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Mathematical modeling is a promising tool for better understanding of cellular processes.
In recent years, the development of coarse-grained models has gained attraction since
these simple models are able to capture and describe a broad range of growth conditions.
Coarse-grained models often comprise only two cellular components, a low molecular
component as representative for central metabolism and energy generation and a
macromolecular component, representing the entire proteome. A framework is
presented that presents a strict mass conservative model for bacterial growth during a
biotechnological production process. After providing interesting properties for the steady-
state solution, applications are presented 1) for a production process of an amino acid and
2) production of a metabolite from central metabolism.
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1 INTRODUCTION

To gain a full understanding of cellular processes, the usage of mathematical modeling and the
analysis of those have become a standard in metabolic engineering, systems biology, and process
engineering. Predictive models which can describe relevant cellular processes can be used as a basis
for process observation and process design with the intention to optimize the properties and
behavior of the cells. Even though bacteria are very diverse, the basic principles of their metabolism
are quite similar. In general, every bacterial population has to cope with its environment, scavenge for
nutrients, and then coordinate its central metabolism accordingly for growth and survival. The
underlying regulatory networks are very densely intertwined, large, complex, and not fully known or
incompletely understood, thus providing a big challenge to understand the processes in its entirety.
Mathematical models trying to describe all these processes in detail are challenging and nearly
impossible because of the huge number of variables and uncertain parameters.

Coarse-grained models have been used in the recent years and are now frequently used to get a
better understanding on cellular control strategies, gene expression, and resource allocation
Bollenbach et al. (2009), Scott et al. (2010). In this type of model, levels of cellular organization
with similar functions are “lumped” together into a small number of modules Maitra and Dill (2015),
Giordano et al. (2016), Pandey and Jain (2016), Sharma et al. (2018), Molenaar et al. (2009). In
contrast to whole-cell models with hundreds of individual reactions and components, the number of
state variables in coarse-grained models is very low, and kinetic parameters are obtained by either a
rough estimation from literature data or by regression from experimental data. An important
hallmark of coarse-grained models is allocation of cellular resources. This is expressed, for example,
by linking biochemical reactions to the available fraction of the proteome for the respective module.
In this way, a reaction can only take place if enough resources are available. The goal can be achieved
by efficient proteome allocation in a way where no resources are wasted. Using this fundamental
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assumption, many coarse-grained models have been proposed to
analyze certain metabolic effects such as metabolic overflow
Basan et al. (2015), production of heterologous protein Scott
et al. (2010), or applications in synthetic biology Weiße et al.
(2015).

Typically, coarse-grained models are written down as a set of
differential equations for the components of the model, whose
unit, for example, is the number of molecules per cell or mol/g dry
cell weight. However, mass balance equations must fulfill the
conservation of mass as dictated by the first fundamental theorem
of thermodynamics, and often, a consistent transfer from mass
balance equations to differential equations for the concentrations
of the model components is faulty or inadequate. Therefore, we
start by a brief recapitulation of the structure of the ordinary
differential equations for coarse-grained models that are
combined with models for the environment, for example, in a
bioreactor process system. Here, a new relationship for the
specific growth rate in dependence on the exchange reactions
of the entire network is given. This equation is fundamental since
it guarantees strict mass conservation for the complete system.
Conventionally, the growth rate is an empirical function and,
therefore, strict mass conservation is not ensured. In a second
step, we analyze the model and show interesting properties of the
steady-state behavior. We provide a general steady-state solution
for biochemical networks and compare outcomes of a traditional
flux balance analysis with our new approach. Finally, various
applications and extensions for a broad spectrum of problem
formulations in biotechnology are provided: 1) an
L-phenylalanine production process and 2) the production of
a metabolite from central metabolism. Hereby, problems of
resource allocation as well as problems of parameter
estimation are addressed.

2 MASS CONVERSATION IN MODELS FOR
MICROBIAL SYSTEMS

From thermodynamic principles, mass conversion is crucial and
plays the major role of determining the time course of selected
quantities of interest (system volume, concentration of reaction
partners, and temperature) which are called state variables. From
a static view on the biochemical reaction equations alone,
however, it is not possible to infer on the time course of the
state variables. A mass balance equation that describes the change
of a compound over time and sums up the material flow in and
out of the system comes into play here. It is a differential
equation. Since we are interested in the mass mi of a
component i, the mass balance reads as

dmi

dt
� J + P. (1)

In this general equation, J describes the mass flow into the
system while P describes conversion inside the system, for
example, by biochemical reactions. Both summands depend on
other state variables in the system. In the current form, the
equation cannot be applied. The reason is as follows: for
biochemical reaction networks, P describes mass conversion by

reactions, and the reaction velocity strongly depends on the
concentration of a compound given by ci = mi/V of the
reaction partners and not on the mass mi of the reaction
partners alone. For applications in systems biology, synthetic
biology, and biotechnology, a different convention is used for the
definition of the concentration of the cellular components (but
not for environmental compounds). Since it is much easier to
determine the entire biomass mX than the cellular volume, the
following definition is used, instead, for the concentration of an
intracellular metabolite: ci = mi/mX.

To avoid inconsistencies, it is recommended to always start
from the mass balance and reformulate the mass balance into an
equation for the concentration (the resulting equation is not a
mass balance in the strict sense, but in literature, we often find this
term). For a cellular network, the basic differential equation then
reads1

_c � N r − μ c , (2)
for the vector c , for the concentration of all components, a
reaction system given by the stoichiometric matrix N and a
rate vector r (c ) that is dependent on c as well. The specific
growth rate μ is an integral parameter that—in a strict sense—is
determined by the mass exchange of the population with its
environment. Therefore, it is defined as

μ � _mX/mX. (3)

The specific growth rate is related to the doubling time τ of the
population in the relationship τ = ln 2/μ. For the biomass itself,
also, a mass balance is set up that takes into account the changes
of biomass concentration due to removal from the bioreactor and
biomass formation due to growth. However, a different approach
can be used as shown in the Supporting Information that describes
the changes of biomass based on the changes of all compounds
representing the biomass. Therefore, from a formal point of view,
the specific growth rate μ only depends on the rate vector r that
describes internal processes as well as mass exchange with the
surrounding and is given with the vector of all molecular weights
of the components w

μ � wT N r . (4)
Plugging Eq. 4 into Eq. 2, the latter can be rewritten as

_c � N r − wT N r c � Id − c w T( ) N r � W N r ,

(5)
with W representing the mass matrix. Together with the
equations for the concentration for a substrate S and biomass
X in a bioreactor system with feeding rate qin, feed concentration
Sin, and stoichiometric vector n S

_S � qin
V

Sin − S( ) − n T
S rX, (6)

1Please note that underlined symbols are used for vectors.
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_X � μ − qin
V

( ) X, (7)

the system is completely described. The first term of Eq. 6
accounts for the feeding substrate, the second the dilution due
to the feed, and the last term the substrate uptake of the biomass.
The second term of Eq. 7 represents the growth and a dilution
due to the feed.

3 STEADY-STATE ANALYSIS

3.1 Flux Analysis
In classic flux balance analysis, the equation for a cellular network
only consists of the stoichiometric matrix N. Solutions for rate
vector r are investigated by determining the kernel of N,
providing possible fluxes through the cellular network Orth
et al. (2010). With the proposed approach, in addition,
properties of the mass matrix W has to be taken into account
as well, and the steady-state solution for the intracellular network
is obtained from the relationship

0 � W N r , (8)
which is obtained from Eq. 5 by setting the left side to zero. The
solution of this equation is determined by not only the kernel ofN
as in the classic flux balance analysis but also by the kernel of
matrix W, which is determined by the molecular composition of
the cell. The determinant of W is given by

det W( ) � 1 − ∑
i

wi ci. (9)

The addends of the second term are the mass fractions of
cellular component i, and given the strict mass conservation, the
sum over all mass fractions equals one. Therefore, the
determinant of W is always zero, and W is nonsingular.
Additionally, one can show that the kernel of W is in fact
one-dimensional (the proof can be found in Supplementary
Information). The complete solution r 0 of the relationship
given in Eq. 8 comprises two terms: the kernel of N, denoted
by r n,0, and second, the product of the Moore–Penrose inverse of
N, denoted by N+, and the kernel of W, denoted by c w,0

r 0 � r n,0 + N+c w,0. (10)

The two summands in the solution are not given in a unique
way and can be written with scalar factor s and an arbitrary vector
a with the same dimension as the rate vector r 0 as follows:

c w,0 � c s , s ∈ R (11)
r n,0 � Id −N+N( ) a . (12)

This principle holds true for all types of cellular networks
independently of its size and form, which can range from whole-
cell models to, in this case, coarse-grained models as shown in
Figure 1.

A typical minimal reaction system as shown in Figure 1 is
considered with a cellular network that represents the entire
biomass (the sum of all components in the network weighted with
their molecular weight) and only one anabolic reaction. The
scheme is given as follows2:

S( ) → α M
γ M → β P
M → by − product( ). (13)

It is to be noted that an extension to two or more anabolic
reactions can be performed easily since, in general, the mass
fractions of the macromolecules are well-known. The reaction
systems, therefore, consist of a pool of metabolitesM, proteins P,
and reactions ri that connect the pools with each other and the
environment. Rate rT describes the transport of the substrate into
the cell, while rate rO describes overflow metabolism. Proteins P
are synthesized with rate rP Maitra and Dill (2015), Giordano
et al. (2016), Pandey and Jain (2016)) The vector of components
reads c � (M,P), and the stoichiometric matrix for this system is
as follows:

N � α −γ −1
0 β 0

( ). (14)

Thus, the intracellular network for this minimal model can be
written as

_M
P

( ) � N
rT
rP
rO.

⎛⎜⎝ ⎞⎟⎠ − μ
M
P

( ). (15)

FIGURE 1 |General scheme of a coarse-grainedmodel with partitioned proteome (ribosomal proteins R, proteins linked with the central metabolism T, and residual
protein fraction Q) as the self-replicator system Scott et al. (2014); it consists of two components, indicated as blue boxes; (metabolite, low molecular weight), protein;
and residual biomass (high molecular weight; protein is assumed to be 50% of total biomass). The pools are connected by a minimal set of reactions, indicated by yellow
boxes, for substrate uptake, overflow metabolism, and protein synthesis.

2Stoichiometric coefficients are given with Greek symbols.
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For the basic structure, with Eq. 4, the specific growth rate is
given by

μ � α rT − rO( ) wM + rP β wP − γwM( ), (16)
wherewM andwP are the molecular weights of metabolitesM and
proteins P, respectively. With the observation from Eq. 10, the
solution of the rate vector reads

r �

1

α2 + 1
0
α

α2 + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ a + N+ c s (17)

with the first term representing the solution from the
stoichiometry of the system and the second term the
solution determined by the molecular composition of the
cell. With a closer look at solution Eq. 17, the rate
connecting only intracellular components of the system,
which is the protein synthesis rate rP, is only defined by the
second term. Thus, for the assumption of the known specific
growth rate μ and molecular composition of the cell, this rate is
fixed, while the remaining rates, meaning the substrate uptake
rate rT and the overflow metabolism rate rO, are coupled
through one degree of freedom a. If one of these rates is
known, the degree of freedom a can be determined and,
therefore, the last remaining rate.

3.2 Flux Analysis in Comparison to a
Constraint-Based Method
To illustrate the different outcomes when applying the new
approach with strict mass conservation as seen in Eq. 5 in
comparison to a standard analysis with a constraint-based

method, a small network with four metabolites and five
reactions is considered (Figure 2A).

Substrate S is taken up and four metabolites are generated
which in the conventional approach are consumed in reaction r5
to produce biomass. To make it realistic, we assume that the
stoichiometric coefficient for biomass is 100, that is, 100 small
molecules are used to get 1 mol protein/ biomass. The reaction
system is given as follows:

S( ) → M1

M1 → 2 M2 + M4

M2 → M3

M3 →
100M2 + 100M3 + 100M4 → protein/biomass( ).

(18)

In the case of constraint-based models that are used, for
example, for flux balance analysis or by Bollenbach et al.
(2009), the stoichiometric matrix noted by N1 for the internal
network has four rows and five columns:

N1 �
1 −1 0 0 0
0 2 −1 0 −100
0 0 1 −1 −100
0 1 0 0 −100

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (19)

Hence, the null space of N1 is one-dimensional, and the only
possible solution, when providing 1 unit flux of substrate uptake,
results in 0.01 unit of biomass (it is to be noted that in reaction 2,
2 mol ofM2 are produced). The situation becomes different when
strict mass conservation is taken into account. Here, we consider
the formation of protein/biomass. Therefore, the overall biomass
composition dictates the flux distribution in this case. From the
depicted scheme, we infer the molecular weight for the
components as follows (it is to be noted that these numbers
are not unique, but used here for demonstration purposes)

FIGURE 2 | Example network with metabolites Mi and reactions ri; conventional representation (A), new approach with one component representing protein/
biomass sector (C). On the right side (B,D), output data from the calculations are shown; it is to be noted that for the new approach, the dilution term must be taken into
account which is not shown in the plot.
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w � (w1, w1/4, w1/4, w1/2, 100w1). Given the stoichiometric
matrix N2 (extension of N1 by one component for the protein,
that is, one additional row) and the vector of molecular weights,
the specific growth μ can be calculated as mentioned before with
Eq. 4 with a possible flux vector r to be

μ � w1 0 0 −w1/4 0( ) r . (20)
It is to be noted that here only reactions that exchange with the

environment (here r1 and r4) appear. In the case at hand, the
stoichiometric matrix N2, taking into account the protein/
biomass fraction as additional component, has five rows and
five columns and has full rank. However, the null space ofW · N2

withW given in Eq. 5 is one-dimensional and represents the only
possible flux distribution. Matrix W strongly depends on the
cellular composition; the composition itself is the steady-state
solution, if the system is given in the standard form (Eq. 2), and
all reaction kinetics are known and well-parameterized. However,
for the example, we choose a different way and start with a
possible composition for biomass and back-calculate the fluxes
for this case. Taking the following composition vector (mass
fraction) f � (0.1, 0.1, 0.1, 0.1, 0.6) as an example, the resulting
flux vector (scaled to 1 for the uptake rate) is
r � (1, 8/9, 2/3,−4/9, 2/300). In this case, to fulfill all steady-
state equations, an additional input flux is necessary (r4 is
negative, that is, a second substrate is needed). This flux
vector is very different from the solution not considering strict
mass conservation.

3.3 Differential Algebra System
In the case of regulated systems, that are also named self-
replicator systems, a superimposed control structure (shown in
red in Figure 1) determines the allocation of protein resources in
the individual reactions. The division of the entire proteome in
fractions results in additional algebraic equations representing
conservation conditions. This is shown exemplarily in Figure 1
with three fractions; fraction R represents ribosomes, fraction T
represents transport and catabolism, and fraction Q represents
the remaining proteins. The dependency of the rate for protein
synthesis rp on the ribosomal fraction R of the proteome is
common to many approaches Scott et al. (2014). To derive a
consistent system that can be used for numerical simulation, the
resource allocation problem must be formulated in mathematical
terms; here, we will describe two different approaches that result
in a differential algebra system or in an optimization program.

First, the rate vector r of the minimal coarse-grained model is
fixed with kinetic rate laws. For the rates involved in central
metabolism, a dependency to the T fraction is applied, while rate
rP will depend on the R fraction. Furthermore, the drain from
central metabolism will depend on metabolite M, while the
transport reaction will depend on the main substrate S. The
following rates are taken as examples for the case study:

rT � kT
S

S +KT
T

rP � kP
M

M +KP
R

rO � kO M T.

(21)

The dependencies of T and R from the entire proteome P are
exploited from a data set that was published by Schmidt et al. (2016).
The fraction of the T and R fractions is given in dependence on the
specific growth rate μ. From the data, a linear relationship can be
deduced. However, a direct implementation of functions T, R = f(μ)
is not possible since μ itself depends on R and T. Therefore, we
proceed as follows: for the case at hand, an algebraic system could be
set up for the steady-state solution of the differential equation
system. The system reads

0 � N
rT
rP
rO

⎛⎜⎝ ⎞⎟⎠ − μ
M
P

( )
0 � μ − wT N r
0 � T − f1 μ( )
0 � R − f2 μ( ).

(22)

Thereby, the last two equations are determined by experimental data.
From the solution for a broad range of the input variable, in our case,
substrate concentration S, relationships of the formT= g1(M, P), and
R = g2(M, P) are determined. In this way, also the dynamical system
could be simulated. In addition, in this format, the system for the
intracellular network consists only of two independent variables M
and P. Figure 3 shows the dependencies of sectors T and R from the
specific growth rate asmeasured experimentally (Figure 3A) and the
kinetics for T and R as a function of metabolite M (Figure 3B).

3.4 Optimization Program
The first approach with fixed reaction kinetics is compared with
an optimization program to check if the given experimental data
for fractions T and R are optimal for the given specific growth
rates. For this, we omit the determined dependencies given in the
last subsection, and the following program is formulated:

maxR Φ, Φ � μ
s.t.

0 � N r − μ c
μ � wT N r
0 � P0 − T − R.

(23)

The program is simplified to only one design variable R and
the constraint that the sum of R and T is fixed to a constant value
P0. The kinetic rate laws are taken as given above. Figure 4
compares the steady-state output of both approaches for a given
range of the substrate concentration S (kinetic expressions and
kinetic parameters are the same in both cases).

A comparison of the growth rate indicates that only a slightly
higher growth rate could be achieved in the optimal case. This is
based on the observation that the protein fraction that is allocated
to the T fraction is always higher than that for the R fraction
which is not the case in Figure 3B.

4 L-PHENYLALANINE PRODUCTION WITH
ESCHERICHIA COLI

The proposed coarse-grained model approach can be used to
model a biotechnological production process. In the scope of this
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FIGURE 3 | Relationship between the sectors T and R as a function of the specific growth rate μ. Experimental data are taken from the study by Schmidt et al.,
(2016) with protein representing 50% of the biomass (A). Estimated kinetics of first order for T/P and R/P as a function of variable M (B).

FIGURE 4 | Specific growth rate μ as a function of substrate S, where the solid line represents the optimal case (A). Fractions R (red) and T (blue) as a function of the
growth rate μ, where the solid line represents the optimal case, and dashed lines are from presented data in Figure 3B.

FIGURE 5 | Scheme of the coarse-grained model expanded to include the formation of L-phenylalanine, respiration rC, and residual biomass U.
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research, we consider an L-phenylalanine producing Escherichia
coli strain with glycerol as the substrate and decoupled biomass
and product formation due to L-tyrosine auxotrophism, meaning
biomass is only formed if L-tyrosine is available (Sprenger (2007),
Weiner et al. (2014)). A more detailed description of the strain
used can be found in the Material and Methods section. The
L-phenylalanine production process is considered here as an
example for a bioreactor production process. Due to the
nature of coarse-grained models, the resulting model can
easily be adapted to depict other production processes. The
basic model is extended to include an additional rate rF
describing L-phenylalanine formation and a corresponding
protein sector F as seen in Figure 5. Furthermore, we consider
respiration implemented as rate rC and the residual biomass
fraction U.

The system (Eqs 2–4) is represented as follows:

N �
α −γ −1 −δ −2 −1
0 β 0 0 0 0
0 0 0 ϵ 0 0

⎛⎜⎝ ⎞⎟⎠ (24)

with the differential equations

_M
P
U

⎛⎜⎝ ⎞⎟⎠ � N

rT
rP
rO
rU
rF
rC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − μ

M
P
U

⎛⎜⎝ ⎞⎟⎠. (25)

The next step is to determine the reaction rates. The rates
concerning the central metabolism and overflow remain the same
as in the basic model (Eq. 21). The L-phenylalanine production
rate is dependent on the F fraction and the respiration rate rC on
the T fraction as it is part of the central metabolism. In order to
incoporate the L-tyrosine auxotrophism, the protein synthesis
rate rP and synthesis rate of residual biomass rU are modified to be
multiplied with a function which is 1 if L-tyrosine is available and
otherwise set to a low value of 0.1, corresponding to a low biomass
formation during this phase, since it cannot be practically ensured
that no L-tyrosine is available during this phase. This leads to the
following set of reaction rates

rT � kT
S

S + KT
T

rP � kP
M

M +KP
R τ A( )

rO � kO M T

rU � kU
M

M + KU
R τ A( )

rF � kF M FP

rC � kC M T,

(26)

where A is the available L-tyrosine and

τ A( ) � 1, A> 0
0.1, A≤ 0.{ (27)

As the reaction rates are determined by the composition of the
proteome, we can take advantage of the observations from the
previous section. The allocation of T and R in the proteome is

given by the estimated linear function ofM as seen in Figure 4. A
part of the proteome is allocated to fraction F after induction,
which is accomplished through the shift of biomass production to
product formation due to lack of L-tyrosine in the feed at time tind
with delay as follows:

FP � ϕ t( ) Fmax P, (28)
where

ϕ t( ) � t − tind
t − tind( ) + tϕ

. (29)

The remaining protein fraction Q is not of further interest.

Now that we have formulated a system for the intracellular
components forming the total biomass X, equations can be set up
to model a complete bioprocess consisting of two process phases:
a biomass production phase, followed by a batch phase, followed
by two fed-batch phases with two different feeding solutions, and
an L-phenylalanine production process phase which was initiated
with induction of the cells with IPTG. For the process, we assume
ideal mixing conditions in a bioreactor of the volume V with
feeding rate qin as seen in Figure 6

_V � qin (30)
and only one feeding substrate (glycerol) S in [g/l] with feed
substrate concentration Sin

_S � qin
V

Sin − S( ) − rT X wS, (31)

where the first term represents the ingoing substrate and dilution
due to volume change and the second term the substrate uptake
by the cells. The equation for the biomass X is given by

_X � μ X − qin
V

X, (32)
and the product equations are

_F � rF X wF − qin
V

F, (33)
_O � rO X wO − qin

V
O, (34)

with acetate O as the exemplary byproduct. Feeding profiles
(Figure 6) determining the variables qin and Sin and L-tyrosine
concentrations during the process and initial values for the
differential Eqs 30–34 are obtained from experimental data
(see Supplementary Material). The bioprocess has been run in
a stirred-tank bioreactor with a starting volume of V0 = 1 l; thus,
we can that assume the environment in the bioreactor is well-
mixed, and the description of the biomass by an average cell, as in
the model presented, is sufficient. Experimental data suggest a
stop in both biomass and product formation and a high
accumulation of by-products after process time point t = 71 h
(experimental data for the full process can be found in
Supplementary Material). As reasons for this behavior have
not been investigated at this point, the mechanistics to depict
this are not incorporated in the model. Using Eqs 25–34, a
numerical simulation up to process time t = 71 h was performed
using MATLAB R2020a with ode15s as ordinary differential
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equation solver and was compared to experimental results
(Figure 7). Analogous to the experiments, the simulation is
divided into different process phases, and slightly different
parameter sets were used for the biomass and L-phenylalanine
production phase. The parameter set for the product formation
phase contains higher reaction constants for byproduct formation
and respiration. After each process phase, the solution of the end
point was used as the initial value for the differential equations for
the next process phase. Parameter values used for this simulation
can be found in Supplementary Materials. Figure 7 shows good
agreement between the simulated concentrations of substrate S,
biomass X, L-phenylalanine F, and the experimental data. The
peak of substrate concentration S during the fed-batch phase can

be explained by the change of substrate concentration in the feed.
The simulation of acetate concentration O shows the right trend,
although not the exact behavior, of the by-products. Nevertheless,
for the given parameter sets, the model can reproduce the overall
dynamics of the L-phenylalanine production process. Besides the
measurable quantities, the model can provide the intracellular
concentrations as seen in Figure 8B, where the macromolecules P
and U make up most of the biomass with both occupying nearly
half of the biomass, and the mass fraction of the metabolites is
negligible compared to that of the macromolecules, especially in
the product formation phase. With a closer look at the allocation
of the proteome, the fraction R follows the behavior of the
metabolites M, decreases over the course of the process, and

FIGURE 6 | Feeding profile of the process. Bioeactor volume V (A) and substrate concentration (glycerol) of the feed Sin (B) over the time course of the process,
where vertical lines indicate the three process phases (batch phase, fed-batch phase, and production phase with constant feeding).

FIGURE 7 | Comparison of the simulated quantities (solid blue line) against the experimental data (points) of the L-phenylalanine production process up to t = 71 h.
Time course of the following concentrations: glycerol S (A), biomass X, L-tyrosine A (B), L-phenylalanine F (C), and acetateO as representative of the by-products of the
process (D). The data points of L-tyrosine, which are negative due to insufficient measurement sensitivity, are set to zero.
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FIGURE 8 | Time course of intracellular concentrations of the L-phenylalanine process: metabolitesM (A), mass fractions of proteinsP (violet), and residual biomass
U (orange) and metabolitesM (blue), where M becomes negligible in the last process phase (B). Mass fractions of T (blue), R (red), and F (yellow) over the course of the
process (C).

FIGURE 9 | Time course of the simulated specific growth rate μ (blue) and the point-wise calculated specific growth rate obtained from experimental data indicated
as orange dots (A), substrate transport rate rT (B), protein synthesis rate rP (C), overflowmetabolism rate rO (D), residual biomass synthesis rate rU (E), product formation
rate rF (F), and respiration rate rC (G).
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remains at a constant level during the product formation phase
with fraction T forming the counterpart. The fraction for product
formation F follows the description of Eqs 28, 29.

In addition, the specific growth rate μ and the different
reaction rates can be obtained from the model (Figure 9). The
simulated growth rate μ roughly follows the trend of the growth
rate pointwise calculated from the experimental data of biomass
as seen in Figure 9A. The calculated growth rate has to be taken
with caution as each point is calculated from two consecutive
points with a large time difference and can heavily deviate from
the actual growth rate. One can observe that due to the
dependency of all rates on the metabolites M and the constant
protein fraction T, all reaction rates follow the course of the
metabolites during the biomass production phase (Figures
9B–D). In the product formation phase, the rates for the
synthesis of all macromolecules deviate from the course of the
metabolites as it is determined by the L-tyrosine auxotrophism
(Figures 9C,D).

5 OPTIMAL BY-PRODUCT SECRETION

The second example considers the optimal production of a
metabolite (in this case M) that is excreted into the medium
via reaction r3 (see Figure 1). Since M represents a metabolite
from central metabolic pathways, it could stand for ethanol,
acetate, or succinate which are all interesting biotechnological
products. The stoichiometry and parameters are the same as in
Eqs. 16–19. For the simulation study, and for a fair comparison of
the outcoming results, the following conditions are fixed:

• A fed-batch process in a bioreactor is considered with a
flexible input profile for the incoming substrate feed rate
qin(t) as a function of time and a fixed-end time tend = 20 h.
With the feed, the substrate concentration can be adjusted
in such a way that the metabolite is excreted at best. In
contrast to a batch process, the substrate is fed into the
medium and, therefore, high sugar concentrations in the
beginning (as for the batch process) are avoided. Since a
continuous process requires much more time, a steady state
is reached normally first after five times the respective time
constant (in our case approx. 20 h); this type of process
design is also not considered here.

• The initial conditions are set fix for all model state variables.
• The bioreactor has a maximumworking volume of 5 l, while
in the beginning, the experiment starts with 1 l.

• The objective function is the amount of product expressed
in mole at tend: Mex V.

For the study, three different profiles are investigated. 1) A
standard procedure, often applied in bioprocess engineering tries
to feed the substrate in an exponential way to keep the specific
growth rate μ constant. This requires that the substrate
concentration in the bioreactor is nearly constant. The
differential equation for the substrate S with function qin and
feed concentration Sin reads as follows:

_S � qin
V

Sin − S( ) − r1 X, (35)

and after setting this equation to zero, a function for qin can be
obtained:

qin � r1 X V

Sin − S
; (36)

with mX = X V and a constant growth rate μ0 for this condition,
we get

qin � r1 mX0 eμ0 t

Sin − S
. (37)

Typically, r1 is estimated given the biomass yield coefficient Y
during the batch phase and since the current substrate
concentration is low (due to a small half-saturation value for
substrate uptake), we finally obtain

qin � μ0 mX0 eμ0 t

Y Sin
. (38)

The feeding profile is applied after the end of the batch phase.
2) The second profile uses a polynomial function of time for

the feeding rate:

qin � ∑4
i�1

ai t
i, (39)

with four parameters ai to optimize.
3) The last profile is a piecewise linear profile with six fixed

switching points tk:

qin � qkin � const. for tk−1 ≤ t ≤ tk. (40)
Here, the values qkin are the parameters that have to be optimized.

First, a typical outcome for the standard case is shown in
Figure 10. After 3.5 h, the substrate runs out and the feeding
starts. The batch phase is characterized by very low productivity
while the growth rate is at its maximum. In addition, during this
phase, the R fraction is high (as already shown above) and,
therefore, due to the coupling to the T fraction, the rate of
byproduct formation is low. After starting the feeding, the
intracellular system switches to high values for the T fraction
Next, a comparison of the feeding profiles and the final value of
the objective function is shown in Figure 11. Although the
profiles are different, the final values of the objective function
are comparable.

The simulation studies are based on a fixed set of kinetic
parameters and, so far, did not consider any uncertainties with
respect to the quality of these. Typically, kinetic parameters are
obtained by parameter identification and subsequent
parameter estimation and analysis. For our example at
hand, in the next step, the uncertainty of the kinetic
parameters is taken into account during the optimization
procedure. Important parameters of the model are the
maximal reaction velocities rmax for all reactions. To
consider these uncertainties, an ensemble of 20 models is
generated during each iteration step of the optimization.
This results also in an ensemble for the values of the
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FIGURE 10 | Simulation outcome for the standard fed-batch process. Time course of substrate (blue) and product (red) in the medium (A). Growth rate μ (B). Time
course of the protein sectors R (red) and T (blue) (C).

FIGURE 11 |Comparison of the outcome of the three strategies. Time course for the feeding qin as a function of time (A); value of the objective function (from left to
right: standard feeding, polynomial function, and piece-wise function) (B).

FIGURE 12 | Robust optimization. Input profile (red) for the robust case in comparison to the standard case (A). Product course of time for 100 simulations (in gray)
with the variation in the maximal rate of the enzymatic processes and simulation with standard parameter (blue). (B). Pareto front for two objective functions: product
amount at time tend and total amount of the substrate needed to produce the product. Thin lines indicate the cost change for an increase in product amount as described
in the text (C).
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objective function Φ, following the approach proposed by
Nimmegeers et al., (2016), and the objective function in this
case is given by

max E Φ[ ] − α Var Φ[ ], (41)
with a weighting factor α, expectation E, and variance Var. With
this formulation, stronger variations in the values of the objective
function, expressed in the variance of Φ, are penalized. Since the
feeding profile is geared to the growth rate, a much more
conservative output is expected; if the substrate uptake, for
example, would be higher than expected, more biomass would
be produced, and few byproducts will be released. As can be seen
in left of Figure 12, the input function (red curve) (and with this
also the bioreactor volume) is lower than that in case of the
standard procedure (blue curve). On the right side, different
outcomes (in gray) for the variable product Pr are shown for 100
simulation runs, together with a simulation of the nominal values
(blue curve).

Besides the optimization of the product at tend, also the cost of
substrate is of interest. In a fed-batch process, the total amount of
substrate Stot fed, considering the substrate concentration at the
beginning S0, can be calculated by

Stot � ∫tend
t1

qin t( ) Sin dt + S0. (42)

The outcome of having two objective functions, maximization
of product at tend, and minimization of the substrate cost for the
entire process can be presented with a Pareto front that is shown
in Figure 12. As can be seen, a nearly perfect linear relationship is
detected (it is to be noted that both objective functions have unit
mole); increasing the product, for example, for 0.05 mol units
results in cost for the substrate of 0.13 mol. In this way, an
economic assessment of the process is possible.

6 DISCUSSION

In bioprocess engineering, the design of experiments often is based
on a mathematical description. While simple growth models taking
into account only biomass, substrate, and product often are
insufficient to describe the observed dynamics, whole-cell models
are cumbersome and are difficult to calibrate. A good model
comprises coarse-grained models because they are simple in the
model structure but take into account the most important cellular
processes. In this study, we propose an approach to use coarse-
grained models based on a strict mass conservation to model
bacterial growth as a basis for metabolic engineering applications.
In this way, classical flux analysis could be extended to take into
account fluxes into macromolecules such as the proteome.
Additional solutions are provided by the null space of the mass
matrix W that requires information on the mass fraction of the
components of the model. With a simple example, we could show
that depending on the mass composition of the cell, larger
differences in the flux distribution in comparison to the standard
approach could appear. With the condition of strict mass

conservation, we are also able to provide a general solution for a
cellular network independently of its internal structure.

As the focus of this research is coarse-grainedmodels, we provided
a formulation for a minimal model whose structure is in accordance
with that in previous studies Sharma et al. (2018), Bertaux et al. (2020).
Steady-state solutions are determined based on measured data
(Schmidt et al., 2016) for the molecular composition of the cell.
Especially, we consider two main protein fractions, an R fraction
representing the transcription and translation apparatus and a T
fraction, taking into account metabolic and transport enzymes. The
outcome of these simulation studies is compared with that of a model
where the R fraction is an adjustable quantity in an optimization
program (the sum of the R fraction and T fraction is taken as
constant). The results of the optimization program show that an
optimal allocation of proteins led to a slightly higher growth rate with
a comparable course of the R fraction as a function of the specific
growth rate, and we conclude that the measured data are in good
agreement with the expectation of an efficient and optimal acting
organism.

Many studies have dealt with the derivation of growth laws
under various conditions Klumpp et al. (2013), Bosdriesz et al.
(2015), Hui et al. (2015). Based on the structure of the minimal
model, we have expanded the model to include the dynamic
environment in a bioreactor system that allows us to realize also
different process design strategies such as feeding or continuous
culture. Experimental data from an L-phenylalanine production
process are taken as an example for parameter identification and
estimation, and a good agreement between simulation and
experimental data is obtained. A different design problem was
addressed by finding optimal input profiles if the production of a
metabolite from central pathways is of interest. Here, also,
parametric uncertainties can be taken into account that leads
to amuchmore conservative input profile. To summarize, coarse-
grained models are a sound basis for the development of
bioprocesses due to their simple structure with only a minor
number of parameters and the flexibility to simulate and optimize
different biotechnological process designs.

MATERIAL AND METHODS FOR
EXPERIMENTAL CULTIVATION OF TRIPLE
REPORTER STRAIN
Strain
For the L-phenylalanine production process, in a stirred-tank
bioreactor of 3.6 l working volume, a recombinant Escherichia coli
FUS4 (pF81kan) strain was used as described by Gottlieb et al. (2014).
This is a genetically modified strain with auxotrophies for
L-phenylalanine and L-tyrosine by deletion of the chromosomal
genes aroF, pheA, and tyrA (decoding for a DAHP synthase,
bifunctional chorismate mutase / prephenate dehydratase, and a
t-protein, respectively) along the aromatic biosynthesis pathway.
Simultaneously, it harbors the pF81kan plasmid decoding for the
genes aroF, pheA, aroB (3-dehydroquinate synthase), and aroL
(shikimate kinase 2) under the control of an inducable tac
promoter. Furthermore, kanamycin resistance is integrated as the
selection marker Gottlieb et al. (2014), Weiner et al. (2014).
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Cultivation Media
The cells were cultivated in a defined minimal medium with
glycerol as the sole carbon source. All the components with their
corresponding concentrations as well as its production protocol
were adapted from the study by Weiner et al. (2014).

Preculture Strategy
Provision of cell biomass for the inoculation for the cultivation in a
stirred-tank bioreactor was realized by a two-step preliminary
cultivation in shake flasks. First, a single colony of cells grown
on minimal medium agar plates (> 66 h at 37°C) was picked for
inoculation of a single 100-ml shake flask with 10ml minimal
medium and cultivated at 37 °C and 150 rpm in an orbital shaker
(Multitron, Infors HT, Switzerland) for 24 h. Afterward, the cells
were transferred for further cultivation in two 500-ml shake flasks
with 100 ml minimal media each and a starting optical density at
600 nm (OD600) of 0.01. After incubation at 37°C and 250 rpm for
at least 24 h, the cells were centrifuged (4,500 rpm, 10 min) and
resuspended in fresh minimal medium. These cell suspensions
were used for inoculation of cultivations in the stirred-tank
bioreactor with a starting OD600 of 0.1.

Bioreactor Cultivation
For laboratory-scale cultivation of recombinant E. coli FUS4 (pF81kan)
for L-phenylalanine production, a 3.6 glass stirred-tank bioreactor was
used (Infors HT, Switzerland). The bioreactor was equipped with two
six-bladed flat-blade turbines and three equidistant baffles. The
minimal medium for cultivation was prepared ex situ and pumped
into the bioreactor under sterile conditions to a starting volume of 1 l.
The temperature was kept at 37 °C. 42% phosphoric acid and 25%
ammonia were used as titration solutions to keep the pH at 7 ± 0.1.
Dissolved oxygen levels above 30%were provided by step-wise increase
of either stirrer speed or aeration rate up to 1,500 rpm and 5 l/min,
respectively. Furthermore, an antifoam probe was used for controlled
titration of antifoam solution, if necessary (AF204, 1:10 diluted, Sigma
Aldrich, United States). The cultivation started with an initial batch
phase. After depletion of glycerol, an exponential feedingwas set for the
biomass production phase with a defined growth rate of μset = 0.1 1/h.
Two fed-batch media were used with either 120 g/l glycerol, 2.5 g/l
L-phenylalanine, 3.6 g/l L-tyrosine, 60 g/l ammonium sulfate, and
0.1 g/l kanamycin (fed-batch medium 1) or 400 g/l glycerol, 1.11 g/l
L-phenylalanine, 3.8 g/l L-tyrosine, 25 g/l ammonium sulfate, and
0.1 g/l kanamycin (fed-batch medium 2). The former and the latter
were titrated with 25% ammonia or 5M potassium hydroxide to allow
complete dissolution of L-tyrosine. After a sufficiently high biomass
concentration of at least 20 g/l was provided, the cells were induced
with 0.3mMIPTG. Fed-batchmedium3with the components 800 g/l,
8 g/l ammonium sulfate, 8 g/l ammonium phosphate, and 0.1 g/l
kanamycin was then constantly provided with a rate of
0.18 gglycerol/gBiomassh. At the start of each fed-batch media supply,
the concentrated media components calcium chloride dihydroxide
(15 g/l) and iron(II) sulfate heptahydrate with sodium citrate dihydrate
(22.5 g/l and 200 g/l), magnesium sulfate heptahydrate (300 g/l), and
thiamine hydrochloride (7.5 g/l) were mixed in a 1:5:1:1 ratio and
injected to the fermentation broth via a septum. For the start of fed-
batch phase 1, 2, or 3, a mixture of 4.8, 9.6, and 8.8ml were injected,
respectively Weiner et al. (2014).

Analytics
Cell dry weights were measured gravimetrically. Pre-weighted dried
2-ml microcentrifuge tubes (80 °C for at least 24 h) were used for
centrifugation of 2 ml of the cell suspension (21130 × g, 20 min,
4°C). The supernatant was further used for sample preparation for
high-performance liquid chromatographies (HPLCs) or discarded.
The cell pellet was dried again at 80°C for at least 24 h. The biomass
concentration was calculated by the difference of weight between the
microcentrifuge tube with dried cell pellets and the empty
microcentrifuge tube. For the quantification of the amino acid
concentrations of L-phenylalanine and L-tyrosine as well as for
the organic compounds glycerol, acetate, lactate, succinate, pyruvate,
malate, and ethanol, two different HPLCs were used. The samples
for HPLC analysis were prepared by filtration of the supernatant of
each sample through a 0.2-μm filter and were stored at 4°C upon
measurement. The quantification method for both amino acids is
already described by Weiner et al. (2014) and was adapted from
there. The organic compounds were quantified using a HPLC
(Prominence-i LC-2030C, Shimadzu, Japan) with an ion-
exchange column (Aminex HPX-87H 300mm × 7.8 mm, Bio-
Rad, CA, United States) and a refractive index detector (RID-
20A, Shimadzu, Kyoto, Japan). 10 μl of samples was injected to
an isocratic flow of 0.6 ml/min and 5mM sulfuric acid as mobile
phase with a constant temperature of 60°C. The quantification of
each component was realized bymeasurement of external standards.
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