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Abstract. In the field of metal forming the effect of springback is of great importance and is one 

of the research areas. The amount of springback depends substantially on the materials’ elastic 

behavior and the degree of strain hardening. Former studies showed that Young’s modulus is 

influenced by strain hardening and thus detailed knowledge about this correlation is necessary. 

For an accurate description of strain dependent Young’s modulus, a generally valid and 

consistent formulation in terms of continuum mechanics is required. To reconsider existing 

formulations, a close examination of the additive decomposition of elastic and plastic strains is 

necessary that is revealed within this study. Cyclic tensile tests with mild steel DX56 are 

performed to investigate the strain dependency of Young’s modulus experimentally. The 

theoretically derived formulation is applied to the experimental results. On this basis different 

determination methods for identifying Young’s modulus are utilized and finally analyzed in 

terms of springback prediction. Finally a new strategy to predict springback is proposed. 

1.  Introduction 

High strength steel is common in vehicle body manufacturing, because of its high yield stress compared 

to its density [1]. However, the high yield stress to Young’s modulus ratio of this steel grades possibly 

leads to critical geometric deviations caused by springback [2]. Springback occurs after opening the 

tools of a forming process, because of releasing stored elastic energy. This elastic recovery is one of the 

challenges in the metal forming industry [3]. The extent of springback is mainly influenced by the 

elastic-plastic behavior [4]. Hence, many former studies investigated the behavior of elastic recovery 

showing a dependency between strain hardening and Young’s modulus. Morestin and Boivin [5] 

investigated the variation of Young’s modulus with increasing prestrain in cyclic tensile-compression 

tests for several steel grades. Their results show a decrease of Young’s modulus up to 20 % in relation 

to the work hardening. Findings of Andar et al. [6] reveal similar behavior. Hence, for precise prediction 

of springback using FE analysis, deep understanding of Young’s modulus’ strain dependency is 

mandatory. Cleveland and Ghosh [7] showed in cyclic tensile tests that the elastic unloading  behaves 

nonlinear in contrast to Hooke’s law. There are various conjectures and explanations for this nonlinear 

behavior [7–9]. Depending on the determination method, the nonlinearity influences the value of 

Young’s modulus significantly [10]. A consistent determination of Young’s modulus is possible based 

on suitable strain and stress measures only. Thus, within this study a continuum mechanics based theory 

for the formulation of Young’s modulus is established. Based on results of cyclic tensile tests with mild 

steel DX56, different methods to determine Young’s modulus are used and compared. Furthermore, a 

data-based method to predict elastic recovery is shown incorporating experimental results of cyclic 

tensile tests and avoiding an explicit determination of Young’s modulus. 
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2.  Theoretical description of elasticity 

For the modeling of an elastic-plastic material behavior, a consistent additive decomposition of the 

total strain into elastic and plastic strain is essential. Therefore, the multiplicative decomposition of the 

deformation gradient 𝑭 into elastic and plastic portions is utilized (eq. 1). It is adequate to add an 

intermediate configuration ℬ 
𝐼  between reference ℬ 

0  and current configuration ℬ, as shown in fig. 1 

[11]. A consistent additive decomposition of strains can be shown for the Euler-Almansi strain 

tensor 𝜺𝑨
 . It acts on the current configuration and is defined as shown in eq. 2. 

𝑭 = 𝑭𝑒 ∙ 𝑭𝑝  (1) 

𝜺A
 =

1

2
(𝟏 − 𝑭−𝑇 ∙ 𝑭−1) =

1

2
(𝟏 − 𝑽−2)  

(2) 

An elastic pull back of this covariant strain tensor from ℬ to ℬ 
𝐼  leads to 

an additive decomposition of the strain tensor [12]:  

𝜺A
𝐼 = 𝑭𝑒

𝑇 ∙ 𝜺A
 ∙ 𝑭𝒆 =

1

2
(𝑭𝑒

𝑇 ∙ 𝑭𝒆 − 𝑭𝑝
−𝑇 ∙ 𝑭𝑝

−1)  ⟹ 𝜺𝐴
𝐼 = 𝜺𝑒𝐴

𝐼 + 𝜺𝑝𝐴
𝐼   

with 𝜺𝑒𝐴
𝐼 =

1

2
(𝑭𝑒

𝑇 ∙ 𝑭𝒆 − 𝟏) and 𝜺𝑝𝐴
𝐼 =

1

2
(𝟏 − 𝑭𝑝

−𝑇 ∙ 𝑭𝑝
−1)  

(3)  

In addition to the Euler-Almansi strain tensor, the logarithmic strain 

tensor or Hencky strain tensor (eq. 4) is a common strain measure for 

modeling plasticity in metal forming [13]. 

𝜺H
 =

1

2
 ln(𝑭𝑇 ∙ 𝑭) =  ln(𝑽)  

(4) 

A simple way to show the possibility of additive decomposition for the Hencky strain tensor is to 

compare its Taylor series (eq. 6) with the Taylor series of the Euler-Almansi strain tensor (eq. 5) 

around 𝟏 respectively. It is obvious that for small strains the terms of higher order can be neglected. 

Then, the Taylor series of Euler-Almansi and Hencky strain tensors are equivalent. Hence, the Hencky 

strain tensor can be used for gauging small Euler-Almansi strains. 

𝑇 (
1

2
(𝟏 − 𝑽−2); 𝟏) = (𝑽 − 𝟏) −

3

2
(𝑽 − 𝟏)2 + 2(𝑽 − 𝟏)3 − ⋯  

(5) 

𝑇(ln(𝑽); 𝟏) = (𝑽 − 𝟏) −
1

2
(𝑽 − 𝟏)2 +

1

3
(𝑽 − 𝟏)3 − ⋯ for |𝑽 − 𝟏| < 𝟏  

(6) 

In metal forming elastic strains can be considered as small strains. Consequently, the elastic Euler-

Almansi strain tensor can be represented by the elastic Hencky strain tensor ( 𝜺𝑒𝐴
𝐼 ≈ 𝜺𝑒𝐻

𝐼 ) and the 

additive decomposition of the Hencky tensor is possible: 

𝜺𝑝𝐻
𝐼 = 𝜺𝐻

𝐼 − 𝜺𝑒𝐻
𝐼   (7) 

Small elastic strains also allow to model metal elasticity as a linear-elastic isotropic solid, also known 

as Hooke solid. This elastic constitutive tensor maps the linearized elastic strain tensor (eq. 8) to the 

Cauchy stress 𝝈 as described in eq. 9.  

𝜺𝑒lin
 =

1

2
(𝑭𝑒

𝑇 + 𝑭𝒆) − 𝟏  
(8) 

𝝈 =
𝐸

(1+𝜈)
( 𝜺𝑒lin

 +
𝜈

(1−2𝜈)
tr( 𝜺𝑒lin

 )𝟏)  (9) 

In eq. 9 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio. For homogeneous uniaxial deformations 

caused by a stress 𝜎11, the uniaxial Hooke law results [11]: 

𝜎11 = 𝐸 𝜀𝑒11lin
   

(10) 

For small strains, different strain measures are almost equal, so it holds: 

𝜎11 = 𝐸 𝜀𝑒11 ⟹ 𝜎 =: 𝐸 𝜀𝑒𝐻
𝐼

𝐻
𝐼   

(11) 

In addition, using Cauchy stress is appropriate, because it is work conjugate for both Euler-Almansi and 

Hencky strain measures [14]. Eq. 11 shows the possibility to determine a strain dependent elastic 

modulus consistently using a cyclic uniaxial tensile test. Based on the force 𝐹 and longitudinal 

Figure 1. Configurations in 

elastic-plastic formulation. 
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displacement 𝑙, the Cauchy stress 𝜎 is calculated as the force divided by the actual cross sectional area 

perpendicular to the force vector. Constant volume is assumed for the whole test (eq. 12). In chapter 3.2, 

the error that occurs due to this assumption is examined more closely. 
d𝑉

d 𝑉 
0 = det(𝑭) = 1 ⟹  𝜎 =

𝐹

𝐴
=

1

det(𝑭)

𝐹

𝐴 
0

𝑙

𝑙 
0 =

𝐹

𝐴 
0

𝑙

𝑙 
0    (12) 

For the uniaxial tensile test the total Hencky strains are calculated as follows: 

𝜀𝑒𝐻
 = ln (

𝑙

𝑙 
0 )   (13) 

   Finally, Young’s modulus is determined according to (compare fig. 2): 

𝐸(𝑙) =
𝜎

𝜀𝑒𝐻
𝐼 =  

𝐹

𝐴 
0

𝑙

𝑙 
0

1

ln(
𝑙

𝑙 
𝐼 )

  (14) 

By conducting cyclic loadings at various prestrains, it is possible to 

calculate a strain dependent Young’s modulus 𝐸( 𝜀𝐻
 ). Therewith, it is 

possible to determine a flow curve 𝜎( 𝜀𝑝𝐻
 ) using the consistent additive 

decomposition of Hencky strains: 

𝜀𝑝𝐻
 = 𝜀𝐻

 −
𝜎

𝐸( 𝜀𝐻
 )

  (15) 

3.  Determination of Young’s modulus 

The recommendation for the determination of an initial Young’s modulus utilizing an uniaxial tensile 

test is defined in the standard DIN EN ISO 6892-1:2017-02 [15]. In an iterative process a line of best fit 

of engineering strain and stress in the elastic domain has to be calculated numerically and visually 

revised. Due to the small amount of elastic strains, it is feasible to use engineering strain and stress, 

because differences between different strain and stress measures are negligible. The slope of the best fit 

line is used as Young’s modulus. Former studies showed, that lower and upper borders of the line of 

best fit are crucial for the calculation of Young’s moduli, because of the mentioned nonlinear elastic 

behavior. Young’s moduli differ widely depending on the determination method [16]. In the standard 

borders depending on Rp0.2 are suggested. However, to determine Rp0.2, Young’s modulus is necessary, 

which obviously leads to a conflict [16]. Thus, different determination methods are described in the 

following.  

3.1.  Methods for Young’s modulus determination  

In each cycle, loading and unloading data are split by the point of maximum strain. Young’s modulus 

determination with fixed lower and upper borders is described in Sonne [16]. As already mentioned, it 

is not expedient to have borders depending on Rp0.2, hence the borders are defined according to the tensile 

strength (TS). For the method called ‘Simple Fit’ (Sim.) within this study, the lower border is defined as 

0.05, the upper border as 0.18 times TS in case of loading. In case of unloading, Yoshida et al. [10] 

proposed to divide the unloading curve into four sections depending on the stress before unloading 𝜎∗: 

Yosh. 1: 0.75𝜎∗≤ 𝜎 ≤ 0.95𝜎∗; Yosh. 2: 0.50𝜎∗ ≤ 𝜎 ≤ 0.95𝜎∗; Yosh. 3: 0.25𝜎∗ ≤ 𝜎 ≤ 0.95𝜎∗; Yosh. 4: 0 ≤ 

𝜎 ≤ 0.95𝜎∗. Young’s modulus is the average slope of each section. The comparison of the resulting 

Young’s moduli clarifies the effect of using different borders. Furthermore, a dynamic regression, called 

‘Regression’ (Reg.) within this study, is applied. Starting from zero stress, a regression line is calculated 

with the first 21 measurement points. Afterwards the area of 21 points is expanded step by step until 0.7 

times TS. Furthermore, the starting point for the dynamic regression moves along the measurement data. 

For each area lines of best fits are calculated and the slope obtaining the least squared errors, is stored. 

Young’s modulus is identified as the maximum value of all stored slopes. The method ‘Secant’ (Sec.) 

fits a line through the points of intersections of the hysteresis and its slope is taken as Young’s modulus. 

3.2.  Examination of the approach of constant volume 

For the evaluations of this study, constant volume is assumed during the whole test, but in fact, lateral 

contraction changes during elastic and plastic deformation. Hence, by taking constant volume for the 

Figure 2. Schematic 

explanation for l. 
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whole test, an error occurs. To examine this error, the specimen were strained up to three different 

prestrains (3 %, 6 % and 9 % engineering strain) and unloaded afterwards. The cross sectional area of 

the specimen was measured manually before the test, before and after unloading. These measured cross 

sectional areas were compared to the corresponding cross sectional areas calculated using the 

assumption of constant volume. The percent error between experimental data and calculated values is 

0.025 % for 3 %, 0.042 % for 6 % and 0.069 % for 9 % prestrain. The accuracy is assumed to be adequate 

to use the assumption of constant volume for the calculation of Cauchy stress.  

4.  Experimental Method 

Cyclic tensile tests were performed. For the tensile test a standard tensile testing machine is used. The 

specimen is clamped with a hydraulic clamping system and the strain is tactually measured directly on 

the specimen. Every cross sectional area is manually measured before the test. For the tests flat specimen 

of the mild steel DX56 with a thickness of 1.5 mm were used. The initial length 𝑙 
0  is 50 mm. The 

specimen were unloaded and reloaded every 1.5 % engineering strain with a position-controlled speed 

of 0.048 mm/min. Each cycle until uniform elongation is considered for the evaluation. To ensure that 

cyclic loading and unloading has no influence on the materials’ flow curve, standard tensile tests were 

performed, too. The specimens were strained until 3 %, 6 % and 9 % engineering strain respectively and 

unloaded subsequently. These curves were compared to the cyclic tensile test curves and no significant 

deviation of hardening behavior was noticed. 

5.  Results 

To examine the approach, which was derived in chapter 2, fig. 3 shows the comparison of Young’s 

modulus’ behavior for Euler-Almansi and Hencky strain measures. Young’s modulus is calculated using 

‘Regression’ for loading and unloading as well as ‘Secant’ for corresponding hysteresis. The differences 

between Young’s moduli are negligibly and thus the approach is expedient. 

Fig. 4 shows the resulting Young’s moduli of the cyclic tensile tests. For the determination of the loading 

moduli, the methods ‘Simple Fit’ and ‘Regression’ were used. With a determined initial Young’s 

modulus of 201 GPa, the method ‘Regression’ is in good agreement with the common value for steel 

210 GPa. Young’s moduli determined by ‘Simple Fit’ are about 7 GPa lower. For both methods the 

loading Young’s modulus decreases by around 5 % until uniform elongation. 

The unloading Young’s moduli were determined with the methods ‘Regression’, ‘Secant’ and ‘Yoshida 

1 - 4’ for each cycle (chapter 3.1). The initial Young’s modulus varies by about 35 GPa depending on 

the determination method. All methods show a strain dependent decrease of the unloading Young’s 

modulus between 5 % (‘Regression’) and 12 % (‘Yosh. 4’). 

Figure 3. Comparison of the influence of Hencky and Euler-Almansi strain on Young’s modulus. 
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It is obvious, that the determination method strongly influences Young’s modulus. The calculation of 

flow curve and springback is in turn influenced by Young’s modulus and hence the effect of different 

values for Young’s modulus are investigated. Fig. 5a shows the experimental (Exp.) unloading curve at 

0.094 Hencky prestrain in comparison to the unloading behavior derived from the different Young’s 

moduli. At zero Cauchy stress the maximum deviation occurs between Yosh. 4 and the initial Young’s 

modulus (Ini.). This deviation of 7∙10-4 elastic recovery strain is small compared to the total strain and 

thus has no significant influence on the flow curve. However, for an accurate prediction of springback 

it is crucial to model the unloading curve appropriately. Because the calculation of Young’s modulus 

significantly depends on the determination method, an insensitive approach would enhance springback 

calculation. That is why a three dimensional table of Cauchy stress, prestrain and elastic strain is 

proposed for predicting arbitrary unloading. 

Reg.

Yosh. 1

Yosh. 2

Yosh. 4

Yosh. 3

Reg.

Sim.

Sec.

Figure 5. a) Illustration of evaluation methods in comparison with experimental unloading curve. 

Response surface for unloading (b) and loading (c) elastic recovery strain.  

Figure 4. Strain dependency of Young’s modulus for loading and unloading. Comparison of different 

evaluation methods. 
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Fig. 5b shows the ‘Unloading response surface’ based on the cyclic tensile test data. A response surface 

for loading can be established analogously in case of complete unloading (fig. 5c). The black lines 

represent the unloading curves of the particular cycles. By implementing the response surface in a FE 

analysis software, elastic recovery strain for arbitrary stresses and prestrains can be obtained, without 

assuming linear elastic unloading behavior. A cyclic tensile test of at least one loading and unloading is 

required for this method merely.  

6.  Conclusion and Outlook 

Under the assumption of small elastic strains the additive decomposition of Euler-Almansi was adopted 

for Hencky strain and validated using cyclic tensile tests. The strain dependency of Young’s modulus 

was shown a different determination methods were applied and compared. It was noted, that Young’s 

modulus is varying significantly depending on the method. For an accurate springback prediction, a 

data-based approach is proposed, which allows a precise prediction of the elastic recovery strain in 

numerical analysis. Further investigations of the nonlinear elastic unloading behavior are necessary to 

improve springback analysis. An investigation of a strain dependent lateral contraction in comparison 

to the assumption of constant volume, especially in the region of elastic plastic transition, should be 

focused. Furthermore, microscopic analysis are essential to investigate and prove macroscopic 

conjectures and explanations of the material behavior. 
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