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Abstract

The manipulator is playing a crucial role in addressing the industrial, sporting, and healthcare
fields, because of the high working efficiency and low energy consumption, etc. For robot
manipulation, the high level of motion planning in task space and low level of control
performance remains challenging topics, therefore attracting much attention from the robotic
community. Specifically for the low-level control, the multi-task control is by no means a trivial
problem for the redundant manipulator, such as end-effector’s task, manipulability, and remote
center of motion, because it is difficult to find a trade-off solution between different tasks
when considering the priority of tasks. For high-level motion planning, imitation learning is a
promising way to acquire similar intelligence and abilities as humans by transferring in task
space, but it has its limits in the performance of complex tasks with small amounts of data,
owing to compounding errors. Due to this fact, it raises a new challenge: how to improve
robustness and adaptability of imitation learning. For example, when performing a new task
not recorded in the dataset, such as obstacle avoidance, via-point and external force field, the
robot can successfully complete the task without re-teaching.

In this thesis, we will work on the low-level multi-task hierarchical optimization control
of redundant manipulators, and high-level motion learning by imitating human behaviors.
Consequently, it is significant to design a hierarchical optimization strategy to control these
tasks in terms of priority metrics. Specifically, we design the gradient descent-based parallel
neural network to address the multi-task hierarchical optimization problem which combines
the different priority objective functions. On the other hand, to reproduce excellent motor
skills by cloning human skills, we proposed a novel policy improvement method to enhance
the robustness and adaptability of supervisor learning for new tasks.

The major contribution of this thesis is to propose effective and novel algorithms or
strategies to address these problems from motion learning to multi-task optimization. The
main contents were published in international conferences or journals.
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Zusammenfassung

Der Manipulator spielt aufgrund der hohen Arbeitseffizienz, des geringen Energieverbrauchs
usw. eine entscheidende Rolle in den Bereichen Industrie, Sport und Gesundheit. Die Bewe-
gungsplanung der Roboter im Aufgabenraum und die geringe Leistungsfähigkeit der Steuerung
stellen nach wie vor eine Herausforderung dar, die in Fachkreisen der Robotik viel Aufmerk-
samkeit erhält. Besonders für die Steuerung auf niedriger Ebene ist die Multi-Task-Steuerung
keineswegs ein triviales Problem für den redundanten Manipulator. Dies beinhaltet zum
Beispiel die Aufgabe des Endeffektors, die Manipulierbarkeit und der entfernte Bewegungss-
chwerpunkt, da es schwierig ist, eine Kompromisslösung zwischen verschiedenen Aufgaben
unter Berücksichtigung der Priorität dieser Aufgaben zu finden. Für die Bewegungsplanung
auf hoher Ebene, ist Nachahmungslernen ein vielversprechender Weg um ähnliche Intelligenz
und Fähigkeiten wie der Mensch durch Übertragung in den Aufgabenbereich zu erwerben,
allerdings hat es seine Grenzen bei der Ausführung komplexer Aufgaben mit kleinen Daten-
mengen, da sich Fehler anhäufen können. Aufgrund dieser Tatsache ergibt sich eine neue
Herausforderung: Wie kann die Robustheit und Anpassungsfähigkeit des Nachahmungsler-
nens verbessert werden? Bei der Ausführung einer neuen Aufgabe des Roboters, die nicht
im Datensatz enthalten ist, wie zum Beispiel Hindernisvermeidung, Via-Point und externes
Kraftfeld, kann der Roboter die Aufgabe dann ohne erneutes Lernen erfolgreich bewältigen.

In dieser Arbeit werden wir uns mit der hierarchischen Multitasking-Optimierung von
redundanten Manipulatoren auf niedriger Ebene und dem Erlernen von Bewegungen auf
hoher Ebene durch Nachahmung des menschlichen Verhaltens beschäftigen. Folglich ist
es wichtig, eine hierarchische Optimierungsstrategie zu entwerfen, um diese Aufgaben in
Bezug auf Prioritätsmetriken zu steuern. Konkret entwerfen wir das auf Gradientenabstieg
basierende parallele neuronale Netz, um das hierarchische Multitasking-Optimierungsproblem
zu lösen, das die verschiedenen Prioritätszielfunktionen kombiniert. Um exzellente mo-
torische Fähigkeiten durch Klonen menschlicher Fähigkeiten zu reproduzieren, haben wir
gleichzeitig eine neue, verbesserte Strategie vorgeschlagen, um die um die Robustheit und
Anpassungsfähigkeit des Überwachten Lernens für neue Aufgaben zu verbessern.

Der Hauptbeitrag dieser Arbeit besteht darin, effektive und neuartige Algorithmen oder
Strategien vorzuschlagen, um diese Probleme vom Bewegungslernen bis zur Multitasking-
Optimierung anzugehen. Die wichtigsten Inhalte wurden auf internationalen Konferenzen
oder in Fachzeitschriften veröffentlicht.
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Chapter 1

Introduction

With the increasing demand for robot applications in medical, search and rescue, industrial,
and sporting domain, etc., there is a growing interest in designing the new robots and
proposing a novel methodology for some complex scenarios.

Over the past decades, the development of control theory for the robot has achieved a
considerable breakthrough. Indeed, the low-level controller directly produces the performance
of the robot motion, because different scenarios will encounter different control problems and
requirements, which raises high requirements on the control model and algorithm [1], such
as position control (trajectory tracking), force control [2], position/force hybrid control [3],
compliant control in human-robot interaction [4], ect.

Generally, the control issues can be divided into two categories: one is model-based which
designs the controller from the exact robot model, another one is model uncertainties which
are frequently related to adaptive control. In [5, 6, 7], model-based impedance control
is applied to the robot in terms of the interaction with the environment or human, where
the robot could behave with high compliance by changing the impedance. In [8], robust
adaptive control is proposed for trajectories tracking, which can address the issues under
model uncertainties, and improve the tracking accuracy.

Most of the work mentioned above is single-task, but for multi-task control, some special
control strategies need to be designed. The multi-task control and optimization is a classic
problem since the high degree of freedom (DOF) structure and complex control strategy of
exploiting the redundant manipulator [9].

Varieties of control strategies are presented to solve the multi-task problem which considers
the priorities of different tasks [10]. Generally, there are two common ways that are applied
for prioritized multi-task controllers, including soft priority and hard priority. The hard priority
of multi-task is also called “strict task priorities”, which defines a hierarchical order of tasks:
the more important tasks are completed with pre-order and the low priority task is controlled
in the null space of higher priority tasks [11]. The soft priority is to combine the weight
function of different tasks, where the high priority is with high weight and the low-priority is
with a small weight. For more complex cases, when the priority is time-varying, the weights
function should follow the robot actions [12].

Actually, the multi-task problem can be treated as optimization problem with constraints.
Indeed, many kinds of researches contribute to this topic by exploring optimization solutions
from different perspectives and metrics using evolutionary algorithms. In [13], Chen et al.
developed an enhancing MOEA/D methods considering priority for multi-objective/multi-
task optimization problem (MOP). In [14], Zhang et al. proposed a knee-based recursive
evolutionary algorithm to optimize the MOP considering the preference metrics. Although
these works have made great progress in multi-task problems, evolutionary algorithms are not
suitable for practical applications, especially real-time manipulation of robots, due to a large
number of search steps and decision variables, low computational cost, and low convergence
speed.

In this thesis, we take a surgical robot as an example for multi-task control, where three
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2 1 Introduction

tasks are simultaneously considered in the control strategy, including remote center of motion
(RCM), manipulability measurement, and end effector task. In Robotics-assisted minimally
invasive surgery (RAMIS) [15], the surgical tip should pass through a small incision on the
belly, which produces the RCM constraint. Software implementation of RCM constraint is a
promising way, not only a more economical approach but also more flexible because RCM
points can be moved according to the requirements of the scenario [16]. In [17], Sandoval
et al. proposed the null space control method for RCM and surgical task, which satisfied the
accuracy of surgery. In [18], Su et al. provides an adaptive control method for MIS, in which
an adaptive fuzzy controller is used to compensate the input due to the disturbance from
human-computer interaction, thereby producing flexible and safe collaboration performance.
In [19], Minelli et al. focused on dynamic perspective and developed a novel controller
for RCM and surgical task. Nevertheless, the mentioned above works are optimization-free
methods, which can not guarantee the physical limits and singularity issues, thereby causing
possible damage to machines or patients.

On the other hand, for high-level motion planning, imitation learning is an effective way
that can transfer human motor skills to robots and reduce the complexity of the algorithm in
searching space. This is especially true when naturally acquiring new skills, as a robot must
learn from the interaction with a human being or the environment with limited programming
effort [20]. Traditional imitation learning is based on supervised learning, which represents
skills with the dynamical model and computes the parameters of the dynamical model by
regression.

In [21, 22, 23], A classic learning method-Dynamic Motion Primitives (DMP) is proposed
to simulate complex behaviors. It can fit different linear or non-linear trajectories and is
widely used to clone human skills in robot learning. In [24, 25], the Probabilistic movement
primitives (ProMP) are introduced to represent motion trajectories, which can naturally model
the features of the motion as a probability distribution. Although both of DMP and ProMP are
effective to clone the complex behaviors, there are some different characteristics: DMP can
adapt to a new start or goal position, and ProMP can adapt to intermediate via-points. In [26],
Huang et al. proposed a kernel treatment-based imitation learning method called kernelized
movement primitives (KMP) to encode the human skills, which is powerful in adaptability
for via-points, a new start or goal tasks. In [20, 27, 28], the classical supervised learning,
such as Gaussian mixture models (GMM), Gaussian Process Regression (GPR), are proposed
to imitate the human behaviors with high-dimension input. However, the major drawback
of these methods is that they are highly dependent on large amounts of expert data. In a
real-world scenario, it is significant to improve the adaptability and robustness of imitation
learning under limited data conditions.

1.1 Motivation

This section will provide the motivation of our works in terms of multi-task control and
imitation learning. Specifically, the motivations are explained with two parts.

1.1.1 Why Optimization and Neural Network

For the multi-task control problem of the manipulator, we should consider the metrics of
different task priorities and real-time performance. The traditional optimization-free approach
is not a general solution for multi-tasks problem, because the control model and strategies are
complex along with different scenarios, which means that it is impossible to find a common
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solution for different situations. Since the drawbacks of optimization-free approaches, we move
forward to the optimization-based strategies for multi-task control problems. As the analysis
knows, the evolutionary algorithms are a candidate solution for multi-task optimization,
but low computational cost and convergence speed limits the online performance of robot
manipulation. Therefore, we are toward convex optimization for our case considering soft
priority.

To address the multi-task control problem of the surgical manipulator, we reformulate it
as an optimization problem by soft priority strategy. There are two major solution methods
for optimization problem-numerical optimization methods and neural network methods.
Since the similar structure of biological counterpart, the neural network is a computational
model that processes information in a parallel and distributed manner. The neural network-
based solver has superior performance in solving optimization problems with high efficiency
and high precision because it has no operation of matrix inversion, high-order non-linear
computation. Compared with the numerical optimization methods, neural networks require
weaker conditions, therefore, it is suitable for handling optimization problems [29].

1.1.2 Why Policy Improvement in Robot Learning

The traditional supervised learning-based imitation learning clones the human skills by
teaching by demonstrations. Generally, the robot can reproduce similar behaviors as the
teachers, and even predicts variability, correlations, and uncertainty for new tasks. However, it
has its limits in the performance of more complex tasks with small amounts of data, owing to
compounding errors. When the environment or tasks are changing, the learning approaches
can not fulfill the new task without re-teaching. The traditional methods are not so adaptable
and highly dependent on large amounts of data. Therefore, two factors should be considered
in applications: first, it is impossible to cover the entire parameters space of the dataset;
second, the efficiency of training is primarily metric in real-time performance which means
the size of the dataset should be reasonable.

Considering a special case, when the external disturbance is applied to the dynamical
system, the robot’s motion will deviate from the nominal trajectories, so how to pull the
robot to coincide with the reference trajectories without re-teaching. Therefore, we hope
to design a policy that the stiffness of the controller can automatically increase along with
the disturbance at this time. In this thesis, a hierarchical learning strategy is proposed to
improve the robustness and adaptability of imitation learning: low-level learning comprises
only those behaviors cloned with supervised learning, while high-level learning constitutes
policy improvement.

1.2 Thesis Outline and Contributions

From the motivation, we present a hierarchical optimization control paradigm for the multi-
task control problem of the redundant robot and also propose robust and adaptive imitation
learning methods that transfer the human skills to the robot. The traditional primal-dual neural
network [30] or recurrent neural network methods [31] cannot guarantee the convergence
of error at the finite time, because of the optimal solution changing over time. Moreover,
although the PDNN or RNN can obtain their solvability constraints at convex optimization
problems, they may change drastically and become unpredictable of dynamic behaviors.

To improve the convergence speed in finite time, a varying parameters recurrent neural
network (VPRNN, also called ZNN) based hierarchical control of a 7-DOF robot manipulator
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for robot-assisted minimally invasive surgery has been proposed, where it integrates multiple
tasks based on their priority and guarantees task tracking [32], RCM, and manipulability
optimization at the same time. It is a parallel processing approach with high efficiency and
high precision. Its unique advantage is that it is a real-time solver without any pre-training.
Its computation errors have super-exponential convergent rate and strong robustness, which
is promising for the online solution of the time-varying optimization problem [33].

To address the second problem, the two-timescale recurrent neural networks optimization
scheme is proposed and tested with a 9 DOFs nonholonomic mobile-based manipulator,
which has a faster transient states response in the hidden layer(s). Compared with the
traditional optimization solution of a redundant manipulator, infinity norm and slack variable
are additionally introduced and leveraged by the optimization algorithm. The former takes
into account the joint limits effectively by considering individual joint variables and the latter
relaxes the equality constraint by decreasing the infeasible solution area.

To improve robustness and adaptability of imitation learning, the Gaussian mixture model-
based (GMM) dynamical system is firstly formulated to encode a motion from the demon-
stration. We then derive the sufficient conditions of the GMM parameters that guarantee the
global stability of the dynamical system from any initial state, using the Lyapunov stability
theorem. Finally, a method based on exponential natural evolution strategies is proposed
to optimize the parameters of the dynamical system associated with the stiffness of variable
impedance control, in which the exploration noise is subject to stability conditions of the
dynamical system in the exploration space, thus guaranteeing the global stability.

Figure 1.1: Thesis structure.

The outline of the thesis consists of three parts after the introduction chapter shown in
Fig. 1.1. We firstly introduce the multi-task control problem and derive the optimization
issues. We then proposed the neural network-based hierarchical optimization control method
to address the multi-task control in terms of surgical robots and mobile manipulator. After-
ward, we discuss motion generation by imitation learning. We propose policy improvement
strategies (reinforcement learning and exponential natural evolution strategies) to improve
the robustness and adaptability of the learning system. The main research framework of this
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thesis is shown in Fig. 1.2.

Figure 1.2: The main research framework of this thesis.

This thesis is subdivided into 3 main chapters to present our work and the contributions
can be summarized as follows.

1 Chapter 2 introduces three sections of robot optimization control. The first section is a
optimization control strategy for Oropharyngeal-swabs (OP-swab) robot of multi-task
control problems. The second section is a hierarchical optimization strategy for multi-task
control problems. The third section represents a constraint planning and optimization
control scheme for a highly redundant mobile manipulator considering a complex indoor
environment, where the experiments of predefined trajectories and obstacle avoidance
cases using BI2RRT ∗ planner are demonstrated in our team developed Neurorobotics
platform and achieve a superior performance. The details of the contributions are as
follows:

Section 1 : (a) A rigid-flexible coupling robot is designed to assist COVID-19 OP-swab
sampling, where the MPA for OP-swab sampling is developed to achieve flexible sampling
and thereby provides compliant, safe, stable, and reliable sampling; (b) An improved
motion planning method is proposed for the 9-DOF highly redundant robot-assisted
OP-swab sampling system, which guarantees efficiency and accuracy, where the multi-
constraint kinematics model is derived as an optimization problem; then, the VP-ZNN is
applied to solve the optimization problem; (c) Substantive practical experiment testing
of the developed OP-swab sampling robot system is demonstrated in the human oral
cavity phantom and volunteers.

Section 2: (a) A novel optimization scheme is derived for multi tasks constraints
considering task tracking, compliance with the RCM constraint, joint angle and velocity
limits, and manipulability index. Compared with the traditional single index optimization
problem, the proposed novel hierarchical optimization framework of multi-tasks can
further improve the robot stability, safety, and success rate of surgery; (b) A varying-
parameter recurrent neural network (VPRNN) based hierarchical optimization of a
7-DOF surgical manipulator for Robot-Assisted Minimally Invasive Surgery (RAMIS),
which guarantees task tracking, Remote Center of Motion (RCM), and manipulability
index optimization. A theoretically grounded hierarchical optimization framework based
is introduced to control multiple tasks based on their priority;



6 1 Introduction

Section 3: (a)The kinematic model of a 9 DOFs mobile-based manipulator is derived,
and the tracking control problem including infinity norm and slack variable metrics is
formulated as a hierarchical optimization problem. (b) A two-timescale recurrent neural
networks optimization scheme is introduced to address the hierarchical optimization
problem with planning trajectory.

2 Chapter 3 presents two sections of imitation learning for robot manipulation. The
first section designs a reinforcement learning-based manipulation skill transferring
strategy for a surgical robot. The proposed method consists of two main steps: (a)
We use the Gaussian mixture model and Gaussian mixture regression-based dynamic
movement primitive to model the high-dimensional human-like reaching and puncture
skill by human demonstrations; (b) Reinforcement learning is adopted to improve the
adaptability of the varying via-RCM point tasks, which reduces the risks and cost for the
practical surgical operation. The second section is model-based manipulator control,
which combines the fuzzy adaptive control method with imitation learning: The learning-
control strategy is proposed, where the high-level learning scheme aims at imitating
the motor skill and generating the optimal trajectory for obstacle avoidance; while the
lower-level control scheme focuses on the safety and stability of the robot’s movement
with unknown disturbances.

3 Chapter 4 proposes a policy improvement strategy to improve robustness and adaptability
of imitation learning, where the low level learning is only for behaviors cloned with
supervised learning, and high level learning constitutes policy improvement. The
contributions of this chapter are described as follows:

(a) Exponential natural evolution strategies are proposed for learning the parameters of
a policy that can improve the robustness and adaptability of the dynamical system, in
which the low level learning is based solely on behavioral cloning using GMM, while the
high level refers to the parameter learning of policy improvement based on considering
robustness and adaptability by exponential NES; (b) exponential NES are also explored
for learning the stiffness of the variable impedance control; the stiffness of the controller
can be modified online according to the task’s requirements; (c) the proposed method
can learn the covariance matrix parameter which is used to modify the exploration noise
in the parameter space; (d) offline learning and online robot experiments are conducted
to demonstrate the effectiveness of the proposed scheme.

4 Chapter 5 concludes the thesis and discusses future research directions of robot control
and imitation learning.



Chapter 2

Hierarchical Optimization Control for Redundant Ma-
nipulator

2.1 Optimization Control for OP-swab Robot

In this section, we will design and control a novel 9-DOFs robot to assist the COVID-19
OP-swab sampling [34]. The outbreak of novel coronavirus pneumonia (COVID-19) has
caused mortality and morbidity worldwide. Oropharyngeal-swabs (OP-swab) sampling is
widely used for the diagnosis of COVID-19 in the world. To avoid the clinical staff from being
affected by the virus, we developed a novel 9-DOFs rigid-flexible coupling (RFC) robot to
assist the COVID-19 OP-swab sampling. This robot composes of a visual system, a UR5 robot
arm, a micro pneumatic actuator (MPA), and a force sensing system. The robot is expected to
reduce risk and free up the clinical staff from the long-term repetitive sampling work through
remote sampling. Compared with a rigid sampling robot, the developed force-sensing RFC
robot can facilitate OP-swab sampling procedures in a safer and softer way. Additionally, a
novel varying-parameters zeroing neural network-based optimization method is also proposed
for motion planning of the 9-DOFs redundant manipulator. The developed robot system is
validated by OP-swab sampling on both oral cavity phantoms and volunteers.

2.1.1 Introduction

The outbreak of novel coronavirus pneumonia (COVID-19) is affecting the entire world,
which has caused a large number of deaths with an increase in the spread of COVID-19. To
control the spread of COVID-19 at the early stage, oropharyngeal-swab (OP-swab) sampling
is commonly adopted with respect to sample collection and specimen sources for diagnosis
[35]. However, protecting the safety of medical staff during the sampling process raises a
new challenge because of susceptibility to infection from person to person through respiratory
droplets and contact transmission in an unprotected environment [36]. A variety of related
studies have reported that respiratory droplets, feces and urine are the routes of transmission
[37]. To address these issues in OP-swab sampling, robotics could play a key role in disease
prevention.

Considering the high risk of infection of COVID-19 and negative tests of nasopharyngeal
swabs (NP-swab) caused by irregular sampling, it is necessary to design an OP-swab sampling
robot to assist healthcare staff through remote access. Robot-assisted OP-swab sampling is
a promising technique because it relieves the burden from medical staff, is convenient for
large-scale deployment, is cost-effective, and offers sampling standardization. As reported in
[38], an OP-swab robot could speed up the sampling process especially because there is a lack
of qualified healthcare workers. In [39] and [40], a semi-automatic OP-swab robot (compared
to the traditional human method) was developed with a teleoperation scheme that achieved

7
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Figure 2.1: 9-degree-of-freedom (DOF) redundant rigid–flexible coupling robot.

Figure 2.2: Control framework of COVID-19 OP-swab sampling with a redundant rigid–flexible coupling robot.
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good performance in clinical practice with a 95% success rate. The OP-swab robot system
mainly includes a snake-like manipulator, two haptic devices (Omega.3 and Omega.6) for
teleoperation, an endoscope for visualization (assistance operating in the oral cavity) and a
force-sensing system for safety protection. All OP-swab sampling processes were controlled by
experts’ teleoperation, where one haptic device (Omega.3) control the tongue depressor and
another haptic device (Omega.6) operate the manipulator. Wang et al. [41] have designed a
low-cost robot for assistance in sampling of NP-swab; a swab gripper is attached to the rotation
link with its extruded active 2-degree-of-freedom (DOF) end-effector for actuating the swab
and a generic 6-DOF passive arm for global positioning. In [42], the team from the University
of Southern Denmark and the Lifeline Robotics company developed the first automatic swab
robot for COVID-19 sampling. In [42], the robot is integrated with a UR5 manipulator, a
visual system and dexterous rotatable rigid connectors assembled with OP-swab which could
perform the sampling task quickly using an automated scheme.

Of note, medical security remains vital to OP-swab sampling because human throat is
fragile and easily injured. Nonetheless, although many desirable results were obtained, the
abovementioned end-effectors were designed on the basis of a rigid body structure, which
may cause physical injuries of the oral cavity during improper operation or other medical
malpractices. On the basis of our previous work [43], a novel micro-pneumatic actuator
(MPA) for throat swab sampling is developed to achieve flexible collection and integrate a
force sensor, which provides safe, stable, and reliable sampling experience, as shown in Fig.
2.1. Furthermore, force-sensing actuation offers compliance, which is helpful against shocks,
particularly during interaction with oral cavity. Compared with the rigid body-based sampling
robots [39, 41] and [42], the developed MPA is made of soft material, which is safer and
lighter. To ensure operation safety, we develop a novel strain gauge sensor attached to MPA
which means that the proposed MPA is safer than that in [42]. Moreover, MPA is smaller and
has a 7.5 mm cross-sectional diameter, which is convenient for working in human oral cavity.

To avoid contact with the OP-swab specimen and collision with the manipulator, it is
essential to consider the constraints of the oral cavity space during motion planning. Inspired
by our previous work [44] on remote center of motion (RCM) techniques in minimally invasive
surgical robots, the second to the last link of the OP-swab sampling robot is constrained with
the oral cavity center (OCC) constraint, which guarantees the absence of collision between the
inserted end-effector with the oral cavity. Although mechanical implementation is usually safer
for an open minimally invasive surgery, programmable RCM is cost effective and convenient
to be implemented [45]. The traditional Cartesian adaptive control in [45] was applied for
surgical control with the RCM constraint but without considering the physical limits of the
manipulator, such as the joint angle and velocity. For practical applications, we propose an
optimization strategy for the multi-constraint problem, where the joint angle and velocity, and
the OCC constraint-based kinematic model are derived as a quadratic programming problem.
In this study, a comparison between the varying-parameter zeroing neural network (VP-ZNN)
and the traditional gradient descent method [46] is proposed for the optimization problem
that has achieved superior performance, which can converge at the finite time owing to the
optimal solution changing over time.

To test the developed OP-swab sampling robot, which is shown in Fig. 2.1, the experiments
are simultaneously conducted in both the human oral cavity phantom and volunteers, regard-
ing the sampling time, operation complexity for medical staff, safety and effectiveness. The
framework of COVID-19 OP-swab sampling using the RFC robot is shown in Fig. 2.2.

The section is organized as follows. Section. 2.1.2 depicts the design of the RFC robot.
Section. 2.1.4 introduces the optimization problem and methodology. Experimental results are
presented in Section. 2.1.5. The conclusion and future work are described in Section. 2.1.6.
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2.1.2 Design of the Rigid–Flexible Coupling Robot

In this section, we will introduce the concept of robot design and the tests of the MPA and
force sensing modules that would calibrated the movement and sensing ability.

Redundant Rigid–Flexible Coupling Robot

The rigid–flexible coupling robot for OP-swab sampling consists of a UR5 manipulator and
a self-developed rigid–flexible coupling manipulator. The overall structure of the 9-DOF
redundant rigid–flexible coupling robot is shown in Fig. 2.1. The self-developed manipulator
has 3 DOFs, including a linear motor (prismatic joint), a servo–α motor (revolute joint), and
an MPA that can change the offset distance of throat swab from the center.

Figure 2.3: (a) Cross section of the micro-pneumatic actuator(MPA). (b) bending process of MPA. and (c) 2D
modeling of MPA.

Design, Modeling, and Fabrication of MPA

The design of MPA refers to the wrinkle shape of the elastomer robot [47]. Figure 2.3 shows
that MPA consists of n effective air chambers. The sectional view of MPA is shown in Fig. 2.3(a),
which contains a chamber part and a cover part. These two parts are bonded together to
form a single-DOF MPA. b is the wall thickness of the air chamber; c is the distance between
the air chambers, and l f is the total length of MPA. When MPA is inflated, the air chambers
will expand and repel each other, which causes MPA to bend. The bending process of MPA is
shown in Fig. 2.3(b).

Assuming that all air chambers have the same bending under the same pressure, it is easy
to obtain the geometric relation:

θ = β/n = 2γ/n (2.1)
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(a) (b)

Figure 2.4: Experimental results of MPA. (a) Deformation of MPA with a 50-shore hardness under different air
pressures. (b) Relationship between bending angle γ and air pressure.

Owing to the small value of θ after bending, the chord length is approximately equal to the
arc length at the non-tensile layer. The distance between the center line and the non-tensile
layer is m, and the arc length c′ is also approximately equal to the chord length; thus, c′ is

c′ = c + 2m sin(θ/2) (2.2)

The overall motion model is shown in Fig. 2.3 (c), where the chord length d is

d =
c′ sin(nθ/2)

sin(θ/2)
(2.3)

The forward kinematics of MPA is modeled as






x = d sin
�

nθ2
�

+ h sin (β)

y = d cos
�

nθ2
�

+ h cos (β)
(2.4)

According to the abovementioned information, we design MPA with 12 air chambers.
However, the number of effective air chambers, i.e., the number of effective joints is n= 11
because only half of the head chamber and tail chamber will bend. The wall thickness b of
each chamber is 1.5 mm , the width of each air chamber c is 4.5 mm and the total length l f is
80 mm.

The chamber part and the cover part of MPA are made by 3D printing with a 50-shore
hardness. The air pressure is controlled by the proportional valve ITV1050-312L. Then, a
deformation experiment of MPA was conducted, and the experimental results are shown in
Fig. 2.4(a), where the gravity is directly perpendicularly to the plane of the chapter. The
relationship between the bending angle γ and air pressure is expressed in Fig. 2.4(b). It is
observed that the bending angle γ is approximately proportional to the air pressure. After
data fitting, the linear equation for the angle γ (◦) and pressure P (kPa) is written as

γ = 0.160325P - 0.731885 (2.5)
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The correlation coefficient R is 0.99990 and the standard deviation S is 0.6464, which confirms
that γ and P are linearly dependent. By combining equations (2.1) and (2.5), we obtain

θ = 0.02915P - 0.13307 (2.6)

Finally, the end-point position of MPA can be calculated by combining equations (2.2), (2.3),
(2.4), and (2.6).

Figure 2.5: Relationship between F and ∆U .

2.1.3 Force Sensing

To detect the contact force F during OP-swab sampling, a strain gauge sensor (BF350-3AA23T0)
attached to MPA is adopted. It is necessary to explore the mapping relationship between the
force and voltage for force measurement calibration. Actually, the current output voltage
Unow is related to two factors, i.e., voltage ∆U generated by the force, and voltage UF = 0
caused by the air pressure without a load. Therefore, we have ∆U = Unow − UF = 0. After 20
group experiments, the relationship between no-load voltage and air pressure is obtained by
linear fitting: UF=0 = − 10.693P + 2770.571 (mV). Force calibration was performed using the
electronic balance (CX-668). The relationship between ∆U and F is approximately linear;
thus, we know that

F = 0.04378∆U + 0.88828 (2.7)

The details are shown in Fig. 2.5. The correlation coefficient R is 0.99461 and the standard
deviation S is 2.65733.

2.1.4 Optimization Control for the 9-DOF Redundant Manipulator
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Manipulator Kinematics Model with OCC Constraints

The coordinate system of the 9-DOF redundant RFC manipulator is shown in Fig. 2.6. The
forward kinematics model [48, 49] of the 9-DOF RFC robot can be defined as follows:

Jq̇ = l̇d (2.8)

where J ∈ Rm×n denotes the Jacobian matrix. The joint angle and velocity constraints are
defined as follows:

q−i ≤ qi ≤ q+i (2.9)

q̇−i ≤ q̇i ≤ q̇+i (2.10)

where q−i and q+i present the lower and upper bounds of qi, respectively; and q̇−i and q̇+i denote
the lower and upper bounds of the joint velocity q̇, respectively.

Figure 2.6: Coordinate system of the 9-DOF redundant RFC manipulator.

Actually, the constraints in (2.9) can be converted as

σ
�

q−i − qi

�

≤ q̇i ≤ σ
�

q+i − qi

�

(2.11)

where σ is the positive constant. Therefore, according to (2.10) and (2.11), the joint angle
and velocity constraints can be rewritten as a new constraint in the velocity level:

ρ−i ≤ q̇i ≤ ρ+i (2.12)

ρ−i =max
�

q̇−i ,σ
�

q−i − qi

�	

ρ+i =min
�

q̇+i ,σ
�

q+i − qi

�	

Because the RFC robot is a 9-DOF highly redundant manipulator, there are infinite solu-
tions of q̇ in (2.8) by the inverse kinematics. However, the convergence rate, accuracy, and
computational complexity of the pseudoinverse-type solution in inverse kinematics cannot
satisfy the requirements. Consequently, we need to identify an optimization solution under
multiple constraints; thus, the inverse kinematics problem can be expressed as a new opti-
mization problem. The first-priority optimization problem associated with OP-swab sampling
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is expressed as follows:

min
1
2

q̇T Wq̇ (2.13)

s.t. J (q)q̇ = l̇d (2.14)

ρ− ≤ q̇ ≤ ρ+ (2.15)

where l̇d represents the reference velocity associated with OP-swab sampling tasks. The weight
matrix M is set as the identity matrix.

Considering the OCC constraint, the link-Ln−1 of the RFC manipulator needs to pass
through the OCC, and Ln performs the sampling tasks, which is different from the traditional
RCM constraint in the last link. The geometric relationship is shown in Fig. 2.7. For the n-DOF
OP-swab sampling robot, the forward kinematics mapping function of Cartesian position
ln−2 ∈ Rm and ln−1 ∈ Rm can be defined as follows:

ln−2 = fn−2(q)

ln−1 = fn−1(q)
(2.16)

Figure 2.7: Constraint with the oral cavity center.

Unlike common RCM constraints, locc should be always on the straight line straight line
between ln−1 and ln−2 (second to the last link), where ln−1 is the end position of the link Ln−1
and ln−2 is the end position of the link Ln−2. During the actual OP-swab sampling, we want to
keep the error of the OCC constraint Eocc as small as possible. Lines 1 and 2 are constructed
as follows:

−−−−−→
ln−2rn−1 = ln−1 − ln−2,

−−−−→
ln−2locc = locc − ln−2, respectively. Utilizing the relationship

between Eocc and the vector projection, Eocc can be further written as follows:

Eocc =
−−−−→
ln−2locc ×

−−−−−→
ln−2ln−1

L
(2.17)

where L = ∥ln−2 − ln−1∥ is the length of the second to the last link. The derivative of Eocc in
(2.17) with respect to time is reformulated as follows:

Jocc q̇ = Ėocc (2.18)

where Jocc ∈ Rm×n denotes the Jacobian matrix of the OCC constraint. Regarding the OCC
constraint task, we want to keep the OCC error Eocc at the minimum value.
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In this section, it is necessary to find a feasible solution for multiple constraints and
guarantee that the tracking error and OCC error always remain in a small range. For COVID-
19 sampling tasks, we aim to reformulate OCC (2.18) and joint physical limits (2.15) in an
optimization scheme and design a method to solve the optimization problem. Consequently,
by simultaneously taking OCC, end-effector task, and joint physical constraints into account,
the new multi-task optimization problem can be formulated as:

min
1
2

q̇T Wq̇ (2.19)

s.t. Jq̇ = vd

Jocc q̇ = vocc

ρ− ≤ q̇ ≤ ρ+

where vd = l̇nd and vocc = 0. Without the explicit expression of ln and eocc, the actual trajectory
will drift and the position error cannot converge to zero from a random initial position. To
overcome this issue in (2.19), a feedback item associated with position signals is integrated
into vd and vocc:

vd = −k1 ( fn (q)− lnd) + l̇nd (2.20)

vocc = −k2 (locc) (2.21)

Of note, we should manage the priority strategy for the multiple-task optimization problem by
different weights. Therefore, the objective function is defined as

F(q̇) =
ϵ0

2
q̇T q̇+

ϵ1

2
∥Jq̇− vd∥

2 +
ϵ2

2
∥Jocc q̇− vocc∥

2 (2.22)

The optimization problem in (2.22) can be rewritten as follows:

min F(q̇) (2.23)

s.t. Jq̇ = vd

Jocc q̇ = vocc

ρ− ≤ q̇ ≤ ρ+

where ϵ0 > 0, ϵ1 > 0 and ϵ2 > 0 are the constants employed to prioritize different tasks.

Neural Network Design

In this section, we design the varying-parameter zeroing neural network (VP-ZNN) [50, 51] to
solve the optimization problem in (2.22). The multiple tasks optimization problem in (2.22)
is firstly converted into a equivalent problem, and thus the varying parameter zeroing neural
network is employed to solve it.

In this section, we describe the design of the VP-ZNN, which is used to solve the optimiza-
tion problem in (2.22). First, the multiple-task optimization problem in (2.22) is converted
into an equivalent problem; thus, the VP-ZNN is employed to solve it.

To obtain the equivalent problem from (2.22), the Lagrange function The Lagrange function
of (2.22) constraints is formulated as follows:

L (q̇,ξ1,ξ2) =
ϵ1

2
∥Jq̇− vd∥

2 +
ϵ2

2
∥Jocc q̇− vocc∥

2 +
ϵ0

2
q̇T q̇+ ξT

1 (vd − Jq̇) + ξT
2 (vocc−Jocc q̇)

(2.24)
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Figure 2.8: Structure of VP-ZNN.

where ξ1 ∈ Rm and ξ2 ∈ Rm; ∇L =
�

∂L
∂ q̇ , ∂L∂ ξ1

, ∂L∂ ξ2

�T
indicates the gradient of (2.24). As the

KKT condition defined in [52], if ∇L is continuous, the optimization solution satisfies the
following condition:

∇L= 0 (2.25)

The state decision variable l (t) = [q̇,ξ1,ξ2]
T ∈ Rn+2m. The problem in (2.25) is equivalent to

the following:

B(t)l(t) = P(t) (2.26)

where B ∈ R(n+2m)×(n+2m) and P(t) ∈ R(n+2m). The bounds of state variable q̇b are expressed as

q̇b =







ρ+, q̇ > ρ+

ρ, ρ− ≤ q̇ ≤ ρ+

ρ−, q̇ < ρ−

Therefore, the bound of state variable l(t) are defined as

l b (t) =
�

q̇b ξb
1 ξb

2

�

, ξb
1 ,ξb

2 ∈ R

The error model of the novel VP-ZNN is expressed as

e (t) = B (t) l (t)− P (t) (2.27)

To ensure the model error convergence to zero, we define the following formulation,

de (t)
d t

= −µexp (t)Ψ (e (t)) (2.28)

Ψ (e (t)) =
(1+ exp(−δ)) (1− exp(−δei(t)))
(1− exp(−δ)) (1+ exp(−δei(t)))
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where µ > 0 is the constant that can adjust the convergence rate; Ψ (ei(t)) denotes the
activation function, and ξ ≥ 2, which makes 0 ≤ |ei(t)| ≤ 11. Clearly, the error in (2.28)
converges to zero with exponential convergence.

The function in (2.28) is expanded as

B (t) l̇ (t) = −Ḃ (t) l (t) + Ṗ(t)−µexp (t)Ψ
�

l(t)− l b(t) + B(t)l(t)− P(t)
�

(2.29)

We further modify the VP-ZNN in (2.29) as

l̇ (t) = (I − B (t)) l̇ (t)− Ḃ(t)l(t) + Ṗ (t)

−µexp (t)Ψ
�

l(t)− l b(t) + B (t) l (t)− P (t)
�

(2.30)

For comparison, the traditional gradient descent-based recurrent neural network is denoted
as

l̇ (t) = µ (−l(t) + PΩ [l(t)− (B(t)l(t)− P(t))]) (2.31)

For the online solving process, the neural network consists of N neurons and the neural
network is designed as,

l̇i =
N
∑

j=1

�

Ii j − Bi j (t)
�

l̇ j (t)−
N
∑

j=1

Ḃi j (t) l j (t)−µexp (t)Ψ

 

N
∑

j=1

Bi j (t) l j (t)− Pi (t)

!

+ Ṗi (t)

(2.32)

The structure of varying-parameters of zeroing neural network is shown in Fig. 2.8.

Figure 2.9: Demonstration with an oral cavity phantom. In our experiments, the 1:1 human oral cavity is tested.

2.1.5 Experiments

In this section, we present the tests with an oral cavity phantom and volunteers using the
OP-swab robot system, approval from the Institutional Review Board of The Chinese University
of Hong Kong, Shenzhen was obtained(IRB number CUHKSZ-D-20210002). Then, the
advantages and disadvantages are summarized and discussed. The parameters of the VP-ZNN
are set as: ϵ0 = 0.1, ϵ1 = 10, ϵ2 = 10, µ= 0.01, k1 = 10, and k2 = 10.
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Figure 2.10: The visual system for oral detection, segmentation and localization using Mask R-CNN [53].

Figure 2.11: Sampling process from vision detection to sampling tasks. In our experiments, many volunteers were
tested, and the recognition rate, control precision, sampling time, and sampling contact force were recorded.
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(a) Motion trajectories.
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(b) Joint trajectories.
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(c) Joint angle velocity.
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(d) Tracking errors.

Figure 2.12: Tracking results: the manipulator track of the desired trajectories (sampling tasks) in the Cartesian
space. (a) The 3D trajectories of the manipulator; (b) the joint angle trajectories; (c) the joint velocity trajectories
(located in bounds); and (d) comparison experiments with [44].
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Demonstration with Phantom Experiments

For safety reasons, first, we conduct the experiments with an oral cavity phantom, which
will help to confirm the safety of the OP-swab robot system. The oral cavity phantom has a
1:1 size of human oral cavity, which enables natural simulation of workflow across OP-swab
sampling and allows us to work extremely close to conditions in practice. The procedures of
experiments are as follows:

1 The phantom oral cavity is detected and segmented with the RealSense Camera, which
is configured on the RFC manipulator. Because the sampling areas are the left and right
tonsils and the palate area, we recognize and locate the target position by Mask R-CNN.

2 The desired sampling trajectories are obtained by online motion planning with an oral
cavity constraint, in which we locate the target position in the first step and then generate
the trajectories. The desired trajectories are a piecewise straight line from the palate
area to the left tonsils to the right tonsils in the Cartesian space, where the relationship
between each axis and time is the minimum jerk curve.

3 The robot is driven to perform the sampling tasks. In this phase, the desired joint trajec-
tories are obtained from optimization control methods. Moreover, multiple protection
mechanisms with force sensing are activated during robot operation.

The experimental scenarios of the oral cavity phantom are shown in Fig. 2.9. We collect
the dataset for the oral cavity phantom which is trained by Mask R-CNN [54]. To obtain
the category and location of the oral sampling areas, an oral visual detector is trained and
obtained. First, an oral cavity image dataset is created by collecting from RealSense D435i.
Second, the Mask R-CNN with a Inception v4 module as its backbone is trained on the oral
cavity image dataset and an oral cavity detector is obtained. Finally, oral cavity coordinates
are mapped to depth images to obtain the depth values of the oral cavity. We achieved a 95%
recognition success rate on the model, and the sampling time is less than 20 s. The structure
of visual system is shown in Fig. 2.10.

Demonstration with Volunteers Experiments

On the basis of many trials of the OP-swab RFC robot system with the oral cavity phantom, the
robustness and safety were significantly improved. Then, we conducted a number of volunteer
experiments and achieved milestone significance for the future clinical application of OP-swab
sampling. The procedures of experiments are the same as those described in Sec. 2.1.5. The
dataset of the human oral cavity is collected by 29 volunteers and trained using Mask R-CNN.

The experimental scenarios of different subjects are shown in Fig. 2.11. The desired
trajectories are the same as in Sec. 2.1.5. We design the piecewise straight-line trajectories
from the palate to the right tonsils to the left tonsils in the Cartesian space, and the relationship
between each axis and time is the minimum jerk curve. Figure 2.12 shows the tracking
results associated with one of the trials of planning trajectories. The motion trajectories in
the Cartesian space are shown in Fig. 2.12a. Figures 2.12b and 2.12c show that the joint
trajectories located in the physical limits and joint velocity are smooth within the velocity
limits, respectively. Figure 2.12d shows the tracking error in the Cartesian space, where all
errors rapidly converge to a small value (0.02 mm). In addition, we added a comparison
experiment shown in Fig. 2.12d, where the proposed method has a faster convergence rate and
smaller errors than [44]. The average recognition rate, control precision, sampling time, and
sampling contact force are recorded and shown in Table. 2.1. The comparative experiments
were conducted to examine the effectiveness of robotic OP-swab sampling. The swab quality
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Figure 2.13: PCR-test.

Figure 2.14: RT-PCR test results.
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was verified according to the threshold cycle (Ct) value of the selected reference gene (RNase
P) by the RT-PCR test [55], which is shown in Fig. 2.13.

Figure 2.14 shows the RT-PCR test results compared with those for the manual scheme.
OP-swab with Ct values of ≤ 37 and > 37 are considered as qualified and unqualified samples,
respectively, and the details are shown in Table 2.2. The test results show that the samples
are qualified.

Table 2.1: Average sampling parameters.

Metric
Types

Phantom Volunteers

Recognition rate 95% 93%
Control precision ≤0.2 mm ≤0.2 mm
Sampling time 18 ± 2 s 20 ± 4 s
Sampling force ≈ 150 mN ≈ 150 mN

Table 2.2: Ct distribution.

Ct (24–27) (27–30) (30–33) (33–37) >37 Qualified rate
Manual 11 16 3 0 0 100%
Robotic 5 21 3 0 1 96.67%

2.1.6 Summary

In this study, we designed a 9-DOF redundant RFC robot to assist the COVID-19 OP-swab
sampling. Moreover, we formulate the sampling tasks, physical limits, and OCC constraints
as a novel optimization problem. Then, a VP-ZNN is proposed to solve the multi-constraint
optimization problem online. The experimental results of the oral cavity phantom and volun-
teer experiments demonstrate the effectiveness of the designed robot system and proposed
control methods. The average sampling time on phantoms and volunteers are 18 s and 20 s
respectively. To maintain the sterility of the arm and effector between patients, the MPA is
designed as a disposable device with a quick connector that is easily to be replaced, where the
disposable protective film is attached to the MPA. In the future, we will focus on improving
the robustness of the system and move forward to clinical testing.

2.2 Hierarchical Optimization Control for Surgical Robot

In this section, we will discuss the hierarchical optimization control method with multi-task
constraints for surgical robot [56][44][57]. For the time varying optimization problem, the
tracking error cannot converge to zero at the finite time because of the optimal solution
changing over time. This section proposes a novel varying parameter recurrent neural network
(VPRNN) based hierarchical optimization of a 7-DOF surgical manipulator for Robot-Assisted
Minimally Invasive Surgery (RAMIS), which guarantees task tracking, Remote Center of
Motion (RCM) and manipulability index optimization. A theoretically grounded hierarchical
optimization framework based is introduced to control multiple tasks based on their priority.
Finally, the effectiveness of the proposed control strategy is demonstrated with both simulation
and experimental results. The results show that the proposed VPRNN-based method can
optimal three tasks at the same time and have better performance than previous work.
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2.2.1 Introduction

Robotic technology is increasingly implemented to assist surgeon [58]. Robot-assisted surgery
has several advantages such as better surgical accuracy, increased workspace, enhanced
dexterity, and improved vision for surgeons [59]. Multiple tasks need to be considered during
the surgical operation [60], such as the control of the surgical tip and the manipulability of the
surgical manipulator, which is vital in Robot-Assisted Minimally Invasive Surgery (RAMIS). The
accurate tracking control of the surgical tip is of vital importance for surgical operations [61].
Manipulability index [62, 63] of a surgical tool tip determines the maximum distance from
singularities, flexible motion, and more extensive operational space of the robot manipulators.
Usually, for surgical robot operation, multiple tasks are characterized by different priority
levels. The multiple general tasks are listed as follows (T1–T3):

T1: The tracking control of the surgical tip must be accurate, which guarantees the success
rate of surgery using the robot manipulator [64]. T2: In order to ensure the safety and
rationality of the operation, the surgical tip should pass through a small incision in the
abdominal wall of the patient. Kinematic constraints produced by each small incision should
be respected, generally identified as the Remote Center of Motion (RCM) constraint [65].
T3: The manipulability of the robot manipulator should be enough to perform the surgical
operation [66].

To effectively evaluate the multiple operational tasks on the robot manipulator, a lot of
research activity has been attracted and performed in this area. Various approaches have
been implemented to track the desired position and guarantee the RCM constraint at the
same time using kinematic solutions [65, 67]. Similarly, Ali et al. [68] introduced an adaptive
controller of sclera force and insertion depth to exploit the surgery maintaining the RCM
constraint, as well. Except for fulfilling the RCM constraint, Jin et al. [69] proposed to adopt
neural networks to optimize the manipulability index during the tracking without influence
its accuracy. Nevertheless, few works are proposed to handle all the operational tasks at the
same time.

In our previous work [70, 71], the hierarchical operational space formulation [72] is
utilized to unite the three parts: the main surgical tracking task based on the Cartesian
compliance control, the RCM constraint in its null space of the end-effector, and a manipula-
bility optimization control in the null space of the robot wrist using a constrained quadratic
programming (QP) [73]. Although it achieved better performance in terms of accuracy and
manipulability index, the convergence rate is slow, and the tracking error is larger.

In this section, varying parameters recurrent neural network (VPRNN) based hierarchical
control of a 7-DOF robot manipulator for robot-assisted minimally invasive surgery has been
proposed, where it integrates multiple tasks based on their priority and guarantees task
tracking [32], RCM, and manipulability optimization at the same time. The gradient descent
neural network-based traditional methods cannot guarantee that the convergence of the error
to 0 at the finite time because of the optimal solution changing over time. The proposed VPRNN
framework can solve the time-vary QP problem with fast convergence rate performance, which
is promising for online solution of the time-varying optimization problem [33]. The proposed
methodology represents an advance concerning the manipulability optimization solution
proposed in [70]. It utilizes a VPRNN [74] based hierarchical control to combine the multiple
tasks into a single controller [75]. Furthermore, the overall convergence rate has also been
improved with respect to our previous works [69, 70]. Finally, simulations and experiments
applying a 7-DOF serial robot KUKA LWR4+ are performed to demonstrate the effectiveness
of the proposed method.

The structure of this section is organized as follows. Section 2.2.2 describes the related
works of the RA-MIS. The control method is presented in Section 2.2.3. In Section 2.2.4,
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Figure 2.15: Multiple operational tasks in the Robot-assisted Minimally Invasive Surgery.

the performance of the proposed control system is illustrated by applying simulation and
experiments. Conclusions are described in Section 2.2.5.

2.2.2 Related Works

Generally, there are active and passive RCM constraints. The passive constraint is designed
mechanically, while the active method is well known to be accomplished by software and
controller [75, 76]. Moreover, it is prevalent in non-clinical research since its low cost and
flexible task space. As it is shown in Fig. 2.15, the multiple operational tasks (T1–T3) should
be considered at the same time.

Sandoval et al. [75] proposed to exploit the redundancy to combine the T1 and the T2 at
the same time. In fact, an improved dynamic control method is proposed to apply the task
redundancy for the RCM constraint (T2), without the influence of the surgical operation (T1).
Jin et al. [69] proposed to use neural networks to combine the T1 and the T3. In our previous
works [70, 77], we utilized the hierarchical operational space formulation [72] to combine
the three tasks T1, T2, and T3.

2.2.3 Control Methodology

This section aims at controlling the redundant manipulator to perform a surgical tracking task,
while considering the RCM constraint and optimize the manipulability of the manipulator at
the same time, using VPRNN.

Remote Center of Motion Constraint

For the surgical tracking tasks, the robot’s tooltip should respect the RCM constraint, which
is shown in Fig. 2.15. Obviously, r rcm should be held in a line of r m and r m−1, where r m
is the end of tooltip and r m−1 is the Cartesian position of joint m− 1. Thus, the geometric
relationship of RCM error model is defined as,

−−−−−−→r m−1r rcm ×
−−−−−→r m−1r m = 0 (2.33)
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where −−−−−−→r m−1r rcm represents the vector of line r m−1r rcm, and −−−−−→r m−1r m represent the vector of
line r m−1r m, respectively. It can be seen that line r m−1r rcm and line r m−1r m should be parallel.
Then, the RCM error constraint can be expressed as,

E rcm (q) =
−−−−−−→r m−1r rcm ×

−−−−−→r m−1r m

d
(2.34)

We define the Cartesian coordinates r m−1 = [xm−1, ym−1, zm−1]T , r m = [xm, ym, zm]T and
r rcm = [xrcm, yrcm, zrcm]T . The RCM error model can be expanded as follows:

E rcm =
1
d











(yn − yn−1)(zn−1 − zrcm)− (yn−1 − yrcm)(zn − zn−1)

(xn−1 − xrcm)(zn − zn−1)− (xn − xn1)(zn−1 − zrcm)

(xn − xn−1)(yn−1 − yrcm)− (xn−1 − xrcm)(yn − yn−1)











(2.35)

Problem formulation

The kinematic formulation of multi-DOFs redundant manipulator is,

X d = f1 (q)
E rcm = f2 (q)

(2.36)

where X d ∈ Rn and E rcm ∈ Rn (n = 3) are end-effector and RCM Cartesian coordinate,
respectively. The relationship between the end-effector velocity Ẋ and the joint velocity
q̇ ∈ Rm(m= 7) is expressed as,

Ẋ d = J T q̇
Ė rcm = J rcmq̇

(2.37)

where J T ∈ Rn×m and J rcm ∈ Rn×m denote the end-effector and RCM Jacobian matrix, respec-
tively. As it is well-known the manipulability measure gives a scalar representation of the gain
between joint velocities q̇ and task velocities Ẋ , and, consequently, measures the ability of the
robot to move its end-effector, i.e., a configuration q for which the Jacobian is rank deficient.
The manipulability measure depends on the J T and is given by:

µ=
Ç

det
�

J T (q) JT
T (q)

�

=
p

µ1µ2...µm (2.38)

where µi(i = 1,2 . . . , m) denotes the i-th largest eigenvalue of J T J T
T

For a redundant manipulator with the desired workspace task X d and a RCM constraint
E rcm, the manipulability optimization problem can be formulated as [69]:

min −µ (2.39)

s.t. X d = f1 (q) (2.40)

E rcm(q) = f2 (q) (2.41)

q , q̇ ∈ Rm

where f1(q) and f2(q) are the forward kinematic functions of the end-effector and of the
“wrist”, respectively. The two equality constraints has been introduced to guarantee that
the optimization of the manipulability index does not affect tracking of the desired end-
effector trajectory (first equality constraint) and fulfilment of RCM constraint (second equality
constraint).

The previous optimization problem is characterized by a cost function that is usually
non-convex, and by nonlinear equality constraints [78], and it thus represents a challenging
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problem. In order to address the non-convexity of the cost function, we can reformulate the
optimization problem as follows:

min −µ̇ (2.42)

s.t. J q̇ = v d (2.43)

J rcm(q) = v rcm (2.44)

q , q̇ ∈ Rm

where vd = Ẋd , and vrcm = Ėrcm. On the other side, a way to handle the two nonlinear equality
constraints is introduced in Section 2.2.3.

Considering the safety in surgical task [79, 80], the joint velocities and joint angles cannot
exceed kinematic limitations. The convex sets of admissible joint positions and velocities can
be introduced as follows:

Ωq = {qi ∈ R | qi
¯
≤ qi ≤ q̄i , i = 1,2, . . . , m}

Ωq̇ = {q̇i ∈ R | q̇i
¯
≤ q̇i ≤ ¯̇qi , i = 1,2, . . . , m}

where q̇i
¯

and ¯̇qi are lower and upper bounds on joint velocities, respectively, and qi
¯

and q̄i are

lower and upper bounds on joint angles, respectively.

In order to express these two constraints as a single constraint on joint positions and
velocities, the constraint on joint positions can be reformulated [69] as follows:

Ωq = {q̇i ∈ R | −α(qi − qi
¯
)≤ q̇i ≤ −α (qi − q̄i) , i = 1,2, . . . , m}

where α is a positive constant, and the two constraints can be rewritten as:

Ωq̇ = {q̇i ∈ R | max(q̇i
¯

,−α(qi − qi
¯
))≤ q̇i ≤min( ˙̄qi ,−α(qi − q̄i)), i = 1, 2, . . . , m}

The derivative level manipulability can be obtained as,










d(µ2/2)
d t = det

�

J T JT
T

�

t r
�

J̇ T JT
T (J T JT

T )
−1
�

d(µ2/2)
d t = µµ̇=

q

det
�

J T JT
T

�

µ̇

(2.45)

From (2.45), the µ̇ can be obtained,

µ̇=
Ç

det
�

J T JT
T

�

t r
�

J̇ T JT
T (J T JT

T )
−1
�

(2.46)

We define the J̇ T as,

J̇ T =
m
∑

i=1

∂ J T

∂ qi
q̇i =

m
∑

i=1

hi q̇i (2.47)

Therefore,

t r
�

J̇ T JT
T (J T JT

T )
−1
�

=
m
∑

i=1

q̇i · t r
�

hi J
T
T (J T JT

T )
−1
�

(2.48)

Considering the convenience of computing of (J T JT
T )
−1, we transform the variable with

vectorization as,

t r
�

hi J
T
T (J T JT

T )
−1
�

= t r
�

�

J T hT
i

�T �
(J T JT

T )
−1
��

= vecT
�

J T hT
i

�

vec
��

(J T JT
T )
−1
��

(2.49)
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Therefore the µ̇ can be further expressed as,

µ̇= µ
m
∑

i=1

q̇ivecT
�

J T hT
i

�

vec
�

(J T JT
T )
−1
�

= µ [q̇i , q̇2 . . . , q̇m] [d1, d2 . . . , dm]
Tvec

�

(J T JT
T )
−1
�

(2.50)

where di = vecT
�

J T hT
i

�

. Moreover, the new symbol ’⋄’ is defined to simplify the expression
in (2.50),

J T♦h= [d1, d2 . . . , dm]
T =

�

vecT
�

hT
1

�

, vecT
�

hT
2

�

. . . , vecT
�

hT
m

��T �
In ⊗ JT

T

�

(2.51)

where the rules of Kronecker product ’⊗’ satisfy: vec (abc) =
�

bT ⊗ a
�

vec (c). We define

the notation ψ = vec
�

(J T JT
T )
−1
�

(ψ ∈ Rn2
). Therefore, µ̇ = µq̇T (J T♦h)ψ, and In =

J T JT
T

�

J T JT
T

�−1
= J T JT

Tψ, vec (In) = vec
�

J T JT
Tψ
�

=
�

In ⊗ J T JT
T

�

ψ.
It should be noted that µ is nonnegative and independent of vector q̇ and ψ, so the

optimization function is equivalent to q̇T (J T♦h)ψ. Therefore, the manipulability optimization
problem, including all the aforementioned constraints, can be formulated as:

min
q ,q̇∈Rm

−q̇T (J T♦h)ψ

s.t.
�

In ⊗ J T JT
T

�

ψ= vec (In)
J T q̇ = v d

J rcmq̇ = v rcm
q̇ ∈ Ωq ,q̇

(2.52)

Reformulation as a Constrained Quadratic Programming

There exist the joint angle drift because of the loss of explicit information on X d and E rcm.
Therefore, we design the feedback controller to restrict the movement of robot for end-effector
and RCM velocity constraint in (2.37),

v d = −k1 ( f1 (q)− X d) + Ẋ d
v rcm = −k2 ( f2 (q)− E rcm) + Ė rcm

(2.53)

where k1, k2 are positive feedback gain.
Furthermore, in order to guarantee that the problem is convex and compliant with the

formulation proposed in [69], the objective function including three tasks is defined as,

f (q̇ ,ψ) = −h0q̇T (J T♦h)ψ+
h1

2
∥q̇∥2 +

h2

2
∥J T q̇ − v d∥

2 (2.54)

+
h3

2
∥J rcmq̇ − v rcm∥

2 +
h4

2





�

In ⊗ J T JT
T

�

ψ− vec (In)




2
(2.55)

where h0, h1, h2, h3, and h4 are positive constants.
The optimization problem in (2.52) can be reformulated as:

min
q ,q̇∈Rm

f (q̇ ,ψ)

s.t.
�

In ⊗ J T JT
T

�

ψ= vec (In)
J T q̇ = v d

J rcmq̇ = v rcm
q̇ ∈ Ωq ,q̇

(2.56)
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Figure 2.16: VPRNN based Hierarchical Control Framework, where N = m+ 2n2 + 2n. The details are shown in
Sec. 2.2.3.

Varying-Parameter Hierarchical Optimization Scheme

To obtain the solution of QP problem in (2.56), the Lagrange function is defined as,

L (q̇ ,ψ,λ1,λ2,λ3) = −h0q̇T (J T♦h)ψ+ h1
2 ∥q̇∥

2 + h2
2 ∥J T q̇ − v d∥

2 + h3
2 ∥J rcmq̇ − v rcm∥

2

+h4
2





�

In ⊗ J T JT
T

�

ψ− vec (In)




2
+λT

1 (v d − J T q̇)

+λT
2 (v rcm − J rcmq̇) +λT

3

�

vec (In)−
�

In ⊗ J T JT
T

�

ψ
�

(2.57)
where λ1 ∈ Rn, λ2 ∈ Rn, λ3 ∈ Rn2

We define ∂ L = [∂ L/∂ q̇ ,∂ L/∂ψ,∂ L/∂ λ1,∂ L/∂ λ2,∂ L/∂ λ3].

∂ L =



















































∂ L/∂ q̇ = −h0 (J T♦h)ψ+ h1q̇ + h2JT
T (J T q̇ − v d) + h3JT

rcm (J rcmq̇ − v rcm)− JT
Tλ1 − JT

rcmλ2

∂ L/∂ψ= −h0(J T♦h)Tq̇ −
�

In ⊗ J T JT
T

�

λ3 + h4

��

In ⊗ J T JT
T

� ��

In ⊗ J T JT
T

�

ψ− vec (In)
��

∂ L/∂ λ1 =− (J T q̇ − v d)

∂ L/∂ λ2 = − (J rcmq̇ − v rcm)

∂ L/∂ λ3 = −
��

In ⊗ J T JT
T

�

ψ− vec (In)
�

(2.58)
If ∂ L are continuous, the optimal solution satisfy ∂ L = 0.

To solve the problem in (2.56), the VPRNN is proposed. Firstly, the decision vector z
is defined as: z = [q̇ ,ψ,λ1,λ2,λ3]

T (z ∈ Rm+2n2+2n). Then, the equation in (2.58) can be
rewritten as form of a matrix,

W z = l, z ∈ Ω (2.59)



2.2 Hierarchical Optimization Control for Surgical Robot 29

where W ∈ R(m+2n2+2n)×(m+2n2+2n), l ∈ Rm+2n2+2n,

W =











w 11 w 12 −JT
T −JT

rcm 0
w 21 w 22 0 0 w 25
J T 0 0 0 0

J rcm 0 0 0 0
0 w 52 0 0 0











l = [l11, l12, v d , v rcm, vec (In)]
T

w 11 = h1 + h2JT
T J T + h3JT

rcmJ rcm;

w 12 = −h0 (J T♦h) ; w 21 = −h0(J T♦h)T;

w 22 = h4

�

In ⊗ J T JT
T

� �

In ⊗ J T JT
T

�

;

w 25 = −
�

In ⊗ J T JT
T

�

; w 52 = In ⊗ J T JT
T ;

l11 = h2JT
T v d + h3JT

rcmv rcm;

l12 = h4

�

In ⊗ J T JT
T

�

vec (In) .

To obtain the optimization solution of (2.59), the error model of neuro-dynamics optimiza-
tion is defined as,

δ (t) = W (t) z (t)− l (t) (2.60)

where δ (t) ∈ Rm+2n2+2n. To make the error model in (2.60) converge to 0, the varying
parameter neuro-dynamics optimization scheme is designed as,

dδ (t)
d t

= −β exp (t)φ (δ (t)) (2.61)

where β > 0 is the constant which can scale the convergence rate. The activation function of
(2.61) is defined as,

φ (δ (t)) =







δ−i , if δi (t)< δ−i
δi , if δ−i < δi (t)< δ+i
δ+i , if δi (t)> δ+i

(2.62)

where δ−i and δ+i are lower bound and upper bound of i-the element. Then, substituting
(2.60) into (2.61), the extend expression of (2.61) can be rewritten as,

W (t) ż (t) = −Ẇ (t) z (t) + l̇ (t)− β exp (t)φ (W (t) z (t)− l (t)) (2.63)

2.2.4 Experimental Comparison

To evaluate the proposed control scheme, Simulation and experiments are carried out.The
magnitude of the Cartesian position error E end , the RCM constraint error ∥E rcm∥ and the
manipulability index µ, defined in [64], are recorded for analysis. The detailed parameters of
the controller are shown in Table 2.3. For DCAC and MOC, the parameters can be found in
our previous works [70].

Firstly, as it is shown in Figs. 2.17a–2.17b, the demonstration using the KUKA manipulator
is performed to check the feasibility of the proposed methods. Here, the sinusoid task is
designed for testing.

To compare the performance of the proposed method with related works, and experimental
comparisons, including RNN, Nullspace methods are performed n the same trajectory for
comparison. The detailed configuration and development of the system can be found in our
previous works [70]. The operative procedure is organized as follows:
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Table 2.3: Experimental controller parameters

Controller Controller parameters
K X = diag[3000, 3000,3000]
DX = diag[30,30, 30]

RNN K N = diag[800,800, 800]
DN = diag[10, 10,10], λ= 0.5
h0 = 0.01, h1 = 0.01, h2 = 1, h4 = 1
k1 = 5,β = 103

K X = diag[3000, 3000,3000]
DX = diag[30,30, 30]

VPRNN K N = diag[800,800, 800]
DN = diag[10, 10,10],
h0 = 0.1, h1 = 10, h2 = 50, h3 = 30
h4 = 30, k1 = 5, k2 = 5,β = 103

(a) Demonstration of sine curve. (b) Demonstration of angle curve.

Figure 2.17: Demonstration with Kuka manipulator.

1 User 1 uses hands-on control to move the robot and pass through the RCM constraint;

2 Then, the robot autonomously tracks the set trajectory X d to perform the surgical task,
and User 2 is in charge of urgency issues in front of the visual interface.

Figure. 2.19a–2.21a shows the comparison of online performance in sine curve and angle
curve tasks. Figure. 2.19b–2.21b and Fig. 2.19c–2.21c show the comparison results of tracking
error and RCM error, respectively. Figure. 2.19d–2.21d show the comparison results of the
manipulability index. Figure. 2.20–2.22 show the joint angles solution with VPRNN methods.
From Fig. 2.19b–2.21b, it can be seen that all the errors of the end-effector are constrained in
an acceptable error range within 5mm. From Fig. 2.19c–2.21c, it can be seen that the RCM
error is also in an acceptable error range within 15mm.

Obviously, the proposed VPRNN-based method has an overall promising performance,
including end-effector error, RCM error, manipulability index. In addition, the RNN method
in [69] shows a better performance than the null space of end-effector error, RCM error,
manipulability index. Therefore, we can conclude that VPRNN has the best ability to guarantee
task tracking, RCM constraint, manipulability, and has the fastest convergence rate.
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Figure 2.18: Experimental setup scene: 1) hands-on control to move the robot manipulator to pass through the
RCM constraint (small incision on the patient’s body); 2) autonomous tracking is activated to run the application.

2.2.5 Summary

This section addresses varying parameters recurrent neural network (VPRNN) based on hierar-
chical control of a 7-DOF robot manipulator for Robot-Assisted Minimally Invasive Surgery
to achieve task tracking, Remote Center of Motion (RCM) and manipulability optimization
at the same time. In order to efficiently accomplish the Cartesian compliance control RCM
constraint, surgical task, and manipulability optimization, a hierarchical operational space
formulation is investigated. The new optimization problem is the real-time resolution for
given tasks and has an excellent convergence performance even in the random initial position.
Finally, in order to evaluate the accuracy of the proposed scheme, experimental evaluation
has been discussed on virtual surgical tasks. Several remarks connected to [70] here detailed
explaining that the recommended control scheme not only ensures the RCM constraint facing
the auto-tracking phase but also develops the robot manipulability. In future works, we will
attempt to the global manipulability optimization combined with the RCM constraint.

2.2.6 Appendix

Convergence Analysis

Theorem 1 Considering the optimization problem in (2.56), if there exist the optimal solution
z∗ when the activation function in 2.62) is mapped to error model of varying parameter neural
network, the decision variable z is defined as: z = [q̇ ,ψ,λ1,λ2,λ3]

T (z ∈ Rm+2n2+2n) globally
converges to the optimal solution z∗ =

�

q̇∗,ψ∗,λ∗1,λ∗2,λ∗3
�T

(z ∈ Rm+2n2+2n) from any initial
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(a) Comparison results: trajectory tracking of sine
curve.

(b) Comparison results: End-effector error E end of sine
curve.

(c) Comparison results: RCM error ∥E rcm∥ of sine
curve.

(d) Comparison results: Manipulability index µ of sine
curve.

Figure 2.19: Sine curve: tracking results of end-effector’s trajectory, trajectory errors, RCM errors and manipulability.

point.

Proof 1 The candidate Lyapunov function is defined as,

V (t) =
1
2
δTδ (2.64)

The time derivative of V(t) is expressed as,

V̇ (t) =
dV (t)

d t
= δT (t) δ̇ (t) (2.65)

Substituting (2.62) into (2.65),

V̇ (t) = −β exp (t)δT (t)φ (δ (t))= −β exp (t)
N
∑

i=1

δi (t)φ (δi (t)) (2.66)

As mentioned in (2.62), the function φ (δ (t)) is the monotone nondecreasing, thus we have,

δi (t)φ (δi(t)) =

�

> 0, if δi(t) ̸= 0
= 0, if δi(t) = 0

(2.67)
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Figure 2.20: Joint angles solution using VPRNN of sine curve.

Finally, the time derivative V (t) is obtained as,

V̇(t) =

�

< 0, if δi(t) ̸= 0
= 0, if δi(t) = 0

(2.68)

From the (2.68), it can conclude that if and only if δi(t) = 0, V̇ = 0; otherwise V̇ < 0. The proof
is finished.

Robustness Analysis

Considering the disturbance model in (2.63) as following,

W (t)ż(t) = −(Ẇ +∆B(t))z(t)− β exp(t)(W (t)z(t)− l(t)) + l̇(t) +∆ξ(t) (2.69)

where ∆B ∈ R(m+2n2+2n)×(m+2n2+2n) is the disturbing term of W (t); ∆ξ ∈ Rm+2n2+2n is the error
from VPRNN model.

Theorem 2 if ∥∆B(t)∥ ≤ µB, ∥∆ξ(t)∥ ≤ µξ,


W−1


 ≤ µW , ∥l(t)∥ ≤ µl , and µB, where µξ,
µW , µl are all positive parameters, the error δ(t) will converge to 0 under the condition of
βa exp(t)−µBµA > 0(a ≥ 1).

Proof 2 Substituting the (2.60), (2.61) into (2.69), we can conclude,

δ̇(t) = −β exp(t) (δ(t))−∆B(t)W−1δ(t) +∆ξ(t)−∆B(t)W−1l(t) (2.70)

We choose a Lyapunov function as,

V (t) =
1
2
δT (t)δ(t) =

1
2

m+2n2+2n
∑

j=1

δ2
i (t) (2.71)

where V (t) is the non-negative variable.
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(a) Comparison results: Trajectory tracking of angle
curve.

(b) Comparison results: End-effector error E end of
angle curve.

(c) Comparison results: RCM error ∥E rcm∥ of angle
curve.

(d) Comparison results: Manipulability index µ of
angle curve.

Figure 2.21: Angle curve: tracking results of end-effector’s trajectory, trajectory errors, RCM errors and manipulabil-
ity.

Then, we can obtain the time derivative of V (t),

V (t) = δT (t)δ̇(t)

= δT (t)(−β exp(t)(δ(t))−∆B(t)W−1δ(t) +∆ξ(t)−∆B(t)W−1l(t))

= −β exp(t)δT (t)(δ(t)) +δT (t)ψ(t)δ(t) +δT (t)∆ξ(t) +δT (t)
�

−∆B(t)W−1l(t)
�

= −β exp(t)δT (t)(δ(t)) +δT (t)ψ(t)+ψ
T (t)

2 δ(t) +δT (t)∆ξ(t) +δT (t)
�

−∆B(t)W−1l(t)
�

(2.72)
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Figure 2.22: Joint angles solution using VPRNN of angle curve.

where ψ(t) = −∆B(t)W−1. Moreover,

δT (t)ψ(t)+ψ
T (t)

2 δ(t)

≤ δT (t)δ(t)
�

�

�λmax

�

ψ(t)+ψT (t)
2

�

�

�

�

≤ δT (t)δ(t)


∆B(t)W−1(t)




≤ δT (t)δ(t)µBµW

(2.73)

δT (t)∆ξ(t)≤
m+2n2+2n
∑

i=1

|δi|µξ (2.74)

δT (t)
�

−∆B(t)W−1l(t)
�

≤
m+2n2+2n
∑

i=1
|δi| ·



−∆B(t)W−1l(t)


≤
m+2n2+2n
∑

i=1
|δi|µBµξµl (2.75)

Therefore, substituting (2.73)–(2.74) into (2.72),

V̇ (t)≤ −β exp(t)δ(t) (δ(t)) +δ(t)δ(t)µBµW +
m+2n2+2n
∑

i=1
|δi|µξ +

m+2n2+2n
∑

i=1
|δi|µBµξµl

= −
m+2n2+2n
∑

i=1
|δi|

�

β exp(t)PΩ(|δi|)−µBµW |δi| −µξ −µBµξµl

�

(2.76)

We define the Θ1 = β exp(t)(|δi|) − µBµW |δi| − µξ − µBµξµl . We know variable Θ1 may be
positive or negative.

I if Θ1 ≥ 0, so V̇ ≤ 0. It obvious that the error variable δ(t) converge to zero from Lyapunov
theorem, and the state variable z converge to the optimal solution z∗.

II if Θ1 < 0, then V̇ < δ(δ > 0). Therefore, V̇ may be positive or negative.

(1) if V̇ ≤ 0, we know the error variable δ(t) converge to zero, also the state variable z will
converge to optimal solution z∗.
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(2) if V̇ > 0(0 < V̇ < δ), and consider the linear activation function Θ1(|δ(t)|) =
a |δ(t)| (a ≥ 1), and βa exp(t)−µBµW > 0, so we can obtain,

V̇ ≤ −
m+2n2+2n
∑

i=1
|δi| (β exp(t)a |δi| −µBµW |δi| −µξ −µBµWµl))

= − (βa exp(t)−µBµW )
n+m
∑

i=1
|δi|

�

|δi| −
µξ+µBµWµl

βa exp(t)−µBµW

�

(2.77)

It is easy to obtain β > µBµW
a . According to (2.77), in this case, 0< V̇ < δ, so V (t) increase

that means |δi| will increase, and V̇ will decrease. Therefore, V̇ always exists a moment
V̇ ≤ 0, then the control system will stabilize again.

It should be noted that when v̇(t) = 0, |δi| = |δ|
+, |δ|+ is the upper bound. We define

Θ2 =
µξ+µBµWµl

βa exp(t)−µBµW
. If V̇ (t) = 0,

m+2n2+2n
∑

i=1
|δi| (|δi| −Θ2) = 0, and the variable |δi| can

be seen as the input, the function |δi| (|δi| −Θ2) will obtain the minimum output, if
|δi|= 0.5Θ2. Moreover, |δi| (|δi| −Θ2)> 0 when |δi|> Θ2.

We know
m+2n2+2n
∑

i=1
|δi| (|δi| −Θ2) = 0 and the function mentioned above has the negative

minimum output. We assume that δ j(i = j) is the upper bound δ+, so δ j will be achieved
if and only if the rest m+ 2n2 + 2n− 1 terms |δi| (|δi| −Θ2) obtain the minimum point.
Therefore,

m+2n2+2n
∑

i=1

|δi| (|δi| −Θ2) =
m+2n2+2n
∑

i=1,i ̸= j

|δi| (|δi| −Θ2) +
�

�δ j

�

�

��

�δ j

�

�−Θ2

�

(2.78)

Then, Θ2 =
µξ+µBµWµl

βa exp(t)−µBµW
is substituted in (2.78), and obtain,

m+2n2+2n
∑

i=1
|δi| (|δi| −Θ2) =

�

�δ j

�

�

2 −
�

�δ j

�

�

�

µξ+µBµWµl

βa exp(t)−µBµW

�

− m+2n2+2n−1
4

�

µξ+µBµWµl

βa exp(t)−µBµW

�2
= 0

(2.79)
According to analysis, we can conclude the upper bound

�

�δ j

�

�,

�

�δ j

�

�=
1
2

�

(1+
p

m+ 2n2 + 2n)η
�

where η=
µξ+µBµWµl

βa exp(t)−µBµW
, |δend | (end = m+ 2n2 + 2n) converge to zero.
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2.3 NRP: Hierarchical Optimization Control for Mobile Manipulator

This section represents a constraint planning and optimization control scheme for a highly
redundant mobile manipulator considering a complex indoor environment. Compared with the
traditional optimization solution of a redundant manipulator, infinity norm and slack variable
are additionally introduced and leveraged by the optimization algorithm. The former takes
into account the joint limits effectively by considering individual joint velocities and the latter
relaxes the equality constraint by decreasing the infeasible solution area. By using derived
kinematic equations, the tracking control problem is expressed as an optimization problem
and converted into a new quadratic programming (QP) problem. To address the optimization
problem, the two-timescale recurrent neural networks optimization scheme is proposed and
tested with a 9 DOFs nonholonomic mobile-based manipulator. Additionally, the BI2RRT ∗

path-planning algorithm incorporates trajectory planning in the complex environment where
different obstacles are positioned. To test and evaluate the proposed optimization scheme,
both predefined and path-planning trajectories are tested in the Neurorobotics Platform (NRP)
1 which is open access and open source integrative simulation framework powered by Gazebo
and developed by our team.

2.3.1 Introduction

Robot manipulation is receiving increasing attention in medical services, industrial production
and space exploration, etc. Redundant manipulators have the extra degree of freedom (DOF)
that provides a wide workspace to meet additional design objectives such as joint torque
minimization [81], collision avoidance [82], joint-limit avoidance, and avoiding singularity
configurations [83], etc. In practice, the redundant manipulator is in demand for remote
manipulation scenarios, such as moving containers from the dock to the warehouse, which
requires a larger workspace. To extend the workspace of the robot arm, mobile manipulators
are more desirable because locomotion parts (tracks, wheels, legs) increase the workspace of
the manipulator considerably and provide versatility, and are capable of solving a variety of
tasks [84]. However, the manipulation of the mobile manipulator is more complex due to the
increased DOFs. In this paper, we will study the motion planning of obstacle avoidance and
optimization control for the 9-DOFs mobile manipulator.

Trajectory planning is one of the core problems in mobile robot navigation and mobile
manipulator operation, aiming to provide trackable trajectories for mobile base or end effector
based on existing maps. The most widely used methods are the sampling-based planning
algorithm. In [85], Kavraki et al. proposed the Probabilistic Roadmap (PRM). The algorithm
has few parameters and a simple structure, but its completely random sampling process makes
most of the obtained nodes deviate from the final trajectory, leading to a significant increase
in computational effort. In [86], Kuffner et al. proposed the rapidly-exploring random trees
(RRT), a single-query algorithm that is only responsible for finding feasible trajectories, and
the results are generally not optimal, sometimes very tortuous. In [87], the RRT* algorithm
was proposed. This method adds steps of reselection of the parent nodes and rewiring of the
tree, improving the basic RRT method to an asymptotically optimal algorithm. However, while
improving the final trajectory, the planning time consumed is also growing significantly. In
[88], Gammell et al. proposed the Informed-RRT* to restrict the sampling space to a hyper-
ellipsoid region, which improves the sampling efficiency thus greatly reduces the planning
time. In [89], Informed-RRT* was extended to a bidirectional variant and applied to mobile
manipulation. The variant reduces the searching time for an initial feasible trajectory, thus

1https://neurorobotics.net
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leaving more time for trajectory refinement to get better results. Another approach involves
gradient-based methods. Ratliff et al. proposed the covariant Hamiltonian optimization
algorithm [90], which uses covariant gradients and functional gradients on optimization to
make many trajectory planning problems simple and trainable. However, this approach usually
requires a complex parameter tuning process, and in some cases, derivative information is
not available. Considering the efficiency of RRT-like algorithms and the complexity of mobile
manipulator trajectory planning, we choose a method similar to [89], i.e. the Bidirectional
Informed RRT* algorithm (BI2RRT ∗).

When the trajectories are defined by the planner in Cartesian space, it is important to map
the control tasks from Cartesian space to joint space. Over past decades, tracking control
problems have been well-studied for redundant manipulators [63, 91]. Generally, there
are two common approaches to address redundant manipulators: optimization-based and
optimization-free. In [92], Kumar et al. introduced a pseudoinverse-based RBF neural network
method for trajectory tracking in Cartesian space. In [93], adaptive fuzzy sliding mode
control was proposed for redundant robots achieving precise performance in the presence
of uncertainties. In [94], Jiang et al. proposed an impedance controller for the 7-DOFs
robot arm to address the problem of interaction with humans. Although these optimization-
free studies have achieved good performance in some special scenarios, they are based on
pseudoinverse for tracking in task space, which may suffer from repeatability, singularity, and
high computation due to the pseudo-inverse of the Jacobian matrix. Furthermore, it is difficult
to handle multiple constraints problems, especially inequality constraints [95].

Another approach for tracking control problems of the redundant manipulator is the
optimization-based method which is inverse-free and suitable for real-time tracking tasks. In
[95], Hassan et al. summarized the recurrent neural network (RNN) approaches for quadratic
programming (QP) problem of inverse kinematics solution. In [96, 97], primal-dual neural
network (PDNN) was developed for redundant robot control, and the global convergence
analysis was also provided. Although the PDNN or RNN can obtain their solvability constraints
at convex optimization problems, they may change drastically and dynamic behaviors may
become unpredictable [98]. In [99], Zhang et al. introduced a novel zeroing neural network
which is derived from state residual error model to address the QP problem with exponential
convergence speed and high precision, but it traded running time for convergence performance
which lower the real-time manipulation.

Moreover, the mentioned work aimed only at the single metric optimization of tracking
accuracy. Generally, joint-velocity minimization is investigated mostly using the l2 (Euclidean)
norm which is also associated with minimum-energy [100]. One of the reasons why it is
appealing to researchers is that closed-form analytical expressions of the optimization problem
can be obtained [101]. However, l2 only minimizes the sum of the squares of joint velocities
and does not take into account magnitudes of individual joint velocity. Therefore, it might
be undesirable for applications in which the magnitude of individual joint limits are of the
essence. In this paper, an additional metric l∞ norm minimizes the largest component of joint
velocity is considered into the objective function, which is more consistent with physical limits
than the l2 norm [102].

It should be noted that the optimization problem sometimes yields infeasible solution due
to strict equality constraints, thereby resulting in unsmooth and jittery movements under the
requirement of high precision, which is very dangerous during interaction with the human or
the environment, especially a surgical task. Motivated by [103] of slack variables, therefore,
the infeasible solution area of trajectory tracking can be relaxed using slack variables. The
slack variable is activated in the cases where the tracking errors cannot achieve the desired
level, which trades accuracy for smoothness of motion within an acceptable range. We tested
and simulated the proposed optimization scheme in the NRP which is an open-source platform
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and helps researchers to develop novel robotic control algorithms [104].
In this section, we firstly use a 9 DOFs mobile-based manipulator (Fig. 2.23) and derive

the tracking control problem including multiple metrics as an optimization problem (Section
2.3.3). Besides, the infinity norm is added to the optimization problem so as to consider
joint limits strictly. To be able to express the infinity norm in terms of QP, it is converted into
an inequality constraint. Furthermore, slack variables are employed to avoid cases where
optimization fails to satisfy the equality constraint, which may cause unsmooth and jittery
movements in the end-effector. Afterward, a two-timescale recurrent neural networks (TNN)
optimization scheme has been developed and kinematic equations are embedded in TNN
(Section 2.3.4). Next, BI2RRT ∗ path-planning algorithm is employed for trajectory planning
among obstacles.

2.3.2 Coordinated Base-manipulator Trajectory Planning

This section describes the trajectory planning of our mobile manipulator, which aims to plan
Cartesian trajectories of both the mobile base and the end effector. Motived by work proposed
in [89], the BI2RRT ∗ algorithm can address the mobile manipulator planning with respect to
joint limits, avoid self-collisions as well as collisions with obstacles in the environment. For
the completeness of exposition, we summarize the key points of our implementation on the
Neurorobotics Platform. The algorithm pseudocode is shown in Alg. 1.

Our mobile manipulator consists of a mobile base and a Kuka robotic arm. For efficient
sampling we equate the mobile base to two prismatic joints and one revolute joint, so we get
a simple movement chain and its configuration can be given by:

X = (xm, ym,ϕ,θ1,θ2,θ3,θ4,θ5,θ6,θ7) (2.80)

xm, ym,ϕ denote the configuration of the mobile base and θi stands for the joint configuration
of the Kuka robot arm. In our problem the starting pose p ini t and target pose p tar get of the
end-effector are given. We model our 9DOF model as a kinematic chain and can find the
corresponding states Xini t ,Xtar get in joint space. The basic RRT algorithm takes the initial state
as the root node and constructs a rapidly-exploring random tree in the configuration space.
And as improvement in the BI2RRT ∗ algorithm two rapidly-exploring random trees Ti and Tt
are initialized from the initial state Xini t and the target state Xtar get respectively. According to
[89], this enables to obtain the first feasible trajectory quickly, thus increasing the time of the
informed trajectory refinement process. For simplicity and clarity, in the following we describe
the growth process of only one random tree Ti, but the same process occurs alternately on
both trees Ti and Tt .

In each iteration we get a sampling point Xrand from the configuration space. The sampling
rule is that Xrand is set to any point in the space with a certain probability, or set directly to the
target Xtar get . This sampling method increases the chance of the tree growing directly towards
the target. Then the F indNearest function is used obtain the nearest node Xnear to Xrand in
Ti and the NewNode function is used to generate a new node Xnew on Ti at certain distance
u from Xnear on the line between Xnear and Xrand . Next step we use the CheckColl ision
function to check whether there are obstacles between the two points Xnear and Xnew, if not
we will enter the asymptotic optimal process. Firstly in configuration space we construct a
hypersphere with Xnew as the center and define the tree nodes of Ti within the hypersphere
as the set of neighbor nodes Xneighbor . Then the process can be divided into two stages. The
first stage is the reselection of a parent node. The trajectory cost of every neighbor node
Xneighbor to the initial node Xini t plus the trajectory cost of the node Xnew to the neighbor
node Xneighbor is calculated, the neighbor node with the smallest cost is selected as the parent



40 2 Hierarchical Optimization Control for Redundant Manipulator

Algorithm 1: Coordinated BI2RRT ∗ Planning
Input: p ini t , p tar get
Output: Tr a j base, Tr a j ee f
(Xini t ,Xtar get)← IKNN(p ini t , p tar get)
Ini t iali zat ion : (Ti ,Tt)← TreeIni t(Xini t ,Xtar get),
Tra jCost(Ti)←∞, Tra jCost(Tt)←∞, TT ← ;
while TimeOut() do

cbest ← minT ∈TT
{Tra jCost(T )}

if cbest <∞ then
cmin←



Xtar get −Xini t





2
Xrand ← Ell ipseSample(cbest , cmin,Xini t ,Xtar get)

else
Xrand ← RandomSample(Xini t ,Xtar get)

end
Xnear ← F indNearest(Ti ,Xrand)
Xnew← NewNode (Xnear ,Xrand , u)
if CheckColl ision(Xnear ,Xnew) then

Xneighbor ← F indNeighbor(Ti ,Xnew)
for ∀ Xneighbor ∈ Xneighbor do

Ti ← ChooseParent(Ti ,Xneighbor ,Xnew)
Ti ← RewireTree(Ti ,Xneighbor ,Xnew)

end
end
Xconnect_near ← F indNearest(Tt ,Xlast)
Xconnect_new← NewNode(Xconnect_near ,Xlast , u)
if CheckColl ision(Xconnect_new,Xlast) then

T ← Mer geTra jec tor y(Ti ,Tt)
TT ← TT ∪ {T }

end
Swap (Ti ,Tt)

end
T f inal ← UniT imeResample(T , v,α)
(Tr a j base, Tr a j ee f )← IKNN(T f inal)
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node of Xnew. The second stage is rewiring of the tree. For each neighbor node Xneighbor ,
modify its parent node to Xnew and calculate the trajectory cost, perform the modification
if the trajectory cost is smaller than before. After the asymptotic optimal step, we move to
the bidirectional connection step. Likewise, we use the F indNearest function to obtain the
nearest node Xconnect_near on tree Tt to the last added node Xlast on tree Ti and the NewNode
function is used to generate a new node Xconnect_new at certain distance u from Xconnect_near
on Tt . Then we simply use a line to connet Xlast and Xconnect_new and use the CheckColl ision
function to check whether collision exists between the two points. If not the two points are
connected directly and the two tree Ti ,Tt will merge to get a feasible trajectory P.

Once an initial feasible trajectory is found, a hyper-ellipsoid is constructed with Xini t ,
Xtar get as the focus points and current trajectory cost cbest as the long axis length. According
to [88], the sum of the distances from the points outside the hyper-ellipse to the two focus
points must be larger than that from the points inside the hyper-ellipse, so we can restrict
the sampling space to the above constructed hyper-ellipse. This will significantly improve the
sampling efficiency, especially in high-dimensional configuration space. We use the method
described above to obtain the optimal trajectory asymptotically over iterations. After getting
an optimal trajectory in configuration space we then resample the trajectory with a uniform
time step using a higher-order spline smoother UniT imeResample and perform the forward
kinematics (FK) solution to get the planning trajectories cartesian space.

2.3.3 Optimization Problem

This section aims to introduce the kinematic model of the 9DOF robot model and the tracking
control optimization problem considering the multiple metrics.

Kinematic Model of Mobile Based Kuka Manipulator

In this section, a 9DOF mobile-based Kuka manipulator is used and tested to prove the
effectiveness of the planner and TNN optimization scheme. The position of the end-effector
is defined by the position and orientation of the mobile base and manipulator. To obtain the
end-effector position, we derive the kinematic equation for mobile base and Kuka manipulator
and then we reformulate them as a single equation. In order to derive the kinematic model of
a 9DOF, some notations are introduced in Fig.2.23 and explained as Table. 2.4.

Table 2.4: Explanation of the used notations shown in Fig.2.23

Parameters Explanation
PM 7DOF Kuka manipulator location on mobile platform
d Distance from P0 to PM

b Distance between the driving wheels and the axis of symmetry
r Wheel radius
R Distance between Q (Instantanous Center of Rotation) and the left driving wheel
ψ Heading angle of the mobile platform defined from the x axis.
w Angular velocity of mobile platform around Q

θ̇l , θ̇r Angular velocities of left and right wheels, respectively

The forward kinematics of the 9DOF mobile-based manipulator are formulated as follows:

r(t) = f (ψ(t)) (2.81)

where r(t) ∈ Rm is end-effector position in Cartesian space, and ψ(t) ∈ Rn is joint angles;
f (.) is nonlinear mapping function. The 7DOF redundant Kuka arm is placed on the mobile
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Figure 2.23: Top view of 9DOF mobile-based manipulator.

platform. For redundant manipulators, joint-space has more degree of freedom (DOF) than
required for the end-effector’s position i.e, n> m [105]. The redundancy helps simultaneously
to achieve many useful objectives, such as collision avoidance, joint-limit avoidance, singularity
[83].

Fig. 2.24 describes the coordinate frames of a 9DOF mobile-based manipulator. The
base frame of Kuka manipulator XM , YM , and ZM are attached to the mobile platform. The
end-effector position vector with respect to the W (World) frame can be obtained with
homogeneous transform matrices shown as follow:

W r end =
W TM

M T1
1T2

2T3
3T4

4T5
5T6

6T7
7r end (2.82)

where (.)T(.) ∈ R
4×4 and (.)r (.) ∈ R

4 denote the homogeneous transform matrices and homoge-
neous coordinate representation, respectively. r can be expressed shown as:

W rend =

�

W p
1

�

=







W px
W py
W pz

1






(2.83)

The end-effector position vector can be divided into the position vector of the mobile base
with respect to world frame and the position vector of end-effector with respect to M frame.
Separation of the position vectors as shown in Eq. (2.84) makes it easier to analytically derive
the kinematic equations of mobile part and Kuka robot.

W p =





W px
W py
W pz



=

mobile part
︷ ︸︸ ︷





W xc
W yc
W zc





︸ ︷︷ ︸

W pM

+

kuka arm
︷ ︸︸ ︷

M p end (2.84)

where M p end and W pM are the position vector of end-effector with respect to M frame and
position vector of M with respect to W frame, respectively.

Firstly, we derive the kinematic equation of the mobile base. As shown in Fig. 2.23,
the mobile platform can be considered rotating about a point Q (i.e Instantaneous Center of
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Rotation) at any time instant t. The tangential velocity of any point on the left and right wheel
can be calculated based on their distances from the axis of rotation and this velocity should be
equal to the velocity about the point Q. According to the geometric relationship, we have the
formulations as follow:

ψ̇= w (2.85)

Rw= rθ̇l (2.86)

(R+ 2b)w= rθ̇r (2.87)

where R is the distance between Q and the left driving wheel; w is the angular velocity of the
robot; r denotes the wheel radius. The definition is shown in Table. 2.4. We assume that the
mobile base is a rigid object and there is no slippage between the wheels and the floor. The
tangential velocity of P0 and PM can be expressed below:

(R+ b)w= ( ẋ0 cosψ+ ẏ0 sinψ) = ( ẋm cosψ+ ẏm sinψ) (2.88)

Then these velocities can be expressed with respect to the angular velocities of each wheel:

ẋm cosψ+ ẏm sinψ= rθ̇l + bw (2.89)

ẋm cosψ+ ẏm sinψ= rθ̇r − bw (2.90)

From Eq. (2.89) and Eq. (2.90), the angular velocity w of mobile platform can be calculated
below:

w=
r

2b

�

θ̇r − θ̇l

�

(2.91)

Furthermore, the mobile platform moves only in the direction of the axis of symmetry.

ẋm cosψ− ẏm sinψ+ dw= 0 (2.92)

Summation of Eq. (2.89) and Eq. (2.90) result in:

ẋm cosψ+ ẏm sinψ=
r
2

�

θ̇l + θ̇r

�

(2.93)

Combination with Eq. (2.92) and Eq. (2.93), we can express the kinematic equation of mobile
base below:

�

ẋm
ẏm

�

=

�

cosψ − sinψ
sinψ cosψ

�� r
2

r
2

− dr
2b

dr
2b

��

θ̇l

θ̇r

�

(2.94)

As Eq. (2.94) shows the relation between mobile platform and joint (i.e wheels) velocity,
the Jacobian matrix can be directly obtained as:

Jm =

� r
2 cosψ+ dr

2b sinψ r
2 cosψ− dr

2b sinψ
r
2 sinψ− dr

2b cosψ r
2 sinψ+ dr

2b cosψ

�

(2.95)

Due to nonlinearity and redundancy, It is tough to solve directly corresponding ψd(t) for
a desired end-effector position ψd(t) = f −1(rd(t)). However, mapping from the joint space
to workspace in velocity level is an affine mapping and can be used to simplify the problem
which can be defined as below [106]:

The time derivative of Eq. (2.84) can be expressed as:

W ṗ =





W ṗx
W ṗy
W ṗz



=





W ẋc
W ẏc
W żc





︸ ︷︷ ︸

W ṗM

+M ṗ end (2.96)
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Figure 2.24: Coordinate frames of 9DOF mobile based manipulator.

where M ṗ end and W ṗM are the velocity vector end-effector frame with respect to M frame
and velocity vector M frame with respect to W frame, respectively. The Eq. (2.96) can be
expressed in terms of Jacobian matrix and joint variables as:

W ṗ = Jwψ̇ (2.97)

where Jw ∈ Rm×n is the Jacobian matrix and ψ̇ =
�

θ̇l , θ̇r , θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6, θ̇7

�T
∈ Rn is a

velocity vector consisting of the angular velocities of left θ̇l and right wheel θ̇r and joint
velocity of the robot arm θ̇i ( i = 1, .., 7).

The 1st and 2nd column of the Jw come from the Eq. (2.95) with an augmented 0 value
in the 3rd row to match the size. If we take the partial derivative of end-effector W p with
respect to its variables, then we can obtain the rest of the columns. It is worth mentioning
that the heading angle ψ would be also its variable and therefore it is expected to appear in
the Jacobian matrix. However, ψ is just an intermediate variable and depends on the wheel
velocity ψ = r(θr−θl )

2b , we can combine it with the 1st and 2nd column of the Jw. Finally, the
Jacobian matrix Jw is given as:

Jw =
�

Jm1
− Jψ Jm2

− Jψ Jθ1
... Jθ7

�

∈ Rm×n (2.98)

where Jmi
is the i th column of Jm with augmented 0 in the 3rd row and Jh is the partial

derivative of end-effector position vector W p with respect to the variable h (i.e Jh =
∂W p
∂ h ).

The joint limits can be defined as follow:

Ωθ = {θi ∈ R | θ−i ≤ θi ≤ θ+i ; i = l, r, 1, . . . , n− 2}

Ωθ̇ = {θ̇i ∈ R | θ̇−i ≤ θ̇i ≤ θ̇+i , i = l, r, 1, . . . , n− 2}

where θ̇−i and θ̇+i are lower and upper bounds on joint velocities, respectively, and θ−i and θ+i
are lower and upper bounds on joint angles, respectively.
The joint position and velocity constraints can be merged and expressed as a single constraint.
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The merged constraint can be reformulated as follows [69]:

Ωθ = {θ̇i ∈ R | β
�

θ−i − θi

�

≤ θ̇i ≤ β
�

θ+i − θi

�

, i = l, r, 1, . . . , n − 2} (2.99)

where β is a positive constant, and the two constraints can be rewritten as:

Ωθ̇ = {θ̇i ∈ R | max(θ̇−i ,β(θ−i − θi))≤ θ̇i

≤min(θ̇+i ,β(θ+i − θi)), i = l, r, 1, . . . , n− 2} (2.100)

Optimization Problem Formulation

Control solutions used to be found analytically using an inverse of the Jacobian matrix
for non-redundant manipulators. Since the Jacobian matrix is nonsquare for redundant
manipulators i.e n > m, It can be calculated with a pseudo-inverse method. However, the
intensive computation burden of performing continuously pseudo-inverse of the Jacobian
matrix precludes this method from being ubiquitous. Moreover, joint limits might be exceeded
due to lack of constraints and some configurations of the manipulator lead to the singularity of
the Jacobian matrix and result in local instability. The parallel processing capability of neural
networks can be employed for solving control problems in redundant manipulators. In this
section, we explain our optimization problem.

The first proposed algorithm is expressed below:

min
1
2
θ̇ T W θ̇ (2.101)

s.t. Jwθ̇ = ṙd (2.102)

θ̇ ∈ Ωθ̇

where θ̇ ∈ Rn is a decision variable and W ∈ Rn×n symmetric weighting matrix. If W is inertia
matrix, the objective function corresponds to minimizing the kinetic energy. The matrix W is
set as an identity matrix, then objective function is to minimize the l2 norm of the joint velocity
∥θ̇ (t)∥2

2. The minimization of the objective function is defined as Eq. (2.101). Equation
(2.102) is the equality constraints describing the relationship between end-effector and joint
velocities.

Since the optimization is velocity level, the position drift should be considered because
of the loss of explicit information of optimization formulation in task space. Therefore, the
position feedback item are added in Eq. (2.102) with shown in equation below:

vd = −k1 (r − rd) + ṙd (2.103)

where k1 is a feedback coefficient value and r is the current position of the end-effector. Since
multi-tasks have different priorities, they can be scaled using weight coefficients. So multi-task
optimization problem can be extended as follows:

min
c0

2
θ̇ T θ̇ +

c1

2
∥Jwθ̇ − vd∥2 (2.104)

s.t. Jwθ̇ = vd (2.105)

θ̇ ∈ Ωθ̇

where c0 ≥ 0, and c1 ≥ 0 are used to prioritize different tasks. The optimization problem above
might yield some solutions outside of the joint limits. In this case, actual values are forced to
be clipped and do not satisfy the optimization equation. Since infinity-norm minimizes the
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absolute value of the maximum component, It finds solutions satisfying the physical limits
constraints.Therefore, the infinity norm optimization task min ∥θ̇∞∥ can be added as an
additional task in the Eq. (2.104). First, let’s define an auxiliary variable:

ς= ∥θ̇∞∥=max
�

|θ̇1|, |θ̇2|, ..., |θ̇n|
�

(2.106)

So, the optimization problem can be defined as:

min
c0

2
θ̇ T θ̇ +

c1

2
∥J θ̇ − vd∥2 +

c2

2
ς2 (2.107)

s.t. Jwθ̇ = vd

θ̇ ∈ Ωθ̇

where c0 ≥ 0, c1 ≥ 0 and c2 ≥ 0 are used to prioritize different tasks. However, the objective
item ς in Eq. (2.107) is not in QP form and cannot obtain the gradient easily. It can be
converted into QP by expressing the infinite norm part as an inequality constraint. We can
further convert it into an inequality constraint:

ς≥ |IT
i θ̇ | (2.108)

where Ii denotes ith column vector of the identity matrix I ∈ Rn×n. Then the inequality
expression can be written as:

�

I −1n×1
−I −1n×1

��

θ̇

ς

�

≤ 0 (2.109)

where 1 denoting a vector composing of 1. Then we can formulate the optimization equations
below:

E =

�

I, −1n×1
−I, −1n×1

�

∈ R2n×(n+1) (2.110)

Q =

�

c0I+ c1J T
w Jw 0n×1

01×n c2

�

∈ R(n+1)×(n+1) (2.111)

Λ=
�

Jw 0m×1
�

∈ Rm×(n+1) (2.112)

b =

�

−c1J T
w vd

0

�

∈ Rn+1 (2.113)

x =

�

θ̇

ς

�

∈ Rn+1 (2.114)

x− ≤ x ≤ x+ (2.115)

where the identity matrix I ∈ R(k+1)×(k+1). x− = [θ̇−, 0]T and x+ = [θ̇+,σ]T represent the
upper and lower limit of joint velocity respectively and σ is sufficiently large to replace positive
infinity constant for implementation purposes.

min
x

1
2

x TQx + bT x (2.116)

s.t. Λx = vd (2.117)

Ex ≤ 0 (2.118)

x− ≤ x ≤ x+

which is a standard convex QP with decision variable x .
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Hierarchical Quadratic Programming

One of the problems in QP is the equality constraint might not be satisfied in some cases and
a feasible solution cannot be found. Thus, by adding a slack variable w ∈ Rm, the infeasible
solution area can be relaxed. For example, the robot is required to run smoothly and safely
in case of violent shaking within an acceptable range of error. In this section, the relaxation
variable is taken into account in the kinematic equation, which will relax the large jitters of the
joint velocity during the control. A hierarchical quadratic programming model is introduced,
where the first optimization problem in terms of the w and x is formulated as:

min
ω,x

∥ω∥2 (2.119)

s.t. Λx +ω= vd (2.120)

x− ≤ x ≤ x+

According to the solution of ω from Eq. (2.119), we substitute it into the optimization in Eq.
(2.116), and obtain the second optimization problem:

min
x

1
2

x TQx + bT x (2.121)

s.t. Λx +ω= vd (2.122)

Ex ≤ 0 (2.123)

x− ≤ x ≤ x+

When the feasible solution is not found, the equality constraint is always solvable because ω
becomes a non-zero vector. If a feasible solution exists, then ω behaves like a zero vector.

2.3.4 Two-Timescale Neuronal Dynamics Design

To address the hierarchical QP problem in Eqs. (2.119–2.120) and Eqs. (2.121–2.123), the
parallel processing capability of neural networks came into useful. Specifically, recurrent neural
networks (RNNs) draw attention for manipulator control problems due to high parallelism,
adaptivity and circuit implementability [107]. Dynamic behavior of one-time-scale RNNs
may change substantially and become unpredictable for searching the global solution [98].
Therefore, the two-time-scale neurodynamic model can be used instead because it is more
plausible than the one-time-scale model. Another distinction of neural networks is the number
of layers. A single-layer neural network is more delicate to the local minima. Hence multilayer
neural networks are used for global optimization. Given the aforementioned considerations, a
two-timescale multilayer recurrent neural network( TNN) will be adopted in this section.

Let’s express our optimization problem in Eq. (2.116) as a general nonlinear programming
way below:

min
x

f (x) (2.124)

s.t. h(x) = 0

g(x)≤ 0

where f (x) = 1
2 x TQx + bT x , h(x) = Λx − vd and g(x) = Ex .

Sequential quadratic programming (SQP) is a two-step iterative approach to nonlinear
programming. The first step is to solve QP that locally approximates the nonlinear program
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shown as:

min
y(k)

1
2
(y(k))TH(x (k))y(k) +∇ f (x (k))T y(k) (2.125)

s.t. ∇h(x (k))T y(k) + h(x (k)) = 0

∇g(x (k))T y(k) + g(x (k))≤ 0

where x (k) and y(k) denote the decision vector and directional vector at the kth iteration,
respectively; H(x) ∈ Rn×n is a symmetric positive definite matrix for approximating Hes-
sian of the Lagrangian of problem; ∇g(x) = [∇g1(x), ...,∇gm(x)] ∈ Rn×m and ∇h(x) =
[∇h1(x), ...,∇hr(x)] ∈ Rn×r .

The second step iterates decision vector via:

x (k+1) = x (k) +αy (k)

where α and y (k) are the step size and optimal directional vector of QP, respectively. Iteration
of SQP stops when stopping criteria are satisfied.

The Lagrangian function of the problem in Eq. (2.124) is defined as:

L (x ,λ,η) = f (x) +λT g(x) +ηT h(x)

where λ ∈ Rm and η ∈ Rr are dual decision vectors.
Let L(x∗,λ∗,η∗) be vectors satisfying the Karush–Kuhn–Tucker (KKT) condition of the

problem in Eq. 2.124 as follows:

∇L(x∗,λ∗,η∗) = 0 g(x∗)≤ 0 λ∗i gi(x
∗) = 0

λ∗i ≥ 0 i = 1, ..., m h(x∗) = 0

Let (x (k), y(k)) be replaced by (x , y) in QP Eq. (2.125) and (y∗,µ∗,ν∗) be vectors satisfying
the KKT condition of Eq. (2.125) as follows:

H(x)y∗ +∇ f (x) +∇g(x)µ∗ +∇h(x)ν∗ = 0

∇g(x)T y∗ + g(x)≤ 0, µ∗i
�

∇gi(x)
T y∗ + gi(x)

�

= 0

µ∗i ≥ 0, i = 1, ..., m, ∇h(x)T y∗ + h(x) = 0

where

∇ f (x) =Hx + b

∇g(x) = Λ

∇h(x) = E

The global optimum solution to the convex QP problem can be obtained when the KKT
condition is satisfied.

εx
d x
d t
= y (2.126)

εy
d y
d t
= Fy (x , y,µ,ν) (2.127)

εy
dµ
d t
= Fµ (x , y,µ,ν) (2.128)

εy
dν
d t
= Fν (x , y,µ,ν) (2.129)
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where εx and εy are the time constants, x ∈ Rn is an output neural state for decision vector,
y ∈ Rn is a hidden neuronal state for directional vector µ and ν are hidden neuronal states for
handling inequality and equality constraints, respectively. Fy , Fµ, and Fν are vector-valued
functions for solving QPs and they can be designed as:

Fy = − (H(x)y +∇ f (x) +∇g(x)µ+∇h(x)ν) (2.130)

Fµ = −µ+
�

µ+∇g(x)T y + g(x)
�+

(2.131)

Fν =∇h(x)T y + h(x) (2.132)

2.3.5 Experiment

This section consists of two parts. In the first part, a predefined trajectory is given and
in the second part, a trajectory is calculated via a BI2RRT ∗ path-planning algorithm [89].
The parameters of TNN are chosen as: c0 = 0.5, c1 = 0.4, c2 = 0.5, εx = 0.04, εy = 0.006
and k1 = 10. The initial joint angles (i.e θi = 0, i = l, r, 1, ..7) are selected as 0 for all the
tasks. Then, the proposed TNN-based optimization control method is used to solve the
trajectory tracking problem with physical limits. We tested the designed tasks by 9-DOFs
mobile manipulator using Neurorobotics platform simulator powered by Gazebo. The results
as well as the simulation environment [108] are presented in this section.

Predefined Trajectory

In this section, the circular and ‘8’ shapes are selected for predefined trajectories. The circular
shape trajectory is defined as:

x = 5sin
�

2πt
Ts

�

(m) y = −5cos
�

2πt
Ts

�

(m)

The circular shape trajectory in our case is given above equation and the position in z direction
is chosen as 1.6m. Initially, mobile-based manipulator is started with the configurations of
x0 = 0, y0 = −5 and ψ0 = 0.

The optimization joint position for circular shape trajectory is run in Neurorobotics platform
and shown in Fig. 2.25. As the mobile platform follows the circular trajectory, the θl and θr
(i.e wheel joints) are expected to be increasing. Fig.2.26a illustrates the joint position of the
mobile-based manipulator. It can be seen that the left wheel velocity θl is lower than the right
one θr . It is that the right wheel rotates outside and it needs to travel a slightly larger distance
in the given time. The other joints θ1,..7 are mostly constant because z position of the desired
trajectory is fixed. Joint velocities and auxiliary variables are depicted in Fig.2.26b. As the
auxiliary variable of infinite norm chooses the maximum component of a vector, it is equal
to the θr after 2.35s. Figure 2.27a represents desired and actual trajectories of end-effector
in three dimensional coordinate frames and the actual trajectory converges quickly to the
desired trajectory. Fig. 2.27b delineates the tracking error of the end-effector. To demonstrate
the proposed multiple metrics of infinity norm and slack variable, there are two comparison
experiments are conducted. Figure 2.28a shows the comparison results TNN with TNN-infinity
norm metrics of circular shape, where the infinity norm can make the trajectory smoother in
the feasible area but cannot work for the infeasible area. Therefore, we need to consider the
slack variable for the infeasible area, and the performance is shown in Fig. 2.28b. It can be
seen that the TNN-slack outperforms TNN without the slack variable.
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Figure 2.25: Tracking a circular predefined trajectory in simulation environment.
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(a) Joint position of circular shape task.
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Figure 2.26: Circular-shape tracking results including the joint position and state variable.
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(a) 3D trajectory for circular shape.
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(b) End-effector errors for circular shape task.

Figure 2.27: Circular-shape tracking results including the trajectory and trajectory error.
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(a) Circular task comparison: TNN vs TNN-inf.
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(b) Circular task comparison: TNN vs TNN-slack.

Figure 2.28: Circular-shape comparison for different metrics: the 2.28b is about the comparison results between
TNN with TNN slack variable, and 2.28a is the comparison results between TNN with TNN infinity-norm.
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Figure 2.29: Tracking an infinite shape predefined trajectory in simulation environment.
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(a) Joint position of infinite shape task.
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Figure 2.30: ‘8’-shape tracking results including the joint position and state variable.
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(a) 3D trajectory for circular shape.
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(b) End-effector errors for circular shape task.

Figure 2.31: ‘8’-shape tracking results including the trajectory and trajectory error.
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(a) ‘8’-shape comparison: TNN vs TNN-inf.
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(b) ‘8’-shape comparison: TNN vs TNN-slack.

Figure 2.32: ‘8’-shape comparison for different metrics: the 2.32b is about the comparison results between TNN
with TNN slack variable, and 2.32a is the comparison results between TNN with TNN infinity-norm.
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Figure 2.33: Tracking the trajectory calculated by path-planning in Gazebo simulation.
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The ‘8’ shape trajectory given below equation and z direction is chosen as 1.6m.

x =
−10cos

�

2πt
Ts

�

cos
�

2πt
Ts

�2
− 2
(m) y =

5tan
�

2πt
Ts

�

tan
�

2πt
Ts

�2
+ 1

2

(m)

Fig. 2.29 represents the tracking task in the simulation environment. Fig. 2.30a demon-
strates the joint positions of the mobile-based manipulator. In this case, the right wheel
θ r rotates outside as well as inside. Therefore, the traveled distance of wheels is changing
depending on the region.

Joint velocities and the auxiliary variable of the infinite norm are denoted in Fig. 2.30b.
It can be inferred from the figure that given joint constraints forced to throttle back the
mobile-based manipulator by limiting the θ̇r and θ̇l .

From the comparison between TNN-infinity norm with TNN in the Fig. 2.32a , the auxiliary
variable ς selects the maximum joint velocity successfully, and we can get a similar conclusion
from the circular task. The effects of using slack variable can be seen in Fig. 2.32b. Apparently,
TNN cannot satisfy the equality constraints without using the slack variable and therefore the
end-effector has jittery behavior.

Optimization the Trajectory from Path Planning

In this task, four cubes are located in the middle as obstacles in the environment. At first,
the path-planning algorithm takes the start position of end-effector as x0 = −7.67, y0 = 2.65,
z0 = 1.95 and final position as x f = 8.64, y f = −3, z f = 1.2. Then the desired trajectory is
calculated based on the obstacles in the environment. Finally, the trajectory is solved by the
TNN algorithm and the calculated joint positions are given to the simulator to test the task.
Initially, mobile-based manipulator is started with the configurations of x0 = −7.67, y0 = 2.65
and ψ0 = 1.95.

The different snapshots of the tested path-planning experiment are shown in Fig. 2.33.
The red line indicates the desired trajectory calculated by the path-planning algorithm and the
blue line is the actual trajectory followed by the end-effector of the mobile-based manipulator.

Fig. 2.34a shows the joint position together with mobile and manipulator. The small
window on the figure represents only the joint positions of the Kuka arm manipulator. The
joint velocities and the auxiliary variable are illustrated in Fig. 2.34b. Obviously, the proposed
planning and optimization control method work efficiently for trajectory tracking in terms of
obstacle avoidance.

2.3.6 Summary

In this section, the kinematic equations of the 9DOF mobile-based manipulator are initially
derived. Then the optimization problem with slack variable and infinity-norm is formulated.
Afterward two-timescale multi-layer recurrent neural network (TNN) is designed. Finally, the
tracking control problem is tested using the 9DOF mobile-based manipulator for two different
cases. In the first case, a predefined desired trajectory is given and tracked by the proposed
approach. In the second case, BI2RRT ∗ path planning algorithm determines the desired
trajectory with obstacles. The presented results validate that the mobile-based manipulator
can successfully follow the trajectory with the given joint angles from the proposed algorithm
even if the joint limits restrict its mobility considerably. Slack variables and infinity norm are
leveraged by optimization algorithm and compared their impacts on end-effector error in the
tracking problem. It can be deduced that taking them into account can provide tracking tasks
with less error as well as smooth and non-jittery motion.
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Figure 2.34: Obstacle avoidance task tracking results including the joint position and state variable.
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Figure 2.35: Obstacle avoidance task tracking results including the trajectory and trajectory error.
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Future works will entail the dynamics of the mobile-based manipulator and usage of
BI2RRT ∗ path planning algorithm in more complex scenarios.
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Chapter 3

Imitation Learning for Manipulation

3.1 Reinforcement Learning for Manipulation

In this section, we will discuss the reinforcement learning method based manipulation skill
transferring technique for surgical robot [109]. The complexity of surgical operation can be
released significantly if surgical robots can learn the manipulation skills by imitation from
complex tasks demonstrations such as puncture, suturing, and knotting, etc.. This section
proposes a reinforcement learning algorithm based manipulation skill transferring technique
for robot-assisted minimally invasive surgery by teaching by demonstration. It employed
Gaussian mixture model and Gaussian mixture Regression based dynamic movement primitive
to model the high-dimensional human-like manipulation skill after multiple demonstrations.
Furthermore, this approach fascinates the learning and trial phase performed offline, which
reduces the risks and cost for the practical surgical operation. Finally, it is demonstrated by
transferring manipulation skills for reaching and puncture using a KUKA LWR4+ robot in a lab
setup environment. The results show the effectiveness of the proposed approach for modelling
and learning of human manipulation skill.

3.1.1 Introduction

Robotic surgery has been a compelling emerging technology that holds significant promise
due to the benefits it provides for surgeons, such as higher operational accuracy, extended
motion range, and augmented visualization [110]. However, due to the kinematic constraints
imposed by the laparoscopic surgery, i.e., which are known as the remote center of motion
(RCM) constraints, the surgical operation is performed in a limited space [111]. It turns the
intuitive manipulation in the conventional open surgery to time-consuming tasks [112]. The
complexity of surgical operation can be released significantly if surgical robots can learn the
manipulation skills by imitation from complex tasks demonstrations [113] such as puncture
and knotting, etc..

Current commercial surgical robots are simply controlled by surgeons using their hands,
and they involve less of autonomy on the surgical operation [114]. With the development of
technology in artificial intelligence and cognition progress, increasing the autonomy of surgical
robots in performing some specific complex surgical operations, like suturing or knotting, can
potentially reduce the length of surgical procedures and surgeon fatigue, as well as improved
accuracy [115]. Hence, the need for developing methodology and technology in surgical
manipulation skill transferring reinforces.

Teaching by demonstration (TbD) has drawn extensive research attention in manipulation
skill transferring from human to robot during the past decades [116, 117]. Calinon et al.
[118, 119] investigated the methods to assign human motion skills to the robot manipulators.
Dynamic movement primitive (DMP) proposed by Meier et al. [120] is an efficient approach

57
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to learn motor primitives for robot manipulation. In the motion modeling paradigm, each
manipulation procedure features motion primitives and the corresponding goal parameters.
Kormushev et al. [121] studied comprehend the trajectory generation for the spherical imped-
iment by using DMP modelling combined with the synthetic capacity discipline method using
Gaussian mixture Regression (GMR). For complex manipulations modelling, the reinforcement
learning algorithm is capable of adapting the goal parameters with a high-dimension motion
primitive [122, 123].

It is interesting to introduce GMR based motion primitives modeling strategy to learn
the surgical operation skills from experienced surgeons [26]. Furthermore, it is proposed to
handle the RCM constraint as sub-goal by offline tasks learning and trials using reinforcement
learning. In this section, a special reinforcement learning named Policy Improvement with Path
Integrals (PI2) is proposed to optimize the path planing, which is derived from probability-
based stochastic optimal control theory [122][124]. The reinforcement learning method can
optimize the trajectory with disturbance by updating the parameters [125]. In addition, we
can design the cost function to explore the different learning tasks even multi-task at a learning
system. The PI2 is suitable for the high dimensions problem such as Cartesian space [126].
Therefore, it is convenient for robot learning problem.

It must be noticed that the proposed methodology represents an improvement with respect
to the simple path planning between the start and end-point introduced in [122] [71], and
combines an sub-goal task to respect the RCM constraint [64] [70] on the planned path. It
means the planned path should consider not only the shape but also passing through the
small incisions on the abdominal wall. Furthermore, it fascinates the learning and trial phase
performed offline, which reduces the risks and cost for the practical surgical operation. Finally,
experiments have been performed to demonstrate the proposed control method on a 3-D
printed patient phantom using a 7-DOF robot manipulator KUKA LWR4+ .

The section structure is organized as follows. The motivation and previous works involved
this section is explained in Section 3.1.2. Section 3.1.3 describes the corresponding control
methodology and control framework are presented. In Section 3.1.4 the effectiveness of
the proposed control scheme is demonstrated using KUKA LWR4+ robot manipulator, and
conclusions are drawn in Section 3.1.5.

3.1.2 Motivation and Previous Works

In our previous works [64] [70], we inserted the surgical tool into the abdominal cavity
passing through the RCM constraint shown in Fig. 3.1, by hands-on control. To reduce the
complexity of operation procedures, it is interesting to utilize the TbD techniques to model and
learning the surgeons’ manipulation skill and transfer it to the robot, increasing the autonomy
of surgical robots.

In our previous work, we utilized the reinforcement learning to learn the complex motion
sequences in human-robot environment such that the robots can adapt its motions for ma-
nipulation and grasping of a mobile manipulator [71]. Nevertheless, the above algorithms
considered only point to point problems, which determine the trajectory between the start and
end-point of the movement, ignoring the other goals in the sub-tasks [122], such as passing
through a kinematic constraint. In this section, it is suggested to include the RCM constraint
as a new challenge for the manipulation skill modelling and transferring. We therefore extend
the policy improvement with path integrals (PI2) algorithm to simultaneously optimize shape
and goal parameters.
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3.1.3 Methodology

The control methodology here proposed aims to provide consistent and effective skill modelling
and transferring techniques for robot-assisted minimally invasive surgery, learning the motion
primitives of a specific task from demonstration operations operated by a surgeon, and plan
the path with respect to the kinematic constraint (RCM constraint) between the start and
end-point. The robot model has been discussed in [64].

Figure 3.1: Path planning for puncture in robot-assisted surgery operation. The planned path should always pass
trough the small incision on the abdonimal wall (RCM constriant).

Dynamic Movement Primitive

Given the continuous stream of movements that biological systems exhibit in their daily
activities, dynamic movement primitive [71] now is a general approach in artificial and
biological systems revolves around identifying movement primitives for motor control in
robotics and biology. Dynamic movement primitive is represented as a set of equations, and
it can model different linear or nonlinear motions which is convenient to imitate learning
complex movement fusion with reinforcement learning algorithm. The dynamic movement
primitive is expressed as:

Ẍ t = Kp (g − X t)− Kv Ẋ t + F (st)
ṡt = αsst
F (st) = hT

t (st)ω (g − X0)
(3.1)

ht (st) =

N
∑

i=1
ψi (st) st

N
∑

i=1
ψi(st)t

ψi (st) = exp
�

−
1

2σi
(st − ci)

2
�

where
�

X t , Ẋ t , Ẍ t

�

is the Cartesian space trajectory; X0 and g present the initial position and
goal position of the attractor point in Cartesian space, respectively; Kp and Kd are the stiffness
matrix, damping term of DMP in 3D Cartesian space. ω is the shape parameter of DMP; αs is
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Figure 3.2: Experimental procedures.

the scale parameter of Canonical system, where st asymptotically decays from 1 to 0; σi and
ci are bandwidth and center of the i-th Gaussian kernels.

It should be noted that DMP is consist of two parts including linear spring damper part
Kp (g − X t)− Kv Ẋ t and nonlinear part F (st) which can be applied to model the trajectories
from teaching by demonstrations even the nonlinear system. Therefore, DMP is convenient to
imitate the motions from human because of the feature of convergence to the attract point g.

Gaussian Mixture Model

In this part, the Gaussian Mixture Model is presented to encode the trajectories from teaching.
Gaussian Mixture Model is a probability-based statistical model which can describe the
probability density distribution of high-dimensional dataset by the sum of different weights
of multiple Gaussian models [127]. In this section, the GMM is used to describe the position
density in Cartesian space and obtain nonlinear item in in DMP by regression from each GMM.
The DMP framework of multi-demonstrations is reformulated as by K component Gaussian
model,

Ẍ =
K
∑

k=1

hk

�

K p
k

�

µX
k − X

�

− KV
k Ẋ + F

�

(3.2)

The Cartesian space data point from demonstrations are defined as: s j =
�

st, j , sX , j

�

( j = 1, . . . , N),
where N is the length of dataset. Each datapoint include the time temporal value st, j and
position value sX , j. To encode the dataset of position distribution P(st , sX ), the following GMM
model is defined as

p
�

s j

�

=
K
∑

k=1

p (k)p
�

s j|k
�

(3.3)

where K is the number of the Gaussian model; p (k) denotes the prior probability, and p
�

s j|k
�

is the conditional probability density function.
The manipulator works in 3-D space, so the parameters in (3.3) are denoted as:

p (k) = λk

p
�

s j|k
�

= 1
q

(2π)3|Σk|
e
�

− 1
2 (s j−µk)

T∑−1
k (s j−µk)

�

(3.4)
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We define the GMM parameters as Θ = {λk,µk,Σk, Ek}, where λk, Σk, Σk, Ek are prior proba-
bility, mean variable, covariance variable and cumulative posterior probability, respectively.
According to Bayes theorem, the cumulative posterior probability Ek can be expressed as,

Ek =
N
∑

j=1
p
�

k|s j

�

p
�

k|s j

�

=
p(k)p(s j |k)

K
∑

m=1
p(m)p(s j |m)

(3.5)

Then, the log-likelihood of GMM model Θ is defined,

LΘ =
1
N

N
∑

j=1

log
�

p(s j)
�

(3.6)

where p
�

s j

�

=
K
∑

k=1
p(k)P

�

s j|k
�

. To estimate GMM parameters Θ = {λk,µk,Σk, Ek}, the EM

algorithm is proposed to train the model parameters, and we will obtain the model parameters

after the parameters convergence. The iteration finished step is set when
L(t+1)
Θ

L(t)Θ
≤ 0.01.

Gaussian Mixture Regression

Actually, the aim of training is to get the regression parameter F from the dataset. After the
multi-demonstrations probability distributions is obtained by GMM, then the Gaussian Mixture
Regression (GMM) is proposed to reconstruct the general form for the dataset.

To estimate the conditional expectation value, the observations parameters is defined as:
s = {st , sX } where sX is the spatial variable at time step st . So, the goal of regression is to
estimate the conditional expectation of sX when the time step st is fist given.

For multi-demonstrations from teaching, the GMM Θ encodes the set of trajectories from
robot in Cartesian space. The k component of Gaussian mixture model is defined as,

µk =
�

µt,k,µX ,k

	

, Σk =

�

Σt t,k ΣtX ,k
ΣX t,k ΣX X ,k

�

(3.7)

where µk and Σk are mean and covariance matrix of k component GMM. When the time step
st is given, the expected distribution sX ,k of k-th component is expressed as,

p
�

sX ,k|st , k
�

=N
�

sX ,k; ŝX ,k, Σ̂X X ,k

�

ŝX ,k = µX ,k +
∑

X t,k

�

Σt t,k

�−1 �
st −µt,k

�

Σ̂X X ,k = ΣX X ,k −ΣX t,k

�

Σt t,k

�−1
ΣtX ,k

(3.8)

where ŝX ,k and Σ̂X X ,k are mixed from probability. According to the GMM parameters Θ =
{λk,µk,Σk, Ek}, the condition probability density is obtained as,

p (sX |st) =
K
∑

k=1

hkN
�

sX ; ŝX ,k, Σ̂X X ,k

�

(3.9)

hk =
p(k)p (st |k)

∑K
i=1 p(i)p (st |i)

=
λkN

�

st ;µt,k,Σt t,k

�

∑K
i=1λiN

�

st ;µt,i ,Σt t,i

�
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From (3.8) and (3.9), the estimation of condition expectation sX and covariance matrix
are concluded as,

ŝX =
K
∑

k=1

hk ŝX ,k , Σ̂X X =
K
∑

k=1

h2
kΣ̂X X ,k (3.10)

Therefore, the motion ŝ = {ŝt , ŝX } can be generated by estimating
�

ŝX , Σ̂X X

	

at time step st .

Reinforcement Learning for Trajectories Optimization

In this section, the reinforcement learning is proposed to learning trajectories by learning
the shape parameter ω with the noise added. The cost function of Reinforcement learning is
defined as,

S(Ti) = φtN
+

∫ tN

t i

(rt +
1
2
ωT Rω)d t (3.11)

where Ti denotes the trajectory. The cost function S is consist of three parts: terminal cost
φtN

, immediate cost rt , and immediate control 1
2ω

T Rω.
If the noise is added to the shape parameter of DMP (ω + εt), the trajectories would

deviation from expectations trajectories. Therefore, the reinforcement learning is applied to
learn the shape ω parameter from random noise, and the cost function is reformulated as,

S (Ti) = φtN
+

∫ tN

t i

rt +
1
2
(ω+Mtεt)

TR (ω+Mtεt) (3.12)

where Mt indicates projection matrix onto the range space of ht which is defined as,

Mt =
R−1hth

T
t

hT
t R−1ht

The learning system is aim at minimizing the cost function S by learning the shape parameter
ω.

According to the stochastic optimal control theory [122], the path integral of cost function
is defined as,

δωt =

∫

P (Ti)Mt dTi (3.13)

where p (Ti) is the probability of trajectory Ti and it is expressed as,

P (Ti) =
exp

�

−1
γS (Ti)

�

∫

exp
�

−1
γS (Ti)

�

dTi

(3.14)

Then, the change of δω can be concluded as,

[δω] j =

∑N−1
i=0 (N − i)w j,t i

�

δωt i

�

j
∑N−1

i=0 w j,t i
(N − i)

(3.15)

where [δω] j denotes the j-th element of shape parameter ω. Finally, the new parameters can
be obtained,

ωnew =ω+δω (3.16)

The update rule of reinforcement learning is shown in Algorithm. 2.
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Algorithm 2: Reinforcement Learning Update Rule
Initialization:
rt , φtN

, f (st), ω0, initial state X0.
while stop after cost convergence do

1. for n=1 · · · Nk do
• sample from dataset with random noise.
εt,n ∼N (0,σ2Σ)
• compute the cost and probability.
STi ,n = S(ω+ εt,n)

PTi ,n =
exp

�

− 1
γSTi ,n

�

∫

exp
�

− 1
γSTi ,n

�

dTi

end
2. Update mean:

δωt =
Nk
∑

n=1
PTi ,nεt,n.

[δω] j =
∑N−1

i=0 (N−i)w j,ti

�

δωti

�

j
∑N−1

i=0 w j,ti
(N−i)

3. Update parameters::
ωnew =ω+δω

end

3.1.4 Experimental Demonstration

The procedure of the demonstration divided into three phases, shown in Fig. 3.2 , including
demonstration phase, reinforcement learning based offline tasks learning and trials, and
reinforcement learning based real-time demonstration.

Demonstration Phase

A 3-D printed patient phantom served as the abdomen cavity are used for demonstration,
shown in Fig. 3.3. The surgeon uses hands-on control to insert the surgical tool into the
surgical cavity with a repetition of 7 times from different initial point.

Then, dynamic movement primitive is applied to encode the multi-demonstrations from
human teaching. The regression results are shown in Figs. 3.4-3.5b. Fig. 3.4 shows that all the
reproductions can pass through the original RCM and converge to the goal point even from
random initial position.

Offline Tasks Learning and Trials

Considering the disturbances (goal g and shape ω noise) in the environment, reinforcement
learning is applied to optimize the trajectory. The immediate cost is designed as,

rt = η1 ∥dX∥+η2



Ẍ t





where dX is the distance from the end-effector to the line connecting start and end-point of the
movement. The learning results are shown in Fig. 3.6a. As the number of iterations increases,
all the samples gradually converge to the original trajectory with random noise which proves
the effectiveness of the proposed methods. Furthermore, RCM constraint is usually not fixed
according the actual surgical scenario. Therefore, we hope the manipulator also can learn
how to pass through the new RCM for the same tasks without human demonstrations. Hence,
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Figure 3.3: Demonstration of puncture procedure. The numbers (1-6) indicate the puncture procedure by hands-on
demonstration. The 1st picture shows the start point of the tracking tasks, and the 6th picture represents the
corresponding end point. The “surgeon” use hands to hold on end-effector and insert the tool tip into the abdominal
cavity.

the demand to respect the new RCM constraint is treated as sub-goal. Reinforcement learning
based offline training and trials are implemented to enable the manipulator to pass through
the new rcm constraint without clinical trial. The significance of offline training and trials is
to reduce machine wear and avoid dangers in actual experiments. In this section, simulation
guides the actual experiment which means the learning process is running in simulation and
the learning results is directly used in actual experiments.

The learning and trials results with new RCM constraint are shown in Figs. 3.6b-3.7a,
which prove that the reinforcement learning enhanced PI2 can adapt the motion skill to meet
the new task requirement without re-teaching.

It should be mentioned that in the new RCM task, the immediate cost is re-designed as,

rt = η1 ∥dX∥+η2



Ẍ t



+η3



X t − Pnew
RC M





PRC M denotes the manipulator passing through RCM which is set by user. The parameters
Kp = diag[1,1,1,1,1,1,1], Kv =

Æ

2Kp; αs = 0.01; the components of GMM is set K =
10; η1 = 106, η2 = 103, η3 = 1010. PRC M = [−0.438;0.4349;0.2429]m, the new Pnew

RC M =
[−0.345;0.4342; 0.2521]m.

Real-time Demonstration with Robot Manipulator

After the offline learning process, the learning results will be applied to demonstrate in actual
experiment. The robot perform the insertion of the surgical tool into the abdominal cavity
autonomously. Fig. 3.8 shows one of the demonstrated experiment using KUKA LWR4+ robot
manipulator and Fig. 3.9 shows its performed trajectory.
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Figure 3.4: Reproduction from random initial position via RCM tasks by multi-demonstrations using GMM-GMR.
The black curves denote the multi-demonstrations.

3.1.5 Summary

This section proposes a reinforcement learning algorithm based manipulation skill transferring
technique for robot-assisted Minimally Invasive Surgery by Teaching by Demonstration. This
approach fascinates the learning and trial phase performed offline, which reduces the risks
and cost for the practical surgical operation. Reinforce learning is adopted to model the
manipulation skill with trials offline until it can handle the varying kinematic constraints.
The results have demonstrated the effectiveness of the proposed approach for modelling and
learning of human manipulation skill. However, this work considers only kinematic constraints,
ignoring the force from physical interaction on the abdominal wall. Future works will involve
physical interaction analysis.
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(a) Basic function of GMM. (b) Regression result of nonlinear term of motion prim-
itives using GMM-GMR from multi-demonstrations.

Figure 3.5: Learning with GMM.

(a) The learning process of trajectory via original RCM
point.

(b) The learning process of trajectory via new RCM
point.

Figure 3.6: Reinforcement learning process for via-point task.
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(a) The last learning results of all samples via new
RCM point.

(b) Cost function by iteration of new RCM tasks.

Figure 3.7: Learning results with Reinforcement learning.

Figure 3.8: Demonstration of autonomous puncture using reinforcement learning. The numbers (1-6) indicate the
puncture procedure.



68 3 Imitation Learning for Manipulation

Figure 3.9: Demonstrated trajectory curve.
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3.2 Fuzzy Adaptive Control and Imitation Learning for Real-time Obstacle
Avoidance

In this section, we proposed an improved Dynamic Movement Primitives (DMPs) for real-
time obstacle avoidance of motion planning, and also propose the fuzzy adaptive control
for robot dynamics control with the given planning trajectories in Cartesian space [128].
DMPs framework is a powerful approach to imitate motor skills, which has outstanding
characteristics, such as convergence to the goal position and good imitation performance.
Considering complex motion scenes of manipulators, such as changing the goal position or
adding obstacles, the original DMPs framework is not sufficient for the requirements. In this
section, we propose a learning control-based hierarchical control strategy to adapt to new goal
positions and avoid obstacles: the high-level learning scheme is targeted at imitating the motor
skill and generating the optimization trajectory for obstacle avoidance; the lower-level control
scheme focuses on the safety and stability of the robot’s movement with unknown disturbances.
Firstly, the enhanced DMPs framework is presented to imitate the trajectory from human
demonstrations, where the novel DMPs can adapt to new goal position with the changing goal,
and avoid single or multiple obstacles. Then, the fuzzy adaptive control method is employed
to control redundant manipulators, where the fuzzy logic system (FLS) is incorporated to
approximate an unknown nonlinear function term of the unknown disturbance. Finally, the
effectiveness of the proposed learning-control strategy is demonstrated with simulation results.
The results show that the developed hierarchical strategy has good performance for new goal
adaptation and obstacle avoidance.

3.2.1 Introduction

Manipulator autonomous obstacle avoidance is a challenging topic prominent in the past
decade. Generally, the main issue is how to plan a smooth trajectory of the end-effector which
adapts as the task changes during the presence of many obstacles. In [129], the continuous
genetic algorithm (CGA) is proposed for trajectory planning of redundant manipulators, where
CGA can solve the singularity problem. In [130], the authors present an reinforcement
learning-based double neural networks algorithm to manage the obstacle avoidance problem,
where the reinforcement learning method is used to compute the optimization path. In [131],
the particle swarm optimization (PSO) is employed for motion planning with multi-obstacle
constraints, while PSO is used to obtain the optimal trajectory with the condition constraints.

However, the methods mentioned above only consider fixed goal positions, and cannot
solve the problem of changing goal positions. We want to design a powerful method to
solve more complex problems, such as adaption to new goal positions with multi-obstacle
constraints. Imitation learning has a pivotal role in robotic technology and can learn new
motor skills from human demonstrations and interactions with the environment. In robotic
learning, a complex movement can be deemed as a combination of simple movements that can
be easily encoded by learning methods. Dynamical Movement Primitives (DMPs) framework is
a well-established method that can model nonlinear motions [77, 132], and provide powerful
learning mechanisms, such as combining with machine learning methods, e.g. reinforcement
learning.

In [133], dual-arm robots based on DMPs cooperate to cut a vegetable by human demon-
strations. In [71], reinforcement learning fusion with DMPs is employed to learn the grasping
actions with a number of iterations in the external disturbance environment. In this section,
DMPs are applied to learning human movements for a mobile robot. The learning scheme is a
novel human-robot interaction method that can imitate the motion from human demonstra-
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tions. Therefore, the mobile robot is able to reproduce the demonstrations by DMPs, which
lead to the reduction of complexity for motion planning tasks. In [134], DMPs are utilized
to learn the robot’s joint trajectory fusion with sensor signals. However, the original DMPs
framework has limitations that cannot solve the obstacle avoidance problem, and its adapt-
ability is not sufficient for changing goal positions [135, 136]. In this section, we modify the
original DMPs method and apply it to the manipulator movement learning with multi-obstacle
constraints. Compared with the original DMPs framework, the enhanced DMPs are more
powerful and can be adapted to changing goal positions with more natural trajectories.

In addition, for robotic control, various methods are applied to dynamic systems. In [97,
137], the global asymptotic PID is proposed for a robot system with input constraints. In [138],
the authors explore the adaptive control system to solve the input saturation problem. In
[138, 139], the closed-loop based adaptive control algorithm is applied to a exoskeleton robot.
However, the robot system is highly nonlinear and the disturbance needs to be compensated.
Inspired by [49, 140, 141], the fuzzy adaptive control strategy is presented to control the
manipulator to compensate for the external disturbance. Overall, the learning-control system
is proposed, where the high-level learning scheme is targeted at imitating the motor skill and
generating the optimal trajectory for obstacle avoidance; while the lower-level control scheme
focuses on the safety and stability of the robot’s movement with unknown disturbances.

3.2.2 Adaptive Trajectories: Goal Adaptation and Obstacle Avoidance

Dynamical Movement Primitives

DMPs framework is a dynamic system that can be applied to imitation learning, even combined
with machine learning methods for motor skills learning. The dynamic system consists of a
linear spring-damper and a nonlinear item, which are defined as follows:

Ẍ = Kp

�

X g − X
�

− Kd Ẋ +
�

X g − X0

�

f (s,ρ) (3.17)

f (s,ρ) =

N
∑

j=1
ϕ j (s)ρ j

N
∑

j=1
ϕ j (s)

s (3.18)

ṡ = −λs (3.19)

ϕ j (s) = exp

�

−
1

2d j

�

s− c j

�2
�

(3.20)

Equation (3.17) describes the transformation system, where
�

Ẍ , Ẋ , X
	

denote the robot’s
position, velocity and acceleration in Cartesian space; Kp and Kd are the corresponding
stiffness matrix and damping matrix, respectively; X0 and X g are the initial and target values
of the position; f (s,ρ) is the nonlinear forcing item. Equation (3.19) is the canonical system
acting as the decay factor, and λ > 0 is the constant parameter; d j and c j in equation (3.20)
are the bandwidth and center of the Gaussian kernel function. Obviously, when f (s,ρ) = 0,
the dynamic system becomes linear.

Enhanced DMPs for Goal Adaptation

The traditional framework of DMPs cannot guarantee the generation of a smooth trajectory
when the start or target positions are altered. In addition, it cannot ensure the adaption of
the robot to a new goal position. Hence, we introduce the novel framework of a nonlinear
dynamic system, which is an extended form of the traditional DMPs.
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Firstly, [142] the canonical system in equation (3.19) is modified as,

ṡ =

�

−λ1, s ≥ 0
0, s < 0

(3.21)

w= a+ 1 (3.22)

where λ1 > 0 is the decay rate of the canonical system. The nonlinear forcing item
f (s,ρ) depends only on s, which acts as a global clock for the entire system. Secondly, the
transformation system in (3.17) is reformulated as,

Ẍ = Kp

�

X g − X
�

− Kd Ẋ − Kp

�

X g − X0

�

s+ Kp f (s,ρ) (3.23)

Apart from the modified canonical system (3.21) and transformation system (3.23), the
function f (s,ρ) is identical to (3.18).

The novel transformation system, (3.23), is a forward procedure. To model the motion from
human demonstrations, we need to obtain the shape parameter ρ in a backward procedure
using regression methods.

fdemo =
1
Kp

Ẍ −
1
Kp

�

Kp

�

X g − X
�

− Kd Ẋ − Kp

�

X g − X0

�

s
�

(3.24)

Finally, to obtain the shape parameter ρ from the dataset, the Locally Weighted Regression
(LWR) method is used to learn ρ by regression. The objective function is defined as

Φ j =
N
∑

t=1

ϕ j (t)


 fdemo −
�

ρ js+ b j

�



2
(3.25)

The solution of regression is calculated as,

�

ρ j
b j

�

=

�

Rs2 Rs
Rs Rρ

�−1 �
Rs y
R y

�

(3.26)

Rρ =
N
∑

t=1
ϕ j (t)

Rs =
N
∑

t=1
ϕ j (t) s (t)

Rs2 =
N
∑

t=1
ϕ j (t) s2 (t)

Rs y =
N
∑

t=1
ϕ j (t) s (t) fdemo

To test the proposed methods, we change the target position and compare the original
DMPs with our enhanced DMPs.

The comparison results of the original DMPs and our enhanced DMPs for target position
adaptation are shown in Fig. 3.10. In Fig. 3.10a, the original DMPs model the trajectory and
converge to a new target position, but the shape of the motion is adjusted overshoot.

In Fig. 3.10b, it is suitable for natural movements with changing target positions. Obviously,
the enhanced DMPs can improve movement adaptation.
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(a) Learning with the original DMPs. (b) Learning with the enhanced DMPs.

Figure 3.10: The original DMPs vs the enhanced DMPs for changing targets.

Obstacle Avoidance

The modified DMPs in (3.23) can adapt to the new target position but are still unable to deal
with complex requirements, such as autonomous obstacle avoidance. Hence, in this part, we
further extend the novel DMPs in (3.23) as a new formulation that can avoid a single obstacle
and even many obstacles.

The new formulation of DMPs is reformulated as

Ẍ = Kp

�

X g − X
�

− Kd Ẋ − Kp

�

X g − X0

�

s+ Kp f (s,ρ) + P
�

X , Ẋ
�

(3.27)

For the single-obstacle scene, the relationship between steering angle θ and velocity θ̇ can
be defined as,

θ̇ = µθ exp (−α |θ |) (3.28)

where µ > 0 and α > 0 are constants; θ̇ is the steering angle velocity.

Ẍ = TRẊ θ̇ (3.29)

where TR is the rotation matrix of axis L = (M − X ) × Ẋ with rotation angle of π/2. M =
[Mx , My , Mz] is the position of the obstacle, X is the position of robot’s end-effector, while Ẋ
and Ẍ correspond to its velocity and acceleration, respectively.

P
�

X , Ẋ
�

= µTRẊθ exp (−αθ ) (3.30)

θ = cos−1

�

(M − X )T Ẋ

(|M − X |
�

�Ẋ
�

�)

�

So, the modified DMPs equation in (3.27) can be rewritten as,

Ẍ = Kp

�

X g − X
�

− Kd Ẋ − Kp

�

X g − X0

�

s+ Kp f (s,ρ) +µTRẊθ exp (−αθ ) (3.31)

where the state variable [X , Ẋ ] = [X g , 0] is the stationary point, to which all the states converge
from random initial states.

Proof 3 To prove global convergence of the modified DMPs in (3.31), the Lypunov function is set
as,

V
�

X , Ẋ
�

=
1
2

�

X g − X
�T

Kp

�

X g − X
�

+
1
2

Ẋ T Ẋ (3.32)
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(a) Learning without obstacles. (b) Learning with a single obstacle.

(c) Learning with many obstacles. (d) Learning with more obstacles.

Figure 3.11: Imitation learning in 2D space for obstacle avoidance.

(a) Learning without obstacles. (b) Learning with more obstacles.

Figure 3.12: Imitation learning in 3D space for obstacle avoidance.
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(a) Learning for single obstacles. (b) Learning with two obstacles.

Figure 3.13: Imitation learning in 2D space for obstacle avoidance in complex scenario.

Then, the time derivative of V
�

X , Ẋ
�

is obtained as

V̇ =∇X V T Ẋ +∇Ẋ V T Ẍ

= −
�

X g − X
�T

Kp Ẋ + Ẋ T Ẍ

= −Ẋ T Kp
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+ Ẋ T Kp
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− Ẋ T Kd Ẋ

− Kp Ẋ T
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s+ Ẋ T Kp f (s,ρ) +µẊ T TRẊθ exp (−αθ )

= −Ẋ T Kd Ẋ − Kp Ẋ T
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X g − X
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s
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+ Ẋ T Kp f (s,ρ)
︸ ︷︷ ︸

C2

+µẊ T TRẊθ exp (−αθ )
︸ ︷︷ ︸

C3

(3.33)

Obviously, if t →∞, X → X g and s→ 0, then C1 → 0; again when f (s,ρ)→ 0, then C2 → 0;
since TR is the rotation matrix with rotation angle of π/2, then Ẋ T TRẊ = 0, so C3→ 0. Therefore,
we can conclude

V̇ →−Ẋ T Kd Ẋ ≤ 0

The proof is finished.

However, we hope that the function in (3.30) is more powerful i.e. has better obstacle
avoidance and is adaptive to a more complex environment. If there exist more obstacles, the
added item in (3.30) needs to be further modified. The details of the novel modified item can
be reformulated as,

P
�

X , Ẋ
�

= µ
O
∑

i=1

TRi
Ẋθi exp (−αθi) (3.34)

θi = cos−1

�

(Mi − X )T Ẋ
�

|Mi − X |
�

�Ẋ
�

�

(3.35)

where O denotes the number of obstacles.
To test the obstacle avoidance performance of the DMPs, we randomly put several obstacles

on the trajectory after the demonstration. From Fig. (3.11a)–Fig. (3.13b), it can be seen that
the modified DMPs can avoid the single obstacle and even multiple obstacles well.
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Figure 3.14: 7-DOFs kuka robot’s model.

3.2.3 Fuzzy Adaptive Control for Manipulator

Dynamic System of Manipulator

Considering the dynamic model of n-DOFs (n=7) Kuka manipulator shown in Fig. 3.14,

B (q) q̈+ C (q, q̇) q̇+ G (q) = τc +τe (3.36)

where q ∈ Rn×n and q̇ ∈ Rn×n are the joint position vector and velocity vector, respectively;
B (q) ∈ Rn×n denotes the inertia matrix; C (q, q̇) ∈ Rn×n is the Coriolis and Centrifugal effects;
G (q) ∈ Rn represents the gravity matrix; τc is the joint torque variable, and τe is the torque of
external unknown disturbances.

The forward kinematics model of a redundant manipulator is formulated as,

Ẋ = J (q) q̇ (3.37)

where J (q) is the Jacobian matrix of the redundant manipulator.

Property 1 The positive-definite matrix B−1(q) exists, and bounded that satisfies the condition:


B−1 (q)


≤ ϵB(ϵB > 0).

Property 2 The matrix Ḃ(q)− 2C(q, q̇) is skew-symmetric.

Then, substituting (3.36) into the time derivative of (3.37) and multiplying J−T BJ−1,

J−T BJ−1Ẍ = J−T (τ+τe − (Cq̇+ G)) + J−T BJ−1 J̇ q̇ (3.38)

Hence, the nonlinear dynamic model of the manipulator in Cartesian space is expressed as,

Bx (X ) Ẍ +Hx

�

X , Ẋ
�

−Fe = F (3.39)

where X ∈ Rm, Ẋ ∈ Rm and Ẍ ∈ Rm denote the Coordinate trajectory, velocity and acceleration
in Cartesian space, respectively;

Bx (X ) = J−T BJ−1

Hx

�

X , Ẋ
�

= J−T
�

C (q, q̇) J−1Ẋ + G (q)− BJ−1 J̇ J−1Ẋ
�

Fe = J−Tτe
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where matrix Bx represents the inertia matrix in task space; vector Hx

�

X , Ẋ
�

includes the
gravitational, centrifugal and Coriolis torques in task space; F and Fe denote the the input
signal and the external disturbance in Cartesian space, respectively.

Assumption 1 The B−1
x is assumed to be bounded with



B−1
x



≤ αB;

For further convenience, the dynamics model of Cartesian space in (3.39) can be reformu-
lated as a standard nonlinear affine system in the following form by taking z1 = X ∈ Rm and
z2 = Ẋ ∈ Rm,

ż1 = z2 (3.40)

ż2 = Bx
−1 (F −Hx +Fe) (3.41)

The equation (3.41) can be rewritten as follows:

ż2 = −Bx
−1Hx + Bx

−1(F +δ) (3.42)

where δ = Fe;


B−1
x



 ≤ αB and ∥δi∥ ≤ ξi. To describe the robot system conventionally, the
dynamic system in (3.36) should be reformulated in a standard nonlinear control affine form.
We define,

g(z1) = Bx
−1 (3.43)

f (z1, z2) = −Bx
−1Hx (3.44)

u= F (3.45)

Therefore, the dynamic system in (3.36) can be rewritten as,

ż1 = z2 (3.46)

ż2 = f (z1, z2) + g (z1) (u+δ) (3.47)

Fuzzy Approximation system

It is difficult to obtain the accurate dynamic model of the manipulator due to unknown
disturbances. In this section, a fuzzy logic system is employed for unknown items. Firstly, the
fuzzy rules are given as,

Λi : if Z1 is K i
1 and . . . and Zl is K i

l , then h is hi (3.48)

i where hi is the i-item fuzzy rule.

h (Z) =

m
∑

l=1
hl
�

∏n
j=1ϕ

�

Z j

�

�

m
∑

l=1

�

∏n
j=1ϕ

�

Z j

�

�

= ΘT S (Z) (3.49)

where m is the number of fuzzy rules; Z = [Z1, Z2, . . . , Zn] ∈ Rn is the input variable; S (Z)
is the known fuzzy basis function; Θ denotes the adaptable weight parameters.

Therefore, the approximate function h (Z) can be defined as,

h̃ (Z) = Θ̃T S (Z) (3.50)

where Z ∈ Rn, Θ̃ ∈ Λm, S (Z) ∈ Rm.
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The objective function of optimization parameters Θ∗ is defined as,

Θ∗ = arg min
�

sup
�

�h (Z)− h̃
�

Z |Θ̃
��

�

	

(3.51)

MΘ =
�

Θ̃
�

�



Θ̃


≤ MΘ
	

(3.52)

where the parameter MΘ corresponds to the bounds of Θ̃ which are defined by the user.
According to the optimization result in (3.51), the unknown function h (Z) can be rewritten

as,
h (Z) = Θ∗T S (Z) + ϵ (3.53)

where ϵ presents the minimum approximation error. Actually, the minimum approximation
error ϵ has an upper bound ϵ+ > 0 according to the theory analysis of the fuzzy logical system,

|ϵ| ≤ ϵ+ (3.54)

For the robot system,
Θ∗ = λEϖS (Z) (3.55)

where λ ∈ Rn×n is the coefficient diagonal matrix which is used to scale the updating rate;
E = [X r − X (q)] is the position error in Cartesian space; ϖ ∈ R2 is the last column of a
symmetric positive definite matrix according to Lyapunov theory.

The force approximation of the unknown disturbance using the fuzzy system can be defined
as,

Fh = −J TΘS (Z) (3.56)

where τh is used to compensate for the effects of disturbances. Finally, the input torque can
be reformulated as,

Fd = Fc +Fh (3.57)

Sliding Mode Control

In this part, sliding mode control is applied to the robot system and has better performance
for modeling errors and anti-disturbance. The disturbance δ ∈ Rn is considered in the state
space form, where δ is bounded such that |δi| ≤ ξi(ξi > 0).

Thus the equations in (3.46)–(3.47) can be reformulated as,

ż1 = z2 (3.58)

ż2 = f (z1, z2) + g (z1) (u+δ) (3.59)

The tracking error of the end-effector is defined as: ec = z1 − z1d . The sliding mode surface is
defined as,

S = ėc +αec (3.60)

where α= diag (α1,α2, . . . ,αn), and αi > 0.
According to sliding mode theory, we aim to design an input signal u to ensure that S = 0.

Firstly, the Lyapunov function is set as,

L =
1
2

ST S (3.61)

So, the time derivative of L can be concluded as,

L̇ = ST Ṡ

= ST (ëc +αėc)

= ST ( f (z1, z2) + g (z1)u+ g (z1)δ− z̈1d +α (z2 − ż1d)) (3.62)
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(a) Tracking results in Cartesian space. (b) Tracking errors.

Figure 3.15: Tracking results in Cartesian space using fuzzy adaptive control.

To ensure the stability of the control system, according to the equation of L̇, the actual
control law is defined as,

u= g(z1)
−1 (− f (z1, z2) + z̈1d −α (z2 − ż1d)− sgn (S)) (3.63)

where = diag {k1, k2, . . . , kn}, and ki > 0 are constants. Substituting (3.63) into (3.62), the
time derivative of L is obtained as,

L̇ = ST (g (z1)δ− sgn (S))

= −
n
∑

i=1

ki |Si|+ ST B−1
x δ

≤ −
n
∑

i=1

|Si| (ki −αBξi) (3.64)

If the gain parameters satisfy that ki > αBξi, then L̇ < 0 which can conclude that the system is
asymptotically stable. Finally, the control law is presented as,

u= Hx

�

X , Ẋ
�

+ Bx

�

Ẍd −α
�

z2 − Ẋd

�

− sgn (S)
�

(3.65)

3.2.4 Simulation

In our simulation scenarios, some obstacles are randomly placed in the environment. It is
a challenging scene that lets the robot achieve new skills of adaption to the new target and
obstacle avoidance. Firstly, the motor skills are encoded using the enhanced DMPs by human
demonstrations, where a human holds the robot to teach the skills by demonstrations. After
the collection of the dataset, the regression procedure is conducted using LWR, thus the shape
parameter ρ is obtained, and then the imitation results are achieved via the forward DMPs.
Finally, the sliding mode control-based fuzzy adaptive control is applied to the 7-DOFs Kuka
model, which shows good performance in terms of trajectory tracking.

The tracking results using fuzzy adaptive control are shown in Fig. 3.15. Obviously, we can
see that the real trajectory can successfully avoid obstacles. From Figs. 3.15a–3.15b, the actual
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trajectory almost coincides with the learned trajectory, and the tracking errors of the X-Y-Z
coordinates gradually converge to zero. Therefore, the proposed learning-control strategy can
not only learn the skills, adapt new goal positions and avoid obstacle, but also tracking the
desired trajectory in Cartesian space.

3.2.5 Summary

In this section, we proposed a learning control-based hierarchical control strategy to adapt to
new goal position and avoid obstacles: the high-level learning scheme is targeted at imitating
the motor skill and generating the optimization trajectory for obstacle avoidance; the lower-
level control scheme focuses on the safety and stability of robot’s movement with unknown
disturbances.

For the learning system, the modified DMPs have better performance regarding movement
adaptation than the original DMPs. In addition, we further modify the DMPs to avoid a single
obstacle and even multiple obstacles. To ensure the safety and stability of the robot, a sliding
mode control-based fuzzy adaptive controller is proposed. From the learning-control results,
we can conclude that the proposed method can stably and safely avoid multiple obstacles. In
further work, we will test the proposed method with physical experiments, even more complex
scenarios.
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Chapter 4

Robot Policy Improvement for Manipulation

In this chapter, we will discuss how to improve robustness and adaptability of imitation
learning using policy improvement approach. Robot learning through kinesthetic teaching
is a promising way of cloning human behaviors, but it has its limits in the performance
of complex tasks with small amounts of data, owing to compounding errors. In order to
improve the robustness and adaptability of imitation learning, in this chapter, a hierarchical
learning strategy is proposed: low level learning comprises only those behaviors cloned
with supervised learning, while high level learning constitutes policy improvement. Firstly,
the Gaussian mixture model-based (GMM) dynamical system is formulated to encode a
motion from demonstration. We then derive the sufficient conditions of the GMM parameters
that guarantee the global stability of the dynamical system from any initial state, using the
Lyapunov stability theorem. Generally, imitation learning should reason about the motion
well into the future for a wide range of tasks; it is significant importance for improving the
adaptability of the learning method by policy improvement. Finally, a method based on
exponential natural evolution strategies is proposed to optimize the parameters of dynamical
system associated with the stiffness of variable impedance control, in which the exploration
noise is subject to stability conditions of the dynamical system in the exploration space, thus
guaranteeing the global stability. Empirical evaluations are conducted on manipulators for
different scenarios, including motion planning with obstacle avoidance, and stiffness learning.

4.1 Introduction

Ever since the onset of pioneering research into robot learning methods of learning by
demonstration have attracted much attention. Robot learning can facilitate applications in
industry, manufacturing area, and healthcare, etc., because it directly clones motor skills
by extracting task-relevant information that can be transferred to the robot [143] [144].
Generally, traditional imitation methods use supervised learning to obtain the regression
parameters by modeling dynamic motion primitives (DMP) [21] and Gaussian mixture models
(GMM) [27]. However, a major drawback of these methods is that they are not so adaptable
and highly dependent on large amounts of data. Therefore, they tend to be restricted to
real-world robotic applications. In a real-world scenario, it is of significant importance to
design a more efficient learning policy based on the finite expert data.

Imitation learning has two central properties: policy–robustness and adaptability. Among
the many research papers contributing to this issue, some focus on parameter learning to
improve robustness and adaptability. In [145], Billard et al. present a Gaussian model-based
stable estimator called SEDS for learning the parameters of the dynamical system, which can
ensure global stability at the goal point. In [146], the authors extend the dynamical system
to cover various regression models and proposed a learning strategy for optimizing the valid
Lyapunov function [147], which displays strong robustness in terms of disturbance from a

81
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random initial state. In [148, 149], employ various modification tricks to improve the metrics
of a dynamical system subjected to global stability, for example, improving the learning speed
using an extreme learning machine or improving accuracy means of manifold immersion and
submersion. Although the above works have made some progress in improving the robustness
of imitation learning, they suffer from a limited adaptability. Specifically, we want the robot
might be perform specific special tasks that are not covered by in expert data. For example,
a robot is expected to perform obstacle avoidance tasks taking the shortest path, in which
obstacles are configured along expert trajectories.

One possible solution combines policy-based high level learning strategies with imitation
learning [150]. Several learning strategies have been investigated for improving adaptability
for different scenarios. In [122, 151], the path integral policy improvement (PI2) algorithm
was tailored to learn the parameters of robot trajectories, in which reinforcement learning
could adapt to learning tasks, such as via-points or obstacle avoidance tasks. Indeed, these
policy improvement methods were explored with the aim of optimizing the parameters with
the feedback of a cost function set by users, in which the update rule was in the form of a
probability-weighted average [152]. In addition to the aforementioned work, reinforcement
learning could also be used to acquire the parameters of variable impedance control [153]
[154] [155], with the robot’s stiffness being changed according to the task requirements. In
[156], reinforcement learning was proposed for learning the impedance parameters, in which
the stiffness of the impedance controller was modeled as a dynamical equation and updated
in accordance with rewards from the cost function. Similarly, in [132], a covariance matrix
adaptation evolution strategy (CMA-ES) is proposed for learning the variable impedance
control of robotic grasping, which provides a theoretical rule for assigning the highest weight
to the best population for parameter updating.

Inspired by these works, we propose the exponential natural evolution strategies (NES)
algorithm to learn the stiffness of a stable nonlinear dynamical system. This combines the
two properties of robustness and adaptability from kinesthetic teaching. As reported in [157],
the NES provides a principled way of formulating the optimization problem based on the
natural gradient. The proposed exponential NES is a more efficient learning algorithm than
the previously mentioned CMA-ES method, because it obtains all parameter updating for
covariance matrix adaptation from a single principle. Moreover, unlike the original NES, the
parameter updating depends on the natural coordinate, which can reduce the computation of
the inverse Fisher information matrix in NES [158].

In this chapter, we incorporate algorithms of exponential NES with a stable dynamical
system into the imitation learning framework. First, the motions of the robot are encoded using
the GMM from kinesthetic teaching, which is a normal behavioral cloning process. Then, the
GMM-based stable dynamical system is derived from the Lyapunov stability theorem such that
the optimized parameters of the dynamical system can be obtained from the stable condition.
This process can improve the robustness of dynamical system. Finally, the exponential NES
are explored for learning the parameters of the policy, which can further improve the stability
and adaptability of the dynamical system for different tasks.

The rest of this chapter is organized as follows. Section 4.2 presents the work related
to imitation learning and policy improvement-based learning. Section 4.3 formulates the
nonlinear dynamical system-based learning problem and the parameterized policy from
kinesthetic teaching. Section 4.4 introduces the exponential natural evolution strategies
algorithm for parameter learning. In Section 4.5, we present the policy for learning the
stiffness of variable impedance control. The simulation and experiment are conducted and
discussed in Section VI. The conclusion is presented in Section 4.7.
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4.2 Related Work and Motivation

In this section, we will briefly discuss the motivation of the study and the related work in the
areas of imitation learning and policy improvement in learning.

4.2.1 Imitation Learning from Demonstrations

Learning from demonstrations is a popular approach in robot motion imitation. Several
classical supervised learning methods have been widely applied to behavioral cloning, such
as Gaussian mixture regression (GMR) [159], Gaussian process regression (GPR) [28], and
hidden Markov models (HMM) [160]. However, these statistical approaches found locally
optimal parameters by maximizing the likelihood such that failed to ensure global stability
because they were not the theoretical solution to ensure the stability of the dynamical system.
Dynamical system-based learning methods were therefore presented to ensure global stability,
such as in DMP [23] and SEDS [145]. In particular, the time-invariant dynamical system in
[145] and the constraints of stability condition according to Lyapunov stability are taken into
consideration in the context of learning.

4.2.2 Policy Improvement with Learning

On the other hand, as regards adaptability, we focus on parameter learning to specify the task
using policy improvement methods. The evolution strategies algorithm was one candidate
solution for parameter learning, for example, CMA-ES and NES. In contrast to PI2 [71], the
CMA-ES algorithm can modify the exploration noise during learning by updating its covariance
matrix [132]. However, CMA-ES is not able to measure the proximity between the current
policy and the updated policy on the basis of distribution in the learning process. We therefore
consider exponential natural evolution strategies for this purpose. Generally, the NES learns
the parameters of policy by following the natural gradient towards higher expected fitness
[161]. Indeed, the traditional NES method involved computing the inverse Fisher information
matrix, which can affect the efficiency of the learning process. The proposed exponential NES
is a more efficient learning algorithm, because all the parameters updating for covariance
matrix adaptation are obtained from a single principle [162].

4.3 Learning Problem

In this section, we will introduce the first learning problem, using GMR to model skills by
kinesthetic teaching in Section 4.3.1. To adapt to different tasks in imitation learning, we
formulate the second problem for learning the parameters the dynamical system in Section
4.3.2. The control flow framework is shown in Fig. 4.1.

4.3.1 Nonlinear Dynamical System from Demonstration

To imitate human skills, a date-driven kinesthetic teaching is explored for learning motor
skills, needed by the robot to perform a repetitive task multiple times. The robot’s motion
can be encoded by learning methods, such as linear regression, support vector regression,
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Figure 4.1: The control flow of the learning-control framework using the proposed methods to derive a stable
and robust control policy for robot system. Θ denotes the policy parameter, Kp is the stiffness of the impedance
controller, q̇, q are the joint angle and velocity, and ẋ , x are the state variable dynamical system.

and Gaussian mixture regression. Here, we formulate the robot’s motions as an autonomous
dynamical system with the state variable x and the output variable ẋ as:

ẋ = f̂ (x) (4.1)

where x is the end-effector’s trajectory in Cartesian space, and ẋ is the velocity; f̂ (x) is the
nonlinear continuous and continuously differentiable function.

The data points from demonstrations are defined as:
�

x t,n, ẋ t,n

�

(t = 0, . . . , T ) , where T
is the time of the goal point and N(n = 1, · · · , N) is the number of samples. Each datapoint
includes a position value x t,n and a velocity value x t,n. To encode the dataset of position
distribution p(x t,n, ẋ t,n), the following GMM model is defined as:

p
�

x t,n, ẋ t,n;φ
�

=
K
∑

k=1

p (k)p
�

x t,n, ẋ t,n|k
�

(4.2)

where K is the number of the Gaussian model; p (k) denotes the prior probability, and
p
�

x t,n, ẋ t,n|k
�

is the conditional probability density function; φk =
�

λk,µk,
∑

k

	

, where λk, µk,
∑

k are prior probability, mean variable, and covariance variable, respectively. The parameters
are defined as φ = {φ1, · · · ,φK}, and the details are expressed as:

p (k) = λk

p
�

x t,n, ẋ t,n|k
�

= 1
q

(2π)d |Σk|
· exp

�

−1
2([x t,n, ẋ t,n]−µk)

TΣ−1
k ([x t,n, ẋ t,n]−Σk)

�

For multiple demonstrations from kinesthetic teaching, the GMM encodes the set of
trajectories of the robot in Cartesian space. The k component of the Gaussian mixture model
is defined as:

µk =

�

µx
k
µ ẋ

k

�

, Σk =

�

Σx
k Σx ẋ

k
Σ ẋ x

k Σ ẋ
k

�

(4.3)
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where µk and Σk are the mean and covariance matrices of the k component GMM. Therefore,
the posterior mean estimate is deduced by GMR as:

ẋ =
K
∑

k=1

p (k) p (x |k)
K
∑

i=1
p (i) p (x |i)

�

µ ẋ
k +Σ

ẋ x
k

�

Σx
k

�−1 �
x −µx

k

�

�

(4.4)

To construct the form of the state equation as (4.1), the function (4.4) can be further written
as:

ẋ = f̂ (x) =
K
∑

k=1

ωk (x) (Λk x + dk) (4.5)

where:

ωk =
p(k)p (x |k)
K
∑

i=1
p(i)p (x |i)

(4.6)

Λk = Σ
ẋ x
k

�

Σx
k

�−1
(4.7)

dk = µ
ẋ
k −Λkµ

x
k (4.8)

It is clear that, Eq. (4.5) is a nonlinear dynamical system with nonlinear weighting terms ωk,
which can represent a wide variety of motions.

4.3.2 Parameterized Policy Learning for the Dynamical System

The dynamical system-based control law method is highly robust to motor skills learning,
because it is a time-variant dynamical system and globally converges to the goal points [145].
Despite its robustness and adaptability, it requires appropriate placement of the Gaussian
in the state space and is not able to perform the via-point tasks. To improve the policy
parameters from the demonstrations, the evolution strategies learning algorithm is applied
to the dynamical system in (4.5). In this section, a parameterized control policy for the
dynamical system in (4.5) is defined as:

ẋ t = f (x t , t) +Φ(x t) · (Θ+ϖt) (4.9)

where Θ is the learning parameter; Φ(x t) denotes the control matrix; ϖt ∼N (0,Σ) denotes
the Gaussian exploration noise.

Considering the special case of a 3-dimensional dynamical system to model the policy
parameter, the dynamical system of Gaussian mixture regression in (4.5) is reformulated as:

Φ(x t) = [Φ1(x t),Φ2(x t), . . . , ΦK(x t)] (4.10)

Φk(x t) =ωk





x t
1 x t

2 x t
3 0 0 0 0 0 0 1 0 0

0 0 0 x t
1 x t

2 x t
3 0 0 0 0 1 0

0 0 0 0 0 0 x t
1 x t

2 x t
3 0 0 1



 (4.11)

Θ = [Θ1,Θ2, . . . ,ΘK]
T (4.12)

Θk =
�

Λ
1,1
k ,Λ1,2

k ,Λ1,3
k ,Λ2,1

k ,Λ2,2
k ,Λ2,3

k ,Λ3,1
k ,Λ3,2

k ,Λ3,3
k , d1

k , d2
k , d3

k

�

(4.13)

From the definition in (4.10)–(4.13), the learning parameter Θ includes the matrix Λk and
dk of the Gaussian mixture regression, which is given in the dynamical system in (4.5). It
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should be noted that the parameters µk
x and Σx

k are the components of weighted ωk, which
shows the nonlinear mapping relationship. To avoid nonlinear factors in the learning policy,
the policy parameters only have µ ẋ

k and Σ ẋ ,x
k . Therefore, the learning goal is to find the

optimization solution of the mean of the velocity µ ẋ
k and covariance between position and

velocity Σ ẋ ,x
k in the Gaussian mixture regression. The mean and covariance of position are set

as fixed parameters. The control matrix Φ(x t) contains the nonlinear features of the policy.
The features consist of the Gaussian basis functions multiplied by the input variables. The
Gaussian basis functions are positioned in the input space during learning.

Generally, the policy parameters Θ are updated such that the cost function of motion
trajectories

�

x t j
, x t j+1

. . . , x tN

�

Θ
from the start time t i can be minimized:

S(Θ) = φ
�

x tN

�

+

∫ tN

t i

�

rt i
+

1
2
ρT

t (Θ)Rρt (Θ)
�

(4.14)

where φ
�

x tN

�

is the terminal cost; rt i
is the immediate cost; ρt (Θ) = Φ(x t) (Θ+ϖt) denotes

the control cost and R is the positive constant weight matrix.
In the learning process, the evolution strategies learning method will be explored to

minimize the control cost 1
2ρ

T
t (Θ)Rρt (Θ)). Once optimum control has been obtained, the

update item δΘt i
can be computed at each time step. To obtain a single update vector δΘ,

a time averaging method can then be used. The details of the update rule for the learning
process will be presented in Section. 4.4.

4.4 Methodology for Policy Improvement

In this section, the natural evolution strategies algorithm is introduced for learning the
parameters Θ in (4.12). The natural gradient of expected fitness is firstly deduced to update
the policy parameters, and the updating rule of exponential parameterization is then presented.

4.4.1 Natural Evolution Strategies

Natural evolution strategies are based on search gradients for updating the policy parameters.
The sampled gradient of the expected fitness function is treated as a search gradient. In
this chapter, we aim to minimize the fitness/cost function, which is defined in (4.14). The
search distribution is mainly considered as the multinormal Gaussian distribution with a full
covariance matrix.

First, we define the mean and covariance of the search distribution as µΘ and ΣΘ and the
learning variable Θ = {µΘ,ΣΘ}. To simplify the distribution expression, we define CC T = ΣΘ,
and then ξ= µΘ + Cs, where variable s is the standard normal distribution s ∼N (0, I). The
sample ξ is then: x ∼ N (µΘ,ΣΘ). The search distribution of expected fitness S̄ = −S is
expressed as:

J (Θ) =
∫

S̄ (ξ) p (ξ|Θ) dξ (4.15)

p (ξ|Θ) =
1

(2π)m/2 det (C)
exp

�

−
1
2



C−1 (ξ−µΘ)




2
�
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The gradient of J (Θ) is obtained according to the log likelihood trick:

∇ΘJ (Θ) =∇Θ

∫

S̄ (ξ) p (ξ|Θ) dξ

=

∫

S̄ (ξ)∇Θp (ξ|Θ) dξ

=

∫

S̄ (ξ)∇Θp (ξ|Θ)
p (ξ|Θ)
p (ξ|Θ)

dξ

=

∫

S̄ (ξ)∇Θ log p (ξ|Θ) p (ξ|Θ) dξ

= E
�

S̄ (ξ)∇Θ log p (ξ|Θ)
�

(4.16)

According to the Monte Carlo estimation [163], the function in (4.16) can be approximated
as:

∇ΘJ (Θ)≈
1
l

l
∑

i=1

S̄ (ξi)∇Θ log p (ξi|Θ) (4.17)

where the parameter l represents the population size. The gradient ∇ΘJ (Θ) offers a search
direction in parameter space. Finally, the update rule is written as:

Θnew = Θ+η∇ΘJ (Θ) (4.18)

However, the traditional stochastic search gradient method in (4.18) is difficult to precisely
determine quadratic optimum. The natural gradient-based method is a good solution and it
helps mitigate the slow convergence of the plain gradient in optimization landscapes with
ridges and plateaus. Actually, natural gradient is based on Riemannian geometry, and it
learns the information from the manifold of probability distributions. The traditional gradient
∇ΘJ directly follows the steepest descent in the parameter space Θ in the distribution. For
the maximum process of J, it will generate a new distribution associated with updating
the parameters from the hypersphere of radius c and center Θ, and thereby computing the
Euclidean distance of two distributions. However, it creates a new problem that the updating
relies on the particular parameterization of the distribution, where the gradients and updates
follow the change in parameterization.

The natural gradient algorithm computes the natural distance D (Θ||Θ+δΘ) between
P(ξ|Θ) and P(ξ|Θ+δΘ) using the Kullback-Leibler (KL) divergence. The natural gradient of J
can thus be reformulated as an optimization problem with a KL divergence constraint:

max J (Θ+δΘ)≈ J (Θ) + (δΘ)T∇ΘJ (4.19)

s.t. K L (Θ+δΘ||Θ) = c (4.20)

where (4.19) is the Taylor expansion and (4.20) is the constraint of Kullback-Leibler diver-
gence approximated [164]; c is the a small increment size. Since the KL divergence can be
approximated with second order Taylor expands using Fisher Information Matrix, the function
(4.20) is reformulated as:

K L (Θ||Θ+δΘ)

≈ K L (Θ||Θ) + (∇Θ+δΘK L (Θ||Θ+δΘ))TδΘ+
1
2
(δΘ)T FδΘ

= K L (Θ||Θ)−E[∇Θ log p (ξ|Θ)]TδΘ+
1
2
(δΘ)T FδΘ

≈
1
2
(δΘ)T FδΘ (4.21)
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with

F =

∫

p (ξ|Θ)∇Θ log p (ξ|Θ) (∇Θ log p (ξ|Θ))T dξ

= E
�

∇Θ log p (ξ|Θ) (∇Θ log p (ξ|Θ))T
�

(4.22)

The Lagrange function of optimization in (4.19) and (4.20) are written as:

L (δΘ,β) = J (Θ) +∇ΘJT (Θ)δΘ+ β
�

1
2
(c −δΘ)T FδΘ

�

(4.23)

where F denotes the Fisher information matrix; β is the Lagrange multiplier. From the
saddle-point theorem, the optimal solution δΘ satisfies the following condition:

∂L
∂ (δΘ)

=∇J (Θ)− βF (δΘ) = 0 (4.24)

Then, the optimal solution is obtained as:

δΘ = β−1F−1∇J (Θ) (4.25)

Finally, when the Lagrange multiplier β > 0 is given, the direction of the natural gradient is
written as:

∇̃ΘJ (Θ) = F−1∇J (Θ) (4.26)

4.4.2 Fitness Shaping and Exponential Parameterization

Natural evolution strategies adopts rank-based fitness functions (object functions) to keep
the method invariant with monotonically increasing transformations of the fitness function.
Here, we define the utility-weighted values υ= [υ1, · · · ,υl] with sort ascending to transform
the fitness of the population. Invariance against a large set of transformations of the fitness
function and/or the underlying search space is a desirable property of evolution strategies.
Rank-based fitness shaping makes the algorithm invariant under monotonic transformations
of the fitness function, and the natural gradient is invariant under linear transformations of
the search space [162]. Therefore, when the same linear transformation is applied to the
search space and the initial search distribution, the natural gradient will also be transformed.

Firstly, the population is sorted in descending order, which means that ξ1 is the best and
ξl is the worst individual. Then, we replace the fitness function as the utility values, and thus
the estimation equation in (4.17) can be reformulated as,

∇ΘJ (Θ) =
l
∑

i=1

υi∇Θ log p (ξi|Θ) (4.27)

4.4.3 Exponential NES Update Rule

In traditional covariance matrix adaptation evolution strategies, the policy parameters follow
the gradient step of covariance matrix δΣΘ, whereby thereby the new covariance matrix
ΣΘ +δΣΘ should hold the positive definite matrix property. However, since the gradient δΣΘ
can be any symmetric matrix, we cannot guarantee this property. To address this issue, the
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covariance matrix is represented with an exponential map for symmetric matrices. We first
give the exponential map function as:

Sm := {M ∈ Rm×m|M T = M} (4.28)

and

Pm := {M ∈ Sm|uT Mu> 0 for al l u ∈ Rm\{0}} (4.29)

where Sm is the symmetric vector space; Pm is the manifold of a symmetric positive definite
matrix. The exponential map is defined as:

exp : Sm→ Pm, M →
∞
∑

n=0

M n

n!
(4.30)

The map is a diffeomorphism, and ‘exp’ and its inverse operation log : Pm→ Sm are continuous.
The covariance matrix ΣΘ can be represented as exp(ζ) by exp map Pm→ Sm. The properties
of the gradient update are given in Remark. 1.

Remark 1 The updating of exp map has the following properties: ΣΘ+δΣΘ is the valid covariance
matrix due to the vector space updating of Sm; the gradient step is invariant with respect to linear
transformation, due to the updating of the ζ of exp operation.

To reduce the burden of computation of the Fish matrix, we do not directly compute the global
coordinate ΣΘ = exp(ζ), and replace it with a linear transformation to another coordinate
system that the current search distribution is the standard normal distribution with zero mean
and unit covariance. We firstly define the current search distribution as (µΘ, C) ∈ Rm×Pm and
satisfy CC T = ΣΘ. In tangent space, we define the updated search distribution as:

(δ, M) 7→
�

µnew
Θ , Cnew

�

=
�

µΘ + Cδ, C exp
�

1
2

M
��

(4.31)

The coordinate frame is natural, because the Fisher matrix with respect to an orthonormal
basis of (δ, M) is the identity matrix. Hence, the distribution N

�

µΘ, CC T
�

is converted into
(δ, M) = (0, 0). The tricks of obtaining updates in the natural coordinate frame is an option of
exponential parameterization, which is used to keep the algorithm invariant under the linear
transformation in the searching space. The log density mapping is written in new coordinate
system:

log (p(ξ|δ, M)) = −
m
2

log (2π)− tr (C)−
1
2



exp(−1/2M)C−1 (ξ−µΘ)




2
(4.32)

Considering the population ξi = µΘ + C · si where si ∼N (0, I), the gradient is formulated
as:

∇δJ=
l
∑

i=1

υi·∇δ|δ=0 log (p(ξi|M = 0,δ))

=
l
∑

i=1

υi·∇δ|δ=0

�

−
1
2



C−1 · (ξi − (µΘ +δ))




2
�

=
l
∑

i=1

υi·∇δ|δ=0C−1 · (ξi − (µΘ +δ))

=
l
∑

i=1

υi·si (4.33)
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The gradient of M is:

∇MJ=
l
∑

i=1

υi·∇M |M=0 log (p(ξi|δ = 0, M))

=
l
∑

i=1

υi·∇M |M=0

�

−tr (C)−
1
2



exp (1/2M)C−1 · (ξi −µΘ)




2
�

=
l
∑

i=1

υi ·
�

−I −
�

C−1 · (ξi −µΘ)
�

·(−1/2I) ·
�

C−1 · (ξi −µΘ)
�T�

=
1
2

l
∑

i=1

υi ·
�

sis
T
i − I

�

(4.34)

From the gradient update of ∇δJ in (4.33), it can be seen that µΘ depicts the center updating
of search distribution. Similarly, σ describes the updating of step size of ∇σJ as:

∇σJ=
tr(∇MJ)

m
(4.35)

∇BJ=∇MJ−∇σJ (4.36)

Finally, the updating rule with learning rates is given as:

µnew
Θ = µΘ +ηµ · ∇δJ

= µΘ +ηµ ·
l
∑

i=1

υisi (4.37)

σnew = σ · exp (ηδ/2 · ∇σJ)

= σ · exp

�

ηδ
2
· tr

� l
∑

i=1

υi(sis
T
i − I)

�Â

m

�

(4.38)

Bnew = B · exp
�ηB

2
· ∇BJ

�

= B · exp

�

ηB

2
·

� l
∑

i=1

υi(sis
T
i − I) −

1
m

tr

� l
∑

i=1

υi(sis
T
i − I)

�

· I

��

(4.39)

The update rule of the exponential natural evolution strategies algorithm is given in
Algorithm. 3.

4.5 Learning Variable Impedance Control of Stable Dynamical System

In this section, we derive the stability conditions of the dynamical system using the exponential
NES to learn the stiffness of variable impedance control. To guarantee global stability, the
exploration noise of exponential NES is subjected to the stability conditions of the dynamical
system.
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Algorithm 3: Update Rule of Exponential NES

Input: ησ, ηδ, ηB, m, µini t
Θ , Σini t

Θ = C T C
σ← m

p

|det (C)|
B← C/σ
while until stopping criterion do

for i=1 · · · l do
Sampling: si ∼N (0, I);
ξi ← µΘ +σBT si;
Evaluation the cost function S(ξi);

end
Sort {(si ,ξi)} with respect to S̄ (ξi);
Compute gradients:

∇δJ←
l
∑

i=1
υi · si;

∇MJ←
l
∑

i=1
υi ·

�

sis
T
i − I

�

;

∇σJ← tr (∇MJ)/m;
∇BJ←∇MJ−∇σJ · I;
Update mean: µΘ← µΘ +ηδ ·σB · ∇δJ;
Update covariance matrix:
σ← σ · exp (ησ/2 · ∇σJ)
B← B · exp (ηB/2 · ∇BJ)

end

4.5.1 Shaping with Stable Exploration

For imitation learning, the dynamical system in (4.5) can generate the real trajectories
according to the reference skills modeled by GMR. Generally, an unstable dynamical model
will cause unexpected motion, such as deviation from the goal position. It is therefore
necessary to determine the optimal parameters to regulate the dynamical system.

Theorem 3 If the state trajectories are generated according to the dynamical system in (4.5),
the dynamical model is globally asymptotically stable at the goal point xg under the sufficient
conditions:

�

dk = −Λk xg

Λk + (Λk)
T ≺ 0, ∀k = 1, · · · , K

(4.40)

where Λk + (Λk)
T ≺ 0 denotes the negative definite matrix.

Proof 4 To obtain the stability conditions of the dynamical system in (4.5), we firstly define a
candidate Lyapunov function as:

V (x) =
1
2

�

x − xg

�T �
x − xg

�

(4.41)

According to the Lyapunov stability theorem of function in (4.41), we should set the parameters
that satisfy the following conditions:



















V (x)> 0,∀x ∈ Rd\
�

xg

	

V̇ (x)< 0,∀x ∈ Rd\
�

xg

	

V
�

xg

�

= 0 & V̇
�

xg

�

= 0

(4.42)



92 4 Robot Policy Improvement for Manipulation

Obviously, V (x)> 0 except for goal position x = xg . The time derivative of V (x) is written as:

d (V )
d t

=
dV
d x

d x
d t

=
1
2

d
d x

�

�

x − xg

�T �
x − xg

�

�

ẋ

=
�

x − xg

�T
ẋ

=
�

x − xg

�T · f̂ (x)

=
�

x − xg

�T
K
∑

k=1

ωk (x) (Λk x + dk)

=
�

x − xg

�T
K
∑

k=1

ωk (x)
�

Λk(x − xg) +Λk xg + dk

�

=
K
∑

k=1

ωk (x)
�

x − xg

�T
Λk

�

x − xg

�

Since the parameter ωk is positive, the condition V̇ (x) < 0 should be constrained with the
condition Λk + (Λk)T ≺ 0. It is then easy to conclude that the condition V

�

xg

�

= 0 & V̇
�

xg

�

= 0
is satisfied. The proof of (4.40) is thus concluded.

We still need to obtain the parameters φ = {φ1, · · · ,φK} with the item φk = {λk,µk,Σk}
in (4.5). Common methods use the expectation maximization (EM) algorithm to determine
the optimum parameters of the GMM. However, they cannot ensure global stability at goal
position, because they do not consider the constraint in (4.40) in the optimization.

The item φk can be rewritten as: φk =
�

λk,µx
k ,µ ẋ

k ,Σx
k ,Σ ẋ x

k

	

. Here, the mean square
error-based objective function of the optimization problem with constraints is defined as:

minF (φ) = 1
2T

N
∑

n=1

T
∑

t=0

�

ˆ̇x t,n − ẋ t,n

�T � ˆ̇x t,n − ẋ t,n

�

s.t.















dk = −Λk xg

Λk + (Λk)
T ≺ 0

Σk ≻ 0
∑K

k=1λk = 1,λk ∈ (0, 1)

(4.43)

To obtain the optimization results, we should firstly derive the partial derivative of priors ∂F
∂ λk

,

mean ∂F
∂ µk

xi
, ∂F
∂ µk

ẋ i

, and covariance ∂F
∂Σk

ẋ i

, ∂F
∂Σk

ẋ x i

.

It should be noted that the parameter is added to the exploration noise in (4.9), which may
become unstable due to random noise. To maintain the stability of the dynamical system in
the learning process, we need to shape the exploration noise. The noise can be separated into
ϖΛk andϖd

k , which are added to parameters Λ and d, respectively, resulting in dk,a = dk+ϖd
k,a

and Λk,a = Λk +ϖΛk,a. The stable conditions of the dynamical system can then be rewritten as:

dk,a = −Λk,a xg (4.44)

Λk,a +
�

Λk,a

�T

2
≺ 0 (4.45)

∀k = 1, . . . K , a = 1, . . . Na
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The Λk matrix can be written as,

Λk =
Λk + (Λk)

T

2
︸ ︷︷ ︸

(a)

+
Λk − (Λk)

T

2
︸ ︷︷ ︸

(b)

(4.46)

Actually, item (a) in Eq. (4.46) is the symmetric component and (b) is the skew-symmetric
matrix, and it can be easily determined that quadratic form of (b) is 0. Hence, we just need to
keep the negative definite of (a). Similarly, the noise of ϖk,a

Λ can be constructed as the sum of
the skew-symmetric and the symmetric noise matrix,

ϖΛk,a =ϖ
skew
k,a +ϖ

s ym
k,a (4.47)

It follows that we only need to design the symmetric matrix ϖs ym
k,a in the learning process. We

sample the Gaussian noise, and obtain the symmetric matrix
�

ϖ
s ym
k,a

�′
and construct the matrix

Λk+(Λk)
T

2 +ηϖ
�

ϖ
s ym
k,a

�′
, where the parameter ηϖ is decreasing from 1 to 0 until it is negative

definite. For condition (4.44), the exploration noise should satisfy the following:

ϖd
k,a =ϖ

Λ
k,a xg (4.48)

After obtaining the optimal parameters from (4.43), the parameters can always preserve the
conditions (4.44) and (4.45) when the noise is constrained.

4.5.2 Variable Impedance Control Learning Policy

For the dynamical system, the variable impedance controller is written as,

U = −KP (x − xd)− KD ( ẋ − ẋd) + U f (4.49)

KD = diag
�

2
p

KP

�

(4.50)

where U f is the feedback feedforward signal; KP , KD are the positive definite matrix which
represents the stiffness and damping matrices, respectively; U is the control input. For
Cartesian space tracking tasks, the x denotes the trajectory in task space, giving us the
following relationship:

KP,q = J T KP,CJ , KD,q = J T KD,CJ (4.51)

where J is the Jacobian matrix of the robot; KP,q and KP,C denote the joint space and the
Cartesian space stiffness matrices, respectively. Similarly, KD,q and KD,C denote the damping
matrices in joint space and Cartesian space, respectively.

According to the relationship in (4.50), we just need to learn the stiffness parameters.
The parameterized policy of stiffness learning associated with a 3-D dynamical system can be
reformulated as,

Φ(x t) = [Φ1(x t),Φ2(x t), . . . ,ΦK(x t)] (4.52)

Φk(x t) =ωk







x t
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2 x t
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0 0 0 x t
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1 x t

2 x t
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(4.53)

Θ = [Θ1, . . . ,Θk, . . . ,ΘK]
T (4.54)

Θk =
�

Λ
1,1
k ,Λ1,2

k ,Λ1,3
k ,Λ2,1

k ,Λ2,2
k ,Λ2,3

k ,Λ3,1
k ,Λ3,2

k ,Λ3,3
k ,Λ4,1

k ,Λ4,2
k ,Λ4,3

k , d1
k , d2

k , d3
k , d4

k

�

(4.55)
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where Λ4,1
k , Λ4,2

k , Λ4,3
k , and d4

k coincide with the stiffness parameters.
To fit the stiffness parameters into the learning process, we encode the KP with the auxiliary

dynamical system. Motivated by [152], the dynamical system of stiffness KP is defined as:

K̇P , j = αkp

�

(g j
x)

T �
ΘKp, j +ϖKp, j

�

− KP, j

�

(4.56)

ΘKP, j =
�

Λ
4,1
j ,Λ4,2

j ,Λ4,3
j , d4

j

�T
(4.57)

g j
x =ω

j
k ·
�

xd
1 , xd

2 , xd
3 , 1

�T
(4.58)

where j is the index of the case of 3-D dimension space; ϖKp, j is the noise added to the
dynamical equation of stiffness; the parameter αkp

is a large positive constant scalar so that
causes the time derivative of KP to converge to zero quickly, thus enabling the (4.56) to be
rewritten as:

KP, j =
�

g j
x

�T �
ΘKp, j +ϖKp, j

�

(4.59)

Therefore, the required stiffness can be obtained by learning the parameter ΘKP =
�

ΘKP,1 ,ΘKP,2 , . . .
�

.
The learning scheme is shown in Fig. 4.2.
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Figure 4.2: The learning process of the dynamical system and stiffness using exponential NES.

Finally, for learning stiffness tasks, the details of the cost function in (4.14) are given as:

φ
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x tN
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R= α3 I (4.60)

where α1, α2 and α3 are the weights of the various components of the cost function, which
is designed for users according to the tasks; Nvia is the the number of via-points, i.e., the set
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points through which the dynamical system should pass in the learning tasks. In the special
case of trajectory learning, we want the robot to go through points that did not appear in the
primary experience. Finally, the details of the natural evolution strategies learning dynamical
system is given as Algorithm. 4.

Algorithm 4: Learning with Exponential NES

Input: Dataset
�

x t,n, ẋ t,n

	

, ησ, ηδ, ηB, m, µini t
Θ , Σini t

Θ = C T C
σ← m

p

|det (C)|
B← C/σ
Low-level Learning

Regression with GMR from human demonstration and get parameter
φk =

�

λk,µk,
∑

k

	

;
Obtain the optimal parameter φ = {φ1, · · · ,φK} by optimization in (4.43);

end;
High-level Learning

while until stopping criterion do
for i=1 · · · l do

Sampling: ϖi ∼N (0, I); /* To guarantee the stability of
dynamical system, we shape the noise as in (4.47)
(4.48) */

ξi ← µΘ +σBTϖi;
Evaluation of the cost function S(ξi);

end
Sort {ϖi ,ξi} with respect to S̄ (x i);
Compute gradients:

∇δJ←
l
∑

i=1
υi ·ϖi;

∇MJ←
l
∑

i=1
υi ·

�

ϖiϖ
T
i − I

�

;

∇σJ← tr (∇MJ)/m;
∇BJ←∇MJ−∇σJ · I;
Update mean: µΘ← µΘ +ηδ ·σB · ∇δJ;
Update covariance matrix:
σ← σ · exp (ησ/2 · ∇σJ);
B← B · exp (ηB/2 · ∇BJ);

end
end;

4.6 Experimental Demonstration

In the following, we describe the application of the proposed algorithm in imitation learning.
There are three scenarios in which we demonstrate our approach. The first case is autonomous
motion planning after learning, the second case is motion learning with an obstacle, and the
third case is stiffness learning of a variable impedance controller.
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Figure 4.3: Physical experiments are conducted using Franka Emika robot, where 1⃝ is the expert data from
human demonstrations; 2⃝ 3⃝ 4⃝ are the different running phases at the final policy.

Figure 4.4: The robot is controlled to repeat the motion 6 times from human demonstration. The initial position of
the reproduction is selected randomly and learned by policy improvement.

(a) 1 roll-outs (b) 300 roll-outs (c) 2000 roll-outs

Figure 4.5: The learning process of the dynamical system for obstacle avoidance. The first roll-outs collide with the
bucket, the 300 roll-outs reach into the bucket but still collide with bucket, and the 2000 roll-outs reach the goal
without collision and obtain the shortest possible path under the condition of (4.43).
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4.6.1 Autonomous Motion Planning

In this task, the robot is performed to grasp the object in terms of the new initial position and
new goal position. Figure. 4.6 depicts the learning results of the dynamical system. Figure.
4.6a– 4.6b show the robot can converge to goal position from any initial position, which
demonstrates the global convergence properties. Figure. 4.7– 4.8 show the robot can adapt
the new goal position from the new initial position.

(a) The learning process of dynamical system and
stiffness using exponential NES.

(b) Velocity of 10 samples at final policy.

Figure 4.6: Autonomous motion planning from any initial position to goal position.

(a) The learning process of dynamical system and
stiffness using exponential NES.

(b) Velocity of 10 samples at final policy.

Figure 4.7: Autonomous motion planning from goal1 position to to goal2 position.
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(a) The learning process of dynamical system and
stiffness using exponential NES.

(b) Velocity of 10 samples at final policy.

Figure 4.8: Autonomous motion planning from goal1 position to to goal3 position.

4.6.2 Motion Learning with Obstacle Avoidance

The robot is first driven to perform the sampling tasks by human demonstration, and executes
the final learning results online as shown in Fig. 4.3. In our case, the robot executes a reaching
motion into a bucket and collects the data from five repetitions, as shown in Fig. 4.4. Then,
the first learning strategy associated with the GMR-based nonlinear dynamical system is used
to clone the motor skills. To test adaptability and stability, we randomly set the initial position
and reproduce the motor behavior with the condition constraints of the nonlinear dynamical
system. The cost function is detailed:

φ
�

x tN

�

=


xg − x tN





2

r
t j
= α1





 ẋ t j
− ẋ t j−1





+α2





 ẋ t j





+α3 ∗ I ∗
1
2
ρT

t (Θ)Rρt (Θ)

α1 = 0.00001,α2 = 0.1, α3 = 0.001 (4.61)

The iteration number is 200, and the number of roll-outs at each iteration is 10. When the
robot collides with the bucket, the motion will stop and step into the next roll-out. The
learning process is shown in Fig. 4.5. It can be seen that the robot reaches the goal position
without collision and obtains the shortest possible path under the condition constraints in
(4.43).

Figure. 4.9 depicts the learning results of the cost value, with all items, including total
cost, via-goal cost, acceleration cost, control cost of parameters Θ, and convergence cost of
velocity decreasing rapidly and achieving the optimization results. Figure. 4.10b show the
velocity trajectories at the final policy. Moreover, due to the dynamical system constraints, the
motion can globally converge to the goal position. Consequently, the learning strategy can
limit the state of the dynamical system under the condition constraints, which is important
in a real system considering the safe state. It should be noted that the learning method can
modify the exploration noise by updating the covariance matrix, which is a convenient way of
shaping the noise in a large exploration space.
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Figure 4.9: Cost value along the update numbers in the learning process.
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Figure 4.10: Policy learning for obstacle avoidance case using exponential NES.
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(c) 1000 roll-outs.

Figure 4.11: The learning process of the dynamical system for stiffness learning. The first roll-outs deviate from
the original trajectories with the disturbance, while the 200 roll-outs gradually converge to the original trajectories
along with the iterations but still with a high error rate, and 1000 roll-outs coincide with the original trajectories and
adaptation towards via -points under the condition of (4.43).

4.6.3 Learning Stiffness of Variable Impedance Control

Here, the robot should pass through the via-points, and the variable impedance controller
is explored to control the robot with the external disturbance. The external force field is set
as Fex t = [0,8]T , which means the force is only applied to the y-axis. The cost function is
detailed:
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α1 = 0.001,α2 = 0.0002,α3 = 0.000001 (4.62)

The learning process is shown in Fig. 4.11, where the trajectory deviates from the original
trajectory in the first roll-outs due to the force field (gray dotted line), and gradually converges
to the original trajectory, passing pass through the desired via-points (4 via-points and goal
point) along with the iterations after 200 roll-outs, and slightly deviating from the original
trajectory and passing more precisely through the via-points after 1000 roll-outs. Figure 4.12
shows the learning process cost value, where all cost items, including total cost, via-points
cost, acceleration cost, parameters cost, and stiffness cost converge and decrease significantly.
Specifically, the rapid decrease in via-points cost, convergence cost, and total cost means
that in terms of via-points and accuracy, the policy works. Figure. 4.13a also converged
reasonably quickly and reached a steady-state after 80 iterations. Clearly, the performance
and convergence behavior of the policy suggest that the proposed policy is a good match for
our case.

Figures. 4.13b and 4.14a show the position and velocity trajectories at the last iteration,
respectively. It can be seen that the trajectories pass through the via-points at the final policy
with external disturbance, and globally converge to goal position under the constraints of
the dynamical system (shown in streamlines). The results of stiffness learning are shown in
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Fig. 4.14b, with the stiffness level first increasing to counter external perturbation, and then
decreasing when it is close to the goal position.
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Figure 4.12: The learning process of the dynamical system and stiffness using exponential NES.
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Figure 4.13: Policy learning for disturbance case using exponential NES.

4.6.4 Analysis

With imitation learning, classical approaches based on behavioral cloning can imitate the
motor skills, but lack adaptability and robustness. Based on 4.6.2, the robot can avoid the



102 4 Robot Policy Improvement for Manipulation

0 5 10

t [s]

0

0.5

1

1.5

2

2.5
V

e
lo

c
it
y
 [
m

/s
]

X

0 5 10

t [s]

-1

-0.5

0

0.5

1

1.5
Y

(a) Velocity of 10 samples at final policy.

0 5 10

t [s]

0

5

10

15

20

25

S
ti
ff
n
e
s
s

kp
1

0 5 10

t [s]

5

10

15

20

kp
2

(b) The learning process of dynamical system and
stiffness using exponential NES.

Figure 4.14: Learning results at final policy using exponential NES.

obstacle and follow the streamlines to match the expert trajectories of the dynamical system.
Based on 4.6.3, we design the new cost function to counter the external disturbance and learn
the variable impedance control. The experiment indicates that the proposed learning methods
can improve the adaptability and robustness of the dynamical system. It is interesting to note
that the cost function can be adjusted by users according to the task requirements. This means
that the proposed method can be applied much more broadly than those presented in this
chapter, and only requires the design of a reasonable cost function. For instance, it will be
interesting to explore a method for learning puncturing skills in surgery.

In addition, although exploration of a large policy space will benefit the learning perfor-
mance in the virtual environment, the system may be unstable or become a singularity, leading
to security issues. Indeed, the constraints of the dynamical system address the problem: the
robot’s trajectories follow the streamline, running in a safe state when exploring policy space.

4.7 Summary

This chapter focuses on improving the adaptability and robustness of robot learning. We
propose a policy improvement-based hierarchical learning strategy to imitate and motor
skills from human demonstration. The low-level learning method only focuses on behavioral
cloning, while the high-level one aims to enhance adaptability and robustness through policy
improvement. To obtain the optimal policy parameters, the exponential natural evolution
strategies method is presented for learning the parameters of the dynamical system. In
experiment section, we design two scenarios which are not covered by expert data, with
which to demonstrate the proposed methods. Our experiments indicate that our approach can
successfully avoid obstacles and counter disturbances through learning stiffness.

4.8 Related Publication

1 Yingbai Hu, Guang Chen, Zhijun Li, Alois Knoll. “Robot Policy Improvement With Natu-
ral Evolution Strategies for Stable Nonlinear Dynamical System”. In: IEEE Transactions
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Chapter 5

Conclusion

This chapter provides a summarization of the proposed work, and discusses the main con-
tributions, and analyzes the pros and cons of this thesis. Meanwhile, it also gives the future
research direction of robot control using optimization strategies and imitation learning of
motion generation.

5.1 Summary

In this thesis, we focus on two problems of robot manipulation: low level multi-task optimiza-
tion control and high level imitation learning of motion generation. The main target of the
first problem is to find an efficient and general solution for multi-task control considering task
priorities. The target of the second problem is to design a powerful strategy that enhances the
robustness and adaptability of imitation learning for an unstructured environment.

Specifically, as cases study, the implementation consideration of multi-task control aims at
OP-swab robot, surgical robot and mobile manipulator shown in chapter 2. Chapter 2 first
studies the OP-swab robot case, which designs a novel OP-swab sampling robot of COVID-19
and proposes an optimization scheme with visual feedback to control two tasks: sampling
task and oral center constraint. Chapter 2 also studies the multi-task control problem in the
surgical robot, where three common tasks associated with the surgical task, remote center
motion, and manipulability are considered. We proposed neural network-based hierarchical
optimization to address the multi-task problem. Moreover, chapter 2 researches the 9-DOFs
mobile manipulator from trajectory planning to optimization control, and introduces two-
timescale recurrent neural networks to address the multiple metrics optimization problem
considering infinity norm and slack variable, which takes into account the joint limits effectively
by considering individual joint variables and relaxes the equality constraint by decreasing the
infeasible solution area.

Chapter 3 and Chapter 4 focus on robot learning approaches to improve the adaptability
and robustness of manipulators. Chapter 4 also tries to combine the model-based control
method with the traditional imitation learning method for obstacle avoidance.

To validate the proposed control/learning strategy, simulation and physical experiments
are both conducted, and the results show that our methods are competitive compared to past
work.

5.2 Primary Contributions of the Thesis

This thesis studies the multi-task control problem of the redundant manipulator, and imitation
learning-based motion generation that transfers human manipulation skills to the robot. The
primary contributions of this thesis are:

105
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1 Robot design:

In chapter 2-section 1, to avoid the clinical staff from being affected by the COVID- 19
virus, we developed a novel 9- DOFs rigid-flexible coupling (RFC) robot to assist the
COVID- 19 OP-swab sampling. This robot composes of a visual system, a UR5 robot
arm, a micro pneumatic actuator (MPA), and a force sensing system. The novel micro-
pneumatic actuator (MPA) for throat swab sampling is developed to achieve flexible
collection and integrate a force sensor. Furthermore, force-sensing actuation offers
compliance, which is helpful against shocks, particularly during interaction with the
oral cavity. To ensure operation safety, we develop a novel strain gauge sensor attached
to MPA which means that the proposed MPA is safer. Moreover, MPA is smaller and
has a 7.5 mm cross-sectional diameter, which is convenient for working in the human
oral cavity. Compared with a rigid sampling robot, the developed robot can achieve
flexible sampling and thereby provides a compliant, safe, stable, and reliable sampling
experience.

2 Robot control:

(a) In chapter 2-section 1 and section 2, a novel optimization scheme is derived for multi
tasks constraints considering task tracking, compliance with the RCM constraint, joint
angle and velocity limits, and manipulability index. Compared with the traditional single
index optimization problem, the proposed novel hierarchical optimization framework of
multi-tasks can further improve the robot’s stability, safety, and success rate.

(b) In chapters 2-section 1 and section 2, a varying parameter recurrent neural network
(VPRNN) based hierarchical optimization of a redundant manipulator, which guarantees
multi-task optimization control, such as task tracking, Remote Center of Motion (RCM),
oral cavity center (OCC) constraint, and manipulability index optimization. A theo-
retically grounded hierarchical optimization framework based is introduced to control
multiple tasks based on their priority.

(c) In chapters 2-section 3, a two-timescale recurrent neural networks (TNN) based
hierarchical optimization of a redundant mobile manipulator, which has a faster transient
states response in the hidden layer(s). Compared with the traditional optimization
solution of a redundant manipulator, infinity norm and slack variable are additionally
introduced and leveraged by the optimization algorithm. The former takes into account
the joint limits effectively by considering individual joint variables and the latter relaxes
the equality constraint by decreasing the infeasible solution area.

3 Robot learning:

(a) In chapter 3-section 1, we design a reinforcement learning-based manipulation
skill transferring strategy for a surgical robot. The proposed method consists of two
main steps: We use the Gaussian mixture model and Gaussian mixture regression-based
dynamic movement primitives to model the high-dimensional human-like reaching and
puncture skill by human demonstrations; Reinforcement learning is adopted to improve
the adaptability of the varying via-RCM point tasks, which reduces the risks and cost for
the practical surgical operation.

(b) In chapter 3-section 2, the learning-control strategy is proposed, where the high-level
learning scheme aims at imitating the motor skill and generating the optimal trajectory
for obstacle avoidance; while the lower-level adaptive control scheme focuses on the
safety and stability of the robot’s movement with unknown disturbances.

(c) In chapter 4, exponential natural evolution strategies are proposed for learning the
parameters of a policy that can improve the robustness and adaptability of the dynamical
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system, in which the low level learning is based solely on behavioral cloning using
GMM, while the high level refers to the parameter learning of policy improvement based
on considering robustness and adaptability by exponential NES; Exponential NES are
also explored for learning the stiffness of the variable impedance control; the stiffness
of the controller can be modified online according to the task’s requirements. The
proposed method can learn the covariance matrix parameter which is used to modify
the exploration noise in the parameter space.

5.3 Shortcomings

Although the proposed control and learning strategies achieved the above contributions, there
exist shortcomings that should be paid attention to in future work.

First, in chapters 2, we only study the static RCM/OCC constraint, however, RCM/OCC
location is not always fixed, and there exist some special scenarios where the RCM/OCC
position is moving. In this case, the velocity of RCM/OCC should be considered in the
optimization scheme.

Second, in chapter 3, we apply PI2 to find a constant input of shape parameter of DMP,
and finally, find an optimal policy that the robot could adapt to the new RCM point. Indeed, it
achieves the desired performance in motor learning, but the combination of the PI2 and DMP
seems counterintuitive to the closed-loop control strategy of original PI2.

Third, in chapter 4, we propose the policy improvement method to explore the optimal
parameters of GMM. To guarantee the stability of the dynamical system, the exploration of
state space is constrained using the Lyapunov stability theorem. It is meaningful for hardware
system applications involving safe operation. However, the strategy will slow down the
learning and ignore some searching regions. Therefore, this strategy is not always suitable.

5.4 Future Work

1 Design new neural network

For the optimization control problem, we should consider the running time, convergence
rate and errors, simultaneously. As aforementioned analyzed in Introduction and
Shortcomings, our previous work studies different aspects: the recurrent neural network
in [57] focuses on more running time, and varying-parameters zeroing neural network
in [56] pays more attention to convergence speed. Indeed, they achieved superior
performance in running time or convergence speed. However, in some certain cases,
we should balance the convergence rate and running time for the optimization control
problem.
In future work, we will design a new neural network model which has a different
structure with two-scale parameters. We hope that it can solve the global optimization
problem with the convex or nonconvex objective function. Notably, the proposed method
has an overall promising performance in running time, convergence speed, and tracking
errors.

2 Develop new reinforcement learning algorithm

As reported in Section. 5.3, the combination of the PI2 and DMP seems counterintuitive
to the closed-loop control strategy of original PI2. Additionally, the proposed exponential
NES in chapter 5 is a family of numerical optimization methods, which belongs to
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open-loop learning algorithms. As compared with open-loop learning algorithms, the
full closed-loop learning method can correct the exploration noise and safely take the
paths that might be risky in open-loop strategies, thereby achieving lower expected
costs.

In future work, according to the previous work of PI2 and exponential NES, we will try
to develop a novel full closed-loop learning reinforcement learning method for policy
learning, which has a similar structure to PI2 and exponential NES, but it is more efficient
in learning.

3 Reinforcement learning in imitation learning

In this thesis, we used natural evolution strategies to optimize the dynamical system
of GMM and achieved contributions in imitation learning with high robustness and
adaptability. Exactly, it colones motor skills with the natural way like experts, but this
policy relies only on the GMM algorithm. The traditional supervised learning methods
have limitations guaranteeing adaptability and global stability. Therefore, it is significant
to extend the idea to different supervised learning models.

In future work, we will explore different supervised learning for behavior cloned, such
as extreme learning machines (ELM), and develop a new policy for supervised learning.
Similar to chapter 5, we apply a reinforcement learning algorithm to optimize the policy
which can go beyond previous purely supervised learning in terms of global stability and
adaptability.

4 Biomechanical interaction in medical robot

In future work, we will explore the deep neural network to approximate the biome-
chanical mathematical model of the organ model, and then calculate the stress values
associated with each position of the liver tissue during the robotic resection surgery.

The general way for biomechanical models simulation is finite element analysis, but the
computation speed is slow. To address this issue, the deep neural network method is
used to train the biomechanical model and predict the offset of biological tissue stress.

In addition, to facilitate the application in the real world, a 3D liver model with a
biomechanical mathematical model in simulation open framework architecture (SOFA)
[165] physics simulator is applied for training data samplings, such as point cloud
data of current organs and tissues, force vector, and offset data for each point of the
stressed tissue. By designing a novel deep neural network model, we can speed up the
computational process by parallel operation.
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[55] A. Radonić, S. Thulke, I. M. Mackay, O. Landt, W. Siegert, and A. Nitsche. “Guide-
line to reference gene selection for quantitative real-time PCR”. In: Biochemical and
biophysical research communications 313.4 (2004), pp. 856–862.

[56] Y. Hu, H. Su, G. Chen, G. Ferrigno, E. De Momi, and A. Knoll. “Hierarchical opti-
mization Control of Redundant Manipulator for Robot-assisted Minimally Invasive
Surgery”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2020, pp. 2929–2934.

[57] H. Su, Y. Hu, J. Li, J. Guo, Y. Liu, M. Li, A. Knoll, G. Ferrigno, and E. De Momi.
“Improving Motion Planning for Surgical Robot with Active Constraints”. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2020, pp. 3151–3156.

[58] A. M. Okamura. “Haptic feedback in robot-assisted minimally invasive surgery”. In:
Current opinion in urology 19.1 (2009), p. 102.

[59] A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers. “Robotic surgery: a
current perspective”. In: Annals of surgery 239.1 (2004), p. 14.

[60] K. A. Nichols and A. M. Okamura. “A framework for multilateral manipulation in
surgical tasks”. In: IEEE Transactions on Automation Science and Engineering 13.1
(2015), pp. 68–77.



Bibliography 113

[61] N. Enayati, A. M. Okamura, A. Mariani, E. Pellegrini, M. M. Coad, G. Ferrigno, and E.
De Momi. “Robotic assistance-as-needed for enhanced visuomotor learning in surgical
robotics training: An experimental study”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 6631–6636.

[62] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and R. Dillmann. “Manipulability
analysis.” In: Humanoids. 2012, pp. 568–573.

[63] B. Siciliano. “Kinematic control of redundant robot manipulators: A tutorial”. In:
Journal of intelligent and robotic systems 3.3 (1990), pp. 201–212.

[64] H. Su, J. Sandoval, M. Makhdoomi, G. Ferrigno, and E. De Momi. “Safety-enhanced
Human-Robot Interaction Control of Redundant Robot for Teleoperated Minimally
Invasive Surgery”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, pp. 6611–6616.

[65] N. Aghakhani, M. Geravand, N. Shahriari, M. Vendittelli, and G. Oriolo. “Task control
with remote center of motion constraint for minimally invasive robotic surgery”. In:
Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE. 2013,
pp. 5807–5812.

[66] T. M. Sobh and D. Y. Toundykov. “Optimizing the tasks at hand [robotic manipulators]”.
In: IEEE robotics & automation magazine 11.2 (2004), pp. 78–85.

[67] T. Ortmaier and G. Hirzinger. “Cartesian control issues for minimally invasive robot
surgery”. In: Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000
IEEE/RSJ International Conference on. Vol. 1. IEEE. 2000, pp. 565–571.

[68] A. Ebrahimi, N. Patel, C. He, P. Gehlbach, M. Kobilarov, and I. Iordachita. “Adaptive
control of sclera force and insertion depth for safe robot-assisted retinal surgery”.
In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019,
pp. 9073–9079.

[69] L. Jin, S. Li, H. M. La, and X. Luo. “Manipulability optimization of redundant manipu-
lators using dynamic neural networks”. In: IEEE Transactions on Industrial Electronics
64.6 (2017), pp. 4710–4720.

[70] H. Su, S. Li, J. Manivannan, L. Bascetta, G. Ferrigno, and E. De Momi. “Manipulability
optimization control of a serial redundant robot for robot-assisted minimally invasive
surgery”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE.
2019, pp. 1323–1328.

[71] Z. Li, T. Zhao, F. Chen, Y. Hu, C.-Y. Su, and T. Fukuda. “Reinforcement learning of
manipulation and grasping using dynamical movement primitives for a humanoid-
like mobile manipulator”. In: IEEE/ASME Transactions on Mechatronics 23.1 (2017),
pp. 121–131.

[72] A. Dietrich, C. Ott, and J. Park. “The Hierarchical Operational Space Formulation:
Stability Analysis for the Regulation Case”. In: IEEE Robotics and Automation Letters
3.2 (2018), pp. 1120–1127.

[73] J. A. Petersen and M. Bodson. “Constrained quadratic programming techniques for
control allocation”. In: IEEE Transactions on Control Systems Technology 14.1 (2005),
pp. 91–98.

[74] H. Xiao, Z. Li, C. Yang, L. Zhang, P. Yuan, L. Ding, and T. Wang. “Robust stabilization
of a wheeled mobile robot using model predictive control based on neurodynamics
optimization”. In: IEEE Transactions on Industrial Electronics 64.1 (2016), pp. 505–516.



114 Bibliography

[75] J. Sandoval, G. Poisson, and P. Vieyres. “Improved dynamic formulation for decou-
pled cartesian admittance control and RCM constraint”. In: 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 1124–1129.

[76] R. C. Locke and R. V. Patel. “Optimal remote center-of-motion location for robotics-
assisted minimally-invasive surgery”. In: Robotics and Automation, 2007 IEEE Interna-
tional Conference on. IEEE. 2007, pp. 1900–1905.

[77] Y. Hu, G. Chen, X. Ning, J. Dong, S. Liu, and A. Knoll. “Mobile Robot Learning
from Human Demonstrations with Nonlinear Model Predictive Control”. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2019, pp. 5057–5062.

[78] J. Sandoval, H. Su, P. Vieyres, G. Poisson, G. Ferrigno, and E. De Momi. “Collaborative
framework for robot-assisted minimally invasive surgery using a 7-DoF anthropomor-
phic robot”. In: Robotics and Autonomous Systems 106 (2018), pp. 95–106.

[79] B. Lacevic, P. Rocco, and A. M. Zanchettin. “Safety assessment and control of robotic
manipulators using danger field”. In: IEEE Transactions on Robotics 29.5 (2013),
pp. 1257–1270.

[80] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias. “Safety in
human-robot collaborative manufacturing environments: Metrics and control”. In:
IEEE Transactions on Automation Science and Engineering 13.2 (2015), pp. 882–893.

[81] J. Woolfrey, W. Lu, and D. Liu. “A control method for joint torque minimization of
redundant manipulators handling large external forces”. In: Journal of Intelligent &
Robotic Systems 96.1 (2019), pp. 3–16.

[82] K. Glass, R. Colbaugh, D. Lim, and H. Seraji. “Real-time collision avoidance for
redundant manipulators”. In: IEEE transactions on robotics and automation 11.3
(1995), pp. 448–457.

[83] M. Galicki. “Path-constrained control of a redundant manipulator in a task space”. In:
Robotics and Autonomous Systems 54.3 (2006), pp. 234–243.

[84] F. Chen, M. Selvaggio, and D. G. Caldwell. “Dexterous grasping by manipulability
selection for mobile manipulator with visual guidance”. In: IEEE Transactions on
Industrial Informatics 15.2 (2018), pp. 1202–1210.

[85] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces”. In: IEEE transactions on
Robotics and Automation 12.4 (1996), pp. 566–580.

[86] J. J. Kuffner and S. M. LaValle. “RRT-connect: An efficient approach to single-query
path planning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065).
Vol. 2. IEEE. 2000, pp. 995–1001.

[87] S. Karaman and E. Frazzoli. “Sampling-based algorithms for optimal motion planning”.
In: The international journal of robotics research 30.7 (2011), pp. 846–894.

[88] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. “Informed RRT*: Optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heuristic”.
In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2014, pp. 2997–3004.

[89] F. Burget, M. Bennewitz, and W. Burgard. “BI 2 RRT*: An efficient sampling-based path
planning framework for task-constrained mobile manipulation”. In: 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 3714–
3721.



Bibliography 115

[90] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin,
J. A. Bagnell, and S. S. Srinivasa. “Chomp: Covariant hamiltonian optimization for
motion planning”. In: The International Journal of Robotics Research 32.9-10 (2013),
pp. 1164–1193.

[91] Y. Zhang and Z. Zhang. Repetitive motion planning and control of redundant robot
manipulators. Springer Science & Business Media, 2014.

[92] N. Kumar, J.-H. Borm, V. Panwar, and J. Chai. “Tracking control of redundant robot
manipulators using RBF neural network and an adaptive bound on disturbances”.
In: International Journal of precision engineering and manufacturing 13.8 (2012),
pp. 1377–1386.

[93] J. He, M. Luo, Q. Zhang, J. Zhao, and L. Xu. “Adaptive fuzzy sliding mode controller
with nonlinear observer for redundant manipulators handling varying external force”.
In: Journal of Bionic Engineering 13.4 (2016), pp. 600–611.

[94] Y. Jiang, C. Yang, Y. Wang, Z. Ju, Y. Li, and C.-Y. Su. “Multi-hierarchy interaction
control of a redundant robot using impedance learning”. In: Mechatronics 67 (2020),
p. 102348.

[95] A. A. Hassan, M. El-Habrouk, and S. Deghedie. “Inverse kinematics of redundant
manipulators formulated as quadratic programming optimization problem solved
using recurrent neural networks: A review”. In: Robotica 38.8 (2020), pp. 1495–1512.

[96] A. Escande, N. Mansard, and P.-B. Wieber. “Hierarchical quadratic programming: Fast
online humanoid-robot motion generation”. In: The International Journal of Robotics
Research 33.7 (2014), pp. 1006–1028.

[97] Y. Hu, Z. Li, G. Li, P. Yuan, C. Yang, and R. Song. “Development of sensory-motor
fusion-based manipulation and grasping control for a robotic hand-eye system”. In:
IEEE Transactions on Systems, Man, and Cybernetics: Systems 47.7 (2016), pp. 1169–
1180.

[98] X. Le and J. Wang. “A two-time-scale neurodynamic approach to constrained minimax
optimization”. In: IEEE Transactions on Neural Networks and Learning Systems 28.3
(2016), pp. 620–629.

[99] L. Xiao, Y. Zhang, Z. Hu, and J. Dai. “Performance benefits of robust nonlinear zeroing
neural network for finding accurate solution of Lyapunov equation in presence of
various noises”. In: IEEE Transactions on Industrial Informatics 15.9 (2019), pp. 5161–
5171.

[100] C. A. Klein and C.-H. Huang. “Review of pseudoinverse control for use with kinemati-
cally redundant manipulators”. In: IEEE Transactions on Systems, Man, and Cybernetics
2 (1983), pp. 245–250.

[101] A. S. Deo and I. D. Walker. “Minimum effort inverse kinematics for redundant ma-
nipulators”. In: IEEE transactions on robotics and automation 13.5 (1997), pp. 767–
775.

[102] Y. Zhang, J. Wang, and Y. Xu. “A dual neural network for bi-criteria kinematic control
of redundant manipulators”. In: IEEE Transactions on Robotics and Automation 18.6
(2002), pp. 923–931.

[103] S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park. “Whole-body control of non-
holonomic mobile manipulator based on hierarchical quadratic programming and
continuous task transition”. In: 2019 IEEE 4th International Conference on Advanced
Robotics and Mechatronics (ICARM). IEEE. 2019, pp. 414–419.



116 Bibliography

[104] E. Falotico, L. Vannucci, A. Ambrosano, U. Albanese, S. Ulbrich, J. C. Vasquez Tieck,
G. Hinkel, J. Kaiser, I. Peric, O. Denninger, et al. “Connecting artificial brains to robots
in a comprehensive simulation framework: the neurorobotics platform”. In: Frontiers
in neurorobotics 11 (2017), p. 2.

[105] L. Sciavicco and B. Siciliano. Modelling and control of robot manipulators. Springer
Science & Business Media, 2001.

[106] S. Li, L. Jin, and M. A. Mirza. Kinematic control of redundant robot arms using neural
networks. John Wiley & Sons, 2019.

[107] S. Liu and J. Wang. “A simplified dual neural network for quadratic programming
with its KWTA application”. In: IEEE Transactions on Neural Networks 17.6 (2006),
pp. 1500–1510.

[108] N. Koenig and A. Howard. “Design and use paradigms for gazebo, an open-source
multi-robot simulator”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. IEEE. 2004, pp. 2149–2154.

[109] H. Su, Y. Hu, Z. Li, A. Knoll, G. Ferrigno, and E. De Momi. “Reinforcement learning
based manipulation skill transferring for robot-assisted minimally invasive surgery”.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020,
pp. 2203–2208.

[110] A. M. Okamura, C. Simone, and M. D. O’leary. “Force modeling for needle insertion into
soft tissue”. In: IEEE transactions on biomedical engineering 51.10 (2004), pp. 1707–
1716.

[111] B. Eldridge, K. Gruben, D. LaRose, J. Funda, S. Gomory, J. Karidis, G. McVicker, R.
Taylor, and J. Anderson. “A remote center of motion robotic arm for computer assisted
surgery”. In: Robotica 14.1 (1996), pp. 103–109.

[112] R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario. “Medical robotics
and computer-integrated surgery”. In: Springer handbook of robotics. Springer, 2016,
pp. 1657–1684.

[113] G. A. Fontanelli, M. Selvaggio, L. R. Buonocore, F. Ficuciello, L. Villani, and B. Siciliano.
“A new laparoscopic tool with in-hand rolling capabilities for needle reorientation”.
In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 2354–2361.

[114] G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, and K. M. Konstantinidis. “Evolution
of autonomous and semi-autonomous robotic surgical systems: a review of the litera-
ture”. In: The international journal of medical robotics and computer assisted surgery
7.4 (2011), pp. 375–392.

[115] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel. “Semi-autonomous simulated brain
tumor ablation with ravenii surgical robot using behavior tree”. In: 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2015, pp. 3868–
3875.

[116] M. Capurso, M. M. G. Ardakani, R. Johansson, A. Robertsson, and P. Rocco. “Sensorless
kinesthetic teaching of robotic manipulators assisted by observer-based force control”.
In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2017,
pp. 945–950.

[117] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell. “Non-parametric imitation learning
of robot motor skills”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 5266–5272.



Bibliography 117

[118] S. Calinon, D. Bruno, M. S. Malekzadeh, T. Nanayakkara, and D. G. Caldwell. “Human–
robot skills transfer interfaces for a flexible surgical robot”. In: Computer methods and
programs in biomedicine 116.2 (2014), pp. 81–96.

[119] J. Silvério, S. Calinon, L. Rozo, and D. G. Caldwell. “Learning task priorities from
demonstrations”. In: IEEE Transactions on Robotics 35.1 (2018), pp. 78–94.

[120] F. Meier, E. Theodorou, F. Stulp, and S. Schaal. “Movement segmentation using a
primitive library”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2011, pp. 3407–3412.

[121] P. Kormushev, S. Calinon, and D. G. Caldwell. “Imitation learning of positional and
force skills demonstrated via kinesthetic teaching and haptic input”. In: Advanced
Robotics 25.5 (2011), pp. 581–603.

[122] F. Stulp, E. A. Theodorou, and S. Schaal. “Reinforcement learning with sequences
of motion primitives for robust manipulation”. In: IEEE Transactions on robotics 28.6
(2012), pp. 1360–1370.

[123] O. Koç, G. Maeda, and J. Peters. “Optimizing the execution of dynamic robot move-
ments with learning control”. In: IEEE Transactions on Robotics 35.4 (2019), pp. 909–
924.

[124] P. Englert and M. Toussaint. “Combined Optimization and Reinforcement Learning for
Manipulation Skills.” In: Robotics: Science and systems. Vol. 2016. 2016.

[125] S. Parisi, S. Ramstedt, and J. Peters. “Goal-driven dimensionality reduction for rein-
forcement learning”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2017, pp. 4634–4639.

[126] J. Kober, A. Wilhelm, E. Oztop, and J. Peters. “Reinforcement learning to adjust
parametrized motor primitives to new situations”. In: Autonomous Robots 33.4 (2012),
pp. 361–379.

[127] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras. “Learning physical
collaborative robot behaviors from human demonstrations”. In: IEEE Transactions on
Robotics 32.3 (2016), pp. 513–527.

[128] Y. Hu, G. Chen, L. Zhang, H. Su, M. Li, Y. Schmirander, H. Cao, and A. Knoll. “Fuzzy
Adaptive Control-based Real-time Obstacle Avoidance under Uncertain Perturbations”.
In: 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM).
IEEE. 2020, pp. 50–55.

[129] Z. S. Abo-Hammour, O. M. Alsmadi, S. I. Bataineh, M. A. Al-Omari, and N. Affach.
“Continuous genetic algorithms for collision-free cartesian path planning of robot
manipulators”. In: International Journal of Advanced Robotic Systems 8.6 (2011), p. 74.

[130] M. Duguleana, F. G. Barbuceanu, A. Teirelbar, and G. Mogan. “Obstacle avoidance
of redundant manipulators using neural networks based reinforcement learning”. In:
Robotics and Computer-Integrated Manufacturing 28.2 (2012), pp. 132–146.

[131] J.-J. Kim and J.-J. Lee. “Trajectory optimization with particle swarm optimization for
manipulator motion planning”. In: IEEE Transactions on Industrial Informatics 11.3
(2015), pp. 620–631.

[132] Y. Hu, X. Wu, P. Geng, and Z. Li. “Evolution Strategies Learning With Variable
Impedance Control for Grasping Under Uncertainty”. In: IEEE Transactions on In-
dustrial Electronics 66.10 (2018), pp. 7788–7799.



118 Bibliography

[133] R. Lioutikov, O. Kroemer, G. Maeda, and J. Peters. “Learning manipulation by sequenc-
ing motor primitives with a two-armed robot”. In: Intelligent Autonomous Systems 13.
Springer, 2016, pp. 1601–1611.

[134] C. Yang, C. Chen, W. He, R. Cui, and Z. Li. “Robot learning system based on adaptive
neural control and dynamic movement primitives”. In: IEEE transactions on neural
networks and learning systems 30.3 (2018), pp. 777–787.

[135] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. “Learning movement primitives”. In:
Robotics research. the eleventh international symposium. Springer. 2005, pp. 561–572.

[136] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal. “Movement reproduction and
obstacle avoidance with dynamic movement primitives and potential fields”. In:
Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots. 2008,
pp. 91–98.

[137] Y. Su, P. C. Muller, and C. Zheng. “Global asymptotic saturated PID control for
robot manipulators”. In: IEEE Transactions on Control systems technology 18.6 (2009),
pp. 1280–1288.

[138] Z. Li, J. Li, S. Zhao, Y. Yuan, Y. Kang, and C. P. Chen. “Adaptive neural control of a
kinematically redundant exoskeleton robot using brain–machine interfaces”. In: IEEE
transactions on neural networks and learning systems 30.12 (2018), pp. 3558–3571.

[139] T.-F. Ding, M.-F. Ge, Z.-W. Liu, Y.-W. Wang, and H. R. Karimi. “Discrete-communication-
based bipartite tracking of networked robotic systems via hierarchical hybrid control”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 67.4 (2020), pp. 1402–
1412.

[140] Z. Li, C.-Y. Su, G. Li, and H. Su. “Fuzzy approximation-based adaptive backstepping
control of an exoskeleton for human upper limbs”. In: IEEE Transactions on Fuzzy
Systems 23.3 (2014), pp. 555–566.

[141] Y. Wang, H. R. Karimi, H.-K. Lam, and H. Yan. “Fuzzy output tracking control and fil-
tering for nonlinear discrete-time descriptor systems under unreliable communication
links”. In: IEEE Transactions on Cybernetics 50.6 (2019), pp. 2369–2379.

[142] I. Petersén and O. Eeg-Olofsson. “The development of the electroencephalogram in
normal children from the age of 1 through 15 years–non-paroxysmal activity”. In:
Neuropädiatrie 2.03 (1971), pp. 247–304.

[143] M. Deng, Z. Li, Y. Kang, C. P. Chen, and X. Chu. “A learning-based hierarchical control
scheme for an exoskeleton robot in human–robot cooperative manipulation”. In: IEEE
transactions on cybernetics 50.1 (2018), pp. 112–125.

[144] O. Kroemer, S. Niekum, and G. Konidaris. “A Review of Robot Learning for Manipula-
tion: Challenges, Representations, and Algorithms.” In: J. Mach. Learn. Res. 22 (2021),
pp. 30–1.

[145] S. M. Khansari-Zadeh and A. Billard. “Learning stable nonlinear dynamical systems
with gaussian mixture models”. In: IEEE Transactions on Robotics 27.5 (2011), pp. 943–
957.

[146] Khansari-Zadeh, S Mohammad and Billard, Aude. “Learning control Lyapunov function
to ensure stability of dynamical system-based robot reaching motions”. In: Robotics
and Autonomous Systems 62.6 (2014), pp. 752–765.
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joint angle and velocity, and ẋ , x are the state variable dynamical system. . . 84

4.2 The learning process of the dynamical system and stiffness using exponential
NES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



List of Figures 123

4.3 Physical experiments are conducted using Franka Emika robot, where 1⃝ is the
expert data from human demonstrations; 2⃝ 3⃝ 4⃝ are the different running
phases at the final policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 The robot is controlled to repeat the motion 6 times from human demonstration.
The initial position of the reproduction is selected randomly and learned by
policy improvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 The learning process of the dynamical system for obstacle avoidance. The first
roll-outs collide with the bucket, the 300 roll-outs reach into the bucket but
still collide with bucket, and the 2000 roll-outs reach the goal without collision
and obtain the shortest possible path under the condition of (4.43). . . . . . . . 96

4.6 Autonomous motion planning from any initial position to goal position. . . . . 97
4.7 Autonomous motion planning from goal1 position to to goal2 position. . . . . 97
4.8 Autonomous motion planning from goal1 position to to goal3 position. . . . . 98
4.9 Cost value along the update numbers in the learning process. . . . . . . . . . . 99
4.10 Policy learning for obstacle avoidance case using exponential NES. . . . . . . . 99
4.11 The learning process of the dynamical system for stiffness learning. The first

roll-outs deviate from the original trajectories with the disturbance, while the
200 roll-outs gradually converge to the original trajectories along with the
iterations but still with a high error rate, and 1000 roll-outs coincide with the
original trajectories and adaptation towards via -points under the condition of
(4.43). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.12 The learning process of the dynamical system and stiffness using exponential
NES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.13 Policy learning for disturbance case using exponential NES. . . . . . . . . . . . . 101
4.14 Learning results at final policy using exponential NES. . . . . . . . . . . . . . . . 102





List of Tables

2.1 Average sampling parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Ct distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Experimental controller parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Explanation of the used notations shown in Fig.2.23 . . . . . . . . . . . . . . . . 41

125




	Introduction
	Motivation
	Why Optimization and Neural Network
	Why Policy Improvement in Robot Learning

	Thesis Outline and Contributions

	Hierarchical Optimization Control for Redundant Manipulator
	Optimization Control for OP-swab Robot
	Introduction
	Design of the Rigid–Flexible Coupling Robot
	Force Sensing
	Optimization Control for the 9-DOF Redundant Manipulator
	Experiments
	Summary

	Hierarchical Optimization Control for Surgical Robot
	Introduction
	Related Works
	Control Methodology
	Experimental Comparison
	Summary
	Appendix

	NRP: Hierarchical Optimization Control for Mobile Manipulator
	Introduction
	Coordinated Base-manipulator Trajectory Planning
	Optimization Problem
	Two-Timescale Neuronal Dynamics Design
	Experiment
	Summary

	Related Publication

	Imitation Learning for Manipulation
	Reinforcement Learning for Manipulation
	Introduction
	Motivation and Previous Works
	Methodology
	Experimental Demonstration
	Summary

	Fuzzy Adaptive Control and Imitation Learning for Real-time Obstacle Avoidance 
	Introduction
	Adaptive Trajectories: Goal Adaptation and Obstacle Avoidance
	Fuzzy Adaptive Control for Manipulator
	Simulation
	Summary

	Related Publication

	Robot Policy Improvement for Manipulation
	Introduction
	Related Work and Motivation
	Imitation Learning from Demonstrations
	Policy Improvement with Learning

	Learning Problem
	Nonlinear Dynamical System from Demonstration
	Parameterized Policy Learning for the Dynamical System

	Methodology for Policy Improvement
	Natural Evolution Strategies
	Fitness Shaping and Exponential Parameterization
	Exponential NES Update Rule

	Learning Variable Impedance Control of Stable Dynamical System
	Shaping with Stable Exploration
	Variable Impedance Control Learning Policy

	Experimental Demonstration
	Autonomous Motion Planning
	Motion Learning with Obstacle Avoidance
	Learning Stiffness of Variable Impedance Control
	Analysis

	Summary
	Related Publication

	Conclusion
	Summary
	Primary Contributions of the Thesis
	Shortcomings
	Future Work

	Bibliography
	List of Figures
	List of Tables

