
R E S E AR CH AR T I C L E - F UNDAMENTA L

Validation and parameter optimization of a hybrid
embedded/homogenized solid tumor perfusion model

Johannes Kremheller1 | Sebastian Brandstaeter1 | Bernhard A. Schrefler2,3 |

Wolfgang A. Wall1

1Institute for Computational Mechanics,
Technical University of Munich,
München, Germany
2Institute for Advanced Study, Technical
University of Munich, München,
Germany
3Department of Civil, Environmental and
Architectural Engineering, University of
Padova, Padova, Italy

Correspondence
Johannes Kremheller, Institute for
Computational Mechanics, Technical
University of Munich, Boltzmannstrasse
15, D-85748 Garching b. München,
Germany.
Email: kremheller@lnm.mw.tum.de

Funding information
National Cancer Institute, Grant/Award
Number: U54CA210181; TÜV SÜD
Foundation

Abstract

The goal of this paper is to investigate the validity of a hybrid embedded/homoge-

nized in-silico approach for modeling perfusion through solid tumors. The ratio-

nale behind this novel idea is that only the larger blood vessels have to be

explicitly resolved while the smaller scales of the vasculature are homogenized.

As opposed to typical discrete or fully resolved 1D–3D models, the required data

can be obtained with in-vivo imaging techniques since the morphology of the

smaller vessels is not necessary. By contrast, the larger vessels, whose topology

and structure is attainable noninvasively, are resolved and embedded as one-

dimensional inclusions into the three-dimensional tissue domain which is

modeled as a porous medium. A sound mortar-type formulation is employed to

couple the two representations of the vasculature. We validate the hybrid model

and optimize its parameters by comparing its results to a corresponding fully

resolved model based on several well-defined metrics. These tests are performed

on a complex data set of three different tumor types with heterogeneous vascular

architectures. The correspondence of the hybrid model in terms of mean represen-

tative elementary volume blood and interstitial fluid pressures is excellent with

relative errors of less than 4%. Larger, but less important and explicable errors are

present in terms of blood flow in the smaller, homogenized vessels. We finally dis-

cuss and demonstrate how the hybrid model can be further improved to apply it

for studies on tumor perfusion and the efficacy of drug delivery.
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1 | INTRODUCTION

Mathematical modeling of blood flow and mass transport is of increasing importance to study a number of highly rele-
vant biomedical questions in health and disease. Computational tools offer the possibility to gain new insight into phys-
iologically relevant processes such as the transport of nutrients, oxygen or drugs across the vascular system and inside
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the tissue microenvironment. These methods can ultimately lead to a new rationale for developing and noninvasive
testing of novel therapies.1 Concurrently, such in-silico models will make the design of drugs both cheaper and faster.

In this paper, we are concerned with the simulation of blood flow and tissue perfusion at the scale of the microcir-
culation with a special focus on solid tumors where transport processes can be decisive for disease progression and
treatment efficacy. This includes, first, the vasculature, which is embedded in the surrounding tissue, second, passage
across the blood vessel walls into the surrounding extravascular space and, third, flow of the fluid filling this space,
namely the interstitial fluid (IF). Subsequently, we will distinguish between three different modeling strategies for these
transport processes, namely discrete, continuum and hybrid approaches. All strategies have been developed and
implemented in the context of our vascular multiphase tumor growth model.2,3 For the discrete or fully resolving vari-
ant, we follow a common modeling approach, where the vasculature is represented by a network of one-dimensional
blood vessel segments embedded in the encompassing three-dimensional tissue domain which is modeled as a porous
medium. A 1D partial differential equation (PDE) is employed to model mass transport in the vasculature while a
corresponding 3D PDE governs the surrounding IF. Both domains are coupled via source terms which account for the
exchange across the blood vessel wall. Such models are well-studied and first contributions include the so-called embed-
ded multiscale method developed by D'Angelo and Quarteroni4-6 and the Green's function method of Secomb et al.7,8

More recent approaches with such a philosophy include drug delivery,9,10 hyperthermia treatment11,12 and a combina-
tion of a numerical framework with optical imaging to predict fluid and species mass transport through whole tumors
with heterogenous blood vessel architecture.13,14 These approaches are commonly termed discrete models in distinction
from continuum models which involve a homogenization procedure. Thereby, the vasculature is approximated as a
homogeneous porous medium resulting in two distinct pore spaces which are the aforementioned interstitium and the
homogenized vasculature. Flow in both domains is modeled via the Darcy equation and suitable exchange terms are
defined.2,15-20

These two distinct approaches have different use cases: Discrete models can and should be applied when the entire
structure of the vasculature including the smallest scales, that is, the capillaries, is known and its resolution is needed
for the question at hand. This is usually restricted to small domain sizes of an order of several mm3. By contrast, contin-
uum models are used to simulate mass transport at larger scales, for example, through whole organs. Both approaches
have advantages and disadvantages: On the one hand, the computational cost of continuum models is usually smaller
than for discrete ones which makes the application to larger domains possible in the first place. On the other hand, the
information about the exact morphology of the vascular network is lost such that blood flow can only be described in
an averaged sense. Discrete models, however, are computationally more expensive. Furthermore, they require the full
structure of the part of the vasculature under consideration. This is usually realized via a graph whose edges are
assigned the radius of the blood vessel segments between nodes. Such high-resolution data including blood vessel radii,
connectivity and positions can at present only be acquired through ex-vivo imaging.21 In addition, the acquisition of
high-quality data is still challenging and error-prone especially on the finest scales.22 By contrast, in-vivo imaging is cur-
rently only possible for larger vessels and flow therein.21,23 Therefore, discrete models rely on data which is not avail-
able via noninvasive imaging. An additional difficulty is the assignment of blood pressure or flow boundary conditions,
which can only be estimated for large networks.14,24 In any case, validation of these models is usually only performed
on macroscopic quantities such as tissue perfusion13 since measuring flow or pressures inside single micro-vessels is
not possible.14

This has motivated the development of hybrid methods, which are especially suited for cases where the full vascular
morphology is unknown or too large to be modeled with a discrete approach. The idea behind them is to explicitly
resolve the larger vessels through a discrete model and to use a homogenized approach for the capillary bed. Next to
our own work,3 such hybrid approaches have also been developed by Vidotto et al,25 Shipley et al21 and Kojic et al.26

Compared to pure homogenized formulations, their advantage is that the structure of the larger vessels is retained and,
therefore, the heterogeneity of blood flow and pressure in the major vessel branches is better represented. Moreover,
compared to discrete models, less anatomic data is needed since the morphology of the smallest vessels is not required.
This could also have the additional advantage of a smaller computational cost and make them applicable to larger
domains. Also quantities typically needed for validation such as tissue perfusion, blood flow or pressures at the resolu-
tion of current imaging techniques can equally be acquired from hybrid models. A related approach, where no homoge-
nization of the capillaries is needed, is to generate a discrete surrogate network of the smaller scales based on the
oxygen demand of the tissue.22

We have previously incorporated a hybrid method for coupling discrete, one-dimensional blood vessels with a
homogenized representation of the vasculature3 into our vascular multiphase tumor growth model.2 Therein, we
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couple a discrete representation of the pre-existing vasculature with a homogenized representation of the neo-
vasculature which is formed during angiogenesis. For that, we employ constraint enforcement strategies which are
well-known from solid mechanics. In our previous paper, the main focus was on modeling vascular tumor growth.
In this contribution, we validate the applicability of the hybrid embedded/homogenized approach for the study of
perfusion through solid tumors. Here, accurate models of fluid mass transport are of high relevance since efficient
drug delivery to cancerous tissue relies on the fact that the drug reaches a large fraction of the tumor cells. There-
fore, physiological characteristics such as microvascular flow, the structure of the extracellular matrix or the IF pres-
sure profile may influence the transport of drugs through tumor tissue and, hence, ultimately the success of
treatment.1 For instance, increased interstitial pressure due to highly permeable vessels and inefficient lymphatic
drainage has been identified as an obstacle for successful drug delivery.27-29 Novel nanoparticle-based therapies aim
to exploit these properties of the tumor vasculature for more specific targeting of tumor sites.30 Appropriate models
of these transport phenomena can provide additional insight into and guidelines for drug design. In the context of
cancer, this paradigm shift is described by the concept of transport oncophysics with the objective to engineer drugs
with optimized transport properties.31,32

Sound computational models are required to achieve this goal. We therefore took great care in the development of
our hybrid model, that is, both in the theoretical basis and its implementation. In this paper, the main focus is on the
validation of our hybrid embedded/homogenized scheme with three complex tumor-specific vascular networks based
on large tissue samples containing more than 100,000 blood vessels.13,14 We put a special emphasis on the extraction of
the larger vessels from the fully resolved network data such that it qualitatively matches the topology and distribution
of larger vascular structures inside tumors available via in-vivo imaging. Thus, we make sure that the hybrid approach
is investigated for cases which closely resemble real-life scenarios where the structure of the considered part of the
microcirculation is not entirely known. Here, the complete topology of the vasculature in the given tissue domain is
available which allows us to generate reference solutions with a fully resolved model and to quantify the error intro-
duced by the homogenization in the hybrid model. We evaluate the error by means of several well-defined metrics
involving the agreement of pressures and flow between the two models. Concurrently, the parameters of the hybrid
model are identified such that the correspondence of the models is maximized. Evaluating the error of the hybrid model
in comparison to a fully resolved one is a first and indispensable step toward realistic hybrid models of tumor perfusion
relying only on noninvasively available physiological data. For a full validation and parameter optimization, similar
methods as applied herein need to be combined with advanced in-vivo imaging techniques. The comparison of two
purely numerical approaches and the inverse identification of the optimal parameters allows us to investigate the
hybrid model in a controlled environment unaffected by any further influences such as uncertainties in experimental
or clinical data.

The remainder of this work is structured as follows: We introduce both the hybrid and the fully resolved model in
section 2. The employed tumor vasculature data sets as well as the setup of the models including the assignment of
boundary conditions and the extraction of the hybrid model from the fully resolved one are described in section 3.
Numerical experiments to compare the accuracy of the hybrid model w.r.t. the full model and to evaluate its main
errors are conducted in section 4. We illustrate some possible improvements of the hybrid model in section 5 before
summarizing our findings in section 6.

2 | MATHEMATICAL MODELS AND NUMERICAL METHODS

In this section, we describe the mathematical models we employ to solve the interaction between microcirculation and
interstitial tissue perfusion including their main simplifications. We outline both our fully resolved and our hybrid
approach and their discretization by means of the finite element method (FEM).

2.1 | Problem setting

As in other publications,3-14 topology and structure of the microcirculation is described by a graph with straight edges,
that is, blood vessel segments. The segments connect the nodes of the network. A radius Rk is assigned to each segment
Λk. Available experimental data including the one employed here is also commonly provided in this format. Therefore,
the vascular domain is given as the union of straight cylinders which are embedded in the three-dimensional tissue
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domain Ω, see also Figure 1A. Based on the flow physics and the quantities of interest, it is obvious to employ a one-
dimensional blood flow model for this part of the vascular system. In the following, we will denote the 1D embedded
blood vessel network with Λ. Similar to Vidotto et al,25 we further divide it into two subsets ΛL and ΛS which corre-
spond to the larger and smaller vessels in the network such that

ΛL ≔ [
k � IL

Λk, ΛS ≔ [
k � IS

Λk and Λ¼ΛL [ ΛS ð1Þ

with the index sets of large and small blood vessel segments IL and IS, respectively. We will show in detail how this parti-
tion is realized in section 3.3. Whereas the larger vessels are kept in the hybrid model, the smaller scale vessels are rep-
laced by an appropriate homogenized representation as a porous network occupying the domain Ωv �Ω, cf. Figure 1B.

2.2 | Fully resolved 1D-3D model

Gravity, inertial effects and the pulsatility of blood flow are neglected which are valid assumptions since we deal with
microcirculatory flow. The balance of mass in the 1D vasculature domain Λ is then given by the following equation

� ∂

∂s
πR4

8μv̂
∂pv̂

∂s

� �
¼� M

υ̂!l

leak

ρv̂
on Λ, ð2Þ

where we have applied the Hagen–Poiseuille law for flow in cylindrical pipes and assumed constant blood density ρv̂.
Here and in the following, quantities defined on the 1D vasculature domain are denoted by superscript v̂. In the previ-
ous equation, R is the blood vessel radius, pv̂ the pressure inside the vasculature, μv̂ the blood viscosity and s the
arc length coordinate along the 1D blood vessel segment. To account for the non-Newtonian behavior of blood,
we employ the algebraic relationship developed by Pries and Secomb33 for in-vivo blood viscosity depending on
blood vessel diameter and hematocrit. As in Reference 14, we fix the hematocrit to 0:45, thus, the blood
viscosity μv̂ in each individual blood vessel segment depends only on its diameter. Finally, the right-hand-side term

M
υ̂!l

leak ¼ ρl �2πR �Lp,̂v � pv̂�pl�σ πb�πl
� �� � ð3Þ

is employed to model leakage of fluid across the blood vessel wall into the interstitium. For that, we use Starling's law
with hydraulic conductance Lp,̂v, density of blood plasma ρl, oncotic reflection coefficient σ and the oncotic pressures of

FIGURE 1 Notation for domains and boundaries
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blood πb and the interstitial fluid (IF) πl. In summary, the transvascular flux from the vascular network into the intersti-
tial fluid is proportional to the pressure difference between vasculature and IF whose pressure in (3) is denoted as pl. It
has long been known that blood vessels inside tumors are leakier than normal ones which, in combination with a non-
functional lymphatic system, leads to increased interstitial pressure inside solid tumors and, concurrently, resistance to
efficient drug delivery.27-29 Note that our data sets are whole-tumor blood vessel networks where also larger vessels are
leaky13,14 which is why we apply the transvascular exchange term (3) also on the subset of larger vessels ΛL.

As in related works, the tissue domain Ω is modeled as a porous medium. Therefore, flow in the interstitial fluid is
accounted for by the following Darcy equation

�= � kl

μl
=pl

� �
¼ δΛ � M

υ̂!l

leak

ρl
in Ω ð4Þ

with (isotropic) permeability kl ¼ kl � I and IF viscosity μl. Hence, the primary variable for fluid flow through the tissue
is the IF pressure pl. The right hand side represents the counterpart of the leakage of fluid from the vasculature into the
IF from (2). As proposed by D'Angelo and Quarteroni4-6 this mass transfer term is concentrated as a Dirac measure δΛ
along the centerline Λ of the vasculature resulting in a 1D-3D coupled problem. The mathematical properties including
reduced convergence rates due to the introduced singular line source in the 3D pressure field are extensively studied in.5,6,34

Alternative 2D-3D coupled approaches, where the mass exchange is evaluated at the lateral surfaces of the cylindrical blood
vessel segments, have been proposed to increase the regularity of the solution.22,35 However, in our data sets the diameter D
is smaller than the element size h in the 3D domain, see also Table 1. Therefore, we modify the approach of Reference
5 and 6. which would involve taking the average value pl of the pressure in the IF at the outer surface of the cylindrical
vessels in the exchange term (3), and instead take the IF pressure value at the centerline Λ, which is a reasonable
approach for the case h>D.3,4 This has recently also been investigated in the analogous solid mechanics problem of
embedding thin 1D structures, that is, beams, into 3D solid volumes.36 The weak form of the 1D-3D coupled problem
may be written as

∂δpυ̂

∂s ,
πR4

8μυ̂
∂pυ̂

∂s

� �
Λ
þ δpυ̂, M

υ̂!l

leak
ρυ̂

� �
Λ
¼ 0 5að Þ

=δpl, k
l

μl=p
l

� �
Ω
� δpl, M

υ̂!l

leak
ρl

� �
Λ
¼ 0 5bð Þ

8>>><>>>:
with test functions δpv̂ defined on the 1D domain and δpl defined on the 3D domain. Our approach allows for non-
matching 1D discretizations Λh and 3D discretizations Ωh such that the two domains can be meshed independently of
each other. This requires the numerical integration of products of 1D shape functions with 3D shape functions and
products of 3D shape functions with 3D shape functions along the one-dimensional discretization Λh which we realize
via a segment-based line integration approach3,36 to avoid integration over kinks of shape functions, see Appendix
A. After space discretization, the nodal primary variables of both domains are

pv̂ �ℝnnodes,Λ and pl �ℝnnodes,Ω , ð6Þ

that is, the nodal blood pressure in the discretized 1D domain and the nodal IF pressure in the discretized 3D domain,
which consist of nnodes,Λ and nnodes,Ω, respectively. Details on the employed boundary conditions are given in
section 3.2.1.

Finally, we arrive at the global system of equations, which may be written as a 2�2 block matrix

Kv̂v̂ Gv̂l

Hlv̂ Kll

" #
pv̂

pl

" #
¼ Fv̂

Fl

" #
: ð7Þ

Herein, the main diagonal blocks Kii comprise contributions from the diffusive term and the exchange term in
(5a) and (5b) while the off-diagonal submatrices Gv̂l and Hlv̂ contain the “mixed” contributions from the exchange term.
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The right hand side terms Fi represent the constant contribution to the exchange term stemming from the oncotic pres-
sures in (3). To solve the coupled linear system (7) we employ a GMRES iterative solver in combination with the
AMG(BGS) block preconditioner presented in Verdugo and Wall.37

2.3 | Hybrid 1D-3D model

The main idea behind our hybrid 1D-3D model, based on our previous work introduced in Reference 3 in the context of
our vascular multiphase tumor growth model,2 is the following: The full resolution of the larger vessels ΛL is kept, that
is, these are still modeled as a 1D embedded vasculature. Consequently, the hierarchy, topology and vascular properties
such as individual blood vessel radii and viscosities of each segment are retained, see also Figure 1B. The smaller vessels
ΛS, for which this high-resolution data might either not be available through noninvasive imaging techniques or sus-
ceptible to errors, are instead represented as an additional porous network. This results in a double-porosity formula-
tion where the first porous network is, as before, the interstitial space and the second one the smaller vessels occupying
the domain Ωv. In the following, we will present the governing equations and the space discretization of this
formulation.

As stated above, the model for the larger vessels does not change. Therefore, the mass balance equation inside the
large vessels is given by

� ∂

∂s
πR4

8μv̂
∂pv̂

∂s

� �
¼�M

v̂!l

leak

ρv̂
on ΛL ð8Þ

with the only difference to (2) being that it holds only on the subset ΛL �Λ of bigger vessels. The mass balance equation
for the smaller vessels ΛS is replaced by a homogenized Darcy equation in the vascular domain Ωv, which we formu-
late as

�= � kv

μv
=pv

� �
¼�M

v!l

leak

ρv
in Ωv: ð9Þ

The unknown in this equation is the blood pressure pv in the homogenized part of the vasculature which is now
defined in the entire 3D domain Ωv, thereby replacing the blood pressure of the smaller vessels in the 1D domain ΛS as
the variable governing flow inside the smaller vessels. For simplicity, in a first step we consider an isotropic permeabil-
ity tensor kv ¼ kv � I for the additional porous network. This permeability and the averaged blood viscosity μv are the
two model parameters governing this equation together with the right hand side term

M
v!l

leak ¼ ρl �Lp,v S=Vð ÞΛS
� pv�pl�σ πb�πl

� �� �
in Ωv

0 in ΩnΩv

(
: ð10Þ

This term replaces the outflow of fluid from the smaller vessels into the IF by a homogenized representation of the
Starling Equation (3) involving the surface-to-volume ratio of the smaller blood vessels S=Vð ÞΛS

as an additional param-
eter. The mass balance equation of the IF for the fully resolved model (4) is adapted as

�= � kl

μl
=pl

� �
¼ 1
ρl

δΛL � M
v̂!l

leak þ M
v!l

leak

� �
in Ω ð11Þ

in the homogenized formulation. Comparing the two equations, it is obvious that leakage from the large vessels is still
treated equivalently, that is, the large vessels are still embedded as 1D inclusions in the tissue with a Dirac measure
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(now defined only on ΛL). By contrast, leakage from the smaller blood vessels is replaced by the homogenized mass
transfer term (10) from the vascular domain Ωv into the interstitium, that is, from (9) into (11).

So far, this procedure is analogous to other hybrid approaches.21,25 The main difference to our methodology lies in
the coupling between the larger vessels ΛL and the homogenized vasculature Ωv. In the aforementioned publications,
this was realized at the free ends of the larger vessels, that is, as an outflow at the tips of the 1D discretization into
the homogenized 3D vasculature domain. This was possible since the employed data sets had a clear vascular hier-
archy with larger arterioles and venules connected to smaller capillaries. Our vascular networks, which we will
describe in detail in section 3.1, have been segmented from solid tumors and, therefore, have a much more com-
plex, disorganized structure including variable vessel lengths and diameters as well as dead ends. All this is typical
for tumor-specific vasculature.38,39 As shown in detail in section 3.3 for our data and the employed methodology
to distinguish between large, flow-carrying vessels and smaller ones, another approach is more sensible: We
enforce the coupling between larger vessels and the homogenized vasculature along the entire 1D representation
of larger vessels ΛL with a line-based coupling instead of a point-based coupling at the tips of the larger vessels flowing
into the capillary bed as described before. Compared to these hybrid approaches, our proposed method has the advan-
tage that no additional parameter—apart from the penalty parameter—is involved for the coupling of the two
representations.

For that, we formulate a constraint of equal pressures in ΛL and Ωv as

g¼ pv̂�pv¼ 0 on ΛL, ð12Þ

which enforces a coupling between pressures pv̂ in the one-dimensional, large vessel domain ΛL and homogenized pres-
sures pv in the 3D domain Ωv. We aim to reproduce the fact that the pressure in a smaller vessel branching from a
larger vessel at a specific node is equal to the pressure at the same node. If this smaller vessel is homogenized and, thus,
removed from the 1D representation, we want to enforce these equal pressures between the resolved part and the
homogenized part of the vasculature along the 1D vessel domain ΛL. In section 3.3, we justify formulating this con-
straint along the entire 1D domain ΛL considering the connectivity between larger and smaller vessels in our cases. We
have previously employed a similar strategy in our hybrid treatment of the vasculature in a multiphase tumor growth
model3 and the related solid mechanics problem of beam-to-solid mesh tying.36 We follow the same approach as in the
two aforementioned publications and incorporate the constraint with an additional Lagrange multiplier (LM) field into
the weak form of our hybrid model, which reads as

∂δpv̂

∂s ,
πR4

8μv̂
∂pv̂

∂s

� �
ΛL

þ δpv̂, M
v̂!l

leak
ρυ̂

� �
ΛL

þ δpv̂,λ
� �

ΛL
¼ 0 13að Þ

=δpv, k
v

μu=p
v

� �
Ωv

þ δpv, M
v!l

leak
ρv

� �
Ωv

� δpv,λð ÞΛL
¼ 0 13bð Þ

=δpl, k
l

μl=p
l

� �
ΛL

� δpl, M
v̂!l

leak
ρl

� �
ΛL

� δpl, M
v!l

leak
ρl

� �
Ωv

¼ 0 13cð Þ

δλ, pv̂�pv
� �� �

ΛL
¼ 0 13dð Þ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Therein, the first line is the weak form of flow in the larger vessels (8) which is coupled to the weak form of

flow in the homogenized vasculature domain, that is, the second line (13b) with a continuous LM field λ defined
along the blood vessel center line. The third line is the weak form of flow in the IF. Compared to the fully resolved
model, conf. Equation (5b), the additional mass transfer term arises due to leakage from the homogenized part of the
vasculature into the IF. The fourth line represents the variational form of the coupling constraint (12). Conveniently,
the LM field employed to enforce this constraint can then be interpreted as a mass transfer term from the 1D resolved

bigger vessels into the 3D homogenized vasculature, that is, λ¼M
v̂!v

. Alternatively, a Gauss-point-to-segment scheme
could also be employed but suffers from overconstraining of the system for large penalty parameters.3,36 Spatial
discretization of the weak form (13a)-(13d) leads to a saddle-point problem with nodal primary variables

KREMHELLER ET AL. 7 of 33



pv̂ �ℝnnodes,ΛL ,λ�ℝnnodes,ΛL ,pl �ℝnnodes,Ω and pv �ℝnnodes,Ωv , ð14Þ

that is, nodal pressures and nodal LMs in ΛL,h, nodal IF pressures in Ωh and nodal blood pressures of the homogenized
vasculature in Ωv,h. In the following, we will specifically focus on the discretization of the terms arising due to
the LM method. Approximating those contributions with a finite element interpolation yields a mortar-type formulation
where the nodal LMs are additional degrees of freedom, condensed out with a dual approach40,41 or a penalty regulariza-
tion of the mortar method is employed to remove the additional degrees of freedom and the saddle-point structure.42

Here, we follow the latter approach just as in our previous work on 1D-3D type couplings.3,36 The contributions to the
weak form of the mass balance equations, that is, the two last terms in (13a) and (13b) can be written as

δΠLM,h ¼
Xnnodes,ΛL
j¼1

Xnnodes,ΛL
k¼1

λjDjkδp
v̂
k�

Xnnodes,ΛL
j¼1

Xnnodes,Ωv
l¼1

λjMjlδp
v
l ð15Þ

with the so-called mortar matrices

D j,k½ � ¼Djk ¼
ð

ΛL,h

Φ̂jN̂k ds ð16Þ

and

M j, l½ � ¼Mjl ¼
ð

ΛL,h

Φ̂jNlds: ð17Þ

The entries of these matrices involve integrals of products of LM shape functions Φ̂j defined on the discretized 1D
domain ΛL,h with 1D shape functions N̂k and with 3D shape functions Nl defined in the 3D domain Ωv,h. Hence, these
terms are again evaluated using a segment-based approach, see Appendix A. We choose linear shape functions for both
primary variables and the LM interpolation, that is, Φ̂j ¼ N̂j. The weak form of the constraint (13d) may then be written
in discretized form as

δΠλ,h ¼ δλT Dpv̂�Mpv
� �

≕ δλTg pv̂,pv
� �

, ð18Þ

where we have defined a weighted pressure gap g at each node in ΛL,h. This gap is then further used for the penalty reg-
ularization of the mortar method to explicitly define the nodal LMs in terms of 1D and 3D nodal blood pressures as

λ¼ εκ�1g pv̂,pv
� �

: ð19Þ

Hence, the LMs are no longer independent variables in the system but depend on the primary variables pv̂ and pv.
This overcomes the two major drawbacks of the LM method, namely, the increased system size and its saddle-point
structure. Depending on the penalty parameter ε>0, the constraint g¼ 0 is relaxed and the exact solution is only recov-
ered for ε!∞. Additionally, the nodal LM in (19) has been scaled with the inverse of the diagonal matrix

κ j, j½ � ¼
ð

ΛL,h

Φ̂j ds: ð20Þ

As proposed by Yang et al42 this removes the dependency of the nodal LM on its “gap,” that is, in our case it makes
its entries independent of the element lengths associated with its corresponding node. This can now be used to replace
the LM vector such that the matrix–vector form of our hybrid model emerges as
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Kv̂v̂þ εDTκ�1D Gv̂l �εDTκ�1M

Hlv̂ Kll Jlv

�εMTκ�1D Lvl Kvvþ εMTκ�1M

264
375 pv̂

pl

pv

264
375¼

Fv̂

Fl

Fv

264
375: ð21Þ

As in the fully resolved model (7), main diagonal blocks are denoted as Kii and the coupling blocks Gv̂l and Hlv̂ stem
again from the transvascular 1D-3D exchange term. Additionally, the coupling blocks Jlv and Lvl account for exchange
between homogenized vasculature and IF. The terms involving the mortar matrices D, M and κ couple blood flow in
the larger vessels with the homogenized vasculature using our mortar penalty approach. Obviously, the LMs are no lon-
ger part of the system which is, consequently, not of saddle-point type anymore. The drawback, however, is that the
choice of the penalty parameter influences the accuracy with which the constraint is fulfilled. Large penalty parameters
yield better accuracy in terms of constraint fulfillment but can lead to an ill-conditioning of the system matrix. We will
comment on the choice of the penalty parameter in Remark 4.

Remark 1. The concrete implementation of the hybrid model is slightly different than described here for illustrative
purposes. The equations for IF flow and blood flow are evaluated simultaneously on the 3D domain and not assembled
into two separate block matrices as written in (21). This means that the degrees of freedom are actually re-ordered in a
node-wise manner compared to (21) such that one row corresponding to the nodal IF pressure at a node j is followed
by a row corresponding to the homogenized blood pressure at this node j. Therefore, we actually solve a system which
is blocked with 2�2 submatrices, where the upper part corresponds to the resolved part of the vasculature and the
lower part to the IF and the homogenized vasculature. For this system, we again employ the AMG(BGS)
preconditioner37 with the GMRES iterative solver.

3 | SETUP OF COMPUTATIONAL MODELS

This section describes the setup of our fully resolved and of our hybrid model. We first analyze the real-world tumor
data sets which we will employ for all our numerical tests. Subsequently, the assignment of boundary conditions in
both models is described. Then, we illustrate how we create the hybrid model with homogenized vasculature starting
from the full topology of the vascular networks. Finally, the definition of representative elementary volumes (REVs) for
homogenization is introduced.

TABLE 1 Details on tumor vasculature data sets and discretization

LS174T GL261 SW1222 Unit

No. of segments (elements) of 1D network 186092 120340 419198 �
No. of nodes of 1D network 178592 110062 385218 �
Tumor volume 190:5 24:6 235:5 mm3

Tumor dimensions 4.46 � 7.59 � 10.88 2.35 � 4.57 � 5.32 6.44 � 8.07 � 11.08 mm�mm�mm

Blood vessel volume fraction 1:13 4:01 14:90 %

Blood vessel surface-to-volume ratio 1.85 � 10�3 6.93 � 10�3 7.43 � 10�3 μm�1

Mean blood vessel diameter � SD 22:0�7:2 17:6�10:0 44:6�39:2 μm

Mean blood vessel segment length � SD 27:2�6:8 25:4�7:7 28:7�9:2 μm

No. of boundary nodes of 1D network on tumor hull 1559 2419 1933 �
No. of boundary nodes of 1D network inside domain 1855 6599 13772 �
No. of elements of 3D domain 15955142 15141173 13231813 �
No. of nodes of 3D domain 2660273 2524666 2207655 �
Mean element size in Ωv 76:4 39:7 78:1 μm

Edge length of REV 1250 750 1500 μm

Abbreviation: REV, representative elementary volume.
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3.1 | Analysis of real-world tumor data sets

We have obtained three different vasculature data sets from REANIMATE,13,14 which is a framework combining math-
ematical modeling with high-resolution imaging data to predict transport through tumors. We only briefly describe the
experimental procedure here. More details are given in the two aforementioned papers. Two different colorectal cell
lines, namely SW1222, LS174T, and one glioma cell line, GL261, were grown subcutaneously for 10–14 days in mice,
resected and optically cleared, and finally imaged using optical projection tomography. The data was then segmented to
obtain the complete blood vessel networks inside the tumors in the graph format as discussed before.

The topologies and blood vessel radii of the three distinct cases are illustrated in Figure 2 together with represen-
tative results of blood vessel and IF pressure of the fully resolved model. Further network data has been collected in
Table 1: All three networks contain more than 100,000 blood vessel segments and nodes. The SW1222 case is the big-
gest tumor both in network size and tissue volume. The latter has been calculated by approximating the hull of the
tumor using the alphaShape function of Matlab (MathWorks Inc., Natick, MA).43 The hull is then smoothed,
remeshed using Gmsh (version 4.4.1)44 and slightly enlarged to encompass all vasculature nodes. Its enclosed region
is integrated to give the tumor volume, see also Figure 3 for the SW1222 tumor. Note that this tumor domain corre-
sponds to the domain Ωv on which the additional porous network of smaller vessels is present in the hybrid model
and where its additional governing Equation (9) is defined and solved. Furthermore, all topologies are rotated such
that their principal axes align with the coordinate axes. The three different cases show distinct vascular architectures,
for instance, the SW1222 network is much denser with a higher blood vessel volume fraction and blood vessel surface-
to-volume ratio than the two other types. In addition, its blood vessel diameters are generally larger and have a
much higher variability. Finally, we have analyzed the boundary nodes, that is, the tips which are only connected to
one other node. All topologies have a comparable number of boundary nodes lying on the aforementioned enclosing
alpha shape whereas the GL261 and SW1222 tumors have a much higher number of tips inside the domain than the
LS174T tumor.

3.2 | Assignment of boundary conditions

The assignment of physiologically reasonable boundary conditions on large vascular networks is quite challenging since
flows or pressures cannot be measured on the level of individual micro-vessels. Sweeney et al14 developed an algo-
rithm45 to apply boundary conditions which match in-vivo measurements of perfusion for the present data set. We will
re-use this framework here to generate the boundary conditions for the fully resolved case and briefly describe it in sec-
tion 3.2.1. Boundary conditions for the hybrid model are detailed in section 3.2.2.

3.2.1 | Fully resolved model

For the fully resolved model, boundary conditions for the blood pressure pv̂ in the 1D network and the IF pressure pl

need to be assigned. For the blood vessel pressure, we re-use the approach of Sweeney et al, which has been made pub-
licly available45 and is based on earlier work by Fry et al.24 Thereby, boundary conditions are assigned on the tips of the
network, that is, on the boundary nodes of the 1D representation of the vasculature both on the tumor hull and inside
the tumor as given in Table 1. The following algorithm is applied: First, a high or low pressure of 5999:4 Pa or 1999:8
Pa (corresponding to 45 mmHg or 15 mmHg) is randomly applied to the boundary points on the tumor surface until 5%
of all end points of the 1D network have been assigned such a high/low pressure. Additionally, the method prevents
that points which are in close proximity to each other are assigned the far apart pressure values which would produce
unphysiologically large flows. Second, a no-flux boundary condition is randomly assigned to the interior boundary
nodes until 33% of all boundary nodes have this condition. This value is consistent with the fraction of dead ends in
tumor vasculature estimated from experimental studies.46 Third, the remaining 62% of boundary nodes are given as
unknowns to the flow optimization scheme of Fry et al.24 This scheme aims at solving a constrained optimization prob-
lem for incomplete pressure boundary data by minimizing the error of pressures and wall shear stress w.r.t. pre-defined
target values. D'Esposito et al13 and Sweeney et al14 have shown that this procedure for assignment of boundary condi-
tions ensures that tumor perfusion is in good agreement with experimental data. Note that the entire algorithm is not
deterministic due to the random selection of nodes for high/low boundary conditions on the external surface of the
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tumor and of nodes for no-flux boundary condition in its interior. Therefore, the analyses in the following sections will
be performed on five different sets of pressure boundary conditions on the 1D network per tumor case.

Concerning the IF pressure, we want to prescribe the far-field pressure for the IF as pl∞ ¼ 0 Pa following Sweeney
et al.14 In order to achieve this within our finite element approach, we enlarge the domain Ω radially to a sphere of
radius 80 mm as shown in Figure 3 for the SW1222 case. This allows us to set a Dirichlet boundary condition of pl ¼ 0
Pa on its boundary ∂Ω and, thereby, to mock the far-field pressure. We validated this approach in the following way for
all three vascular networks: We solved the fully resolved model and compared the IF pressure solution (for one specific
set of pressure boundary conditions on the 1D network) with a case where the domain was only enlarged to a sphere
with radius 40 mm (with corresponding zero IF pressure Dirichlet boundary condition on its outer surface). No visible

FIGURE 2 Full topology and structure of the vascular networks (left, color-coded by the respective radii), representative results for

simulated blood pressures (middle) and IF pressures (right) in the fully resolved model (same spatial scale is used for all three cases)
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differences in the IF pressure distribution in our domain of interest inside and around the tumor domain could be
detected. This indicates that the enlargement is big enough insofar as the solution in the domain of interest is not
influenced by the size of the enlargement any more. We can also gradually coarsen the mesh when moving away fur-
ther from the vascular domain as depicted in Figure 3 since the IF pressure gradient flattens and tends to zero further
away from the center of the domain. This enables the use of a sufficiently fine mesh for the region surrounding the
embedded vascular network while the computational cost for extending the domain is not too high.

3.2.2 | Hybrid model

In addition to boundary conditions for the IF pressure pl and the blood pressure pv̂, the hybrid model requires boundary
conditions for the pressure in the homogenized vasculature pv. The IF pressure is treated as in the fully resolved model
and we set it to zero at the boundary of the domain ∂Ω. In the following, we will always compare the accuracy of the
hybrid variant w.r.t. the fully resolved one for one specific set of pressure boundary conditions on the 1D network
obtained with the procedure described in the previous section. Thus, to perform this comparison the pressure boundary
conditions on the 1D network are transferred from the fully resolved model to the hybrid model in the following man-
ner: The boundary conditions of blood pressure pv̂ on the larger vessels ΛL can directly be taken from the boundary
conditions of the fully resolved model. If a node with a Dirichlet boundary condition in the fully resolved vasculature Λ
is part of the larger vessels ΛL we simply keep this boundary condition on the 1D discretization also in the hybrid
model. Dirichlet boundary conditions on the smaller vessels ΛS cannot be assigned on the 1D discretization since
smaller vessels are homogenized. However, we can employ them to assign boundary conditions for pv on the boundary
of the domain of homogenized vessels ∂Ωv as depicted in Figures 1B and 3. Similar to Vidotto et al,25 we smooth these
values to account for the homogenization of the smaller vessels: Each condition belonging to a node of the smaller ves-
sels ΛS at the tumor surface is assigned to all 3D nodes lying on the surface ∂Ωv within a distance of less than 400 μm
for the SW1222 and the LS174T tumor and less than 200 μm for the GL261 tumor. Nodes of the 3D mesh which lie
within this distance of multiple boundary nodes on ΛS are assigned the mean pressure value of all these boundary
nodes. On the rest of the surface ∂Ωv we set a no-flux boundary condition. We also do not set a boundary condition for
pv on nodes of the 3D mesh in close proximity to end nodes of the 1D network since this would mean setting different
boundary conditions on nodes whose pressures should be coupled due to the constraint on pressures pv̂ and pv and,
thus, would lead to an overconstrainment of the system. The resulting distribution of boundary conditions pv over ∂Ωv

is illustrated in Figure 4 for three exemplary cases.

FIGURE 3 Mesh of three-dimensional domain for SW1222 tumor. Tumor domain (equivalent to the domain Ωv on which the

additional porous network of smaller vessels is present in the hybrid model) is depicted in red and has been obtained as the alpha shape of

nodes of the vascular network
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3.3 | Distinction between fully resolved and hybrid model

As previously stated, we envision that our hybrid model could be applied in cases where the full structure of the vascu-
lar network is unknown such that only the topology of the larger vessels can be acquired via noninvasive imaging.
However, in our data sets we actually have the full structure available. In line with the main goals of this paper,
namely, to validate the hybrid approach, to quantify the error with respect to the fully resolved case and to determine
its optimal parameters for perfusion through solid tumors, we artificially create the hybrid model from the fully
resolved one. In the hybrid approaches of References 21 and 25, this was realized by a radius-based criterion. Their
employed data sets had a clear hierarchy typical for the microcirculation with larger arterioles branching into smaller
capillaries which in turn connect and form larger venules. Thus, it was possible to exploit the hierarchical structure of
the vasculature by keeping only the larger vessels in the set IL.

For our tumor vasculature data sets, this is not as straightforward. While there are some thicker vascular branches,
especially in the SW1222 case, no clear hierarchical vascular architecture can be extracted from the topologies in
Figure 2 with a radius-based criterion. To illustrate this fact, we compare the full architecture of the SW1222 network
with a network where only the top 10% of vessels with the largest radius are kept in Figure 5A and 5C. Many small
unconnected clusters of several blood vessel segments appear due to the heterogeneous, extremely variable distribution
of the radius and lack of vascular hierarchy. Branches connecting these clusters which have a smaller radius are
removed. Applying our or any hybrid model on this topology would not be possible as hybrid approaches also rely on a
“sensible” topology for ΛL which preserves the structure of the entire network via one or several connected subgraphs
of larger vessels which feed respectively drain the smaller, homogenized vessels. Only then, the 1D blood flow model
and corresponding boundary conditions can reasonably be applied on ΛL together with suitable exchange terms into
the smaller vessels. Thus, we instead distinguish between smaller and larger vessels based on the flow within the ves-
sels. This yields a better preservation of the network architecture for the hybrid case, see Figure 5A and 5B. Now, con-
nected subgraphs of larger vessels ΛL emerge which connect inlets and outlets of the main flow-carrying vessels with
the smaller vessels.

Hence, our strategy to obtain ΛL is as follows: We first solve the fully resolved model (using the boundary conditions
described in section 3.2.1). Then, all elements except the ones with the highest flow are deleted from the vascular graph,
for example, the top 10% with the highest flow are kept. However, there are still some very small clusters consisting of
only a few segments present in the graph. We additionally delete connected components from the graph whose overall
length is smaller than 250 μm, that is, subcomponents which are smaller than 10 segments with the average segment
lengths given in Table 1. By that, we delete an additional 0:1�0:8% of segments which are part of these smaller sub-
components. This methodology gives the set IL of larger vascular branches which are kept in the hybrid approach as
exemplarily shown in Figure 5B. Here, we show only the SW1222 case but equivalent results hold for the other two net-
work topologies. In the following, we will denote cases where the top X% of elements with highest flow are kept and
the small connected components are removed according to the procedure described above as “case X%.”

FIGURE 4 Exemplary distributions of boundary conditions for homogenized pressure pv on boundary of vascular domain ∂Ωv in the

hybrid model variant for all three cases
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Recall that the assignment of pressure boundary conditions on the fully resolved vascular network is not determinis-
tic. Moreover, different boundary conditions will produce distinct flow patterns in the vasculature and, hence, also dif-
ferent sets of large and small vessels in our procedure and a different topology for ΛL. Therefore, the following analysis
will always be performed for five sets of pressure boundary conditions on the 1D network with corresponding distinct
sets of large and small vessels IL and IS.

In Table 2, the mean diameters DΛL and DΛS of larger and smaller vessels are compared. It is obvious that the diame-
ters in the set of small vessels IS which are removed from the hybrid model are considerably smaller than the diameters
of the large vessels. This behavior is most pronounced for the SW1222 topology where for the case 5% the mean diame-
ters in ΛL are 2:5 times bigger than in ΛS. Naturally, this ratio drops for all topologies when a higher percentage of seg-
ments is kept in the large vessel set. For the LS174T and GL261 data sets the difference in blood vessel diameters is not
as large but this can be attributed to the fact that the diameters are less dispersed than in the SW1222 topology, see also
the mean and standard deviation of the diameters in Table 1. Also in these cases, the diameters in ΛL are larger by
approximately one standard deviation of the diameter of the entire vasculature (as in the SW1222 case). In summary,
our approach incorporates mainly the vessels with larger radii in the set IL whereas also some segments with smaller
radii are kept to preserve the main topology of the networks in the hybrid model. Therefore, there is also a significant
congruence of the sets of large vessels IL between different pressure boundary condition cases. For instance, in the case
where 10% of the blood vessels are kept in the hybrid model, the average percentage of identical retained segments
between two different pressure boundary condition cases is 45% for the LS174T tumor, 51% for the GL261 tumor and
78% for the SW1222 tumor. In Remark 3, we further comment on how the obtained topologies of larger vessels ΛL

relate to real in-vivo tumor imaging data.
Next, we justify our line-based coupling approach between the large vessels ΛL and the homogenized vasculature.

For that, we have analyzed the connectivity between larger and smaller vessels for the fully resolved topologies in

FIGURE 5 Extraction of large vessels ΛL from the entire network Λ—Comparison between flow-based criterion (and sorting out of

small connected components) and radius-based criterion

TABLE 2 Comparison of mean blood vessel radius in larger vessels ΛL and smaller vessels ΛS (all values indicate the mean taken over

five different sets of pressure boundary conditions on the 1D network produced by the methodology described in section 3.2.1, “case X%”
denotes the case where X% of the 1D blood vessels are retained in the hybrid approach)

Case 5% Case 10% Case 15% Case 20%

Mean diameter [μm] DΛL DΛS DΛL DΛS DΛL DΛS DΛL DΛS

SW1222 104:7 41:4 95:7 38:9 88:4 36:9 81:5 35:4

LS174T 28:7 21:7 27:6 21:5 27:0 21:2 26:5 21:0

GL261 28:6 17:1 27:4 16:6 26:5 16:1 25:7 15:7
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Table 3. Here, we denote by φ¼nnodes,ΛL \ΛS=nnodes,ΛL the proportion of nodes of the larger vessels ΛL which have a
direct connection to a node of the smaller vessels ΛS. The presented data illustrates that for the GL261 and the SW1222
tumor almost every third to every fourth node of the main branches ΛL is directly connected to a node of the smaller
blood vessel segments ΛS, that is, at every third to fourth node a smaller vessel branches away from ΛL. For the LS174T
network, the connectivity is slightly smaller. Here, only 13�18% of nodes in larger vessels are connected to smaller
vessels. In all cases, these numbers obviously again drop when keeping a larger portion of the entire network in the
set IL.

In the hybrid approach, information about these smaller branching vessels is lost since they are removed from
the 1D representation of the vasculature. As stated above, we want to enforce equal pressures between larger and
smaller vessels as this equality also holds in the fully resolved model at branching points. The high connectivity
between the two network parts supports our line-based mortar penalty coupling between the resolved and homoge-
nized part of the vasculature in which we actually couple the entire network of big vessels ΛL with the homogenized
vasculature. Of course, we know the connecting nodes between larger and smaller vessels here as we know the full
topology of all networks, so we could also enforce the coupling between resolved and homogenized part in a point-
based manner at these locations. However, in the more realistic case when only the architecture of larger vessels is
known without the exact locations where smaller vessels branch away, this is not the case. Therefore, we adopt our
line-based coupling within the hybrid model hereafter to compare the results with the fully resolved reference solution.
Note that the network tips of ΛL (both in the interior of the domain and on the tumor hull) are actually also coupled
with the homogenized vasculature since the discrete constraint of a vanishing weighted pressure gap is enforced along
the entire 1D discretization and, thus, also at the end nodes.

Finally, we analyze also the elements connecting larger and smaller vessels, that is, those 1D elements of the smaller
vessels where one node is part of ΛL and the other part of ΛS. We gather all these elements and compute their mean
diameter and mean absolute flow value. Then, we calculate the coefficient of variation of these quantities, CVD and
CV Qj j as the ratio of standard deviation of the diameter, resp. flow to its mean in these connectivity elements. The
results are collected in Table 3. Obviously, the SW1222 case shows the highest variability in both flow and diameter
followed by the GL261 and the LS174T case. For all cases, the variability of the flow is larger than for the diameter since
the volumetric flow in a segment depends on the fourth power of the diameter due to the employed Hagen–Poiseuille
relationship. These results are consistent with the topology of the entire network where the variability of the blood ves-
sel diameter is also larger for the SW1222 tumor than the GL261 and the LS174T tumor, see Table 1. In section 4.3, we
will show that this higher variability makes it harder to match the flow from large into small vessels between the two
models.

Remark 2. We believe that our hybrid approach is also applicable to more organized, hierarchical networks as, for
example, the topology used by Vidotto et al.25 In this publication the network was partitioned by a radius-based
threshold, see Figure 1 therein. The larger vascular structures contain very short branches going away from the main
vessels. At the tips of these short branches, the node-based coupling is performed. If one instead removed these very
short branches and left only the major, flow-carrying vessels in ΛL, a line-based coupling along these vessels could
again be implemented.

TABLE 3 Analysis of connectivity between fully resolved and homogenized part of vasculature: φ is the fraction of nodes of larger

vessels with a direct connection to smaller vessels, CVD and CV Qj j are measures of the variability of the diameter and flow, respectively, in

the segments connecting larger and smaller vessels (data includes the mean taken over five different sets of pressure boundary conditions on

the 1D network produced by the methodology described in section 3.2.1, “case X%” denotes the case where X% of the 1D blood vessels are

retained in the hybrid approach)

Case 5% Case 10% Case 15% Case 20%

φ CVD CV Qj j φ CVD CV Qj j φ CVD CV Qj j φ CVD CV Qj j

SW1222 0:29 0:39 2:40 0:28 0:45 2:14 0:26 0:50 1:77 0:24 0:55 1:53

LS174T 0:18 0:23 0:88 0:16 0:24 0:85 0:15 0:24 0:83 0:13 0:24 0:82

GL261 0:30 0:35 1:21 0:29 0:37 1:16 0:28 0:38 1:13 0:27 0:40 1:09
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3.4 | Determination of representative elementary volume size

The existence of a REV is an important concept for different homogenization procedures.47 In general, such a volume
should be big enough to smooth out fluctuations of spatial heterogeneities yet small enough to resolve the physical
effects of interest. In this section, we investigate the choice of REVs in the context of our model and the employed data
sets. Naturally, we will investigate the properties of the smaller vessels ΛS in the following since this is the part of the
vasculature which is homogenized and treated as a porous continuum in the hybrid approach. Furthermore, five differ-
ent sets of pressure boundary conditions on the 1D network are studied. This is again due to the fact that different pres-
sure boundary conditions on the 1D network will lead to different flow patterns in the vascular network and, therefore,
also different sets IL and IS of large and small vessels (potentially with a different distribution throughout the domain)
with the employed flow-based criterion.

For this purpose, we have devised the following procedure:

1. For each network topology, we create five different cases with a different set of pressure boundary conditions on the
1D network for the fully resolved model as described in section 3.2.1.

2. We partition all cases into the distinct sets of large and small vessels as described in section 3.3. We here investigate
the case 10% for all different topologies but equivalent results have been obtained for leaving the top 5%, 15%, or
20% of vessels with the largest flow in the system.

3. We select random positions in the vasculature domain Ωv in the range xminþ0:15 � lx ,xmax �0:15 � lx½ �,
yminþ0:15 � ly,ymax �0:15 � ly
� 	

and zminþ0:15 � lz,zmax �0:15 � lz½ �, where li denotes the domain lengths in the respec-
tive coordinate directions and �ð Þmin and �ð Þmax the minimum and maximum coordinate value in each direction in
Ωv. In this way, the random positions are chosen such that they do not lie too close to the boundaries of the domain.

4. For each of the random positions within the domain we define a cube with edge length
ledge ¼ 1=300 �max lx ,max ly, lz

� �� �
. The random position is chosen as the center of that cube.

5. The size of the cubes is successively increased in all coordinate directions by ledge while keeping their centers fixed.
The blood vessel volume fraction εvΛS

and the surface-to-volume ratio S=Vð ÞΛS
of smaller blood vessels ΛS is com-

puted for each cube at each size. If a cube protrudes from the domain during this enlargement, these quantities are
calculated on the intersection of the cube with the domain Ωv.

Per case with different boundary conditions this is performed for 10 randomly generated cube centers. The results
are shown in Figure 6 for only three REVs per boundary condition case, that is, in total 15 cases to not clutter the
plots. The evolution of the blood vessel volume fraction εvΛS

and of the surface-to-volume ratio S=Vð ÞΛS
of the

smaller blood vessels ΛS for increasing the edge length of the cubes is illustrated. Therein, we denote the length scale as
l¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vcube\Ωv
3
p

to account for cases when a larger cube protrudes from the domain Ωv. All three topologies exhibit simi-
lar features: εvΛS

and S=Vð ÞΛS
fluctuate strongly for smaller lengths. Then, most curves stabilize and remain almost

stationary while increasing the size of the averaging volume. Finally, for even larger volumes the curves slowly con-
verge to the values of these quantities across the entire domain. This behavior can be expected in porous media47 and
we consequently define the length of the REVs lREV at the point where the initial oscillations of too small control
volumes fade out and the values stabilize.

Splitting the domains into these REVs of equal size is not an easy task due to their irregular, elliptic shape. We first
defined a regular grid of REV centers and performed an initial Voronoi tesselation based on this grid. Due to the shape
of the domain this resulted in too small or too large REVs. Therefore, we performed an optimization of the Voronoi
tesselation where the objective function had the goal to define REVs of equal volume and equal dimensions. The
resulting REVs are visualized in Figure 7. The mean deviation of the REVs from the previously determined volume and
lengths from Figure 6 in all three coordinate directions is less than 5% for the domains of all three tumor types.

Finally, we employ these REVs to study the distribution of blood vessels inside the domain. For that, we define the
nondimensionalized radial distance of each REV erREV as the distance of the center of the REV to the center of
the domain divided by the distance of the center of the domain to the tumor hull in direction of the center of the REV.
Again, this analysis is performed for all three tumor types for five different sets of pressure boundary conditions on the
1D network since those influence the flow in the 1D vasculature and, consequently, also the composition of ΛL and ΛS

as previously mentioned. The results for the volume fraction of big vessels εvΛL
, small vessels εvΛS

and the entire vascula-
ture εvΛ are shown in Figure 8. The clearest structure is evident for the SW1222 case: toward the tumor hull, εvΛS

and εvΛL

and, thus, also the sum of the former two, εvΛ, gradually increase. Close to the center of the domain, there is still a
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significant amount of smaller blood vessels while almost no larger blood vessels are present. This is consistent with
experimental data showing higher blood vessel density and perfusion in the tumor periphery13,48 with only a few major
vessels penetrating into the center of the tumor.49 These trends are also present in the LS174T tumor, albeit, far less
pronounced than for the SW1222 tumor. By contrast, the GL261 vascular network shows a completely different behav-
ior. While the vascular density of large vessels remains almost constant over the tumor radius, the one of the smaller
blood vessels ΛS drops and, thus, also the overall volume fraction εvΛ.

Remark 3. The validity of the obtained topologies and distributions for ΛL and ΛS and the applicability of the proposed
hybrid approach is supported by state-of-the art optoacoustic in-vivo imaging techniques.23 The currently attainable spa-
tial resolution is less than 50 μm throughout the tumor domain which is in the range of the diameter of larger vessels
from Table 2. Furthermore, the larger vessels which are retained in the hybrid model are more concentrated at the
tumor periphery (at least for the SW1222 and LS174T case) and are, thus, more accessible to imaging. Qualitatively, the
topology of the larger vessels from Figure 5B is in good agreement with corresponding optoacoustic imaging data from
tumors23 where larger feeding vessels are visible at the tumor rim. From these experiments, one can extract a similar
topology of larger vessels ΛL to apply our hybrid model. A connected subgraph of larger peripheral feeder blood vessels
as in Figure 5B rather than single clusters as in Figure 5C is attainable. Hence, we conclude that the employed method-
ology of splitting into larger and smaller vessels yields a valid scenario resembling real experimental data and can,
therefore, be used to investigate our hybrid embedded/homogenized approach for solid tumor perfusion.

FIGURE 6 Determination of representative elementary volume (REV) size—evolution of blood vessel volume fraction εvΛS
and surface-

to-volume ratio S=Vð ÞΛS
of smaller blood vessels ΛS is shown for increasing possible REV sizes
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4 | NUMERICAL EXPERIMENTS

In this section, we perform several numerical experiments to evaluate the performance of the hybrid model in compari-
son to the fully resolved one. We first define a comparison metric and optimize the parameters of the hybrid model
such that the best possible correspondence between the models is achieved according to this metric. Subsequently, we
study several other quantities to compare the two models and present a further improvement of the hybrid model via a
vascular volume fraction dependent permeability for the homogenized vessels.

The tumor hull is smoothed and triangulated using Gmsh (version 4.4.1)44 and its enclosed volume is meshed with
linear tetrahedral elements using Trelis 17.0.50 An exemplary mesh for the SW1222 topology is shown in Figure 3 and
parameters of the 3D mesh are given in Table 1. Note that the 3D mesh is completely independent of the discretization
of the 1D networks, that is, the nodes of the two meshes do not match which is an advantageous feature provided by
our recently introduced hybrid approach.3 Both the fully resolved and the hybrid FEM model have been implemented
in the in-house parallel multiphysics research code BACI.51 Parameters for both models are listed in Table 4.

FIGURE 7 Representative elementary volumes of all three tumor domains

FIGURE 8 Dependency of volume fraction of big vessels ΛL, small vessels ΛS and entire vasculature Λ over nondimensionalized radial

distance from center of domain (data is taken from five different sets of 1D blood pressure boundary conditions if 10% of 1D blood vessels

are retained in hybrid model for each network structure, dashed lines indicate linear least squares fits)
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Remark 4. In preliminary simulations, we determined the proper range for the penalty parameter ε. As a compromise
between accuracy and a well-conditioned system matrix, we defined the following criterion:

δ¼ 1
nnodes,ΛL

Xnnodes,ΛL
i¼1

κ�1 i, i½ �g i½ �j j
pv̂ i½ � <1%: ð22Þ

This rule states that the mean relative pressure error δ in terms of the length-independent nodal pressure difference
vector κ�1g and the nodal pressure pv̂ in the 1D network is less than 1%. The values for all cases are given in Table 4.
Note that the penalty parameter has units of length½ �2= time �pressure½ � such that the LM field represents a 1D-3D mass
transfer term, or volumetric flow per length. This allows interpreting the penalty parameter as very large permeability
governing the mass transfer between resolved and homogenized vasculature in the hybrid model.

Remark 5. In our opinion, the main advantage of the hybrid model is not a reduction of computational cost compared
to the full model, but the fact that it relies only on data available through noninvasive imaging. Nevertheless, we also
did a first preliminary evaluation comparing the computational costs of the two models and found that the hybrid
model was not significantly faster than the fully resolved one and in some cases even slower. The effort for finding 1D-
3D elements interacting with each other, building the integration segments and evaluating the coupling terms along
the 1D vasculature is obviously smaller for the hybrid model since less 1D vessels are present. However, this is bal-
anced or even outweighed by its increased effort in several other aspects: The evaluation of the 3D elements is more
costly since two equations per node (in Ωv) have to be evaluated, the system size, which is dominated by the number of
3D nodes, and, thus, the linear solver time is increased and the condition of the system is worse compared to the fully
resolved case due to the penalty approach, which in turn raises the linear solver time. However, for all our studies we
used the same 3D meshes for both hybrid and full model. The cost for the hybrid model could be greatly reduced by
employing a coarser 3D mesh. Vidotto et al25 showed that this still gave acceptable results in terms of REV pressures
for their approach.

TABLE 4 Parameters and values

Quantity Symbol Value Unit References Eqns.

Density of blood ρbv, ρv 1060 kgm�3 52 (2), (8), (9)

Viscosity of blood μbv a Pa s 33 (2), (8)

Density of interstitial fluid and blood plasma ρl 1000 kgm�3 known (3), (4), (10), (11)

Hydraulic conductivity of interstitial fluid kl=μl 1.2782 � 10�1 μm2 Pa�1 s�1 53 (4), (11)

Hydraulic conductivity for transvascular flow L
p,bv, Lp,v 2.1 � 10�5 μmPa�1 s�1 27 (3), (10)

Oncotic reflection coefficient σ 0:82 – 14 (3), (10)

Oncotic pressure of blood πb 2666:4 Pa 14 (3), (10)

Oncotic pressure of interstitial fluid πl 1999:8 Pa 14 (3), (10)

Hydraulic conductivity of vasculature kv=μv see Table 5 μm2 Pa�1 s�1 – (10)

Surface-to-volume ratio for transvascular flow S=Vð ÞΛS
see Table 5 μm�1 – (10)

Penalty parameter ε μm2 Pa�1 s�1 Remark 4 (19)

SW1222: case 5% 400

SW1222: case 10%, 15%, 20% 100

LS174T: case 5% 100

LS174T: case 10%, 15%, 20% 50

GL261: case 5% 100

GL261: case 10%, 15%, 20% 50

aThe value for blood viscosity is calculated separately in each 1D element using the algebraic relationship of Pries and Secomb33 with hematocrit value fixed to 0:45.
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4.1 | Definition of metric for comparison of the two models

To assess the performance of the hybrid model in predicting microvascular flow and IF pressure inside solid tumors in
comparison with the fully resolved model, a suitable metric is warranted. Ideally, the hybrid model should match the
fully resolved one in terms of blood and IF pressure as well as blood and IF flow to obtain an accurate representation of
the perfusion through the tumor. Therefore, we define our metric as a combination of these quantities. The first contri-
bution is the correspondence of blood pressures in the large vessels ΛL which are present both in the fully resolved and
the hybrid model. We define the coefficient of determination R2 in terms of nodal blood pressures in the large vessels
between the two models as

R2
L ¼ 1�

Pnnodes,ΛL
i¼1 pv̂ i½ ���full� pv̂ i½ ���hyb� �2

Pnnodes,ΛL
i¼1 pv̂ i½ �jfull�μIL pv̂jfull

� �� �2 , ð23Þ

where μIL pv̂
��
full

� �
is the mean blood pressure in the large vessels of the fully resolved model. A value of R2 ¼ 1 would

mean a perfect correspondence of both models while smaller values suggest larger deviations. A negative R2 indicates
that the hybrid model performs worse than simply taking the mean value of the fully resolved model. The second con-
tribution to our metric is the correspondence of blood pressures in the small vessels ΛS between the fully resolved and
the hybrid model, which we calculate as

R2
S ¼ 1�

Pnnodes,ΛS
i¼1 pv̂ i½ ���full�pv X½i�ð Þjhyb

� �2
Pnnodes,ΛS

i¼1 pv̂ i½ �jfull�μIS pv̂jfull
� �� �2 : ð24Þ

Since the smaller vesselsΛS are not retained in the hybrid model, we compare nodal blood pressures in the smaller vessels
of the fully resolved model with the homogenized blood pressure field pv of the hybrid model evaluated at the nodal posi-
tions X i½ � of the smaller vessels. Again, this is formulated in terms of a coefficient of determination, now involving all
nodes in the small vessels and μIS pv̂

��
full

� �
is the mean blood pressure in the small vessels of the fully resolved model.

Equivalently, the coefficient of determination of the IF pressure is given by

R2
IF ¼ 1�

Pnnodes,Ω
i¼1 pl i½ ���full� pl i½ ���hyb� �2

Pnnodes,Ω
i¼1 pl i½ �jfull�μ pljfull

� �� �2 ð25Þ

with the mean IF pressure μ pl
��
full

� �
of the full model in the tissue domain Ω. Instead of the point-wise comparison of

pressures in (24) and (25), one could also compare mean REV pressures of the two models. We will additionally calcu-
late and compare mean (blood and IF) pressures inside the REVs in section 4.3. With the previous three equations, the
metrics for blood and IF pressure have been defined. Also the flow in the larger vessels ΛL is covered since larger vessels
present in both models have the same diameter, length and blood viscosity. Therefore, if the nodal pressures match,
also the flow between the nodes, that is, inside the elements is identical. The same applies for flow in the IF if the same
3D mesh and hydraulic conductivity kl=μl is employed in both models which we will assume hereafter. What is still
missing, is a metric for comparison of blood flow inside the smaller blood vessels ΛS which are homogenized in the
hybrid model. We define this measure as follows

R2
flow,ΛS

¼ 1�
PnREV

i¼1

P3
j¼1 Qv̂

j

���
ΛS,full

� Qv
j

���
ΛS,hyb

� �2

PnREV
i¼1

P3
j¼1 Qv̂

j

���
ΛS,full

�μ Qv̂
��
ΛS,full

� �� �2 , ð26Þ

that is, for each of the nREV REVs we compare the volumetric flow Qj of the fully resolved and the hybrid model in all
three coordinate directions and compare it with each other via the coefficient of determination of flow in the smaller
vessels R2

flow,ΛS
.
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Next, we will detail how we calculate the flows in the REVs in both models. In the center of each REV we define a
square □ j with dimensions lREV� lREV such that its normal nj is aligned with coordinate direction j. The volumetric
flow in the homogenized part of the vasculature in coordinate direction j is then given by

Qv
j

���
ΛS,hyb

¼
ð
□ j

�kv

μv
nj �=pvdA ð27Þ

as the surface integral of the flux through the square. For the fully resolved model, we define it as

Qv̂
j

���
ΛS,full

¼
X

□ j \ΛS

�πR4

8μv̂
∂pv̂

∂s
� sgn t �nj

� �
, ð28Þ

which is the sum of the volumetric flow of all segments which are part of the smaller vessels and cut by the square □ j.
Therein, t is the tangential vector of a segment pointing from its first to its second node and sgn �ð Þ denotes the sign
function.

Finally, we define the total coefficient of determination between the two models as the sum of the contributions
from blood pressure in large vessels (23), blood pressure in small vessels (24), IF pressure (25) and flow in small vessels
(26) as

R2
tot ¼

1
4

R2
LþR2

SþR2
IFþR2

flow,ΛS

� �
: ð29Þ

This metric, where all four contributions are weighted equally, will be employed to study the accuracy of the hybrid
model w.r.t. the full model and to find the optimal parameters of the hybrid model.

4.2 | Optimization of parameters of the hybrid model

Compared to the fully resolved model, the hybrid one has two additional parameters, which are the hydraulic conduc-
tivity of the homogenized vessels kv=μv in (9) governing blood flow and the surface-to-volume ratio S=Vð ÞΛS

accounting
for transvascular flow from the homogenized vessels into the IF in (10). Our goal in this section is to determine these
parameters such that the agreement in terms of blood flow and blood and IF pressures of the hybrid model with the
fully resolved model is maximized. For that we employ the total coefficient of variation (29) between the two models
deduced in the previous section and formulate the following optimization problem in terms of the parameters of the
hybrid model:

argmax
kv=μv , S=Vð ÞΛS

R2
tot, ð30Þ

that is, we aim to find the parameters of the hybrid model, for which the correspondence of the two models is opti-
mized. With these optimal parameters, we can then evaluate the accuracy of the hybrid model w.r.t. the fully resolved
one. For the optimization procedure, we parallelized the least-squares method of the SciPy package (version 1.5.2)54

and interfaced it to the software framework QUEENS.55 Internally, SciPy employs the Levenberg–Marquardt algorithm
to solve the nonlinear least-squares problem (30). Derivatives of the metric (29) w.r.t. the parameters are approximated
using forward finite differences. This implies that the hybrid model has to be solved three times per iteration step. In
preliminary simulations, we confirmed that different initial conditions (from a sensible parameter range) converged to
the same optimum.

Since the full topology of the vasculature is available, we could also obtain these parameters by a suitable homogeni-
zation procedure for the permeability as previously done for other hybrid or continuum models.18-21,25 We did not fol-
low this approach here for the following reasons: First, the chaotic structure of the blood vessel network implying also
a very chaotic blood flow pattern typical for the solid tumors would make this very challenging. Second, we want to
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create a best-case scenario by fitting the parameters of the hybrid model such that possible errors introduced by a
homogenization scheme are minimal.

The general algorithm can be described as follows:

1. Obtain a set of boundary conditions for the full model as described in section 3.2.1 and solve the full model to gener-
ate a reference solution.

2. Extract the topology of larger vessels for the hybrid model from the full model, conf. section 3.3, and apply boundary
conditions on the hybrid model, conf. section 3.2.2.

3. Find the optimal parameters of the hybrid model by maximizing the total coefficient of variation (30). During the
optimization procedure, repeated evaluations of the hybrid model with different parameters are required.

Representative results of the optimization scheme are depicted in Figure 9 for all four contributions to the total coef-
ficient of determination. Very good agreement between the two models in terms of nodal pressures in the larger vessels
pv̂ can be observed in Figure 9A. This can be expected because the same boundary conditions on the large vessels are
applied in both cases. Thus, large and small pressure values show very good agreement, further away from these bound-
ary conditions in the medium pressure range, deviations become larger. The clusters with the largest errors are separate
branches which are not directly connected to nodes of the 1D network carrying boundary conditions. The correspon-
dence for the nodal IF pressures pl in Figure 9C is also very good. For low IF pressures this is again due to the zero
pressure boundary condition assigned on ∂Ω for both cases, but also for higher IF pressures inside the tumor, which is
the actual domain of interest, the pressure differences are very small, in this case, the maximum absolute error is 237:1
Pa corresponding to a maximum relative error of 8.4%. The pressure in the smaller vessels, resp. the homogenized vas-
culature in the hybrid model, exhibits larger errors, see Figure 9B. Overall, the agreement is still reasonable. We found
that the error is largest for branches ending in tips with boundary conditions on the 1D vasculature either inside the
domain or on the tumor hull. For instance, this is the case for the larger errors around pv̂

��
full ≈ 3300 Pa. The boundary

conditions on these tips inside the domain are not retained in the hybrid model and for the tips on the tumor hull, they
are smeared over several 3D nodes as described in section 3.2.2. Hence, while the error in the medium pressure range is
distributed symmetrically, larger deviations at both ends of the pressure spectrum toward the smeared values are pre-
sent. This error due to point-wise nonmatching boundary conditions can also not be improved by the optimization of
the parameters. However, in section 4.3, we will show that averaged REV pressures of both models are in very good
accordance. We believe that this is a more interpretable and fairer comparison metric as the hybrid model cannot be
expected to exactly match the pressure distribution of the fully resolved one (in particular on the boundary) since the
information about the exact topology of the smaller vessels is not represented. Finally, the results for the flow in
the smaller vessels are shown in Figure 9D. Here, the poorest agreement of the two models is present, especially, larger
flows are not met properly.

Further results for all cases have been collected in Table 5. For each tumor network, we generate five different sets
of pressure boundary conditions on the 1D network from which different flow patterns and, therefore, also different
sets of larger and smaller blood vessels emerge as discussed in section 3.3. Then, we investigate different cases, where
5–20% of the larger vessels are kept in the hybrid model. We found that five sets of pressure boundary conditions on the
1D network were enough to study our hybrid model since randomly picking only four out of the five boundary condi-
tion cases changed the mean result by at most 8%. Moreover, taking the mean parameter of a case X% over all different
boundary condition cases instead of the optimal value for each specific case only changed the total coefficient of deter-
mination by less than 2%. Furthermore, we compare the result of the optimization procedure for S=Vð ÞΛS

with the cal-
culated surface-to-volume ratio of the smaller vessels for each case. The relative error ES=V is smaller than 5% for all
cases validating that the optimization procedure converges to a physically reasonable result. The permeability is largest
for the SW1222 topology which can be expected considering the much denser network of this case. For all tumors, it
decreases if a larger proportion of the 1D vessels is kept in the model, which is also sensible since the smaller the pro-
portion of homogenized vessels, the less permeable these vessels.

As already described above, all cases exhibit a very good correspondence in terms of blood pressures in larger vessels
and IF pressures, proven by the values for R2

L and R2
IF in Table 5. If the fidelity of the hybrid model is increased by

resolving a larger proportion of the network structure, the agreement between the two models grows likewise. This is
also the case for the coefficient of determination of blood pressure in smaller vessels R2

S. Here, the SW1222 and the
LS174T case exhibit comparable accuracy whereas the GL261 case experiences a larger discrepancy. We can attribute
this to the fact that this topology has the largest number of tips at the tumor hull and also the largest number of dead

22 of 33 KREMHELLER ET AL.



ends considering that it is the smallest data set, see Table 1. Hence, the pressure error is largest due to nonmatching
boundary conditions between fully resolved and hybrid model as mentioned above. However, we will show in sec-
tion 4.3 that in terms of REV blood pressures its conformity with the hybrid model is as good as the other cases. The dif-
ference in flow in the small vessels is the largest source of error in all cases. Also taking more 1D vessels into account
for the hybrid model does not necessarily improve the behavior. We believe that this is due to the chaotic flow patterns
in the smaller vessels and to the fact that we define the permeability tensor as isotropic and constant over the entire
domain Ωv. Apparently, this is insufficient to resolve the flow in the homogenized vasculature in comparison to the full
model. We tried to increase the agreement by giving a higher weight to the coefficient of determination of flow in the
smaller vessels R2

flow,ΛS
in the definition of the total coefficient of determination (29) but could not achieve any signifi-

cant improvements. However, the agreement in terms of flow in the entire (resolved and homogenized) vasculature,
which will be investigated in the next section, is much better.

4.3 | Additional comparisons of results of both models

We further study the agreement of the hybrid model with the optimized parameters from the previous section in terms
of several other quantities. For that, we define the mean REV IF pressure in the j-th REV as

FIGURE 9 Exemplary comparison of hybrid model (with optimized parameters) with fully resolved model for one specific network

topology (SW1222, 10% of 1D blood vessels have been retained in hybrid model). In each subfigure, solution of hybrid model is plotted over

solution of fully resolved model and the dashed line indicates perfect agreement between the models with 1:1-correspondence. Comparison

of blood pressure in large vessels is depicted in subfigure A), blood pressure in small vessels in B), IF pressure in C) and flow in small vessels

in D). Coefficient of determination for agreement between both variants is given for each quantity and overall coefficient of determination

calculated according to (29) is R2
tot ¼ 0:716 for this case
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pl jð Þ¼ 1
VREVj

ð
REVj

pldV : ð31Þ

This is employed to study the absolute and relative mean IF pressure error between the two models in each REV as

El
abs jð Þ¼ abs pl jð Þ

���
full

� pl jð Þ
���
hyb

� �
and El

rel jð Þ¼
abs pl jð Þ

���
full

� pl jð Þ
���
hyb

� �
pl jð Þ

���
full

: ð32Þ

Equivalently, we define the mean blood pressure in the homogenized vasculature of the hybrid model in the j-th
REV as

pv jð Þjhyb ¼
1

VREVj

ð
REVj

pvdV ð33Þ

and as

pv jð Þjfull ¼
1

nnodes,ΛS \REVj

Xnnodes,ΛS \ REVj

i¼1
pv̂ i½ � ð34Þ

for the smaller vessels of the fully resolved model. The latter is simply the mean blood pressure of all nnodes,ΛS \REVj nodes
of the smaller blood vessels which lie inside the j-th REV. This allows us to define the absolute and relative mean blood
pressure error (in the smaller vessels) between the two models in each REV as

Ev
abs jð Þ¼ abs pv jð Þjfull�pv jð Þjhyb

� �
and Ev

rel jð Þ¼
abs pv jð Þjfull�pv jð Þjhyb
� �

pv jð Þjfull
: ð35Þ

TABLE 5 Results of the optimization procedure for hydraulic conductivity and surface-to-volume ratio of homogenized vasculature in

the hybrid model. Relative error w.r.t. calculated surface-to-volume ratio and R2-values for agreement between both variants in terms of

blood pressure in large vessels, blood pressure in small vessels, IF pressure and flow in small vessels is additionally provided. Overall

coefficient of determination between fully resolved and hybrid model is calculated according to (29). (All data includes the mean taken over

five different sets of pressure boundary conditions on the 1D network produced by the methodology described in section 3.2.1, “case XX%”
denotes the case where X% of the 1D blood vessels are retained in the hybrid approach).

Network Case kv=μv[μm2] S=Vð ÞΛS
[μm�2] ES=V [%] R2

L R2
S R2

IF R2
flow,ΛS

R2
tot

SW1222 Case 5% 059�2:840 (6.423 ± 0.101) � 10�3 2:17 0.944 0.488 0.994 0.163 0.647

Case 10% 3:846�0:506 (5.722 ± 0.069) � 10�3 1:93 0.988 0.654 0.998 0.176 0.704

Case 15% 1:612�0:247 (5.077 ± 0.051) � 10�3 2:66 0.993 0.739 0.999 0.262 0.748

Case 20% 0:655�0:122 (4.532 ± 0.048) � 10�3 3:84 0.989 0.792 0.999 0.193 0.743

LS174T Case 5% 1:799�0:105 (1.721 ± 0.073) � 10�3 3:21 0.905 0.643 0.990 0.282 0.705

Case 10% 1:117�0:096 (1.581 ± 0.038) � 10�3 3:18 0.916 0.683 0.991 0.260 0.713

Case 15% 0:745�0:032 (1.478 ± 0.020) � 10�3 2:70 0.930 0.695 0.992 0.244 0.715

Case 20% 0:522�0:064 (1.382 ± 0.021) � 10�3 2:30 0.944 0.718 0.993 0.207 0.715

GL261 Case 5% 1:754�0:288 (6.184 ± 0.099) � 10�3 3:35 0.917 0.195 0.997 0.199 0.577

Case 10% 0:802�0:093 (5.688 ± 0.097) � 10�3 3:63 0.927 0.233 0.996 0.107 0.566

Case 15% 0:479�0:073 (5.200 ± 0.076) � 10�3 4:12 0.941 0.295 0.996 0.113 0.586

Case 20% 0:321�0:061 (4.756 ± 0.048) � 10�3 4:21 0.950 0.346 0.996 0.134 0.607
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Furthermore, we denote by �ð Þ the mean value of these error measures over all nREV REVs. Note also that both the
mean REV blood and IF pressure vary considerably between different REVs. The pressure difference between single
REVs varies in a range of 800–1200 Pa for the IF and a range of 800–2000 Pa for blood. The data of this analysis is col-
lected in Table 6. Overall, a remarkable agreement of the mean REV pressures for both blood and IF can be observed in
all cases. As shown in Table 5, the SW1222 tumor has the best agreement, but also the GL261 case which previously
showed the biggest nodal blood pressure errors in the homogenized vessels is very accurate in terms of mean REV blood
pressure. As described above, the error is located mainly on the tips of the smaller vessels, of which the GL261 has the
most compared to its network size. Nevertheless, the average blood pressure in the REVs is still matched very well for
this and all other cases even though locally the pressure error is larger. We can expect that these small-scale spatial fluc-
tuations of blood pressures cannot be represented correctly in the homogenized vessels of the hybrid model while mac-
roscopically the average REV pressures show good agreement. Anticipating a validation with experimental data, it is
anyhow not possible to perform a point-wise comparison of (blood and IF) pressures such that the average REV pres-
sure is the more relevant and meaningful metric.

Additionally, we investigate the volumetric flow between large and small vessels and compare the results of both

models. In the hybrid model, the flow between large and small vessels is given by the LM field λ¼M
v̂!v

interpreted as a
mass transfer term, or volumetric flow per length, as detailed in section 2.3. Note that this can represent both a flow
from large 1D vessels into the homogenized vasculature if locally the pressure in the resolved vasculature is bigger than
the homogenized pressure or, vice versa, a flow from the homogenized vasculature into the larger vessels if the homoge-
nized pressure is bigger than the blood pressure in the 1D vasculature. Consequently, for each REV the flow between
the two compartments is given by the integral of the LM field along the part of the larger vessels ΛL \ REVj inside the
specific REV j, or

M
v̂!v

jð Þ
����
hyb

¼
ð

ΛL \REVj

λds: ð36Þ

In the full model, we can directly evaluate the mass transfer between large and small vessels inside the connecting
elements of both sets, which are those elements of the smaller vessels where one node is part of ΛL and the other part
of ΛS. Assuming that the first node is part of the larger vessels and the second one part of the smaller vessels, the flow
between large and small vessels in the j-th REV is given by

TABLE 6 Additional error measures for the agreement of both models. Shown are the absolute and relative error of the hybrid approach

in terms of mean REV blood pressure in smaller vessels and mean REV interstitial fluid pressure and the R2-values for agreement between

both variants in terms of flow from large to small vessels and flow in the entire vasculature. (All data includes the mean taken over five

different sets of pressure boundary conditions on the 1D network produced by the methodology described in section 3.2.1, “case X%” denotes
the case where X% of the 1D blood vessels are retained in the hybrid approach).

Network Case Ev
abs [pa] Ev

rel [%] El
abs [pa] El

rel [%] R2
flow,ΛL!ΛS

R2
flow,Λ

SW1222 Case 5% 90:2 2:25 49:3 1:66 0:192 0:992

Case 10% 57:2 1:43 32:2 1:08 0:091 0:999

Case 15% 44:1 1:10 24:9 0:83 0:142 1:000

Case 20% 42:1 1:05 21:5 0:72 0:100 1:000

LS174T Case 5% 113:7 2:88 73:0 3:83 0:640 0:813

Case 10% 99:4 2:53 68:3 3:58 0:567 0:892

Case 15% 97:6 2:48 63:0 3:30 0:513 0:931

Case 20% 91:4 2:33 59:2 3:10 0:444 0:956

GL261 Case 5% 104:2 2:64 41:6 2:16 0:472 0:962

Case 10% 99:5 2:52 44:2 2:29 0:489 0:984

Case 15% 87:8 2:22 44:9 2:33 0:435 0:993

Case 20% 79:7 2:02 45:0 2:33 0:407 0:996
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M
v̂!v

jð Þ
����
full

¼
Xnele,ΛL!ΛS \ REVj

i¼1 �πR4

8μv̂
∂pv̂

∂s
ð37Þ

as the sum of the volumetric flows in the elements connecting large and small vessels which lie inside the specific REV j.
The number of these elements is denoted by nele,ΛL!ΛS \REVj in the previous equation. To compare the mass transfer
between large and small vessels in both models, we again define a coefficient of determination as

R2
flow,ΛL!ΛS

¼ 1�

PnREV
j¼1 M

v̂!v
jð Þ
����
full

� M
v̂!v

jð Þ
����
hyb

 !2

PnREV
j¼1 M

v̂!v
jð Þ
����
full

�μ M
v̂!v

jð Þ
����
full

� �� �2 , ð38Þ

with the respective mass transfer terms for the hybrid and the full model for each REV. Again, μ �ð Þ denotes the mean
of the mass transfer between large and small vessels of the full model over all nREV REVs.

The reference solution of the fully resolved model for this volumetric flow per REV varies considerably between the
different REVs and both positive values, representing an overall outflow from the larger vessels into the smaller vessels
in a specific REV, and negative values, representing an overall inflow into the larger vessels from the smaller vessels in
a specific REV, are present. This indicates that inflow or outflow from larger to smaller vessels is indeed a meaningful
quantity describing the spatially varying flow patterns inside the vascular network. To reproduce this behavior in the
hybrid model variant, a good agreement with the reference solution is desirable. The results for the coefficient of deter-
mination R2

flow,ΛL!ΛS
are again assembled in Table 6. The LS174T case shows the best agreement with the fully resolved

model while the SW1222 case delivers the worst results. We believe that this can be attributed to the much higher dis-
persion of the diameter and, thus, also the flow in the connectivity elements, which we have already studied by the
coefficient of variability in Table 3. The LS174T case, which has the least dispersed distribution of both values, performs
best in matching the flow between larger and smaller vessels in the hybrid model. There is a small decline of the agree-
ment for higher percentages of retained vessels in all cases. However, the flow between large and small vessels is not
included in the parameter optimization procedure. Hence, we assume that the better performance in terms of the other
quantities is at the expense of this metric.

Finally, we study the correspondence between the two models in terms of the blood flow in the entire vasculature
Λ. Previously, in Table 5 only flow in the smaller vessels ΛS, respectively, the homogenized vasculature was investi-
gated. For the full model, the total flow in Λ in each REV in coordinate direction j is calculated as in (28), but now both
large and small vessels are taken into account. For the hybrid model, the total flow can be obtained as the sum of the
flow in the homogenized vessels as given by (27) and the flow in the larger, resolved vessels, that is,
Equation (28) evaluated for the larger vessels of the hybrid model. The two quantities are compared in Table 6 defining
a coefficient of determination for flow in the entire vasculature R2

flow,Λ as in (26). Evidently, the agreement between the
two models is very good and much better than the previously reported agreement of flow in the smaller vessels R2

flow,ΛS
.

This is due to the fact that, as expected, flow is dominated by the larger vessels, the values calculated for flow in the
entire vasculature are one to two orders of magnitude larger than the in the small vessels depending on the investigated
case. As we are able to match the pressure in the large vessels very well and, thus, also the flow therein, very good
accordance can be achieved for the total flow in both small and big vessels. As flow in the big vessels is decisive for the
overall perfusion of the domain and could also be more easily acquired with experiments for further validation this is
an encouraging result for the applicability of the hybrid approach. Nevertheless, we demonstrate how to enhance the
correspondence of the hybrid model also in terms of flow in the smaller vessels in the following section.

5 | IMPROVEMENTS FOR THE HYBRID MODEL

In this section, we discuss some possible improvements for the hybrid model and implement one of them. The most
straightforward one would be to define the permeability of the homogenized vessels not as a constant over the entire
domain Ωv but per REV. Instead of an isotropic permeability tensor, one could easily integrate anisotropic effects based
on the blood vessel structure inside each REV. Both has been done in the hybrid model of Vidotto et al,25 where a
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diagonal permeability tensor with different permeabilities in all three coordinate directions was employed. This could
potentially augment the agreement in terms of mass fluxes in the homogenized vasculature, which is the main source
of error in the hybrid model. However, we did not integrate this into our optimization procedure since we believe that
this would result in overfitting of the chaotic flow in the tumor such that we would meet every single boundary condi-
tion case very well but with largely different results for the permeability tensors between the cases with distinct flow
patterns. With a single scalar permeability the results for the permeability between different boundary condition cases
did not fluctuate greatly. Moreover, in a real-world case where only the architecture of the larger vessels is known, it
seems unrealistic to deduce the entire permeability field from the limited amount of information.

Instead, we tried to enhance the model by taking information of volume fractions of the smaller vessels into
account. Our rationale behind this approach is that while the complete structure of the smaller vessels cannot be
obtained noninvasively, regions with higher or smaller microvascular density of small vessels could still be identified.
This information could then be employed to enrich the hybrid model. The overall trend we observed in Table 5 is that
the higher the volume fraction of the homogenized vessels, the larger their permeability. It also reasonable to assume
that areas with a higher vascular volume fraction are more permeable to blood flow. Therefore, we investigated the rela-
tionship of the volume fraction of smaller vessels εvΛS

in each REV on the perfusion of the smaller blood vessels in the
full model. Results are shown in Figure 10. Here, the absolute volumetric flow in each coordinate direction (calculated
as in (28) but not taking the flow direction into account) is plotted over the volume fraction of the smaller vessels εvΛS

.
The clearest picture emerges for the LS174T topology with a good correlation of flow in smaller vessels with their vol-
ume fraction. A similar, yet less distinctive trend is present for the SW1222 case whereas no relationship can be
observed for the GL261 tumor.

Therefore, inside each REV j we defined the isotropic permeability tensor as

kv

μv
jð Þ � I¼ α � εvΛS

jð Þ � I, ð39Þ

that is, a simple linear dependency of the permeability in the j-th REV on the volume fraction of smaller vessels in the
j-th REV with proportionality constant α. We also tested a nonlinear Kozeny–Carman law, but obtained slightly better
results with the linear fit. Thus, we will exclusively study this linear dependency hereafter. Next, the optimization of
the nonlinear least-squares problem (30) is performed for the proportionality constant α. Results are shown in Table 7
for the case 10%, which can be compared with the cases with constant permeability over the entire domain from
Table 5. We obtained a slightly better agreement in terms of flow in the smaller vessels R2

flow,ΛS
and, thus, also for the

total coefficient of determination R2
tot for the SW1222 and GL261 case. Compared to that, the correspondence of flow in

the smaller vessels was markedly better than the constant permeability case for the LS174T topology. This is coherent
with Figure 10 where the latter network showed the most evident correlation of blood flow on volume fraction. Thus,
one could expect that no significant improvement was possible for the GL261 case where volume fraction and flow
seem to be decoupled. However, also for the SW1222 topology, which showed at least a moderate dependency of blood
flow on volume fraction, the agreement could not be increased significantly. Therefore, at least for one of our cases it
was beneficial to include blood vessel volume fraction information into the hybrid model while it was not detrimental
for the other two.

It also is conceivable that at least preferential directions of smaller vessels or their tortuosity can be detected nonin-
vasively even though their complete structure cannot be resolved. A further enhancement of the model could be
achieved when taking this information about the anisotropy of smaller vessels or their tortuosity into account during
the homogenization procedure.18-20 However, we want to emphasize that our whole study is based on numerical
results. Experimental findings indicate no dependency between blood vessel diameter and flow in tumors1,56,57 and a
high vascular density does not automatically imply efficient perfusion, nutrient supply and drug delivery for solid
tumors.58 These properties could make it impossible to deduce permeabilities of blood vessels inside tumors from mac-
roscopic quantities such as blood vessel volume fractions or preferential directions. By contrast, noninvasive measure-
ments of perfusion13,59 could prove helpful to enhance the hybrid model.

Similarly, improvements are possible for flow from the larger into the smaller vessels. In this contribution, we have
assumed equal pressures in resolved and homogenized vasculature and, thereby, infinite (or at least a very large) per-
meability governing the flow between the two compartments such that a constraint of equal pressures holds along the
resolved 1D vasculature. This has the major advantage that the coupling between resolved and homogenized vascula-
ture is essentially parameter-free. Only the penalty parameter has to be chosen large enough such that a sufficient
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accuracy in the pressure constraint is achieved as described in Remark 4. The GL261 and LS174T case had a less dis-
persed distribution of the radius in connecting elements and, thus, of the permeability between larger and smaller ves-
sels. For these topologies, our approach could estimate the mass transfer between larger 1D vessels and
smaller homogenized vessels more accurately. The SW1222 case had a much higher variability of radius and flow
between ΛL and ΛS. In this case, it could be advantageous to employ finite permeabilities to model the mass transfer
and assign higher permeabilities to REVs or regions along the larger vessels where many branches go away from the
main vessels. However, this would require additional parameterization of the model as well as additional data on
regions where a lot of flow from larger into smaller vessels can be expected.

In addition, we have so far only employed very simple algorithms to optimize the parameters of the hybrid model.
A much more powerful framework for coarse-graining physical models has been developed by Grigo et al60 and tested
for flow through porous media. This could also be applied in our case to infer the optimal parameters of the hybrid
model per REV. However, this would require much more microstructural features, such as tortuosity, blood vessel dis-
tances or radius data on the smaller homogenized blood vessels to calibrate the hybrid model. Again, it is questionable
if this data can be acquired noninvasively and if these parameters are determining blood flow through tumors.

6 | CONCLUSIONS

In this work, we have studied a hybrid embedded/homogenized model for computational modeling of solid tumor per-
fusion. Its guiding principle is that the complete morphology of vascular networks including blood vessel diameters and
topology cannot be acquired with currently available in-vivo imaging techniques. Thus, fully resolved discrete models
relying on this data cannot be applied in “real world” scenarios. If, however, the structure of larger vessels constituting
the main branches of the vasculature is available, our hybrid approach where only these larger branches are completely

FIGURE 10 Dependency of absolute flow in small vessels ΛS of the full model on volume fraction of small vessels in representative

elementary volumes for one representative case per tumor topology where 10% of 1D blood vessels have been retained in hybrid model

(dashed lines indicate linear least squares fits with corresponding R2-values)

TABLE 7 Results of the optimization procedure for nonconstant permeability depending on volume fraction of smaller vessels. 10% of

1D blood vessels have been retained in hybrid model for each tumor topology. Shown are the proportionality constant α relating

permeability and blood vessel volume fraction of smaller vessels inside each REV according to (39). R2-values for agreement between both

variants in terms of blood pressure in large vessels, blood pressure in small vessels, IF pressure and flow in small vessels is additionally

provided. Overall coefficient of determination R2
tot between fully resolved and hybrid model is calculated according to (29). (All data includes

mean taken over five different sets of pressure boundary conditions on the 1D network per case)

Network α[μm2] R2
L R2

S R2
IF R2

flow,ΛS
R2
tot

SW1222 37:0�5:9 0.988 0.653 0.998 0.189 0.707

LS174T 129:7�10:6 0.928 0.691 0.991 0.362 0.743

GL261 26:1�3:5 0.929 0.245 0.996 0.117 0.572
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resolved is a sensible alternative. By contrast, the smaller scale vessels are homogenized such that their exact structure
is not required anymore. This results in a two-compartment or double porosity formulation where the larger vessels are
still represented as one-dimensional embedded inclusions. The coupling between the resolved and homogenized part of
the vasculature is realized via a line-based pressure constraint along the 1D larger vessels, which we enforce with a
mortar-type formulation with penalty regularization. This also has the advantage that compared to previous hybrid
models no additional parameter—apart from the penalty parameter which has to be chosen large enough—is required
to couple the two distinct representations of the vasculature.

The results of the hybrid model have been compared with reference solutions generated by a fully resolved 1D–3D
model. For that, three different network topologies extracted from three different tumor types grown in mice have been
employed. These topologies consist of up to 420000 vessel segments and have dimensions of up to
6mm� 8mm� 11mm. To date, this is the largest and most challenging test case for a hybrid model, especially consid-
ering the abnormal and tortuous structure of the networks typical for the vasculature inside tumors. We have further
shown how we artificially generate the hybrid from the fully resolved model, define REVs and assign boundary condi-
tions. We are confident that the artificially created topologies of larger vessels are representative of real in-vivo imaging
data sets of larger vessels inside tumors such that they enable us to draw meaningful conclusions for more realistic sce-
narios where the full topology is not available such that a hybrid approach is the only option.

For comparison of the results of the two models, we have defined several rigorous metrics involving the blood pres-
sure in both resolved and homogenized vasculature, the pressure in the interstitial fluid and blood flow in the homoge-
nized vasculature. These metrics have then been employed to obtain the optimal parameters for the hybrid model and
to study its accuracy w.r.t. the fully resolved one. We have obtained very good agreement in terms of blood pressure in
the larger vessels and IF pressure. Larger deviations are present for blood pressure and flow in the homogenized vascu-
lature. However, these limitations can be expected since the information on the smaller vessels is not retained in the
hybrid model. Overall, the best correspondence has been achieved for the SW1222 case which also had the clearest vas-
cular structure and distinction between larger and smaller vessels. All topologies showed a very good agreement in
terms of REV IF pressure and REV blood pressure in smaller vessels with mean deviations in a range of 20–70 Pa and
40–110 Pa resp. 0.7–3.8% and 1.1–2.9%. It is sufficient to resolve 5–10% of all blood vessels segments by keeping them in
the hybrid model since there is only a marginal improvement of the agreement with the fully resolved model in terms
of all investigated metrics when retaining a higher percentage (15–20%) of blood vessels. Concerning the flow between
smaller and larger vessels the error was mainly caused by the large variability of diameter and flow in the connectivity
elements between large and small vessels for the SW1222 case. Possibly, this error could be reduced by allowing a vary-
ing permeability for coupling the two compartments. By including information about the blood vessel volume fraction
of smaller blood vessels into the definition of their permeability tensor a better agreement with flow therein could be
achieved for the LS174T case. Nevertheless, the abnormal vascular structure and blood flow patterns of tumor vascula-
ture could impede this approach.

Several other potential improvements have been discussed and remain subject to future work. Furthermore, the
inclusion of species transport to simulate drug delivery or nutrient transport lies at hand. Species transport including
the coupling between resolved and homogenized vasculature is possible within our hybrid multiphase tumor growth
model3 and we have already studied nanoparticle delivery to solid tumors employing the homogenized compartment
only.61 These models could ultimately enhance our understanding of the limitations of current drug delivery strategies
and aid in devising more targeted therapies.

The next step toward a more realistic or even clinical usage of hybrid computational models for tissue perfusion is
to devise a strategy which combines data which is available noninvasively.23 Faced with such a scenario, where a hybrid
model is the only applicable option since the entire network topology is not known, the methods and metrics developed
here could be applied in the following way:

1. Gather all physiological data, which can be accessed via in-vivo measurements for the specific case. For instance, this
could be tissue perfusion, hypoxic areas, REV or point-wise measurements of pressure or flow, volume fractions of
homogenized blood vessels or their preferential direction and the transport of tracer molecules through the domain.

2. Define the computational domain of interest as the embedded larger vessels and a surrounding domain of homoge-
nized vasculature following the extent of the tumor. If available, include the information about volume fractions
and preferential directions of smaller blood vessels in the definition of the permeability tensor.

3. Formulate an optimization problem similar to (30) to match the available information about transport, for example,
REV or point-wise flow and pressure data. However, not only the parameters of the homogenized vasculature would
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be part of the optimization as in this contribution but also the large majority of the (homogenized or resolved) pres-
sure boundary conditions, which are additionally unknown. Note however, that far less boundary conditions com-
pared to a fully resolved setting need to be applied.

4. Employ the obtained flow state for in-silico studies of drug delivery or the optimization of treatment strategies.
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APPENDIX A: A SEGMENT-BASED LINE INTEGRATION SCHEME FOR THE EVALUATION OF 1D-3D
COUPLING TERMS

The numerical integration of the 1D–3D coupling terms is outlined in this Appendix. These terms are the leakage
terms from the 1D embedded vasculature into the IF occurring in the weak forms (5a) and (5b) respectively (13a) and
(13c) and the mortar coupling matrices D and M from (16) and (17). After spatial discretization with appropriate shape
functions, these terms comprise a line integral along the inclusion containing the product of shape functions either
defined on the 1D or on the 3D domain.

A one-dimensional segment-based integration for these types of terms has been proposed in our previous publica-
tions.3,36 The goal of this procedure is to perform the integration in a general nonconforming scenario as sketched in
Figure A1. Numerically, the 1D integrals are evaluated with Gauss quadrature. However, at first each 1D element is
segmented by finding its 2D or 3D interaction partners, that is, those elements of the discretization of the surrounding
domain it intersects. This yields 1D pieces interacting with a single 2D/3D element on which also the shape functions
of the respective 2D/3D element are continuous. Then, GPs are defined in the single segments and mapped from the
element parameter space on the 1D centerline. In addition, the spatial coordinate of the respective GP X S ξð Þð Þ, is
required to obtain the shape function values of the respective 2D/3D element at this position. The integral for a specific
1D element then emerges as the sum over the integrals of all its segments and the respective contributions are assem-
bled into the DOFs of the 1D and the interacting 2D/3D elements.

FIGURE A1 Sketch of one-dimensional segment-based integration (in 2D)—exemplarily two Gauss points per segment are defined in

the one-dimensional parameter space and mapped onto the centerline where integration is performed. The 1D element here interacts with

three 2D elements which defines three integration segments
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