD [92] considers the 3D geometry in a different way, which takes the
point cloud directly as input for PointNet to learn a grasp quality network. The geometry-
based grasp sampler is critical for these two approaches. In [110], an adopted variational
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Figure 8.2: The overall structure of LiePFormer-GraspNet. The point cloud is first fed with a PointNet++ for ex-
tracting the point feature. Inside the set abstraction, the feature is provided to a skip-connected point transformers
encoder for learning the semantic feature with the multi-head attention mechanism. The final contextual global
feature will be separated into two MLP networks to learn the Lie algebra-based grasp representation and the
Gaussian distributed-based Grasp quality.

Auto-Encoder (VAE) is proposed to train a grasp sampler for generating diverse sets of grasps
and the gradient of the evaluation network is utilized to refine the generated grasp. Fur-
thermore, an improved version of 6-DOF GraspNet is proposed in [111] by introducing a
learned collision checker conditioned on the gripper information and the raw point cloud
of the scene. Contact-GraspNet introduced in [166] reduces the dimensionality of grasp
representation to 4-DOF for facilitating the learning process. In contrast to the two-stage
approaches, a single-shot strategy is proposed in [137] to regress the grasp configuration by
using PointNet++. With the same concept, PointNet++Grasp is introduced in [117], which
can directly predict the poses, categories, and scores of all the grasps. These two approaches
consider grasp detection as a regression and classification problem, reducing the diversity of
grasp distribution.

8.3 Algorithm

8.3.1 Grasp Problem Formulation

Given the point cloud of an object in Cartesian world coordinates, the purpose of the LiePFormer-
GraspNet is to find a set of possible 6-DOF grasp configurations for picking up the object with
a parallel-jaw gripper from arbitrary direction. I describe the grasp configuration as g = [c,T],
illustrated in Fig. 8.3b. The grasp quality is denoted as c, and the grasp pose is defined as
a transformation matrix. In contrast to most grasp detection networks, which represent the
grasp pose as (x , y, z, rx , ry , rz) ∈ R6, I formulate the grasp transformation matrix using Lie
algebra se(3) ∈ R6. Therefore, the grasp configuration in this work is denoted as g = [c,v]
with v = [tT,ωT]T ∈ R6, which is a 6-dimensional vector of coordinates in the Lie alge-
bra se(3). The se(3) v comprises two separate 3-dimensional vectors: ω determines the rota-
tion and t the translation.

8.3.2 Network Structure Design

Similar to most deep learning-based grasp network structures, I explore PointNet++ as my
main skeleton to extract the point features. To enhance the capability of PointNet++, I mod-
ify its set abstraction structure by integrating a skip-connection point transformer encoder
block [176]. The point transformer encoder [99, 195] is shown to have a strong capability
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to attend to some important features. Furthermore, the point transformer encoder structure
with a skip connection for aggregating the feature can propagate larger gradients to initial
layers. These layers can learn as fast as the final layers, giving us the ability to train deeper
networks. The main benefit of using the hierarchically skip-connection transformer encoder
is to learn an attention map between the point feature after the furthest point sampling [134],
which is originally aggregated only using the max pooling and neglects the geometry rela-
tionship within the features. In addition, the attention mechanism is shown to be invariant
to permutations and is therefore useful to the point cloud application. Furthermore, I follow
the idea from [52], which replaces the self-attention with an offset-attention to enhance the
transformer encoder. The offset-attention originates from Graph convolution networks [18],
which show the benefits of using a Laplacian matrix L = D− E to replace the adjacency ma-
trix E, where D is the diagonal degree matrix. After extracting the network’s main skeleton,
two additional branches are deployed to compute the grasp quality and grasp configuration
separately. These two branches are composed of MLP layers for regression. Here, the grasp
quality in the ground truth is normalized between [0,1]. I use the sigmoid operator instead of
softmax for regression since softmax is suitable for predicting the probability. Finally, the net-
work is fed with a point cloud with the size of R2000×3 and predicts 256 grasp configurations
to make sure the inference fits in the GPU memory.

8.3.3 Grasp Loss Design

I follow the same strategy as [137] to consider the grasp detection as a task of grasp pose
and quality regression. As shown in Fig. 8.2, I simultaneously predict the grasp quality and
grasp configuration with two MLPs.

Gaussian-based Grasp Quality Loss

I formulate the prediction of grasp quality as a regression problem. In [62], the authors
used the focal loss for computing the classification loss by assigning each subsample grasp
point with a predefined score by checking if the grasp point is enclosed by the gripper using
the ground truth grasp posture. In this work, I consider the assignment of grasp quality
from another perspective. The assumption here should be made firstly that a predicted grasp
quality follows the Gaussian distribution. The closer to the assigned ground truth grasp
configuration, the higher the grasp quality. To regress the point-wise 6-DoF grasp pose, I
assume each point q in the point set has its best grasp configuration g, corresponding to the
ground truth. In contrast to most work, which considers the regression unique and fixed, I use
the Gaussian distributed-based grasp quality to enlarge the grasp configuration by allowing
the predicted point to slightly deviate from the ground truth. The point is denoted as grasp
center gt as assumed in most works. Therefore, for each selected point, I use the k-nearest
neighbors (KNN) to find the nearest grasp point inside the ground truth grasp point set, then
I can compute the ground truth grasp quality at this grasp point. It can be formulated in the
following:

c j,g = exp(−||q j − qg ||2
δ2

) (8.1a)

Lscore =
1
|S|
∑

j

||c j,p − c j,g ||2 , (8.1b)

where qj is the selected grasp point, and qg is the corresponding grasp point, which is chosen
by using the KNN. The score c j,g is the computed grasp quality at the grasp point q j, where c j,p
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(a) (b) (c) (d) (e)

Figure 8.3: Visualization of the parallel Franka Emika gripper setting: (a) a simplified parallel gripper (blue line)
with its Franka Emika gripper collision mesh, (b) Franka Emika grasp configuration with respect to the mug, (c) a set
of translation-shifted grasp configurations at different grasp points with respect to the ground truth grasp posture,
(d) a grasp configuration chart defined on the mug with its corresponding Lie algebra map. (e) Visualization of the
refinement process. The generated grasp pose moves in the direction of the gripper approach and stops until the
predefined contact condition is met.

is the predicted grasp quality from the network. The Gaussian distribution quality assignment
simplifies this process, while in most work a predefined parameter is used to assign the grasp
success [110, 111].

Lie Algebra Transformation Loss

The widely used L1 or L2 metrics for computing the distance between Euler angles has been
proven [137] to suffer from discontinuity and ambiguity in deep learning applications. Two
common approaches are typically employed to mitigate the discontinuity for learning a ro-
tation loss. The first one is converting the Euler angle into a rotation matrix and using the
Frobenius distance for obtaining the loss such as ||I3×3 − RTR||F . Another approach utilizes
normalized quaternions for presenting a rotation matrix. Both expressions are still discon-
tinuous. The rotation expression in [137] introduces a 6D representation of the 3D rotation
matrix to remedy the problem of discontinuity, which however increase the complexity. Im-
portantly, all approaches mentioned above consider rotation and translation separately. For
normal rotation classification, the separation can simplify the loss function. However, in grasp
planning, the rotation matrix and translation vector should be coupled. Therefore, I use Lie
algebra for overcoming the discontinuity and ambiguity issue. I consider the grasped object
to be composed of a set of charts and I define each grasp configuration at one chart, illus-
trated in Fig. 8.3d. Based on the manifold theory, or more specifically Lie group theory, SE(3)
is a continuous group. Furthermore, SE(3) is a differentiable manifold. SE(3)-TrackNet [179]
can be referred to for additional details regarding the benefits of using Lie algebra to train a
SE(3) neural network.

As shown in Section 8.3.1, I use Lie algebra se(3) for representing a transformation matrix
with v= [tT,ωT]T ∈R6. According to the Lie algebra theory [10, 156], the exponential map,
which maps elements from the algebra to the manifold and determines the local structure

of the manifold, is used to express the transformation matrix as ev =

�

eω
∧
, Vt

0, 1

�

, where ω∧

is the skew-symmetric matrix of ω, eω
∧

is defined as I + sinθ
θ ω

∧ + 1−cosθ
θ2 (ω∧)2, and V =

I3×3+
1−cosθ
θ2 (ω∧)+ θ−sinθ

θ3 (ω∧)2. The scale value θ is the norm ofω. It can be shown that using
the exponential map, I can easily convert the 6-dimensional vector coordinate to SE(3). In the
same way, I can convert SE(3) to se(3) using the logarithm map with ω = (Log(R))∨ and t =
V−1trans. The operator (∨) converts a skew-symmetric matrix to a vector, which is reciprocal
to the operator (∧). In this work, the proposed network produces a Lie algebra se(3) value
for each selected grasp point, denoted as v j,se(3). Using the same strategy introduced in
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(a) (b) (c) (d)

Figure 8.4: Visualization of results from the network after collision checking. The blue lines are the grasp config-
urations generated by the LiePFormer-GraspNet. The meshes are some examples from the YCB data set.

Section 8.3.3, I can obtain the corresponding ground truth grasp configuration, indicated
as T j,g . In addition, I add the translation q j − qg to T j,g , indicated as T j,g ′ (Fig. 8.3c).

The logarithm map and group operation are employed to define the geodesic distance as
Euclidean norm by

p (M1, M2) =


log
�

M−1
1 M2

�

 (8.2)

where Mi ∈ Lie group, defined on a differentiable manifold. The sum of the squared geodesic
distance, is given as

L =
N
∑

i=1

ρ2 (β ( fi) , Mi) (8.3)

The regression function β : Rd 7−→ G estimates the element M on the matrix Lie group G for
a given d−dimensional feature vector f as M = β( f ).

The Baker-Campbell-Hausdorff (BCH) [144] formula formulate the logarithmlog
�

eM1 eM2
�

as a Lie algebra element using only Lie bracket for noncommutative Lie groups. A first order
approximation to the BCH [133] is

log
�

eM1 eM2
�

=M1 +M2 +
1
2
[M1,M2] +O

�

M2
1,M2

2

�

(8.4)

where M1 and M2 are m1 = log (M1) and m2 = log (M2), respectively. The geodesic distance
can be approximated by

ρ (M1, M2) =


log
�

M−1
1 M2

�

=


log
�

e−m1 em2
�



=


m2 −m1 + 0.5 [−m1, m2] +O
�

m2
1, m2

2

�



≈ ∥m2 −m1∥
(8.5)

Therefore, the sum of squared geodesic distance can be approximated as

Lse(3) ≈
N
∑

i=1

∥log (Mi)− log (β ( fi))∥2

=
1
|S|

j
∑

0



v j,se(3) − log(T j,g ′)




2

(8.6)

It can be easily proven that if v j,se(3) is equal to log(T j,g ′), the predicted grasp configuration is
aligned to ground truth. The approximation is sufficient for regression as long as the training
samples lie in a small neighborhood of the identify.

Grasp planning Loss

Finally, I combine the grasp quality and transformation loss to form a grasp loss with weight-
ing coefficients as

Ltotal = w1 Lscore +w2 Lse(3) . (8.7)
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Figure 8.5: PyBullet simulation platform for grasping the objects. The process consists of two steps: in the first
step, a grasp configuration at the palm with respect to the point cloud is generated by LiePFormer-GraspNet.
Then, the end effector of a robotic manipulator is aligned to the palm pose of the grasp configuration. An inverse
kinematics solver is applied for computing the joint configuration. In the end, a point to point motion is executed
for grasping the object.

8.3.4 Grasp Configuration Selection and Refinement

LiePFormer-GraspNet will generate various grasp configurations at the inference phase by
feeding a point cloud, which can be obtained via a sensor.I first need to prune all infeasible
grasps by collision checking [122].Since a higher grasp quality shows a more reliable grasp
for the object, I arrange the grasp quality in descent order and select the grasp configuration
with the highest grasp quality. My grasp configuration is agnostic to the used parallel gripper.
Therefore, at the inference phase, I need to adapt the grasp configuration with respect to the
chosen gripper setting. In this work, I use the Franka Emika Panda gripper to evaluate the
grasp. The blue gripper in Fig. 8.3a shows the simplified version, while the gray gripper shows
the collision mesh. As shown in [38], the predicted grasp configuration is denoted as the pre-
grasp, which might lead to a stable grasp when closing the finger. Therefore, I can further
refine the grasp configuration based on that pre-grasp by approaching the gripper in the
direction of the approach direction. The grasp approach direction is defined in the direction
along the gripper handle, as shown in Fig. 8.3e. The approaching process is terminated when
the gripper is in contact with the object. More details about this approach strategy can be
found in the Graspit! platform [108].

8.4 Experimental Results

8.4.1 Experimental Settings
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Table 8.1: Results (in %) of a single object grasping experiment. Success is defined as at least one feasible grasp
configuration for each object. My LiePFormer-GraspNet can outperform other state-of-the-art approaches.

Method Avg. tomato soup can pudding box potted meat can orange plum scissors e-cups

GPD [124] 86.3 81.6 92.9 78.8 74.8 92.6 97.7 85.8
PointNetGPD [92] 86.0 75.0 94.1 68.6 80.1 94.3 98.4 90.8
LiePFormer-GraspNet (Ours) 94.8 90.0 100.0 96.3 92.3 98.0 100.0 96.8

Table 8.2: Ablation study of skip-connection transformer encoder in LiePFormer-GraspNet (in %).

Method Avg. tomato soup can pudding box potted meat can orange plum scissors e-cups

LiePFormer-GraspNet (without transformer) 92.7 85.3 100.0 92.3 85.3 93.0 100.0 92.8
LiePFormer-GraspNet 94.8 90.0 100.0 96.3 92.3 98.0 100.0 96.8

Grasping Data Set

I use the large-scale grasp data set ACRONYM [38, 166] for training and evaluate it with
the YCB data set [20]. ACRONYM is a grasp data set for robot grasp planning based on the
physics simulation FleX, which contains 17.7M parallel-jaw grasps, spanning 8872 objects
from 262 different categories, each labeled with the grasp result obtained from a physics
simulator. The objects from the ACRONYM data set [38] are from ShapeNetSem [153], with
the assumption of uniform density and identical friction. I extend the ACRONYM data set by
assigning each grasp configuration with a deterministic grasp point. Unlike most state-of-the-
art approaches, that train and evaluate the network with the same data set, I use the YCB data
set for evaluation. The YCB data set includes objects from daily life, with different shapes,
sizes, textures, weights, and rigidities. YCB data set aims at evaluating the generalization of
proposed grasp detection network.

Grasping Tasks

The experimental environment is set up inside the PyBullet [27], which contains a Franka
Emika robotic manipulator, a Franka Emika parallel gripper, a table, the objects to grasp,
and one depth camera. I randomly place a single YCB object on the table by considering the
reachability of the robotic manipulator. A depth camera is applied to extract the point cloud
for the application using the projection and view matrices. I perform the experiments in two
steps. In the first step, I infer the grasp configuration by feeding the point cloud and then
apply inverse kinematics to get the joint values for the robotic manipulator. I close the fingers
to grasp the object finally.

Baselines

I compare my approaches against two open-sourced baselines: GPD [124] and PointNet-
GPD [92]. GPD uses a geometry sampler to sample many grasp candidates and then uses
an adapted CAN to evaluate the grasp configuration in terms of grasp score. PointNetGPD
replaces the geometry sampler with PointNet++ to learn a grasp quality network. In this
work, I follow the default network settings from the original papers.

8.4.2 Quantitative Results

I demonstrate the results for generating the grasp configurations in terms of success rate in
Table 8.1, where the success rate is the percentage of successful grasps for grasping a single
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Figure 8.6: The overview of point cloud completion-based grasp planning.

object. The experiment is conducted by randomly translating each object and rotating in the
z orientation. The objects vary from big components (pudding box) to small objects (plum).
I trained my network with the ACRONYM data set, evaluated it with the whole YCB data set,
and summarized part of the results in Table 8.1. From the results, I can conclude that my
approach can be generalized to an unseen object, which is not contained in the ACRONYM.

8.4.3 Qualitative Results

In this section, I demonstrate the results generated from my proposed LiePFormer-GraspNet.
The results are qualitatively illustrated in Fig. 8.4. LiePFormer-GraspNet will first generate
256 grasp configurations and their grasp qualities, where the number of 256 is a hyperpa-
rameter, which can be changed in terms of the GPU memory. Then, the generated grasps
will be pruned via collision checking. By the grasp refinement phase, the object is assumed
to be placed on a table. The grasp configurations are selected based on their grasp qual-
ity and their collision-free property. Furthermore, I demonstrate the results in a PyBullet
environment (Fig. 8.5) with different initial robot joint configurations. The execution of a
grasp configuration is composed of two steps: in the first step, I select the collision-free grasp
configuration with the highest graps quality from my LiePFormer-GraspNet. Then, an in-
verse kinematics solver is applied for getting the joint configuration. From the qualitative
results (Fig.8.4 and 8.5), I can conclude that my proposed LiePFormer-GraspNet can gener-
ate diverse grasp configurations for satisfying the various grasp initial configurations, which
enables the application of motion planning.

8.4.4 Ablation Study

The skip-connection point transformer encoder block is integrated into the PointNet++ struc-
ture for extracting more attractive features for grasping. This section wants to study the effect
of the transformer encoder block by using pure PointNet++ as the main skeleton. I compare
the results in Table 8.2. The results show that the introduced modification of PointNet++
can help the LiePFormer-GraspNet better regress performance by extracting more valuable
features.
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8.4.5 Proposed future work

In this work, I assumed I obtain the full view of point cloud object representations, which,
however, have only partial point cloud representation due to the single camera in the reality.
In my previous work, I proposed a point transformer-based point cloud completion neural
work [99], which aims at completing the partial point cloud. Incorporating the point cloud
completion neural network and my proposed grasping network will be more attractive and
enable more practical applications.

8.5 Conclusion

This work proposes a new grasp detection neural network based on PointNet++ with a
hierarchically skip-connection transformer encoder. Two different grasp loss functions, a
Gaussian distribution-based quality score loss and a grasp Transform Loss in terms of Lie
algebra, are introduced for remedying the discontinuity problem due to rotation loss in form
of Euler angles and quality score loss in form of an indicator function. My network is trained
with the synthetic data set ACRONYM [38] and also works well in the real-world YCB data
set. Furthermore, the experimental results show that my framework can detect diverse grasps
with a higher converge on the ground truth grasps and that it can generalize to unknown
objects, as the YCB data set [20] is different from ACRONYM [38].
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Chapter 9

Conclusions and Future Work

Until now, most factories are not yet geared to respond quickly to change, adapt promptly
to production demands and customer needs, or to quality problems that arise since robotics
in the factory are mainly manually configured, calibrated, and managed. Moreover, it re-
quires a great deal of expertise, which significantly limits reproducibility and scale. Besides,
the classic methods of instructing robotic programming in the teach-in method are no longer
flexible and approaching their limits when facing a complex requirement. Hence, I can con-
clude that implementing flexible manufacturing established on existing factory infrastructure
is costly and time-consuming. An intelligent robotic system, which includes new program-
ming paradigms with advanced machine learning technology and integrates sensor devices to
handle new object classes, is an alternative to enable smart and flexible manufacturing. This
system directly contrasts the status quo manufacturing has endured for the past 30 years.
Furthermore, the rapid advances in artificial intelligence allow virtually mapping plants, pro-
cesses, and products into a digital twin environment for better quality control. The primary
intention of the intelligent robotic system is not to replace human workers. Instead, by rea-
sonably distributing the work of humans and robots, the burden of human workers can be
reduced, and unnecessary injuries can be avoided, especially in the human-robot interaction
scenario. The whole article focuses on the theme that is how to make robots intelligent,
flexible, and practical to adapt to the high-speed changing demand production environment.
In this work, I proposed my first step toward the goal to build the intelligent robotic system
from the perspective of vision, trajectory planning, and grasp planning. However, several
concepts still need to be investigated in greater depth, and many extensions to this work are
possible.

The off-the-shelf motion planning algorithm generates a collision-free path that avoids the
manually hand-crafted waypoints in the joint space. The path is presented in the form of po-
sition without assigning the time of law. Kinodynamic planning improves the pure geometry
motion planning by considering the kinematic constraints. However, this approach is proven
to be an NP-hard problem and is limited to the velocity constraint. Therefore, I focus on my
first effort on trajectory planning to create a smooth trajectory for multiple waypoints. My
solution is based on a nonlinear-constraints optimization framework by connecting every two
waypoints using the trapezoidal acceleration profile considering kinematic constraints. One
key observation is that the standard trajectory module offered by the robotic manufacturer
mainly considers the acceleration constraints and uses the spline-based or polynomial-based
approach to interpolate or approximate trajectory. I have proposed a passing-through trajec-
tory algorithm that presents several advantages over the state-of-art. Firstly, it supports the
jerk constraint. Secondly, it performs better over the most state of the art approach in the
straight-line criteria. I have evaluated the proposed algorithm on several examples to prove
the importance of those features. I developed an extension version by blending the waypoints
to avoid overshooting. The new algorithm exhibits better straight-line performance. The
complexity of optimizing trapezoidal acceleration-based trajectory grows exponentially with
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increasing geometrical waypoints. I innovatively introduced the model predictive control-
based optimization strategy by iteratively optimizing the subproblems. Each subproblem is
initialized with the previous optimization step to reduce the complexity. As a consequence,
the complexity linearly depends on the number of waypoints.

I revisited classic computer vision topics such as object detection, pose estimation, and
shape completion and developed my algorithms to complement the state-of-the-art algo-
rithms. In the field of pose estimation, the iterative closest point (ICP) algorithm is among
the most famous and commonly used algorithms. The corresponding point search and initial-
izing step are the primary factors affecting the performance, which causes the optimization
to easily be stuck into the local point, even worse, stuck in the saddle point. In this work, I
proposed to describe the object with the Gaussian Process Implicit Surface (GPIS). Therefore
the pose estimation problem can be converted to the function fitting problem. To the best of
my knowledge, this is the first work using the GPIS to solve the pose estimation problem. The
GPIS function exploits the properties of the signed distance function to build three different
manifolds layers, which avoids the corresponding search step and assumes that the points on
the same object share the same function value. In the end, the pose estimation problem is fi-
nally reformulated as a manifold optimization problem. Through several experiments, I show
that compared to a standard ICP based approach, my GPIS based pose estimation approach
achieves comparable accuracy with significantly fewer optimization steps and exhibits rota-
tion and translation invariant properties. The object classification problem is also addressed
in this work. Due to the inherent problem of point cloud-based deep learning, the rotation
invariant property can only be partially satisfied by means of vast amounts of data, which is
not applicable in reality. The Fourier transform function decomposes functions depending on
space or time into functions depending on spatial or temporal frequency. In a similar vein,
each function defined on a sphere’s surface can be reformulated as a sum of these spherical
harmonics. This work proposed a new object descriptor by representing the point cloud object
into the spherical harmonic energy function, which is proved to share the rotation invariant
property. Furthermore, I introduced a point graph inter-geometry descriptor to strengthen
the proposed spherical harmonic energy descriptor. In contrast to the most spherical har-
monic neural network, which introduces additional operators to improve performance, my
proposed descriptor is intuitive and straightforwardly applied in the existing network without
further modification. The effectiveness of the presented object rotation-invariant descriptor
has been validated via several experiments. The shape completion is the last computer vi-
sion topic addressed in this work, which attempts at completing the partial view of the point
cloud due to the limited angle view. I view the shape completion problem from a different
and uncommon perspective. Like the pose estimation algorithm, I assume each object has
its corresponding manifold. I developed a PCTMA-Net in which a transformer-based neural
network is be exploited to extract a high-dimensional feature of the partial point cloud. From
another dimension, the extracted feature will be remapped to the manifold for reconstructing
the full view of the point cloud. The PCTMA-Net can be further applied to grasp planning for
widening solution space.

Grasp planning is a critical ingredient in the framework of the intelligent robotic system.
I proposed two algorithms to enable proper grasping when facing an unknown object. In
the first approach, the incorporation of Bayesian optimization (BO) and alternating direction
method of multipliers (ADMM) has been used for figuring out the 6D grasp configuration,
where I use the Gaussian Process Implicit Surface (GPIS) to represent the grasped object.
The object can be extracted from the real world using the 3D sensor or sampled from the
CAD model, which is the standard data format in the industry. Furthermore, I separate the
optimization of hand palm posture and grasp contact point based on the observation that the
optimization of palm posture is independent of the contact point. Therefore, I can update the
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palm pose and contact point using the BO-ADMM solver in an iterative fashion. An end-to-
end transformer-based neural network is proposed in the second algorithm to predict the 6D
grasp planning by directly feeding with the raw point cloud. I evaluate these two algorithms
with several experiments and demonstrate their effectiveness and efficiency.

The algorithms I presented in this thesis are the first step towards the goal of intelligent
robotic systems. There are still several extensions that can be further investigated for future
work. I firmly believe that my work is helpful in many robotic and computer vision applica-
tions and will bring some inspiration to this field. In the following subsection, some ideas of
the direction for future work will be discussed.

9.1 Online trajectory adaption

I have presented two algorithms targeting generating a smooth trajectory that passes through
or blends around the waypoints. It is sufficient for the industry application for repetitive
work. In the future, the online trajectory adaption with the trapezoidal acceleration profile
should be further investigated, especially in the human-robot interaction scenario. I have
made slight progress in the work [98] by incorporating a high-dimensional polynomial func-
tion and seven-segment profile. It has already significantly reduced time expenditure for
optimizing a smooth trajectory. However, it is still not sufficient for the real-time application.

9.2 Reducing the complexity of GPIS based pose estimation

The work I presented about the pose estimation with the Gaussian Process Implicit Surface
function is an innovative work by replacing the corresponding point search step, which sig-
nificantly enhances the optimization efficiency. However, the complexity of GPIS is known
as O(N3), where N is the number of point clouds. Updating a covariance matrix is a signif-
icant factor that affects performance. There have already been some works that address the
problem by using the sparse data set and reached substantial progress. However, the dataset
used in those works typically exhibits no geometry meaning. A further adaption is required
for remaining the geometry details.

9.3 Object classification in a more general scenes

I have presented my approach for object detection from point cloud data considering the
rotation invariant feature. However, my focus has been on using a single object for object
detection, and the spherical harmonic energy function and the point graph inter-geometry
descriptor can not be easily directly applied to a scene that may contain multiple objects.
A two-stage pipeline incorporating a scene segmentation neural network can be helpful to
extend my proposed algorithms to a more general application scenario.

9.4 Combined partial point cloud completion and grasp planning

The point cloud completion neural network presented in this thesis has succeeded in real-
izing this work’s primary goal. The secondary purpose of this neural network is to improve
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grasp planning. One way is to directly utilize the reconstructed full point cloud to predict a
better grasp configuration. Another direction of future work in this area is to decompose the
object into a series of primitive shapes, simplifying the grasp planning searching space and
significantly increasing efficiency. Moreover, integrating the primitive shape constrain solver
in the grasp planning pipeline explains the predicted grasp configuration.
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Appendix A

Appendix

In this appendix, I give a brief review of some basic concepts from optimization and linear
algebra. The treatment is by no means complete and is mainly meant to set out my notation.

A.1 Norms

The standard inner product for two vectors (x,y) ∈ Rn is defined as

< x,y>= xTy=
n
∑

i

x i yi (A.1)

For a vector x ∈ Rn, the following norm is used

∥x∥1
def
=

n
∑

i=1

|x i| (A.2a)

∥x∥2
def
=

� n
∑

i=1

x2
i

�1/2

=
�

xTx
�1/2

(A.2b)

∥x∥∞ def
= max

i=1,...,n
|x i| (A.2c)

The operator ∥·∥2 is also denoted as Euclidean norm or L2 norm, and I refer ∥·∥1 as L1 norm,
and ∥ · ∥∞ as L∞ norm. Similarly, the matrix norm A is defined as

∥A∥1 = max
j=1,...,n

m
∑

i=1

�

�Ai j

�

� (A.3a)

∥A∥2 =
Æ

λmax (ATA) (A.3b)

∥A∥∞ = max
i=1,...,m

n
∑

j=1

�

�Ai j

�

� (A.3c)

The Frobenius norm of A has the following formal:

∥A∥F =

√

√

√

√

m
∑

i=1

n
∑

j=1

�

�Ai j

�

�

2
=
Æ

trace (A∗A) =

√

√

√

√

min{m,n}
∑

i=1

σ2
i (A) (A.4)

where σi(A) are the singular values of A, and the trace of a n×n matrix Ã= A∗A is formulated
as

trace(Ã) =
n
∑

i

Ãii =
n
∑

i

λi (A.5)
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where λi is the eigenvalue of the matrix Ã. Furthermore, condition number of square non-
singular matrix Ã is defined by

cond(Ã) = ∥Ã∥∥Ã∥−1 (A.6)

The condition number measures the ratio of the maximum relative stretching to the max-
imum relative shrinking that the matrix does to any non-zero vectors. Therefore, cond(Ã)
is ∞ indicating a singular matrix. A low condition number of a problem is said to be well-
conditioned. In contrast, I say the problem is ill-conditioned.

A.2 Optimization in a Nutshell

Optimization may be regarded as the cornerstone of many areas of applied mathematics,
computer science, engineering, and a number of other scientific disciplines. Mathematical
optimization or mathematical programming is selecting the best element, concerning some
criterion, from some set of available alternatives. Optimization modeling is a methodology
to define an objective function together with the constraints for a given problem. An opti-
mization problem calculates an objective function’s extrema (maxima, minima, or stationary
points) over a set of unknown real variables. It is conditional to the satisfaction of a system
of equalities and inequalities, collectively termed constraints

• An objective function is a quantitative measure of the system’s performance to minimize
or maximize. For instance, the time-optimal or the minimal deviation of straight-line
trajectory is the goal in the trajectory generation, whereas in fitting experimental data
to a model such as a pose estimation or deep learning, I may want to reduce the total
deviation of the observed data from the predicted data.

• The variables are the main components of the system. In trajectory generation, the
variables may be the kinematic variables or trajectory traveling time, whereas, in the
application of data science, the variables would be the model’s parameters.

• The constraints are the functions that describe the relationships among the variables
and define the allowable values for the variables. In trajectory generation, for example,
the kinematic limitations cannot exceed.

The optimization problem can be mathematically formulated in the following as:

min
x∈Rn

f(x) (A.7a)

s.t hi(x) = 0, i = 1 . . . , m (A.7b)

g j(x)≤ 0, j = 1 . . . p (A.7c)

where x is the unknown variable, and f(x) is the objective function. The scalar function gi(x)
and h j(x) is the equality, and inequality constraint function, respectively. The unconstrained
optimization problem is a special case of (A.7) where m = p = 0. Furthermore, the opti-
mization can be categorized as linear or nonlinear dependent on the linearity of the objective
function and constraint function. There are many different ways to classify optimization
problems. The nonlinear problem can be further divided into the convex and non-convex
in terms of convexity property, where the concept of convexity is fundamental in the most
practical applications. The function is denoted as a convex function if the following condition
is satisfied

f(αx + (1−α)y)≤ α f(x) + (1−α) f(y), for all α ∈ [0,1] (A.8)
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where x , y are two arbitrary points in the convex set S. A problem posses the convex prop-
erty (A.8) can facilitate the optimization step in the theory and practice. Besides, the found
local optimal solution is, in fact, also a global solution. However, the global solution in most
cases is far tricky, and the analytical methods are typically not applicable. The numerical
approaches can lead to a non-global solution or local solution. The main principle in the
optimization algorithm is to determine how to move from the current iterate to the next for
improving the performance in term of the direction and moving step length, which derives
many different algorithms, such as line search, trust region. I can briefly formulate the line
search algorithm in the following (A.9)

min
α>0

f(xk +αpk) (A.9a)

xk+1 = xk +αpk (A.9b)

where α indicates the step length in the moving descent direction pk. At each new point, a
new search direction and step length are computed, and the process is repeated. In contrast
to the line search algorithm, the trust region approximates the original objective function by
constructing a quadratic function within a region

min
p

mk(xk + p), s.t.∥p∥2 <Ík (A.10a)

mk (xk + p) = fk+pT∇ fk+
1
2

pT Bkp (A.10b)

where Ík is the trust region radius, and ∇ fk is the gradient at current point, and Bk is the
corresponding hessian matrix or its approximation matrix. The idea behind the trust-region
algorithm is to find a proper region radius Ík so that the candidate solution produces a
sufficient decrease in f. Otherwise, the radius should be shrunk.

A.2.1 Sequential Quadratic Programming

Most of the problems involved in this thesis are nonlinear and constraints. Sequential quadratic
programming (SQP) is one of the most effective methods for nonlinearly constrained opti-
mization. Literally, SQP is an optimization algorithm, which decomposes a problem into a
sequence of optimization subproblems, and each subproblem is approximated as a quadratic
model around the current iterate. Furthermore, the SQP can be integrated into the line search
or trust region framework. Therefore, the main challenge is to formulate the quadratic sub-
problem to yield a good step for the nonlinear optimization problem. I can rewrite the (A.7)
with the Lagrangian equation:

L(x ,λ,σ) = f(x) +
p
∑

j

λ j h j(x) +
m
∑

i

σi gi(x) (A.11)

where λ ∈ Rp and σ ∈ Rm are Lagrange multipliers. The first order necessary optimality or
Karush-Kuhn-Tucker (KKT) [79] conditions requires the following condition

∇L (x∗,λ∗,σ∗) =∇ f (x∗) +∇h (x∗)λ∗ +∇g (x∗)σ∗ = 0 (A.12)

The challenge of the SQP is to construct a quadratic programming subproblems at each iterate
xk. An appropriate search direction pk = x−xk is worked as a solution to this QP subprogram.
I decompose the construction process into two ways. Firstly, an approximation around the
objective function f with the Taylor series is executed:

f(x) = f(xk) +∇ f(x− xk) +
1
2
(x− xk)

T∇2
x x f(x− xk) (A.13)
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and the constraint functions g and h by their local affine approximations:

g(x) = g(xk) +∇g(x− xk) (A.14a)

h(x) = h(xk) +∇h(x− xk) (A.14b)

Therefore the QP subprograms can be formulated as

min
p

f(xk) +∇ fT pk +
1
2

pT
k∇x x fpk (A.15a)

s.t. g(xk) +∇gT pk ≤ 0 (A.15b)

h(xk) +∇hT pk = 0 (A.15c)

The formulation in (A.15) does not consider the KKT conditions or Newton-KKT condition.
An alternative approach is to replace the Hessian matrix of objective function with the Hes-
sian matrix of Lagrangian equation [118], and it results in the following formulation:

min
p

mk = f (xk) +∇ f (xk)
T p+

1
2

pT∇2
x xL (xk,λk,σk)p (A.16a)

s.t. gi (xk) +∇gi (xk)
T p≤ 0 (A.16b)

h j (xk) +∇h j (xk)
T p= 0 (A.16c)

The candidate at the iterate xk is given by xk+1. The construction is repeated until the algo-
rithm converges to a local minimum x⋆. As mentioned before, the SQP can be incorporated
into the line search or trust-region framework by adding additional constraints in the sub-
program, such as ∥pk∥2 ≤Ík. There exist several challenges in the QP subproblem, such as
the convexity of the mk and the complexity of computing the Hessian matrix ∇2

x xL. If the
Hessian matrix ∇2

x xL is positive semi-definite, I can conclude that the (A.16) is a convex
QP problem, which shares a similar complexity as the linear programming. In contrast, if
the ∇2

x xL is an indefinite matrix, it leads to a nonconvex QP problem, which has several
stationary points and local minima. The more detailed algorithm refers to [118].

A.2.2 Bayesian Optimization

The approximation for an objective function with the Taylor series can be challenge in some
applications, such as data fitting, since the objective functions in those cases are either de-
scribed as a black box model or too expensive to evaluate. Besides, the convex optimization-
based approach can only converge to a local minimum. Finding a global solution for a non-
convex function is still a challenging problem. In the last decades, many researchers have
proposed several heuristic approaches to find a better local minimum, such as multiple start-
ing points. However, they can not be guaranteed to share the same performance in all cases.
To further mitigate the problem, the concept of global optimization concerning a specific ap-
plication area is introduced that attempts to find the global minima or maxima of a function
or a set of functions on a given set. The global optimization approach using the random vari-
ables, denoted as stochastic optimitzation (SO), has attracted a lot of attention in the past
years, which is broadly used in data-driven-based applications, such as Simulated anneal-
ing (SA) [73], Evolutionary algorithm (EA) [192], Particle swarm optimization (PSO) [70].
Bayesian optimization (BO) [45, 82, 160]. In this thesis, I use Bayesian optimization to find
out grasp configurations. Therefore, I will briefly introduce this technology in this section.

Bayesian Optimization, abbreviated as (BO), is a machine learning based approach by
employing the concept of Bayer theory and Gaussian process regression, and focusing on the
following problem

max
x∈A

f(x) (A.17)
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Algorithm 6 Structure of Bayesian Optimization
Require: ndim, niter
Ensure: fobj,min(x+)
1: Get LHS D0:t−1 = {(x0, y0) , . . . , (xt−1, yt−1)}
2: Fit the Gaussian process Model p (y|x,D0:t−1)
3: Optimized hyper Parameter
4: for t= 1 to niter do
5: xt = argmaxx EI (x|D0:t−1)
6: Observe a sample yt = fobj(xt) + εt
7: Add the new sample D0:t = {D0:t−1, (xt , yt)}
8: update Gaussian process model
9: end for

10: x+ = argmaxxi∈x0:t
fobj (xi)

11: return x+

where A is described as the feasible set, and f(x) is the objective function, which could be
"expensive to evaluate" or lack the known special structures, i.e., the convexity and linearity.
Besides, It is best-suited for the Bayesian Optimization in the case that obtaining the first and
second derivative of f(x) is not possible. Therefore, a surrogate for the objective function is
used to approximate the behaviors in the local region. In comparison to the trust region ap-
proach, which limits the region radius and approximates the objective function with its first
and second derivative, the surrogate function in the BO uses the Gaussian process regression
function [139] to realize this purpose. The ability to optimize the derivative-free functions
makes the BO extremely attractive. The naive structure of Bayesian Optimization is to be
described in Alg 6. The BO is mainly built on three components: Sampling, Gaussian Pro-
cess (GP) Regression, and acquisition function (EI). The sampling strategy is firstly used to
explore the feasible set. Whereas the easiest way is to employ a random sample or grid-based
sample. Then the Gaussian Process regression function utilizes these samples with their cor-
responding scores to approximate the objective function and acts as the surrogate function.
In the next, The probabilistic information that resides in the model from the acquisition func-
tion can be used to determine which sample is the next worthing evaluating. The acquisition
function has a much different representation includes the probability of improvement, ex-
pected improvement, upper confidence bounds (UCB), Knowledge Gradient, Entropy Search,
and Predictive Entropy Search [160]. Maximizing a well-behaved acquisition function can be
solved with a numerical optimization technique, such as Newton’s Method or quasi-Newton
methods. Therefore, the whole Bayesian optimization is described as solving the maximum
problem of the acquisition function in an iterative fashion. In summary, Bayesian optimiza-
tion provides a probabilistically principled tool to achieve a global solution. However, the
approach mentioned above does not consider any additional constraints. Similar to the stan-
dard nonlinear programming approach, the augmented Lagrange multiplier [46, 129] can
also be integrated into the Bayesian optimization framework for considering the equality and
inequality constraints. The Bayesian optimization with the constraints is still a challenging
problem. The corporate with ADMM [3, 97] in BO attracts a lot of attention in the machine
learning application. In my work [97], I attempt to incorporate BO and ADMM for figuring
the grasp configuration under consideration of the constraints.

A.2.3 The Optimization Algorithm in the Deep Learning Framework

In recent years, the optimization algorithm in machine learning, especially in the deep learn-
ing, achieved a considerable process. The optimization algorithm in deep learning allows
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a complex model to continuously update its parameters and minimize the loss function as
it evaluates on the training dataset. Similar to the approaches mentioned earlier, an ob-
jective function for a particular task needs to be designed, and an optimization algorithm
attempts to minimize the loss. It is known that almost all the model within the deep learning
framework is nonconvex, and no analytical solution is available. There are many challenges
in deep learning algorithms, such as the local minima, saddles point, and vanishing gradi-
ents. Among these challenges, the problem of vanishing gradients is the most insidious to
encounter, which causes optimization to stall. In the reminder of this section, I will briefly
introduce some advanced optimization technology within the deep learning framework.

The gradient descent (GD) based approach is fundamental for the all optimization ap-
proach to update the model’s parameters. In generally, The batch gradient optimization (BGD)
can be formally described as

f(x) =
1
n

n
∑

i=1

fi(x) (A.18)

where x is denoted as the parameters in the model, the parameter n is the number of sample
contained in a train dataset. The equation (A.18) is the averages of the loss functions for
each example in the training dataset. Therefore the gradient of (A.18) can be straightforward
derived as

∇ f(x) =
1
n

n
∑

i=1

∇ fi(x) (A.19)

The computational complexity in (A.19) is growing linearly depending on the number of a
set O(n). It is well known that deep learning models crave for data, therefore, the number of n
is typically a hug value. The concept of stochastic gradient descent approach (SGD) is used
to improve the computational efficiency. The stochastic usage in the SGD embodies that it
reduces the computational cost at each iteration by randomly sampling an index in [1, . . . , n]
instead of using the whole gradient at once. Therefore the step update is reformulated as

x← x−η∇ fi(x) (A.20)

where η is the learning rate. As a result of SGD, the computational cost is reduced to O(1).
The stochastic nature of gradient introduces much more noise than the average gradient
descent algorithm. The uncertainty is affected by the instantaneous gradient η∇ fi(x) even
though the minimum almost arrives. The performance can be improved by introducing the
concept of Mini-Batch Gradient Descent, which is an balance between the batch gradient
decent and stochastic gradient decent. The mini-batch gradient descent splits the training
dataset into multiple small batches where each batch has a size of B, and update the model’s
parameter with

∇ fB(x) =
1
B

B
∑

i=1

∇ fi(x) (A.21a)

x← x−η∇ fB(x) (A.21b)

The mini-batch gradient descent can facilitate the computation using the vectorized imple-
mentation.

The gradient-based approach highly depends on the gradient value, which shares signif-
icant benefits in the case of curvature or noisy gradient. Due to the saddle point in the op-
timization problem, the optimization step can be stuck. The physical concept of momentum
allows to build the inertia in the search space and overcome the oscillation and across the flat
points.The inertia indicates the encountered gradient in the previous updates that avoids the
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problem of the gradient descent approach, which bounces around the search space. Math-
ematically speaking, the momentum introduces an additional parameter for controlling the
past parameter update information’s influence on the current update. It can be formulated
as

vt ← βvt−1 +∇ f(xt) (A.22a)

xt+1← xt+1 −ηt∇ f(xt) (A.22b)

Note that β = 0 can convert the momentum approach to a standard decent gradient algo-
rithm. The value ∇ f(xt) can be chosen as batch, stochastic or mini-batch gradient value.

Until now, I consider the learning rate η in the GD or momentum approach as a constant
value, which is manually chosen. The boundary of the learning rate is difficult to statically
determined. The algorithm Adagrad [36] is used to adapt the learning rate to the parameters
based on the past gradients that have been computed

xt+1← xt −
η

p

Diag(Gt) + ε
⊙∇ f(xt) (A.23a)

where the operator ⊙ indicates the matrix-vector product, and ε is used to avoid the singu-
larity. The value in the diagonal of matrix Gt is computed as

Gt,ii = Gt−1,ii +∇ f2i (xt) (A.24)

The advantage of using the Adagrad is to eliminate the manual tuning step. However, the
accumulation of the squared gradients of Gt,ii reduces the learning rate. The learning rate
will eventually converge to an infinitely small value, and no additional knowledge can be
acquired in the end, which means the process will be stalled at some point. The concept of
RMSProb [171] is introduced to mitigate the problem of vanishing the learning rate. The
idea behind the RMSProb is to use the leaky average to normalized the the sum of weights of
learning rate.

Gt,ii = γGt−1,ii + (1− γ)∇ f2i (xt) (A.25a)

xt+1← xt −
η

p

Diag(Gt) + ε
⊙∇ f(xt) (A.25b)

The coefficient γ ∈ [0, 1] determines how the history can affect the parameter update. Adap-
tive Moment Estimation (Adam) [71] is another approach to adapt the learning rate and
momentum, which combines all the benefits of previous mentioned approaches into one ef-
fective optimization. It and has become more and more popular as one of the more robust
and effective optimization algorithms. It can be formully described as

vt ← β1vt−1 + (1− β1)∇ f(xt) (A.26a)

st ← β2st−1 + (1− β2)∇ f(xt)
2 (A.26b)

Here β1 and β2 are nonnegative weighting parameters. vt and st are the first and second
moment of the gradients, respectively. Using the fact of

∑t
i=0 β

i = 1−β t

1−β , I can re-normalized
the vt and st as

v̂t =
vt

1− β t
1

, (A.27a)

ŝt =
st

1− β t
2

(A.27b)
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Then I use the same parameter update strategy as introduced in the RMSProp

xt+1← xt −
η

p

v̂t + ε
ŝt (A.28)

Adam’s effectiveness and stability make it the preferred optimization method for many algo-
rithms.
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Grasp Planning for Flexible Production with Small Lot Sizes based on

CAD models using GPIS and Bayesian Optimization

Jianjie Lin, Markus Rickert and Alois Knoll

Abstract— Grasp planning for multi-fingered hands is still
challenging due to the high nonlinear quality metrics, the high
dimensionality of hand posture configuration, and complex ob-
ject shapes. Analytical-based grasp planning algorithms formu-
late the grasping problem as a constraint optimization problem
using advanced convex optimization solvers. However, these are
not guaranteed to find a globally optimal solution. Data-driven
based algorithms utilize machine learning algorithm frame-
works to learn the grasp policy using enormous training data
sets. This paper presents a new approach for grasp generation
by formulating a global optimization problem with Bayesian
optimization. Furthermore, we parameterize the object shape
utilizing the Gaussian Process Implicit Surface (GPIS) to
integrate the object shape information into the optimization
process. Moreover, a chart defined on the object surface is
used to refine the palm pose locally. We introduced a dual
optimization stage to optimize the palm pose and contact points
separately. We further extend the Bayesian optimization by uti-
lizing the alternating direction method of multipliers (ADMM)
to eliminate contact optimization constraints. We conduct the
experiments in the graspit! Simulator that demonstrates the
effectiveness of this approach quantitatively and qualitatively.
Our approach achieves a 95% success rate on various common
objects with diverse shapes, scales, and weights.

I. INTRODUCTION

Only a limited number of small and medium-sized enter-

prises in Europe use robot systems in production, mainly

dealing with small lot sizes and requiring a more flexible

production process. It is, however, very time-consuming and

expensive to adapt a robot system to a new production line,

and it requires expert knowledge for deploying such a sys-

tem, which, however, is not commonly available in shop floor

workers [1]. Intuitive programming is currently proposed on

the market for accelerating programming and remedying the

problems caused by a lack of expert knowledge. Moreover,

the service robots use semantic knowledge combined with

reasoning and inference to solve the declarative goal. Auto-

matically synthesizing a robot program based on the semantic

product, process, and resource descriptions enable automatic

adaptation to new processes. In this process, the recognition

of objects and parts in the environments is involved, which

is typically designed in CAD systems and described via a

boundary representation [2]. Due to SMEs’ small lot size

production, it is not feasible to train the objects over a

long period of time by using data-driven approaches. Based

on this observation, it will accelerate the deploying time if

we grasp the object firstly in a simulator with the CAD

Jianjie Lin, Markus Rickert and Alois Knoll are with Robotics and
Embedded System, Department of Informatics, Technische Universität
München, Munich, Germany jianjie.lin@tum.de, {rickert,
knoll}@in.tum.de

models and then transfer the preplanned grasp to the real

world with a 6D pose estimation [3]. Dexterous robotic

grasping planning has been an active research subject in

the robotic community over the past decades. Grasping is

essential in many areas, such as industrial factories and

household scenarios. There have many different kinds of

robotic hands, i.e., traditional parallel-jaw grippers, complex

multi-fingered hands, or even vacuum-based end effectors.

The goal of grasp planning aims to find a proper contact

on the object and an appropriate posture of the hand re-

lated to the object to maximize grasp quality. This is a

challenging task, especially for multi-fingered hands, due to

different kinds of object shapes, the complicated geometric

relationship between robotic hands and objects, and the high

dimensionality of hand configurations. Grasp planning can

be divided into analytic approaches [4] on the one side and

empirical or data-driven approaches on the other side [5]. The

analytical grasp synthesis approach is usually formulated as

a constrained optimization problem over criteria that measure

dexterity, equilibrium, and stability and exhibit a certain dy-

namic behavior. Besides, it requires the analysis of statically-

indeterminate grasps [4] and under-actuated systems. The

latter describes hands, in which the number of the controlled

degrees of freedom is fewer than the number of contact

forces, further increasing the complexity of grasp synergies.

One common assumption made in analytic methods is that

precise geometric and physical models are available to the

robot. Furthermore, optimizing grasp quality with constraints

based on a convex optimization solver such as SQP can

not guarantee to find a good grasp. In contrast to analytic

approaches, the empirical or data-driven methods rely on

sampling the grasp candidate either from a data set or

by first learning a grasp quality and then selecting the

best by ranking them according to some specific metric.

This work will study how to optimize the palm pose and

contact point in the same framework by utilizing a global

Bayesian optimization solver under consideration constraints.

Gaussian Process Implicit Surface Atlas (GPIS-Atlas) is used

to parameterize the diverse shape. Therefore the geometry

information can be integrated into the Bayesian optimization

framework. Furthermore, GPIS-Atlas has the capability to

describe the perfect geometry model in the form of a CAD

model or the noisy point clouds [6]. In the work [3], the

6D pose is estimated between an object in the form of a

CAD model and the corresponding point clouds taken from

an Ensenso Camera. Therefore, for finding an appropriate

grasp pose for this object, we can directly apply our Bayesian

optimization framework with the CAD model instead of

2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
August 23-27, 2021. Lyon, France
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working on noisy point clouds. After that, we transform the

grasp pose using the 6D pose transformation from [3].

II. RELATED WORK

Multi-fingered hand grasp planning is still challenging due

to the high dimensionality of hand structure and complex

graspable object shapes. Automatic grasp planning is a

difficult problem because of the vast number of possible

hand configurations. Several different approaches have been

proposed to find an optimal grasp pose over the past decades.

Goldfeder et al. [7] introduced a database-backed grasp

planning, which uses shape matching to identify known

objects in a database with are likely to have similar grasp

poses [7]. Ciocarlie et al. presented [8] Eigengrasp planning

defines a subspace of a given hand’s DOF space and utilizes

the Simulated Annealing planner to find an optimized grasp.

Miller et al. [9] proposed a primitive shape-based grasp

planning which generates a set of grasps by modeling an

object as a set of shape primitives, such as spheres, cylinders,

cones, and boxes. Pelosso et al. [10] use an approach based

on Support Vector Machines that approximate the grasp

quality with a new set of grasp parameters. It considers grasp

planning as a regression problem by given a feature vector,

which should be defined heuristically.

With the continuous success of deep learning vision,

researchers utilize deep learning, also in combination with re-

inforcement learning, to learn a grasp quality directly from an

image via large training data sets [11]. Levine et al. [12] used

between 6 and 14 robots at any given point in time to collect

data in two months and train a convolutional neural network

to predict grasp success for a pick-and-place task with a

parallel-jaw gripper. Mahler et al. [13] proposed a Dex-Net-

based deep learning framework using a parallel-jaw gripper

or vacuum-based end effector learn a grasp policy based on

millions of grasp experiments. Kalashnikov et al. [14] intro-

duced a scalable self-supervised vision-based reinforcement

learning framework to train a deep neural network Q-function

by leveraging over 580k real-world grasp attempts. However,

the deep learning-based algorithm can only take the 2d

image as an input, and the trained neural network cannot

be easily transferred to another robotic hand configuration.

Varley et al. [15] obtained the geometry representation of

grasping objects from point clouds using a 3D-CNN. Ten

et.al [16] is the state of the art 6 DOF grasp planner (GPD).

Liang et.al. [17] proposed an end-to-end PointNetGPD to

detect the grasp configuration from a point sets. Mousavian

et al. introduced a 6DOF GraspNet by sampling a set of

grasping using a variational autoencoder. In addition to

deep learning, the Bayesian optimization-based algorithm

in [18] can consider uncertainty in input space to find a safe

grasp region by optimizing the grasp quality. Furthermore, it

utilizes unscented transformation-based Bayesian optimiza-

tion (UBO), a popular nonlinear approximation method,

to explore the safe region. However, UBO considers only

the palm pose optimization without considering the contact

point. We present a grasp planning approach in this work,

where we combine Bayesian optimization with an analytical

approach. We use the Grasp Wrench Space (GWS) [19] as

grasp quality metric, which calculates the convex hull over

discretized friction cones from the individual contact wrench

spaces of all contacts. Due to the GWS metric’s complexity,

we explore the potential of Bayesian optimization to optimize

this highly-nonlinear grasp quality problem. Since the hand

posture (hand palm pose) and hand configuration can be

considered separately because the finger’s contact points on

the object surface only depend on the hand posture and

forward kinematics of hand joints, we propose a dual-stage

approach: In the first stage, we optimize the hand palm pose

without considering hand configuration, and in the second

stage, we use the result of the first stage and optimize the

contact points on the object surface. Our approach optimizes

a hand palm pose T ∈ SE(3) regarding its grasp quality. For

this, we present the rotation in hyperspherical coordinates

instead of a rotation matrix or quaternion. We further pa-

rameterize the object surface as a Gaussian Process Implicit

Surface (GPIS) [6] and use a k-D tree to find the closest

point between the current palm pose and object surface.

Based on GPIS, we can further compute a chart  and

the corresponding normal vector N on this nearest point.

Utilizing this chart, we can make a local adaption of the palm

pose to find a better location concerning the object’s surface.

In the second stage, we convert the problem of solving

constraints between the contact points and the object surface

to querying the GPIS given a known contact point. Since the

standard framework of Bayesian optimization cannot solve

this constraint optimization problem, we use the Alternating

Direction Method of Multipliers (ADMM) [20] to assist

the contact point optimization by decomposing the whole

problem into a set of subproblems.

III. PROBLEM FORMULATION

In general, to define a grasp, we need two sets of variables:

the intrinsic variables to define the hand degrees of free-

dom (DOF) and the extrinsic variables to define the hand’s

position relative to the target object. Grasp planning is used

to find the optimized contact points and an associated hand

configuration to maximize grasp quality. The contact point

on the object surface is denoted as c = [c1,⋯ , cn], where

ci ∈ SE(3), and n is the number of fingers. We will assume

that contact happens on the fingertip, and one finger only has

one contact on the object surface . The finger joint of the

hand configuration is described as q = [q1,⋯ , qm], where m

is the DOF. Note that some finger joints are under-actuated

(passive joint). Therefore the number of finger joints is not

equal to the DOF. The pose of the palm is represented by

Tpalm(R, t). We formulate the problem as:

max
c,q,Tpalm

Q(c, q,Tpalm) (1a)

s.t. c = FKpalm2c(q,Tpalm) ∈  (1b)

qmin,i ≤ qi ≤ qmax,i, i = 1⋯m , (1c)

where Q(c, q,Tpalm) is the GWS, which is a 6-dimensional

convex polyhedron, the epsilon and volume quality metric

introduced by Ferrari and Canny [19]. The epsilon quality
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is defined as the minimum distance from the origin to any

of the hyperplanes defining the boundary of the GWS. In

contrast, the volume quality is the volume of GWS. FKpalm2c

is the forward kinematics from the palm pose to the contact

points. The formulation (1b) constrains all contact points on

the object surface . Furthermore, a contact is defined as any

point where two bodies are separated by less than the contact

threshold �c , but not interpenetrating. In this work, the object

surface will be parameterized by using GPIS to easily check

if the contact point satisfies the constraint (1b). The problem

in (1) is a high-dimensional nonlinear constraint problem,

besides the gradient of the objective function and constraints

cannot be analytically computed. Further, the convex opti-

mization solver can only find a local minimum. Bayesian

optimization is applied to find a near-global optimization

solution for these problems. Since the optimization of palm

pose is independent of optimization of contact point, we

switch between optimizing the palm pose and the contact

point.

IV. BAYESIAN OPTIMIZATION FOR GRASP PLANNING

Bayesian optimization is a global optimization method,

which can be used to solve the problem

xoptimized = max
x∈

fobj(x) , (2)

where the objective function fobj(x) is a black-box function

or a function which is expensive to evaluate and  ⊆ ℝ
D

is a bounded domain. We use the Latin Hypercube Sam-

pling (LHS) to get the initial sampling, and save it as

data set 0∶t−1 =
{(

x0, y0
)
,… ,

(
xt−1, yt−1

)}
, and learn a

Gaussian process model (GP). The essential step is to choose

an appropriate acquisition function. Here, we use Expected

Improvement [21], which is defined as

EI(x) = E
[
max

(
fobj(x) − fobj(x

+), 0
)]
, (3)

where E is the expectation function, fobj(x
+) is the best

observation with the location x+ so far. The EI(x) can be

evaluated analytically under the GP model as

EI(x) = 1
(
�(x)

)((
�(x) − fobj(x

+) − �
)
Φ(Z) + �(x)�(Z)

)
,

with Z = 1
(
�(x)

)(�(x)−fobj(x+)−�
�(x)

)
, where 1(x) is the

indicator function that is equal to 0 for x ≤ 0 and equal

to 1 otherwise. The mean �(x) and standard deviation �(x)

are defined in the GP posterior at x, and Φ and � are the

CDF (cumulative distribution function) and PDF (probability

density function) of the standard normal distribution. � is

a parameter which balances between the exploration and

exploitation. The objective function in our algorithm for

optimizing the grasp contact points is grasp quality which

consist of epsilon and volume quality.

fobj(x) =
(
1(q�)q� + � qvolume

)
, (4)

where � is a predefined parameter. The Matérn covariance

function (� = 5∕2) is chosen as kernel function for the Gaus-

sian process model in the Bayesian optimization and can be

described as: K5∕2(d) = �2
(
1 +

√
5d

�
+

5d2

3�2

)
exp

(
−

√
5d

�

)

with hyper parameter � and length-scale �. The parameter d

is the distance between two query points. Since we need to

optimize the palm pose, which is interpreted as a transfor-

mation. We define the distance between two transformation

matrices as ΔT = ‖‖t1 − t2
‖‖ +

‖‖‖log(R
T
1
R2)

‖‖‖F ∕
√
2, where

the term
‖‖‖log(R

T
1
R2)

‖‖‖F ∕
√
2 is the geodesic distance defined

in the Riemann manifold. We use the RProp (Resilient

Propagation) [22] for optimizing the hyperparameter.

The object surface in our algorithm is described as a GPIS

and every point lying on the surface in the set ′ should sat-

isfy the equality constraints ′ =
{
x ∈ ℝ

3 ∶ fGPIS(x) = 0
}

.

Furthermore, the tangent space of each point on these surface

will be computed by using
[
∇fT

GPIS
(xi)

�T
i
(xi)

]
�i(xi) =

[
0

I

]
, (5)

where �i(xi) ∈ ℝ
3×2 is the basis of tangent space at the

location x and ∇fGPIS(xi) ∈ ℝ
3×1 is the gradient of implicit

function for x. By using �i(x), we can map xi to x′
i

with x′
i
= xi +�i(xi) ui, where ui ∈ ℝ

2×1 is a point in the

local coordinate on this chart. The sample value x′
i

is shown

as black dots in Fig. 1a, the tangent vector on the chart is

shown as red and green arrows, while the blue arrow shows

the normal vector.

A. Hand Palm Pose Optimization (HPP-Opt)

To optimize the palm pose, we need to take the transfor-

mation Tpalm(R, t) ∈ SE(3) into account, where the rotation

matrix R can be interpreted by using a unit quaternion q.

Since the unit quaternion manifold ℍ is an Riemannian

manifold, by virtual equality of ℍ and 4D unit hyper-

sphere 3 =
{
x ∈ ℝ

3+1 ∶ ‖x‖ = 1
}

, the quaternion q can

be represented in the hyperspherical coordinates with �,  , �

where �,  range over [0, �] and � ranges over [0, 2�).

Employing hyperspherical coordinates, the constraints of q

disappear. Therefore, the palm pose optimization is converted

to an unconstrained optimization:

max
�, ,�,tpalm

fobj
(
q,Tpalm(R(�,  , �), tpalm)

)
. (6)

To reduce the search space, we constrain the palm pose

between two bounding boxes, represented by an axis-aligned

(a)

Fig. 1: Visualization of (a) Tangent space on a mug surface
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minimum bounding box (AABB), denoted as AABB,i with

i ∈ {1, 2}. The smaller one is shown as an orange cube

in Fig. 1a. We define the variable xpalm = [t, �,  , �]T ∈

ℝ
6×1. Sampling a point between two bounding box cannot

be formulated mathematically, therefore, we use an ellip-

soid 1 = (a1, b1, c1, a0, b0, c0) to approximate AABB,1 and

another ellipsoid 2 = (a2, b2, c2, a0, b0, c0) to approximate

the bigger bounding box AABB,2. As the result, the palm

pose sample t = [tx, ty, tz] can be formulated as

tx = a0 + r ∗ a1 sin(�) cos(�)

ty = b0 + r ∗ b1 sin(�) sin(�)

tz = c0 + r ∗ c1 cos(�) ,

where m0 =
kmin,1+kmax,1

2
, m1 =

kmax,1−kmin,1

2
, m ∈ {a, b, c},

and k ∈ {x, y, z}. The parameter r is a random variable

which ranges over [1, rmax], where

rmax =

√√√√ 1
( a1 sin(�) cos(�)

a2

)2
+
( b1 sin(�) sin(�)

b2

)2
+
( c1 cos(�)

c2

)2 .

The parameter � ranges over [0, �] and � ranges over [0, 2�).

The problem in (6) can be solved by using Bayesian opti-

mization.The solution found by BO is based on the probabil-

ity of best grasp distribution. To improve the performance,

a local adaption based on GPIS-Atlas is proposed.

1) GPIS-Atlas based local adaption: The first step is to

find the closest point from the current palm pose to the

object using k-D tree algorithm. Assuming we found the

pose tclosest , a chart i with the center point tclosest is created

by solving (5). We denoted the outward unit normal vector

of this chart i as Nclosest and the robot hand posture is

designed to orient to the direction of a chart normal N . We

apply the following approaches to get the pose T . Assuming

that the normal vector of hand in the initial state points

to the z-axis nz, the hand is currently in local frame 1

with rotation matrix R1
with respect to the world frame

 . The next hand configuration should point to the normal

direction N in local frame i
, therefore the corresponding

rotation matrix Ri
can be interpreted in angle-axis repre-

sentation [naxis, �axis] with �axis = atan2(‖‖nz ×N
‖‖ ,nz ⋅N)

and naxis = nz × N . As a result, we can transform the

local frame 1 to i
with the rotation transformation

as 1Ri
= RT

1

Ri
. Furthermore, the translation

of the palm pose is defined as tpalm = tclosest + �Nclosest .

This means that the new palm pose xpalm is parallel to the

chart i with the distance ‖�‖, as shown in Fig. 1a. The

parameter is optimized so that the hand is not colliding

with the object. The whole transformation is defined as

Tpalm = T (I , tpalm)T (
Ri

, 0)T (Rz, 0). The transforma-

tion T (Rz, 0) is used to further guarantee no collision.

Furthermore, we can define a point set on the chart i as

i
and randomly choose a sample tsample ∈ i

as tclosest .

B. ADMM-Based Contact Point Optimization (ADMM-CP-

Opt)

The contact point optimization is used to find a set of

desired joints q for each finger and the contact points c on

the object surface. It can be described as

max
c,q

fobj(q,Tpalm) (7a)

s.t. c = FK(q,Tpalm), (7b)

|fGPIS(ck)| ≤ �c , k = 1⋯ n (7c)

qk ∈ [qmin,k, qmax,k], k = 1⋯m , (7d)

where FK calculates the forward kinematics, and n represents

the number of contact points on the object surface. The

parameter m is the DOF of a hand. A contact point is

represented as a transformation Tci . However, each finger has

fewer joints than 6, which results in an underestimated sys-

tem. Consequently, we cannot directly calculate the inverse

kinematics based on the contact points, and it is not possible

to arbitrarily move the fingertip on the object surface. To

relax the constraints, we will not fix the palm pose, but

constrain the palm pose on the chart palm,i, which is parallel

to chart i on the object surface, therefore Tpalm ∈ palm,i.

Since the equality constraints cannot be solved by using

Bayesian optimization, the Alternating Direction Method of

Multipliers (ADMM) based Bayesian optimization [20] is

utilized to solve the contact pose optimization problem (7)

with the new formulation

max
q∈B

fobj(q,Tpalm) + gc(q,Tpalm) , (8)

with gc(q,Tpalm) = �
∑n

i=0
ci(q,Tpalm)

2 and ci(q,Tpalm) =
||||
fGPIS

(
FKi

(
q,Tpalm(R, t)

))||||
− �c . In order to solve (8),

ADMM introduces an auxiliary variable z, resulting in

max
q,z∈B

fobj(q,Tpalm) + gc(z,Tpalm) (9a)

s.t. q = z . (9b)

In the following, we neglect Tpalm in fobj and gc . By applying

Augmented Lagrangian function for equation (9), a new

objective function is formulated as

�(q, z, y) = fobj(q) + gc(z) +
�

2

‖‖‖‖
q − z +

y

�

‖‖‖‖

2

2

(10)

Therefore, we can solve fobj(q) and gc(z) by alternating over

the following sub problems:

qk+1 = argmax
q

fobj(q) +
�

2

‖‖‖‖‖
q − zk +

yk

�

‖‖‖‖‖

2

2

(11a)

zk+1 = argmax
z

gc(z) +
�

2

‖‖‖‖‖
qk+1 − z +

yk

�

‖‖‖‖‖

2

2

(11b)

yk+1 = yk + �(qk+1 − zk+1) . (11c)

The optimal condition is defined as
‖‖‖q

k+1 − zk+1
‖‖‖2 ≤ �primal

and
‖‖‖�(z

k+1 − zk)
‖‖‖2 ≤ �dual, where �primal and �dual are two

predefined optimality tolerances. Each sub problem is solved

by using Bayesian optimization.
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(a) Mug: Initial (b) Random Alg (c) EigenGrasp (d) HPP-Opt

(e) Flask: Initial (f) Random Alg (g) EigenGrasp (h) HPP-Opt

Fig. 2: Comparison of different Grasp planning Algorithm

examples for different objects with the multi-fingered hand

V. EXPERIMENT

Simulation results are introduced in this section to verify

the effectiveness of our algorithm. The experiment is exe-

cuted in the platform Graspit! [23] by using Barret hand

Barret hand hat three fingers: finger one hat two joints, where

the last joint is under-actuated. Finger two and three have

one common joint. Each finger has three joints where both

fingers have a passive joint. Therefore the Barret hand fingers

have totaled 4 DOFs. The hand palm pose is denoted as a

6-dimensional vector. Consequently, the whole Barret hand

system has totaled 10 DOFs. The experiment’s graspable

object is stored in the mesh file The GPIS describes the

object by using the mesh triangle verities as the input. Our

approach achieves a 95% success rate on various commonly

used objects with diverse appearances, scales, and weights

compared to the other algorithm. All evaluations were per-

formed on a laptop with a 2.6GHz Intel Core i7-6700HQ

and 16GB of RAM.

A. Experiment on HPP-Opt

In this section, the algorithm HPP-Opt is compared with

other grasp planning. The first grasp planning approach is a

simulated annealing grasp planner using an auto grasp quality

energy as a search strategy, which behaves like a random

grasp planning. The second approach uses an EigenGrasp

planner combined with a simulated annealing solver to guide

potential quality energy. The Bayesian optimization and

simulated annealing are both global optimization solvers,

where the latter is a probabilistic technique for approximating

the global optimum of a given function. We compare the

algorithms with different kinds of shapes. The experiment is

conducted in a fixed time of 20 seconds, and we average the

first 20 best grasp candidates. The best grasp candidate of

mug and flask from whole grasp candidates are visualized

in Fig. 2. The initial state of Barret hand and object are

randomly defined, shown in Fig. 2a and 2e. It can be seen that

the hand configuration selected by random grasp planning is

skewed to the object, and contact points on the surface are

not properly, and the resulting quality is also worse. The

TABLE I: Evaluation of different grasp planning algorithm

for all data sets. The results is an average of first 20 best

Grasp Candidates. A greater value of epsilon and volume

means a more stable grasp. The best result is highlighted in

green

Algorithms

random Alg EigenGrasp HPP-Opt ADMM-CP-Opt

quality q� qvolume q� qvolume q� qvolume q� qvolume

Mug 0 9.5352e-05 1.7281e-04 7.1981e-04 0.0555 0.0097 0.06 0.0161
Flask 0 3.9603e-05 4.9050e-04 2.0142e-04 0.0107 0.0014 0.0107 0.0026
Phone 0 3.9209e-05 0.0017 4.6942e-04 0.0142 0.0035 0.0142 0.0042
Sphere 0.0042 0.0019 0 0.0011 0.0495 0.0121 0.050 0.0279
Bishop 0 8.1935e-05 0.0012 9.7708e-05 0.0094 0.0011 0.0094 0.0016

TABLE II: The best grasp from 20 grasp candidates. The

best result is highlighted in green

Algorithms

random Alg EigenGrasp HPP-opt ADMM-CP-Opt

quality q� qvolume q� qvolume q� qvolume q� qvolume

Mug 0 0.0012 0.0065 0.0011 0.1039 0.0151 0.1158 0.0340
Flask 0 0.0004 0.0130 0.0031 0.0449 0.0018 0.0452 0.0019
Phone 0 0.0004 0.0310 0.0007 0.0208 0.0198 0.0335 0.0006
Sphere 0.0844 0.0301 0 0.0086 0.0914 0.0362 0.1676 0.0728
Bishop 0 0.0012 0.0164 0.0004 0.0390 0.0020 0.0444 0.0045

results of EigenGrasp show a better solution where the palm

pose is trying to parallel to the object surface. The palm

pose selected by HPP-Opt is more reasonable in comparison

to the other two algorithms. We show the quantitative result

is in table (I). In different kinds of geometry shapes, our

algorithm can achieve a much more stable grasp than other

algorithms. The epsilon quality achieved by the first approach

is almost zero besides in the case of a sphere. The epsilon

quality by Eigen grasps a minimal value. On average, the

epsilon quality of HPP-Opt is 28.5 times greater than Eigen

grasp’s epsilon quality. And the HPP-Opt’s volume quality

is 32.1417 times greater than Eigen Grasp’s volume quality.

Furthermore, we show the best grasp candidate from the first

20 best grasp candidates in Table II.

B. Experiment of integration HPP-Opt and ADMM-CP-Opt

In section V-A, hand palm pose is optimized based on

the Bayesian optimization algorithm combing with local

adaption, and hand finger configuration is set based on the

function of AutoGrasp from Graspit [23]. The principle of

AutoGrasp is to close each hand finger DOF at a rate equal

to a predefined speed factor multiple with its default velocity,

and the movement is stopped at the contact point. Therefore

ADMM-CP-Opt is used to assist the HPP-Opt to find a

better hand finger configuration. The comparison result is

visualized in Fig. 3. In the case (3a), fingers two and

three are too close and grasp the bottom of the flask. As

a consequence, the resulting triangle has a small internal

angle. Applying ADMM-CP-Opt splits the fingers two and

three by maximizing epsilon and volume quality and makes

the resulting triangle closer to the equilateral triangle with

a more stable grasp. The same improvement happen in the

Fig. 3b - Fig. 3f as well. The solution founded by ADMM-

CP-Opt is trying to make the resulting triangle as closer as
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the equilateral triangle. In Table I, ADMM-CP-Opt improves

the volume quality of HPP-Opt. And In table II, ADMM-

CP-Opt shows a better grasp than HPP-Opt in most cases

under epsilon and volume quality metrics.

(a) (b) (c)

(d) (e) (f)

Fig. 3: The comparison result of HPP-Opt and ADMM-CP-

Opt. In each sub figure, the left one is result of HPP-Opt,

and the right one is improved by using ADMM-CP-Opt

VI. CONCLUSION AND OUTLOOK

We propose a new algorithm for grasp planning with

multi-fingered hands by optimizing the hand palm pose and

hand finger configuration separately. No initial configuration

is required using a global Bayesian optimization solver,

which shows superiority over the convex optimization solver.

We propose a dual-stage optimization process by considering

the independence of the hand palm pose and finger con-

figuration. In the first stage, we utilize a GPIS to describe

the graspable object so that collision checking of contact

points can be integrated into the optimization framework.

Furthermore, the chart on the object surface can be computed

using the GPIS, which can be used to explore the local

information of objects. Two ellipsoids are used to define

the palm pose constraints domain. Relying on the first stage

result, we apply an ADMM based Bayesian optimization to

optimize the contact points. The whole process will switch

between HPP-Opt and ADMM-CP-Opt. We collect the best

20 Grasps, and the final grasp is selected by ranking the

grasp candidates under consideration of epsilon and volume

quality. In this work, we describe only the object in GPIS.

In future work, we can describe the hand part into GPIS so

that the collision checking can be converted to a problem

by querying the distance between two surfaces. Besides,

the robot arm is not considered in the grasping scenario.

It will be interesting to integrate the constraints of robot arm

manipulability in the objective function.
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6D Pose Estimation for Flexible Production with Small Lot Sizes based
on CAD Models using Gaussian Process Implicit Surfaces

Jianjie Lin1, Markus Rickert1 and Alois Knoll2

Abstract— We propose a surface-to-surface (S2S) point reg-
istration algorithm by exploiting the Gaussian Process Implicit
Surfaces for partially overlapping 3D surfaces to estimate the
6D pose transformation. Unlike traditional approaches, that
separate the corresponding search and update steps in the inner
loop, we formulate the point registration as a nonlinear non-
constraints optimization problem which does not explicitly use
any corresponding points between two point sets. According
to the implicit function theorem, we form one point set as a
Gaussian Process Implicit Surfaces utilizing the signed distance
function, which implicitly creates three manifolds. Points on
the same manifold share the same function value, indicated
as {1, 0,−1}. The problem is thus converted into finding a rigid
transformation that minimizes the inherent function value. This
can be solved by using a Gauss-Newton (GN) or Levenberg-
Marquardt (LM) solver. In the case of a partially overlapping
3D surface, the Fast Point Feature Histogram (FPFH) algorithm
is applied to both point sets and a Principal Component Anal-
ysis (PCA) is performed on the result. Based on this, the initial
transformation can then be computed. We conduct experiments
on multiple point sets to evaluate the effectiveness of our
proposed approach against existing state-of-the-art methods.

I. INTRODUCTION

While the majority of European companies consists of
small and medium-sized enterprises, only a very limited
number of them currently uses robot systems in their pro-
duction. In contrast to larger companies, they mainly deal
with small lot sizes and constantly changing production
processes. Adapting a robot systems to new products and
parts is however very time-consuming and requires expert
knowledge in robotics that is not commonly found in shop
floor workers [1]. While a number of modern robot systems
currently on the market proposes an easier programming
concept based on reusable skills, these approaches still
require a manual adaptation to new processes. In contrast to
this, approaches from service robotics are able to automati-
cally solve declarative goal specifications by using semantic
knowledge in combination with reasoning and inference [2].

Synthesizing robot programs based on semantic product,
process, and resource descriptions enables an automatic
adaptation to new processes and involves handling the recog-
nition of objects and parts in the environment. These parts
are typically designed in CAD systems and described via
a boundary representation [3]. In order to grasp them with
a robot, a full 6D pose estimation is required. Given the

1Jianjie Lin, Markus Rickert are with fortiss, An-
Institut Technische Universität München, Munich, Germany
{lin,rickert}@fortiss.org

2Alois Knoll are with Robotics and Embedded System, Depart-
ment of Informatics, Technische Universität München, Munich, Germany
knoll@in.tum.de

(a) (b)

Fig. 1: Robot setup for assembling a gear box with (a) a
lightweight robot and a 3D camera sensor, (b) point cloud
scene of mechanical gearbox parts on the table.

small lot size production of SMEs with constantly changing
objects, it is not feasible to train object recognition models
over a long period of time. Recognizing these parts effi-
ciently by directly using their CAD models during execution
is therefore essential in achieving short changeover times.
Fig. 1 shows an example of such an assembly use case
for a mechanical gearbox together with a point cloud scene
captured by the 3D camera sensor attached to the robot.

Point registration is one of the main approaches in com-
puting the pose transformation by two given point sets and
is widely used in MRI/CAT scan alignment [4] and robot
manipulation [5]. The problem is especially challenging
when two noisy point sets only partially overlap without
initial alignment. A standard approach for point registration
is based on the Iterative Closest Point (ICP) algorithm [6],
[7]. It is interesting due to its intuitive and straightforward
implementation. The identification of corresponding points
follows a greedy search algorithm that is subjective to local
minima and identifies incorrect points for some rotations.
Furthermore, the success of ICP heavily relies on a good
initial alignment. There are many variants which aim at
optimizing the process for correspondence search, such as
widening the convergence basin, heuristic global search,
relaxed assignments, or distance fields, which however often
fail to achieve a better performance and typically follow the
principle of point to point (p2p) or point to surface (p2s)
registration. Furthermore, with increasingly powerful neural

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
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networks, many researchers started applying deep learning
to the problem of computing a pose transformation [8].
However, these approaches still follow the concept of find-
ing the corresponding point and use a RANASAC-based
Perspective-n-Point(PnP) algorithm to acquire the 6D pose.
In addition, they require a large data set to encode a surrogate
task and cannot be transferred to another task efficiently. For
a flexible production application however, efficiency is a key
factor required in any suitable algorithm.

This work, to the best of our knowledge, is the first one
to consider the surface-to-surface (s2s) point registration and
to describe one surface as an implicit function by employing
Gaussian process regression, also referred to as Gaussian
Process Implicit Surfaces (GPIS). We define three manifolds
by borrowing the idea of signed distance functions (SDF) [9]
with values {1, 0,−1}. All points on a surface should have
the same value of 0. Instead of searching the corresponding
points between two different point sets, the goal is now to
find a rigid transformation that makes function value zero by
transferring the point using this transformation. We evaluate
the presented GPIS-based point registration on multiple
point sets. In comparison to state-of-the-art algorithms, the
presented approach can arrive at or exceed the same accuracy.
We prioritize robustness over convergence speed and our
approach can achieve more robust results than most of the
existing algorithms. The primary advantage in contrast to
other algorithms is that our approach does not require finding
the corresponding point iteratively. The initialization for the
transformation can be calculated based on a FPFH and PCA.
The registration problem is efficiently solved with a Lie
algebra-based Gaussian Newton solver.

II. RELATED WORK

6D pose estimation is widely used and extensively studied
and point registration technology is commonly used to find
the spatial relationship between two point sets. Most of the
advanced algorithms in this field are based on ICP and
several variants exist [10], [7]. The typical work flow for
geometric registration consists of two stages: initial (global)
alignment and local refinement. Initial alignment is either
based on simple Euclidean distance or on more complex
sampling-based algorithms that identify matching points by
utilizing local geometrical descriptors like Fast Point Feature
Histogram (FPFH) [11], [12]. RANSAC [13] can be applied
against outliers. In the following, the initial rigid transforma-
tion can be estimated by using a least squared method or by
using the branch-and-bound framework (BnB) [14], which is
a global optimization algorithm. In both cases, finding a good
initial alignment can be computationally expensive. After the
initial alignment, local refinement is executed by alternating
the steps for finding the nearest neighborhood and the steps
for updating the transformation based on the greedy search
algorithm. This is susceptible to local minima and can only
produce an accurate result with a good initialization. Several
variants can be used to improve the performance: Fitzgibbon
et al. [15] proposed a Levenberg-Marquardt algorithm that
uses finite differences to optimize the objective function.

Granger et al. [6] applied Expectation-Maximization (EM)
principles to consider Gaussian noise, which can improve
the robustness of local registration. Li et al. [16] utilize the
Gaussian mixture model to model the surface uncertainty so
that it increases the robustness of the registration. Myronenko
et al.[17] introduced Coherent Point Drift (CPD), which is
agnostic as to the used transformation model and similar
to GMM takes a probabilistic approach to the alignment of
point sets. Chavdar et al. [18] applied stochastic optimization
to consider noise robustness, outlier resistance, and optimal
global alignment. Yang et al. [14] proposed Globally Optimal
ICP (Go-ICP) by using the Branch and Bound framework to
derive the lower and upper bound for the error function and
to integrate a local ICP in the same frame. Guo et al. [12]
introduced the Fast Global Registration (FGR) algorithm
that uses a scaled Geman-McClure estimator to describe
the error function, optimizes the objective function by using
Block Coordinate Descent, and applies FPFH to search the
corresponding set before optimization.

All algorithms mentioned above share the requirement of
finding the correct corresponding pair. This is followed by
using either greedy search or a global optimizer to get the
final rigid transformation. With continuous improvement in
the field of deep learning, many researchers began to learn
the 6D pose directly by using RGB images [19]. However, a
large number of point sets is required to learn the surrogate
task and the underlying relationship between learned loss
function and the pose accuracy is still unclear. Such an
approach cannot be easily deployed in a flexible production
line. In this paper, we introduce a different approach for
GPIS-based point registration (GPIS-S2SPR), that does not
need to explicitly use corresponding points. By applying
Gaussian Process Implicit Surfaces, we can achieve a more
robust performance compared to state-of-the-art algorithms.

III. PROBLEM FORMULATION

The standard ICP algorithm aims to estimate a rigid
transformation T = {R, t} between given two point sets = {xi}, i = 0,… , n and  = {yi}, i = 0,… , m, that
minimizes the object function

E(T ) = min
∑n

i=1

(

xi − T yargminj=0,…,m

(

‖xi−T yj‖2
)

)

(1)

by iteratively finding corresponding points. The objective
function in (1) however is a non-convex function and there-
fore susceptible to local minima.

In this paper, we consider the problem from a different
angle: aligning two point sets independent of corresponding
points. We model one of the point set as an implicit surface,
which can capture the local structure of the surface and then
transfer another point set to this implicit surface. We assume
that all points on the same surface share the same function
value of 0. Then, the point registration problem is turned
into finding a transformation that minimizes the objective
function

E(T ) = 1
2
∑m

j=0
‖

‖

‖

f (T yj ,)‖‖
‖

2
. (2)
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IV. PRELIMINARY KNOWLEDGE

A. Gaussian Process Implicit Surfaces

According to the implict function theorem, the implicit
function can be formally described as f (x) = 0, where f is
a scalar function that takes an input x ∈ ℝd and results
in a d − 1 dimensional manifold  . For point registra-
tion, we will constrain d to dimension 3. Many existing
methods can be used to describe the implicit surface, e.g.,
trimmed B-splines [20], transcendental functions, or thin
plate splines [21]. In this work, Gaussian Process Implicit
Surfaces [22] will be used to describe the 3D mesh surface.
Unlike thin plate splines, the Radial Basis Function (RBF)
kernel can only describe a local patch whose distribution will
rapidly converge to zero when a point is not near the queried
point and not on the surface, which however is in contrast
to our assumption. As an alternative, thin plate splines will
be selected via

kij(r) = 2r3 − 3Cr2 + C3 , (3)

with a maximum radius of C inside the training point
cloud sets  . The parameter r is the distance between two
points. Gaussian Process Implicit Surfaces can be considered
as a standard regression problem, which is expressed as
f ∼  (

0,K( ,) + �TI�
)

, where  denotes a normal
distribution with the mean �() = 0 and variance K( ,)+
�TI�. The covariance matrix K(., .) consists of kij(xi,xj)
and � corresponds to the noise.

The goal therefore is to predict the value by evaluating the
following formulas for the queried point yj :

f∗(yj|) = kT
∗
[

K + �TI�
]−1 f = kT

∗� (4)

V (yj|) = k(yj , yj) − kT∗
[

K + �TI�
]−1 k∗ . (5)

The kernel function k∗( , yj) is used to describe the corre-
lation between source point set  and target point set yj .
The function value f∗(yj|) is a prediction of yj with
the corresponding variance, which is expressed as V (yj|)
and can be used to evaluate the reliability of the predicted
value. For simplification, this value is not included inside
the objective function. The 3D model points according to
SDF are denoted as

{

Xi ∈ 0 ∣ Xi = {xi, �i, 0}
}

. To aid
the training of an implicit function, two additional point sets
will be created:

{

Xi ∈ 1 ∣ Xi = {xi, �i, 1}
}

lies outside
the surface and

{

Xi ∈ −1 ∣ Xi = {xi, �i,−1}
}

lies inside
the surface. How to generate these two additional point sets
is presented in [23]. The final training point sets consist
of  = 0 ∪ 1 ∪ −1 ∈ ℝn×3.

After modeling the training point sets as the GPIS in the
sense of a manifold, the objective function E can be further
expressed as

fj(yj|) = kj( , yj)T� =
∑n

i=0
k(xi, yj)�i (6)

E = 1
2
∑m

j=0
f 2
j (yj|) =

∑m
j=0

�TkjkTj � , (7)

where m is the number of points in the target point cloud
and n is the number of points in the source point cloud. fj

is the predictive value given by yj that is equal to zero if
the target point lies on the mesh surface. The main benefits
of this formulation are that no corresponding points between
two point sets are required and that it converts the problem
into a standard nonlinear squares problem, which can be
solved by standard convex solvers.

B. Lie Algebra for Optimization

The transformation matrix T consists of a rotation ma-
trix R and a translation t, which can be interpreted in
terms of Lie groups SE(3) [24] with the corresponding Lie
algebra se(3). It can also be converted to a Lie group by
utilizing the exponential map T = exp(�∧), where �T =
[

�T �T]T ∈ ℝ1×6 with � ∈ ℝ3 and � ∈ so(3). In this
optimized formulation, the target point set is transferred
by T to align the source point set, which is embedded
into f (). The gradient-based optimization uses the Jacobian
matrix to search for the minimum solution. We apply the
perturbation method for calculating the gradient of T and
consider the directional of the derivative of T with respect
to the perturbation � ∈ ℝ6, which can be computed as

T = exp
(

�∧
)

Top ≈ (I + �∧)Top ,
)(T ŷj)
)�

= (T ŷj)⊙ . (8)

The operator (.)⊙ ∶ ℝ4 → ℝ4×6 is defined as ["T, �]T⊙ =
[

�I −"∧
0T 0T

]

, where " ∈ ℝ3 and � is a scalar that maps the

vector space to a higher manifold. For simplification, we
omit xi in ki(xi,T ŷj) and use ki(T ŷj) instead. By integration
of the perturbation formula (8) with the first order Taylor
series in kernel function, it can be approximated as

ki(T ŷj) = ki
(

exp(�∧)Topŷj
)

≈ ki
(

(I + �∧)Topŷj
)

≈ ki(Topŷj) +
( )ki
)yj

)T
|

|

|yj=Topŷj

)T ŷj
)�

� (9)

≈ �i + �iT� ,

where �i = ki(Topŷj) ∈ ℝ,
( )ki
)yj

)T ∈ ℝ1×4 and �iT =
(

)ki
)yj

)T
|

|

|yj=Topŷj

(

(T ŷj)⊙
)

∈ ℝ1×6. The derivative of the

kernel function )ki
)yj

in (9) is expressed as

)ki
)yj

=
)ki
)rij

)rij
)yj

= 6(rij − C)(yj − xi) .

V. GPIS-BASED S2S REGISTRATION ALGORITHM

For the partially overlapping situation, the transformation
matrix T is considered in the kernel’s corresponding distance
function with r = ‖xi−Rŷj−t‖ = ‖xi−T ŷj‖. Therefore, the
equation (6) is updated as fj = k( ,T ŷj)T�. By combining
this with the approximation of the kernel function (9), the
objective function (7) can be further simplified as

fj =
∑n

i=0
(�i + �Ti �) �n = k

T(�, �T�)� (10)

E(T ) = 1
2
∑m

j=0
�Tk (�, �T�)kT(�, �T�)� , (11)
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Fig. 2: The algorithm consists of three stages: In the first
stage, two additional point sets 1 and 2 are created to
augment the original point set as  = 0 ∪ 1 ∪ −1,
which is used to form the implicit function GPIS. In stage
two, we compute FPFH for each point in the source and
target point set and a cross-checking is executed to identify
a corresponding group. The PCA is utilized to compute the
initial transformation by evaluating the objective function. In
the last stage, the alignment is optimized by a convex solver.

with kT(�, �T�) =
[

�1 + �T1�, ⋯ , �n + �Tn�
]

∈ ℝ1×n. As
a result, (11) is converted to a nonlinear quadratic equation
with the approximated nonlinear kernel function k(�, �T�)
and the argument for this optimized problem is changed from
the Lie group T ∈ SE(3) to the perturbation variable of the
Lie algebra � ∈ se(3).

A. Gradient of Objective Function

By taking the derivative of J with respect to �T, we get

)E(T )
)�T

=
∑m

j=0

)
(

�Tk(�, �T�)
)

)�T
kT(�, �T�)�

=
∑m

j=0

(

∑n
i=0

)(�i�i + �i�T�i)
)�T

)

kT(�, �T�)�

=
∑m

j=0

(

∑n
i=0

�i�i
)

kT(�, �T�)�

=
∑m

j=0
�j
(

∑n
i=0

�i�i + �Ti ��i
)

, (12)

where �j is defined as
∑n
i=0 �i�i ∈ ℝ6×1 and can capture the

surface’s curvature by summing up all gradients in the kernel
function. To get the optimum perturbation �⋆ at the current
position, the formula )E(T )

)�T is forced to be zero, leading to
∑m

j=0
�j

∑n
i=0
�Ti �i�

⋆ = −
∑m

j=0
�j

∑n
i=0

�i�i

J�⋆ = −
∑m

j=0
�j

∑n
i=0

�i�i (13)

�⋆ = −J−1
∑m

j=0
�j

∑n
i=0

�i�i , (14)

with J =
∑m
j=0 �j�

T
j ∈ ℝ6×6. T is therefore updated as

Top,ℎ ← exp
(

(�⋆)∧
)

Top,ℎ−1, (15)

which captures the local structural manifold by means of the
Lie algebra. The optimization process follows the principle
of the Gauss-Newton algorithm. We can further adapt J as
∑m
j=0 �j�

T
j + � diag(S), which is the LM algorithm.

B. Initial Alignment Using PCA and FPFH

A good initial guess for the optimization is important in
order to guarantee a good result and run-time. We present

a new method for computing the initial alignment by em-
ploying the PCA and FPFH [11] algorithms. First, a FPFH
is calculated for each point in the two point sets, which are
referred to as F (0) and F (). We then embed F (0) into a
k-d tree KdF (0) and a nearest neighbor search is performed
for each feature F (yj) ∈ F (), such that 1 is a group pair
set of the results xi|j for the queries yj :

1 = {

{yj ,xi|j} ∣ KdF (0)
(

F (yj)
)

, ∀yj ∈ }

. (16)

Subsequently, we embed F () into another k-d tree KdF ()
and perform a nearest neighbor search for each result stored
in 1, such that 2 is a group pair set of the results yj|i for
the queries xi|j that are stored in 1:

2 = {

{xi|j , yj|i} ∣ KdF ()
(

F (xi|j)
)

, ∀xi|j ∈ 1} (17)

We only keep the subset 1 ∩ 2 that contains bidirectional
nearest neighbors and refer to these as  ′ and  ′. Statis-
tical analysis techniques are then applied to remove any
outliers in these groups [25]. The final selected points are
grouped together and are denoted as group,FPFH ∈ ℝnFPFH×3

and group,FPFH ∈ ℝmFPFH×3. After this, a PCA is used to
compute the initial transformation TPCA between group,FPFH
and group,FPFH. Note, that TPCA has four different possibil-
ities according to the right-hand rule (Fig. 3). By evaluating
the formula

Tinit ← min
k∈{0,⋯3}

∑m
j=0

‖

‖

‖

f (TPCA,kŷj ,)‖‖
‖

2
, (18)

we select the transformation matrix Tinit that has the smallest
function value. The whole process is illustrated in Fig. 2 and
the algorithm is summarized in Alg. 1.

VI. EVALUATION

In order to compare our algorithm against the state of
the art, we evaluated it against other registration algorithms

Algorithm 1 Optimization of transformation matrix by
Gauss-Newton/Levenberg-Marquardt algorithm
Require:  ,  , H

1: Modeling GPIS f () ⊳ Section IV-A
2: Compute FPFH features F (0) and F () ⊳ Section V-B
3: Calculate 1 and 2 ⊳ (16), (17)
4: {group,FPFH,group,FPFH} ← StaticalRemove(1 ∩ 2)
5: T ←PCA(group,FPFH,group,FPFH) ⊳ (18)
6: Top,0 ← argmin

∑m
j=0 f ( ,T yj)

7: for ℎ = 1 ∶ H do
8: Approximate ki(yj) ∀yj ∈  ⊳ (9)
9: if Gauss-Newton then

10: Set J =
∑m

j=0 �j�
T
j

11: end if
12: if Levenberg-Marquardt then
13: Set J =

∑m
j=0 �j�

T
j + � diag(S)

14: end if
15: calculate �⋆ = −J−1 ∑m

j=0 �j
∑n

i=0 �i�i ⊳ (14)
16: Update Top,h ⊳ (15)
17: if ‖�⋆‖F ≤ � then break
18: end if
19: end for
20: return Top⋆
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(a) (b) (c) (d)

Fig. 3: The four possible coordinate systems for the PCA
when computing the initial transformation matrix.

regarding accuracy RMSE and time on the Stanford 3D
Scanning Repository’s Happy Buddha, Stanford Bunny, and
Chinese Dragon [26] as well as Blender’s Suzanne model.
PCL-ICP [25] is the standard implementation of the ICP
algorithm in the Point Cloud Library, which is a local
registration algorithm as it relies on a good initial align-
ment. SAC-IA-ICP [11] employs FPFH to get the initial
alignment and then uses ICP to iteratively align the two
point clouds. It is therefore considered a global point reg-
istration algorithm. GoICP and its variant GoICPT with
trimming [14] are global registration algorithms that use the
BnB algorithm in their implementations and also support
partial overlapping point registration. Global registration
RANSAC (Gl.RANSAC) [27] requires no initial alignment.
Instead, it utilizes RANSAC for the initialization alignment
by searching corresponding points in the FPFH feature
space. Fast Global Registration (FGR) is another registration
algorithm that utilizes FPFH for searching corresponding
points. The algorithm presented in this paper is labeled
GPIS-S2SPR. In this section, three different experiments
were conducted. In order to reduce the computational burden,
the tested point sets were downsampled for every algorithm
into small scale numbers (1500–2500) by using voxel fil-
tering. All evaluations were performed on a laptop with
a 2.6 GHz Intel Core i7-6700HQ and 16 GB of RAM.

A. RMSE for Random Transformations

For exploring the capability of our algorithm, we evaluated
algorithms using the Stanford Bunny point set with 50 290
points without Gaussian noise and only partial over-
lap (85%). We reduced the number points by applying a
voxel grid filter with a size of 0.005 [25]. We ran each algo-

a b c

0.105

0.111

0.117

d e f g

0.0010

0.0035

0.0060

Fig. 4: RMSE for the Stanford Bunny with par-
tial overlap (85%) without Gaussian noise: (a) GoICP,
(b) GoICPT (10%), (c) PCL-ICP, (d) Gl.RANSAC, (e) SAC-
IA-ICP, (f) FGR, (g) GPIS-S2SPR.

rithm on a set of 40 random transformation matrices (Fig. 4).
From the results, we can see that GoICP and its variant

GoICP with trimming (GoICPT) (10%), as suggested in [14],
performed worse in this experiment with median values
of 0.110 and 0.108. PCL-ICP was evaluated using an identity
matrix as initialization and behaved slightly better with a
median value of 0.109 and a smaller variance in comparison
to GoICP. Gl.RANSAC showed significant improvement
with a median value of 0.005 and SAC-IA-ICP achieved
a median value of 0.002. FGR achieved a median value
of 0.001. In contrast to the previous algorithms however, its
mean value of 0.017 deviated from the median and is much
higher. This is due to its lack of robustness in handling large
rotational changes, which is further evaluated in the next
experiment (Section VI-B). Our algorithm showed the best
overall performance, with a median value of 0.001 and a
small variance.

B. Rotation and Translation Invariance

Rotation and translation invariance are essential factors
for point registration. We conducted two experiments with
the Stanford Bunny dataset to evaluate these two proper-
ties. For the first experiment, we rotated the source point
set 50◦ around the y axis and translated it with a vector
of [0.1, 0.2, 0.3], as illustrated in the first row of Fig. 5.
In the second one, we rotated the point set 180◦ around
the z axis without translation, as shown in the second row
of Fig. 5. The same initial alignment is used for each
algorithm in both cases. We repeated both experiments 40
times. The best results are shown in Fig. 5. PCL-ICP and
FGR show entirely different behaviors in these two cases,
while they failed with a more than 0.1 RMSE value in
the second case. For these two algorithms, we conducted
further experiments with different rotations. FGR failed with
a high probability for high rotation values and we therefore
conclude, that FGR is not rotation invariant. SAC-IA-ICP
showed no significant difference in both experiments, achiev-
ing roughly the same mean value of 0.009. Gl.RANSAC
also showed similar performance in both cases with mean
values of 0.003 and 0.006. In this experiment, rotation and
translation showed no significant effect in our GPIS-S2SPR
approach, with an approximate RMSE of 0.002.

C. Noise and Overlap Robustness

We evaluated the algorithms on all four point sets with
the number of points varying from 30 000 to 50 000. Fur-
thermore, we applied three different levels of noise based
on a Gaussian distribution with variances set to 0, 0.00025,
and 0.0005, respectively. We also evaluated the capability
of point registration in a partially overlapping scenario,
where only a subset of the points from the source point
cloud is used for the target point cloud. Three different
overlap factors were used in the experiments: 100%, 85%,
and 65%. Furthermore, we used an identity matrix for the
initial alignment in each test to maintain identical conditions.
Each algorithm was executed 40 times for each configuration,
leading to a total of 1440 times for all possible combinations.
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(a) Source/Target (b) PCL-ICP (c) SAC-IA-ICP (d) FGR (e) Gl.RANSAC (f) GPIS-S2SPR

(g) Source/Target (h) PCL-ICP (i) SAC-IA-ICP (j) FGR (k) Gl.RANSAC (l) GPIS-S2SPR

Fig. 5: Stanford Bunny together with alignment results of selected algorithms for (a)–(f) 50◦ rotation around the y axis and
small translation, (g)–(l) 180◦ rotation around the z axis with translation set to zero.

TABLE I: Benchmark results for all algorithms on four different point sets with three levels of Gaussian noise and three
different overlap factors. The best RMSE value � for each configuration is highlighted in green.

noise = 0.00000 noise = 0.00025 noise = 0.00050

1.00 0.85 0.65 1.00 0.85 0.65 1.00 0.85 0.65

� t � t � t � t � t � t � t � t � t

B
un

ny
[2

6]

PCL-ICP 0.081 0.5 0.090 0.4 0.067 0.3 0.046 0.4 0.082 0.6 0.046 0.3 0.069 0.4 0.107 0.6 0.073 0.3
GoICP 0.115 20.3 0.110 20.1 0.097 20.0 0.046 20.1 0.024 20.1 0.063 20.2 0.089 20.1 0.101 20.1 0.046 20.1

GoICPT 0.100 21.5 0.108 21.5 0.099 21.4 0.106 21.5 0.104 21.7 0.098 21.4 0.103 21.4 0.109 21.7 0.103 21.4
SAC-IA-ICP 0.001 6.1 0.002 5.6 0.010 7.1 0.001 6.6 0.002 6.1 0.011 8.2 0.001 7.0 0.003 6.4 0.011 7.9
Gl.RANSAC 0.001 1.6 0.005 1.7 0.005 2.3 0.001 1.7 0.005 1.8 0.005 1.9 0.001 1.7 0.005 1.9 0.005 2.3

FGR 0.017 0.4 0.009 0.4 0.017 0.3 0.004 0.4 0.007 0.4 0.020 0.3 0.004 0.4 0.007 0.4 0.015 0.3
GPIS-S2SPR 0.001 0.6 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.6 0.002 0.5 0.001 0.5 0.002 0.6 0.002 0.7

Su
za

nn
e

[2
8]

PCL-ICP 0.134 0.8 0.108 0.8 0.116 0.7 0.049 0.6 0.127 1.3 0.095 0.6 0.131 0.9 0.115 0.6 0.106 0.9
GoICP 0.089 23.5 0.055 21.6 0.086 22.0 0.089 21.8 0.081 21.8 0.089 21.8 0.064 21.8 0.072 21.7 0.117 21.5

GoICPT 0.092 23.2 0.059 21.5 0.084 21.5 0.079 21.6 0.071 21.7 0.097 21.7 0.045 21.5 0.091 21.6 0.062 21.5
SAC-IA-ICP 0.001 11.2 0.005 10.6 0.018 10.3 0.001 11.7 0.006 10.7 0.027 11.4 0.001 12.4 0.006 11.5 0.018 11.1
Gl.RANSAC 0.014 1.7 0.018 1.7 0.040 2.0 0.016 1.8 0.011 1.8 0.039 2.3 0.013 1.9 0.025 1.9 0.022 2.7

FGR 0.049 0.6 0.039 0.6 0.060 0.5 0.070 0.6 0.049 0.6 0.061 0.5 0.046 0.7 0.071 0.6 0.052 0.6
GPIS-S2SPR 0.003 0.8 0.002 1.1 0.002 1.1 0.001 4.3 0.002 2.1 0.002 1.8 0.002 1.3 0.003 1.2 0.002 1.6

D
ra

go
n

[2
6]

PCL-ICP 0.087 0.5 0.100 0.3 0.079 0.4 0.090 0.2 0.065 0.3 0.096 0.4 0.071 0.5 0.082 0.5 0.101 0.4
GoICP 0.017 21.6 0.022 21.7 0.018 21.4 0.034 21.5 0.035 21.7 0.021 21.5 0.018 21.5 0.053 21.5 0.033 21.6

GoICPT 0.022 21.4 0.014 21.4 0.021 20.0 0.011 19.9 0.009 20.0 0.084 20.1 0.013 20.1 0.044 20.2 0.017 20.2
SAC-IA-ICP 0.001 5.9 0.003 5.3 0.009 4.8 0.001 6.0 0.003 5.4 0.009 4.9 0.001 6.5 0.004 5.8 0.009 5.2
Gl.RANSAC 0.001 2.1 0.005 2.6 0.005 2.9 0.001 2.3 0.005 2.5 0.004 2.8 0.001 2.6 0.005 2.5 0.005 2.8

FGR 0.012 0.5 0.022 0.5 0.024 0.4 0.012 0.5 0.016 0.4 0.017 0.4 0.021 0.5 0.015 0.5 0.013 0.4
GPIS-S2SPR 0.002 0.7 0.002 0.9 0.002 1.0 0.002 0.8 0.002 0.9 0.003 1.0 0.002 0.7 0.002 1.0 0.003 0.9

H
ap

py
B

ud
dh

a
[2

6] PCL-ICP 0.094 0.2 0.086 0.4 0.110 0.3 0.095 0.5 0.076 0.2 0.071 0.2 0.124 0.4 0.047 0.4 0.064 0.4
GoICP 0.043 21.5 0.032 21.4 0.085 21.3 0.075 21.4 0.050 21.3 0.052 21.3 0.051 21.4 0.067 21.5 0.012 21.4

GoICPT 0.013 20.2 0.025 20.1 0.028 20.2 0.016 20.2 0.031 20.2 0.022 20.1 0.023 20.0 0.031 19.9 0.020 20.0
SAC-IA-ICP 0.001 5.5 0.007 5.2 0.009 6.3 0.001 6.2 0.014 7.3 0.017 7.4 0.001 6.7 0.011 7.5 0.015 6.2
Gl.RANSAC 0.002 1.1 0.005 1.3 0.006 1.8 0.002 1.0 0.005 1.4 0.006 1.6 0.002 1.1 0.005 1.5 0.005 1.8

FGR 0.022 0.4 0.022 0.4 0.019 0.3 0.016 0.4 0.019 0.4 0.015 0.3 0.024 0.4 0.022 0.4 0.021 0.3
GPIS-S2SPR 0.003 1.0 0.002 0.8 0.002 0.8 0.001 0.6 0.003 0.7 0.002 0.8 0.002 0.7 0.002 0.7 0.003 1.2

TABLE II: Mean RMSE over all noise levels and overlap
factors for all point sets and algorithms. The best result is
highlighted in green.

Data PCL-ICP GoICP GoICPT SAC-IA-ICP Gl.RANSAC FGR GPIS-S2SPR

Bunny 0.073 0.077 0.103 0.005 0.004 0.011 0.001
Suzanne 0.109 0.083 0.076 0.009 0.022 0.055 0.002
Dragon 0.086 0.028 0.013 0.004 0.004 0.017 0.002
Buddha 0.085 0.052 0.052 0.008 0.004 0.020 0.002

Mean 0.088 0.060 0.061 0.007 0.009 0.026 0.002

The results with individual RMSE values � and runtime t
for each configuration are listed in Table I. The algorithms
GoICP and GoICPT (10% trimming) consistently showed
the worst performance in all test cases with regard to the
mean value of RMSE and total computation time. The
BnB algorithm in these algorithms is very expensive to
compute and the constant switch between ICP and BnB
was not able to achieve a global optimum solution. PCL-
ICP was able to converge very fast but is susceptible to
local minima. SAC-IA-ICP achieved the best performance
in case of an overlapping factor of 100% with an RMSE

of 0.001. However, the RMSE value increased drastically
to 0.01 in case of a partial overlap, Gl.RANSAC explores the
corresponding points in terms of FPFH and showed similar
performance. FGR converged very fast but showed a bad
performance in all experiments for the reasons explained in
Section VI-B. Our GPIS-S2SPR algorithm does not rely on
identifying corresponding points and is therefore stable for
different transformations. In this experiment, the RMSE for
GPIS-S2SPR is stable in terms of the overlapping factor and
noise for all point sets. As it is able to consider noise in its
formulation, the RMSE is approximated equal to 0.002 for all
noise levels. Table II shows the total RMSE computed over
all possible combinations for each point set and algorithm.
GPIS-S2SPR showed the best overall performance. In terms
of computation time, it is not always the fastest approach,
since GPIS is time-consuming due to the computation of an
inverse of the covariance matrix with a complexity of (m3).

D. Gearbox Assembly Application
We explore the capability of our algorithm by using real

point cloud data captured by the system shown in Fig. 1b,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 6: The first column shows the CAD models of the
gearbox components tree, bearing, and pipe. The second one
shows the mesh sampled point cloud from the CAD model
for each component. The cluster extracted from the point
cloud scene (Fig. 1b) is shown in column three. Column four
shows the initial source and target point cloud. The alignment
results of GPIS-S2SPR are shown in the last column.

where the task is to assemble a mechanical gearbox. In order
to grasp the objects on the table with the attached parallel
gripper, we require a 6D pose transformation.

The gear box assembly task consists of four parts, a
mechanical tree (Fig. 6a), two ball bearings (Fig. 6f), and a
mechanical pipe (Fig. 6k). All parts are available in the form
of CAD models. For the 6D pose estimation, we apply mesh
sampling to acquire a detailed point cloud (PC) for each
CAD model, shown in Fig. 6b, 6g, and 6l. The noisy point
cloud data shown in Fig. 6c, 6h, and 6m is extracted from the
actual data captured by the camera sensor as demonstrated
in Fig. 1b. We combine the Euclidean Cluster Extraction and
Region growing segmentation from PCL [25] to extract each
component from the point cloud scene. The initial position
relationship between the source and target point cloud is
shown in the fourth column of Fig. 6, where the tree is
lying on the table and the pipe is rotated by 90◦. As only
one 3D camera is used, we can only get a partial view
of the objects. The noise added by the camera sensor is
not a Gaussian distribution. We evaluate our algorithm with
these three components, the results are shown in the last
column of Fig. 6. Although the tree and ball bearing are two
highly symmetrical components, the algorithm can match the
bottom and the upper part with an error of 0.004 In the case
of the pipe alignment, the pipe cluster has two disconnected
parts and only an approximated 25% of object information
is available, which further increases the complexity. Our
algorithm can match the objects with an error of 0.009

E. Evaluation with Scanned Datasets

To further verify our algorithm, we evaluate the point
sets from semantic-8 [29] and Urban Scenes Velodyne Point
Cloud Dataset [30]. The corresponding results are shown
in Fig. 7. We compare our algorithm with PCL-ICP in
Fig. 7a, where the RMSE of PCL-ICP is 48 times that of
our algorithm. In Fig. 7b–7h, each sub-figure consists of two

images, where the left one is the initial state, and the right
one is the result of point registration. It can be seen that
our algorithm can work in different scenarios, such as urban
scenes [30] and different kinds of buildings. Furthermore,
we evaluate our algorithm with two additional point sets
from [27] and Shapenet [31], which are shown in Fig. 8. The
source point sets in Fig. 8 are indicated as blue points and
the target point sets as orange points. The initial setting for
source and target point sets are demonstrated in Fig. 8a, 8b
and 8c. From Fig. 8d, 8e, and 8f, we can see that the
alignment accuracy is very high in both point sets with an
RMSE value of 0.002, 0.0001, and 0.0001, respectively.

VII. CONCLUSION

We propose a new algorithm for a partially overlapping
3D surface registration algorithm. In this algorithm, we
abandon the traditional idea of point to point or point to
plane correspondence search to register the points. Instead,
we view the 3D surface as a Gaussian Process Implicit
Surfaces, which utilizes the signed distance function to
describe three manifolds. Furthermore, we convert the point
registration as a nonlinear least-squares problem to find a
rigid transformation between two point sets. For accelerating
the optimization process, we use a Principal Component
Analysis (PCA) together with Fast Point Feature Histograms
descriptors to compute the initial transformation. Moreover,
we derive the Jacobian matrix by applying the Lie algebra
perturbation method, which approximated the kernel function
with the first-order Taylor series. The whole optimization
follows the principle of Gauss-Newton algorithm. By slightly
adapting the Jacobian matrix with a damping value, we can
convert the algorithm to Levenberg-Marquardt solver. Our
approach demonstrated a higher accuracy performance and
more robust rotation invariant properties compared to state-
of-the-art methods by evaluating diverse experiments.
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Parameterizable and Jerk-Limited Trajectories with Blending for
Robot Motion Planning and Spherical Cartesian Waypoints

Jianjie Lin, Markus Rickert, and Alois Knoll

Abstract— This paper presents two different approaches
to generate a time local-optimal and jerk-limited trajectory
with blends for a robot manipulator under consideration of
kinematic constraints. The first approach generates a trajectory
with blends based on the trapezoidal acceleration model by
formulating the problem as a nonlinear constraint and a
non-convex optimization problem. The resultant trajectory is
locally optimal and approximates straight-line movement while
satisfying the robot manipulator’s constraints. We apply the
bridged optimization strategy to reduce the computational
complexity, which borrows an idea from model predictive
control by dividing all waypoints into consecutive batches with
an overlap of multiple waypoints. We successively optimize each
batch. The second approach is a combination of a trapezoidal
acceleration model with a 7-degree polynomial to form a path
with blends. It can be efficiently computed given the specified
blending parameters. The same approach is extended to Carte-
sian space. Furthermore, a quaternion interpolation with a high
degree polynomial under consideration of angular kinematics
is introduced. Multiple practical scenarios and trajectories are
tested and evaluated against other state-of-the-art approaches.

I. INTRODUCTION

Trajectory generation is a fundamental topic in the robotics
community that deals with the calculation of a time-optimal,
smooth, jerk-limited, and accurate motion for a well-defined
task. Manually programming and optimizing paths for com-
plex robot systems is no longer viable when it comes to
flexible production with small lot sizes and multiple robot
manipulators, a common use case in small and medium-
sized enterprises [1]. In order to quickly adapt to new
processes, new paths have to be generated automatically by
modern path planning algorithms that are able to calculate
complex motions for multiple manipulators in a narrow
space. As cycle times should be as short as possible, globally
optimal path planning algorithms [2] present a consider-
able advantage over classical algorithms that are followed
by a local optimization step. In order to avoid stopping
at every waypoint in a path, supporting various forms of
blending is a desired property in a trajectory generation
algorithm to further increase the performance of a robot
system. Kinodynamic path planning algorithms with velocity
information however are proven to be PSPACE hard [3]
and therefore lead to a large increase in computation time.
Industrial robot controllers and open-source implementations
commonly support blending via linear parabolic motions
and cubic spline interpolation. Trajectories based on linear

Jianjie Lin, Markus Rickert, Alois Knoll are with Robotics, Artificial
Intelligence and Real-Time Systems, Department of Informatics, Technis-
che Universität München, Munich, Germany jianjie.lin@tum.de
{rickert,knoll}@in.tum.de

parabolic blending, that only limit the acceleration, suffer
from infinite jerk around the blend waypoints [4]. Although
cubic spline interpolation can improve the smoothness of a
path by limiting the jerk, it can result in a more significant
deviation of the straight-line movement. This is especially
important when calculating trajectories for position-based
solutions in robot path planning. Trajectory generation with-
out explicit error bounds in the path deviation can lead to
undesired behavior. Deviating too far from the collision-
free solution path can result in collisions. Based on these
observations, we present two different approaches to generate
a trajectory for following multiple waypoints. They support
an explicit upper bound in deviation and are jerk-limited
around the blended waypoints. In our previous work [4],
we consider the situation of performing an accurate motion
for a robot manipulator by forcing the trajectory to pre-
cisely pass through all waypoints, which are either manually
specified or generated via a path planning algorithm. In
this work, we extend this to a more general application by
considering blending around the waypoints. In contrast to
most state-of-the-art blending algorithms, the jerk limitation
is followed throughout the trajectory. In the same way as
Haschke et al. [5] and Kröger et al. [6], the trapezoidal
acceleration profile is used to generate the trajectory between
two consecutive waypoints. As stated in [4], the trapezoidal
acceleration profile increases the optimization complexity
while considering phase synchronization. In comparison to
our previous work [4], we relaxed the objective function by
introducing two additional weights to control the distribution
of acceleration, deceleration, and cruising phases, which
reduces the optimization complexity and shows a better
performance from the perspective of straight-line movement.
We continue to utilize the principle of model predictive
control [4] for optimizing all waypoints by decomposing
them into many consecutive waypoint batches and bridging
each two adjacent batches with an overlapping waypoint. In
addition to the optimization approach, we present another
new approach that combines the trapezoidal acceleration
model with a high-degree polynomial to perform a blending
trajectory in joint and Cartesian space. Notably, quaternion
interpolation is integrated and extended to a high degree
polynomial, which considers the angular jerk and results in
a smooth quaternion trajectory.

II. RELATED WORK

Generating time-optimal and smooth trajectories has been
studied extensively for decades in the robotics community.

978-1-7281-9077-8/21/$31.00 ©2021 IEEE
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The proposed trajectory planning techniques are roughly
divided into two categories: online and offline planning.

Online real-time trajectory generation is mainly used to
deal with unforeseen events and a dynamic and fast modifica-
tion of the planned trajectory. Macfarlane et al. [7] proposed
a jerk-bounded fifth-order polynomial with parabolic blends
between two waypoints. Haschke et al. [5] presented an
online trajectory planner by considering arbitrary initial
kinematics and stopping at each waypoint. Kröger et al. [6]
extended the online planner in a more general approach,
which can handle arbitrary start and goal states. Lange
et al. [8] proposed a path-accurate and jerk-limited online
trajectory generation in configuration space. However, this
cannot be easily extended to multiple waypoints and it is
also not possible to blend the trajectory around the target.

Offline trajectory planning is suitable for a well-defined
task, such as assembly or welding applications. The standard
trajectory generator utilizes polynomials based on splines
such as cubic splines or polynomials of higher degrees to
provide a jerk-bound smooth trajectory. B-splines and their
extension method [9] are also widely used to generate smooth
trajectories. Although polynomial-based and B-spline-based
algorithms can generate a smooth trajectory, they cannot
fully explore the robot’s capabilities and show a significant
deviation from a straight line. Pham et al. [10] proposed a
new approach based on reachability analysis for the time-
optimal path parameterization (TOPP) problem. Similarly,
Nagy and Vajk [11] applied a linear programming-based (LP)
solver to tackle TOPP. Furthermore, Barnett et al. [12] intro-
duced a bisection algorithm (BA) by extending the dynamic
programming approaches to generate a trajectory. However,
those algorithms are expensive to perform a trajectory with
blends. Kunz et al. [13] proposed a path-following algorithm
by adding circular blends that consider the acceleration
bounds in joint space. Dantam et al. [14] presented spher-
ical, parabolic blends by using the SLERP function, where
no interpolation in a Cartesian pose is considered. These
algorithms however do not take jerk limitation into account.

III. PROBLEM FORMULATION

The goal is to find a time-optimal, jerk-limited, and smooth
trajectory that blends an intermediate waypoint without vi-
olating kinematic constraints. Furthermore, it is required to
minimize the deviation to a straight line in either joint or
Cartesian space. The trapezoidal acceleration-based trajec-
tory model [4], also called seven-segment model, has the
capability to generate a smooth and jerk-limited trajectory.
At segment ℎ ∈ [0,⋯ , 6], the kinematics are formulated as

aki,ℎ+1(t) = a
k
i,ℎ + j

k
i,ℎΔti,ℎ ,

vki,ℎ+1(t) = v
k
i,ℎ + a

k
i,ℎΔti,ℎ +

1
2
jki,ℎΔt

2
i,ℎ , (1)

pki,ℎ+1(t) = p
k
i,ℎ + v

k
i,ℎΔti,ℎ +

1
2
aki,ℎΔt

2
i,ℎ +

1
6
jki,ℎΔt

3
i,ℎ

at the waypoint i in the axis k. The parameter Δti,ℎ is
the time difference, defined as ti,ℎ+1 − ti,ℎ. For a phase

synchronization [15] trajectory, position, velocity, acceler-
ation, and jerk in each axis at the same segment should
be synchronized. The time evolution of a position is in-
terpreted by a third-order polynomial, which can increase
the smoothness of trajectories by bounding the jerk. In this
paper, we present two approaches: In the first approach, we
extend our previous work, which enforces a precise pass
through all waypoints, denoted as TrajOpt-Pass-Joint (TOPJ),
to generate a blending trajectory by formulating it as a non-
linear constraint optimization problem, indicated as TrajOpt-
Blend-Joint (TOBJ). In the second approach, we combine
the trapezoidal acceleration model with a high-dimensional
polynomial (7-degree) to generate a blending trajectory both
in joint space TrajPoly-Blend-Joint (TPBJ) and Cartesian
space TrajPoly-Blend-Cart (TPBC).

A. Blending by Optimization in Joint Space (TOBJ)

A blending trajectory is formulated as a nonlinear con-
straint optimization problem by applying a nonlinear op-
timization solver (SQP) [16]. The work presented in this
paper introduces a newly designed objective function and
additional inequality and equality constraints. We follow the
same optimization strategy as introduced in [4].

1) Objective Function: The purpose of the objective func-
tion f is to find a trajectory that is optimal in time and moves
as linearly as possible in joint space as

f =
i=n
∑

i=1

(

�3
(

(

(Δti,acc + Δti,dec)�1
)2 +

(

Δti,cruis�2
)2
)

+ �4
k=m
∑

k=1
(vki,3)

2 exp
(

−
Δt2i,cruis
2�2

)

)

,

(2)

where n is the number of waypoints, m are the degrees
of freedom of a robot. The time interval of the accel-
eration phase is indicated as Δti,acc, the cruising phase
as Δti,cruis, and the deceleration phase as Δti,dec. The weight
values �1 and �2 are used to control the distribution of
the acceleration/deceleration and cruising phase. The choice
of

(

(Δti,acc + Δti,dec)�1
)2 + (Δti,cruis�2)2 has advantages

over the formulation
(

(Δti,acc + Δti,dec)�1 + Δti,cruis�2
)2,

which avoids the product of (Δti,acc+Δti,dec)Δti,cruis, so that
acceleration/deceleration phase and cruising phase cannot
affect each other. On top of this, �3 is used to minimize
the whole trajectory time. In this formulation, �3 and �1∕�2
conflict with each other. �1∕�2 is used to achieve a straight-
line motion, while minimizing the time with �3 requires a
longer acceleration/deceleration phase that can lead to an
overshooting trajectory. In [4], the straight-line deviation
bound is added in the objective function. In this work, we
relax this constraint by emphasizing a straight-line in joint
space. Furthermore, the overshooting is observed with

Δti,cruis =
(

(pki,target−p
k
i−1,0)−

(

Δpki,acc + Δp
k
i,dec

)

)

∕vki,3 , (3)

where Δpki,acc =
∑ℎ=2
ℎ=0 p

k
i,ℎ(ti,ℎ, v

k
i,0, a

k
i,0) and Δpki,dec =

∑ℎ=7
ℎ=4 p

k
i,ℎ(ti,ℎ, v

k
i,4, a

k
i,4, v

k
i,7, a

k
i,7). If the time Δti,cruis is neg-

13983

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 02,2023 at 08:01:43 UTC from IEEE Xplore.  Restrictions apply. 



ative, the reached position overshoots the target. To elim-
inate this undesired behavior, the cruising phase should
be omitted. Since Δpki,acc + Δp

k
i,dec has a longer distance

than pki,target − pki−1,0, we can reduce the cruising veloc-
ity vki,3 to shorten Δpki,acc. Besides, the trapezoidal end
velocity vi,7 influences the position Δpki,dec, which can be
automatically tuned by the optimization solver. We add a

regular term (vki,3)
2 exp(−

Δt2i,cruis
2�2 ) in the objective function

with �, which controls the decay rate. It can be shown

that at Δti,cruis ≈ 0, the regular term (vki,3)
2 exp(−

Δt2i,cruis
2�2 )

is approximated as (vki,3)
2, and the velocity is reduced by

minimizing the objective function. In the case of Δti,cruis > 0,

the Gaussian value exp(−
Δt2i,cruis
2�2 ) is exponentially decayed to

zero, which has no effect on the cruising phase.
2) Kinematic Constraints: Instead of passing through

the waypoints, we define a blending bound between two
consecutive line segments. Furthermore, we set a non-zero
velocity and acceleration for each waypoint, except for the
first and last waypoint. The constraints are described as

pk(ti,ℎ1 ) = p
k
i+1,bl,start , ℎ1 ∈ [4,… , 6] ,

pk(ti+1,ℎ2 ) = p
k
i+1,bl,end , ℎ2 ∈ [0,… , 3] ,

vk(t0,0) = vk(tn,0) = 0, Δti,ℎ ≥ 0 ,
ak(t0,0) = ak(tn,0) = ak(ti,3) = 0 ,
|jk(ti,ℎ)| ≤ jkmax , |a

k(ti,ℎ)| ≤ akmax ,∀ℎ ∈ [0,… , 6]
|vk(ti,ℎ)| ≤ vkmax , |p

k(ti,ℎ)| ≤ pkmax ,∀ℎ ∈ [0,… , 6]
pki,bl,lower ≤ pki+1,bl ≤ pki+1,bl,upper ,

(4)

where pki+1,bl,start is the start blending segment position at
waypoint i + 1 in axis k and pki+1,bl,end is the end blending
segment position at waypoint i + 1 in axis k. The vari-
able pki,bl,lower , p

k
i,bl,upper is a lower and upper blending bound,

respectively. The corresponding optimized blending way-
point at i + 1 in axis k is indicated as pki+1,bl. The variable ℎ1
and ℎ2 are predefined values that depend on the blending
percentage. One relaxation of the jerk j constraint [5] is
made by allowing double acceleration or deceleration phases:
sign(j) is no longer strictly defined as [±, 0,∓, 0,∓, 0,±]
but changed to sign(j) = [±, 0,±, 0,±, 0,±]. This relaxation
allows reaching the next waypoint without slowing down.

3) Blending Bound Constraints: The blending con-
straint pi,bl,con is computed as pi+1+ ŷr�, where ŷ is defined
as ŷ2−ŷ1

‖ŷ2−ŷ1‖
with ŷ1 = pi+1−pi

‖pi+1−pi‖
and ŷ2 = pi+2−pi+1

‖pi+2−pi+1‖
.

Additionally, r = li∕(tan �i+1∕2) with �i+1 = arccos(ŷT1 ŷ2)
and li = min

{

‖pi+1−pi‖
2 , ‖pi+2−pi+1‖2 , � sin(�i+1∕2)

(1−cos(�i+1∕2))

}

, where �
is the predefined blending distance from qi+1. � is the per-
centage value for controlling the blending bound. The devi-
ation �bl = ‖

‖

pi,bl,con − p(ti,7)‖‖ is bound. Utilizing the blend-
ing constraints, we have pki,bl,lower = min{pki,bl,con, p

k(ti,7)}
and pki,bl,upper = max{p

k
i,bl,con, p

k(ti,7)}.

B. Blending with Polynomial in Joint Space (TPBJ)

The second approach combines the trapezoidal with a
high-dimensional polynomial to form a blending path. The
blending segment is described as a high-degree polynomial
under consideration of initial f0 = (p0, v0, a0, j0) and
final f1 = (p1, v1, a1, j1) kinematic constraints. These
require a total of eight coefficients, therefore we utilize
a 7-degree polynomial function in one dimension: f (t) =
b7t7 + b6t6 +⋯ + b2t2 + b1t + b0. The coefficients b0 - b3
can be computed using f0 with b0 = p0, b1 = v0, b2 =

a0
2

and b3 =
j0
6 . The coefficients b4 to b7 depending on f1 and

polynomial time t can be described as

⎡

⎢

⎢

⎢

⎣

t71 t61 t51 t41
7t61 6t51 5t41 4t31
42t51 30t41 20t31 12t

2
1

210t41 120t
3
1 60t

2
1 24t1

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A1

[ b7
b6
b5
b4

]

⏟⏟⏟
x1

=
[ p1v1a1
j1

]

⏟⏟⏟
y1

−
⎡

⎢

⎢

⎣

1 t11 t21 t31
0 1 2t1 3t21
0 0 2 6t1
0 0 0 6

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
A2

[ b0
b1
b2
b3

]

⏟⏟⏟
y2

.

Due to this, x1(t1, f0, f1) = A−11 (y1 − A2y2) with time
matrices A1, A2. The polynomial is simplified as

f (t, f0, f1) = [t7, t6, t5, t4]x1(t1, f0, f1) + ℎ2(t, f0) , (5)

where ℎ2(t, f0) is described as 1
6 j0t

3 + 1
2a0t

2 + v0t + p0.
Firstly, we assume that the initial f0 and final f1 kinematic
constraints are available. Therefore, f (t) depends only on the
time t. To find a polynomial blending trajectory that satisfies
all kinematic constraints, we need to verify the extreme point
of the polynomial by computing the root of its derivative.
For example, the extreme point of jerk can be found at the
position where the first derivative of the jerk (snap) is equal
to zero. In addition, a n-degree polynomial has at most n real
roots. The constraints can be mathematically formulated as

|f (n−1)(�(f (n)))��(�(f (n)))| ≤ kmax , (6)

where f (n) is n-th derivative of f with n ∈ [1, 4] and the
corresponding constraints kmax ∈ [pmax, vmax, amax, jmax].
The root-finding function �(f (n)) for a given polynomial is
used to find the extreme value position for f (n−1). �A(x) is
the indicator function of A and will be set to one if x ∈
[0, t], otherwise to zero. Note that if the �A(x) function
is not derivable, the gradient-based optimization solver will
diverge. To find a time-optimal polynomial trajectory that
satisfies initial/final conditions and lies within the kinematic
constraints, we iteratively check the constraints (6) by adding
a small delta to t = t + Δt, where in our case Δt is set
to 0.001. Furthermore, to obtain the initial f0 and final f1
kinematics, we compute a Point to Point (P2P) trapezoidal
acceleration profile movement between each two waypoints,
which can be in joint space or Cartesian space, with zero
initial and end conditions, and the computed traveling time
is indicated as ti−>i+1. After that, we predefine a blending
percentage � to set a start blending time tbstart = (1−�)ti−>i+1
and end blending time tbend = �ti+1−>i+2 for each two
consecutive trajectories. By querying the trapezoidal model
at tbstart and tbend , we obtain the kinematics f0 and f1.
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C. Blending with Polynomial in Cartesian Space (TPBC)

Utilizing the same principle, we extend the algorithm to
the Cartesian space, which is widely used in industrial appli-
cations. The blending trajectory in Cartesian space requires
separate blending for position and orientation. Interpolation
of the Cartesian space is executed in the same way as de-
scribed in Section III-B. For the orientation part, which has to
consider a spherical interpolation, we apply the formulation:

h(t) = hiΔh(t) = hi
(

u(t) sin(�(t)∕2)
cos(�(t)∕2) ,

)

(7)

where hi is the initial quaternion, and Δh(t) transforms the
quaternion from hi to h(t). The Eigen axis between two
quaternions is defined as u(t) = �(t)∕ ‖�(t)‖ ∈ 3 with a
rotation angle �(t) = ‖�(t)‖. Therefore, the quaternion inter-
polation depends only on �(t) ∈ 3. To consider the angular
velocity !, angular acceleration !̇, and angular jerk !̈ at
the start and end state for the quaternion blending, the time
evolution function �(t) is described as: �(t) = a1(x − 1)7 +
a2x(x−1)6+⋯+a8x7 with x = t

tf−t0
∈ [0, 1]. Its roots and

its derivative are computed at point x = 0 and x = 1. Based
on ḣ = 1

2h!, we can derive the relationship between ! ∈ 3

and �̇ ∈ 3 as ! = u�̇ + sin(�)w × u − (1 − cos(�))w,
where w = (u×�̇)

� ∈ 3 and �̇ = uT �̇ is a scalar value. We
further simplify ! with the skew-symmetric matrix (⋅)× as
! = (uuT − sin(�)

� u×u× − (1−cos(�))
� u×)�̇ = A!,1�̇. In the same

way, we can compute the angular acceleration !̇ and jerk !̈.
We combine Cartesian position and quaternion interpolation
to form a trajectory with blends.

IV. EXPERIMENTAL EVALUATION

We compare the performance of the presented approaches
in this paper with the work by Kunz et al. [13] (TO-BAV),
Pham et al. [10] (TOPP-RA) and our previous work [4].
The work in [13] generates a trajectory with a designed cir-
cular blend under consideration of velocity and acceleration
bounds and the work [10] used the reachability-analysis (RA)
to solve the time optimal path parameterization (TOPP)
problem. Our previous work [4] generates a trajectory by
forcing a precise pass through all desired waypoints without
stopping. For the evaluation of the motion planning scene,
the collision-free paths in the examples are computed using
the Robotics Library [17], which is also used for kinematic
calculations and simulation. In the evaluation, we set the
weights in [4] and TOBJ as �1 = 1.2, �2 = 1, �3 = 5000,
and �4 = 10. All evaluations were performed on a laptop
with a 2.6GHz Intel Core i7-6700HQ and 16GB of RAM.

A. Evaluation of Deviation from Straight-Line in Joint Space

For the first evaluation, we consider a subset of the well-
known ISO 9283 [18] cube industrial benchmark as shown in
Fig. 1. Here, the robot’s end effector has to follow a number
of waypoints that are part of a two-dimensional rectangle
inside a three-dimensional cube while applying blending.
The corresponding results are shown in Fig. 1. The previous
work TOPJ [4] in Fig. 1a completed the ISO cube task

within 6.26 s by passing through all waypoints and the gener-
ated trajectory has to deviate from the straight-line movement
to avoid stopping at each waypoint. For improving the quality
of the trajectory, TOBJ presented in this work extends the
TOPJ by blending around the target position, which results
in a better straight-line movement and completed the ISO
cube task with a shorter time of 6.1 s due to a shortened
path length. The polynomial based algorithm (TPBJ) can
further reduce the completion time to 5.94 s by setting a
bigger blending circle radius.

B. Comparison between TO-BAV, TOPP-RA and TPBJ

In this section, we compare the algorithm of [10], [13] and
our polynomial-based one, as using an extreme jerk value
in the optimization-based one may not converge since the
gradient value in jerk direction is not at the same order
of magnitude with other gradient values in the gradient
vector. The results are shown in Figs. 2a to 2o. The first
column shows the results from TO-BAV [13], where the
velocity arrives at the peak value very quickly with execution
time 2.2577 s. The second column illustrates the results of
TOPP-RA [10], which is forced precisely to pass through
desired waypoints with the traveling time 2.88 s. The other
columns show the results of the polynomial-based algorithm
with increasing jerk limits, starting from 5, to 100, and
finally 10 000 times the maximum velocity value. The re-
spective trajectory travel time reduces from a value of 3.577 s
to 2.28 s and our algorithm gradually approaches the profile
of [13], while still limiting the jerk. We plot the first and third
DOF path without loss of generality, shown in the first row.
TOPP-RA produces a trajectory shown in Fig. 2b which has
a noticeably bigger straight-line deviation in joint space than
other two algorithms. The bigger straight-line deviation can
lead to a collision, which is not desirable for the industrial
application. From the perspective of velocity and acceleration
performance, the velocity profile from TOPP-RA shown
in Figs. 2g and 2l is less smooth than TO-BAV and TPBJ
and exhibits several vibration points.

C. Evaluation of the Algorithm in a Real Robot Workcell

We evaluate our algorithms on a Universal Robots UR5
robot manipulator by looking at the actual velocity and
current measured by the UR5 controller with an update rate
of 125Hz over the native Real-Time Data Exchange protocol.
We compare our approaches against the algorithm developed

(a) (b) (c)

Fig. 1: Comparison of joint space trajectories for the ISO
cube scenario. The plots show the first and second DOF of
different algorithms. The straight line reference in joint space
is shown in red, the calculated joint trajectory in blue with
(a) TOPJ [4], (b) TOBJ, (c) TPBJ.

13985

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 02,2023 at 08:01:43 UTC from IEEE Xplore.  Restrictions apply. 



(a) Pos. (TO-BAV) (b) Pos. (TOPP-RA) (c) Pos. (TPBJ) (d) Pos. (TPBJ) (e) Pos. (TPBJ)

0 s 2.257 s
−2.6 rad∕s

2.2 rad∕s

(f) Vel. (TO-BAV)

0 s 2.887 s
−2.7 rad∕s

2.2 rad∕s

(g) Vel. (TOPP-RA)

0 s 3.578 s

−1.31 rad∕s

1.13 rad∕s

(h) Vel. (TPBJ)

0 s 2.328 s
−2.52 rad∕s

2.19 rad∕s

(i) Vel. (TPBJ)

0 s 2.28 s
−2.25 rad∕s

1.94 rad∕s

(j) Vel. (TPBJ)

0 s 2.257 s
−6.3 rad∕s2

6.3 rad∕s2

(k) Acc. (TO-BAV)

0 s 2.887 s
−6.3 rad∕s2

6.3 rad∕s2

(l) Acc. (TOPP-RA)

0 s 3.578 s

−3.3 rad∕s2
4.17 rad∕s2

(m) Acc. (TPBJ)

0 s 2.328 s
−6.9 rad∕s2

6.31 rad∕s2

(n) Acc. (TPBJ)

0 s 2.28 s
−6.27 rad∕s2

6.32 rad∕s2

(o) Acc. (TPBJ)

Fig. 2: Comparison of results from TO-BAV [13], TOPP-RA [10] and TPBJ with increasing jerk constraints. (a)–(e) show the
plot of first and third DOF with generated trajectory (blue) and target straight-line path (red). (f)–(j) is the velocity profile.
(k)–(o) is the acceleration profile. In our approach, TPBJ gradually increases jerk constraints from jmax = {5, 100, 10000}vmax.

(a) TO-BAV (b) TOPJ (c) TOBJ (d) TPBJ (e) TPBC

0 s 3.30 s
−1.8 rad∕s

1.6 rad∕s

(f) TO-BAV

0 s 3.83 s

−1.4 rad∕s

1.1 rad∕s

(g) TOPJ

0 s 3.80 s

−1.1 rad∕s

1.0 rad∕s

(h) TOBJ

0 s 3.56 s

−1.3 rad∕s

1.2 rad∕s

(i) TPBJ

0 s 4.36 s

−1.2 rad∕s

0.9 rad∕s

(j) TPBC

0 s 3.30 s
−4 rad∕s

0 rad∕s

4 rad∕s ⋅10−2

(k) TO-BAV

0 s 3.83 s

−2 rad∕s
0 rad∕s
2 rad∕s

⋅10−2

(l) TOPJ

0 s 3.80 s

−2.1 rad∕s
0 rad∕s

2.1 rad∕s
⋅10−2

(m) TOBJ

0 s 3.56 s

−2.5 rad∕s
0 rad∕s

2.5 rad∕s
⋅10−2

(n) TPBJ

0 s 4.36 s

−2 rad∕s
0 rad∕s
2 rad∕s

⋅10−2

(o) TPBC

Fig. 3: A comparison of different trajectory profiles for the UR5 example. The individual plots show (a)–(e) position,
(f)–(j) velocity with the controller’s target (red) and actual (blue) value, and (k)–(o) corresponding velocity differences.

by TO-BAV [13]. The evaluation results are illustrated in
Fig. 3. The maximum velocity and acceleration values are
identical for all trajectory generators. The only difference
is that [13] does not consider any jerk limitation. The
remaining algorithms limit the maximum jerk to a value of
five times faster than the maximum velocity. We evaluate
the computational complexity of each algorithm by running
the experiment 40 times. The computed trajectories are
visualized in a 3D environment [17] as shown in Figs. 3a
to 3e. The blending directly implemented in Cartesian space
follows a straight line. The other four algorithms have a sim-
ilar trajectory performance. It needs be pointed out that the
blending mode in [4] is different from the other algorithms,
as it can pass precisely through all desired waypoints without

stopping. From the perspective of velocity performance, the
result from [13] indicates a large gap between desired and
real velocity which occurs at each turning point, shown in
Fig. 3k, as the robot controller is not able immediately to
execute a trajectory that contains an infinite jerk. If the
maximum specified acceleration is further increased, the
additional burden on the motors may lead to hardware issues
and a reduced lifetime. In contrast to this, the algorithm
presented in this work considers the jerk limitation. The robot
controller can follow the desired waypoints continuously
and demonstrates reduced motor current values. Figures 3g
and 3h exhibit a clear period of cruising phase in comparison
to the other algorithms, as the objective function in the
optimization step emphasizes a longer constant velocity
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TABLE I: Benchmark results of path planning scenarios. The best results are highlighted in bold and smaller values are
better. The maximum blending deviation � is set to 0.1. The jerk limitation used by TPBJ is set to 100x and 500x of the
maximal velocity constraints, denoted as TPBJ1 and TPBJ5, respectively. TOBJ is set to 100x. Npoint describes the number
of waypoint, tcomp is the computation time, and ttra is the traveling time. Lalg is the traveling length, Lstra is the base
straight-line length, and we present the percentage.

Scenario 1 (Npoint = 42) Scenario 2 (Npoint = 55) Scenario 3 (Npoint = 42) Scenario 4 (Npoint = 181)

Alg. TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5 TO-BAV TOPP-RA TOBJ TPBJ1 TPBJ5

tcomp [s] 0.23 0.28 54.15 0.15 0.088 0.28 0.186 65.7 0.65 0.319 0.32 0.45 149.52 0.41 0.25 1.68 0.54 231.68 0.70 0.41
ttra [s] 4.08 3.759 7.09 7.02 5.95 3.67 3.40 6.35 6.58 5.88 25.20 23.95 26.17 26.32 25.48 11.75 10.55 26.48 26.44 18.91

Lalg∕Lstra 0.999 1.0027 0.997 1.0001 0.999 0.999 1.003 0.998 1.0001 0.998 0.998 1.174 0.997 1.001 0.997 0.996 1.001 1.001 1.001 0.997

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Fig. 4: Benchmarks on different motion planning scenarios. (a) a Comau Racer 7-1.4 moves to a workstation with a parallel
gripper. (b) a UR5 moving between two walls. (c)–(d) a Kuka KR60-3 next to a wall and 3 columns with a vacuum gripper.

phase over the acceleration and deceleration phases. This
behavior is desirable in certain industrial robot task such
as welding and gluing, as the cruising segments show a
smoother overall behavior compared to the other segments.

D. Evaluation of Computation Complexity in Motion Plan-
ning Scenarios

We evaluate the algorithms for generating trajectories in
different path planning scenarios with an increasing number
of waypoints (from 42 to 181) and different point distribution
characteristics, as illustrated in Fig. 4. We compare our
approaches against TO-BAV, which is currently a standard
trajectory generator in the MoveIt! framework, and TOPP-
RA. We summarize the results in Table I. Regarding com-
putation time, TPBJ is faster in most scenarios apart from
scenario 2. In comparison to TOBJ and TPBJ under the same
jerk limitation (100x of maximal velocity constraints), they
show a similar performance. However, if the jerk limitation is
bigger than 100x, TOBJ has a convergence problem, because
jerk and time have huge differences in numerical magnitude.
In comparison to TO-BAV and TPBJ with jerk limitation set
to 100x and 500x of the maximum velocity constraint, we
can conclude that with a higher jerk limitation, TPBJ can sig-
nificantly reduce the traveling time. This conclusion can be
drawn from subsection IV-B as well. The trajectory optimizer
TOPP-RA without jerk limitation generates a trajectory with
minimal traveling time. From the perspective of straight-line
deviation, TOPP-RA generated a trajectory with significant
overshooting in scenario 3 with 117.4% path length with
respect to a straight-line movement, since TOPP-RA utilizes
cubic spline interpolation for path parameterization. The
drawbacks of using cubic spline interpolation are shown
in [4].

V. CONCLUSION

In this work, we have extended our previous work by
including the capability to blend around the target position.
We have presented two different approaches to finding a
time-optimal and jerk-limited trajectory. In the first approach,
the algorithm follows the same principle as in our previous
work by using a bridged optimization procedure, which
reduces the computational complexity to a linear complexity
with respect to the number of waypoints and degrees of
freedom. In contrast to our previous work, we redesigned
the objective function and blending constraints to achieve
a better straight-line movement in joint space and allow
the trajectory to blend around the target position. However,
TOBJ has a convergence problem when the jerk constraint
exceeds 100x of the maximum velocity constraint due to
the huge differences in numerical magnitude between jerk
und time. Further improvement will be left to future work
by using more advanced optimization strategies. The second
approach combines a trapezoidal trajectory with a seven-
degree polynomial. In this approach, we compute a point-
to-point motion for every two waypoints by using a stan-
dard trapezoidal acceleration model. By specifying a blend
percentage, the seven-degree polynomial can be used to
find a curve segment around the target position. To find
a time-optimal trajectory that fully considers all kinematic
constraints, we iteratively increase the trajectory time until
these constraints are no longer violated for all degrees of
freedom. The second approach can be directly extended
to the Cartesian space by using the introduced quaternion
interpolation algorithm. These two approaches do not suffer
from convergence problems and show good performance
in our experiments when compared against state-of-the-art
approaches without jerk limitations.
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[11] Á. Nagy and I. Vajk, “Sequential time-optimal path-tracking algorithm
for robots,” IEEE Transactions on Robotics, vol. 35, no. 5, Oct. 2019.

[12] E. Barnett and C. Gosselin, “A bisection algorithm for time-optimal
trajectory planning along fully specified paths,” IEEE Transactions on
Robotics, vol. 37, no. 1, pp. 1–15, Feb. 2021.

[13] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path
following with bounded acceleration and velocity,” Proceedings of
Robotics: Science and Systems, July 2012.

[14] N. Dantam and M. Stilman, “Spherical parabolic blends for robot
workspace trajectories,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago, IL, USA,
Sept. 2014, pp. 3624–3629.
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Deep Hierarchical Rotation Invariance Learning with
Exact Geometry Feature Representation for Point Cloud Classification

Jianjie Lin, Markus Rickert, and Alois Knoll

Abstract— Rotation invariance is a crucial property for 3D
object classification, which is still a challenging task. State-of-
the-art deep learning-based works require a massive amount
of data augmentation to tackle this problem. This is however
inefficient and classification accuracy suffers a sharp drop
in experiments with arbitrary rotations. We introduce a new
descriptor that can globally and locally capture the surface
geometry properties and is based on a combination of spher-
ical harmonics energy and point feature representation. The
proposed descriptor is proven to fulfill the rotation-invariant
property. A limited bandwidth spherical harmonics energy
descriptor globally describes a 3D shape and its rotation-
invariant property is proven by utilizing the properties of
a Wigner D-matrix, while the point feature representation
captures the local features with a KNN to build the con-
nection to its neighborhood. We propose a new network
structure by extending PointNet++ with several adaptations
that can hierarchically and efficiently exploit local rotation-
invariant features. Extensive experimental results show that
our proposed method dramatically outperforms most state-of-
the-art approaches on standard rotation-augmented 3D object
classification benchmarks as well as in robustness experiments
on point perturbation, point density, and partial point clouds.

I. INTRODUCTION

Convolutional neural networks (CNN) [1] have shown
tremendous success in image processing due to their
translation-invariant capability of detecting local patterns
regardless of their position in the image and their ability
to process regular data, such as image grids or 3D voxels.
However, the more challenging rotation-invariant property is
still missing in the designed structure [2]. Data augmentation
is a common approach to address this issue. The infinite
property of the rotation group howver makes this approach
less efficient and comes with a high computational cost.
A big neural network with rotation-augmented data is re-
quired to generalize the data set. In 3D, geometric irregular
data formats such as point clouds increase the difficulty
of handling the rotation transformation, while irregular data
formats suffer from a permutation problem N!. To address
this issue and to inherit the benefits of convolutional net-
works, which can process regular data formats, previous
work such as [3], [4] voxelized geometric shapes. [5], [3], [6]
proposed a rotation-equivariant network with newly designed
spherical convolutional operators. However, the voxelization
of 3D geometry induces a trade-off between resolution and
computational cost. The pioneering work PointNet used a

Jianjie Lin, Markus Rickert, Alois Knoll are with Robotics, Artificial
Intelligence and Real-Time Systems, Department of Informatics, Technis-
che Universität München, Munich, Germany jianjie.lin@tum.de
{rickert,knoll}@in.tum.de

spatial transformation network to learn an affine transforma-
tion, which still did not fulfill the requirement. Inspired by
CNNs, which use different receptive fields to aggregate the
local features, DGCNN used a dynamic k-nearest neighbors
algorithm (KNN) to exploit local information. However, its
classification results still suffer a sharp drop in rotation
experiments.

For alleviating the issue, we introduce two different
rotation-invariant features (RIF). The first one is spherical
harmonics [7], which transform the Cartesian pose to the
spectral domain by using a non-commutative Fourier analysis
methods and are related to the power spectrum in the
perspective of signal processing. The second feature can
locally describe the geometry relationship by creating a
Darboux frame at each object point with a KNN-graph. This
geometry point feature is also utilized in the point feature
histogram [8] and fast point feature histogram [9]. The
rotation-invariant feature aims at separating the rotated point
cloud and the network so that the input space is invariant
to arbitrary rotation perturbation. Furthermore, we design a
new network structure that can hierarchically extract the local
features by applying the farthest point sampling strategy.
The proposed network structure is composed of RIMapping,
PF Abstraction, and Classification blocks. In the RIMapping
block, rotation-invariant features are fed to a feature transfor-
mation network, which maps the lower level feature to a high
level embedding space. Two consequent abstraction layers
work on these high-level embedding features. For further
exploiting the local geometry information, a fully connected
point feature graph is built on each cluster and the resultant
features are fed to a point feature transformation. Afterward,
a global abstraction layer can aggregate all previous em-
bedding features together to obtain a global feature. The
Classification block is a standard fully connected network to
classify the objects. We evaluated our proposed network on
ModelNet40 with different experimental settings and achieve
or exceed most state-of-the-art approaches.

Our primary contributions are two-fold: a) we introduce
a novel geometry rotation-invariant feature descriptor, which
can globally and locally represent a 3D shape. b) a new
rotation-invariant classification network structure is designed,
which can efficiently exploit local geometric features.

II. RELATED WORK

With recent good results from deep learning in image-
based recognition, 3D visual recognition has also received
more attention and rapid development. It benefits from deep
learning in extracting and learning geometric features more
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efficiently, but the recognition of 3D geometry differs from
image-based recognition in many factors. One main aspect
are the representation formats, where 3D geometry uses
various methods such as point cloud-based representation,
implicit surfaces based representation, or volumetric-based
representations. These different formats lead to different
learning methods. In contrast, the imaged-based representa-
tion is interpreted in regular data, where the conventional
CNN is designed to handle such regular data. The per-
mutation N! is a common problem in the irregular data
format. Based on these observations, previous work seeks to
utilize benefits from conventional CNNs by voxelizing the
3D geometric shape [4], [10], [11], [12] or by using multi-
view images [11], [13], [14]. However, the trade-off between
the resolution and computational cost makes generalization
impossible. Most 3D convolutional neural networks sacrifice
high resolution to obtain fast calculations to build upon a
shallow network. To alleviate the negative impact of accuracy
due to resolution, an Octet [15] is proposed by hierarchically
partitioning the space using a set of unbalanced octrees to
exploit sparse input data.

In contrast to a volumetric representation, PointNet [16]
is the first work that directly feeds the point cloud into
a set of shared MLP networks and uses the max pool
operator to extract global features. It shows a significant
improvement in the perspective of 3D shape reasoning and
computational cost. PointNet, however, does not extract local
information. Follow-up work such as PointNet++ [17] pro-
gressively aggregated local features using the farthest point
sampling strategy. Moreover, DGCNN [18] introduced a
dynamic KNN to build a local graph and aggregated the edge
features to obtain a better feature representation. A point-
based neural network satisfies many properties, e.g., permu-
tation invariance with a shared MLP and max pool operator
and translation equivariance with a relu operator [5]. This
network is shown to solve many classical problems such as
classification, part segmentation, and instance segmentation.
The rotation-invariant property is however still missing in the
designed structures. PointNet applies a spatial transformer
network [19] to predict an affine transformation matrix. Other
work attempts to augment the data set by generating a lot
of SO(3) combinations. However, SO(3) is infinite, and data
augmentation wastes computational resources and cannot
guarantee effectiveness. To alleviate this issue, previous work
proposed a rotation-equivalence network structure. [20], [5],
[3] designed a spherical-based convolutional operator uti-
lizing the properties of spherical harmonics. [21] proposed
tensor field networks, which map point clouds to point clouds
under the constraint of SE(3) equivariance by utilizing a
spherical harmonics filter. Spherical representations for 3D
data are not novel and have been used for retrieval tasks
before the deep learning era [7], [22].

Spherical-based CNNs were initially designed for vox-
elized shapes and suffered a loss of geometric information, as
there is no bijection between ℝ3 and 2-dimensional sphere
S2 [23] as mentioned above. Instead of proposing a new
convolutional operator, [23] introduced rigorously rotation-

invariant (RRI) features by transforming the point from
Cartesian space into an embedding space and showed a good
improvement in experiments. However, the RRI features
focus only on the local feature using the same dynamic KNN
as DGCNN.

III. GEOMETRIC RIF DESCRIPTOR

Given a set of transformations Tgi ∶  →  for gi ∈
SO(3), a rotation-invariant function �(⋅) has the property

�(Tg1q) = �(Tg2q) , (1)

where q ∈ ℝ3 is a point in the Cartesian coordinate
system. Pioneering works in processing point clouds are
PointNet and DGCNN, where EdgeConv from DGCNN
and mini-PointNet from PointNet++ utilize the edge feature
represented as an implicit geometry feature by considering
geometric constraints between points. The edge features xi−
xj and pose point xi do not satisfy the property described
in (1). Furthermore, edge features under a dynamic KNN
can only represent the local geometric context for point
clouds in the embedding space. For alleviating this issue,
two rotation-invariant descriptors will be introduced, that
globally (spherical harmonics descriptor) and locally (point
feature descriptor) represent the geometry shape.

A. RI Spherical Harmonics (SH) Descriptor
Definition: Spherical harmonics define an orthonormal

basis over the sphere, with the parameterization

(x, y, z) = (sin(�) cos('), sin(�) sin('), cos(�)), (2)

where (x, y, z) is a location defined on a unit sphere with co-
latitude � and longitude ' and the orthonormal basis function
given by Rodrigues’ formula can be described as

Y ml (�, ') = Km
l P

m
l (cos �)e

im' , (3)

with the normalized constant variable Km
l and the associ-

ated Legendre polynomials Pml . The parameters l and m
are the spherical harmonic degree and order, respectively.
Furthermore, the order should satisfy the constraint −l ≤
m ≤ l. The real spherical harmonics are sometimes known
as tesseral spherical harmonics. These functions have the
same orthonormality properties as the complex ones above.
The harmonics with m > 0 are said to be of cosine type
and those with m < 0 of sine type. The reason for this can
be seen by writing the functions in terms of the Legendre
polynomials Pml with Condon-Shortley phase convention as

Ylm =
⎧
⎪⎨⎪⎩

(−1)m
√
2K l

|m|P
|m|
l (cos �) sin(|m|') if m < 0√

2l+1
4� P

m
l (cos �) if m = 0

(−1)m
√
2K l

mP
m
l (cos �) cos(m') if m > 0

(4)
Moreover, for any rotation matrix R ∈ SO(3), the rotated
SH Y ml (R⋅) can be expressed as a linear combination of other
SHs of the same degree l

Y ml (R⋅) =
l∑

m′=−l

[
D(l)

R [m,m′]
]∗
Y m

′

l , (5)
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where D(l)
R [m,m′] ∈ ℂ(2l+1)×(2l+1) is called the Wigner D-

matrix. Note that the Wigner matrices Dl are all orthonormal
and irreducible representations of SO(3) [24], which consid-
ers them as smallest representations possible. In accordance
with the unitary of D(l)

R , the energy within a subspace is
preserved. Therefore, for any given vector c ∈ ℂ2l+1, the
Wigner D-matrix shows a norm preservation property [25],
[26] as ‖‖‖D

(l)
R c‖‖‖ = ‖c‖. The theory of spherical harmonics

says that any spherical function f (�, ') is decomposed as
the sum of its harmonics:

f (�, ') =
∞∑
l=0

m=l∑
m=−l

almY
m
l (�, ') , (6)

with the coefficient aml . Equation (6) can be seen as a kind
of Fourier series on the sphere.

1) Information loss for a limited bandwidth: Since we
cannot solve l → ∞, we limit the band l to a constant
degree nsh,deg. The information loss is defined as

Loss =
‖‖‖‖‖‖

nsh,deg∑
l=0

fl −
∞∑
l=0

fl
‖‖‖‖‖‖2
. (7)

Furthermore, the numerical solution of coefficients aml can be
approximated by using the Monte Carlo integration approach.

aml = 4�
nsh,deg

nsh,deg∑
j=0

fj
(
�m, �m

)
Y ml,j

(
�m, �m

)
(8)

2) SH energy descriptor: Polygonal-based surface rep-
resentations are typically described as Cartesian coordi-
nates (x, y, z). For spherical harmonics, the surfaces are rep-
resented by f (�, �), therefore the mesh must be transformed
into spherical polar coordinates (r, �, �) about the origin. In
this case we define f (�, �) = r [27] with the energy spectrum
descriptor of spherical harmonics [7]

sℎ(f ) =
{‖‖f0(�, ')‖‖ , ‖‖f1(�, ')‖‖ ,…

}
(9)

with the frequency components

fl =
[
al,−lY

−l
l , al,−l+1Y

−l+1
l .⋯ , al,lY

l
l
]
. (10)

Utilizing the norm preservation property of Wigner D-
matrices [7], [20], [26], we can prove that ‖‖fl‖‖ is a rotation-
invariant descriptor.

B. RI Point Feature (PF) Descriptors
We employ point feature representations to encode the

neighborhood’s geometrical properties, which provides an
overall point density and pose invariant multi-value feature.
The surface normal [28] is estimated by using PCA on the
k-neighborhood. Furthermore, for each pair ps and qt with
qt ∈  (ps), Darboux frame at ⟨ps,ns⟩ is defined as

u = ns , v = (pt−ps)‖pt−ps‖2
× u , w = u × v . (11)

The point features descriptor [29] is described as a quadru-
plet ⟨�, �, �, dst⟩ with

dst = ‖‖pt − ps‖‖2 , � = v ⋅ nt ,
� = u ⋅ (pt−ps)dst

, � = atan2
(
w ⋅ nt,u ⋅ nt

)
. (12)

qs

u = ns
v = (pt−ps)‖pt−ps‖2

× u

w = u × v

u

v

w

qt

nt

qt − qs

�
�

�

(a)

q1

q

q2

q3

q4
q5

q6
q7

q8

(b)

qj,1

qj qj,2qj,3

qj,4 qj,5

(c)

Fig. 1: (a) illustrates the Darboux frame between a point pair.
(b) calculates the simplified point features of a source point q
with a KNN graph for each point pair. A fully connect point
feature (PF) graph (c) is built on a given source point qi.

Furthermore, we augment the distance rs = ‖‖ps‖‖2 to the
point feature, therefore, we get a quintuple feature descriptor.

1) Proof of rotation-invariant property: Given a point
set S =

{
pi ∣ pi ∈ ℝn}N−1

i=0 . It is obvious that the L2

norm is a rotation-invariant operator ℝn to ℝ due to norm
preservation: ‖Rx‖22 = ‖x‖22. It can be easily extended
that the inner product ⟨⋅, ⋅⟩ between two arbitrary points
preserves the rotation-invariant property. In addition, the
cross product has the property Ra × Rb = R(a × b) under
proper rotations R. We define the Darboux frame at qi as a
triple tuple: i = ⟨ui, vi,wi⟩. By applying a rotation matrix
to the point set, we can get qj = Rqi with the corresponding
Darboux frame j =

⟨
uj , vj ,wj

⟩
. As a result, we can

conclude that j = Ri = ⟨Rui,Rvi,Rwi⟩. The PF
descriptor is proven to be rotation-invariant:

dst,j =
‖‖‖pt,j − ps,j

‖‖‖2 = ‖‖Rpt,i −Rps,i‖‖2 = dst,i = dst (13)

�j =
⟨
vj ,nt,j

⟩
=
⟨
Rvi,Rnt,i

⟩
=
⟨
vi,nt,i

⟩
= �i (14)

�j =
⟨
uj ,

(pt,j − ps,j)
dst

⟩
=
⟨
Rui,R

(pt,i − ps,i)
dst

⟩
= �i

(15)

�j = atan2
(⟨

wj ,nt,j
⟩
,
⟨
uj ,nt,j

⟩)
= atan2

(⟨
Rwi,Rnt,i

⟩
,
⟨
Rui,Rnt,i

⟩)
= �i (16)

C. Geometry RIF-Descriptor

The SH-energy and PF descriptors are shown to be
rotation-invariant descriptors. The SH-energy descriptor fo-
cuses on capturing the global features of the 3D shape and
the PF descriptor aims at describing the local features. It
is straightforward to concatenate both descriptors and this
results in the rotation-invariant feature (RIF)-descriptor at qi

rif ,i =
[
(sℎ,i, pf ,i,0), … , (sℎ,i, pf ,i,k)

]T , (17)

where rif ,i ∈ ℝk×(nsh+npf ) with point feature descriptor

pf ,i,j = [di,j , �i,j , �i,j , �i,j , rs,i] ∈ ℝnpf , (18)

with npf = 5 and the spherical harmonics energy descriptor

sℎ,i =
[‖‖f0,i‖‖ , ,… , ‖‖‖fnsh,deg,i

‖‖‖
]
∈ ℝnsh , nsh = nsh,deg + 1 .

(19)
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Fig. 2: The model architecture (a) consists of the RIMapping, PF Abstraction, and Classification blocks. In the RIMapping
block, a spherical harmonics energy descriptor and simplified point features (SPF) at each point are computed to form a
Geometry RIF descriptor, which is fed to a RIF Transformation to extract a high-level feature. In the PF Abstraction Block,
we have two PF Set Abstraction layers (b) together with a PF Global Abstraction layer (c) to obtain a final global feature,
which is used in a fully-connected Classification network.

IV. NETWORK ARCHITECTURE

The proposed rotation-invariant network consists of three
blocks: RIMapping, PF Abstraction, and Classification,
where the latter is a feed-forward network. Our main con-
tributions are on the design of the RIMapping and PF
Abstraction blocks.

A. Pre-Alignment with PCA

In an experiment on rotation invariance, we transfer a
point cloud set q with an arbitrary rotation matrix R,
resulting in a rotated clone q1 = Rq. According to [22],
we pre-align each input q based on the PCA to its principle
axes, which are indicated as orthonormal coordinates R0,
with the formula of q1 = RT

0 q. It can be shown that the
PCA alignment for a rotated clone q1 with corresponding
orthonormal coordinates R1 = RR0 leads to q2 = RT

1 q
1 =

RT
0R

TRq = RT
0 q = q1. Therefore, pre-alignment can reduce

the impact of the rotation matrix on the network.

B. RIMapping Block

The RIMapping block consists of the Geometry RIF de-
scriptor and RIF Transformation. For acquiring the rotation-
invariant features, we leverage the spherical harmonics and
point feature representation with a KNN to enrich geometric
features for the point cloud, which is represented as a
rotation-invariant descriptor with a size of ℝn×k1×(nsh+npf )

and k1-neighborhood that can globally and locally manifest
a 3D shape. This descriptor provides low-level geometric
clues for high-level geometric feature learning, realized with
a RIF Transformation. The RIF Transformation layer utilizes
a mini PointNet (without input and feature transformation),
consisting of a set of shared Conv2d layers with kernel

size equal to 1, to extract a global feature employing a
max-pooling operator. The output of RIF Transformation
is indicated as embedding feature with a size of ℝn×an .
The PF Transformation has the same structure as the RIF
Transformation, apart from the different input sizes. Both
Transformations intend to aggregate the local details by cal-
culating a weighted average of neighboring features through
a shared local fully-connected layer.

C. PF Abstraction Block

1) PF Set Abstraction: The extracted information from
the RIMapping block is still insufficient for the precise classi-
fication task, as max-pooling can only describe an outline and
some local details could be omitted. To address the problem,
we propose the PF Set Abstraction Layer to hierarchically ex-
ploit the local features, which consists of the sampling layer,
grouping layer, and PointNet layer. PointNet++ inspires
PF Set Abstraction. However, there are several significant
adaptations inside the grouping layer. In the sampling layer,
we use iterative farthest point sampling (FPS) to obtain n2
points, indicated as Pi, i ∈ [0,⋯ , n2]. Each point Pi is the
center of a local region i. In the sequence, a KNN graph
is built at point Pi to obtain k1-neighborhood, indicated
as [P0,i,P1,i,⋯ ,Pk1,i], with i ∈ [0,⋯ , n2]. In contrast to
PointNet++, which combines the point with the feature from
the last layer and works as input for the PointNet layer, we
utilize a PF graph to convert a point to a rotation-invariant
feature, where PF graph is a fully connected graph (Fig. 1c)
and built at each local region i. Then, we can get a feature
with a size of ℝk1−1×npf for each point Pnk,i in the region i.
In the end, a new rotation-invariant point feature for all local
regions is obtained, indicated as fPF ∈ ℝn2×k1×k1−1×npf .

9532

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 02,2023 at 08:00:36 UTC from IEEE Xplore.  Restrictions apply. 



Sequentially, we apply the PF Transformation to extract a
feature for each local region. We concatenate the previous
feature at each center point Pi with the newly extracted
feature to form a new feature representation and feed it to
the PointNet layer.

2) PF Global Abstraction: The global abstraction is
the successor layer to the PF Set Abstraction layer, which
reduces the original input cloud to X2 ∈ ℝn1×3. We build a
PF graph at the reduced point set and concatenate it with its
spherical energy descriptor, which leads to a new represen-
tation with a size of ℝn1×(n1−1)×(npf+nsh). In the sequence, we
apply the RIF Transformation for extracting a new feature
representation. This new feature will concatenate with the
feature from the PF Set Abstraction layer. In the end, a mini
PointNet is applied to obtain a global feature.

V. EXPERIMENTS

We evaluate our approach regarding rotation robustness
and compare it with other state-of-the-art methods. We use
ModelNet40 [30] as data set for validating the effectiveness
of the proposed network structure. ModelNet40 consists of
40 categories in the form of CAD models (mostly human-
made). We use the official split with 9843 shapes for training
and 2468 for testing. We apply the farthest point sampling
algorithm to obtain 1024 points on mesh faces according to
the face area and then shift and normalize the point into
a unit sphere with centroid on the origin. During training,
we use Adam [31] for 200 epochs with an initial learning
rate of 10−3. The algorithm is implemented with PyTorch on
Linux with one GeForce RTX 2080Ti GPU.

A. Evaluation of Rotation Robustness

For evaluating the property of rotation robustness, we
multiply each point cloud from ModelNet40 with a randomly
sampled rotation matrix. Based on the same principle as [20],
we evaluate our model using three different settings: a) train-
ing and testing with azimuthal rotations (z/z), b) training and
testing with arbitrary rotations (SO(3)∕SO(3)), c) training
with azimuth rotations while testing with arbitrary rota-
tions (z/SO(3)). The results are presented in Table I. It can be
seen that most networks exhibit a sharp drop in performance
in the settings SO(3)∕SO(3) and z∕SO(3), in particular in the

TABLE I: Comparison of rotation robustness on rotation-
augmented ModelNet40 benchmark. Our proposed net-
work shows the best performance in the settings z∕SO(3)
and SO(3)∕SO(3). Note, values are given as a percentage.

Method Input(size) z∕z z∕SO(3) SO(3)∕SO(3)

PointNet [16] pc (1024 × 3) 89.2 14.7 83.6
PointNet++ [17] pc (1024 × 3) 89.3 28.6 85.0

VoxNet [4] voxel (303) 83.0 - 73.0
RotationNet 20x [14] voxel (20 × 2242) 92.4 20.0 80.0

SO-Net [32] pc+normal (5000 × 6) 92.6 21.1 80.2
DGCNN [18] pc (1024 × 3) 92.2 33.5 81.1

Spherical CNN [20] voxel 2 × 642 88.9 78.6 86.9
ClusterNet [23] pc (1024 × 3) 87.1 87.1 87.1

ours(nsh,deg=20) pc(1024 × 3) 88.4 88.6 88.5
ours(nsh,deg=30) pc(1024 × 3) 88.6 88.7 88.8

(a)
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(b)

Fig. 3: (a) shows the point cloud with different noise levels
and (b) shows the comparison results against point perturba-
tions.

latter one. The network DGCNN [18] shows an outstanding
performance in the setting z∕z with an accuracy of 92.2 %,
while it only achieves 21.1 % in z∕SO(3). DGCNN ap-
plies the point directly for classification, which changes
dramatically when applying a rotation matrix in SO(3).
As mentioned before, that point cloud is not a rotation-
invariant representation. This is also a common problem for
the PointNet-based network. The spherical CNN [20] uses
a spherical harmonics-based convolution layer by rasterizing
the point cloud, which shows a significant improvement in
the setting of z∕SO(3). However, the difference between its
best performance z∕z and z∕SO(3) is still significant with a
value of 10.3 %. ClusterNet [23] uses the RRI representation
together with a cluster abstraction to increase classification
performance with a result of 87.1 % in each setting. Note
that the result of ClusterNet is directly cited from [23], as
the code is not available as open source. Table I demonstrates
that our approach achieves the best performance in the
settings z∕SO(3) and SO(3)∕SO(3) with nsh,deg = 20, 30.
The difference in the results between each setting is very
small, approximately 0.2 %. Based on these observations,
we can conclude that our proposed network shows the best
performance regarding rotation robustness.

B. Robustness Tests

1) Evaluation of model against point cloud perturbation:
For further evaluation of robustness against perturbation, we
conducted experiments by adding perturbation at each point.
Many studies have shown that deep learning-based networks
can be fooled by using an adversarial attack. Following the
same principle, we add a perturbation value to each point
with ‖�‖ < �, where � is set between 0.002 and 0.01, as
shown in Fig. 3a. The results are listed in Fig. 3b. It can
be seen that in these two different perturbation levels, our
network with nsh,deg = 20 is more robust under perturbation
when compared to PointNet and PointNet++.

2) Evaluation of model against point cloud density: The
point cloud density also plays an important role in the
classification task. In this section, we downsample Mod-
elNet40 to different point densities in the range of 1024
to 128 by using the farthest point sampling strategy (FPS) or
random input droupout (DP). The downsampled point clouds
are shown in Fig. 4a and the corresponding classification
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Fig. 4: (a) shows the downsampled point cloud and (b)
illustrates the comparison results of different point densities
in three rotation settings with FPS and DP.
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Fig. 5: (a) shows the partial point cloud with the deletion
ratio � from 0.1 to 0.2 and (b) shows the results.

accuracy is illustrated in Fig. 4b. It is worth noting that
our proposed network is very robust against point density
changes in these three rotation setups, which decreases the
classification accuracy from 88.6 % to 82.7 % by FPS and
varies from 88.6 % to 75.4 % by DP. In comparison to
DGCNN [18], the results vary from the 92.2 % to 79.2 %
in z∕z and from 33.5 % to 26.5 % in z∕SO(3). Under the
same point density, our model shows no significant change,
which further verifies our model’s robustness.

3) Evaluation of model against partial point cloud: In
reality, we can only get a partial point cloud by using a
single stationary camera. To evaluate the partial point cloud
classification model, we train our model with a complete
point cloud and test against a partial point cloud. The partial
point cloud is obtained by first deleting the completed point
cloud with a ratio � from 0.1 to 0.2 and then using iterative
FPS (Fig. 5a). The results are illustrated in Fig. 5b. We
compare our model with PointNet and DGCNN under three
rotation settings. Training and testing data set are rotated with
a PCA algorithm to reduce the impact of arbitrary rotation.
From Fig. 5b, we can conclude that our model shows the
best performance and far exceeds the other two classification
models in all three experiments.

C. Ablation Studies

1) Analysis of architecture design: To evaluate our net-
work architecture’s effectiveness, we use PointNet as the
baseline and connect our individually designed component
to it. Note that we realign all data in this section with

TABLE II: Effectiveness of designed network block.

Method z∕z z∕SO(3) SO(3)∕SO(3) mean

PointNet [16] 89.20 14.70 83.60 62.40
PCA+PointNet 80.90 80.90 80.80 80.84

RIMapping(nsh,deg=20)+PointNet 82.00 83.20 84.50 83.23
ours(without SH) 85.40 85.70 86.20 85.77

ours(nsh,deg=20) 88.40 88.60 88.50 88.50

TABLE III: Effectiveness of maximum degree nsh,deg.

nsh,deg z/z z/SO(3) SO(3)∕SO(3)

8 88.10 87.60 87.60
15 87.80 88.30 87.80
20 88.40 88.60 88.50
30 88.60 88.70 88.80

PCA (Section IV-A). In Table II, we can see that it shows
a significant improvement when compared to the original
PointNet in the setting of z∕SO(3) and that the average
accuracy rate has increased about 18 %. Furthermore, we
analyzed the effectiveness of the RIMapping block by con-
necting it to PointNet. The results listed in Table II show
that the accuracy in z∕SO(3) and SO(3)∕SO(3) improved
by 2.3 % and 3.7 %. Comparing our proposed network’s
worst performance shows that our PF Abstraction block helps
in improving the final accuracy in all three settings. We also
evaluated the effectiveness of the spherical harmonics energy
descriptor. The results are listed in Table II. Without the
spherical harmonics energy descriptor, the accuracy is worse
when compared against our original design. However, it still
shows better performance when compared to the PointNet-
based network.

2) Effectiveness of maximum degree of spherical harmon-
ics nsh,deg: The spherical harmonics descriptor is an essential
aspect of our network. Based on the information loss, a
higher degree of spherical harmonics leads to a smaller infor-
mation loss. However, it will also increase the computational
complexity to (n2). For evaluating the effectiveness of the
nsh,deg, we vary the degree. The results are listed in Table III
and it can be seen that the higher nsh,deg, the better the final
classification accuracy.

VI. CONCLUSION

We presented a rotation-invariant point cloud-based neural
network, which utilizes a global spherical harmonics feature
and a local points feature to achieve rotation-invariant proper-
ties. Furthermore, a new neural network structure is designed,
inspired by PointNet++, but with several adaptations such as
PF graph and PF Transformation. The network is applied to
3D object classification, but can be extended to part segmen-
tation and instance segmentation. Via several experiments,
we have shown that our network can deal with arbitrary input
orientations and achieve competitive performance compared
to other state-of-the-art approaches on the ModelNet40 data
set. Furthermore, our network shows robustness against point
perturbations, point density, and partial point cloud.
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PCTMA-Net: Point Cloud Transformer with Morphing Atlas-based
Point Generation Network for Dense Point Cloud Completion

Jianjie Lin, Markus Rickert, Alexander Perzylo and Alois Knoll

Abstract— Inferring a complete 3D geometry given an in-
complete point cloud is essential in many vision and robotics
applications. Previous work mainly relies on a global feature
extracted by a Multi-layer Perceptron (MLP) for predicting the
shape geometry. This suffers from a loss of structural details,
as its point generator fails to capture the detailed topology
and structure of point clouds using only the global features.
The irregular nature of point clouds makes this task more
challenging. This paper presents a novel method for shape
completion to address this problem. The Transformer structure
is currently a standard approach for natural language process-
ing tasks and its inherent nature of permutation invariance
makes it well suited for learning point clouds. Furthermore,
the Transformer’s attention mechanism can effectively capture
the local context within a point cloud and efficiently exploit
its incomplete local structure details. A morphing-atlas-based
point generation network further fully utilizes the extracted
point Transformer feature to predict the missing region using
charts defined on the shape. Shape completion is achieved
via the concatenation of all predicting charts on the surface.
Extensive experiments on the Completion3D and KITTI data
sets demonstrate that the proposed PCTMA-Net outperforms
the state-of-the-art shape completion approaches and has a 10%
relative improvement over the next best-performing method.

I. INTRODUCTION

The use of point clouds as a format of shape repre-
sentation has increased in the last years due to the rapid
development of 3D acquisition technologies such as Lidar
and depth cameras. The limited sensor resolution, occlusion,
and camera angles however make it challenging to obtain
a point cloud representation of the complete shape of an
object. As a result, the acquired raw points are typically
sparse, noisy, and miss large regions. On the other hand,
complete 3D shapes are essential in vision applications,
such as semantic segmentation and SLAM [1]. A complete
3D shape can improve the performance of CAD model-
based point registration [2] and enables more flexible grasp
planning [3], [4]. In this work, we focus on completing
partial 3D shapes that suffer from occlusion and limited
sensor resolution.

Previous work [5], [6], [7] principally followed the
encoder-decoder paradigm framework by extracting a latent
global feature from an incomplete point cloud. Decoders
leverage these feature to predict missing regions. Benefiting
from PointNet-based [8] feature extractor networks, the task
of shape completion made tremendous progress in recent

Jianjie Lin, Markus Rickert, Alexander Perzylo, Alois
Knoll are with Robotics, Artificial Intelligence and Real-time
Systems, Department of Informatics, Technische Universität
München, Munich, Germany {jianjie.lin, rickret,
perzylo,knoll}@in.tum.de

years. However, the extracted global features from PointNet
ignore the geometric relationship within the point clouds due
to the max-pooling operation. As a result, these approaches
suffer from a loss of structural detail in the reconstruction.

The intuitive solution is to make up for the shortcomings
of the PointNet by excavating the semantic affinity within the
point cloud. Therefore, we propose a novel framework named
Point Cloud Transformer with Morphing-Atlas-based Point
Generation Network for Shape Completion (PCTMA-Net)
to address this problem. The Transformer [9] is a standard
framework for natural language processing and has been
further extended to vision tasks for image recognition [10],
as well as point cloud classification and segmentation [11].
The Transformer follows the encoder-decoder structure and
consists of four main modules: input embedding, positional
encoding, (self-)attention mechanism, and positional feed-
forward. In this work, we apply only the encoder module
and neglect the positional encoding module due to the point
cloud’s irregular nature. The Transformer’s central core is the
attention mechanism, which can generate refined attention
features by leveraging the global context. The attention
weight between any two positions is updated by the dot
product of query and key vector. The weighted sum of all
attention weights is the attention feature. The concept of
query, key, and value vector makes it possible to match and
learn the global context. The attention feature of each word
is related to all input features. Furthermore, the permuta-
tion invariant nature of softmax, dot product, and point-
wise feed-forward network makes it well-suited for point
cloud learning. The offset attention mechanism introduced
in [11] uses the idea of the Laplacian matrix to improve the
attention performance further. In this work, we replace the
original attention design with the offset attention mechanism.
The morphing-atlas-based point generation network is the
decoder component in our overall structure. The extracted
global feature from the Transformer is further utilized to
generate the points. An atlas, as defined in topology, consists
of a set of charts on a surface. Therefore, we assume that a
missing region of the surface can be recovered by a chart.
Based on this assumption, we duplicate the Transformer
feature and concatenate it with a predefined grid. We utilize
the idea of multi-head attention by linearly projecting the
concatenated features to learn 𝑛chart different features, where
each feature is responsible for generating a chart defined
on the surface. We quantitatively and qualitatively evaluated
the proposed PCTMA-Net on the Completion3D data set
and demonstrate a 10% relative improvement over the next
best-performing method for the task of shape completion.
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Furthermore, the qualitative evaluation on the KITTI data
set shows that our proposed network is able to predict more
structural details than other state-of-the-art approaches.

Our contributions are summarized as follows: (1) We
propose a novel shape completion framework named Point
Cloud Transformer with Morphing-Atlas-based point gener-
ation Network for shape completion (PCTMA-Net), which
is inherently permutation-invariant and has the capability of
learning the global context within the point clouds and pre-
serving structural details. (2) The integration of the concept
of an atlas and the multi-head attention mechanism leads
to the generation of high-resolution, high-fidelity, and fine-
grained shapes. (3) Extensive experiments are conducted
on the Completion3D benchmarks, and the KITTI data
set, which indicate that the proposed networks remarkably
outperforms other competitive methods.

II. RELATED WORK

Shape completion approaches made significant progress in
recent years due to the rapid development of deep learning
and 3D acquisition technologies. We can roughly catego-
rize the existing work into volumetric-based and multilayer
perceptron-based networks from the perspective of network
structure and the underlying 3D data representation.

Volumetric-based shape completion: The extension of
CNN to 3D convolutional neural networks can be used
for dealing with a shape in the volumetric representa-
tion [12], [13]. Notable work such as 3D-Encoder-Predictor
Networks (3D-EPN) [14] progressively reconstruct the 3D
volumetric shape. The work in [15] directly generates the
high resolution 3D volumetric shape by combining the global
structure with the refinement of local geometry, while [16]
introduced a variational auto-encoder to learn a shape prior
to inferring the latent representation of complete shapes.
GRNet [17] took one step further by introducing Gridding
and Gridding Reverse to convert between point clouds and
3D grids. However, a quantization effect is introduced during
the transformation of point clouds into a 3D volumetric
representation. The computational costs increase cubically
to the resolution and therefore make it more challenging to
process fine-grained shapes.

Multilayer perceptron (MLP)-based shape completion:
Point clouds can be directly obtained by several acquisition
techniques. It is much more efficient compared to the voxel-
based representation when processing costs are compared.
Inspired by PointNet [8] and its successor work [18],[19],
several approaches use them for point cloud learning, as
the point-wise MLP enables the handling of irregular point
clouds and aggregating features using a symmetric func-
tion. However, the PointNet network suffers from a loss
of structure details. The current state-of-the-art approaches
for shape completion such as AtlasNet [6], PCN [20] and
Folding-Net [7] use PointNet as their baseline to extract
global features and to apply a decoder to predict the missing
regions. Unlike PCN and FoldingNet, AtlasNet completes
the shape by generating surface elements utilizing the atlas

concept. TopNet [5] improves the decoder by using a hier-
archical rooted tree. By combining reinforcement learning
with an adversarial network, RL-GAN-Net [21] and Ren-
der4Completion [13] propose a reinforcement learning agent-
controlled GAN to improve the quality and consistency of the
generated complete shape. However, most of these studies
suffer from information loss on structural details, as they
predict the whole point cloud only from a single global
shape representation. SA-Net [22] extended these approaches
with a skip-attention mechanism to preserve more structural
details. PF-Net [23] introduced a point pyramid decoder to
generate a shape in different resolution levels.

III. THE ARCHITECTURE OF PCTMA-NET

A. Overview

The overall structure of PCTMA-Net is illustrated in
Fig 1, which aims to learn a semantic affinity within a
partial point cloud by using a Transformer encoder. The
complete 3D shape is reconstructed with a morphing-atlas
decoder utilizing the extracted feature from the Transformer
encoder. We formulate the whole shape completion pipeline
as: Given a partial point cloud, indicated as  with 𝑁in
points, where each point is represented in 3D coordinates 𝐱 =
[𝑥𝑖, 𝑦𝑖, 𝑧𝑖], we first convert this partial point cloud into a
feature vector 𝐅0 by a PointNet. The difference to previous
work [7], [6], which relies on only the global feature for
shape completion, is that we further utilize the Transformer
encoder to process the feature to obtain a piece of semantic
affinity information for predicting the missing regions. The
extracted feature is later fed to the morphing-atlas point
generator for completing the shape.

B. Point Cloud Transformer Encoder

The Transformer encoder of PCTMA-Net first transforms
an incomplete point cloud to the feature space using an
input embedding network. We then feed the extracted feature
to 𝑁× stacked encoder layers, where they share a similar
philosophy of design as the original paper [9], except for the
attention mechanism. The purpose of the encoder layer is to
learn a discriminate representation for each point. The en-
coder can be mathematically formulated in the following: By
given a partial point cloud  ∈ 𝑁in×𝑑 with 𝑁in points each
having a 𝑑-dimensional feature description, an embedding
feature 𝐅0 is firstly learned with an input embedding network,
indicated as Fembedding. The difference to the embedding
network presented in [11] is that we defined Fembedding as a
PointNet followed by a max-pooling operator. As a result, we
acquire a 𝑑model-dimensional embedding feature 𝐅0 ∈ 𝑑model

instead of 𝐅0 ∈ 𝑑model×𝑁in [11]. It will improve the shape
completion performance, as the 𝐅0 after max-pool operator
can reduce redundant information and make the training
more efficient. The global feature 𝐅0 is later fed to Fencoder𝑖 :

𝐅𝑖 = Fencoder𝑖 (𝐅𝑖−1), 𝑖 = [1,… , 𝑁] . (1)

Furthermore, we concatenate the features from each encoder
layer and follow up by two cascade LBR layers to form an
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Fig. 1: The overall structure of PCTMA-Net. The whole structure consists of a Transformer encoder and morphing-atlas point
generation decoder. The Transformer encoder aims to extract features from the input point clouds by using an 𝑁× stacked
encoder layer which consists of an attention mechanism and positional feed-forward network. The morphing-atlas-based
surface reconstruction decoder uses multi-chart point generation networks for point cloud completion by concatenating the
features from the Transformer encoder and mesh grid.

effective global feature

𝐅e = BatchNorm(𝐅𝑖 ⊕⋯⊕ 𝐅𝑁 ) (2)

𝐅TE = LBR
(

LBR(𝐅e)
)

, (3)

where 𝐅i ∈ 𝑑model , 𝐅𝑒 ∈ 𝑁×𝑑model and 𝐅TE ∈ 𝑑model .
The operator ⊕ is denoted as concatenation, and the func-
tion LBR represents a linear layer followed by BatchNorm
and ReLU operators. The 𝐹encoder𝑖 consists of two sub-layers,
namely self-attention mechanism and positional forward
feedback:

Fencoder𝑖
(

𝐅𝑖−1
)

= FFN𝑖
(

attention𝑖(𝐅𝑖−1)
)

, (4)

FFN𝑖(𝐱) = LBR𝑖,1
(

LBR𝑖,0(𝐱)
)

+ 𝐱 . (5)

The layer FFN𝑖 is a shared positional forward feedback
network comprising two cascaded LBRs with the size
of [𝑑f f , 𝑑model], where 𝑑f f = 2048 and 𝑑model = 1024.

a) Offset self-attention mechanism: Self-attention is a
mechanism that calculates the semantic relationship between
different elements within a sequence of data. In the context
of point cloud processing, attention is employed to build
weights between every two positions in the feature space. In
comparison to 𝑘-nearest neighbors algorithms, the attention
mechanism has a larger receptive field. Furthermore, the
attention mechanism’s permutation invariant property makes
it suitable for disordered, irregular data representation such as
point clouds. The work in [11] proposed the offset attention
by utilizing the idea of a Laplacian matrix 𝐿 = 𝐷 − 𝐸,
where 𝐸 is the adjacent matrix 𝐸 and 𝐷 is the diagonal
matrix. The attention mechanism is adopted as

𝐅sa,out = attention(𝐅sa,in) (6)
= LBR(𝐅sa,in − 𝐅sa) + 𝐅in .

The remaining part of the attention computation operators
still follows the same design as in the original paper [9].
The self-attention feature 𝐅sa in (6) concatenates the multi-
head attention with the following formulation:

𝐅sa = Linear(𝐅head1 ⊕⋯⊕ 𝐅headℎ ) , (7)

where the attention feature at the 𝑖-head 𝐅head𝑖 , 𝑖 ∈ [1,… , ℎ]
is formulated as

𝐅head𝑖 = sof tmax
( �̂��̂�𝑇
√

𝑑𝑘

)

�̂� , (8)

with �̂� = Linear(𝐐), �̂� = Linear(𝐊), �̂� = Linear(𝐕). The
variables 𝐐,𝐊 and 𝐕 are projected with a different linear
layer, respectively. Following the same principle as the orig-
inal paper, we set 𝐐 = 𝐊 = 𝐕 = 𝐅sa,in ∈ 𝑑model . We reshape
the linear projected query and key as �̂�, �̂� ∈ 𝑑model×1

to obtain the attention weights 𝐀 by matrix dot product
via �̂��̂�𝑇 . We normalize 𝐀 with

√

𝑑𝑘 to avoid large values
in magnitude, where 𝑑𝑘 = 𝑑model

ℎ . The equation in (8) shows,
that the self-attention 𝐅head𝑖 is equal to the weighted sums of
the value vector Linear(𝐕) using the corresponding attention
weights. The multi-head attention mechanism can jointly
capture information from different representation subspace at
different positions [9]. Therefore, it can efficiently preserve
and capture the point cloud’s detailed topology and structure
for predicting the missing regions in comparison to [5], [6].

C. Morphing-Atlas-Based Point Generation Network

At the first stage, the Transformer encoder extracts a
global feature 𝐅TE for expressing an incomplete point cloud.
We then feed the extracted features into a morphing-atlas-
based point generator for predicting continuous and smooth
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shapes. Atlas [6] is defined in the topology for describing a
manifold and an atlas is composed of each chart that, roughly
speaking, describes the local region of the manifold. In the
context of 3D shapes, the manifold can be considered as a
shaped surface. Therefore, we can represent a 3D shape by
combing all the charts. Based on the Atlas concept, we define
a chart as 𝑖 and let a designed decoder 𝑖 learn to map a
2D grid to a 3D surface. Furthermore, we introduce a hyper-
parameter 𝑛chart to control the number of charts defined
on a shape to predict a smooth and high-resolution shape.
The global feature 𝐅TE ∈ 𝑑model is duplicated 𝑁out∕𝑛chart
times and then concatenated with a mesh grid to describe
a new feature, denoted as 𝐅TE,1 ∈ (𝑑model+2)×(𝑁out∕𝑛chart ).
It beneficial to linearly project 𝐅TE,1 with different learned
linear projections. This concept is similar to multi-head
attention by allowing the model to obtain the shape fea-
tures from different representation subspaces at different
positions. Therefore, 𝐅TE,1 is duplicated 𝑛chart times and
each 𝐅TE,1 is fed to an MLP layer which produces a new
hidden code, denoted as 𝐅chart,𝑖 ∈ (𝑑model+2)×(𝑁out∕𝑛chart ), 𝑖 ∈
[1,… , 𝑛chart]. For each single chart, we feed 𝐅chart,𝑖 into
a PointGenNetwork (Fig. 2), sharing the same structure as
in [6]. All charts are concatenated to form a complete shape.

D. Evaluation Metrics

We apply the Chamfer distance (CD) [24] as a quantitative
evaluation metric due to its efficient computation compared
to the earth mover’s distance [24]. The Chamfer distance
measures the mean distance between each point in one point
cloud to its nearest neighbor in another point cloud. Let 𝑆𝐺 =
[𝑥𝑖, 𝑦𝑖, 𝑧𝑖]

𝑛𝐺
𝑖 be the ground truth and 𝑆𝑅 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]

𝑛𝑅
𝑖 be the

reconstructed point by given a partial point cloud. 𝑛𝐺 and 𝑛𝑅
indicate the number of points in 𝑆𝐺 and 𝑆𝑅, respectively.
The Chamfer distance 𝑑CD of 𝑆𝐺 and 𝑆𝑅 with 𝐿2 norm is
formulated as

𝑑CD = 1
𝑛𝑅

∑

𝑥∈𝑆𝑅

min
𝑦∈𝑆𝐺

||𝑥−𝑦||2+ 1
𝑛𝐺

∑

𝑦∈𝑆𝐺

min
𝑥∈𝑆𝑅

||𝑥−𝑦||2 . (9)

E. Implementation details

We implemented PCTMA-Net in PyTorch, where the
model is optimized with an Adam optimizer with 𝛽1 = 0.9
and 𝛽2 = 0.999, together with a CosineAnnealingLR sched-
uler. The number of encoder layers used in the Transformer
encoder is set to 4, and we follow the original papers by
setting the multi heads in the offset attention mechanism
to 8. We trained the network on a Linux system with a

2.6 GHz Intel Core i7–6700HQ, 16 GB of RAM, and one
Nvidia RTX 2080 Ti GPU.

IV. EXPERIMENTS

We compare our proposed shape completion algorithm
PCTMA-Net with other state-of-the-art approaches on two
large scale data sets: Completion3D [5] and KITTI [26]. The
Chamfer distance is employed as a metric in the evaluation.

A. Shape Completion on Completion3D Data Set

Completion3D [5] from ShapeNet [27] offers a data set,
which consists of 28 974 training samples and 800 point
cloud evaluation samples with a point resolution of 2048
for training and validation, respectively. In the comparison,
we use different output resolutions and the quantitative
results are summarized in Table I. Note that the results of
FoldNet [7], SA-Net [22], and PCN [20] are cited from the
Completion3D benchmark leaderboard. Table I shows that
our PCTMA-Net algorithm outperforms the other methods
in 6 out of 8 categories with the overall Chamfer distance
of 9.48 for 𝑁out = 16 152 and 𝑛chart = 32. The qualitative
visualization of completion results shown in Fig. 3 indicates
that our approach is able to predict more details. The perfor-
mance in the quantitative and qualitative evaluations proves
the Transformer encoder and the morphing-atlas decoder’s
effectiveness for predicting and preserving the shape details.

B. Shape Completion on Robustness of Input Resolution

The input resolution can greatly affect the performance of
a neural network. In this section, we will study the robustness
of input resolution on the different network structures. We
downsample the evaluation data set from Completion3D
to obtain four levels of input resolutions: 256, 512, 1024,
and 2048. The visualization of these four levels of input
resolutions is shown in Fig. 4a. All networks are trained
on an input resolution of 2048 and output a fixed size
of 16 384 points. For point resolutions less than 2048, we
follow the principle in PCN [20] to select points from the
input randomly and pad the input cloud to raise the number
of points to 2048. We evaluate these four levels of input
resolution on the Completion3D data set. The quantitative
illustration in Fig. 4b indicates that our network has the best
robustness and outperforms the other approaches in all four
input resolutions experiments.

C. Shape Completion on KITTI data set

For a further study of the application area, we conduct
experiments on the KITTI data set [26], which is collected
from real-world Velodyne Lidar scans composed of 2401
highly sparse point clouds. Note that the KITTI data set
does not include the ground truth in a quantitative evaluation.
Therefore, we can only qualitatively visualize the shape
completion results. Unlike other work [5], [17], which trains
the network with only the car category in ShapeNet [27] and
then evaluates the KITTI data set, we use the same trained
network as in Section IV-A for evaluation. This evaluation
strategy can show the capability of the generalization of
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TABLE I: Point completion results on Completion3D with ground truth and input resolution (2048 points) compared using
Chamfer distance (CD) with 𝐿2 norm. The results are multiplied by 104. In our algorithm (PCTMA-Net), we set meshgrid =
0.05. The best result is highlighted in green, and a lower value is better.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

AtlasNet (𝑁out = 2048) [6] 5.82 29.28 11.02 27.11 34.04 19.11 29.27 15.55 21.40
AtlasNet (𝑁out = 16384) [6] 5.50 19.89 9.23 21.17 30.99 15.34 21.67 14.64 17.31
FoldNet [7] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
FCN [20] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22
TopNet (𝑁out = 16384) [5] 5.85 21.27 10.03 20.09 22.98 14.65 24.25 11.78 16.36
PointNetFCAE (𝑁out = 2048) [25] 5.81 21.14 8.95 22.01 33.36 15.81 27.52 14.09 18.59
PointNetFCAE (𝑁out = 16384) [25] 4.00 16.70 6.24 14.63 18.15 10.99 15.77 8.55 11.88
SA-Net [22] 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22
GRNet (𝑁out = 2048) [17] 7.64 24.06 12.02 24.62 28.73 18.85 32.90 12.48 20.16
GRNet (𝑁out = 16384) [17] 3.79 14.86 6.71 12.74 13.73 11.05 15.43 6.50 10.60

Ours (𝑛chart = 32, 𝑁out = 2048) 3.60 14.67 7.03 14.04 20.61 10.66 18.01 7.62 12.03
Ours (𝑛chart = 128, 𝑁out = 10240) 3.16 13.53 6.58 13.21 12.93 10.29 14.25 6.98 10.11
Ours (𝑛chart = 32, 𝑁out = 16152) 3.38 13.00 6.12 12.72 11.87 9.18 12.43 7.17 9.48

Airplane Cabinet Car Chair Lamp Sofa Table Watercra�

Input

PointNetFCAE

AtlasNet

TopNet

GRNet

Ours

Ground Truth

Fig. 3: Visualization of completion results on the Completion3D evaluation set.

one network. The incomplete point clouds from KITTI have
diverse input resolutions and are highly sparse. We use
the same strategy as in Section IV-B to lift the number
of points to 2048. Besides, we transform the incomplete
point cloud by using the 3D bounding boxes to get a point
cloud that is distributed between [−0.5, 0.5]. The qualitative
result illustrated in Fig. 5 indicates that our approach and
PointNetFCAE can generate more detailed shape information

compared to the other methods.

D. Ablation Studies

In this section, we will study the effectiveness of our
designed structure and chosen hyper parameters. All studies
are conducted on the Completion3D data set for consistency.
Without loss of generality and without special instructions,
we set 𝑁out = 10 240 and 𝑛chart = 32 in the following
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Fig. 4: In (a) the point resolution varies from 256, 512,
1024 to 2048. In (b), we compare the proposed approach
against other state-of-the-art approaches on the Comple-
tion3D benchmarks. Lower values are better.

Input PointNetFCAEAtlasNet TopNet GRNet Ours

Fig. 5: Qualitative completion results on the LiDAR scans
from KITTI. The incomplete input point cloud is extracted
and normalized from the scene with its 3D bounding box.

experiment.
1) Effect of Transformer encoder: The Transformer

encoder is the main core used in PCTMA-Net, which has
two hyper parameters: the number of encoder layers 𝑛encoder
and the number of heads ℎ used in the attention mechanism.
In this section, we will study the effect on shape completion
by varying different combinations of these two parameters.
We can conclude from Table II, that we can achieve better
shape completion performance with higher numbers of ℎ
and 𝑛encoder . Taking various factors such as the network
parameters into consideration, we set these hyper parameters
to ℎ = 8 and 𝑛encoder = 4.

2) Effect of number of charts: The hyper parameter 𝑛char
is used to control the number of charts defined on a shape.
In this section, we will study the effectiveness of the number
of charts. We summarize the results in Table III. It can be
shown, that PCTMA-Net can result in a smaller Chamfer
distance with a greater number of charts. However, the

TABLE II: The Chamfer distance (CD) on different hyper
parameters in the Transformer encoder.

𝑛encoder 2 4 6

ℎ 4 8 4 8 4 8

CD (×104) 10.86 10.41 10.59 10.21 10.69 10.21

TABLE III: The Chamfer distance (CD) on the number of
charts.

𝑛chart 8 32 128

CD (×104) 10.45 10.21 10.11
parameter (×106) 52.75 93.26 258.73

TABLE IV: The Chamfer distance (CD) on different grid
types. In Meshgrid (𝑘), 𝑘 indicates the grid scale.

Grid type Rand grid Meshgird (0.5) Meshgrid (0.05)

CD (×104) 11.36 10.25 10.21

parameters of the network will be increased correspondingly,
which is shown in the second row of Table III.

3) Effect of grid strategy: In our proposed morphing-atlas
decoder, the pointGenNet maps 2D grids to 3D surfaces. In
this section, we will use the plane grid for point genera-
tion, which introduces two additional values. We can either
randomly sample the value from [0, 1] or use a grid with a
predefined grid scale and grid size. The evaluation results
on different grid strategies are listed in Table IV. It can be
shown, that the mesh grid method shows significantly better
performance in comparison to the randomly sampled grid
methods. We further study the effectiveness of the grid scale
by using the same grid size. The results in Table IV show
that the mesh grid scale from 0.05 to 0.5 shares a similar
performance.

4) Effect of metrics: Most existing work employs the
Chamfer distance as a loss function due to its efficient
computation. The earth mover’s distance (EMD) is another
option for point clouds and can be formulated as:

𝑑EMD(𝑆𝑅, 𝑆𝐺) =
1

|𝑆𝐺|
min

Φ∶𝑆𝑅→𝑆𝐺

∑

𝑋∈𝑆𝑅

||𝑥 − Φ(𝑥)||2 , (10)

where Φ is the bijection function. In this section, we will
study the effect on shape completion of different training loss
functions. The comparison results in Table V demonstrate,
that for a pure EMD loss function, the shape completion
value with the metric of CD has the worst performance. The
utilization of CD and EMD in the loss function can reduce
the Chamfer distance value, and generate a more uniformly
distributed point cloud than the pure CD loss function. As
EMD uses the bijection function to force the output to have
the same density distribution as the ground truth for coping
with the linear assignment problem. It hence can generate a
point cloud which is more discriminative to local details.
However, EMD is much more computationally expensive

TABLE V: The Chamfer distance (CD) on different loss
functions.

Loss function EMD CD+EMD CD

CD (×104) 16.12 10.45 10.21
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TABLE VI: The Chamfer distance (CD) on different point
generators. We abbreviate our Encoder as TE and connect to
different algorithm point generators.

Methods TE-FoldNet TE-TopNet TE-AtlasNet

CD (×104) 13.22 13.49 11.36

with approximately (𝑛2), where 𝑛 is the number of point
cloud, compared to CD.

5) Effect of point generator: In this section, we study
the effect of different point generators on shape completion,
introduced in FoldNet [7], TopNet [5], by attaching them
to our Transformer encoder. The results are summarized in
Table VI. All of these three networks have improved to some
degree by using the Transformer encoder. FoldNet shows
an improvement from 19.07 to 13.22, TopNet improved
from 16.36 to 13.49, and the performance of AtlasNet
improved from 17.31 to 11.36.

V. CONCLUSION

We propose a novel network named PCTMA-Net for point
cloud completion. Through its encoder-decoder structure,
PCTMA-Net can effectively capture features of local regions
for predicting missing shape parts. The utilization of the
concept of an atlas further helps the network to reconstruct
a smooth shape with a predefined number of charts. We
conducted extensive experiments on the Completion3D and
KITTI data sets to validate our proposed network structure’s
effectiveness. Via the experiments, we can conclude that our
approach outperforms other state-of-the-art approaches on
these two large data sets.
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