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Abstract: The present paper aims to present the effects of late switching on (time delay) between
two or three DC electrical machines characterized by limited power supplies on their fast or late
self-synchronization when mounted on a rectangular plate with simply supported edges. The DC
electrical machines are considered here as non-ideal oscillators, rotating in the same direction and
acting as an external excitation on a specific surface of the plate. The stability analysis of the whole
studied system (with two machines) around the obtained fixed point is done through analytical
and numerical approaches by using the generalized Lyapunov and Routh-Hurwitz criterion. The
existence conditions of the fixed point and the stability conditions are derived and presented. Great
attention is put on the incidence of such study on the vibrations amplitude of the plate, which
are considerably reduced in some cases. It appears that the time delay induces a rapid or late
synchronization observed between the DC sources. This has been observed by numerically exploring
the dynamics of the system for various possibilities that could occur. Moreover, in the modelling
of the system, the positions on the plate occupied by DC electrical machines are taken into account
by using the Heaviside function. It is shown that, in the case of three DC electrical machines, these
positions influence the time to obtain a synchronous state between the DC electrical machines.

Keywords: time-delay; self-synchronization; stability analysis; plate amplitude of vibration; DC
electrical machines

1. Introduction

The development of countries passes through the revolution of industries and the
construction of some infrastructures. Thus, civil and mechanical engineering are main
disciplines, which should be well mastered in order to achieve this goal. Over many years,
various researchers have contributed to this field of research and some of their results have
improved the technology used today [1,2]. At present, on the one hand, we have rotating
machines [3,4] used in industry to increase the output, to avoid human physical effort and
to easily realize some tasks. On the other hand, the presence of bridges, buildings, aircraft,
platforms, etc. help us in the developing process. The exploration of dynamic responses
of mechanical structures, such as rectangular plates, is interesting and important, as some
of the results may be applicable in understanding the dynamic behavior of structures and
buildings [5,6]. We frequently encounter rectangular plates in several domains, such as
civil and mechanical engineering. They are often present in industry, aircraft, and marine
structures, where they are extensively used. This type of mechanical structure is regularly
subjected to various types of external excitations during their use [7,8]. These excitations
could be caused by some natural phenomenon, such as wind and earthquakes [9] or
provoked by some human or mechanical actions coming from other structures, such as
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rotating machines [3,4]. In each case, we could assist a premature destruction of the system.
A system is said to be a non-ideal one when the voltage supply to a DC electrical machine
is limited or when the exciter (DC electrical machine) is influenced by the response of the
system (mechanical structure).

While supplied with a DC voltage, the previously DC electrical machines become
unbalanced when we fixed an eccentric mass at a distance r from their rotors axis. Thus,
the unbalanced DC electrical machine induces mechanical vibration to the rectangular
plate, which will simultaneously influence the rotational displacement of the unbalanced
mass. Therefore, we note that the excitation is influenced by the main response of the
system. This less-encountered phenomenon in vibration theory appears only in a non-ideal
vibrating system.

In the current literature, the dynamic behavior of ideal vibrating systems no longer
needs to be presented. Nevertheless, today there are only few results on non-ideal systems.
Thus, Balthazar et al. [10] presented progress of such a problem. The first results of the
non-ideal systems show that the passage through the resonance sometimes requires more
input power than the driven dynamical system has available. In the last decade, non-ideal
vibrating systems have been considered as a major challenge in theoretical and practical
engineering research [11,12]. Due to this particularity, the external excitation is influenced
by the main response of the system; therefore, non-ideal vibrating systems present one
more degree of freedom.

Considering a DC electrical machine operating on an elastic structure, a certain input
(power) is required to produce a certain output (machine rotating velocity), regardless of
the motion of the structure. For non-ideal systems, this may not be the case. Hence, it is
interesting to analyze what happens to the machine as the response of the system changes.
Here, the excitation is always limited in two ways:

• By the characteristic curves of the particular energy source
• By the dependence of the motion of the system on the motion of the energy source.

However, coupling between the governing equations of the motion (structure) and the
energy source then takes place. Today, many works have been done on non-ideal systems
for better understanding of common phenomena occurring in mechanical sciences [13,14].

The large applications of electrical machines helped to revolutionize industry and
eliminate animal and human efforts for tasks such as pumping water or handling grain. One
can note additionally that a household of electrical machines significantly decreases hard
labor at home and ameliorates more comfort and safety. When several rotating machines are
mounted on flexible structures, they will inevitably exhibit non-linear vibrating behaviors.
This is caused by the fact that such a vibrating system exhibits external excitation with
a limited power supply [10,12,15]. The mathematical modelling of a non-ideal vibrating
system leads to an supplementary dynamics equation compared to their counterpart ideal
system. This describes and explains the interaction appearing between the DC electrical
machine source and the rest of the system [10].

In industry, the production chain sometimes requires the action of several machines
acting at the same time or with a delay on a mechanical structure [16,17]. Thus, it becomes
important and interesting to focus on the dynamics of the machines and their impact on
the structure where they are mounted. However, Balthazar et al. [16,17] explored the self-
synchronization of two or four rotating machines with limited power supply supported by a
simple portal frame. Their results lead them to conclude that we can observe the appearance
of self-synchronization and a lack of synchronization between DC electrical machines for
certain characteristics of the vibrating system. Recently, Czolczynski et al. [18,19] studied the
synchronization phenomenon occurring between numerous rotating pendulums fixed on a
horizontal beam moving longitudinally on a parallel surface to the beam by the mean of a
viscoelastic device. They demonstrated that, after the initial transient movement, one can
observe the different states of pendulums’ synchronization. The energy transfer between
the pendulums is responsible for the synchronization, which occurs with time [18–20]. In
this sense, Nanha et al. [21] show that two DC electrical machines with power supply
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limited and supported by a rectangular plate could synchronize with different values of the
angular displacement shift of the DC electrical machines, such as zero, π, or 2π, depending
on the physical and mechanical properties of the electrical machines and the rectangular
plate. In addition, they showed that we can observe a reduction of plate amplitudes of
vibration when the phase difference between both DC electrical machines is equal to π.
Such an observation was done earlier in the literature in other ideal problems, which were
distinct from the present problems presented by Dimentberg et al. [22] and Bleckhman [23].

The self-synchronization phenomenon studied here allows the automatic coordination
of exciters (through energy transferred between DC electrical machines) and is used in
many vibratory machines for generating the required excitation force with constant or
another required direction. Since self-synchronization of exciters is a phenomenon observed
during a stationary state of the system, we aim to show in this paper what could be the
effect of the delay in starting a DC electrical machine compared to others in the time to
reach to a synchronous state between exciters. Thus, we focus on the influence of the time-
delay to obtain the self-synchronization phenomenon between two or three DC electrical
machines fixed on a rectangular plate. Through numerical simulations, we show how the
position occupied by the electrical machines influences the synchronization. The analytical
approach consists of the stability analysis of the whole system when the DC electrical
machines are synchronized.

The main motivation of this research work is to show the effect of the time delay
input of DC electrical machines to reach the synchronization state. We aim to show that
the time delay input of the second motor considerably affects the time when the motors
are synchronized, since self-synchronization happens earlier. Thus, we seek to prove that
mechanical characteristics of the plate have an influence on the time to reach a synchronous
state between the DC electrical machines. The stability analysis is displayed analytically
and numerically with the purpose to predict the dynamics of the studied system.

The paper is organized as follows. Section 2 consists of the description, the presentation
of the studied system, and describes how the mathematical modelling of the system is
developed. In the Section 3 of the paper, we proceed to the direct numerical simulation of
ODEs, describing the dynamics of the studied non-ideal system, and Section 4 presents the
stability analysis. Section 5 presents some concluding remarks on the study.

2. Description of the Studied System and Mathematical Formalism

The present section aims to give a full description of the studied system with all the
assumptions made, with the purpose to obtain a mathematical formalism presenting the
dynamical equations of the system. All mathematical details useful for the comprehension
are given in Appendix.

The mathematical formalism was built on the basis of the Hamilton principle, which
required expressions of different types of energy occurring in the system [15]. Exploration
of boundary conditions of the plate lead to obtaining the ordinary differential equation
(ODE) of the studied system [21].

2.1. Presentation of the Studied Systems

The system was composed of a rectangular plate (with dimensions: length a, width
b, and thickness h), where edges were simply supported. Here, two or three DC electrical
machines carrying unbalanced masses on their shafts were fixed and regularly spaced on
the plate. It was supposed that the electrical machines rest and act on a precise areas on
the plate. In addition, the rectangular plate was responsible for bending and shearing
displacements, but here, only transversal displacement was taken in account.

As an example of a non-ideal vibrating system in mechanical engineering, we mention
a vibro-compacting machine composed by a mould supporting its top unbalanced DC
electrical machines. A schematic of this device is shown in Figures 1 and 2, and we display
a set-up of the studied system of this paper.
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Figure 1. Illustration in mechanical engineering of a non-ideal vibrating system: (a) Front view of a
simplified representation of a compacting machine with its physical model (b).

Figure 2. Rectangular plates of known dimensions (length a, width b, and thickness h), supporting
DC electrical machines with unbalanced masses mi at a distance ri from their rotating axis. Plates are
simply supported edges capable of moving in x, y, z directions, but only transversal displacement in
z direction is considered here. Plates are not connected and are able to move independently. Angular
displacement of each electrical machine is denoted by ϕi. The space dimensions occupied by each
electrical machine on the plate are noted as ai and bi, where i = 1, 2, 3.
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The angular displacements of the DC electrical machines are denoted by ϕi and the
rotors have the inertia moment Ji and carry the unbalanced masses mi situated at a distance
ri from their axis, respectively (with i = 1, 2, 3). However, either from the manufacturer or
from the experiments, the characteristic driving torque of a DC electrical machine for each
given power level is assumed to be well known [16,24–26].

2.2. Mathematical Modelling

The PDEs describing the dynamics of the studied system are obtained from the
Hamilton principle, which is carried by the writing of the different expressions of elastic
potential and the external and the kinetic energies of the considered system [15,27–29].
Thus, in the case of a rectangular plate of length a, width b, and thickness h, with the density
ρ, and a Young’s modulus E and a Poisson’s ratio ν, where a DC electrical machine with
limited power supply is mounted, one obtains the following equations:(

ρh +
∑
i

mi

ab + Mi

)
∂2W
∂t2 + λ ∂W

∂t + Eh3

12(1−ν2)

[
∂4W
∂x4 + 2 ∂2W

∂x2
∂2W
∂y2 + ∂4W

∂y4

]
=

∑
i

[
H(t− ti)× Sxi × Syi ×

(
Mig + miri

ab

((
∂ϕi
∂t

)2
sin ϕi −

∂2 ϕi
∂t2 cos ϕi

))]
,(

Ji + mir2
i
) ∂2 ϕi

∂t2 − Ti

(
∂ϕi
∂t

)
+ mirig cos ϕi +

miri
2

∂2W
∂t2 cos ϕi = 0,

(1)

where Sxi = H(x− x1i)− H(x− x2i), Syi = H(y− y1i)− H(y− y2i), and i = 1, 2, 3. W is
the transversal displacement of the plate in the z-direction, t is the variable time, Ti(ϕ̇i)
represents the resulting momentum of each electrical machine, and λ is the damping
coefficient. H is the step function, and x1i, x2i, y1i, and y2i are the coordinates indicating the
position of the DC electrical machines on the plate. ri, mi, and Mi are the eccentricity, the
unbalanced mass, and the mass per unit of surface of the i electrical machine, respectively,
while g is the intensity of the gravity and ti is the functioning delay imposed by the DC
electrical machines.

Herein, the studied DC electrical machines are modelled by taking into account
electrical features of a common electrical machine, such as the armature winding resistance
R and the inductance L. The DC electrical machine presented results from our expectation
that the electrical time constant L/R is small enough not to have a significant impact on
the dynamics of the entire mechanical system (where L and R are the inductance and the
resistance of the electrical machine, respectively). For this, the dynamical equation of the
controlled torque is presented in Appendix A. The controlled torque of each unbalanced
rotor is assumed to be of linear form by neglecting only the electrical machine inductance
effect [16,24–26], and is presented as follows:

Ti(ϕ̇i) = u1i − v2i ϕ̇i, with i = 1, 2 or 3. (2)

This mathematical modelling of the resulting torque of the DC electrical machines
refers to an asynchronous AC electrical machine and the assumption of neglecting in-
ductance in the mathematical model. In this case, the constants u1i and v2i are related to
voltage applied across the armature of the DC electrical machine and a constant for each
model of DC electrical machine is considered (related to physical characteristics of the
corresponding electrical machine), respectively. We assume the dimensionless variables,
written as follows:

U =
W
a

; τ =
t

T0
; τi =

ti
T0

; ȳ =
y
a

; x̄ =
x
a

; (3)

where T0 and a refer to the reference time and length, respectively. Taking into account
the boundary conditions of the plate (simply supported plate), which assumes that there
is no displacement at edges (W(0, y, t) = W(a, y, t) = 0 and W(x, 0, t) = W(x, b, t) = 0)
and no flexural momentum at (Mx(x = 0) = Mx(x = a) = 0 =⇒ ( ∂2W

∂x2 + ν ∂2W
∂y2 )|x=0 =
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( ∂2W
∂x2 + ν ∂2W

∂y2 )|x=a = 0 and My(y = 0) = My(y = b) = 0 =⇒ ( ∂2W
∂y2 + ν ∂2W

∂x2 )|y=0 =

( ∂2W
∂y2 + ν ∂2W

∂x2 )|y=b = 0).
Thus, by displaying those conditions, the transversal displacement of the plate is

written as [11]:

U(x, y, t) =
∞

∑
k=1

∞

∑
l=1

Yk,l(t) sin(kπx̄) sin(lπȳ) (4)

where Yk,l(t) are the generalized coordinates or the spatial part of U(x, y, t) and (k, l) refers
to natural mode, where k and l are nodal lines along the x- and y-directions, respectively.

By replacing Equation (4) with Equation (1) and exploiting the orthogonality properties
of the eigenfunctions, one can derive the modal equations as follows:

Ÿk,l(τ) + 2γẎk,l(τ) + ω2
k,lYk,l(τ) = αi(τ − τi)

(
ϕ̇2

i sin ϕi − ϕ̈i cos ϕi
)
+ βi(τ − τi)

ϕ̈i = T′(ϕ̇i) + Γi cos ϕi + σi,klŸk,l(τ) cos ϕi
(5)

where i = 1, 2, 3 and

Ẏk,l =
∂Yk,l

∂t
, ϕ̇ =

dϕ

dt
, ϕ̈ =

d2 ϕ

dt2 , Ÿk,l =
∂2Yk,l

∂t2 . (6)

3. Numerical Investigation of Dynamics

This section presents an overview of the numerical solution of the system Equation (5).
In order to understand the dynamical response of the system, these equations are integrated
numerically with a fourth-order Runge–Kutta scheme. We displayed cases where we have
two and three DC electrical machines resting on the rectangular plate, respectively. In each
case, the various possibilities that could happen are studied.

For numerical analysis, we considered a rectangular plate with the following physical
and mechanical parameters presented in Table 1.

Table 1. Physical and mechanical parameters of the rectangular plate studied.

Quantities Notations Values Units

Dimensions (length, width, thickness) a × b × h 1239 × 619.5 × 5 mm3

Density ρ 2700 kg/m3

Young modulus E 6.9 × 1010 N/m2

Poisson ratio ν 0.33 -

3.1. Dynamic Response of Two DC Electrical Machines

We consider here two DC electrical machines resting and acting on a mechanical
structure. By listing physical characteristics of the system, we can enumerate four situations
for which the dynamics can be investigated [21].

We first assume the chosen DC electrical machines approximately identical and the
physical characteristics leading to coefficients u1i = 250 N·m and v2i = 1.67 N·m·s/rad (with
i = 1, 2) respectively. Here, T0 = 0.05 s and a = 1.239 m represent the reference values for
the time and distance, respectively. The other electrical machines characteristics are given
as follows in Table 2.

Table 2. Parameters of each DC electrical machine.

Quantities Notations Values Units

Unbalanced mass mi 173.4 g
Excentricity ri 14.3 cm

electrical machine mass Mi 1740 g
Inertia moment Ji 0.01 kg·m2
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By exploiting values presented in both tables and taking into account the relation pre-
sented in Appendix B, we display the values of numerical parameters present in Equation (5):
σ2 = σ1 = −4.99 × 10−2, Γ2 = Γ1 = −0.115, β2 = β1 = 0.211, a02 = a01 = 3.21,
b02 = b01 = 1.62.

Figures 3 and 4 show the variation of times for the velocity difference between the DC
electrical machines and the phase difference for a precise value of the natural frequency ω11
of the plate in the first mode in each direction. We note that, for each of them, τ1 = 0, but
with different values of the normalized delay τ2. The study was restricted here to the first
mode of vibration in each direction of the plate because it has been proven [30] that it is the
place of a high amplitude of vibration in the system. We note that it has been shown [21]
that low and high values of the natural frequency of the plate lead to anti-phase and phase
synchronization between the electrical machines, respectively.

Figures 3 and 4 were obtained for two values of the natural frequency of the plate,
ω11 = 2.73 and ω11 = 0.873, respectively. It was observed in these curves that, when
the second DC electrical machine started to function with a delay τ2, both DC electrical
machines quickly synchronized, the faster for an increased delay. Hence, this lead us
to conclude that late switching on of the second electrical machine reduces the time to
reach a synchronous state between electrical machines. In particular, when the natural
frequency of the plate was low, we could note that, when the phase difference was equal to
π, the synchronization state was quickly reached. Thus, we conclude that the physical and
mechanical characteristics of the plate (related to natural frequency) have an influence on
the time to reach the synchronization state between the electrical machines. The mastery of
those parameters benefit in both senses because they contribute to the knowledge of phase
differences and impact the fast self-synchronizations between the DC electrical machines.

Figure 3. Representation of velocity difference (a) and phase difference (b) between the two DC
electrical machines as a function of dimensionless time computed with α1 = α2 = 0.201 when the
main frequency of the structure is ω11 = 2.73. The second DC electrical machine starts with different
delays: τ2 = 100 (red); τ2 = 200 (black); τ2 = 300 (blue), while the first is already on. The electrical
machines are already fixed on the rectangular plate before switching on the first electrical machine
and are regularly spaced on it. They rotate in the same direction when they are switched on.

Figures 3a and 4a represent the velocity difference between the DC electrical machines
for three different values of the time delay with values for the main frequency of the
structures ω11 = 2.73 and ω11 = 0.873, respectively. There, we can observe that this
velocity difference oscillates around zero; meaning that the DC electrical machines are in
a synchronization state. However, in Figures 3b and 4b, we show the phase difference
between DC electrical machines already synchronized with values 2π and π, respectively.
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The zooms presented aim to better appreciate the synchronization phenomenon (Figure 4b)
and demonstrate the effect of the time delay on the time to reach a synchronous state
(Figures 3a,b and 4b).

Figure 4. Representation of velocity difference (a) and phase difference (b) between the two DC
electrical machines as a function of dimensionless time computed with α1 = α2 = 0.201 when the
main frequency of the structure is ω11 = 0.873. The second DC electrical machine starts with a delay:
τ2 = 100 (red); τ2 = 200 (black); τ2 = 300 (blue), while the first electrical machine is already on.
The DC electrical machines are already fixed on the rectangular plate before switching on the first
electrical machine and are regularly spaced on it. They rotate in the same direction when they are
switched on.

However, from Figure 5, we note that, whatever the value of the starting delay imposed
to the second DC electrical machine, it doesn’t affect the plate amplitude of vibration in the
case of the high natural frequency of the plate. Nevertheless, we denote the presence of a
high amplitude of plate vibration when the phase difference ϕ2 − ϕ1 = 2π is compared to
the case of an anti-phase (ϕ2 − ϕ1 = π obtained with low value of the natural frequency)
synchronization between the sources, which is in accordance with previous results [21].

3.2. Dynamic Response of Three DC Electrical Machines

Here, we faced a situation where the first and third electrical machines were sym-
metrical compared to the second machine placed between them. This inevitably affected
the external forces induced by electrical machines to the plate represented in the ODEs
because coefficients αi were not more identical. However, the starting delay imposed in
the DC electrical machines can be introduced in different ways. Thus, we considered three
different situations:

1. The first and the second electrical machines start at the same time τ1 = τ2 = 0 and the
third starts later at τ3 6= 0,

2. The first and the third electrical machine start at the same time τ1 = τ3 = 0 and the
second starts later at τ2 6= 0,

3. The first electrical machine starts at τ1 = 0 and the other two start later at different
time τ2 6= τ3.
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Figure 5. Representation of plate amplitude vibration for two values of the main frequency of the
plate ω11 = 2.73 (a) and ω11 = 0.873 (b) in view of their comparison. The first DC electrical machine
is already on when the second starts with a delay: τ2 = 100 (red); τ2 = 200 (black); τ2 = 300 (blue).
They are computed when α1 = α2 = 0.201. In addition, electrical machines are already fixed on the
rectangular plate before switching on the first electrical machine and are regularly spaced on it. They
rotate in the same direction when they are switched on.

When we consider three DC electrical machines mounted on a mechanical structure,
we can take into account physical characteristics of the system. Thus, we could enumerate
six various situations, for which the dynamics can be studied [31]. Thus, in order to show
the effect of the starting delay of the electrical machines on the time required for synchro-
nization, we focused on the case where the DC electrical machines were synchronized
(identical electrical machine characteristics and same voltage supply). We mention once
more that numerical solutions were provided for the fundamental mode in each direction
of the plate and electrical machines rotated in the same direction.

Figures 6 and 7 show the phase difference between the electrical machines in the first
case mentioned above, corresponding respectively to ω11 = 0.873 and ω11 = 2.83. We
note from these figures that, for ω11 = 2.83 (Figure 7), the observations made regarding
the time to achieve synchronization when we had two DC electrical machines were the
same. However, with ω11 = 0.873 (Figure 7), the starting time of the third electrical
machine affected the time required to achieve synchronization of the three DC electrical
machines. Thus, from the start of the third DC electrical machine, the three DC electrical
machines caused synchronization sooner. This can be explained by the fact that the third
DC started when the two others were already synchronized. One can conclude that the
natural frequency of the plate (by its physical and mechanical characteristics) contributes
efficiently to the rapid self-synchronization between the DC electrical machines. Moreover,
we can note that energy transfer was quickly realized between the sources for a high value
of the natural frequency of the plate.

In the second case mentioned above, the DC electrical machine placed between the first
and the third started with a delay. As shown, the time delay caused late self-synchronization
between the DC electrical machines for a low value of the natural frequency, thus we
restricted our study to this case.
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Figure 6. Representation of the phase difference (a–c) between the three electrical machines and
velocity difference between the DC1 and DC3 (d) for a main frequency of the structure of ω11 = 0.873.
The first and the second DC electrical machines start at the same moment τ1 = τ2 = 0, while the
third starts with a delay: τ3 = 100 (red); τ3 = 200 (black); τ3 = 300 (blue). They are computed with
α1 = α3 = 0.056 and α2 = 0.088. In addition, electrical machines are already fixed on the rectangular
plate before switching on the first electrical machine and are regularly spaced on it. They rotate in the
same direction when they are switched on.

From Figure 8, obtained with a natural frequency of the plate ω11 = 0.873, it is
observed that the three DC electrical machines entered in a synchronization state at the
same time regardless of the delay imposed on the second DC electrical machine. Comparing
Figure 6a–c to Figure 8a–c, we note that, apart from the influence of the delay already
observed, the position occupied by the electrical machine which started with a delay could
also influence the synchronization time of the three electrical machines. For ω11 = 2.73, all
the DC electrical machines were in phase synchronization, and the previous observations
were also made.
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Figure 7. Representation of the phase difference (a–c) between the three electrical machines and
velocity difference between the DC1 and DC3 (d) for a main frequency of the structure of ω11 = 2.73.
The first and second DC electrical machines start at the same moment τ1 = τ2 = 0, while the third
starts with a delay: τ3 = 100 (red); τ3 = 200 (black); τ3 = 300 (blue). They are computed with
α1 = α3 = 0.056 and α2 = 0.088. In addition, electrical machines are already fixed on the rectangular
plate before switching on the first electrical machine and are regularly spaced on it. They rotate in the
same direction when they are switched on.

In order to confirm incidence of the area occupied by the DC electrical machines on
the plate amplitude when they were started with a delay, we present in Figure 9 the phase
difference between the electrical machines and the plate vibration amplitudes. These figures
were obtained in the case where τ1 = 0, τ2 6= τ3. It can be scene from these curves that
by allowing the second DC electrical machine to start before the third leads to obtaining
an earlier synchronization state between the electrical machines (curve in red). However,
when the second and third electrical machines started at the same moment, we obtained a
later synchronous state of the DC electrical machines (curve in black). While seeking to
understand what happens to the plate amplitude of vibrations, we observed that earlier
synchronization appearing between electrical machines lead to low values of the amplitude
vibration in the mechanical structure. Furthermore, we note that, when the second electrical
machine started later than the third, there was a high amplitude of vibration in the plate.
This can be explained by the position of the second electrical machine and the fact that it
transfers its energy with the two others when they are already in a synchronous state.
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As known, in civil and mechanical engineering, we are usually faced with a situation
in which one or several rotating machines could rest on a mechanical structure. This result
could be useful for engineers in the manufacturing process and also the stability of the
whole system. Beyond this fact, when faced with low or high amplitude of vibration in a
mechanical system, it is also crucial to seek for stability of the whole studied system.

Figure 8. Representation of the phase difference (a–c) between the three DC electrical machines and
plate amplitude of vibration (d) for a main frequency of the structure of ω11 = 0.873. The first and
the third DC electrical machines start at the same moment τ1 = τ3 = 0, while the second starts with
a delay when τ2 = 100 (red); τ2 = 200 (black); τ2 = 300 (blue). The zoom on plate amplitude of
vibration leads to the appreciation of delay effects on amplitude of vibration. They are computed with
α1 = α3 = 0.056 and α2 = 0.088. In addition, electrical machines are already fixed on the rectangular
plate before switching on the first electrical machine and are regularly spaced on it. They rotate in the
same direction when they are switched on.
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Figure 9. Representation of the phase difference (a–c) between the three DC electrical machines and
plate amplitude of vibration (d) for a main frequency of the structure of ω11 = 0.873. Here, the second
and third electrical machines start later at different moments, τ2 = 1

2 τ3 = 200 (red); τ2 = τ3 = 200
(black); τ2 = 2τ3 = 400 (blue), when the first is already on (τ1 = 0). The zoom on plate amplitude of
vibration leads to the appreciation of delay effects on amplitude of vibration. They are computed with
α1 = α3 = 0.056 and α2 = 0.088. In addition, electrical machines are already fixed on the rectangular
plate before switching on the first electrical machine and are regularly spaced on it. They rotate in the
same direction when they are switched on.

4. Stability Analysis of the System

The theory of dynamical systems is one of the most commonly used keys to solve and
understand modern problems occurring in physics, chemistry, biology, and other natural
sciences. However, a large variety of mechanical systems composed of a pendulum [32–34]
or of several coupled pendula [35,36] commonly offer a synchronous dynamics. These
dynamics might benefit the structure connected to those pendula in terms of reducing the
amplitude of vibration.

Beyond the synchronization state appearing between the DC electrical machines
mounted on a rectangular plate, it is primordial to focus on the stability of the synchronized
system in order to avoid disasters as much as possible. A such study was done in the past
for a rectangular plate supporting a non-ideal source with an electromechanical control [30].
In addition, there are several papers devoted to stability or multistability of rotors or
pendula supported by structures or vibrating systems, where the relevance the study is not
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more to demonstrate [37–39]. However, Zhang et al. [40] derived the stability criterion of
synchronous states and automatically satisfied the generalized Lyapunov criterion and the
Routh–Hurwitz criterion. Later, the stability analysis of the wheel/rail contact dynamics in
a curve was performed by using an equivalent point contact model combined with wheel
and rail modal bases [41].

In this section, we investigate the stability of the rectangular plate carrying two DC
electrical machines, which can enter into phase and opposite synchronization. Therefore, to
achieve the goal, we extracted the Jacobian matrix related to the dynamics in Equation (5).
Then, they were rewritten as presented in Appendix A with i = 1, 2.

Assuming that Ẏ11 = f1(Y11, Z, ϕ1, V1, ϕ2, V2), Ż = f2(Y11, Z, ϕ1, V1, ϕ2, V2), ϕ̇1 =
f3(Y11, Z, ϕ1, V1, ϕ2, V2), V̇1 = f4(Y11, Z, ϕ1, V1, ϕ2, V2), ϕ̇1 = f5(Y11, Z, ϕ1, V1, ϕ2, V2), V̇2 =
f6(Y11, Z, ϕ1, V1, ϕ2, V2), we derived the fixed point of the system by solving all the func-
tions fi equal to zero (with i = 1, ..., 6).

Thus, we obtained (Y110, Z0, ϕ10, V10, ϕ20, V20) = ( Γ1+Γ2
2 , 0,

√
2(1 + a01

Γ1
), 0,

√
2(1 + a02

Γ2
),

0) with the following conditions (where i = 1, 2):

1−∑
i

αiσicos2 ϕi 6= 0,

−1 ≤ −a0i
Γi
≤ 1.

(7)

The Jacobian matrix obtained around the previous fixed point was derived by evaluating
the derivative of the functions fi, with respect to all general coordinates Y11, Z, ϕ1, V1, ϕ2, V2.
The polynomial characteristic equation resulting from this matrix is given as follows:

P(s) = s6 + a1s5 + a2s4 + a3s3 + a4s2 + a5s + a6, (8)

According to the Routh–Hurwitz criterion [42], the system is stable if the following
conditions are satisfied:

ai > 0, i = 1, ..., 6,
a1a2 > a3,
a1a2a3 > a4a2

1 + a2
3,

a1a2a3a4 + 2a1a4a5 + a2a3a5 > a1a2
2a5 + a2

1a2
4 + a2

3a4 + a2
5,

a1a2a3a4a5 + 2a2a5a6a2
1 + a4a2

1a3a6 + 2a1a4a2
5 + a3

3a6 + a3a2a2
5 > a1a2a2

3a6 + a1a2
2a2

5 + a2
1a2

4a5
+a2

6a3
1 + 3a1a6a3a5 + a2

3a4a5 + a3
5.

The exploitation of these previous conditions leads to obtain the stability chart dis-
played in Figure 10, where we display the damping coefficient of the system 2γ as a function
of the natural frequency of the plate in the first mode in each direction ω11.

There, we observed the presence of two regions. Thus, the whole system was stable
around the obtained fixed point in the dark region with points, because it was the place
where all the previous conditions were well respected. The white region represents the
place of instability in the system. Note that the present stability chart was in accordance
with the numerical values used in this paper. To confirm results obtained with the stability
chart, we display in Figure 11, in view of their comparison, the plate displacement for two
couples of values (ω11; 2γ) in each domain.

Thus, we can observe that, in the instability domain (Figure 11ii), plate amplitude of
vibrations are more than 10 times that in the stability domain.

The analysis of this result lead us to conclude that for low values of the natural
frequency of the plate, even with strong damping, the system is unstable. While with high
value of the natural frequency of the plate, the system is stable even with low damping.
This could be confirmed by plotting, in Figure 12, the bifurcation diagram of the system
around the obtained fixed point. One can observe that, for high values of the natural
frequency of the plate, in the first mode in each direction, the system is more stable. This is
in accordance with the domain in black, shown in Figure 10, which is more important, but
it increases the natural frequency of the plate. We also observe the predominance of high
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amplitude for small values of the natural frequency, which is confirmed in the white region
of the stability chart.
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Figure 10. Stability chart of the system around the fixed point (Y110, Z0, ϕ10, V10, ϕ20, V20) obtained
by respecting the Routh–Hurwitz criterion and conditions presented in Equation (7). It shows the
region depending on the natural frequency of the rectangular plate and the damping coefficient,
where we could obtain stability of the system around the obtained fixed point. It is computed for
α1 = α2 = 0.201, when the electrical machines are rotating in the same direction and is regularly
spaced on the rectangular plate.

Figure 11: Representation of the plate displacement for two couples of value of the stability chart in view of
their comparison. The first one (i) is obtained in the stability zone in black for (ω11 = 8.1906, 2γ = 0.49),
the second one (ii) is plotted in the instability domain for (ω11 = 2.7302, 2γ = 0.000984870).
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Figure 12: Bifurcation diagram of the system for 2γ = 0.000984870 confirming the stability region obtained
for increasing values of the natural frequency of the plate in the first mode in each direction.

21

Figure 11. Representation of the plate displacement for two couples of value of the stability
chart in view of their comparison. The first value (i) is obtained in the stability zone in black
for (ω11 = 8.1906, 2γ = 0.49), while the second one (ii) is plotted in the instability domain for
(ω11 = 2.7302, 2γ = 0.000984870).

Hence, the physical and mechanical parameters of the plate (density, young modulus,
thickness, length, width), which are strongly related to the natural frequency of the plate,
should be well chosen by the manipulator in order to avoid instability in the system. In
addition, the environment where the system is placed and other factors influencing the
damping of the system should be well chosen to avoid instability.
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Figure 12. Bifurcation diagram of the system for 2γ = 0.000984870, confirming the stability region
obtained for increasing values of the natural frequency of the plate in the first mode in each direction.

5. Conclusions

This paper has presented the effect of time delay input imposed on one or two DC
electrical machines fixed on a rectangular plate on their synchronization. We investigate
the dynamics modal equations of a rectangular plate carrying two or three DC electrical
machines through numerical simulation. It it shown that, in the case of two DC electrical
machines, the time delay input of the second electrical machine considerably affects the
time when the electrical machines are synchronized, since self-synchronization happens
earlier. Moreover, we observe that the physical and mechanical characteristics of the plate
(related to natural frequency) have an influence on the time to reach the synchronization
state between the electrical machines. In the case of three DC electrical machines, the
previous observation concerning the time delay input of the second electrical machine was
done, and it is observed that, when the natural frequency of the structure increased, the
contrary observation was made.

Thus, the mechanical characteristics of the plate, such as the Young’s modulus and
the physical parameters, such as density and dimensions, have an influence on the time to
reach the synchronous state between DC electrical machines. This result confirms previous
findings on the self-synchronization between DC electrical machines [21].

Despite the fact that we observe the influence of the position occupied by electrical
machines on the synchronization time of three rotating machines, the time delay imposed
on one or two electrical machines also affects the amplitude of the rectangular plate. The
analytical method used included a stability analysis of the system when the two DC
electrical machines were synchronized. In this sense, a fixed point was obtained with some
conditions, and the stability conditions of the system were also presented. It follows that,
with respected conditions, the system is always stable with simultaneous high values of
the natural frequency of the plate and low damping.

The relevance of this paper comes from the effect of the delayed start of DC electrical
machines, leading to an earlier or later synchronization state and its influence on the
plate’s vibration amplitude. This fast and late synchronization occurrence is explained by
the energy transfer appearing between unbalanced electrical machines. Stability analysis
conducted allows us to determine with conditions a fixed point and provides a domain of
values (2γ; ω), where we can get a stability state of the system for low and high amplitude
of the plate’s vibration.
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Appendix A

The DC electrical machines are modelled taking into account electrical features, such
as the armature winding resistance R and the inductance L. Thus U, Km, and Ke represent
the applied voltage, the mechanical and electrical constants relative to the torque T, and
the back-EMF effect of each electrical machine, respectively.

L
Km

Ṫ +
R

Km
T + Ke ϕ̇ = U. (A1)

The dimensionless variables and other constants are given by:

a0i =
T2

0 u1i
(Ji+mir2

i )
; b0i =

T0v2i
(Ji+mir2

i )
; 2γ = λT0(

ρh+ Mt
ab +Mi

) ; T′i (ϕ̇) = a0i − b0i ϕ̇; Γi = −
mi gT2

0 ri
2(Ji+mir2

i )
;

ω2
k,l(τ) =

Eh3T2
0 π4

12(1−ν2)
(

ρh+ Mt
ab +Mi

)[( k
a

)2
+
(

l
b

)2
]2

; σi,kl = − miria
klπ2(Ji+mir2

i )(1−(−1)k)(1−(−1)l)
;

αi(τ − τi) =
4miri H(τ−τi)

aπ2χiψi

(
ρh+ Mt

ab +Mi

) [cos( kπ
a x1i)− cos( kπ

a x2i)][cos( lπ
b y1i)− cos( lπ

b y2i)];

βi(τ − τi) =
4Mi gT2

0 H(τ−τi)

a2bπ2χiψi

(
ρh+ Mt

ab +Mi

) [cos( kπ
a x1i)− cos( kπ

a x2i)][cos( lπ
b y1i)− cos( lπ

b y2i)];

where Mt = ∑
i

mi, T0 is the reference time, H is the heaviside function, and

χi = x2i − x1i, ψi = y2i − y1i. (A2)

Appendix B

The algebraic equations of the system are rewritten as follows for each general coordi-
nate:



Ẏ11 = Z, (a)

Ż =
−2γZ−ω2Y11+∑

i
αi ϕ̇i

2sinϕi−αiΓicos2 ϕi−αi(a0i−b0i ϕ̇i)cosϕi+βi

1−∑
i

αiσicos2 ϕi
, (b)

ϕ̇1 = V1, (c)

V̇1 = a01 − b01V1 + Γ1cosϕ1 −
−2γZ−ω2Y11+∑

i
αi ϕ̇i

2sinϕi−αiΓicos2 ϕi−αi(a0i−b0i ϕ̇i)cosϕi+βi

1−∑
i

αiσicos2 ϕi
σ1cosϕ1, (d)

ϕ̇2 = V2, (e)

V̇2 = a02 − b02V2 + Γ2cosϕ2 −
−2γZ−ω2Y11+∑

i
αi ϕ̇i

2sinϕi−αiΓicos2 ϕi−αi(a0i−b0i ϕ̇i)cosϕi+βi

1−∑
i

αiσicos2 ϕi
σ2cosϕ2, (f)

(A3)
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The Jacobian matrix obtained from the precedent algebraic equations is given by:

J =



0 1 0 0 0 0
A B C D E F
0 0 0 1 0 0
G H I K L M
0 0 0 0 0 1
N P Q R S T

. (A4)

The elements of the matrix are presented as follows:

A = −ω2

∆ B = −2γ
∆ C = −α1a01

∆

√
1− ( a01

Γ1
)2

D = −α1a01b01
∆Γ1

E = −α2a02
∆

√
1− ( a02

Γ2
)2 F = −α2a02b02

∆Γ2

G = −σ1a02ω2

∆Γ1
H = −λσ1a01

∆Γ1
I = −(Γ1 +

α1σ1a2
01

∆Γ1
)
√

1− ( a01
Γ1
)2

K = −b1 −
α1σ1b1a2

01
∆Γ2

1
L =

−α1σ1a2
01

∆Γ1

√
1− ( a01

Γ1
)2 M = −a01a02α2σ1b02

∆Γ1Γ2

N = −σ2a02ω2

∆Γ2
P = −σ2a02λ

∆Γ2
Q = −α1σ2a01a02

∆Γ2

√
1− ( a01

Γ1
)2

R = −σ2a01a02α1b01
∆Γ1Γ2

S = −(Γ2 +
σ2α2a2

02
∆Γ2

)
√

1− ( a02
Γ2
)2 T = −(b02 +

α2σ2b02a2
02

∆Γ2
2

)

(A5)

where ∆ = 1− (
α1σ1a2

01
Γ1

+
α2σ2a2

02
Γ2

).
The coefficients of the characteristics polynomial equation are:

a1 = −T − K− B, a2 = −PF− RM− S + TK− TB− I − HD + KB− A,
a3 = −NF− PDM− PE−QM− RHF− RL + PFK + RMB + SK + SB + IT + THD + TA−
GD− HC + IB + KA,
a4 = −GC + IPF− NE−QL− NDM− PCM− PDL−QHF− RGF− RHE + IA + SA + NFK
+PEK + QMB + RLB + IS + RMA + SHD− SKB + TGD + THC− ITB− TKA,
a5 = −NCM− NDL− PCL−QGF−QHE− RGE + NEK + QLB− ITA + INF + QMA + RLA
+TGC− ISB + SGD + SHC + IPE− SKA,
a6 = −NCL−QGE + INE + QLA + SGC− ISA.

(A6)
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