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Abstract. One technique to reduce vibrations of low-damped structures is the application of
constrained layer damping (CLD) treatments. A unique extension of the CLD is a compressible
constrained layer damping (CCLD) where the usually stiff viscoelastic layer is replaced by
a compressible one. Due to the adaptable deformation kinematics, as well as compression-
dependent material properties, the dynamic behavior of the whole considered structure can be
optimized during the operation. One challenge for this application is to determine the optimal
compression levels in order to adapt the dynamic behaviour of the component with CCLD to the
excitation characteristics. Through the application of finite element model such optimal control
strategies can be extensively studied and the dynamics of actuation principle can be included.
Herein, low computation times are highly desired, especially for applications where the CCLD
undergoes large deformations. This contribution shows how nonlinear model reduction can be
applied to accelerate the solution of such finite element models.

1. Introduction and motivation
In order to avoid function impairing or even damage relevant vibrations, efficient solutions for
vibration mitigation are required especially for lightweight applications [1]. Besides material-
intrinsic design properties, conventional post-manufacturing measures such as supplementary
applied noise-absorbent mats as well as different kinds of structure-attached fluidic dampers
or tuned mass dampers are used. Such modifications are however often considered
as counterproductive with regard to maintain lightweight properties of the manufactured
component. Instead, a number of lightweight-compatible solutions for vibration mitigating have
been developed [2, 3].

One technique to reduce vibrations of low-damped structures is the application of constrained
layer damping (CLD) treatments [4]. Such treatments consist of overall three elements: the
main component to be damped, a damping layer made of a material with high energy dissipation
properties, and a constraining layer that forces the damping layer to undergo shear deformations
rather than bending to induce higher stress levels and hence better energy dissipation. A unique
extension of the constrained layer damping consists of the replacement of the incompressible
viscoelastic layer of the classical CLD with a compressible one – usually open-cell foam – whose
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damping properties can be adjusted through thickness adjustment. The thickness changing
actuation principle of such compressible CLD (CCLD) bases on structural cavities generating
evanescent deformations when supplied with fluidic medium.

However, since the damping properties of the constrained layer damper depend on the
excitation frequency and compression stage of the material, the CCLD has to be actuated
on-line in order to achieve improvement of the dynamic behaviour. One challenge to set up the
optimal compression during operation is the determination of the optimal pressure in function
of excitation characteristics like frequency or amplitude. This can be achieved either based
on results of experimental investigations or numerical ones by using a finite element model.
Experiments can be very cost-intensive because they have to be done for each new CCLD design.
A computation of the optimal compression by using a finite element model is usually cheaper
but still can take long simulation time due to high dimension of the model and nonlinearities
considering potentially large deformations of the structure. Hence, for such applications, it is
crucial to significantly reduce the computation time. This contribution shows how nonlinear
model reduction can be used in order to speed up design and allow to infer appropriate design
parameters for the structure and the control system.

2. Operating principle of compressible constrained layer damping treatment
The general overview of the proposed Compressible Constrained Layer Damping (CCLD)
treatment is presented in Figure 1. The analyzed CCLD object is configured as a three
layered beam consisting of the load-bearing structure as well as constraining and compressible
viscoelastic layer. The unique actuating principle is based on structural cavities generating
evanescent deformations when supplied with hydraulic fluid, compressed air or vacuum. The
last possibility was used in combination with an open-cell foam architecture ensuring a low
bulk modulus and thus a broad deformation range under atmospheric pressure. The evanescent
morphing is used to deliberately alter the geometrical and material properties of the viscoelastic
elements through compression in order to achieve a damping capacity adaptation. With the
decreasing viscoelastic layer thickness, an increase of its damping and stiffness is expected. At
the same time, the shear strain becomes higher at a given vibration amplitude. The change in
geometry can also affect the structure’s stiffness. The combination of these effects should broaden
the range of CCLD-adaptation through the compression level setting. The studies regarding
experimental characterization of the compression-dependent viscoelastic shear properties are
not the main part of these studies and will be presented elsewhere.

In order to maintain optimal cavity pressure for any realistic configuration of excitation
frequency and amplitude, a closed-loop control system is necessary. The structure and
parameters of such control systems should be matched to the dynamics of the CCLD treatment
for any potentially suitable CCLD configuration. Since the application of a finite-element-model
with appropriate real-time capabilities could be used for later hardware-in-the-loop tests of the
control system a suitable simulation model was developed.

3. Modeling
A finite element model for simulation of the dynamic response and damping properties of the
adaptive constrained layer damper is created. Its geometry is a square plate with a side length
of 550 mm. The plate consists of 5 layers as illustrated in Figure 2 in order to introduce some
kind of symmetric dynamic behavior. Their material properties are summarized in Figure 2 on
the right.

The geometry is meshed with quadratic Hexaeder elements with 20 nodes each. The
boundaries of the constrained layer damper are fixed in each translational direction. The
structure is assumed to be excited at one node of the outer-layer in out-of-plane direction.



3

1234567890 ‘’“”

Modern Practice in Stress and Vibration Analysis (MPSVA) 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1106 (2018) 012024  doi :10.1088/1742-6596/1106/1/012024

p1

p1

p1

G′

h
h, G′, G′′ ≠ const.

G′′

γ1

p0

p0

p0

γ0

Figure 1. Cross section view of CCLD. The storage and loss modulus of the viscoelastic layer
as well as the thickness of the viscolelastic layer depend on the applied pressure.

The full model has 556 308 degrees of freedom. A time-integration requires high computation
times due to the geometric nonlinearity and the high number of degrees of freedom. We apply
model reduction to reduce computation time.

4. Nonlinear model reduction
The outcoming equation of motion of the Finite Element model can be described by

Mü(t) + Du̇(t) + fnl(u(t)) = Bfext(t) , (1)

where u(t) are the displacements of the nodes, M is the mass matrix, D the viscous damping
matrix, fnl the nonlinear restoring force and B the matrix for distributing the external forces
fext. The viscous damping matrix is modeled as

D = aM + b
∂fnl

∂u

∣∣∣∣
u=0

, (2)

where the coefficients a and b are chosen in such way that the resonance peaks of the first
and fourth eigenfrequencies of the linearized frequency response function at the excitation point
match the measured damping ratios.

4mm
1mm
5mm
1mm
4mm

Core
Foam

Outer-Layer Layer E ν

Core 85 MPa 0.1

Foam 0.1 MPa 0.0

Outer-Layer 23 GPa1 0.3

1 Orthotropic material, Young’s modulus is given in
direction of fibers

Figure 2. Left: Lay-up, Right: Material properties.
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To reduce computation time for solving equation (1), the displacements u(t) are approximated
by u ≈ Vq(t) with V ∈ RN×n and n� N . Inserting this approximation into (1) and applying
a Galerkin projection leads to the reduced equation of motion

VTMVq̈ + VTDVq̇ + VTfnl(Vq) = VTBfext . (3)

This projection is similar to linear model reduction techniques (cf. [5, 6]). It reduces the
dimension of the problem from N to n. However, no matter how small one chooses the reduced
dimension n, the mere dimensional reduction does not reduce computation time because the
nonlinear restoring force term fnl still needs to be evaluated in the full element domain. It is
computed by evaluating the element forces fe for each element of the mesh and assembling

VTfnl =
∑
e∈E

VTLT
e fe(LeVq) , (4)

where Le is a Boolean operator that maps the local degrees of freedom of element e to the global
ones.

To accelerate the evaluation of the nonlinear term, a hyperreduction must be performed.
Within this study, we use the Energy Conserving Sampling and Weighting method (ECSW) [7]
for hyperreduction. This method only evaluates a subset of all element forces and
assembles VT fnl by weighting their contributions with a positive scalar ξ?e , such that

VTfnl(Vq(t)) ≈
∑

e∈Ẽ⊂E

ξ?eV
TLT

e fe(LeVq) . (5)

The weights ξ?e and element subset Ẽ are chosen such that the hyperreduced nonlinear force
term matches the projected nonlinear force vector VTfnl(Vq) within a certain error bound for Nτ

training displacements uτ = Vqτ . This relation can be written as follows: Let

gle(Vqτl) = VTLT
e fe(LeVqτl) ∈ Rn bl = VTfnl(Vqτl) =

Ne∑
e=1

gle(Vqτl) ∈ Rn

G =

 g11 . . . g1Ne
...

. . .
...

gNτ1 . . . gNτNe

 ∈ RnNτ×Ne b =

 b1
...

bNτ

 ∈ RnNτ .

The minimization problem

ξ? = arg min
ξ∈Φ
‖ξ‖0 Φ = {ξ ∈ RNe : ‖G ξ − b‖2 ≤ ε‖b‖2, ξ ≥ 0} ,

where ‖ξ‖0 is the number of all non-zero coordinates, returns the weights ξ?e . The element
subset Ẽ, whose element forces fe are evaluated, consists of those elements that have a non-
zero ξ?e . It is noteworthy that this kind of problem is NP-hard. Therefore, it has been replaced
by a similar problem that approximates the formulation above as proposed in [7].

Two entities that highly depend on the investigated system need to be determined to perform
the nonlinear model reduction described above: first, a reduction basis V for Galerkin projection
and, second, a training set uτ = Vqτ for hyperreduction.
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4.1. Determination of reduction bases V
One option to determine a reduction basis is using the first n left singular vectors of a matrix with
column-stacked displacement snapshots coming from a full simulation. This method is called
Proper Orthogonal Decomposition [8]. Its characteristic is the dependence on full simulation
results. These are typically very costly to compute. In this contribution, we make use of
simulation-free methods that do not depend on solutions to the full model.

We use a combination of static solutions, vibration modes of the linearized system and their
static modal derivatives. Thus, the reduction basis consists of three parts:

V = [VS VVM VSD] . (6)

VS contains the static solutions of the model for different magnitudes of the external force.
VVM consists of mode shapes of the linearized system that are computed by solving the
eigenproblem

(KT − ω2
iM)φi = 0 VVM = [φ1, φ2, . . . , φk] , (7)

with tangent stiffness matrix KT = ∂fnl
∂u

∣∣∣
u0

where u0 is a static solution to an actuated state u0

where a constant pressure has been applied to the surfaces that are connected with the foam.
VSD contains static modal derivatives [9, 10]

KTvij =
∂KT

∂φi
φj VSD = [vij1 ,vij2 , . . . ,vijm ] (8)

that insert nonlinear information into the reduction basis V.

4.2. Determination of training sets for hyperreduction
Usually, some displacement vectors from the solution of the full model are used as training
displacements. But we want to circumvent their high computation costs and use a simulation-
free method. We use a method called Nonlinear Stochastic Krylov Training Sets (NSKTS) that
has been proposed by Rutzmoser in [11].

The first step is to build a subspace that is able to approximate the nonlinear force vector fnl.
If the viscous damping term is neglected, one finds

Mü(t) + fnl(u(t)) = Bfext(t) ⇒ fnl ∈ span(B, Mü(t1), Mü(t2), . . . , Mü(tn)) . (9)

As the accelerations ü(ti) are unknown, we need an approximation for the subspace described
above. According to [11], it is approximated by the Krylov subspace

Fkry = span{B, MK−1B, (MK−1)2B, . . .} = K(MK−1, B) (10)

that is orthogonalized and normalized such that FT
kryK

−1Fkry = I.
Afterwards, some random vectors f τNSKTS living in this Krylov subspace are generated and

applied as external force to the nonlinear static problem fnl(uτ ) = f τNSKTS. This equation must
be solved by a nonlinear solver such as Newton-Raphson. The training set is then built by saving

the solution u
(k)
τ of each Newton iteration k for each applied external force f τNSKTS as training

vector.

5. Results
The finite element model is reduced with different hyperreduction tolerances ε and different
reduction bases V that differ in size and combination of vectors to compare the performance of
the reduction. We consider four different bases:
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Figure 3. Reduced mesh of the plate with ε = 0.001 (left), ε = 0.01 (middle), ε = 0.1 (right)

VVM + VSD full: 50 vibration modes (with smallest eigenfrequencies) and 1274 static
derivatives

VVM + VSD 600: 50 vibration modes and 550 static derivatives (truncated by using a SVD)

VS + VVM + VSD full: Augmentation of VVM + VSD full by 20 Newton iterations of the
static solution

VS + VVM + VSD 600 Augmentation of VVM + VSD 600 augmented by 20 Newton
iterations of the static solution

The model also is hyperreduced with ECSW method using different values for the tolerance ε.
160 Nonlinear Stochastic Training Vectors are used as training set for all hyperreductions.

A constant pressure of -0.1 bar has been applied to the surfaces that are connected with the
foam as prestress. This simulates an adaption of the CCLD through compression. All necessary
linearizations (e.g. for determining vibration modes) are made relative to the static deformation
due to the constant pressure.

Figure 3 shows the reduced meshes of the hyperreduced model for different values ε. One
can see that higher values for ε lead to less elements that have to be evaluated. The number of
evaluated elements are listed in Table 1.

Table 1. Amount of elements in element set computed by ECSW method depending on
reduction basis V and tolerance ε. The full model has 45 375 elements

reduction basis V
tolerance ε

0.01 0.005 0.001 0.0005

VVM + VSD full 1290 1622 2385 2670
VVM + VSD 600 1073 1286 1840 2067
VS + VVM + VSD full 1211 1550 2293 2625
VS + VVM + VSD 600 1090 1337 1895 2095

We define the relative error

RE =

√∑Nt
i=0 ∆u(ti)T ∆u(ti)√∑Nt
t=0 uref(ti)T uref(ti)

with ∆u(ti) = u(ti)− uref(ti) (11)

as measure for the accuracy of the reduced models where Nt is the number of timesteps, u is
solution to the reduced model and uref is the solution to the full model. Table 2 shows relative
errors and simulation times for a simulation with 220 timesteps.

The simulation time can be reduced significantly by applying nonlinear model reduction.
But acceptable error measures can only be achieved with small tolerance values ε. Interestingly,
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Table 2. Relative errors RE and simulation times tsimul depending on reduction basis V and
tolerance ε. A linear full solution leads to RE = 10 % and tsimul = 0.5 h

reduction basis V
tolerance ε

0.01 0.005 0.001 0.0005

RE[%]

VVM + VSD full 115.4 34.1 9.4 3.5
VVM + VSD 600 177.9 80.5 83.3 82.1
VS + VVM + VSD full 58.6 34.1 7.3 1.4
VS + VVM + VSD 600 89.4 72.2 67.4 67.2

tsimul[h]

full solution 23.70
VVM + VSD full 6.44 5.78 5.81 6.18
VVM + VSD 600 5.17 4.43 5.06 4.45
VS + VVM + VSD full 5.85 5.90 6.15 6.40
VS + VVM + VSD 600 4.64 4.92 4.62 4.47

smaller tolerances ε for hyperreduction do not increase the simulation time significantly. The
reason is that the Newton Raphson solver that is called during time-integration needs fewer
iterations for smaller ε which compensates the higher costs for evaluating more elements.

6. Conclusion
Nonlinear model reduction can reduce computation time to estimate best values for the actuated
pressure in a compressible constrained layer damper treatment. However, the computation time
is still high which prohibits to use the method for model predictive control of the CCLD. Further
investigations are needed to figure out if bases with smaller dimensions and equal accuracies can
be determined or if other nonlinear reduction methods could improve performance.
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