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Abstract
Continuously growing demands for increased computational performance and improved power ef-
ficiency impose significant challenges for the design of digital systems. For digital motion picture
cameras, these demands are driven by a steady trend towards capturing images at higher resolutions
and frame rates as well as with more dynamic range while being battery-powered. As semicon-
ductor process improvements face physical limitations and with the advent of the dark silicon phe-
nomenon, engineers cannot solely rely on technological advancements anymore, which motivates
alternative approaches in system design. To overcome these limitations, the idea of Approximate
Computing describes a novel design paradigm which adds application quality as an orthogonal di-
mension into the traditional design trade-off between cost and performance. Relaxing the notion of
correctness, it leverages the inherent error resilience of suitable applications by trading in accuracy
to gain benefits in resource usage and/or performance. In recent years, numerous approximation
methods have been proposed. While most of these methods are demonstrated in isolation, com-
plex systems might benefit from a symbiotic combination of various approximations. However,
the meaningful integration and parameterization of multiple approximations in such applications
is a non-trivial problem as the corresponding design spaces grow exponentially and interactions
between approximated system components need to be considered.

This dissertation proposes a framework which targets a purposeful combined integration and op-
timal parameterization of approximation methods in real-world applications, focusing on FPGA-
based image processing systems. Several challenges at both the component and the application
level are addressed by the contributions of this work.

Building upon a systematic survey of approximation techniques, promising methods are selected
from the literature and implemented to form a library of approximate components. The implemen-
tations are optimized for the use in FPGA architectures and adapted to support a completely flexible
scaling of both approximation strength and component size via direct parameterization, which is
crucial for a meaningful combination with precision scaling in the same application. Furthermore,
the proficiency of competing methods on the target platform is analyzed using an automated char-
acterization of hardware and error properties, and machine learning-based models are trained to
enable a fast fitness estimation.

On the application level, a data flow graph-based representation is proposed which allows for
a systematic integration of approximations into target applications using node annotations. Fur-
thermore, as the graph directly maps signal flow, it can be used to derive parameter dependencies
and handle component interactions. To enable the necessary probing of many solutions during the
design space exploration, the proposed resource models employ a divide-and-conquer approach
to estimate the required area and power consumption. This omits the need for repeated synthesis,
fitting and routing and hence accelerates the fitness estimation. In terms of quality assessment, the
framework allows a flexible choice of any reference quality metric, allowing designers to obtain fa-
miliar application-specific values for their decisions instead of relying on abstract signal difference
metrics.
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A suitable optimization method based on the genetic algorithm is selected and integrated into the
framework to enable an efficient design space exploration. The employed heuristic directly sup-
ports multi-objective optimization to handle the inherently conflicting goals of the quality-resource
trade-off and uses a population-based global search to handle the navigation of complex design
spaces. Three case studies are presented and used to evaluate the effectiveness of the proposed
framework and to validate the suitability of the proposed models. The experimental results show
that the framework is able to identify relevant solutions across a wide range of quality-resource
trade-offs. A comparison between results from the full design space and after restrictions to single
approximation types illustrates the benefits of a symbiotic combination of multiple methods.



Zusammenfassung
Kontinuierlich steigende Anforderungen an Rechengeschwindigkeit und Energieeffizienz stellen
große Herausforderungen an den Entwurf digitaler Systeme. Im Bereich digitaler Bewegtbild-
kameras werden solche Anforderungen getrieben durch Trends zu höheren Auflösungen und Bild-
raten sowie zu einem größeren Dynamikumfang der aufgenommenen Bilder, worunter allerd-
ings die Batterielaufzeit nicht leiden sollte. Da die Weiterentwicklung von Halbleiterprozesstech-
nik mittlerweile an pyhsikalische Grenzen stößt und der sogenannte Dark Silicon-Effekt an Be-
deutung gewinnt, können Hardware-Entwickler sich nicht mehr alleine auf den technologischen
Fortschritt verlassen. Diese Problemstellung motiviert alternative Ansätze im Entwurf digitaler
Systeme. Die Idee von Approximate Computing stellt einen solchen Ansatz zur Überwindung der
technischen Limitierungen dar. Sie beschreibt eine neuartige Systementwurfsphilosophie, welche
die Anwendungsqualität als zusätzliche Dimension der traditionallen Balance zwischen Kostenef-
fizienz und Leistungsfähigkeit hinzufügt. Durch eine Aufweichung des Korrektheitsbegriffes wird
damit die vorhandene Fehlertoleranz geeigneter Anwendungen ausgenutzt und Rechengenauigkeit
eingetauscht, um Verbesserungen bei Energieeffizienz und/oder Rechenleistung zu erreichen. In
den letzten Jahren wurde dazu eine Vielzahl an Approximationsmethoden verschiedener Art pub-
liziert. Diese werden in der Regel einzeln demonstriert und evaluiert. In komplexen Systemen
könnten jedoch durch synergetische Kombinationen mehrerer unterschiedlicher Methoden größere
Verbesserungen erzielt werden. Die zielführende Integration und Parametrisierung mehrerer Ap-
proximationsmethoden in solche Anwendungen stellt jedoch ein nicht-triviales Problem dar, da
der zugehörige Design Space exponentiell mit der Anzahl der verwendeten Methoden wächst und
Wechselwirkungen zwischen approximierten Systemkomponenten berücksichtigt werden müssen.

Diese Dissertation befasst sich mit dieser Problemstellung und präsentiert ein Framework zur
systematischen Integration und optimalen Parametrisierung von Approximationsmethoden in An-
wendungen. Im speziellen fokussiert sie sich dabei auf FPGA-basierte Bildverarbeitungssysteme.
Dabei löst sie verschiedene Herausforderungen, die sich sowohl auf Komponentenebene als auch
auf Anwendungsebene ergeben.

Basierend auf einer systematischen Literaturübersicht vorgeschlagener Approximationsmetho-
den werden aussichtsreiche Methoden ausgewählt und implementiert, wodurch ein Baukasten mit
approximierten Komponenten entsteht. Die Implementierungen sind für den Einsatz in FPGA-
Architekturen optimiert und wurden so angepasst, dass eine flexible Skalierung sowohl der Kom-
ponentengröße als auch des Approximationsgrades durch direkte Parametrisierung möglich ist.
Diese Eigenschaft ist wesentlich für eine sinnvolle Kombination der Komponenten mit Bitweiten-
skalierung innerhalb derselben Anwendung. Des Weiteren wird eine automatisierte Charakterisie-
rung genutzt, um die Eigenschaften konkurrierender Methoden im Bezug auf die Zielplattform zu
vergleichen. Um den Baukasten zu komplettieren werden mit Hilfe maschineller Lernmethoden
Modelle erstellt, welche eine schnelle Abschätzung der Fitnesskriterien ermöglichen.

Auf der Anwendungsebene wird ein Signalflussgraph zur Systemmodellierung genutzt, welcher
eine systematische Integration verschiedener Approximationsmethoden in die gewählte Anwen-
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dung durch Annotation der jeweilgen Knoten ermöglicht. Da ein solcher Graph direkt den
Signalfluss abbildet, können Abhängigkeiten und Interaktionen zwischen den Parametern un-
terschiedlicher Komponenten direkt abgeleitet und behandelt werden. Darauf aufbauend wer-
den Ressourcenmodelle vorgestellt, welche den Ressourcenverbrauch und den Energiebedarf des
Gesamtsystems basierend auf den Eigenschaften der einzelnen Systemkomponenten abschätzen,
um eine effiziente Beurteilung vieler Lösungskandidaten zu ermöglichen. Der gewählte Ansatz
umgeht den zeitaufwändigen Syntheseprozess, wodurch die Suche optimaler Konfigurationen er-
heblich beschleunigt wird. Für die Bewertung der Anwendungsqualität ermöglicht das Framework
den Einsatz einer frei wählbaren Referenzmetrik, was dem Entwickler ermöglicht, mit vertrauten
und etablierten, anwendungs-spezifischen Werten zu arbeiten, anstatt auf abstrakte Signalfehler-
metriken zurückgreifen zu müssen.

Eine geeignete Optimierungsmethode basierend auf dem genetischen Algorithmus wird aus-
gewählt und in das Framework integriert, um eine effiziente Durchsuchung des Lösungsraumes
zu ermöglichen. Die verwendete Heuristik verwendet ein Mehrzieloptimierungsverfahren, um
die konkurrierenden Ziele hoher Bildqualität und niedriger Ressourcennutzung auszubalancieren
und nutzt eine globale Suche, um durch komplexe Lösungsräume zu navigieren. Drei beispiel-
hafte Fallstudien, welche reale Anwendungen abbilden, werden dazu genutzt, die Effektivität
des Frameworks zu demonstrieren und die Tauglichkeit der verwendeten Modelle zu validieren.
Die experimentellen Ergebnisse zeigen, dass die entwickelten Werkzeuge in der Lage sind, eine
Vielzahl geeigneter Lösungen zu identifizieren, die einen weiten Bereich verschiedener Kompro-
misse zwischen Anwendungsqualität und Energiebedarf abdecken. Ein Vergleich mit Ergebnissen
von zusätzlichen Experimenten, die auf einzelne Approximationsmethoden beschränkt sind, zeigt
die Vorteile einer symbiotischen Kombination mehrerer Methoden auf.
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Chapter 1

Introduction
Steadily increasing demands for more computational performance and reduced power consump-
tion are outpacing technological improvements in computing systems. The conventional approach
of shrinking transistor sizes, which has traditionally driven performance improvements across the
semiconductor industry, is approaching physical limitations. With the breakdown of Dennard scal-
ing [7], increasing the quantity of transistors per area leads to increased power densities. In turn,
only parts of a chip can be running at full capacity at any given time – a phenomenon often de-
scribed by the term dark silicon [8]. Hence, it is foreseeable that the growing demands of cur-
rent and emerging applications cannot be met by advances in chip manufacturing alone. Mobile,
battery-powered devices such as phones or cameras additionally have very strict power budgets
to control heat dissipation and preserve battery life. Generally, designers of computing systems
face a trade-off between area, power and computational performance. Since these are conflicting
goals, the designer needs to carefully balance them to find a compromise that satisfies the needs
of the target application. Due to the technological limitations discussed above, it is getting harder
and harder to meet design targets within the traditional trade-off space, considering the continuous
increase in computational demands of current and future applications.

In order to overcome these limitations, a novel design paradigm named Approximate Computing
has emerged and gained a lot of traction in computing research in the last decade. The main idea
of approximate computing is to extend the traditional design trade-off space with the dimension of
application quality, as shown in Figure 1.1.

Figure 1.1: Approximate computing extends the traditional trade-off space of hardware design to include
the quality dimension
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Based on the assumption that certain applications are inherently resilient to errors, which means
they can tolerate the loss of computational accuracy up to some degree, the imperative of creating
‘exact’ results is replaced with the intention of creating ‘good enough’ results. In the design pro-
cess of a computational application, this concept is already widely used at the highest abstraction
levels, i.e. application specification and algorithm design [9]. However, in the layers below, from
the programming language, over the computer architecture down to the actual circuits, everything
is expected to behave strictly correct and errors are treated as outliers that must not occur. Approx-
imate computing breaks this rule by allowing imperfections to occur at every layer of the system
stack. This enables the use of manifold new approximation methods, ranging from scaling the sup-
ply voltage below its threshold for safe behavior or adjusting the bitwidth of individual signals up
to the replacement of code fragments or even entire applications with analog computation [10].

The notion of inherent application resilience to quality degradation is supported by several char-
acteristics that allow for toleration of approximations, as shown in Figure 1.2. If one or more of
these are present in a specific application, it qualifies for the use of approximate computing.

Figure 1.2: Factors contributing to inherent resilience of applications (adapted from [9] and [11])

First, some applications naturally deal with input data which is noisy and/or redundant. For ex-
ample, systems that read and process data coming from a sensor such as a microphone or image
sensor are specifically designed to handle the input signal noise, e.g. with measures to suppress
it. The same holds for wireless communication systems that have to deal with input signals which
degrade during the transmission. Since signal degradation caused by internal approximations is
qualitatively similar to propagated input noise, the robustness of these applications can deal with
both the same way. Furthermore, such applications often process redundant input data, either im-
plicitly (i.e. by the nature of the captured data) or explicitly (e.g. to enable error correction in weak
communication channels), which may offer additional robustness.

Moreover, some applications inherently exhibit self-healing properties by the nature of their
structure, e.g. iterative refinement algorithms, which may automatically attenuate or remove errors
introduced with approximations. This is especially true in applications that apply statistical com-
putations across a large amount of input data, for example in Neural Networks, where many values
are aggregated and errors may cancel each other out.

Lastly, there are several possible limitations regarding the interpretation of the output data pro-
duced by the application. There could be no single golden output and hence a range of answers
may be equally acceptable, e.g. in search or recommendation engines. On the other hand, if there
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is a golden answer, in some cases it might be unlikely to be found even by a perfect system, which
is true for most machine learning systems. In this case, end users are also likely to accept a good-
enough result. For example, computer vision systems in which camera images are used for 3D
measurements, object detection and tracking or similar purposes may tolerate some quality loss
as long as the general functionality is guaranteed. Finally, limitations in human perception may
give way to the notion that sub-perfect results may be sufficient since they could not be distin-
guished from perfect results by the end user. Typically, multimedia processing systems fall into
this category.

1.1 Target Application Scope

Digital motion picture camera systems fit well into the scope of approximate computing as cur-
rent trends push the necessity of alternative solutions to overcome technological limitations. In
this field, the demands manifest in continuously growing requirements for the spatial as well as
temporal resolution together with the dynamic range of the recorded content. The dynamic range
defines the ratio between the lightest and the darkest useful luminance signal captured in each pixel,
which translates to the number of bits needed for each pixel. Furthermore, the spatial resolution
determines the number of pixels in each image and the temporal resolution dictates the number of
images captured and processed per second. All of these factors culminate in a considerably high
data throughput that needs to be processed in the camera. Additionally, many motion picture pro-
duction scenarios require powering the cameras from batteries because a wired connection to the
electrical grid is not always practical, driving a demand for low power consumption that stands
diametrically opposed to the push for higher performance.

On the other hand, image processing applications exhibit several of the factors described above
contributing to their resilience to quality degradation. The captured data is inherently affected by
photon shot noise and dark current noise [12]. Additionally, non-linear internal image processing
steps, e.g. scene-referred encoding of colors or luminance tone-mapping may increase or decrease
signal deviations depending on the actual pixel value [13]. Hence, if applied carefully, approxima-
tions may benefits from self-healing properties of the image processing pipeline. Finally, images
recorded by motion picture cameras for entertainment purposes are ultimately being consumed by
humans with perceptual limitations.

This work concentrates on the application of approximate computing within embedded low-
level image processing systems implemented using field-programmable gate arrays (FPGAs) as
found in professional digital motion picture cameras. Such systems comprise a variety of different
operations across multiple processing stages and are commonly implemented as stream process-
ing pipelines to achieve the necessary data throughput required for high resolutions and frame
rates [14]. This means that all operations are “unrolled” and placed in parallel on the chip into
a pipelined design that accepts a new pixel in every cycle and returns it after processing with a
delay of multiple cycles. The data flow graph (DFG) of the application is an abstracted represen-
tation of the structure of the corresponding circuit. We target the integration and combination of
different parameterizable single-purpose approximation methods into such systems, focusing on
deterministic approximations employed directly on-chip within the data flow of the application.

Technical Notes The selection and implementation of approximate components as well as en-
tire applications carried out later in this work targets current commercial FPGA architectures of
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different vendors in general and does not depend on vendor-specific technologies and design prim-
itives to enable usability across devices. However, throughout this work, we use a specific FPGA
device from the Intel Arria 10 product family [15], namely the 10AS066N3F40E2SG device,
which is found on the evaluation board in the Intel Arria 10 SoC Development Kit [16], as target
device and experimental platform. Without loss of generality, we set the operating frequency to
266.66 MHz for all experiments and fix the board temperature to 50◦C for power analysis.

1.2 Research Problems

This work is mainly motivated by the fact that even though a substantially large body of research
on approximate computing methods already exists, there is still a crucial gap between the predomi-
nantly theoretical proposal of various approximation methods on the one hand and their meaningful
practical integration and combination within real-world FPGA-based image processing systems on
the other. In detail, this dissertation strives to address and answer the following questions:

How to effectively approximate within FPGA designs? The vast majority of pub-
lished approximation methods targeting embedded hardware computing systems are designed for
application specific integrated circuit (ASIC) implementations and exploit the degrees of free-
dom offered in such completely custom designs. While FPGAs are able to implement custom
logic at a very low level and in a fine-grained manner, their architecture imposes constraints on
the practical realization of circuits. FPGA implementations use specific building blocks such as
logic modules containing look-up tables (LUTs) and registers for combinatorial logic, digital sig-
nal processing (DSP) slices for arithmetic operations and embedded block RAM (BRAM) for fast
storage. Approximation methods should use these resources effectively, but ASIC-focused designs
do not necessarily translate into beneficial FPGA implementations. Therefore, a selection of suit-
able methods and their meaningful adaption towards the general FPGA architecture are needed.
Additionally, many published approximate components, especially arithmetic units, are only avail-
able in specific sizes, which hinders their flexible scaling and hence a meaningful combination
with fine-grain precision scaling. To overcome this limitation, the FPGA-based implementation
should be generically parameterizable to adapt to arbitrary sizes. Finally, since the quality-resource
trade-off performance translation of methods transferred from ASIC to FPGA designs is uncertain,
the resulting implementations have to be characterized systematically and the results compared for
competing methods that target the same operation.

How to model the quality-resource trade-off efficiently and accurately in systems
that combine multiple approximation types? Secondly, most of the proposed approxima-
tion methods have been demonstrated and characterized well in isolation, but optimal exploitation
of the quality-resource trade-off might necessitate a controlled combination of multiple methods.
However, most state-of-the-art methods for the parameterization of approximated hardware sys-
tems are restricted to methods of a single type.

In real-world applications, there are structural cross-dependencies between different system
components when the bitwidth of intermediate signals connecting them is affected by approxi-
mations, either directly using precision scaling or indirectly as a side effect of an approximated
operation. These dependencies need to be taken into account in the system parameterization as
well as when modeling the resource consumption.
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Secondly, to enable meaningful choices regarding the acceptable quality loss, the quality model
should provide data that is relevant for the application and interpretable for the designer. Related
work on approximate computing often measures quality in the form of basic signal fidelity metrics
such as the error rate, the relative error or the hamming distance. While these metrics are able to
measure and quantify errors, their implications for real-world applications are not always clear, es-
pecially when human perception is involved in the judgment. Instead, application-specific metrics
would allow for designers to use familiar means of quality assessment which have been tried and
tested within their application domain [17].

Generally, to enable an efficient exploration of complex design spaces, the fitness models used
to quantify the quality-resource trade-off must be fast and reliable. In terms of speed, the employed
models should avoid time-consuming synthesis and gate-level simulation.

How to optimize approximation parameters in complex design spaces? The error
propagation and interactions between components mentioned above prevent an isolated optimiza-
tion of parameters for individual system components. Consequentially, the design space grows ex-
ponentially with the number of employed approximations and their parameter ranges, necessitating
the use of an automated DSE. Since resource savings and application quality are competing objec-
tives, there is no single optimal solution. Instead, a number of Pareto-optimal solutions exist, from
which the desired trade-off can be chosen. Therefore, an appropriate multi-objective optimization
algorithm must be selected to facilitate the search and exploitation of the quality-resource trade-off
offered by the target application.

1.3 Contributions and Thesis Outline

Addressing the problems formulated above, this thesis proposes a framework for the systematic
integration and optimal parameterization of approximations in FPGA-based signal processing ap-
plications, focusing on low-level image processing pipelines. The framework has matured over
the past years and was demonstrated at different stages in several publications [1–4]. This thesis
presents an updated version that contains additional improvements over the previous publications.

The design flow of the proposed framework follows three main phases, as shown in Figure 1.3.
Structurally, this thesis first mirrors these phases, covering each of them in a dedicated chapter
as indicated in the figure. Following the methodological description, three practical case studies
covering common image color processing tasks are introduced and evaluated to demonstrate the
proposed approach, before a final chapter concludes the thesis and outlines directions for future
research. The contributions and contents of each phase/chapter are summarized below.

Phase I: Component Level (Chapter 2)

The first phase is application-independent and deals with the formation of a library of approximate
components which can be employed across many different applications. Correspondingly, it covers
the path between the initial publication of approximation methods and their flexible and reusable
implementation for FPGA-based systems. The existing body of literature proposing a wide range
of approximation methods for hardware-based computing systems is reviewed thoroughly and in
a structured manner. Several methods suitable for the target application field and applicable for
FPGA designs are selected and implemented for the library. The selected techniques span different
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Figure 1.3: Design flow phases of the proposed framework

categories of approximation methods, namely precision scaling, arithmetic units and table-based
methods. Generally, the approximation methods directly translate to approximate components ex-
cept for precision scaling, which affects the width of signals between system components. The
implementations of methods originally proposed for ASIC designs are adapted to the characteris-
tics of FPGA architectures where needed. In contrast to related work, our implementations provide
flexible parameterization in terms of approximation strength and component size (in terms of I/O
signal width) so that they can be scaled flexibly and hence employed in combination with precision
scaling in applications.

Furthermore, an automated procedure for the characterization of approximate components w.r.t.
a specific target FPGA platform is used to provide further information for the refined selection of
components for a target application. The characterization data is used to comparatively analyze the
trade-offs associated to the selected approximate arithmetic units when used in FPGAs, providing
insights into how well different methods adapt to the FPGA architecture. As a second purpose,
the characterization data is used to create resource models for components whose consumption
cannot be derived from their configuration in a straightforward manner. The library formed after
these steps contains a parameterizable hardware description, a behavioral model for accelerated
bit-exact simulation and a resource model for each approximate component.

Phase II: Application Level (Chapter 3)

The second design phase deals with the integration of approximations into a target application and
models the quality-resource trade-off related to any parameterization on the application level. To
that end, we propose a structured representation of the application in form of an annotated DFG
where the designer can mark individual nodes for approximation and define the range of their pa-
rameters. Hence, the design space formed by the annotated DFG is given by the set of parameters
across all nodes and its complexity scales with their number and ranges. To handle structural
interaction between connected components, we present a systematic approach to capture the prop-
agation of parameter dependencies, from which the correct parameterization order is derived. The
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proposed representation and dependency handling of the application allows the simultaneous de-
ployment and parameterization of multiple approximation types in contrast to related work, which
is typically either limited to a specific type, e.g. arithmetic approximations, or employs different
approximation types in a sequence of distinct steps.

In order to enable an efficient evaluation of probed candidate solutions during the DSE, we pro-
pose fast models to estimate the application quality and resource consumption based on the anno-
tated DFG representation. A divide-and-conquer strategy is proposed to model the usage of FPGA
resource units using only the characteristic consumption of individual components provided in the
library without the need for time-consuming synthesis of the application. The power consumption
is then directly derived from the estimated number of FPGA resources. To ensure a meaningful
assessment of application quality, the proposed framework enables the designer to choose their
preferred reference quality metric. Hence, the quality estimation provides values that are relevant
for the application and easily understood and interpreted by the designer. Additionally, we discuss
the choice of relevant training data with respect to the target application scope and propose two
training set types tailored towards different quality statistics. The quality model in the framework
uses the annotated DFG together with the behavioral models of the individual components to pro-
vide a fast, bit-exact simulation of the parameterized application that can be assessed using any
provided metric function and automatically considers error propagation effects.

Phase III: Design Space Exploration (Chapter 4)

Combining multiple approximations in the same application results in a complex design space
which necessitates an effective and automated DSE procedure. Generally, a search heuristic gener-
ates candidate DFGs which represent specific parameterizations of the annotated DFG, estimates
their fitness using the application-level models established in phase II and uses the results in a
feedback loop to generate better candidates. This process repeats until eventually Pareto-optimal
or near Pareto-optimal solutions have been found. The proposed framework employs a genetic
algorithm (GA)-based heuristic to guide the search which directly integrates multi-objective op-
timization and is able to handle complex design spaces efficiently. Necessary adaptions for the
genetic operations to respect the parameter dependencies are described in detail.

The optimization methodology selected for the proposed framework was developed mainly by
Manuel as part of a joint collaborative research project. It was demonstrated in a journal publica-
tion [5] and is not claimed as a contribution of this work. However, its integration into the proposed
framework helps to navigate the arising complexity of the tackled design spaces.

Case Studies (Chapter 5)

Chapter 5 contains the experimental demonstration and evaluation of the proposed framework in
real-world applications. Three case studies of image color processing pipelines are presented and
optimized using the framework, resulting in Pareto fronts that provide solutions across a wide vari-
ety of different quality-resource trade-offs to choose from. The results are also used to demonstrate
the benefits of combining multiple approximation methods. Since the optimization estimates the
fitness of individual solutions based on fast and simple models, the resource consumption is vali-
dated against post-synthesis results and the quality estimation is compared to the values obtained
from a real-world image set.





Chapter 2

Approximate Components
The main idea of approximate computing is to allow a certain amount of imprecision in the compu-
tations of an application in order to achieve benefits in resource consumption and/or performance.
Research in this field has gained a lot of traction in recent years, generating an immensely large
number of publications which provide different ideas and methods for introducing approximations
into computing systems. The research body consequently spans a wide range of abstraction levels,
target platforms, and application fields and selecting suitable methods for a specific design project
can be overwhelming. While there are methods that directly target FPGA implementations, they
only represent a very small portion of the available literature. Nevertheless, many other methods,
e.g. approximations defined on the algorithmic level or circuit approximations targeting implemen-
tation on ASIC, can potentially be leveraged for FPGA-based systems. However, their adaptability
to specific FPGA architectures and the resulting benefits are often not immediately clear. This
chapter deals with the gap between the publication of individual approximation methods and the
ability to employ them in real-world FPGA-based applications. The general structure of this path
is depicted in Figure 2.1, which also mirrors the structure of this chapter.

Figure 2.1: Overview of steps necessary to make published approximation methods usable in FPGA-based
signal processing systems

In the first section of this chapter, a review of existing literature on approximation methods gen-
erally suitable for hardware-based systems is given. To make use of the methods contained in the
literature, they must first be filtered based on their potential to achieve benefits when used in FPGAs,
which requires knowledge of the FPGA architecture as well as the target application domain. For
this work, several promising methods with relevance for FPGA-based signal processing systems
are selected and described in detail in the second section. Furthermore, to understand the specific
quality-resource trade-off offered from any of these methods, they must be characterized in terms of
resource usage (in terms of area and power) as well as error behavior. This also allows comparing
multiple competing methods targeting the same operation, e.g. different approximate multiplier
techniques. Therefore, the third section describes a methodology to automatically perform this
characterization w.r.t. the target FPGA architecture and analyzes the results. To allow estimating
the resource consumption of all implemented components, Section 2.4 introduces and analyzes
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machine learning (ML) approaches to create models for the cases in which the consumption can-
not be derived analytically. Lastly, a library of approximate components and building blocks which
can be reused across different applications is formed, containing parameterizable hardware imple-
mentations together with behavioral models and resource models. Section 2.5 provides details on
the library implementation and its contents.

2.1 State of the Art in Approximation Methods

Since the interest in the field of approximate computing has grown immensely over the last decade
or two, so has the number of publications proposing a wide variety of approximation methods.
A multitude of surveys exist that provide overviews of the ongoing research [10, 18–20]. Such
overviews generally cover the entire body of related literature. In contrast, the overview presented
here focuses on the approximation methods directly targeted at or generally applicably to hardware-
based computing systems that implement the application as a custom circuit, which means that spe-
cific software-level methods, approximation-enhanced central processing unit (CPU) architectures
and graphics processing unit (GPU)-specific methods are not covered here.

To structure the remaining literature, the methods are classified according to the abstraction level.
We group the methods into the main categories of device level, circuit level and algorithm level,
breaking the latter down further into elementary functions and control flow sub-categories. Fur-
thermore, approximation methods for targeting memory are listed separately. A tabular overview
of methods, sorted by classification, is given in Table 2.1.

Table 2.1: Categorized overview of approximation methods targeted at hardware systems
Category Method FPGA Parameterizable Deterministic References

Device Voltage Overscaling ◪1 ■ □ [21–24]

Circuit

Precision Scaling ■ ■ ■ [25–28]
Circuit Pruning ■ □ ■ [29–33]

Approximate Logic Synthesis ■ □ ■ [34–43]
Approximate Arithmetic Units ■ ■ ■ [44–76]

Algorithm
(Elementary
Functions)

Polynomial Approximation ■ ■ ■ [77–79]
Incremental Refinement ■ ■ ■ [80–82]
Table-Based Methods ■ ■ ■ [83–87]

Algorithm
(Control Flow)

Fuzzy Memoization ■ ■ ■ [88, 89]
Neural Acceleration ◪2 □ ■ [90–92]

Memory

Memory Voltage Overscaling ◪1 ■ □ [93–96]
Refresh Rate Scaling ◪3 ■ □ [97–99]

Approximate Memory Operation ◪3 ■ □ [100, 101]
Memory Access Scaling ◪3 ■ ■ [102]

1 Typically, only global voltage scaling is feasible on current commercial FPGAs, hindering controlled adaption [96]
2 Needs a dedicated neural accelerator to yield optimal benefits
3 Can be done in off-chip memory, not in the FPGA chip itself
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The table also provides assessments of the suitability of the methods for FPGA designs, and
their scalability, meaning the ability to easily parameterize both the signal width (for functional
blocks) and the degree of approximation, and whether they behave deterministically or not. Addi-
tionally, key references are listed for each method. The following subsections provide descriptions
and details for all methods, grouped by the abstraction level.

2.1.1 Device Level

Approximations on the device or transistor level encompass techniques for voltage overscaling
(VOS) or frequency overscaling. These two methods can be seen as different perspectives on the
same principle, namely the acceptance of timing errors and their optimization, with the former
emphasizing energy reduction and the latter focusing on performance improvements. Without loss
of generality, we focus on explicit VOS techniques in this overview, which are described below.
Note that in this section we describe VOS techniques employed on the computational data-path.
Similar methods used to reduce energy consumption of memories are listed separately with the
Memory Level techniques in Section 2.1.5.

2.1.1.1 Voltage Overscaling (VOS)

The idea of VOS is to reduce the supply voltage of a circuit below the nominal level in order to
reduce the dynamic power consumption, which typically dominates the total power consumption
and can be expressed as

𝑃dyn ≈ 𝛼 ⋅ 𝐶L ⋅ 𝑓clk ⋅ 𝑉 2
dd (2.1)

with the activity factor 𝛼, the load capacitance of the circuit 𝐶L, the clock frequency 𝑓clk and the
supply voltage 𝑉dd [103]. Consequentially, a reduction in supply voltage leads to a quadratic re-
duction in dynamic power consumption. However, reducing the voltage also leads to an increase
of circuit delay which in turn can lead to erroneous outputs due to timing violations on the critical
paths. Existing techniques for VOS therefore aim at minimizing the probability of violations to
control the output quality.

Kahng et al. propose a method for slack redistribution to allow for graceful degradation of the
output under VOS [21]. They argue that traditional circuit design methodologies lead to a wall of
slack, i.e. many long combinatorial paths with low slack margins, as illustrated in Figure 2.2. With
VOS, the zero-slack margin shifts which would result in a large number of failing paths for tradi-
tional designs and consequentially lead to poor application quality. In contrast, their methodology
adapts circuit gate sizes in order to reshape the slack distribution to have a more gradual slope so
that timing violations happen less frequently under VOS.

The work proposed by Mohapatra et al. focuses on the design of scalable meta-functions, i.e.
computational kernels that are commonly used across many applications [22]. First, they propose
to cut the carry propagation between adder segments in an accumulator depending on the supply
voltage in order to prevent the propagation of glitches resulting from timing violations. To com-
pensate potential errors introduced by the split in the carry chain, a multi-cycle error compensation
circuit is used. Secondly, they introduce a delay budgeting technique which splits a combinatorial
circuit into two distinct blocks which are characterized individually to extract their error behavior
with reduced delay budgets. If the first block behaves more gracefully than the second, a transpar-
ent latch is placed between the blocks which is used to freeze the first block’s output after a portion
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Figure 2.2: Slack distribution under traditional design approaches that lead to a ‘wall’ of slack (red) and tar-
get ‘gradual slope’ slack distribution (blue) for graceful degradation under VOS (Source: [21],
© 2010 IEEE)

of the clock period, giving the second block more time for its computations. This effectively re-
distributes the delay budget within a single clock period between the two logic blocks to improve
the output quality.

To accelerate design flows that utilize VOS, Zervakis et al. proposed VOSsim, a technique for
behavioral simulation and power estimation of circuits under sub-threshold voltage scaling [23].
Their technique uses re-characterization of the employed technology library at border voltages in
combination with the Synopsys composite current source timing model to estimate circuit path
delays for any intermediate voltage value. Furthermore, they extend the behavioral simulation by
characterizing the behavior of flip-flops in the case of timing violations to replace unknown outputs
(reported as X) with an estimated value (0 or 1) depending on the flip-flop type, the transition type
and the violation time. In [24], the authors use VOSsim to combine VOS with other approximation
techniques for individual nodes in the DFG of the target application.

The methods for VOS-based approximation described above target ASIC designs and assume
that the supply voltage can be scaled in a fine-grained manner or at least differently for individual
sub-circuits or voltage islands. However, in current commercial FPGA platforms, the supply volt-
age that feeds the logic fabric together with the hard DSP units is controlled globally for the entire
device, which restricts the usefulness of these methods [96].

2.1.2 Circuit Level

The next higher level of approximation methods refers to all low-level techniques that directly al-
ter the circuit implemented for the targeted application in the selected hardware device. In our
classification, we include Precision Scaling, Approximate Arithmetic Units, Circuit Pruning and
Approximate Logic Synthesis, which are introduced and discussed in the following subsections.

2.1.2.1 Precision Scaling

Arguably the most traditional way of adapting the accuracy in computations is to scale the preci-
sion of the data being processed. In CPU software, a binary floating-point representation is often
used to approximately describe real numbers, which are encoded using the sign 𝑠, the exponent 𝑒
and the mantissa 𝑚 as

𝑥real ≈ 𝑥float = (−1)𝑠 ⋅ 2𝑒 ⋅ 𝑚. (2.2)
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The exponent dynamically controls the position of the fractional point of the number with respect
to its magnitude. Hence, this representation yields the same relative precision for small and large
numbers. The length of the mantissa 𝑚 used in the encoding defines the amount of relative preci-
sion offered in the representation. Designers can typically choose between different formats which
are supported in the hardware architectures of common CPUs and GPUs, namely double precision
(64 bits, with 52 bits for 𝑚), single precision (32 bits, with 23 bits for 𝑚) and half precision (16
bits, with 10 bits for 𝑚). However, the dynamic scaling of the exponent causes significant overhead
in arithmetic operations with floating-point numbers and makes the required hardware more com-
plex. Furthermore, being constrained to a set of fixed formats may waste resources if intermediate
accuracy would be sufficient for the application.

In contrast, hardware-based signal processing systems that implement custom circuits as ASIC
or on FPGAs often use a fixed-point data representation. Here, the position of the fractional point
is fixed and a real number is approximated as

𝑥real ≈ 𝑥fixed = round(𝑥real ⋅ 2𝑛) ⋅ 2−𝑛 = 𝑋 ⋅ 2−𝑛, (2.3)

where 𝑋 is the binary integer carried by the signal and 𝑛 is the number of fractional bits associated
with it. This format allows all numbers to be treated as plain integers for all arithmetic operations,
removing the overhead that comes with a floating-point representation. However, the rounding op-
eration in Equation 2.3 introduces quantization noise [104] which inversely scales with the number
of fractional bits (the quantization step is Δ𝑥 = 2−𝑛). Hence, the precision of the signal depends
on its fractional bitwidth.

In a custom circuit implemented using fixed-point arithmetic, the bitwidth of every signal in the
system can be tuned to the needed precision, which can be referred to as fine-grain precision scal-
ing. In complex systems, however, the problem of assigning optimal bitwidths to individual signals
is a non-trivial task. Addressing this problem, Minibit [25] uses affine arithmetic (AA) [105] to
model the precision of internal signals in an application. First, as initial coarse-grain optimization,
the optimum uniform fractional bitwidth (i.e. assigning the same precision to every signal) that
respects the target output precision is calculated analytically using AA. In a second, fine-grain
optimization step, an adaptive simulated annealing algorithm is used to tune the bitwidth of indi-
vidual signals in order to reduce the cost of the circuit further. Another technique, LenghtFinder
[26] also starts with a coarse-grain analysis that determines the minimal uniform bit-length. From
there, it uses a set of heuristic methods to perform fine-grain precision optimization in reduced
time. Optionally, an additional optimization stage can be used to improve the results using a ge-
netic algorithm, which is shown to outperform the simulated annealing approach.

In contrast to the approaches described above, where the precision is optimized statically and
the circuit is implemented with fixed signal bitwidths, other works aim at dynamically scaling the
precision during runtime. Park et al. describe a method for scaling the precision in the calculation
of discrete cosine transform (DCT) coefficients used for data compression [27]. First, they use a
heuristic algorithm to assign different bitwidths to the calculation of the coefficients within three
fixed quality-resource trade-off levels. To achieve dynamic reconfigurability, they add a pair of
additional control transistors to specific gates implemented in complimentary metal-oxide semi-
conductor (CMOS) logic so that selected functional blocks can be switched off. Hence, the user
can switch between the predefined trade-off levels at runtime while the control consumes only little
area and delay overhead.
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Furthermore, Lee and Gerstlauer proposed an approach that specifically targets applications de-
fined by mean squared error (MSE)-type error metrics that may accept noisy input signals [28].
The main idea is that precision scaling can be applied to keep the quality level constant at a desired
level for all input conditions (defined by the set of input signal-to-noise ratios (SNRs)) that would
lead to higher quality levels than required. They use an additive noise model that represents input
noise and quantization noise by their variance and uses propagation through adders and multipli-
ers to calculate the output variance. On the other hand, power consumption is derived from the
sum of unit hardware blocks used by the individual operations in the system, depending on the
bitwidth at the operation’s output. To find an optimal set of bitwidths that meet a desired quality
level while minimizing the consumed power, they apply adaptive simulated annealing as in [25].
This approach is used to compute optimal bitwidths for any given combination of input SNRs and
target output SNR. Then, either one of the solutions can be statically implemented or a table with
different solutions can be stored in the system so that it can react to changes in the input SNRs. In
the latter case, the bitwidths of the selected signals are dynamically controlled via clock gating.

2.1.2.2 Circuit Pruning

Several methods have been proposed aiming at simplifying arbitrary combinatorial circuits. They
start from a complete circuit and prune cells to minimize the resource consumption while meeting
a specified quality target. Most of these methods work iteratively, removing circuit elements in an
order that promises to yield the best resource-quality trade-off.

To that end, probabilistic pruning [29] was proposed, a heuristic method that uses simulations
to identify the circuit elements with the lowest probability of being active and removes them until
a defined quality threshold is violated. In order to consider the error magnitude together with the
error rate, all circuit elements can be assigned a significance value that reflects their impact on the
output. The pruning can then be done after ranking the significance-activity products. Schlachter
et al. extended this methodology by providing automatization tools and integrating it into a stan-
dard design flow [30]. In a similar approach, May and Stechele use an FPGA-based accelerated
fault emulation system [106] to identify registers that can be removed from a circuit without vio-
lating a given output error constraint [31]. All logic that only feeds into a pruned register can be
removed as well. Using the fault emulation system also allows identifying tolerable error proba-
bilities at registers that cannot be completely removed which allows combining the pruning with
VOS methods.

A different method called optimal slope ranking [32] estimates the effect of pruning each cell
in the circuit in terms of power, delay and error. With that, an approximate efficiency value is cal-
culated as the ratio between the energy-delay-product (EDP) and the increase in error. Then, the
pruning candidates are ranked according to the approximate efficiency and the cell with the highest
value is pruned. This process repeats until the error threshold is reached.

In contrast to the previous techniques which iteratively remove parts of the circuit, Circuit Carv-
ing searches globally for the maximum portion or cut of a circuit that can be replaced with con-
stant values so that a given maximum error is respected [33]. To find the best cut, the technique
explores a binary search tree representing all possible cuts and uses heuristics to reduce the number
of branches to visit before finding the optimal solution.
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2.1.2.3 Approximate Logic Synthesis (ALS)

Another type of methods directed at the approximation of arbitrary circuits consists of techniques
to directly synthesize approximate circuits, also denoted as approximate logic synthesis (ALS)
methods. An early approach in this area by Shin and Gupta proposes a heuristic method to find
optimal minterm complements (i.e. modifying specific outputs in the truth table so that a minterm
is simplified) which lead to a reduction in circuit area under a given error rate constraint when
synthesized [34].

Another technique called SALSA [35] reformulates the approximate synthesis problem into a
standard synthesis problem that can be solved by standard synthesis tools. It uses a quality func-
tion that calculates a validity bit from the accurate and approximate outputs for any input, reporting
whether the quality bound is met or not. For each output of the approximate circuit, approximation
don’t cares are found, which are the set of input values to which the output of the quality function
remains insensitive. These are then specified as external don’t cares (EXDCs) and hence standard
don’t care-based synthesis can be used to synthesize the approximate circuit. Similarly, Miao et
al. propose to use EXDCs to perform multi-level approximate logic synthesis [36]. Using Boolean
relations to model the allowed error magnitude behavior, they start from an overly relaxed set of
EXDCs and iteratively find an optimal EXDC set that respects the error magnitude constraint. Ad-
ditionally, their method supports error frequency constraints by successively recovering correct
outputs until the respective constraint is satisfied.

SASIMI [37] is a different approach from the same research group that proposed SALSA, aiming
at generating quality-configurable circuits. Their approach selects pairs of signals that take on the
same values with a high probability, and replaces the target signal by the substitute signal. In the
approximate mode, logic elements feeding only into the target signal can be removed and others
may be downsized due to relaxed timing constraints. Additionally, there is a quality configurable
mode which keeps both signals but downsizes the gates generating the target signal to save power.
If accurate operation is chosen then the system monitors for errors and gates the clock for one
additional cycle to recover occurring errors. In approximate operation, errors are ignored and the
system operates in a single cycle.

Employing evolutionary optimization, Vasicek et al. propose to use a cartesian genetic program-
ming (CGP) [107] algorithm to generate approximate circuits. In CGP, the composition of a circuit
is encoded as a chromosome that can be evolved using the GA. Different variants were studied,
aiming at optimizing the area given a fixed error constraint [38] or vice versa [39]. A detailed
summary of their work is given in [40]. They also demonstrated that benefits obtained by their
method applied at the gate level are preserved when the circuits are synthesized for FPGAs [41].

A different methodology named BLASYS [42] uses boolean matrix factorization to split an accu-
rate multi-output circuit into a compressor circuit which computes a number of feature signals and
a decompressor circuit which recovers the outputs. The degree of approximation can be controlled
by selecting the number of features, with less features yielding more approximation. In order to
support error magnitude minimization, they modified existing factorization algorithms to support
the notion of bit significance. Furthermore, to reduce computational complexity when approxi-
mating large circuits, heuristic methods are used to decompose the circuit and to select the order
in which the resulting sub-circuits are approximated.

Extending the combinatorial ALS problem to sequential circuits, ASLAN [43] provides a mod-
ified quality function that takes the state of the circuit into account to ensure that the approximate
circuit eventually reaches completion. To generate the approximate circuit, combinatorial blocks
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are heuristically selected for approximation and quality-energy trade-off graphs are generated for all
candidates using existing combinatorial approximation techniques. A gradient descent algorithm
then chooses the candidate with the best quality-energy trade-off. This repeats until the quality
function signals that the quality constraint is violated and/or the approximate circuit fails to reach
completion.

2.1.2.4 Approximate Adders

Arithmetic units are among the most important building blocks of signal processing systems. Es-
pecially adders and multipliers are prominently used operations and hence numerous methods for
their approximation have been proposed by the research community. This section will therefore
review and discuss different options of approximate adders, while the subsequent section focuses
on approximate multipliers.

In this overview, we classify the proposed approximate adders into four different categories. The
first contains designs for approximate full adder (FA) cells. In the second category, the addition is
split into an accurate and an approximate segment, cutting the carry chain and simplifying the logic
in the approximate segment. These units are denoted as two-segment carry-split adders. The next
group contains the multi-segment adders, which contain multiple carry splits to reduce the delay
even further. Finally, libraries of evolved adders have been proposed that contain circuits generated
by an evolutionary ALS procedure. Table 2.2 provides an overview over selected methods across
these categories which are described below.

Approximate Full Adder Cells The first sub-category of approximate adders builds upon
modified designs of FA cells, which are the fundamental building blocks of many conventional
adder designs. By allowing errors in the truth table, simplified designs of the respective circuits
are possible. Approximate adders can then be built by replacing some of the accurate FA cells with
approximate ones.

Gupta et al. propose four different approximate mirror adder (AMA) designs by removing tran-
sistors from a conventional mirror adder design to allow various quality-resource trade-offs to be
achieved [44]. The approximate designs consume different amounts of area and the adders built
from them have different critical path lengths, which allows a reduction in supply voltage for fur-
ther savings. In a similar approach, but starting from efficient XOR/XNOR-based FA designs,
Yang et al. propose three different approximations, simply denoted as approximate adder (AXA),
reducing the transistor count even further at comparable output deviations [45]. Lastly, Almurib et
al. propose three additional approximate FA designs, denoted as inexact adder (InXA) [46]. Their
cells are designed from scratch and slightly reduce the number of transistors and the number of
erroneous outputs compared to the previous designs.

However, it should be noted that while adders built from approximate FA cells can deliver ben-
eficial quality-resource trade-offs in ASICs, they are not advantageous in FPGA designs which do
not allow modifications at the transistor-level granularity and can implement accurate FAs in a
single LUT, which is the smallest available architectural building block in FPGAs.

Specifically targeting FPGA-designs, Prabakaran proposed a design methodology for building
approximate adders (DeMAS) [47] which contains eight different designs for one-bit and two-bit
adder building blocks from which larger multipliers can be built. While outperforming FPGA
implementations of ASIC-based FAs, their building blocks are specifically designed with the ar-
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Table 2.2: Overview of approximate adders
Abbreviation Full Name Reference

Approximate Full Adders

AMA Approximate Mirror Adder [44]
AXA Approximate Adder [45]
InXA InExact Adder [46]

DeMAS Design Methodology for Building Approximate Adders [47]
for FPGA-based systems

Two-Segment Carry-Split Adders

ETA-I Error-Tolerant Adder-I [48]
LSA Lower-Select Adder [44]
MA Median Adder [49]

LOA Lower-Or Adder [50]
— Sloppy Adder [51]

OLOCA Optimized Lower Part Constant-Or Adder [52]
HOAANED Hardware-Optimized Approximate Adder with Near-Normal Error Distribution [53]

FAU Fast and Error-Optimized Approximate Adder Units [54]

Multi-Segment Adders

ETA-II Error-Tolerant Adder-II [55]
ACA Accuracy-Configurable Adder [56]
GDA Gracefully Degrading Adder [57]
GeAr Generic Accuracy-Configurable Adder [58]

Evolved Adders

EvoApprox8b Library of evolved 8-bit adders and multipliers [59]
EvoApproxLib Extended library of evolved adders and multipliers of various sizes [60]

chitecture of Xilinx 7-series FPGAs in mind and are not usable across the FPGA architectures of
different vendors.

Two-Segment Carry-Split Adders While the approximate adders described in the previous
section replace some of accurate FAs with simplified designs, they do not change the underlying
architecture of the adder itself. Specifically, they preserve the carry propagation chain. Contrasting
these methods, there are many approaches that are based on the same fundamental idea: splitting
the adder into multiple segments and cutting the carry chain at the split points. Splitting the carry
chain lowers the critical delay of the adder and at the same time reduces power consumption as
less switching activity is caused by glitches in the carry chain [48].

Most proposed designs split the adder into exactly two parts, and the upper part is calculated
accurately using a conventional adder while the lower part is approximated in different ways. The
approximate part also provides an estimate of the carry-in for the accurate part. Figure 2.3 depicts
the common architecture of these designs, given the overall bitwidth of the addition 𝑛 and the split-
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ting point 𝑘. The inputs are denoted as 𝐴 and 𝐵 while the sum is denoted as 𝑆, and specific bit
positions are indicated in the subscript of these variables.

Figure 2.3: Common architecture of carry-split adders

Zhu et al. proposed the error-tolerant adder (ETA)-I design, which reverts the direction of oper-
ation in the lower part [48]. More specifically, the mechanism of generating the approximate lower
part sum proceeds from the most significant bit (MSB) to the least significant bit (LSB). The sum
at each position is set to 1 if either one of the respective inputs is 1 and to 0 if both inputs are zero.
However, if both inputs are 1, then the output of the current bit and the all sum bits to the right are
set to 1, which reduces the overall error of the result. In the actual implementation, the individual
sum bits are calculated by means of modified XOR gates that feature an additional control input
which can force the output to 1. Hence, an additional control block is needed to generate individual
control signals for each bit position in the lower part, which adds considerable logic overhead.

Subsequent works target simpler lower-part approximations, yielding a large number of very sim-
ilar designs, as shown in Figure 2.4. Together with their AMA designs mentioned above, Gupta et
al. also presented a fifth approximation, in which the full adders in the approximate part are com-
pletely removed [44]. Hence, the sum of the lower part is approximated by one of the inputs, while
the carry-in for the upper part is connected to the lower-part-MSB of the other input, as shown
in Figure 2.4a. This effectively replaces the lower part logic with wires. Since the choice which
input to forward to the output can be parameterized to adapt to the structure of the application,
we will denote this adder as lower-select adder (LSA). The structure of this may lead to further
simplifications in the application, as only the MSB of the discarded input needs to be calculated in
preceding parts of the circuit.

Similarly, the median adder (MA) [49] also completely removes the logic in the lower part, re-
placing it by the constant binary representation of its expected median output, as shown in Figure
2.4b. Assuming a uniform distribution for the input portions fed to the lower part, the expected
median output is given as 2𝑘 − 1. This results in all output bits being constantly set to 1 while the
carry-in to the upper part is set to zero. If the distribution of inputs is known more exactly, the
expected median can be calculated directly and a different constant lower-part value can be set.
This adder is even simpler than the LSA as it directly connects the lower-part outputs to 𝑉DD or
ground and may lead to simplifications in both input paths.

In the lower-OR adder (LOA) [50], each bit of the lower-part sum is approximated by the OR
function of the respective input bits. Additionally, the carry-in to the upper part is computed as
the AND function of the lower-part MSBs of both inputs, effectively reducing the worst case error
by roughly 50%. Very similar to the LOA, Albicocco et al. proposed the sloppy adder [51], which
generally operates in the same way but does not predict a carry-in to the accurate part (see Figure
2.4d). While this reduces the cost by one gate, it increases both the average and the worst-case
errors (for the same value of 𝑘).
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(a) Lower-Select Adder (LSA) (b) Median Adder (MA)

(c) Lower-Or Adder (LOA) (d) Sloppy Adder

(e) Optimized Lower Part Constant-Or Adder (OLOCA) (f) Hardware-Optimized Approximate Adder with
Near-Normal Error Distribution (HOAANED)

Figure 2.4: Various carry-split adder architectures

Starting from the LOA structure, the optimized lower part constant-or adder (OLOCA) [52]
replaces the OR-gate producing the lower-part MSB sum bit with an XOR gate. Because this ef-
fectively means using a half adder (HA) in this position, it is the same as decreasing the split point
𝑘 by one and feeding a 0 as carry into the upper part, as in the sloppy adder described above.
However, their structure additionally replaces the OR gates in the lowest portion of the approx-
imate part by constant 1s, similar to the approach of the MA. They find that the optimal split
between OR gates and constant 1s is after two OR gates, counting from the left. The resulting
architecture is depicted in Figure 2.4e. Recently, the hardware-optimized approximate adder with
near-normal error distribution (HOAANED) [53] was introduced, featuring an architecture similar
to the OLOCA, but replacing the two OR gates at the MSBs of the approximate part with more
sophisticated logic (see Figure 2.4f). The top-most approximate bit position now behaves like a
half-adder whose sum output is feed into an OR gate together with an estimated carry produced by
an AND gate from the position to its right. This leads to a well-behaved error distribution with an
average error close to zero, which means that the output deviation is not strongly biased.

Specifically targeting FPGA designs, Echavarria et al. propose fast and error-optimized approx-
imate adder units (FAU) [54]. In their design, the addition is also split into a lower and an upper
part, but both parts perform accurate addition, making the broken carry chain the only potential
source of errors in the system. To reduce the error, a carry is predicted using a parameterizable
amount of MSB inputs to the lower part which are shared into the upper part. Furthermore, in
cases where the lower part produces a carry which would not be caught by the prediction, all sum
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bits in the lower part are forced to 1. While this solution increases the speed of the adder, it also
introduces additional control overhead for the error reduction schemes.

Multi-Segment Adders To achieve even more speed-up than possible with a segmentation into
two parts, multi-segment carry-split adders were proposed. The ETA-II [55] splits an 𝑛-bit adder
into𝑚 segments of size 𝑛

𝑚
. Each segment implements a carry generator that feeds the carry-in of the

next higher segment and a sum generator that produces the sum bits related to the segment. Hence,
the critical path delay behaves inversely proportional to the number of segments at the cost of er-
rors generated at the carry split positions. Kahng and Kang proposed the accuracy-configurable
adder (ACA) [56], which splits the addition into multiple sub-adder segments that each overlap
by half their size, e.g. splitting a 16bit adder into three 8bit segments that overlap by 4 bits each.
Their design additionally features an optional mechanism for error detection and correction which
detects missed carries and increments the result accordingly while stalling the execution for one
additional cycle. Allowing a more flexible configuration, the gracefully degrading adder (GDA)
[57] uses a scheme similar to ETA-II with a carry prediction and an addition block per segment.
However, they use multiplexers to dynamically combine adders across segments into larger sub-
adders and/or to combine multiple carry prediction blocks into longer ones. The functionality of
the multiplexers can either be fixed or dynamically controlled during operation. Finally, Shafique et
al. proposed a generalized methodology of generating adders with overlapping segments in which
both the number of final result bits produced per segment and the length of the carry prediction per
segment can be configured completely freely [58]. Thus, they cover a design space that includes
and supersedes all multi-segment adders discussed above.

Evolved Approximate Adders In Section 2.1.2.3, various methods for automatic approxi-
mate logic synthesis for general-purpose circuits were discussed. Mrazek et al. utilized the CGP-
based ALS method [38–41] to evolve 430 approximate 8-bit adders, which are published as part of
a library called EvoApprox8b [59]. An extended version of the library called EvoApproxLib was
published recently, adding 12-bit, 16-bit and 32-bit adders [60]. While these units provide favor-
able quality-resource trade-offs, they are not parameterizable in a straightforward way, and only
specific sizes are available.

2.1.2.5 Approximate Multipliers

Generally, to multiply two binary numbers, an array of partial products is generated which need to
be summed up to get the final product, as shown in Figure 2.5a. The partial products are usually
formed by feeding pairs of input bits into an AND gate. Different architectures to accumulate the
partial products exist, e.g. implementing a carry-save adder array or using an adder tree structure,
such as a Wallace tree or a Dadda tree [103]. For multiplication of signed inputs in two’s comple-
ment form, the partial product array can be modified as shown in Figure 2.5b, which represents the
modified Baugh-Wooley multiplier [108], or Booth encoding can be used [103].

Different methodologies for the approximation of multiplication circuits can be found in the liter-
ature. Approximate multiplication cells were proposed, which simplify the generation of the partial
products. Secondly, array truncation multipliers perforate the partial product array to reduce re-
source usage. Significance-based multipliers dynamically extract significant portions of the input
signals and feed them into a reduced-size core multiplier. Furthermore, rounding-based multipliers
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(a) Unsigned multiplication (b) Signed multiplication using modified Baugh-
Wooley multiplier [108]

Figure 2.5: Partial product array of (a) unsigned and (b) signed Baugh-Wooley multiplication
(adapted from [103])

and logarithmic multipliers use two different approaches to replace the multiplication by at most
two adders and a few dynamic shift operations. Lastly, the libraries of evolved adders mentioned
in the last section also contain evolved multipliers. Selected methods across these categories are
summarized in Table 2.3 and discussed in the following paragraphs.

Approximate Multiplication Cells This group represents approaches that propose small mul-
tiplication cells, i.e. building blocks, from which larger multipliers can be built.

An early work by Kulkarni et al. proposes a 2×2 underdesigned multiplier (UDM) block, which
simplifies the circuit by changing the output of 11 ⋅ 11 from 1001 to 111, effectively reducing
the number of output bits to three for all input combinations [61]. This leads to a maximum error
magnitude of 2 which occurs in 1

16 of all cases.
Rehman et al. published lpACLib, a library of low-power approximate computing modules,

which features a new simplified 2 × 2 multiplication building block that changes the truth table
for three input combinations, but leads to a maximum deviation of 1 in all cases [62]. Hence, a
different trade-off with a higher error rate but lower maximum error compared to the UDM block is
achieved. Their methodology uses the new block together with the UDM and an accurate 2×2 mul-
tiplier together with several approximate adder designs to form a design space for larger multipliers
which is searched greedily to find the optimum solution given a specified quality threshold.

Specifically targeting FPGA designs, Ullah et al. propose approximate 4 × 2 multiplier blocks
which after truncating the LSB can be mapped efficiently to the available LUT architecture of Xil-
inx 7-series FPGAs [63]. Building upon these blocks, basic 4 × 4 blocks are formed, which in
turn are used to build larger multipliers, for which two options are proposed. The first is the Ca
architecture, which adds the partial products accurately and the second is called Cc which removes
the carry propagation completely. While this leads to a considerable reduction of latency, it leads
to significant increases in error magnitude.

Approximate Array Multipliers The second group of approximate multipliers achieves a re-
duction in area and latency by truncating the partial product array. Mahdiani et al. proposed the
idea of the broken-array multiplier (BAM) [50], which introduces a horizontal break level (HBL)
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Table 2.3: Overview of approximate multipliers
Abbreviation Full Name / Description Reference

Approximate Multiplication Cells

UDM Under-Designed Multiplier [61]
lpACLib Library of Low-Power Approximate Computing Modules [62]

— Area-Optimized Low-Latency Approximate Multipliers for FPGAs [63]

Array Truncation Multipliers

BAM Broken-Array Multiplier [50]
BBM Broken-Booth Multiplier [64]

Significance-Based Multipliers

ETM Error-Tolerant Multiplier [65]
SSM Static Segment Multiplier [66]

DRUM Dynamic Range Unbiased Multiplier [67]

Rounding-Based Multipliers

ROBA Rounding-Based Multiplier [68]
RBA Rounding-Based Multiplier (with more configurations) [69]

Logarithmic Multipliers

LM Basic Logarithmic Multiplier according to Mitchell’s algorithm [70]
Mitch-𝑤 Truncated Logarithmic Multiplier [71]

MBM Minimally Biased Multiplier [72]
REALM Reduced-Error Approximate Logarithmic Multiplier [73]

ALM Approximate Logarithmic Multiplier [74]
ILM Improved Logarithmic Multiplier [75]

Evolved Multipliers

EvoApprox8b Library of evolved 8-bit adders and multipliers [59]
— 16-bit multipliers formed by combining multipliers from EvoApprox8b [76]

EvoApproxLib Extended library of evolved adders and multipliers of various sizes [60]

and a vertical break level (VBL) which control the truncation of rows and, respectively, columns of
the partial product array. Figure 2.6 illustrates how this approach differs from directly truncating
the bitwidth of the operands. Between both parameters, the HBL acts as a coarse configuration of
the quality-resource trade-off, while the VBL is used for fine-grained adjustments. Inspired by the
BAM, the broken-Booth multiplier (BBM) carries over the same principle and applies it to a Booth
multiplier structure [64]. However, the BBM uses only the VBL as configuration parameter.

Significance-Based Multipliers The main principle of the significance-based multipliers is
to dynamically select the significant portions of the input operands depending on the leading-one
position and feeding them into a reduced-size core multiplier. An early approach, the error-tolerant
multiplier (ETM) [65] splits the operands into an upper and a lower part. If there are only zeros in
both upper parts, then the lower parts are fed into a small accurate multiplier. Otherwise, the upper
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(a) Truncated partial product array of BAM (b) Multiplication with truncated input operands
Figure 2.6: Array truncation of the BAM compared to direct truncation of input operands (removed partial

products are indicated in red shading, (a) adapted from [50])

parts are fed into the accurate multiplier and the multiplication of the lower parts is approximated
using a scheme similar to the ETA-I, where from left to right each result bit is computed as the OR
of the respective input bits and if both inputs are 1, then all result bits to the right are set to 1.

The static segment multiplier (SSM) [66] has a more flexible structure than the ETM. It splits
each input operand into two (normal mode) or three (enhanced mode) segments of size 𝑚, which
may overlap. In contrast to the ETM, the most significant portion is selected individually for each
operand and forwarded to a smaller, accurate 𝑚 × 𝑚 multiplier. The result then has to be shifted
based on the positions of both chosen segments.

To enable even finer adjustments, Hashemi et al. proposed the dynamic range unbiased multi-
plier (DRUM) [67], which removes the restriction to a small number of static segments and dynam-
ically selects the most significant portion of both inputs directly from the respective leading-one
position. Additionally, to unbias the approximation error, the LSBs of the extracted portions are
set to 1, representing the expected value of the truncated LSBs of the operand, assuming a uni-
form distribution in the inputs. This dynamic extraction and unbiasing from an input is depicted
in Figure 2.7a and the resulting structure of the multiplier is shown in Figure 2.7b. Because of the
highly flexible selection and the bias removal, DRUM is more accurate than ETM and SSM, but
the selection and control circuitry is also the most complex among the three.

(a) Extraction and unbiasing (b) Multiplier structure
Figure 2.7: DRUM input processing (a) and implementation structure (b) (adapted from [67])
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Rounding-Based Multipliers The rounding-based multiplier (RoBA) [68] replaces the mul-
tiplication by multiple shift and add operations after rounding the operands to the nearest powers
of two. Given two input operands 𝐴 and 𝐵 and the respective rounded versions 𝐴R and 𝐵R, the
multiplication can be expressed as

𝐴 ⋅ 𝐵 = 𝐴R ⋅ 𝐵 + 𝐵R ⋅ 𝐴 − 𝐴R ⋅ 𝐵R + (𝐴R − 𝐴) ⋅ (𝐵R − 𝐵)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

neglected term

, (2.4)

where the first three terms can be implemented by shift operations. The final term, which can be
thought of as a rounding error, is hard to compute but contributes only a small amount to the final
result. Hence, it is ignored in the computation of the approximate result. The resulting multiplier
structure is depicted in Figure 2.8.

Figure 2.8: RoBA implementation structure for the unsigned case (adapted from [68])

Building upon the RoBA, Garg and Patel proposed to simplify the multiplication even further
by using fewer terms of Equation 2.4 to form the variants RBA0 to RBA3 [69]. While RBA3 is
the same as the original RoBA, the others are using the following equations:

RBA0: 𝐴 ⋅ 𝐵 = 𝐴R ⋅ 𝐵R, (2.5)
RBA1: 𝐴 ⋅ 𝐵 = 𝐴R ⋅ 𝐵, (2.6)
RBA2: 𝐴 ⋅ 𝐵 =

(

𝐴R ⋅ 𝐵 + 𝐵R ⋅ 𝐴
)

÷ 2, (2.7)
offering a further reduction in implementation complexity at the cost of increased errors.

Logarithmic Multipliers This group of multipliers performs the operation as plain addition
in logarithmic domain and uses approximate logarithmic conversion according to Mitchell’s algo-
rithm [70]. In this algorithm, the input operands are expressed as [109]

𝐴 = 2𝑘A(1 + 𝑥A), (2.8)
𝐵 = 2𝑘B(1 + 𝑥B), (2.9)

where 𝑘A and 𝑘B are the position of the leading-one in 𝐴 and 𝐵, also referred to as characteristics,
and 0 ≤ 𝑥A, 𝑥B < 1 are the fractional mantissa parts extracted from the right of the leading-one in
𝐴 and 𝐵. The product of 𝐴 and 𝐵 is then given as

𝑃 = 𝐴 ⋅ 𝐵 = 2𝑘A+𝑘B
(

1 + 𝑥A
) (

1 + 𝑥B
)

, (2.10)
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and its base-2 logarithm is
log2(𝑃 ) = 𝑘A + 𝑘B + log2(1 + 𝑥A) + log2(1 + 𝑥B). (2.11)

Using the approximation
log2(1 + 𝑥) ≈ 𝑥 (2.12)

which holds for 0 ≤ 𝑥 < 1, Equation 2.11 can be simplified to
log2(𝑃 ) ≈ 𝑘A + 𝑘B + 𝑥A + 𝑥B (2.13)

and the final product in linear domain can be calculated by

𝑃 ≈

{

2𝑘A+𝑘B
(

𝑥A + 𝑥B + 1
)

, if 𝑥A + 𝑥B < 1,
2𝑘A+𝑘B+1

(

𝑥A + 𝑥B
)

, if 𝑥A + 𝑥B ≥ 1.
(2.14)

The basic structure of a logarithmic multiplier (LM) is depicted in Figure 2.9. First, the leading-one
is found and its position encoded as binary number 𝑘A,B. Then, the logarithmic converter concate-
nates 𝑘A,B and the mantissa parts 𝑥A,B which are extracted from the right of the leading-one. The
resulting pseudo-logarithmic numbers are added and the result is converted back to linear domain
according to Equation 2.14. This step is done by the antilogarithmic converter by splitting the
adder result into a characteristic and a mantissa part, setting the leading-one bit in the result word
according to the characteristic part and appending the mantissa part to the right of it.

Figure 2.9: Implementation structure of basic LM

Kim et al. proposed to add a set-zero component to the LM to ensure a correct output if one of
the operands is zero [71]. Furthermore, they propose to truncate the mantissa to a configurable
width which lowers the resources needed for the logarithmic conversions as well as the adder at
the cost of additional errors, allowing to flexibly control the resource-quality trade-off.

In the basic LM, the error scales with the power-of-two intervals of the input operands, de-
termined by 𝑘A and 𝑘B. To reduce and unbias the error evenly across the input range, Saadat
et al. proposed the minimally biased multiplier (MBM) [72]. Their architecture includes a con-
stant error correction term that is added before the antilogarithmic conversion and consequently
automatically scales correctly for the final output. The reduced-error approximate logarithmic
multiplier (REALM) refines this idea by partitioning the power-of-two intervals into an 𝑀 × 𝑀
grid and storing different correction terms for each tile, addressed by the MSBs of the mantissa
signals 𝑥A and 𝑥B [73]. At the cost of a correction coefficient table, this enables further reduction
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of the output errors. Both the MBM and the REALM also add the possibility of truncating the
length of the mantissa.

Liu et al. proposed several approximate logarithmic multiplier (ALM) variants, which employ
different flavors of approximate addition [74] instead of an accurate adder. They show that em-
ploying a set-one adder (SOA), i.e. setting the output below a split point to constant 1s leads to
energy savings and slightly reduces the error as well.

Lastly, the improved logarithmic multiplier (ILM) [75] replaces the leading-one detector of the
original LM design by a nearest-one detector. Hence, this method may choose the position left of
the leading-one for the characteristic if the input operand is closer to the next higher power of two.
This leads to a less biased logarithmic conversion at the cost of additional complexity.

Evolved Approximate Multipliers Similar to the evolved adders discussed above, also ap-
proximate multipliers were evolved using the CGP-based ALS method. In addition to the approx-
imate adders, EvoApprox8b contains a large number of approximate unsigned 8 × 8 multipliers
[59]. In [76], these multipliers are combined to form 16 × 16 multipliers. The recent EvoApprox-
Lib library added several directly evolved unsigned 8 × 𝑁 multipliers together with signed and
unsigned 8 × 8 and 12 × 12 multipliers [60]. Also, signed and unsigned 16 × 16 and 32 × 32
multipliers were added using the same divide-and-conquer strategy that was used in [76]. Similar
to the evolved adders, these libraries contain units with favorable quality-resource trade-offs, but
offer no straightforward parameterization, and feature only units of specific sizes.

2.1.3 Algorithm Level (Elementary Functions)

To distinguish different classes of approximations on the algorithmic level, we distinguish be-
tween approximating elementary functions, as presented in this section, and methods targeting the
sequential control flow of an application (see Section 2.1.4). Elementary functions are small ker-
nels that compute a given mathematical function, such as trigonometric, exponential/logarithmic
or root functions, or compositions thereof. These functions have in common that it is virtually
impossible to compute the exact results directly, and so they always need to be approximated in
computational systems. However, normally implementations of such functions target the highest
possible precision, i.e. trying for the result to be accurate up to the precision of the LSB of its
numerical representation [110]. However, in the scope of approximate computing, this notion can
be relaxed depending on the resilience of the target application and the effort spent of computing
these functions may in turn be significantly reduced.

When implemented as part of a digital signal processing system, these kernels can be thought of
as building blocks or sub-circuits that handle such computations in the datapath of the application.
In the following, we give an overview of the most prominent methods of approximating elemen-
tary functions, focusing on how the quality-resource trade-off related with their implementation in
hardware can be controlled meaningfully.

2.1.3.1 Polynomial Approximation

Polynomial approximation is a widely used way to implement complex math functions. As the
name suggests, the accurate function is replaced by a polynomial expression of degree 𝑛 that min-
imizes the average or worst case deviation between the polynomial and the accurate function over
a target interval [𝑎, 𝑏]. Methods of computing optimal polynomials are summarized in [111].
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In hardware, polynomials can be implemented using multipliers and adders and the quality-
resource trade-off can be controlled by choosing the polynomial degree 𝑛. However, the coeffi-
cients provided by standard algorithms are typically high-precision representations of real num-
bers which might not be suitable for hardware implementation and a plain quantization of these
coefficients may lead to sub-optimal solutions [110]. To overcome this problem, Brisebarre et
al. proposed sparse-coefficient polynomials, restricting the bitwidth of polynomial coefficients for
efficient hardware implementation [77]. Chevillard et al. developed the Sollya tool, which can com-
pute optimal polynomials with sparse coefficients given specific bitwidth constraints [78]. Going
one step further, de Dinechin et al. proposed a heuristic method to find the best constraints that
fulfill a given approximation error bound [79]. Their method is integrated in the FloPoCo tool
which is used to automatically generate efficient arithmetic circuits for FPGA designs [112].

However, it should be noted that the success of polynomial approximation in achieving a fa-
vorable quality-resource trade-off, i.e. finding an acceptable solution with a low degree and small
coefficients, varies strongly between different approximated functions and target intervals [110].

2.1.3.2 Incremental Refinement

Another method of approximating elementary functions is given in incremental refinement algo-
rithms, i.e. algorithms which over repeated iterations improve the accuracy of the approximation.
Here, we will focus on shift-and-add algorithms, which contain only additions and multiplications
by powers of two, and are therefore well suitable for implementation in custom circuits. In the ac-
tual circuit design, the iterating kernel can be placed once and re-used by feeding the output back
to the input until the target accuracy is satisfied. While this option allows for dynamic scaling of
the output quality, it is not suitable for streaming processors that take in a new input in every cycle.
Instead, for those cases, the iteration can be unrolled into a statically fixed number of subsequent
copies of the kernel, which yields a fixed accuracy at the output. In the first case, the output quality
is mainly traded off against computational performance, as more accuracy requires more time and
hence throughput is reduced. Conversely, in the second case, quality is traded off mainly against
area, as a higher accuracy requires more parallel instances of the iteration kernel (which likely also
leads to a larger delay, but does not affect throughput in streaming processors).

A very prominent shift-and-add algorithm is the coordinate rotation digital computer (CORDIC)
method, proposed by Volder in 1959 [80]. It performs a series of pseudo-rotations by predefined
angles that get smaller with each iteration to approximate any target rotation angle. In the basic
form, the iterations allow the calculation of trigonometric functions. Walther extended the algo-
rithm to more elementary functions, including hyperbolic functions, logarithms, exponentials and
the square root [81]. Generally, CORDIC-based computations converge linearly, i.e. (𝑛 + 1) iter-
ations are needed to achieve 𝑛 accurate bits in the result, but many advanced modifications have
been proposed over the years to achieve better trade-offs [82].

2.1.3.3 Table-Based Methods

Instead of implementing the computation of an elementary function directly in hardware, it can be
pre-calculated at the target precision and stored in a table which is accessed during runtime. This
effectively trades computation effort for the memory needed for tabulation. However, if values are
stored for all possible inputs, the memory consumption scales exponentially with the number of
input bits, leading to high amounts of memory consumption. Arguably the most straightforward
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way to reduce memory consumption is to address the table only with the first 𝑘 bits of the input,
resulting in a sparse table with uniform segmentation [110]. However, this method may not be
optimal in terms of the quality-resource trade-off, as the segmentation is globally constraint by the
segment with the worst-case deviation.

Various methods have been proposed to alleviate this problem, which can roughly be catego-
rized as multiplier-less table-add methods and piecewise polynomial methods, which are described
below. In general, table-based methods have the advantage that they are not restricted to specific
elementary functions but can easily be adapted to arbitrary functions. By choosing a suitable seg-
mentation and/or interpolation scheme, the quality-resource trade-off can be controlled effectively
at fine granularity.

Table-Add Methods To increases the accuracy of quantized tabulation, the bipartite table
method employs a multiplier-less linear interpolation within the segments [83, 84]. To do this,
the input word 𝑥 is split into three parts 𝑥0, 𝑥1, 𝑥2 (of lengths 𝑛0, 𝑛1, 𝑛2, respectively), where
𝑥 = 𝑥0 + 𝑥1 + 𝑥2, which are used to access two tables in parallel: a table of initial values (TIV)
that returns a base value 𝑎(𝑥0, 𝑥1) and a table of offsets (TO) which yields an offset value 𝑏(𝑥0, 𝑥2)
These values are added together to approximate a target function 𝑓 (𝑥) as

𝑓 (𝑥) = 𝑓 (𝑥 = 𝑥0 + 𝑥1 + 𝑥2) ≈ 𝑎(𝑥0, 𝑥1) + 𝑎(𝑥0, 𝑥2). (2.15)

More specifically, the TIV is addressed with the 𝑛0 + 𝑛1 MSBs of the input and typically stores
the values of 𝑓 at the midpoints of the 2𝑛0+𝑛1 segments. On the other hand, the TO is addressed
by the 𝑛0 MSBs and the 𝑛2 LSBs of the input, and returns different approximation curves for each
of the 2𝑛0 major sections. Typically, the approximation curve is linear. In that case, the size of the
second table can be cut in half and the missing values reconstructed by symmetry [84]. Figure 2.10
illustrates the curve approximation using the symmetric bipartite table-add method.

To achieve further refinements, multipartite table methods were proposed, which use multiple
TOs, addressed by different portions of the input word [85, 86]. This generally leads to smaller
tables at the cost of more additions.

Figure 2.10: Curve approximation with symmetric bipartite table-add method
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Piecewise Polynomial Methods The other type of table-based methods uses one or more
multipliers to perform polynomial interpolations within the gaps of sparse tables [111]. In general,
the MSBs of the input are used to address a table yielding interpolation coefficients while the LSBs
are forwarded as input to the polynomial. For a polynomial degree of 𝑑, 𝑑 + 1 coefficients need to
be stored. Polynomials of higher degrees can be decomposed according to the Horner rule to avoid
costly power units, which requires 𝑑 multipliers and 𝑑 adders for polynomials of degree 𝑑. As a
special case, for polynomials of degree 1, i.e. linear interpolation, the slope can either be stored in
the table or derived from two consecutive table entries, but the latter requires dual-port access to
the memory storing the table.

As mentioned above, uniform segmentation of the input space may lead to sub-optimal resource
usage. To solve this problem, Lee et al. proposed a non-uniform, hierarchical segmentation scheme
[87]. Their approach employs multiple levels of segmentation. At the highest level, the input inter-
val is divided into several sections. Then, each of these sections is divided further into a variable
number of lower-level segments, and so on. At each level, the segmentation can follow one of four
schemes: either dividing into uniform segments or dividing into segments of exponentially chang-
ing sizes. When restricting the segment sizes to powers of two, the resulting addressing scheme
can be implemented with little overhead in hardware. Figure 2.11 provides an example for a curve
reconstruction using two uniformly distributed segmentation levels and linear interpolation.

Figure 2.11: Curve approximation with two-level (uniform/uniform) hierarchical segmentation using 4 ma-
jor sections with [4, 2, 1, 2] segments and linear interpolation within the segments

2.1.4 Algorithm Level (Control Flow)

At a higher abstraction within the algorithm level, there are several techniques which target the con-
trol flow, aiming at a reduction of necessary computations. In software, loop perforation [113] is
a popular, dynamically scalable approach which intelligently skips selected executions in loops or
other repeating tasks, e.g. in image processing algorithms [114]. Applicable to both software and
hardware-based systems are the approaches of fuzzy memoization and neural acceleration, which
are described below.
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2.1.4.1 Fuzzy Memoization

Memoization describes a technique, where the results of executed instructions are stored in a cache-
like table which is addressed by the instruction type and the operands [115]. When the same com-
bination of instruction and operands is encountered again, the result can be read directly from the
table and the computation can be avoided. While this technique is able to reduce power consump-
tion, the size of the memoization table quickly grows with larger operands, making it less effective.

Therefore, Alvarez et al. introduced the idea of fuzzy memoization, which relaxes the condition
of requiring identical inputs to access the table [88]. More specifically, by removing 𝑛 LSBs from
the operands before addressing the table, a range of similar inputs will also successfully hit the
memoization table. Hence, this leads to a configurable trade-off between the power reduction,
which improves with increasing hit rates, and output quality, which falls if larger tolerances are
allowed.

Directly targeting implementation on FPGA-based systems, Sinha and Zhang propose a gen-
eralized methodology to create both static and dynamic memoization architectures automatically
[89]. They allow the user to provide an arbitrary similarity measure and a tolerance threshold,
defining the range of accepted similar inputs. In the static case, the memoization table is pre-filled
with results for the most likely inputs in contrast to the dynamic case, which allows updating the
memoization table during runtime. Their experiments show that at the cost of the area overhead
introduced by the memoization control and memory, the power consumption can be improved
compared to other approximation techniques, hence offering different quality-resource trade-offs
depending on the design targets.

2.1.4.2 Neural Acceleration

In 2012, Esmaeilzadeh et al. proposed to accelerate general-purpose programs using neural pro-
cessing units (NPUs), i.e. energy-efficient dedicated hardware to accelerate neural networks [90].
The main idea behind this is to convert entire blocks of imperative code into a neural network struc-
ture that can be called from the main program. Similarly, the idea could be applied for hardware-
based systems to offload complex computations that would consume a high amount of logic re-
sources into a specialized neural accelerator. If a good network topology is chosen and the network
is trained appropriately, it can approximately mimic the accurate operation with manageable errors
at the output. For demonstration purposes, they simulated a heterogeneous digital CPU-NPU archi-
tecture to estimate the potential benefits for several benchmark applications, and report an average
speed-up of 3.7× and an average energy reduction of 3.0× at an average error of 6.87% across all
applications. However, their results remain theoretical and vary largely between the applications.
This concept was extended by Amant et al. to include an analog NPU in place of the digital one
[91]. Their simulations show that the analog design improves the speed-up and energy savings sig-
nificantly, but at an additional loss of accuracy. In 2015, SSNAP was proposed, which presents a
real implementation of the concept in an off-the-shelf system-on-chip (SoC) FPGA platform [92].
While the main program runs on the CPU of the SoC, the NPU is implemented in the FPGA fabric.
Reporting an average speed-up of 3.8× and an average energy reduction of 2.8×, their results show
that their real-world measurements roughly matches the theoretical benefits.
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2.1.5 Memory Level

Besides the core processing components, memory units are important components in computa-
tional systems. In FPGA-based devices, a small amount of near-processing memory is typically
available in the form of random access memory (RAM) which is embedded alongside the logic
fabric of the FPGA chip, and commonly abbreviated as BRAM. However, since the storage pro-
vided by the BRAMs is very limited, external memory modules are used to hold larger amounts of
data. In FPGA-based digital camera systems, for example, the internal BRAM may hold a couple
of lines of an image locally in row buffers while external RAM can be used to store multiple entire
images in frame buffers [116]. Since memory units contribute a significant amount of power con-
sumption [97], a range of techniques was proposed to approximate data storage to obtain benefits,
mostly in power consumption. They are summarized in the sections below.

2.1.5.1 Memory Voltage Overscaling

Similar to the approaches discussed above in Section 2.1.1, where the supply voltage of computa-
tional circuits is overscaled to reduce power consumption, several methods have been proposed to
apply aggressive overscaling in memory supply voltage in a controlled manner.

Chang et al. proposed to use a hybrid static RAM (SRAM) array consisting of a mixture between
6T and 8T cells to alleviate the effect of VOS applied to the memory [93]. Exploiting the fact that
8T cells behave more robustly at reduced supply voltages than conventional 6T cells, they store
higher order bits in 8T cells and the lower order bits in 6T cells. The quality-power trade-off can
then be controlled by adapting the 6T/8T cell ratio, which determines the amount of data that can
be stored accurately, as well as by scaling the supply voltage, which influences the error probabil-
ity of inaccurately stored bits. Instead of mixing different memory cells, Truffle proposes a novel
dual-voltage architecture, in which the storage/retrieval logic of an SRAM array can dynamically
be switched between nominal and reduced voltage to enable accurate and approximate operation
of the same memory cells [94]. To control the operation mode, instruction set architecture (ISA)
extensions are proposed to enable switching at the software/compiler level.

Targeting emerging spintronic memories, Ranjan et al. designed a quality-configurable memory
array to enable data storage at varying quality-power trade-off levels [95]. To achieve this, they
use three scalable mechanisms to approximate the operation of spin transfer torque magnetic RAM
(STT-MRAM) cells: lowering the voltage and sense current in read operations, reducing the read
duration at an increased voltage, or lowering the voltage and/or duration during write operations.

In 2018, Salami et al. studied the effects of scaling the supply voltage on the 𝑉CCBRAM rail that
globally powers the embedded BRAM memory units in FPGAs [96]. They found that BRAM can
be reduced significantly below the nominal value without faults occurring, and even more when
some faults are acceptable. However, their experiments show that there are significant die-to-die
variations between sampled chips when operated below the nominal voltage. Additionally, they
found non-uniform within-die variations in the behavior of different BRAMs on the same chip,
which appear to be stable over time and deterministic. The error behavior can therefore be char-
acterized per chip and stored in a fault variation map. This map can then be used to construct
additional constraints for the placement stage to map less important data to BRAMs with higher
fault probability to control the quality impact caused by overscaling the 𝑉CCBRAM rail.
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2.1.5.2 Refresh Rate Scaling

Dynamic RAM (DRAM) is a popular memory technology due to its low cost and high density.
However, since DRAM is a non-persistent data storage technology, it needs to be refreshed peri-
odically to prevent data loss, which consumes a considerable amount of power [117]. Decreasing
the refresh rate alleviates the power consumption but may lead to erroneous data.

An early approach for controlling the resulting quality loss is called Flikkr [97], in which the
application data is partitioned into a critical and a non-critical portion, which are stored in different
sections of the memory. Then, the refresh control is modified to reduce self-refresh in rows that
store non-critical data, resulting in a reduction of refresh power. Another technique called Sparkk
[98] partitions the data within words by bit significance and maps the individual bits to different
parts of the memory that operate at different refresh rates. This enables multiple quality levels to be
employed for different bits which can lead to improved trade-offs at the cost of additional overhead
introduced by the mapping and a more complex refresh control. Raha et al. proposed a methodol-
ogy that exploits the fact that different pages of a memory module vary in their ability to tolerate
a reduced refresh rate [99]. Extensive retention time measurements are used to sort the pages into
different quality bins. This allows storing data at multiple quality levels while refreshing the entire
chip at a single (reduced) rate, eliminating the need for modified refresh controls. However, this
requires a time-consuming characterization phase for each DRAM module to be used and their
results indicate that error characteristics may deviate largely between different modules.

2.1.5.3 Approximate Memory Operation

Besides voltage or refresh rate scaling, other methods have been proposed for approximate opera-
tion of memories to reduce power or even reactivate worn-out memory cells. Targeting solid state
memories, Sampson et al. propose methods to approximate data storage in multi-level cell (MLC)
memories [100]. MLCs store multiple bits in a single cell but require more time and energy to ac-
cess and need additional error correction overhead. The cell data is stored as an analog value and
guard bands are used to distinguish the different levels. To reduce the time and power consumed
by access operations, the guard bands are relaxed which increases the probability for incorrect
operation. Additionally, to extend the lifetime of solid state devices, they enable the continued
use of worn-out blocks with, i.e. blocks with too many defective bits, by prioritizing the available
error-correction resources on the most significant bits and allowing errors in the remaining ones.

Ganapathy et al. propose to alleviate error correction overhead in SRAM cells [101]. They re-
place the costly row-wise error-correction circuitry with a mechanism that shuffles the data on
read/write accesses so that always the least important bits end up in a faulty cell, as guided by a
fault-map table. This leads to reductions in area, power and delay at controlled quality degradation.

2.1.5.4 Memory Access Scaling

One method at the intersection of precision scaling and approximate storage is called approximate
memory access (approxMA) [102]. Instead of reducing the bitwidth of on-chip signals and related
operations, it scales the precision of words read from memory to reduce the necessary number of
read operations. To enable this, the data is reorganized so that bits of similar significance from
multiple words are stored together. A runtime precision controller then dynamically determines
the required precision for a read operation and only loads the needed number of significant bits.
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2.2 Selection and Implementation for FPGA

From the large range of approximation techniques reviewed in the previous section, we imple-
mented several methods that are promising candidates for use in low-level image processing appli-
cations on FPGA hardware, focusing on reducing the resource consumption as a primary design
target. The selection was based on the predominant operations found in such systems. First, we ap-
ply precision scaling which is a universal technique applicable in the design of any signal process-
ing system. Furthermore, most image processing applications feature many arithmetic operations,
e.g. for color calculations or filtering operations. Hence, we selected different approximate adders
and multipliers to include within our library of approximate components. Lastly, image processing
pipelines in digital cameras often contain point operations [118] which apply transfer functions to
pixel values. Point operations may for example be used for luminance encoding or tone-mapping
tasks and commonly feature non-linear functions. In order to support approximation for arbitrary
transfer functions, we selected a flexible table-based method as well.

With the exception of precision scaling, the approximation methods can be thought of as approx-
imate components or building blocks which can be combined with accurate components to form
various applications. On the other hand, precision scaling affects the width of the connections be-
tween these components. Nevertheless, all selected methods are suitable for use in FPGA devices
across different vendors, exhibit parameters which can be used to scale the degree of approximation,
and influence the processed data deterministically. While for some methods, the implementation
for FPGA designs is straightforward, others might need some adaption when transferring from
descriptions targeting ASIC hardware.

The following sections describe the selected techniques in detail and motivate their choice. Fur-
thermore, we provide implementation details specific to the meaningful use within typical FPGA
architectures.

2.2.1 Precision Scaling

We use fine-grain precision scaling to adapt the width of individual signals within the data flow
of the application. For this, the designer may freely select multiple signals and individually define
the range in which their bitwidth can be scaled. In the hardware implementation, the scaling can
easily be controlled via generics at the hardware description language (HDL) level. From a system
perspective, it could also be considered as a component placed on a signal that removes a param-
eterizable number of bits from the signal. The most apparent impact of this is that the number
of registers needed in the respective signal paths in pipelined systems directly scale accordingly.
Another effect is that it changes the width of inputs and outputs for operations and components
within the application, hence indirectly influencing their resource consumption as well. Neverthe-
less, this leads to a number of considerations to be made when precision scaling is combined with
other approximation methods. For one, the other components need to be able to flexibly scale in
size in order to carry over the benefits achieved with precision scaling. On the other hand, there
may be interplay between the parameterizations of components and the bitwidth of signals carried
between these components that needs to be taken into account to ensure a valid, meaningful global
parameterization. While the first point influences the choice of components below, the second will
be discussed in detail in Section 3.2 in the next chapter.
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2.2.2 Approximate Adders

The logic architectures of current commercial FPGA platforms directly integrate dedicated fast
carry chains to support fast addition, enabling the implementation of adders with low delay di-
rectly in the logic fabric. Using these dedicated resources for the accurate parts, we implemented
all two-segment carry split adders shown in Figure 2.4, namely the LSA, the MA, the LOA, the
sloppy adder, the OLOCA and the HOAANED. All of these adders are easily configurable by
setting their overall input size as well as the split position, counting from the LSB. The LSA
additionally uses an additional parameter to select which input is forwarded in the lower part.

When synthesized for FPGA designs, the input signals are fed through LUTs into the dedicated
fast carry chains in the accurate part. However, the resource utilization of the approximate part de-
pends on the adder type. LUTs are used throughout the approximate part of the LOA and the sloppy
adder as well as the two most significant approximate bits of the OLOCA and the HOAANED, be-
cause these bits are generated by logic functions. In case of the LSA, the lower part only needs wires
to connect the selected input through to the output. For the MA, the OLOCA and the HOAANED,
some or all of the output bits in the lower part are replaced by constants, for which neither LUTs
nor wires are utilized. Note that using one of these three adders has further impact on the preceding
components, since some of the input bits do not need to be calculated. Similarly, with the LSA,
some of the lower bits of the input that was not selected do not need to be calculated.

2.2.3 Approximate Multipliers

Similar to the fast carry chain structure embedded within the general logic fabric to accelerate ad-
dition operations, current FPGA platforms integrate dedicated hard DSP slices to facilitate efficient
and fast multiplication. Typically, such DSPs can be used in various implementation modes, sup-
porting different operator sizes. For example, the DSPs integrated in the Intel Arria 10 FPGA series
in fixed-point mode support two independent 18×19 multiplications or one 27×27 multiplication.

Since the functionality of these hard multiplication circuits of the DSP slices cannot be altered,
approximations can only be realized in the form of soft multipliers implemented in the logic fab-
ric. Therefore, using approximate multipliers in FPGA designs is only beneficial in specific cases.
First, logic multipliers may need to be used in large designs as the number of DSP slices available
is limited and may be exhausted. Secondly, even though the dedicated multiplication circuitry is
highly optimized, small multipliers can be more efficient when implemented in logic. To high-
light the second point, Figure 2.12 compares the power consumption of logic multipliers and DSP
multipliers across all possible size combinations between 2 × 2 and 27 × 27, directly inferred from
behavioral description, on an Intel Arria 10 FPGA device. The data points were collected using
the automatic component characterization methodology described later in Section 2.3. Shown are
projections of power consumption against (a) output bitwidth, i.e. the sum of both input bitwidths,
and (b) the product of both input bitwidths.

The plots show that the power consumption of DSPs scales roughly linearly with the output
bitwidth but for logic implementations it rather scales linearly with the product of input bitwidths.
Furthermore, for smaller sizes, multiplication in core logic is more power efficient than using DSP
slices. We conclude that for multiplier sizes up to 18×18, logic multipliers and hence also approx-
imate multipliers are of particular interest for FPGA designs.

Several state-of-the-art approximate multipliers have been selected from the literature and were
ported into a corresponding FPGA design. In the selection, several factors were considered. First,
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Figure 2.12: Comparison between logic implementation and DSPs in terms of power consumption for mul-

tipliers of sizes between 2 × 2 and 27 × 27

the implementation should be parameterizable to cover multipliers of arbitrary sizes. This ex-
cludes already many of the architectures proposed in the related literature which are restricted in
some form or another to very specific size combinations. In most cases, the architectures require
both inputs to be of the same bitwidth and many of them further restrict that bitwidth to be exactly
a power of two. While it is possible to use a larger multiplier to accommodate a mid-size multi-
plication, it is not considered because it likely wastes resources unnecessarily. Secondly, we only
consider architectures that offer further parameterization to control the degree of approximation.
Lastly, even though we consider implementation on Intel Arria 10 series FPGA devices throughout
this work, we want to consider only vendor-agnostic units, i.e. units that may synthesize regardless
of the target platform and hence do not use vendor-specific primitives in their design. Unfortu-
nately, this excludes virtually all proposed designs directly targeting FPGA designs, as they all
exploit very specific aspects of a single target architecture and use vendor-specific primitives to
access them [63].

With these considerations in mind, we chose to port the BAM [50], the DRUM [67], the RoBA
[68] with an optional truncation for internal signals together with the additional operation modes
that were proposed as RBA [69] and the logarithmic Mitch-𝑤 [71]. Several adaptions had to be
made for the implementation on FPGA hardware, which are explained in the following sections.

2.2.3.1 Broken-Array Multiplier (BAM)

For the BAM, a custom implementation of the multiplication array and the subsequent partial prod-
uct summation is needed so that generic truncation at the horizontal (HBL) and vertical (VBL)
break levels can be realized. First, the partial product array is formed as in Figure 2.5a by taking
the AND of all bit pairs from the inputs 𝐴 and 𝐵. For signed multiplication, the modified Baugh-
Wooley structure [108] is used as illustrated in Figure 2.5b. The summation of partial products is
implemented using a hybrid adder tree structure. For most of the adder tree, ternary adders are
used to reduce the resource consumption as they can be efficiently implemented on both Xilinx
and Intel FPGAs using the LUTs and dedicated carry chains available in the logic architecture.
The first layer, however, uses the LUTs within the logic blocks to create the partial products and
hence performs binary addition to add two consecutive rows of the array within the dedicated carry
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chain. If the input operands are of unequal size, the smaller operand is taken as multiplier, which
determines the number of partial product rows, to minimize the depth of the adder tree.

To truncate the partial product array in a generic manner according to the HBL and VBL pa-
rameters, the respective partial products are forced to constant 0s and the addition operations are
shortened accordingly. This implementation supports arbitrary input size combinations. The HBL
scales up to the width of the smaller operand whereas the VBL can take values up to the output
width. In the case of signed multiplication (cf. Figure 2.5b), the truncation needs to omit the
modified array cells to ensure meaningful operation.

2.2.3.2 Dynamic Range Unbiased Multiplier (DRUM)

The basic operation principle of the DRUM is to detect the leading-one in both inputs and extract
a defined number of bits after it to be fed into a smaller core multiplier. This input processing
involves three steps: Leading-one detection, numerical encoding of its position, and extracting
the 𝑘 subsequent bits from the input, where 𝑘 is the core size. In the original publication, this
is done in sequence, resulting in a significant delay overhead. Our implementation uses a self-
determined shifter, which shifts the input to the left in power-of-two steps until the leftmost bit
becomes 1. Each shift layer simultaneously records the executed power-of-two shifts in an output
signal, which directly coincides with the encoded leading-one position. Hence, all three steps can
be implemented within one functional block, as shown in Figure 2.13. When unequally wide input
operands are used, the range for the core size 𝑘 scales up to the width of the smaller operand.

Figure 2.13: Adapted unsigned DRUM structure using self-determined shifters which simultaneously pro-
duce the leading-one positions 𝑘A,B and the extracted parts 𝑥A,B from the inputs 𝐴,𝐵

For the handling of signed computation, the original paper suggested enclosing the proposed
method, which only works for the unsigned case, between additional pre- and post-processing logic
that converts from two’s complement to unsigned format and vice versa. Generally, this conversion
is done accurately by inverting all bits and adding 1 to the result in both directions, which implies
the use of two extra adders. To circumvent the associated additional delay, several works propose
to use an approximate conversion by removing the addition, introducing an additional error of one
code value in each conversion [68, 71]. We implemented a conversion wrapper that supports both
accurate and approximate operation which can be reused for all multipliers whose core architecture
supports unsigned operation only, as shown in Figure 2.14.

2.2.3.3 Rounding-Based Approximate Multiplier (RoBA) and variants

Recount that the RoBA approximates the computation using the following formula:
𝐴 ⋅ 𝐵 = 𝐴R ⋅ 𝐵 + 𝐵R ⋅ 𝐴 − 𝐴R ⋅ 𝐵R, (2.16)
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Figure 2.14: Signedness conversion wrapper to enclose unsigned approximate multipliers

where 𝐴,𝐵 are the inputs and 𝐴R, 𝐵R are the inputs rounded towards the next power of two. Hence,
three shift operations as well as one addition and one subtraction are needed in the original design.

The operation can further be simplified by reformulating Equation 2.16 depending on the round-
ing direction. Let 𝐴 respectively 𝐵 be described as 2𝑘A,B(1+𝑥A,B), where 𝑘A,B are the leading-one
positions of the inputs 𝐴 and 𝐵 and 0 ≤ 𝑥A,B < 1 are the bits after the leading-one, interpreted as
mantissa part. Then, the rounded numbers are:

𝐴R =

{

2𝑘A+1 if 𝑥A ≥ 0.5,
2𝑘A else, 𝐵R =

{

2𝑘B+1 if 𝑥B ≥ 0.5,
2𝑘B else. (2.17)

The value of the bit after the leading one decides between rounding up and rounding down.
Three cases can be distinguished, namely (a) both operands are rounded up, (b) both operands

are rounded down, and (c) either one operand is rounded up while the other one is rounded down.
By inserting the rounded values according to Equation 2.17 into Equation 2.16 for each of these
three cases, we obtain the following simplifications:

(a) Both operands are rounded up:

𝐴 ⋅ 𝐵 = 𝐴R ⋅ 𝐵 + 𝐵R ⋅ 𝐴 − 𝐴R ⋅ 𝐵R
= 2𝑘A+1 ⋅ 2𝑘B (1 + 𝑥B) + 2𝑘B+1 ⋅ 2𝑘A (1 + 𝑥A) − 2𝑘A+𝑘B+2

= 2𝑘A+𝑘B (2𝑥A + 2𝑥B).
(2.18)

(b) Both operands are rounded down:

𝐴 ⋅ 𝐵 = 𝐴R ⋅ 𝐵 + 𝐵R ⋅ 𝐴 − 𝐴R ⋅ 𝐵R
= 2𝑘A ⋅ 2𝑘B (1 + 𝑥B) + 2𝑘B ⋅ 2𝑘A (1 + 𝑥A) − 2𝑘A+𝑘B

= 2𝑘A+𝑘B (1 + 𝑥A + 𝑥B).
(2.19)

(c) One operand (e.g. 𝐴) is rounded up, the other (e.g. 𝐵) is rounded down:
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𝐴 ⋅ 𝐵 = 𝐴R ⋅ 𝐵 + 𝐵R ⋅ 𝐴 − 𝐴R ⋅ 𝐵R
= 2𝑘A+1 ⋅ 2𝑘B (1 + 𝑥B) + 2𝑘B ⋅ 2𝑘A (1 + 𝑥A) − 2𝑘A+𝑘B+1

= 2𝑘A+𝑘B (1 + 𝑥A + 2𝑥B).
(2.20)

Similarly, if 𝐵 is rounded up and 𝐴 is rounded down, the result is given as
𝐴 ⋅ 𝐵 = 2𝑘A+𝑘B (1 + 2𝑥A + 𝑥B). (2.21)

Therefore, if 𝑥A and 𝑥B are extracted from the inputs using self-determined shifters, the rest of
the operation can be executed using two adders and another normal shifter. The first one deter-
mines the shift amount while the second one calculates the value to be shifted. In case (a), 𝑥𝑎 and
𝑥𝑏 are shifted to the left by one before their addition. However, in case (c), only either 𝑥𝑎 or 𝑥𝑏
is shifted. Additionally, in cases (b) and (c), a 1 is pre-pended to the left of one operand before
the addition. In case (c), this applies to the operand that is not left-shifted while in case (b) either
operand can be used for this. The adapted structure of the multiplier is shown in Figure 2.15.

Figure 2.15: Adapted unsigned RoBA implementation structure where the mantissa parts 𝑥A,B may be left-
shifted by 1 bit (indicated by «) or left-appended by 0 or 1 (indicated by &), depending on the
rounding mode (cf. Equations 2.18 - 2.21)

Furthermore, this implementation allows 𝑥𝑎 and 𝑥𝑏 to be variably truncated to a shorter width 𝑤
to reduce the size of the shifters and the second adder, enabling parameterizable control over the
achieved quality-resource trade-off. In addition to this parameterizable version of the main RoBA
design, further denoted as RoBA-𝑤, we implemented the simplified RBA0-RBA2 designs defined
in Equations 2.5 - 2.7 (without truncation) for comparison.

2.2.3.4 Truncated Logarithmic Multiplier (Mitch-𝑤)

For the truncated logarithmic multiplier, we follow the structure proposed for the original Mitch-𝑤
multiplier [71]. However, as for the variants of DRUM and RoBA described above, we employ the
self-determined shifter block to extract the leading-one position and the truncated mantissa part
simultaneously, which are then concatenated to form the approximate logarithms of the input, as
shown in Figure 2.16.

2.2.4 Table-Based Methods

In order to approximate the evaluation of non-linear functions, we chose the hierarchical table seg-
mentation method proposed by Lee et al. [87] because of its flexibility in adapting to arbitrary
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Figure 2.16: Adapted unsigned Mitch-𝑤 implementation structure using self-determined shifters (& indi-
cates concatenation of signals)

functions. The segmentation scheme defines the distribution of grid points across the input range
for which pre-calculated values are stored in a sparse table. Our implementation uses two hierarchy
levels that both utilize a uniform distribution, as illustrated exemplarily in Figure 2.11. At the top
level, the input range is divided into 𝑁sec major sections. Then, each of these sections is split fur-
ther into 𝑁seg(𝑖) minor sub-segments, where 𝑖 indicates the index of the respective major section.
As another parameter, we optionally employ linear interpolation to improve the reconstruction of
values in the gaps between the grid points.

For the practical implementation, we consider the input as an 𝑛-bit word and hence the input
range covers 2𝑛 values. If the values for 𝑁sec and 𝑁seg(𝑖) are also each restricted to powers of two,
the segmentation can be done with minimal overhead. The internal structure of the sparse table
component is shown in Figure 2.17.

Figure 2.17: Implementation structure of hierarchically segmented sparse table (parts only needed when
interpolation is used are shaded in gray)

A combinatorial premapper block calculates both the address to the sparse table and, if neces-
sary, the offset beyond the current gridpoint, which is needed for the interpolation. Because the
segmentation is uniform/uniform across both levels, the first log2(𝑁sec) bits directly determine the
section 𝑖. Then, the next log2(𝑁seg(𝑖)) bits are used to determine the segment within the section.
The address is finally formed by adding the segment number to the cumulative number of segments
contained in lower sections which is stored in a very small table directly in the logic fabric. On the
other hand, the offset 𝑥𝑜 is given by the remaining input bits that were not used for address calcu-
lation, shifted to a normalized width. Each word in the sparse table stores a base value 𝐶0 and an
interpolation coefficient 𝐶1 used for the output reconstruction in the respective segment accessed
by the calculated address. The reconstruction of the output is then calculated as

𝑌 = 𝐶1 ⋅ 𝑥𝑜 + 𝐶0. (2.22)
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If the interpolation is turned off, the output is given directly by the coefficient 𝐶0 without further
calculation, i.e. the interpolation circuitry can be removed and the table does not need to store 𝐶1.
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2.3 Characterization

To better understand the specific resource-quality trade-offs afforded by different approximate com-
ponents, they need to be characterized with respect to the chosen target FPGA architecture. The
prominent implementation characteristics in pipelined hardware systems are area and power con-
sumption, which are typically closely related, together with the circuit delay. For FPGA designs,
the area consumption is measured in terms of the different available resource types such as LUTs,
registers, BRAMs and DSP slices. The power consumption is composed of a static part that scales
with the number of resource units and a dynamic part which additionally depends on the signal
switching activity. Besides, the circuit delay is determined by the longest combinatorial path be-
tween two register stages and defines the maximum possible frequency at which the circuit can
be operated. On the other hand, as a fourth property of the approximate component, the loss of
accuracy caused by the approximation can be expressed in the form of error statistics calculated
between the accurate and approximate output of the respective component when fed with specific
input vectors.

A characterization of individual approximated components provides information on these met-
rics on a local level, i.e. independent of the particular application in which the components may
later be used. It serves to compare competing techniques against each other, and, when targeting
FPGA-based applications, shows how well different techniques adapt to the implementation on a
specific FPGA architecture. Furthermore, the resulting data can be used to model the resource
consumption across a multitude of possible parameterizations, as described later in Section 2.4.

The next section provides an overview of the automated characterization methodology used in
this work to profile the quality-resource trade-off of approximate components. Using this method-
ology, the subsequent section provides an in-depth comparison and analysis of the approximate
adders and multipliers selected and described in the previous section.

2.3.1 Methodology

As mentioned above, an approximate component implemented on FPGA hardware is character-
ized by four properties of interest, which are area, power, speed and accuracy loss. The first three
of these can be classified as physical properties and depend on the specific FPGA device cho-
sen for implementation together with environmental conditions. In contrast, the loss of accuracy
is a behavioral property which is independent of the implementation details. Figure 2.18 shows
an overview of the steps needed to extract these properties for an approximate component. The
employed workflow is similar to the methodology used in related works [119, 120].

The FPGA implementation of the component is configurable via generics that are mapped to
the entity in the HDL description. These generics are read from a separate configuration file in
which they are defined as constants which provides a simple way to move through multiple con-
figurations in an automated process. In order to be able to extract speed and power characteristics
which require a pipelined environment, the component is instantiated in a characterization bench
between two register stages. For the physical characterization, the component under test is synthe-
sized, placed and routed to the targeted device using the respective vendor-specific tool, e.g. the
Intel Quartus Prime Software Suite in case of targeting Intel FPGAs [121]. The area data can then
directly be extracted from the vendor tool, which typically lists the consumption of LUTs, regis-
ters, BRAMs and DSPs separately. After place & route, the final netlist is also available which
is used by the timing analysis tool to calculate all critical path delays in the system which in turn
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Figure 2.18: Overview of the workflow for the characterization of approximate components

determines the maximum possible operating frequency. The netlist is further used to execute a
gate-level accurate logic simulation (e.g. using Modelsim [122]) to provide switching activity data
for the power analysis. For this, a simulation testbench is used that feeds the inputs of the compo-
nents with random input data vectors and generates a .vcd file containing the resulting switching
data. In this work, we simulated the switching data for a random input sequence of length 100 000.
The netlist and the switching data are then used by the respective power analysis tool of the FPGA
vendor to extract the power data.

In the place & route step, which maps the synthesized circuit to physical locations on the tar-
get device, the process typically starts from a random initial placement and uses a vendor-specific
heuristic approach for optimization. When using Intel Quartus Prime, the initial placement can be
changed by the designer by configuring a seed value, which will change the result of the place &
route step. As the timing and the power data depend on the exact placement and routing, these
values change with different seeds. Therefore, to better characterize the average performance of
these properties, we repeat the the place & route together will all subsequent steps for 5 different
seed values and average the resulting speed and power values.

Regarding the accuracy property, error statistics are calculated via a parameterizable behavioral
simulation of the approximate component implemented in Python. These error statistics depend on
the input data fed to the component. In a real application, the distribution of the input data largely
depends on the application input as well as its internal structure and the position of the respective
approximate component within that structure. When characterizing a component independently of
any target application, this distribution cannot be known. Therefore, we assume that any input is
equally likely to occur in order to estimate the average accuracy loss caused by the approximation
in the component. For small input bitwidths, all inputs can be simulated exhaustively but for larger
input sizes, this becomes impractical due to computational limitations. Instead, the error behavior
of components with larger inputs can be done with Monte-Carlo simulations, using a high number
of randomly drawn inputs. In this work, we chose to exhaustively simulate the errors for all com-
ponents up to input sizes of 26 bits combined across all inputs. For all larger input sizes, we cap the
number of simulated inputs at 108 values, which are randomly drawn from a uniform distribution.
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2.3.2 Statistical Error Metrics

Below, we introduce several arithmetic error metrics which are the most relevant ones for compo-
nents that produce signals that have a numerical interpretation. For each input to the component,
the error distance (ED) is defined as

ED = |

|

𝑦acc − 𝑦ax|| , (2.23)
i.e. the absolute difference between the accurate output 𝑦acc and the approximate output 𝑦ax. With
this, the statistical properties mean error distance (MED) and maximum error distance (MaxED)
pertaining to 𝑁 considered inputs can be calculated as

MED = 1
𝑁

𝑁−1
∑

𝑖=0

|

|

𝑦acc(𝑖) − 𝑦ax(𝑖)|| (2.24)

and
MaxED = max

0<𝑖<𝑁−1
|

|

𝑦acc(𝑖) − 𝑦ax(𝑖)|| , (2.25)
respectively.

The magnitude of errors naturally scales with the bitwidth of the signal, which makes it hard
to compare components of different sizes. To compensate for the component size, the ED can
be normalized to obtain the normalized error distance (NED). There are different definitions on
what normalization factor to use, with the most prominent ones being the normalization by the
maximum output of the accurate design [109] and the normalization relative to the bitwidth of the
output [123]. It should be noted that when the maximum accurate output is used as factor, the
interpretation of the NED might be problematic for signed output signals because it may take on
values larger than 1.0, for example if the accurate output is a large positive number but the approx-
imate component produces a large negative number). To avoid such confusion, we use the second
definition and obtain the NED as

NED = ED
2𝑏

, (2.26)
where 𝑏 is the bitwidth of the component’s output.

From that, the normalized mean error distance (NMED) and normalized maximum error dis-
tance (NMaxED) can be derived as

NMED = 1
2𝑏

1
𝑁

𝑁−1
∑

𝑖=0

|

|

𝑦acc(𝑖) − 𝑦ax(𝑖)|| (2.27)

and
NMaxED = 1

2𝑏
max

0<𝑖<𝑁−1
|

|

𝑦acc(𝑖) − 𝑦ax(𝑖)|| , (2.28)
respectively. With this definition, the error statistics are given relative to the size of the component
which makes it easier to compare components of different sizes.

As an alternative to the ED, the relative error (RE) for an individual input is given as

RE =
|

|

𝑦acc − 𝑦ax||
|

|

𝑦acc||
, (2.29)
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This value gives the error relative to the magnitude of the accurate result and is meaningful when
a certain percentage of the accurate result is an acceptable error, i.e. when larger errors can be
tolerated for larger outputs. Similar to the definitions above, the mean relative error (MRE) and
maximum relative error (MaxRE) related to 𝑁 inputs can be calculated as

MRE = 1
𝑁

𝑁−1
∑

𝑖=0

|

|

𝑦acc(𝑖) − 𝑦ax(𝑖)||
|

|

𝑦acc(𝑖)||
(2.30)

and, respectively,
MaxRE = max

0<𝑖<𝑁−1

|

|

𝑦acc(𝑖) − 𝑦ax(𝑖)||
|

|

𝑦acc(𝑖)||
. (2.31)

Lastly, the bias provides information about the overall shift in the outputs generated across dif-
ferent inputs, i.e. whether the approximated result tends to be larger or smaller than the accurate
value on average, and by how much. It is calculated as the average of the actual error in contrast
to the MED, which uses the absolute ED:

Bias = 1
𝑁

𝑁−1
∑

𝑖=0
𝑦acc(𝑖) − 𝑦ax(𝑖). (2.32)

This value can also be normalized relative to the component size, yielding the normalized bias
(NBias):

NBias = 1
2𝑏

1
𝑁

𝑁−1
∑

𝑖=0
𝑦acc(𝑖) − 𝑦ax(𝑖). (2.33)

Relevance and choice of metrics

The relevance of the metrics introduced above depends on the application domain. For applica-
tions that tolerate larger absolute errors when the accurate value is high, the RE and its derived
statistical properties are more relevant. However, this might not always be the case. Particularly,
in image processing systems, the numerical values associated to the pixels translate into different
shades of gray or colors. Here, the same numerical difference is not necessarily less disturbing
when the accurate signal assumes a higher value, contrary to what the RE would suggest. In that
case, the ED or the NED and their derived statistical properties are more meaningful. However,
it should be noted that while these signal difference metrics provide a good way to compare the
performance of competing components, they may not be suitable for judging the output quality of
a complex application. For that purpose, application-specific quality metrics often give better and
more interpretable results and should therefore be preferred for quality judgment on the application
level.
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2.3.3 Comparison of Approximate Adders

We characterized all implemented adders using the proposed procedure for several input sizes. For
the error estimation, we assumed that the inputs are pre-pended each by a single 0, i.e. that only
inputs 0 ≤ 𝑎, 𝑏 < 2𝑛−1 are fed into an 𝑛 bit adder, which is usual practice to avoid overflow. In
terms of error metrics, the results exhibit similar trends for the NED and the RE, so we discuss the
NED-related metrics only as well as the Bias. Figure 2.19 plots the NMED, the NMaxED and the
Bias as function of area in terms of utilized LUTs for 20b adders.
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Figure 2.19: Error metrics over area for 20b adders (the area consumption of accurate logic indicated as

vertical line)

As expected, the accurate logic implementation consumes 20 LUTs. The Sloppy Adders also
compute all output bits logically and hence also consume 20 LUTs whereas the LOAs need one
additional LUT to generate the carry-in for the accurate part. Comparing these two adders at the
same carry-split configuration, the LOA lowers the NMaxED by almost 50% and the NMED by
roughly 25% at the cost of the additional LUT. In terms of resource usage, these two adders do not
yield any benefits besides the speed improvement enabled by the carry split. However, the adders
employed in the target application scope of low-level in-camera image processing are fairly small.
For example, all adders employed in the case studies presented in this thesis are smaller than 32
bits. However, the slowest 32b adder we characterized operates at up to 561.15 MHz while the
fastest ones are restricted by the maximum frequency supported by the target FPGA device, which
is 645.16 MHz. Hence, all adders within our scope are sufficiently fast and the speed improvements
generated by the carry chains are only relevant for large adders or when many additions are chained
between pipeline registers.

In contrast to the Sloppy Adder and the LOA, the area consumption of the other adders scales
with the split point. Considering the area-NMED trade-off, the MA performs best, followed by the
LSA. Both of these adders remove the computation completely below the split point. The OLOCA
as well as the HOAANED perform significantly worse in this trade-off, with the OLOCA showing
slightly better results than the HOAANED. When using the same carry-split point, these two have
lower errors than the former two, but they consume more logic since both of them still compute
the two upmost bits in the approximate part.

In terms of the NMaxED, a similar trend is visible, but the differences between some of the com-
peting adders get smaller. At the same area consumption, the MA and the LSA show exactly the
same NMaxED. Similarly, the OLOCA and the HOAANED have almost the same maximum error.
On the other hand, looking at the bias, the LSA, the LOA, the MA and the HOAANED perform
similarly well and barely produce an offset in the average output. In contrast, the Sloppy Adder
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and the OLOCA exhibit increasing bias when the split point is raised, with the OLOCA providing
a trade-off between area and bias while the area of the Sloppy Adder is fixed. However, all adders
have a positive bias, which means that they tend to produce smaller results than the accurate one.

It should be noted that all error metrics used for this discussion assume that the inputs to the
units are uniformly distributed. When specific patterns or regularities are present in the data that
is fed to them in an actual application, their trade-off performance may vary. The error behavior
of different approximate units across the input values can be observed in the error maps, which are
plotted exemplary for 8-bit adders with similar MED values in Figure 2.20.
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(a) LSA (split=4, sel=A, MED=4.00)
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(b) MA (split=4, MED=5.31)
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(c) LOA (split=4, MED=5.88)
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(d) Sloppy Adder (split=4,
MED=3.75)
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(e) OLOCA (split=4 ,MED=3.70)
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(f) HOAANED (split=5 ,MED=3.97)

Figure 2.20: Error maps of 8-bit adders (fed by 7-bit inputs pre-pended with a 0 to allow for overflow)

The plot shows that the distribution of error values follows different regular patterns. The LSA
behavior differs from the other adders in that the error pattern depends on the input selected for
pass-though in the approximate part while the other adders behave symmetrically for both inputs.
Depending on the actual distribution of input values, this could be a benefit or a drawback, e.g.
when one of the input changes significantly more than the other one, the LSA could be configured
to pass through the input that changes. Furthermore, the LSA has a smaller MaxED compared to
the other ones at a similar MED value. For all other adders, the error map structure is very similar,
with smaller sub-patterns repeating along both dimensions. In contrast to the LSA, they are ag-
nostic to the input order, i.e. they behave the same when the inputs are interchanged. Structurally,
the OLOCA is a mixture between the MA (for the lower bits) and the Sloppy Adder (for the two
top-most approximate bits), which is reflected in the respective error map. Additional similarities
can be found between the MA and the HOAANED due to the similarity of the lowest bits in the
approximate part.
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2.3.4 Comparison of Approximate Multipliers

Similarly to the adders, we characterized the selected multipliers across several sizes. First, we
discuss the general power-error trade-off across several multiplier sizes. Figure 2.21 plots the
power-NMED trade-off of unsigned and signed approximations of 8 × 8, 10× 15 and 16× 16 mul-
tipliers, spanning multiple overall sizes as well as equal and unequally sized inputs. The plot also
shows the consumption of the accurate logic implementation and the DSP multiplier. For smaller
units, the logic implementation is more power efficient than the DSP but this trend is reversed for
the 16 × 16 size.
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Figure 2.21: NMED over power for unsigned/signed 8 × 8, 10 × 15 and 16 × 16 multipliers (the power
consumption of the accurate logic and DSP implementations are indicated by vertical lines;
plots (c) and (f) use a logarithmic scale at the error dimension for better visibility)

The plots show that at all sizes and signedness choices, the approximate multipliers offer a range
of trade-off options to reduce the power consumption at the cost of some error. This trade-off space
is generally dominated by the BAM which outperforms the competing options across all configu-
rations. It seems that the other adders are held back by some general overhead because especially
for smaller sizes, many of their configurations consume more power than the accurate versions.
Furthermore, the BAM configuration offers two parameters, HBL and VBL, which allow for a
finer tuning of the trade-off compared to the others. Regarding the signed variants, the DRUM,
the RBA, the RoBA-𝑤 and the Mitch-𝑤 use a sign conversion wrapper and offer a choice between
approximate and accurate sign conversion. The characterization data shows that in all cases the
accurate sign conversion introduces a significant overhead while reducing the error only by a small
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amount. In the plots, this is reflected in pairs of these multipliers appearing almost along horizontal
lines. Generally, the approximate sign conversion should be preferred in terms of the trade-off.

Figure 2.22 plots different error metrics over the power consumption for unsigned 16 × 16 mul-
tipliers for further analysis. First, the plot in Figure 2.22a shows that the behavior regarding the
NMaxED is similar as for the NMED. The second plot (Figure 2.22b) depicts the behavior of the
normalized bias. It shows that all DRUM variants exhibit almost no bias, which is one of its main
design goals. Similarly, the two relevant RBA variants and most of the BAM multipliers have a
very small bias. The RoBA-𝑤 variants trend towards larger bias at higher degrees of approximation
but approach zero bias at higher quality settings whereas the Mitch-𝑤 variants show a considerable
amount of bias even at high quality settings. As observed above for the approximate adders, the
bias of all multipliers tends to be positive, i.e. the approximate output is generally smaller than the
accurate one.

Finally, Figures 2.22c and 2.22d show the trends for MRE and MaxRE, respectively. While the
power-MRE trade-off behaves similar to the NMED and NMaxED counterparts, the MaxRE fol-
lows a different trend. For this metric, almost all BAM variants have a MaxRE of 100% while the
other approximate multipliers are largely constrained between 10% and 40% of the accurate output.
This is largely due to the fact that the BAM variants may produce a zero output for small inputs
if the corresponding rows and columns in the partial product array are completely removed, while
the error magnitude scales better with the input values for the other units (see also the error maps
discussed below).
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Figure 2.22: Error metrics over power for 16× 16 multipliers (the power consumption of the accurate logic

and DSP implementations are indicated by vertical lines; plots (a) and (c) use a logarithmic
scale for the error dimension for better visibility)
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Next, we analyze the speed characteristics of the different multipliers. To that end, Figure 2.23
plots the NMED over the achievable speed when placed between two pipeline register stages in
terms of MHz. Note that generally for the target FPGA device, the overall maximum frequency is
limited to 645.16 MHz, which is consequentially the upper limit for the multiplier speed as well.
The plots show that similar to the power characteristics, the BAM variants perform best when im-
plemented for the target FPGA device. Furthermore, it can be seen that as the size increases, the
performance gap between the DSP multiplier and the accurate logic implementation increases.
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Figure 2.23: NMED over speed for unsigned 8 × 8, 10 × 15 and 16 × 16 multipliers

Lastly, we plot exemplary error maps of the different multiplier types in Figure 2.24. Two gen-
eral trends can be found among the different methods. For the BAM, the errors are distributed
roughly uniformly across the entire input space, with a few peaks towards higher values. For all
other types, in contrast, the error magnitude scales with the input magnitude, forming areas of simi-
lar error levels with exponentially increasing boundary intervals in both input operand dimensions.
The average as well as the peak error aggregated in individual error plateaus also rise exponentially.
While the the RBA (in operation mode 3), the RoBA-𝑤 and the Mitch-𝑤 concentrate the highest
error values towards the middle of the plateaus, the DRUM spreads the errors more evenly within
these areas, which is due to the unbiasing step in its implementation. Overall, the error distribution
of the BAM favors uniformly distributed inputs while the other alternatives perform better with
input distributions that are skewed towards smaller values, and when relative error performance is
more relevant than absolute errors.

To summarize, this analysis shows that the BAM generally translates best to FPGA architectures,
across all tested sizes. It outperforms the other multipliers in terms of resource efficiency as well
as speed performance and generally has lower errors in all metrics except for the MaxRE. In con-
trast to the BAM, the other methods improve their performance with increasing overall multiplier
size. This might be due to the fact, that unlike the BAM which simply removes parts of the partial
product array, they require a custom structure, causing some implementation overhead especially
at smaller sizes. It is possible that these methods might outperform the BAM in sizes even larger
than the tested ones, but similar to the adders, the multiplier sizes found in the application scope
targeted in this thesis are generally constrained within the compared range. Furthermore, at larger
sizes, the DSPs become more efficient and might be hard to beat in terms of resource efficiency
and speed. In conclusion, the BAM should be the preferred choice among the selected multipliers
in nearly all situations except for very specific exceptions, e.g. when the MaxRE performance is
relevant or when the input is known to follow specific patterns.
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(b) DRUM (𝑘=4), MED=930
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(d) RoBA-𝑤 (𝑤=5), MED=712
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Figure 2.24: Error maps of 8 × 8 multipliers
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2.4 Modeling Component Characteristics

To model hardware characteristics of entire applications, our proposed framework uses a divide-
and-conquer strategy that composes the area consumption as the sum across all individual system
components and derives the power consumption from the number of employed FPGA resource
units as described in detail in Section 3.3. This means that the framework needs to be able to
assess the resource usage of individual components from data in the component library. While
for some of the components, the resource usage can be calculated accurately directly from their
parameterization, others need to be characterized by synthesis. For the components selected and
implemented for this work, this especially holds for the approximate multipliers (see Section 2.2.3)
and the premapper block that calculates the address and interpolation offset for the selected sparse
table method (see Section 2.2.4). In both of these cases, a combinatorial block is generated accord-
ing to the parameterization whose resource consumption is affected by the synthesis optimization
and fitter placement in the FPGA vendor toolchain. However, the design space formed across the
possible component sizes and approximation parameters of these components is too large to be
synthesized entirely for an exhaustive characterization. As an example, considering all possible
sizes between 4×4 and 18×18, the BAM multiplier supports 14 540 potential configurations each
for unsigned and signed operation.

To overcome this limitation, we employed supervised machine learning (ML) algorithms to train
component models using data obtained from the characterization of a sampled subset of config-
urations. Our approach uses a workflow similar to ApproxFPGAs, in which ML models are used
to predict FPGA-specific characteristics of approximate circuits that were originally designed for
ASIC implementations, using their respective hardware description as model inputs [124]. How-
ever, their models are specific to a few fixed component sizes, namely 8-bit, 12-bit and 16-bit
arithmetic units. In our case, the component characteristics need to be predicted across a wide
range of component sizes, taking the size itself together with the internal approximation parame-
ters as input to the models. An overview of the entire model formation process is given in Figure
2.25.

Figure 2.25: Overview of the ML model formation procedure

After the characterization, the data set consists of feature-label pairs, where the feature vector
of each pair describes the component configuration and the corresponding label holds the value
to be modeled, e.g. the number of LUTs consumed by the component. The whole data set is split
into a training set containing 80% of all available data that is used to obtain the final model and
a validation set (20%) which is used to evaluate the accuracy of the final model on new data ex-
cluded from the training. We used the Python toolbox scikit-learn1 [125] to train multi-layer
perceptron (MLP) models, i.e. feed-forward artificial neural networks with one or more hidden lay-
ers, as well as random forest (RF) models, which consist of a collection of de-correlated decision

1https://scikit-learn.org

https://scikit-learn.org
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trees whose predictions are averaged [126]. These two model types where chosen because they
performed best among the regressor models available in the toolbox in initial experiments.

To improve the model accuracy, we performed a randomized hyper-parameter search for both
model types. In case of the MLP, we optimized the network topology, i.e. the number and sizes of
the hidden layers, the regularization coefficient, which counteracts overfitting by penalizing large
node weights, and the learning rate, which controls the step size in which the weights are adapted
during the training [127]. On the other hand, for the RF models, we optimized the number of esti-
mators, i.e. the number of employed decision trees, the maximum tree depth, the minimum number
of samples to split an internal node (min_samples_split) and the minimum number of samples re-
quired per tree leaf (min_samples_leaf ) [128]. During the hyper-parameter optimization, a 𝑘-fold
cross-validation strategy is used for choosing the best parameter set [129]. For this, the training
data is partitioned into 𝑘 distinct folds. Then, for each of the tested hyper-parameter combinations,
𝑘 different models are learned, each using 𝑘 − 1 of the folds for training and the remaining fold
for independent validation, and the performance is given by the average validation score across all
𝑘 iterations. For our model, we use 10-fold cross-validation. Specific information on the trained
models and the obtained accuracies for the multipliers as well as sparse table premapper blocks are
given in the subsequent sections.

2.4.1 Approximate Multiplier Models

The approximate multipliers are configured by two types of parameters: their size, which depends
on the width of the input signals, and the internal approximation parameters. Without loss of gen-
erality, we restrict the target size range between 4×4 and 18×18 multipliers, which covers typical
ranges in the target application scope and accommodates the case studies presented later in this
work. In this range, there are 120 possible sizes when inverted operand pairs, i.e. 𝐴×𝐵 and 𝐵 ×𝐴
are counted only once. From those, we deliberately had selected 7 different sizes, namely 4 × 4,
8×8, 12×12, 16×16, 4×12, 5×15 and 10×15 and additionally 21×21, which is slightly outside
the range, to manually study the characteristic behavior of different multiplier types. The resulting
data can be re-used for model training. Additionally, we randomly chose 44 additional sizes from
the range to obtain further training data. For each size, we sampled multiple approximation param-
eter settings across the internal design space. To take the resulting structure of the training data
into account during the model selection and validation process, we grouped the samples according
to the multiplier size and forced the training/validation data split as well as the 𝑘-fold split to be be-
tween groups. This ensures that the multiplier sizes of samples used for model validation purposes
have not been seen during the respective training and hyper-parameter optimization steps.

Area Models We trained separate area models for each combination of multiplier type and
signedness. For the DRUM, the RBA, the RoBA-𝑤 and the Mitch-𝑤, we only considered the
variants with approximate sign conversion (which is the preferred option for signed operation as
shown in Section 2.3.4). As described above, hyper-parameter optimizations were performed for
each model to find the best MLP and RF parameters and the cross-validation score of the respective
best model was used to select between MLP and RF.

Table 2.4 lists the chosen model type (MLP or RF) for each of the trained models as well as its
accuracy in terms of average absolute (MED) and relative (MRE) prediction error, computed over
the held-out validation set. The MLP was selected for all models as it consistently outperformed
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the RF. The final models are able to estimate the area consumption of previously unseen data with
an average absolute deviation between 2 and 12 LUTs and an average relative deviation between
4 and 9 percent, with the unsigned BAM and both Mitch-𝑤 models showing the highest relative
deviation. In terms of absolute errors, the BAM models have the highest accuracy, and the DRUM
as well as the Mitch-𝑤 perform worst. Overall, the accuracy of all models is appropriately high to
be used within the framework for fast resource estimation without time-consuming synthesis.

Table 2.4: Accuracy of approximate multipliers area models (modeling LUT usage)
Multiplier Type Signedness Model Type MED MRE

BAM unsigned MLP 2.66 8.26
signed MLP 2.75 4.57

DRUM unsigned MLP 5.47 3.43
signed MLP 9.89 5.09

RBA unsigned MLP 4.37 4.74
signed MLP 4.83 4.58

RoBA-𝑤 unsigned MLP 5.28 3.96
signed MLP 5.38 3.82

Mitch-𝑤 unsigned MLP 9.63 8.11
signed MLP 11.24 8.38

Speed Models This work focuses on reducing the resource usage at a given operating frequency
instead of increasing the speed of the application. However, when selecting and parameterizing
components for use within an application, it needs to be ensured that the approximated system does
not violate any timing constraints. Generally, the framework maintains the structure and placement
of register stages of the target application and assumes that the approximation-less reference system
can safely operate at the target speed. Then, the selection process only needs to ensure that no new
timing violations are introduced with the approximations. We found that the selected multipliers
are time-critical at target frequencies between 200 and 300 MHz, as shown in Section 2.3.4.

For this work, we assume that multipliers are to be placed directly between register stages, which
holds for all presented case studies. If this assumption breaks, further measures need to be imple-
mented. To ensure safe selection of approximate multipliers at a given frequency, we train ad-
ditional speed models which can be used together with a safety margin to restrict the choice of
multiplier types and parameters. The selected model type and the respective accuracies of the final
model obtained for the validation set are shown in Table 2.5.

The data shows that the models capture the behavior of DRUM and RoBA-𝑤 best, while for
BAM, the average deviation is roughly 17 MHz. However, the BAM generally reaches the highest
speeds across all selected multipliers. In terms of average relative error, the deviation lies between
1% and 7%, depending on the multiplier type. Unfortunately, it cannot be known exactly how well
even the characterized estimation of multiplier speed holds up when embedded in larger systems,
because the synthesis and fit/route steps are influenced by many factors. Nevertheless, these num-
bers enable setting a safety margin above the target system speed and filtering out the components
for which the respective model predicts a threshold violation to reduce the risk of timing violations.
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Table 2.5: Accuracy of approximate multipliers speed models (modeling maximum frequency in MHz)
Multiplier Type Signedness Model Type MED MRE

BAM unsigned RF 17.09 4.16
signed RF 17.06 4.60

DRUM unsigned RF 3.50 1.42
signed RF 3.96 1.81

RBA unsigned RF 11.84 2.88
signed RF 11.25 3.07

RoBA-𝑤 unsigned RF 3.93 1.41
signed RF 4.36 1.76

Mitch-𝑤 unsigned MLP 14.78 6.39
signed RF 12.63 5.52

2.4.2 Sparse-Table Premapper Models

The premapper blocks of the hierarchically segmented sparse tables as introduced in Section 2.2.4
are parameterized by several main parameters. First, the interpolation flag decides whether the
offset of the input from the selected segment needs to be calculated for interpolation, which re-
quires additional logic. Secondly, the segmentation is defined by the number of sections and a list
containing the number of segments within each section. We trained individual area models for
each combination of the interpolation flag and the number of sections. When only 2 sections are
used, the premapper design space contains only 144 different configurations, which can easily be
characterized exhaustively. However, with more sections, the number of possible configurations
rises significantly, yielding approximately

• 1.46 × 104 combinations with 4 sections,
• 1.00 × 108 combinations with 8 sections,
• 1.85 × 1015 combinations with 16 sections and
• 7.92 × 1028 combinations with 32 sections.

For model creation, we characterized 1000 random parameterizations for the variant with 4 sec-
tions and 10000 for the variants with 8, 16 and 32 sections to form the respective data sets. Table
2.6 shows the chosen model types and validation set accuracies for each of the final models.

For all non-exhaustive cases, the RF models outperformed the MLP models. It can be seen
that with increasing diversity of the design spaces, the prediction accuracy becomes worse, from
average errors below 1 LUT respectively below 5% for the models with 4 sections up to average
deviations below 13 LUTs respectively below 12% for the variants with 32 sections, which are
generally more complex. However, especially for the latter case, the created data set only covers
1.26 × 10−23% of the design space. Hence, the accuracy could probably be improved by charac-
terizing more configurations at the cost of significantly increased time effort if increased accuracy
would be necessary.
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Table 2.6: Accuracy of sparse table premapper area model (modeling LUT usage)
Multiplier Type Interpolation Model Type MED MRE

2 □ Exhaustive
■ Exhaustive

4 □ RF 0.49 4.64
■ RF 0.74 4.49

8 □ RF 1.93 9.24
■ RF 2.06 7.12

16 □ RF 3.69 10.10
■ RF 4.88 8.02

32 □ RF 8.67 11.60
■ RF 12.81 9.75

2.5 Library of Approximate Components

The approximate components that were selected and implemented are stored in a library from which
they are available to be used in the DFG of a target application as explained later in Section 3.1.
Each component in the library comprises three major elements: a parameterizable hardware imple-
mentation, a parameterizable behavioral model and a resource model. This section provides details
on the implementation and the interfaces of these elements as well as a summarized overview of
the components included in the library.

2.5.1 Implementation and Interfaces

On the hardware side, each component is implemented as an entity in VHDL that is parameterizable
in I/O width and approximation strength via generics. For the arithmetic units, where multiple com-
peting methods respectively their implementations exist, the top-level entity of the component is a
generic wrapper that instantiates the selected implementation. Since the precision scaling only in-
fluences the bitwidth of internal signals, it is implemented on the application level, where generics
control the widths of internal signals. To form the hardware implementation of an entire applica-
tion, the approximate components are instantiated inside a top-level entity which is parameterized
using a list of generics that are forwarded to the respective component interfaces.

The component models, on the other hand, are implemented in object-oriented Python, which
is also used for the further parts of the framework presented in the subsequent chapters. Each com-
ponent type is represented as a class that provides a process() method to access the behavioral
model as well as a report_area() method for the resource model. The behavioral model is
a fast, bit-exact implementation of the operation carried out by the component while the resource
model provides an estimate of the consumed FPGA resources, which is either derived directly from
the parameterization, if possible, or accesses the respective ML model trained from characteriza-
tion data as described in Section 2.4. The parameterization of individual components is stored in
the properties of any specific object instance so that it can be taken into account by the models.
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2.5.2 Library Contents

The library currently contains all the approximate components selected and implemented in Sec-
tion 2.2. It can easily be extended in the future by adding more implementations that adhere to the
interfaces described above. Table 2.7 summarizes the approximate components and methods cur-
rently implemented and available to be used in the framework, listing the configuration parameters
as well as the type of the resource model for each component.

Table 2.7: Overview of approximate components/methods currently available in the library
Type Method Parameters Resource Model

Precision Scaling Adapting internal signal widths Width Analytical

Adders

Accurate Width Analytical
LSA Width, Split, Input Select

Analytical

MA Width, Split
LOA Width, Split

Sloppy Adder Width, Split
OLOCA Width, Split

HOAANED Width, Split

Multipliers

Accurate Width A & B Exhaustive Characterization
BAM Width A & B, HBL, VBL

MLP / RF
DRUM Width A & B, Core Size
RBA Width A & B, Operation Mode

RoBA-𝑤 Width A & B, Truncation Width
Mitch-𝑤 Width A & B, Truncation Width

Function Table Hierarchically Segmented No. of Sections, Premapper: Exhaustive / RF
Sparse Table No. of Sub-segments Memory: Analytical

2.6 Chapter Summary

This chapter has bridged the gap between the publication of approximation methods and their prac-
tical use within FPGA-based systems. It provided a thorough and structured review of the related
literature based on which suitable methods have been selected under consideration of the target ap-
plication scope. Various approximate arithmetic units and a hierarchical table-based approximation
of elementary functions have been implemented for use as approximate system components. The
implementations are flexibly scalable to allow a purposeful combination with fine-grain precision
scaling. Furthermore, the individual components were characterized in terms of hardware and error
properties, and the quality-resource trade-off was compared for competing adders and multipliers.
In addition, the characterization data was used to train ML models for a fast estimation of hardware
properties. Finally, all implementations and models were combined into a library of approximate
components with common interfaces to facilitate their flexible deployment.
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Application Modeling

Real-world signal processing applications use a sequence of operations to process the incoming
data. In hardware-based computing systems, these operations are performed by individual com-
ponents, for example arithmetic units, which are connected via signals. When integrating approxi-
mations into such a system, the standard implementation of any component may be replaced by an
alternative approximate version which reduces the resource consumption of the component at the
cost of introducing errors in the operation. Additionally, precision scaling can be used to directly
adapt the width of the connecting signals. A combination of multiple approximations applied at
different points across the application may be employed to optimally exploit the potential quality-
resource trade-off. However, specific properties of approximated components or the direct appli-
cation of precision scaling can impact the width of intermediate signals, leading to dependencies
between the parameters of connected components which need to be managed. These factors result
in design spaces that are both large and complex and an automated DSE becomes necessary to find
optimal parameterizations.

During the DSE, many candidate solutions are probed and their fitness in terms of resource
usage and application quality needs to be evaluated. However, traditional means of assessing
the resource usage of an application, i.e. performing synthesis, fitting and routing, are very time-
consuming. Similarly, performing exhaustive gate level simulations for quality assessment would
be very costly. Consequentially, suitable models for a fast and accurate estimation of the overall
application-level resource usage and output quality are needed to accelerate the fitness estimation
during the DSE. Furthermore, such models need to account for parameter interactions between
individual components as well as error propagation effects across the application.

To accommodate these requirements, this chapter proposes methods to manage the parameter-
ization of a target application that combines different approximation types and presents models
to accelerate the quality-resource estimation. First, Section 3.1 describes the representation of a
target application in form of an annotated DFG that captures the associated design space and is
used as basis for the resource and quality models. Then, Section 3.2 explains the causes for and
impacts of parameter dependencies between system components and proposes methods of handling
them. Building upon the DFG-based representation of the application, the proposed resource and
quality models are presented in the remaining sections. Section 3.3 proposes a divide-and-conquer
approach to model the overall number of consumed device resources, from which the power con-
sumption is then derived. Finally, Section 3.4 presents the proposed quality model which allows
the designer to flexibly employ their preferred application-specific reference metric and discusses
the choice of relevant training data sets for the quality estimation.
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3.1 Annotated Data Flow Graph of the Application

The proposed framework uses a DFG to represent the structure of a target application. Each node
in the graph represents a component or operation in the system and the graph’s edges are directed
and represent the data flow between components. In practical terms, the DFG is formed by the
application designer by writing a function in which the nodes and connections are created, using
a standard graph library called networkx1 [130]. To define the functionality of each node, an
instance of the respective component class taken from the component library (cf. Section 2.5) is
created and stored with the node. These instances also store information about the placement of
register stages in the component output, which needs to be provided by the designer.

The components in the DFG that support approximation can be parameterized by setting the
respective object properties to switch between normal or approximated operation, to select the
specific approximation method and to tune the degree of approximation. When creating the DFG,
the designer can enable the use of approximations by individually marking suitable components
and setting ranges for the associated parameters. The resulting DFG that contains these nota-
tions will further be denoted as annotated DFG. This nomenclature is inspired by state-of-the-art
methodology for approximated software where variables and operations are annotated to mark their
suitability for approximation [131, 132]. Figure 3.1 provides an exemplary illustration of the an-
notations in the DFG of a simple channel mixer application. This circuit takes three input signals
representing different color channels of an image and calculates a weighted sum according to the
coefficients 𝑚0,1,2. Its approximate version uses a combination of precision scaling and approxi-
mate arithmetic units. Note that the final shift node is not configurable because it is used to shift
the result to a fixed bitwidth required by the output.

Figure 3.1: Illustration of an annotated DFG for a simple channel mixer. Components marked for different
types of approximation are color-coded. Associated annotated parameter ranges are not shown.

Candidate DFGs The annotated DFG represents the entire design space of the approximated
application, which needs to be explored in order to exploit potential quality-resource trade-offs. It
yields a list of all parameters that control the overall configuration of the application together with
the specified ranges. In contrast, any fixed configuration within the design space will be denoted
as candidate DFG, in which the parameter properties of all component instances are set to specific

1https://networkx.org

https://networkx.org
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values. Hence, the candidate DFG represents a specific solution for the DSE problem associated
with the annotated DFG. During the fitness evaluation of a candidate solution, the candidate DFG
is used by the resource and quality models as described in Sections 3.3 and 3.4, respectively.

Behavioral DFG Simulation The framework provides functionality to simulate the approxi-
mate application output related to any candidate DFG. For this, the designer needs to mark specific
DFG components as input and output nodes, and associate a color channel to them. The input im-
age is then split into the different color channels and the data of each channel is stored with the
input nodes. Then, a recursive procedure traverses the DFG to calculate the output signals of
all components based on the outputs of the respective preceding components using the individual
process()methods of the parameterized component instances. Finally, the output image can be
reconstructed from the data stored with the output nodes. Since the process() methods them-
selves provide a parameterization-dependent, bit-accurate simulation of the components, the DFG
simulation implicitly accounts for error propagation effects.

Current Limitations As mentioned in Chapter 1, this dissertation targets image stream pro-
cessing pipelines that take a sequence of single pixels and process them. The presented case stud-
ies focus on color processing applications. In its current state, the framework does not support
applications that employ spatial processing, i.e. where multiple pixels in a local neighborhood are
involved to produce the output pixel. Examples for this would be finite impulse response (FIR)
filters, noise reduction or motion estimation. Appropriate extensions to support such systems are
conceivable and could be part of future work, as discussed in Chapter 6.

3.2 Parameter Dependencies

Depending on the structure of the application and the composition of potential approximations,
the configuration of the DFG might be subject to dependencies between the parameters of indi-
vidual components. In order to ensure the generation of valid and synthesizable candidates during
the DSE phase, these dependencies must be respected. Additionally, specific characteristics in the
input or output of approximated components might enable the synthesis tool to perform further op-
timizations across multiple components, reducing the resource usage of the system. Hence, such
interactions must also be considered to achieve an accurate estimate of the real resource count for
any candidate DFG. In the following, we consider the color channel mixer DFG introduced above
to illustrate cross-component parameter dependencies and explain how they are handled in our
system.

3.2.1 Parameterization Order

An exemplary parameter propagation path in the mixer might start in the node holding coefficient
𝑚1. When precision scaling is applied here, changing the output bitwidth of the node, the size of the
subsequent multiplier will change which in turn influences its available approximation parameter
range. Next, the size of the multiplier output, which is determined by the sizes of its inputs together
with its configuration, defines the range of the bit-shift operation that follows. The path continues
as the output of the bit-shift, together with the output of the bit-shift in the second channel, de-
fines the size and parameter range of the first adder, and so on. Generally, the parameter ranges
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Figure 3.2: Forward propagation of legal parameter ranges and derived order of parameterization

of individual DFG components typically depend on the size of their respective inputs, leading to a
forward propagation of parameter dependencies. Figure 3.2 illustrates these propagation paths in
the exemplary channel mixer DFG.

Consequentially, the parameterization should follow the same order during the generation of
new or modified candidate solutions. For this, we group all components into parameter groups
according to the level of parameterization dependency relative to preceding components. First, all
independently parameterizable components are assigned to group 0. Then, all remaining compo-
nents are iteratively sorted into groups with higher indices so that the members of any group solely
depend on components in lower groups. The group index then defines the order of parameterization
during the formation of new candidates, as indicated with numbers in Figure 3.2.

3.2.2 Synthesis Optimizations

Another form of cross-component interaction can be observed during the synthesis step of a can-
didate system, where synthesis optimizations lead to reductions in resource usage. This happens
when components either produce some constant bits in part of their output or when they disre-
gard some bits from their inputs. In the channel mixer example, the approximation used in any of
the multipliers might produce constant 0s in some of the LSBs of its output, for example when
employing the BAM. However, the synthesis tool will automatically remove any register fed by
a constant signal. Also, if some bits in one of the inputs to an adder are constantly set to 0, the
respective adder logic can be removed and the other input can be promoted directly to the output.
This behavior reflects a forward propagation of synthesis effects.

However, the parameterization of a component might as well influence the preceding compo-
nents. As an example, the final adder in the channel mixer could implement the LSA approximation,
which selects bits from one of its two inputs in the lower part and disregards the respective bits
from the other input. Generally, some of the input bits to a DFG component might be disregarded,
which effectively reduces the size of that signal. Consequentially, these bits do not need to be
calculated by previous nodes. Such cases lead to a backward propagation of synthesis effects.

In both cases described above, the DFG configuration is still valid, but the synthesis tool will
remove unnecessary resources in the related components. In order to avoid an overestimation of the
overall resource consumption, the parameterization is refined further after the initial configuration
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is finished. First, the DFG is traversed forwards from the components that produce constant output
bits, starting in the ones closest to the inputs, and the configuration of subsequent nodes is adjusted
accordingly. Similarly, in a second pass, the DFG is traversed backwards from all components
which discard part of their inputs, this time starting with the ones closest to the outputs, adapting
the configuration of preceding nodes.

3.3 Resource Models

The proposed framework uses a divide-and-conquer strategy to derive the resource and power us-
age associated with a candidate DFG without the need for time-consuming synthesis and placement
of the system. First, the candidate DFG is used to model the area consumption in terms of the over-
all number of implemented FPGA resource units. In a second step, the power consumption of the
system is derived from the resource unit count, using an approach similar to HAPE [133]. Figure
3.3 shows an overview of the involved steps and components of the resource modeling flow. The
following sections describe the workings of the proposed models and the involved steps in detail.

Figure 3.3: Overview of the proposed area and power modeling flow

3.3.1 Area Model

Unlike ASIC implementations, where area consumption is typically assessed in terms of the phys-
ical size required by the implemented circuit, e.g. using mm2 as unit of measurement, the area
consumed in FPGA designs is more meaningfully described in terms of the required number of
functional units, i.e. LUTs, registers, DSPs and BRAMs. Therefore, the total resource consump-
tion of an application can be denoted by a vector containing the respective counts for all FPGA
resource types:

𝑅 =
[

𝑅LUT, 𝑅REG, 𝑅DSP, 𝑅BRAM
] . (3.1)

The proposed approach models the required overall FPGA resources 𝑅 as the sum of the con-
sumption of individual components 𝑐 ∈ 𝐶 in the DFG:

𝑅 =
∑

𝑐∈𝐶
𝑟𝑐 , (3.2)

where 𝑟𝑐 denotes the vector of individual resource units required by the respective component and
the sum is calculated element-wise for each resource type. To obtain the values of 𝑟𝑐 for all com-
ponents, the model traverses the candidate DFG and calls the report_area() method on each
component in the graph, which returns the number of implemented resources depending on the
component parameterization.
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To test the accuracy of the area model, we randomly created 100 approximate configurations
of the channel mixer, using approximations as indicated in Figure 3.1. If the effects of synthesis
optimization (see Section 3.2.2) are not taken into account, the estimation of LUTs and registers
differs from the actual synthesis results on average by 2.56% and 14.34%, respectively. In contrast,
after the parameter refinement introduced in Section 3.2.2, the average relative estimation error
was reduced to 1.89% for LUTs and 1.07% for registers.

3.3.2 Power Model

After the resource count of the candidate DFG has been estimated, the results can be used to derive
the power consumption of the system. Our approach is based on a method that was proposed as part
of the HAPE framework [133]. The main principle behind the model is to acquire characteristic
per-unit power consumption values for each resource type and multiply those with the number of
required resource units. All FPGA resources contribute a static as well as a dynamic part to the
overall power consumption, which are modeled separately.

The overall static power consumption 𝑃static of any resource type ∈ {LUT,REG,DSP,BRAM}
depends solely on the number of implemented units 𝑅type and is calculated as

𝑃static, type = 𝑅type ⋅𝑄static, type, (3.3)
where 𝑄static, type is the characteristic static power consumption per unit of the resource type.

In contrast, the dynamic power consumption scales with the switching activity in terms of signal
transitions per second, which can be derived as 𝛼 ⋅𝑓clk from the average global toggle rate 𝛼 and the
clock frequency 𝑓clk. For any resource type, given its characteristic dynamic power consumption
per MHz 𝑄dynamic, type, the dynamic power consumption is derived from the estimated number of
units 𝑅type as

𝑃dynamic, type = 𝑅type ⋅ 𝛼 ⋅ 𝑓clk ⋅𝑄dynamic, type. (3.4)
Finally, the total power consumption is given by the sum of the static and dynamic power con-

sumption over all resource types:
𝑃total =

∑

type∈{LUT, REG, DSP, BRAM}

(

𝑃static, type + 𝑃dynamic, type
) (3.5)

While the clock frequency 𝑓clk can directly be set by the designer as desired, the other parameters
must be determined first as described below.

3.3.2.1 Toggle Rate

The toggle rate depends on the structure of the application as well as the processed input data. Be-
cause re-computing exact toggle rates for every candidate solution is time-consuming, we estimate
a common global toggle rate by feeding the accurate design of the target application with typical
input data. As we target image processing applications, we choose a high-quality image set [134]
to represent typical inputs, which can be seen in Appendix A. At first, the input image is converted
to a pixel stream in raster-scan order, which is how images are typically fed to stream processing
pipelines [14]. Then, the behavioral DFG simulation (see Section 3.1) of the reference application
design is used to calculate all internal signals and the bitwidth of each signal is extracted from the
DFG. Using this data, a bit vector is generated for each bit position in each internal signal, tracking
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the values of that specific signal bit over time. Finally, the global toggle rate is aggregated by calcu-
lating the switching activities in all bit vectors and taking their average. For example, considering
the DFG of the exemplary channel mixer, the mean internal activity ranges between 0.29 and 0.37
among the individual images in the set, with an average of 0.34.

3.3.2.2 Characteristic Per-Unit Power Consumption

The characteristic per-unit power consumption for the different FPGA resource types depends on
the selected target device, its operation temperature and application-specific factors such as the
amount of routing required to connect the resources. We propose two different methods to obtain
these values, a generic model and an application-specific model:

Generic Model The generic model, which was used in our previous publications [2–6], uses
vendor tools to extract application-agnostic per-unit power consumption values which can provide
a fair estimate regardless of the application. FPGA vendors provide specific tools, e.g. the Intel
Early Power Estimator (EPE) [135] or the Xilinx Power Estimator (XPE) [136], which allow the
estimation of overall power consumption based on the number of instantiated units. To include
the information contained in such tools into our framework, we extract the respective values for
𝑄static, type and 𝑄dynamic, type for all resource types from the respective tool. While the target de-
vice and operating temperature can be set directly in the tools, the routing factor is unknown and
therefore set to a standard value.

Application-Specific Model While the generic model provides a reasonable estimate that is
generally capable of guiding the DSE [4], it does not possess any knowledge about the internal
structure of the application and the related routing effort which influences the power consumption.
We therefore propose to incorporate application-specific data into the characteristic per-unit power
consumption values in order to improve the power estimation with respect to a specific target appli-
cation. To achieve this, we use the reference configuration together with a few randomly generated
approximate configurations for the target application and fully synthesize, fit and route the respec-
tive designs. Then, the power analysis tool provided by the FPGA vendor, e.g. the Power Analyzer
from Intel [137], is used to generate a power report of the final system which accounts for routing
effects as well. From the report, the overall power consumption per resource type is extracted and
divided by the respective resource count to derive the per-unit consumption value. Finally, the
obtained values are averaged across the sampled system configurations. Using this methodology,
an application-specific baseline can be extracted at the cost of only a few synthesis, fit and route
runs, which can be reused for all other configurations probed during the DSE.

We compared the accuracy of both models in estimating the power consumption of the exemplary
channel mixer using the same 100 random configurations as for the area model analysis in the pre-
vious section. Figure 3.4 plots the reference power consumption of each configuration, obtained
after synthesis, fit and route in comparison to the values obtained using the proposed power model
with the generic as well as the application-specific model for the characteristic per-unit power con-
sumption. For the application-specific model, the reference configuration plus 4 additional random
configurations were used to generate and extract the characteristic data. We ordered the configura-
tions according to their reference power values to improve the readability of the data presentation.
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Figure 3.4: Comparison of generic and application-specific power model for 100 random channel mixer
configurations

The plot shows that both models follow the overall trend in the power consumption without the
need for time-consuming synthesis, fit and route for every configuration. However, the application-
specific model follows the reference curve closer and delivers a significantly more accurate estimate
of the power consumption. Across the 100 random configurations, the average relative estimation
error of the generic model is 8.57% which is reduced by the application-specific model to 3.13%.
Although the improved accuracy comes at the cost of characterizing a small number random con-
figurations in the beginning, this overhead might be negligible considering that the number of
candidate solutions probed during the DSE is typically higher by several orders of magnitude.
Generally, while the generic model is a reasonable indicator for the achievable reduction in power
consumption, which could be useful for initial experiments, the application-specific model should
be preferred when running the actual DSE for a target application.

3.4 Quality Model

In any approximated system, the degradation in application quality is the drawback that needs to
be accepted to achieve benefits in resource usage. When choosing a suitable configuration, the
quality estimation needs to enable the designer to judge the expected application quality reliably.
This requires the reported values to be suitable for the target application and interpretable by the
designer. Consequentially, the quality model used in the proposed framework allows the designer
to freely choose a suitable and familiar reference metric.

This section starts with reviewing the state-of-the-art for quality estimation in the field of ap-
proximate computing and the drawbacks of commonly used quality models. Then, the functional-
ity of the proposed DFG-based reference metric calculation is explained. Finally, we provide two
methods to select appropriate training data for the estimation, and demonstrate their benefits and
drawbacks depending on the considered target quality statistic.
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3.4.1 Related Work

Within the field of approximate computing research, quality is often measured in terms of basic
signal fidelity metrics such as the numerical error distance, the hamming distance or the error rate.
Metrics like these are able to capture general potential trade-offs between resource consumption and
accuracy. However, they are application-agnostic, which means that they might be of limited rel-
evance for the designers and users of specific real-world applications. Hence, application-specific
metrics should be the preferred method for quantifying application quality [17].

For many application domains, research efforts have over decades developed and matured spe-
cific metrics which are well understood by designers with domain knowledge. As an example, for
signal and image processing applications, quality is often reported by means of the peak signal-to-
noise ratio (PSNR). Within the field of image processing, metrics are often even more specialized
depending on the nature of the specific application. The quality of image compression and filter-
ing, for example, is often quantified with the structural similarity measure (SSIM) [138], while
color accuracy is typically measured in terms of the CIELAB Δ𝐸 difference [139]. These and
other metrics specifically designed for image processing often take properties of the human visual
system into account to improve the prediction of observed quality. Ideally, application designers
should have the flexibility to choose their preferred application-specific metric so that they can
make well-informed decisions about the quality of an approximated application.

In approximated applications, error propagation across system components needs to be ac-
counted for in the employed quality model. Dealing with this problem, several analytical error
propagation models for approximate computing have been proposed in recent years [140–143].
Unfortunately, such methods are generally limited to linear systems and can typically only calcu-
late the error propagation across adders and multipliers. On the other hand, many image process-
ing systems include point operations which apply non-linear transfer functions to pixel values, e.g.
using pre-computed look-up tables [118], restricting the usage of current analytical models. Addi-
tionally, the output of such methods yields overall signal deviation statistics or error distributions
that cannot easily be transformed into many of the established application-specific quality metrics
for meaningful interpretation. As an example, in the Δ𝐸 metric, the numerical signal differences
are weighted differently depending on the output color to consider the varying sensitivity to color
changes across different colors in the human visual system [139].

3.4.2 DFG-Based Quality Estimation

The proposed framework uses so-called reference metrics that compare the output of an approx-
imated system to the golden output of the approximation-less reference system. This enables the
choice of many application-specific state-of-the-art quality metrics such as the PSNR, the CIELAB
Δ𝐸, the SSIM and many others, which fall into the category of reference metrics. To integrate any
metric into the flow of the proposed framework, the designer only needs to provide the handle to a
function which calculates the respective condensed quality value(s) given the approximate as well
as the golden output. By nature, reference quality metrics require a suitable training data set which
is used as input from which both the golden and the approximated outputs are computed. Targeting
the applications studied in this thesis, we propose two types of training data sets, namely systemat-
ically generated synthetic inputs and randomly sampled real-world inputs. Considerations for the
choice of a suitable and relevant training data set will be discussed in the next section.
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The proposed quality estimation flow is illustrated in Figure 3.5. First, a suitable training data set
is selected based on the application domain and the prominent quality objective. After the training
data is chosen, it is processed once with the approximation-less version of the application to obtain
the golden output. Then, both the training data and the golden output are stored with the model in
preparation of the DSE.

Figure 3.5: Overview of the DFG-based quality estimation process

For each potential solution probed during the DSE, the corresponding candidate DFG is used
as described in Section 3.1 to process the training input data, returning the respective approximate
output. Since the employed DFG-based processing is a bit-accurate end-to-end simulation of the
parameterized hardware system, it implicitly accounts for error propagation effects. Finally, the
provided reference metric function is called to obtain the desired quality estimation results.

3.4.3 Choice of Suitable Training Data

Like the choice of the quality metric itself, the selection of suitable training data should be related
to the target application, so that relevant inputs are covered. In this section, we will concentrate
on the selection of relevant training data for the case studies presented in this work, which process
image color data. However, the general principles used in the selection process may be applied to
different application types as well.

When optimizing application quality, there are generally two slightly different potential objec-
tives: (a) guaranteeing a defined worst-case quality degradation bound and (b) ensuring a specific
average output quality level. Existing reference quality metrics reflect these targets to different
extends. For example, while penalizing large errors due to its internal use of the MSE, the PSNR
largely captures the average quality loss for a given data set. On the other hand, both the mean
and/or the maximumΔ𝐸 aggregated across the data set can be used to determine the average and/or
worst-case color shift in the output. The target objective type, however, also influences the desired
properties of the training data set necessary for a meaningful and accurate quality estimation.

In the following, we motivate and propose two methods for selecting suitable training data sets
for image color processing applications, each specifically targeting one of the potential objectives
described above.
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Synthetic Training Data Sets In the first case, for limiting the worst-case degradation in
quality, the training data should cover the entire input space, including potential corner cases. For
pixel color data, ideally all possible input colors are included in the training set. The overall num-
ber of possible colors scales exponentially with the image bitdepth, i.e. the number of bits used
to represent a single color channel. In professional cameras, 10 or more bits are commonly used
per channel which leads to very large input ranges [144]. The applications studied in this work
use a common depth of 12 bits per channel, corresponding to 236 = 6.872 × 1010 possible input
colors. Hence, the respective exhaustive training data set would need more than 288 GiB of data
and the calculations for the quality estimation would be extremely time-consuming. To overcome
this problem, we propose to create a synthetic image color training set by sampling the input space
in regular intervals along each dimension. This ensures that colors across the entire input space are
covered while strongly reducing the number of actual inputs in the training set. However, perfectly
equidistant sampling would lead to regular patterns in the training set, e.g. in some cases the LSBs
of all pixel values would be set to zero. To prevent the optimization from adapting to such patterns,
we add uniformly distributed noise between the sampling steps so that the colors are slightly shifted
to irregular positions. The training set size can be adapted by choosing the number of sampling
steps to control the trade-off between effort and accuracy of the estimation. Figure 3.6 shows the
resulting training sets for two different sampling distances, using 16 respectively 64 sampling steps
along each dimension and therefore containing 163 = 4096 and 643 = 262 144 inputs.

(a) 16-step sampling (b) 64-step sampling
Figure 3.6: Synthetically generated training data with regular sampling of color space

Real-World Training Data Sets Secondly, when the property of interest is the expected aver-
age output quality of the approximated application, then the training set should contain the inputs
that are most commonly seen. The regular sampling introduced above contains a balanced mix-
ture of colors and does not necessarily represent the typical distribution of colors when shooting
real-world scenes. Another factor besides the actual image content that has a significant impact
on the typical distribution of image colors is the color space and luminance encoding or image
state [145]. Two image states commonly used in digital imaging workflows are the scene-referred
encoding and the output- or display-referred encoding. The scene-referred encoding aims at re-
lating the encoded values as closely as possible to the color characteristics of the objects in the
captured scene. In practice, luminance is typically encoded logarithmically to retain high dynamic
range (HDR) information, which is inspired by the behavior of negative film used in analog pho-
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tography, and the colors are transformed to a wide-gamut color space [134]. On the other hand, the
display-referred encoding is linked to a specific display device or print medium and aims at pro-
viding an intended appearance given the characteristics of the target device. These characteristics
are often standardized for a specific class of devices, e.g. in the Rec709 standard for high definition
television (HDTV) devices [146]. Figure 3.7 illustrates the difference between scene-referred and
display-referred encoding for the Color Wheel image from the ARRI image set used throughout
this work [134]. Because the scene-referred encoding uses a larger container to retain even ex-
treme real-world colors and luminances, most pixel values in an evenly exposed scene are within
the middle of the range, which is why the image appears as having low contrast. On the other hand,
in the display-referred encoding which typically represents a limited dynamic and color range, the
values of a typical image cover a larger portion of the numerical range.

(a) Scene-referred encoding (logC) (b) Display-referred encoding (Rec709)
Figure 3.7: Image Color Wheel from the ARRI Image Set in scene-referred (LogC) and display-referred

(Rec709) encoding [134]

This is why the color encoding should be taken into account when selecting training data for
estimating the expected average quality loss. To achieve this, our methodology creates real-world
training data sets by randomly picking input colors from one or more user-supplied sample images
which are encoded in the correct image state as needed for the application. By choosing the sample
images, the designer can control which types of colors are covered in the training set and using the
correct encoding ensures that the estimation focuses on the relevant ranges of the input space. Fur-
thermore, the size of the training set can be controlled directly by changing the number of random
draws when collecting the data.

Comparison of Training Data Sets

To analyze the impact of training data set type and size on the accuracy of the quality prediction,
we generated synthetic as well as real-world training sets of different sizes as described above. For
the synthetic sets, we used 16, 32, 64 and 128 sampling steps along each dimension, leading to
sizes from 163 to 1283 inputs, respectively. The real-world sets use randomly sampled pixels from
the Color Wheel image of the ARRI image set and the generated sets have the same sizes as the
synthetic sets for comparison. We use the 11 other images from the image set (see Appendix A)
to generate ground truth data from real-world use cases to validate the quality estimation. Note
that the resolution of the images is 2880 × 1620 and therefore the validation set contains roughly
51.32 × 106 inputs which is more than 24 times larger than the biggest training set and more than
12 500 times larger than then smallest training set.
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The validation is carried out over the same 100 random approximate configurations of the chan-
nel mixer that were used above in the analysis of the resource models. We use the MaxED to
represent the worst-case quality loss and the PSNR to represent the expected average quality. To
show the influence of the color encoding, we repeated the analysis for both the scene-referred en-
coding (logC) and the display-referred encoding (Rec709) of the validation set. The generation
of the real-world sets respectively uses the same encoding when sampling inputs from the Color
Wheel image.

Estimation of the worst-case error First, we analyze the performance of the training sets
for estimating the worst-case quality bound. Hard guarantees for the actual worst case error can
only be given if all possible inputs are tested, which is infeasible for higher bit depths as described
above. When using a reduced training set, testing more inputs leads to a higher probability of
finding the critical ones that lead to high errors. This leads to a trade-off between the certainty
of the estimated error bounds and the related computational effort. Figure 3.8 plots the estimated
MaxED for all combinations of training set type and size for both studied encodings. The values
are reported relative to the respective worst-case error found across all images of the validation set
and averaged over all 100 random approximation configurations.
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(a) Scene-referred encoding (logC)
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(b) Display-referred encoding (Rec709)
Figure 3.8: Average estimated worst-case error relative to ground truth for scene-referred and display-

referred encoding of the validation set

In the plot, values above 100% mean that, on average, the worst-case error found in the validation
set is within the bounds estimated using the respective training set. On the other hand, values be-
low 100% indicate that the quality model tends to underestimate the maximum error. As expected,
the plot shows that increasing the number of inputs in the training set also increases the estimated
worst-case error in all cases. However, the worst-case errors found in entire real images signif-
icantly exceed the predictions from using the real-world training sets in all cases. The synthetic
sets, in contrast, yield more reliable bounds. Nevertheless, their predictions seem to be more robust
when the inputs are given in scene-referred encoding compared to the display-referred encoding.
In contrast, the predictions of the real-world sets are more accurate for inputs in display-referred
encoding, which leads to a smaller difference between both data set types in that case (see Figure
3.8b in comparison to Figure 3.8a).
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Estimation of average quality Secondly, we compare the capability of the different training
sets in estimating the expected average quality in terms of the PSNR. Table 3.1 reports the model
accuracy in terms of the relative error in predicting the mean PSNR all images in the validation
set, averaged across all 100 random configurations of the channel mixer. Given are values for all
generated training sets and for both studied color encodings. In contrast to the estimation of worst-
case error bounds, the size of the training data has negligible influence on the prediction accuracy
in this case. However, the real-world data sets show a better accuracy in predicting the average
quality, especially for the scene-referred encoding, where the prediction error is reduced by more
than half compared to the synthetic sets.

Table 3.1: Accuracy of predicting PSNR using different training sets for scene-referred and display-referred
encoding of the validation set

Encoding
Average relative prediction error [%] when estimating PSNR using

Synthetic Sets Real-World Sets

𝟏𝟔𝟑 𝟑𝟐𝟑 𝟔𝟒𝟑 𝟏𝟐𝟖𝟑 𝟏𝟔𝟑 𝟑𝟐𝟑 𝟔𝟒𝟑 𝟏𝟐𝟖𝟑

Scene-referred (logC) 8.99 9.00 9.00 9.00 4.43 4.43 4.45 4.44
Display-referred (Rec709) 9.10 9.10 9.10 9.10 6.79 6.75 6.75 6.74

With the proposed methods, we provide the designer with different options to select training data
for color processing applications such as the ones studied in this work. The results of the analy-
sis for the exemplary channel mixer show that data sets covering the entire input space are suited
better to extract error boundaries while focusing the selection towards the most probably inputs
enables a better estimate of the expected average quality. Similar deliberations should be made in
the selection of training sets when targeting other types of applications.

Depending on the most prominent target objective and the available budget of computational re-
sources, the designer can choose the fitting combination of selection method and training set size.
Furthermore, it is possible to combine both methods if both objectives are similarly important. In
that case, the approximate output can be generated for both training sets and each output is used to
calculate the reference metric linked to the respective quality objective.

3.5 Chapter Summary

This chapter presented the proposed methodology for managing the integration and parameteriza-
tion of different approximation methods within target applications and for modeling the quality-
resource trade-off on the application level. In the proposed framework, any target application is
structurally represented by its DFG, and graph annotations are used to integrate the approximations
and define the design space. This representation also facilitates dealing with parameter dependen-
cies between components. Furthermore, resource models were presented which estimate the area
consumption with a divide-and-conquer approach using the fully parameterized candidate DFG
while the power usage is derived directly from the required number of FPGA resource units. It was
shown that the proposed approach is able to accurately predict resource consumption without the
need for the time-consuming synthesis, fitting and routing procedures. Lastly, a quality model was
proposed which allows the designer to choose and easily integrate their preferred reference metric
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to obtain relevant and interpretable application-specific quality estimates. Implications regarding
the selection of suitable training input data were discussed and two specific data set types, a syn-
thetic set and a real-world set, both tailored specifically towards the target application scope, were
proposed and evaluated with regard to different quality statistics. The evaluation has shown that
the synthetic set should be preferred for estimating worst-case error bounds while the real-world
set performs better when estimating average quality loss.





Chapter 4

Design Space Exploration

Combining multiple parameterizable approximations within a target application leads to very large
design spaces which grow exponentially with the number of exposed parameters. The parameter
dependencies between system components and the effects of error propagation necessitate a joint
global optimization of all parameters. Furthermore, the relation between the parameterization and
both the resource consumption and the application quality is highly non-linear and cannot directly
be described by analytical functions. Lastly, since approximated applications trade off the com-
peting goals of resource savings and application quality, the DSE is a multi-objective optimization
problem by nature. Consequentially, instead of a single optimal solution, the search yields a multi-
tude of Pareto-optimal solutions from which the designer can choose the parameterization associ-
ated with the most suitable trade-off according to their preferences. Altogether these properties of
the optimization problem call for an appropriate search heuristic to efficiently explore the design
space.

Such a search heuristic typically operates in a generate-and-test loop as depicted in Figure 4.1. At
the beginning of each cycle, one or more candidate solutions are generated which are then evaluated
in terms of their fitness according to the target design objectives. In approximate system design, the
fitness of a candidate solution quantifies its quality-resource trade-off. Finally, the loop is closed
as the fitness estimates are fed back into the search heuristic which tries to utilize the information
to generate improved candidates. Ultimately, the DSE finishes once a stop condition is reached,
which could be a predefined number of iterations or a convergence criterion. The final output of
the DSE is given as the list of candidates whose fitness is Pareto-optimal in the multi-dimensional
objective space among all probed candidates.

Figure 4.1: Overview of the DSE process



74 Chapter 4 Design Space Exploration

This chapter starts with an overview of proposed approaches for exploring the design spaces
of approximated systems found in related literature. Then, the use of the GA within the pro-
posed framework is motivated and its core functionality described. Lastly, we describe how the
GA is adapted for and used within the proposed framework to deal with the peculiarities of guid-
ing through the DSE for approximated systems. The optimization methodology employed in the
framework as described in this chapter is based on work by Manuel et al. [5].

4.1 Related Work

Within the research field of approximate computing, several approaches for exploring the design
spaces of approximate hardware-based systems have been proposed in recent years, which are dis-
cussed in this section. These approaches differ in the employed exploration methods as well as in
the types of approximations they support.

Starting from a behavioral description of the target circuit, ABACUS creates an abstract syntax
tree (AST) representation of the design and applies various approximate transformations, such as
scaling of intermediate signals, replacement of arithmetic operations or variable-to-constant sub-
stitutions [147]. For the DSE, they employ a stochastic greedy algorithm, which starts with the
original design and evolves it through a defined number of iterations. In each iteration, the algo-
rithms tests a number of randomly picked approximate AST transformations, employing gate-level
simulations and synthesis for the fitness estimation. Then, the best candidate is chosen according
to a weighted linear combination of the estimated accuracy as well as the area and the power con-
sumption. The best candidate then serves as parent for the next iteration. However, their approach
does not discuss how suitable weights for the linear combination can be chosen. Furthermore, pick-
ing only a singular best design as the seed for the next iteration limits the search and may lead to a
sub-optimal exploration. To overcome some of the drawbacks in the original design, the approach
was later extended to include a hybrid selection scheme, in which the linear-scaled fitness rank-
ing is combined with the multi-objective Nondominated Sorting Genetic Algorithm-II (NSGA-II)
scheme [148] to select multiple parent designs for the next generation [149]. Additionally, the
fitness estimation itself is sped up by including an accelerated, C-based simulation workflow and
by parallelizing the fitness estimation of all candidates. However, the hardness of defining suit-
able weights for the linear fitness ranking as well as the need for time-consuming per-candidate
synthesis remains.

Specifically targeting high-level synthesis (HLS) workflows, Xu and Schafer proposed an ap-
proach which applies approximations in different phases of the design flow [150]. At the software-
level, infrequently executed code lines are pruned and variable-to-variable and variable-to-constant
substitutions are applied. In the next phase, the arithmetic units are approximated in two steps.
First, the impact of any possible individual unit replacement is characterized. Secondly, a greedy
algorithm iteratively adds approximate unit replacements to the design, minimizing a linearly
weighted combination of the competing objectives accuracy and resource consumption, construct-
ing a trade-off curve of Pareto-dominant solutions that have different numbers of approximated
operations. The last phase finally repeats the variable-to-variable and variable-to-constant substi-
tutions at the register-transfer level (RTL), where all internal signals are available, and additionally
uses a profiling step to substitute individual bits with constants. While the first two phases rely on
model-based HLS synthesis, the third phase includes the need for time-consuming logic synthe-
sis. Also, the sequential application of the different approximation methods in subsequent phases
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might leave some important regions of the design space unexplored. Furthermore, their method-
ology does not include a model of power consumption.

Zervakis et al. propose a technique to integrate multi-level approximate arithmetic units, i.e.
units that employ combinations of functional approximation and VOS, into a target application
[24]. Their approach generates a number of random training configurations of the target applica-
tion which are simulated to obtain the associated output error values. Then, a neural network is
trained to facilitate the quality estimation for arbitrary configurations and the power consumption
is estimated by summing the characteristic individual consumption of all components. With these
models, the quality-resource trade-off is exhaustively evaluated for all possible configurations and
the Pareto front is extracted from the results. As a final step, a heuristic voltage island formation
algorithm is proposed to limit the number of different supply voltages. This approach targets ASIC
designs and includes locally applied VOS, which limits its applicability for FPGA designs. If VOS
is removed to make their approach work on current commercial FPGAs, the approach becomes
limited to approximate arithmetic units only.

Mrazek et al. proposed a methodology called autoAx to find Pareto-optimal combinations of ap-
proximate circuits from a predefined library to replace accurate operations in a target application
[151]. First, the application is profiled to obtain the input distribution at each operation. Using this
information, the library is filtered and Pareto-optimal circuits are selected for each operation w.r.t.
the hardware cost and the expected error according to the input distribution. Then, similar to the
approach described above, random configurations of the application are created, and application-
level quality as well as hardware cost values are obtained using simulation and synthesis of these
configurations. The resulting data set is used to train ML models so that simulation and synthesis
can be omitted during the DSE. A heuristic hill climbing variant is used to construct the Pareto
set. The algorithm starts with a random configuration and visits randomly selected neighbors, i.e.
configurations that differ in one operation. If the neighbor dominates the current Pareto set, it is
added to the set and chosen as the new parent for the next iteration. While the original approach
targets ASIC designs, another proposed variant named ApproxFPGAs extends the methodology
for FPGA-based applications [124]. A drawback of the search heuristic employed in both of these
approaches is that it traverses the search space along a singular trajectory and therefore employs a
local search which might limit the diversity of the evolved solutions.

AxHLS is another approach that tries to minimize a linear combination of area, power and la-
tency metrics under a given error constraint [152]. To explore the search space, it uses Tabu Search
to iteratively select approximate arithmetic units to replace the accurate operations. Similar to the
autoAX/ApproxFPGA approach, this algorithm uses a local search and employs models to ac-
celerate the fitness estimation. Another common drawback is the limitation to a singular type of
approximations, namely approximate arithmetics.

The methodologies proposed in related work exhibit different deficiencies and none of them
completely meets all of the requirements needed for an efficient exploration of large design spaces
spanned by the combination of various approximation methods in FPGA designs. ABACUS [147,
149] and the work by Xu and Schafer [150] employ logic synthesis within their workflow which
hinders the use of their methods for very large design spaces. On the other hand, the work of Zer-
vakis et al. [24] and both autoAX/ApproxFPGA [124, 151] and AxHLS [152] support large design
spaces by employing fast models for fitness estimation. However, all of them restrict the design
space to approximate arithmetic units (for the multi-level approach by Zervakis et al. [24] this holds
true when targeting FPGA implementations, which excludes the application of local VOS).
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4.2 GA-based DSE Approach

Current state-of-the-art DSE techniques for configuring approximate hardware predominantly ap-
ply heuristics that search locally and follow a singular trajectory through the design space by suc-
cessively modifying one parameter or component in each step. Furthermore, many of the proposed
methods condense the quality-resource trade-off into a singular fitness value using a weighted lin-
ear combination of the competing objectives in order to identify the best direction for moving
forward. Although the weights for the objectives allow the DSE to incorporate designer preference
into the search, their balanced scaling may not be straightforward. These properties might limit the
diversification of the results and narrow the explored region within the design space, potentially
restricting the exploitation of benefits offered by combined approximation methods.

To overcome such limitations, the proposed framework employs a metaheuristic approach using
the genetic algorithm (GA) that does not require prior knowledge about final optimality or the im-
pact of individual parameters. Furthermore, it directly incorporates multi-objective optimization
into the search. During the search, a population of candidate solutions is evolved which allows
the algorithm to balance between selection pressure and candidate diversity, inherently combining
trade-off exploitation and global exploration in the search.

The rest of this chapter presents the employed DSE methodology, which is based on [5]. First,
an overview of the functionality of the GA is given. Then, the used GA setup and necessary adap-
tions of the individual GA components for a purposeful integration into the proposed framework
are described in the subsequent sections.

4.2.1 Overview of the GA Process

The GA can be classified as an evolutionary algorithm variant [153]. It operates in a loop to grad-
ually evolve and improve a population of candidate solutions, in contrast to local search algorithms
which iteratively improve a single candidate. In the GA, the candidates are represented using a
genetic encoding that maps the real-world properties of the original problem context to a form that
can be purposefully manipulated by genetic operations to evolve them. These encoded candidate
solutions are commonly referred to as chromosomes or individuals. Figure 4.2 shows a high-level
overview of the optimization flow and the involved steps.

Figure 4.2: Generational loop of the GA-based optimization flow
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The process starts with the initialization phase in which a first population of individuals is gen-
erated randomly. However, the generation function must be designed to ensure feasibility of the
created individuals, i.e. adhering to constraints imposed by the effects of parameter dependencies,
as discussed in Section 3.2. The population then enters the optimization loop where, as a first step,
the fitness of each individual is evaluated in the objective space. For this, all individuals are de-
coded to form the respective parameterized candidate DFGs, which are used by the resource and
quality models proposed in Chapter 3 to estimate their fitness. Instead of aggregating all objectives
into a single value, they are kept individually. Next, a selection among the individuals of the pop-
ulation takes place to choose 𝜇 parents as mating pool from which the offspring will be evolved.
Informed by the fitness values, the selection ensures a survival of the fittest individuals and is re-
sponsible for pushing improvements in the evolution. In the following step, genetic operations, i.e.
crossover and mutation, are applied to the parents to produce a new generation of 𝜆 offspring indi-
viduals. The crossover operation describes a binary variation that merges genes from two parents
to create an offspring individual. On the other hand, mutation is a unary operation in which the
offspring is generated by modifying a small part of a single parent. The genetic operations operate
stochastically, creating random, unbiased modifications (mutation) respectively genetic mixtures
(crossover). Finally, the fitness evaluation of the newly evolved offspring individuals then starts the
next iteration of the loop. This loop iterates until a stop condition is satisfied, which can be based
on convergence analysis, reaching a desired sufficient fitness level, or exhausting a pre-scheduled
computational limit, which is often defined by the number of evolved generations. In the proposed
framework, we set a fixed number 𝑁gen of iterated generations as stop condition after preliminary
analysis of the convergence for each case study. Once the stop condition satisfies, the DSE returns
the evolved set of configurations that are Pareto-optimal among all visited candidates across all gen-
erations. In the proposed framework, the core functionality of the GA-based DSE is implemented
using the DEAP framework1 [154].

4.2.2 Encoding and Genetic Operations

The genetic operations that work on the encoded individuals need to consider the parameter de-
pendencies to ensure the generation of feasible solutions. To facilitate the definition of these op-
erations, the employed encoding scheme describes the individuals using nested lists of real-value
genes. The lists’ hierarchy defines the dependency of the parameters. Each sub-list describes a sec-
tion of the DFG with inter-component parameter dependencies. Hence, by definition, there are no
parameter dependencies between the parameters of two separate lists at the same hierarchy level.
Furthermore, the individual lists and the parameters within them are ordered according to their
parameterization order as discussed in Section 3.2.1.

As a generic example, the list
[

[

𝐴1, 𝐴2, 𝐴3, 𝐴4

]

,
[

𝐵1, 𝐵2, 𝐵3

]

]

(4.1)

contains two parameter groups, 𝐴 and 𝐵. The parameters 𝐴 are independent of the parameters 𝐵,
and their indices capture the order of parameterization.

This structure of the encoding enables a straightforward way to locate safe split points for the ge-
netic operations. Given this encoding, a generic one-point, 𝑛-point or uniform crossover operation

1https://deap.readthedocs.io/

https://deap.readthedocs.io/
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[153] can be executed after restricting the choice of split points to lie between independent chro-
mosome sub-lists. That is, the generated offspring uses a new combination of sub-lists sampled
from both parents. Nevertheless, the designer can provide custom functions to enable splits inside
individual lists, if desired. A practical example for this is given for the crossover of two sparse
table parameterizations as used in two of the case studies presented in the next chapter, which is
described in Section 5.3.3.

Regarding the mutation operation, there are two generic options for safe execution. Since the
individual sub-lists are independent of each other, the mutation can randomly pick any sub-list and
completely replace it with random regeneration, adhering to the defined parameterization order, of
course. Secondly, to mutate only part of a sub-list, the operation can randomly choose a split point
within the list and only regenerate the parameters after the split point.

4.2.3 Selection

The driving force that moves the evolutionary optimization towards better solutions is the selection
process. During this process, a mating pool of 𝜇 parents needs to be selected, which seeds the cre-
ation of the next offspring generation. The proposed framework employs a modified variant of the
Nondominated Sorting Genetic Algorithm-II (NSGA-II), which is an established selection method
that directly handles multiple objectives and balances selection pressure and diversity among the
individuals [148]. Figure 4.3 illustrates the standard NSGA-II selection procedure. To introduce
elitism into the selection, a (𝜇+𝜆) strategy is used, i.e. the selection of new parents is taken among
a combined population of the current 𝜆 offspring individuals and the last parent population of size
𝜇 from which they evolved.

Figure 4.3: NSGA-II selection procedure (adapted from [148])

The selection procedure has two major steps. First, all considered individuals are sorted into
multiple nondomination fronts 𝐹𝑟 according to their dominance rank 𝑟, i.e. individuals in front 𝐹𝑗
are only dominated by those with a lower dominance rank 𝑖 < 𝑗, and the individuals in the first
front 𝐹1 are Pareto-optimal among all considered individuals. In the second step, 𝜇 new parents
are selected from the fronts in ascending rank order, starting from 𝐹1. As long as the number of
individuals in the next front 𝐹𝑖 is less than the number of remaining individuals to select, the entire
front is added to the selection. However, when the next front contains more individuals than the
remaining number required to complete the selection, the members of that front are ranked inter-
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nally to enable a meaningful choice among them. We will further denote this front as final front.
Here, the classical NSGA-II employs a crowding-distance sorting which calculates the distances
between adjacent individuals in the objective space and ranks those in less crowded regions higher
than those surrounded by other individuals of similar fitness. While the initial selection accord-
ing to nondomination rank guides the optimization towards overall better solutions and therefore
convergence, the crowding-distance sorting ensures diversity among the population.

ROI-Based Nondominated Sorting Selection (ROI-NSGA)

The selection method of the NSGA-II leads to an efficient exploration across the entire search space.
However, this is not always necessary in practical applications. Even though different levels of ap-
plication quality might be acceptable if they offer different favorable quality-resource trade-offs,
there is often a minimum quality threshold below which the trade-off becomes irrelevant to the
designer. Similarly, depending on the available area or power budget, the designer may not be in-
terested in solutions that consume resources above a certain maximum threshold. Such boundaries
define a region of interest (ROI) in the objective space into which the search should be focused.

To achieve such a concentration into a certain objective region, the framework employs a mod-
ification of the NSGA-II selection methodology named Region of Interest Nondominated Sorting
Genetic Algorithm (ROI-NSGA) [5]. As input, it takes a user-defined ROI in the objective space.
The selection procedure is the same as with NSGA-II, except for the choice within the final front
that contains more individuals than still needed. While the NSGA-II uses the crowding-distance
measure to rank these individuals, the ROI-NSGA differentiates three phases based on the number
of individuals from the final front that lie inside the ROI. Depending on the phase, the algorithm
switches between different sorting mechanisms as follows:

• Phase I: The ROI contains less than two individuals from the final front. In this initial phase,
the selection is based on the crowding-distance as in the standard NSGA-II. This phase con-
tinues until the GA identifies at least two solutions from the final front within the ROI.

• Phase II: The ROI contains at least two, but not enough individuals from the final front, i.e.
the number of solutions within the ROI is less than the number still needed for selection. A
dynamic reference point is calculated, which lies in the middle between the ROI boundary
and the best achieved value among all considered points inside the ROI, calculated sepa-
rately for each objective dimension. Instead of the crowding-distance, this phase uses the
distance of each point to the reference point, calculated by the 𝐿1-norm after normalization
by the boundary values in each dimension. The algorithm selects the individuals with the
minimum distance to the reference point, which serves to invite the solutions in or closest to
the ROI to the selection.

• Phase III: The ROI contains enough individuals from the final front for the remaining se-
lection. Since there are enough solutions in the ROI to choose from, the points outside the
ROI are discarded. For the selection among the remaining solutions, the algorithm switches
back to using the crowding-distance as indicator in order to spread the selection across the
ROI and maintain diversity.

With these phases and the different selection methods for the final front, the ROI-NSGA first tries
to concentrate the search towards the ROI and then strives to optimally explore the possibilities
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inside the ROI. Please note that while the numbering of the phases indicates their typical sequence,
depending on the current state of the search, they may alternate in the course of the generational
loop. Also, if there are enough points inside the ROI in the random initial population, phase 1 or
even phase 2 may be skipped in the beginning.

4.3 Chapter Summary

This chapter discussed the optimization strategy used within the DSE phase of the framework.
First, the approaches found in related work are discussed and their deficiencies analyzed. Based on
the requirements of the framework, a GA-based metaheuristic optimization strategy was selected
to directly handle the inherently multi-objective quality-resource trade-off and to efficiently explore
the highly complex design spaces resulting from combining multiple approximations within single
applications. In the rest of the chapter, the optimization workflow of the selected methodology
was described in detail, including the design of genetic operations and the ROI-based selection
process.
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Case Studies
This chapter presents three case studies of image processing applications which are suitable targets
for including various approximations to exploit the quality-resource trade-off. These case studies
serve to demonstrate and evaluate the utility of the methodology proposed in this thesis for prac-
tical applications. They represent real-world processing pipelines that are used to process image
colors in digital camera systems. Using the framework presented in this thesis, approximations of
different types are integrated into the applications and their parameters are optimized.

These case studies represent varying levels of complexity and focus on different aspects. In the
first case study, which contains a single image processing stage used to convert colors from the
𝑅𝐺𝐵 format into the 𝑌 𝐶𝑏𝐶𝑟 representation, the focus lies on the combination of precision scal-
ing and approximate arithmetic units. Next, the second case study uses a series of steps to adapt
image colors for display on a monitor with specific characteristics. It builds upon the first one
and demonstrates how modules from a simpler application can be reused in a larger one by adding
non-linear transformation stages and table-based approximations to the system studied in the first
case study. These first two case studies have been published in [4] but were extended for this dis-
sertation to use the full potential of the proposed framework in its current state. Most notably,
the related changes cover the integration of approximate multipliers into the matrix multiplication
step and adjustments in the pipelining structure to stabilize timing. Finally, the third case study
targets a popular approach adopted in many cameras to manipulate image colors, which is color
transformation by means of a 3D-LUT.

In all case studies, the use of the full design space, allowing for a combined use of different
types of approximation methods that are simultaneously parameterized, is compared to the use of
restricted design spaces enabling only a singular type of approximation to evaluate potential ben-
efits of combining different approximation types within the target applications. These restricted
design spaces can also be seen as a simulation of the potential offered by related approaches whose
methodologies are restricted to specific approximation types.

The rest of this chapter is structured as follows: First, common parameters used in the exper-
imental setup are given in Section 5.1. Then, the three case studies are presented and evaluated
one after the other. The purpose, functionality and structure of each application is described first.
Then, suitable approximations are selected from the approximate component library and integrated
into the respective application, and the resulting design spaces are described and their complex-
ity assessed. After defining the genetic encoding of the parameter space and detailing the related
genetic operations, the application-specific experimental setup is given. The results of the DSE
are presented and discussed, and the fitness estimation by the proposed models is validated against
post-synthesis data as well as the quality seen with real images. Section 5.5 finally summarizes the
experimental findings across all case studies and concludes this chapter.
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5.1 Common Experimental Setup

The following paragraphs summarize a few common settings used across all experiments related
to the presented case studies, including application-related settings, the setup of GA parameters
and the general experimental setup configuration.

Application-Related Settings As mentioned in the introduction, the target FPGA device is
the 10AS066N3F40E2SG model from the Intel Arria 10 device family [15] for all case studies,
targeting an operating frequency of 266.66 MHz (which supports the pipelined processing of 4K
images at up to 30 frames per second) and an operating temperature of 50◦C. In the selection of
approximate multipliers, we set the speed safety margin to 10% for the first two case studies and to
15% for the last one, which is more complex. Configurations for which the modeled speed is less
than the safety margin above the target frequency are filtered out. The overall color bit depth is
commonly set to 12 bits per channel. For all case studies, we set the minimization of the estimated
power consumption as a singular objective regarding resource usage for simplicity, as it is directly
related to the number of implemented FPGA resources. However, the DSE is able to keep track of
the employed LUTs, registers, DSPs and BRAMs to ensure that they do not exceed the capacity of
the target device. In terms of estimating application quality, each case study uses a different setup
which is explained in the respective sections below.

GA Parameters There are a few general parameters in the setup of the GA, which are set to the
same values for all case studies. The probability of applying a crossover operation is set to 0.7 and
the mutation probability is set to 0.3. In each generation of the GA loop, 𝜇 = 50 parents are selected
from which 𝜆 = 100 offspring candidates are evolved. While it is likely that better GA parameters
do exist, finding the optimal ones typically requires time-consuming hyperparameter optimiza-
tion for every individual target application. However, our experiments demonstrate that even with
non-optimized standard parameters, the proposed optimization approach is able to evolve mean-
ingful, well-populated quality-resource trade-off fronts across all studied design spaces. Hence,
these experiments serve as proof-of-concept for the usability of the chosen GA parameters while
their optimal setup might be investigated further in future work.

General Experimental Setup The experiments are run on a workstation computer (Intel Xeon
W-2145, 8 Cores, 128 GB RAM). The runtime of the DSE differs between the different target appli-
cations and the explored design spaces. Even though we use fast and simple fitness models, the time
consumption is dominated by the fitness estimation as the overhead introduced by the other steps
of the GA loop is comparatively low. Because the fitness evaluation of individual candidates can
be done independently, multiple threads are used to parallelize the evaluation of solutions across
any generation. When running the DSE for 𝑁gen generations, 𝜇 +𝑁gen ⋅ 𝜆 candidates need to be
probed. Hence, the overall DSE runtime is approximately proportional to the number of evaluated
candidate solutions divided by the number of CPU cores 𝑁cores:

𝑡 ∼
𝜇 +𝑁gen ⋅ 𝜆

𝑁cores
. (5.1)

Due to the non-deterministic nature of the GA-based optimization, which generates different results
in each run, we repeated the DSE 30 times for each setup to ensure consistency of the results.
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Comparison to related work The applications featured in the presented case studies combine
approximations of different types, employing models for a fast estimation of resource consump-
tion. Due to the large design space sizes and the time consumption related to synthesis, fitting and
routing for FPGA device targets, a direct comparison to related approaches that employ synthesis
as part of their fitness estimation is not feasible [24, 147, 149]. On the other hand, related method-
ologies proposed for model-based exploration of large approximate hardware design spaces are
commonly limited to a single type of approximation, namely approximate arithmetic units [124,
151, 152]. To enable a qualitative comparison of our results to these methods, we run the case stud-
ies not only with the full design space but also after limiting to single approximation types. Based
on the experimental results obtained from these different design spaces, we discuss the potential
implications of such limitations in related work.

5.2 Case Study 1: RGB to YCbCr Conversion

The first case study examined in this work, further denoted as CS1, covers a target application
which contains the conversion of image colors from 𝑅𝐺𝐵 triplets into the 𝑌 𝐶𝑏𝐶𝑟 representation,
which separates the luminance information, stored in the 𝑌 coordinate, from the color information,
stored in the color difference values 𝐶𝑏 and 𝐶𝑟. The application pipeline is depicted in Figure 5.1.

Figure 5.1: Case Study 1: RGB to YCbCr conversion

As shown in the figure, this application consists of one processing stage, in which the input
is multiplied with a 3 × 3 conversion matrix. Consequentially, the application consists purely of
arithmetic units. Hence, the focus of this case study is on the combination of precision scaling and
approximate arithmetic units. To show the benefits of such a combination across different approx-
imation types, we will run the DSE for different design spaces: (a) the full design space, (b) only
using precision scaling, which will be denoted as precision scaling design space for simplicity, and
(c) only using approximate arithmetics, denoted as arithmetic units design space.

This application implements three channel mixer blocks in parallel, which have the same internal
structure as the exemplary channel mixer DFG introduced in Section 3.1.

For our experiments, we employ the coefficients defined for the 𝑅𝐺𝐵 to 𝑌 𝐶𝑏𝐶𝑟 conversion
which is part of the JPEG File Interchange Format [155]:
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5.2.1 Approximations and Design Space

As mentioned above, the DFG of this application contains arithmetic operations only. It is imple-
mented in scalable fixed-point arithmetic. To approximate the calculations, we combine precision
scaling for internal signals together with a choice of approximate multipliers and adders.

In terms of precision scaling, we independently vary the fractional bitwidth 𝐹co of each coeffi-
cient between 0 and 13, with 13 being the fractional width used in the reference implementation.
Furthermore, we scale the precision of the intermediate results after the multiplication. As these
signals feed into the subsequent adder chain that expects equally sized inputs, a common parameter
𝐹int is used whose range depends on the maximum bitwidth among the coefficients.

The channel mixer DFG contains three multipliers and two adders. For the multipliers, we in-
clude the accurate implementation, denoted as Acc, and the BAM, which outperformed the other
approximate alternatives in the comparison in Section 2.3.4. The BAM exposes the HBL and VBL
parameters whose ranges are restricted by the multiplier input sizes (see Section 2.2.3.1). The HBL
is limited to the size of the smaller input which defines the number of partial product rows. Sec-
ondly, the VBL cannot be higher than the multiplier’s output bitwidth, which is given by the sum
of its input bitwidths and translates to the width of the partial product array. At the lower end, the
VBL should be at least as high as the HBL to exclude redundant configurations. To restrict the size
of the design space further, we removed configurations that lead to very high errors by restricting
the upper HBL and VBL range boundaries to half their theoretical maximum value.

For the adders, we select the MA and the LSA based on the comparison in Section 2.3.3, to-
gether with the accurate adder. Both approximate adders expose a split parameter whose range
depends on the intermediate fractional bitwidth 𝐹int. In case the LSA was chosen, an additional
select parameter determines which input is forwarded to the output in the lower part. An overview
of all parameters, their notation and ranges is given in Table 5.1. The table also mirrors the order
in which the parameterization needs be performed to account for the parameter dependencies.

Table 5.1: Approximation parameters for channel mixer
Name Notation and Range Instances

Fractional width of coefficients 𝐹co(𝑖) ∈ [0, 13] 𝑖 = {1, 2, 3}

Multiplier type 𝑀t(𝑖) ∈ {Acc, BAM} 𝑖 = {1, 2, 3}

BAM HBL1 𝑀h(𝑖) ∈
{

[

0, maxHBL(𝑖)
2

]

, if 𝑀t(𝑗) = BAM

ignored, otherwise 𝑖 = {1, 2, 3}

BAM VBL2 𝑀v(𝑖) ∈
{

[

𝑀h(𝑖), maxVBL(𝑖)
2

]

, if 𝑀t(𝑗) = BAM

ignored, otherwise 𝑖 = {1, 2, 3}

Fractional width of intermediate results 𝐹int ∈
[

0,max(𝐹co)
] unique

Adder type 𝐴t(𝑗) ∈ {Acc, MA, LSA} 𝑗 = {1, 2}

Adder split point 𝐴p(𝑗) ∈
[

0,
(

12 + 𝐹int
)]

𝑗 = {1, 2}

LSA input select 𝐴s(𝑗) ∈
{

{0, 1} , if 𝐴t(𝑗) = LSA

ignored, otherwise 𝑗 = {1, 2}

1 maxHBL is given by the size of the smaller input of multiplier 𝑖
2 maxVBL is given by the sum of the input sizes of multiplier 𝑖
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Design Space Complexity The overall number of potential parameter combinations defines
the complexity of the design space. Considering the ranges defined for the parameters listed in
Table 5.1, respecting all constraints and parameter dependencies, the full design space of a chan-
nel mixer employing precision scaling and the selected choice of approximate arithmetic units in
combination contains between 4.225 × 1012 and 4.808 × 1012 possible configurations. The num-
bers differ slightly depending on the signedness of the matrix coefficients related to the respective
mixer. Across all three channel mixers, this number scales further to 𝐷mat, full ≈ 9.766 × 1037
combinations in total. If only approximate arithmetic units are considered, the design space sig-
nificantly shrinks to 𝐷mat, arith ≈ 4.534 × 1028 possible configurations. Similarly, for the precision
scaling design space, 𝐷mat, prec ≈ 2.737 × 1013 configurations are possible.

5.2.2 Genetic Encoding and Operations

As described in Section 4.2.2, the proposed approach uses genes with real-value encoding. Each
channel mixer configuration is given by the parameter list

𝐾mix =
[

𝐹co,𝑀t,𝑀h,𝑀v, 𝐹in, 𝐴t, 𝐴p, 𝐴s
] , (5.3)

and the configuration of the complete application DFG is encoded by the concatenation of all 3
individual channel mixer sub-lists:

𝐾mat =
[

𝐾1
mix, 𝐾

2
mix, 𝐾

3
mix

] . (5.4)

Mutation and Crossover In the mutation operation, one of the three channel mixer sub-lists is
randomly chosen. Then, that channel is mutated by means of full or partial random re-generation,
each with equal probability. When the partial re-generation is selected, the fractional coefficient
widths 𝐹co and the multiplier configurations 𝑀t,h,v remain unchanged while the rest of the mixer
sub-list is newly generated.

A single-point crossover is used to combine the configurations between two parents. Due to the
parameter dependencies within the channel mixer sub-lists, the crossover point must lie between
the individual sub-lists. Consequentially, the crossover will mix the sub-lists from both parents to
create offspring.

5.2.3 Optimization Setup

To parameterize the setup of the power model for this target application, we used the simulation
model of the approximation-less reference application to estimate internal toggle rates as proposed
in Section 3.3.2 using the images from the ARRI image set [134]. The results range between 0.25
and 0.33 among the different images, averaging at 0.3. To extract the application-specific character-
istic per-unit power consumption, we synthesized the reference implementation plus four random
approximate configurations and averaged the results.

In the target application, the luminance and color information of the input image are separated.
The resulting output is typically not meant for display and direct consumption by humans but in-
stead serves as basis for more complex image processing tasks such as image interpretation. There-
fore, we choose the PSNR, which is a simple, widely used assessment of the overall accuracy of
image processing tasks and systems, for this first case study. In contrast, the other case studies,
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which target applications whose output is directly consumed by humans, will feature the Δ𝐸 mea-
sure, which relates to visual color perception. For the quality training data, since the PSNR relates
to the average quality performance across different inputs, we extracted a real-world data set con-
sisting of 643 randomly sampled inputs from the Color Wheel image in Rec709 encoding of the
ARRI image set (cf. Section 3.4.3).

The DSE is run with the two objectives minimize(power) and maximize(PSNR). As stop condi-
tion, we end the GA loop after 750 generations. The usable range in terms of application quality
of the 𝑅𝐺𝐵 to 𝑌 𝐶𝑏𝐶𝑟 conversion may vary lightly depending on the further use of the output. For
this case study, we set the minimum acceptable quality threshold to a PSNR value of 30dB, which
is a lower acceptable level in many image processing applications [18]. The boundaries of the ROI
used within the ROI-NSGA selection step of the GA loop to focus the search are consequentially
set to a minimum PSNR of 30dB in the quality dimension and to a maximum power of 26.21 mW,
which is the power consumption of the reference implementation, as estimated by the proposed
power model.

5.2.4 DSE Results

Because of the non-deterministic nature of the employed GA-based optimization procedure, each
run of the DSE produces a slightly different front of Pareto-optimal results. Note that the use of the
term Pareto-optimal in this context refers to Pareto-optimality among all solutions visited during
the same DSE instead of global Pareto-optimality within the entire design space. Unfortunately,
due to the excessive size of the design space, it is infeasible to exhaustively extract the ground truth
Pareto front with globally optimal solutions against which the results could be compared. Instead,
we will assess the solutions based on their practical utility to explore the quality-resource trade-off
in real-world implementations.

Figure 5.2 depicts the aggregated results across 10 randomly selected runs using the full design
space. The depicted set of solutions offers a multitude of implementation choices across a wide
range of different quality-resource trade-offs. Out of these 10 runs, one was randomly selected and
is highlighted in the graph.
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Figure 5.2: Resulting solutions aggregated from 10 independent DSE runs for the full design space of CS1.
The results from one randomly selected run are specifically highlighted.
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The plot shows that the selected front follows the same overall shape as the aggregated set of so-
lutions, but in many places, slightly better results are contained in the other fronts. Consequentially,
we conclude that by repeating the DSE a few times, the amount, density and quality of available
solutions can be improved. In the following, we will therefore always present and analyze the re-
sults aggregated across 10 randomly selected DSE runs for any of the case studies. Nevertheless,
for a more comprehensive check of consistency, we inspected the results from all 30 runs for each
experimental setup, observing no significant deviations between different runs with the same setup.

Furthermore, we compare the results of running the DSE with the full design space, i.e. enabling
the combination of precision scaling and approximate arithmetic units, with the respective sub-sets
contained in the approximate units design space and the precision scaling design space. To that
end, Figure 5.3 plots the results from 10 randomly selected runs for each of the three alternative
design spaces. Across all design spaces and individual DSE runs, the search was able to focus the
vast majority of the results into the ROI and generates well populated fronts from which solutions
can be chosen.
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Figure 5.3: DSE results for CS1 obtained for different design spaces, i.e. with all approximations enabled
(blue), using only precision scaling (yellow) and using only approximate arithmetic units (red)

Furthermore, it can be seen that the results from the different design spaces dominate different
portions of the objective space. The arithmetic units design space yields solutions with the high-
est quality, dominating the region above a PSNR of 90 dB without competition. However, only
moderate power savings (less than 7%) can be reached in this region compared to the reference
implementation. At quality levels below 90 dB, the solutions are dominated by the results from the
other two design spaces which unlock significantly larger energy savings.

The results from the full design space and precision scaling design space follow similar shapes
but outperform each other at the opposing ends of the quality spectrum. For quality levels above
a PSNR of approximately 70 dB, the results from using only precision scaling dominate the ones
obtained with the full design space. At PSNR values between 50 dB and 70 dB, both design spaces
yield similar quality-resource trade-offs, before the results from the precision scaling design space
fall off and are dominated by the results of the full design space at quality levels associated with a
PSNR below 50 dB.
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These results show that in this case study the exploitation of the quality-resource trade-off is quite
limited when only arithmetic operations are swapped out for approximate units. Using precision
scaling, in contrast, delivers a larger range of trade-off opportunities. This may be due to that fact
that precision scaling not only leads to a reduction in the size of operations, but also significantly
reduces the number of registers needed for pipelining internal signals as well as the overall routing
complexity within the FPGA. These effects are not considered in related works that are limited
to the replacement of approximate units and target only purely combinatorial circuits [124, 151,
152]. Nevertheless, only symbiotic combinations of precision scaling and approximate arithmetic
units as found within the full design space are able to unlock the largest resource savings while still
maintaining PSNR values above 30 dB.

Depending on the further use of the 𝑌 𝐶𝑏𝐶𝑟 data, the designer may have a more specific quality
level in mind. Across a wide range of PSNR values up to 70 dB, using the full design space is rec-
ommended to optimally explore the quality-resource trade-off space. However, when even higher
quality levels are desired, a restriction of the design space can lead to better results. However, those
solutions should ideally also be found using the full design space, which indicates a potential for
further improvements in the optimization methodology.

5.2.5 Model Validation

In the course of a single run of the DSE with the used setup, roughly 7.5 × 104 candidate solu-
tions are probed, which is by many orders of magnitude lower than any of the different design
space sizes reported in Section 5.2.1, but still large enough to prevent a fitness estimation using
traditional means, especially complete synthesis, fit and route with subsequent placement-aware
power analysis. To enable a fast fitness estimation, the proposed models are intentionally simple,
using a divide-and-conquer area and power model as well as bit-exact software simulation with a
relatively small quality training set. The model-based evaluation of a single solution from the full
design space, which includes the bit-exact simulation of approximated arithmetic operations, takes
about 0.16 s on the employed workstation computer. In contrast, completing the actual synthesis,
fit & route together with power analysis in the respective vendor tool1 alone takes over 4 min on the
same system. However, due to the abstractions and simplifications used in the proposed models,
their accuracy as well as their suitability for guiding the DSE needs to be validated. Additionally,
the compliance with the target operating frequency needs to be checked.

Therefore, we have selected 12 different solutions from the DSE results obtained with the full
design space, which represent a wide range of relevant quality-resource trade-off options, for fur-
ther analysis. The selected solutions are marked in Figure 5.5a. We synthesized the corresponding
configurations and obtained the area and power consumption of the respective designs after syn-
thesis, fitting and routing using the Intel Power Analyzer [137], averaged across 10 different seeds,
which will be referred to as post-synthesis results.

To validate the quality estimation, we used a set of test images to analyze how well the model
results translate to real-world usage of the application. This test set comprises all images of the
ARRI image set [134] except for the Color Wheel image, which was used to derive the training set.
However, in addition to the 11 remaining images, we added a Corner Case image to the validation
set which is shown in Figure 5.4. It includes content that is often hard to handle in color processing
tasks, particularly saturated colored light sources and bright reflections (both white and in a range

1In all experiments, the Intel Quartus Prime Pro Edition, Version 18.1.2 Build 277 was used [121]
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Figure 5.4: Corner Case image which includes colored lights as well as white and colored reflections

of saturated colors). This addition serves to test the robustness of the estimation. For this case
study, we use the validation set in Rec709 encoding which matches the input of the application.

Table 5.2 provides detailed information about the selected solutions. It shows their area and
power consumption as estimated by the proposed models and obtained post-synthesis, together
with the reported maximum operating frequency. According to the data, the selected solutions
reduce the post-synthesis power consumption compared to the reference design by 11% to 54%.
Additionally, the table reports the quality estimated with the training set as well as the average
PSNR obtained across all test images. In the following, we will analyze the resource, speed and
quality properties of the selected solutions and evaluate the accuracy and suitability of the models.

Area and Power Consumption The reported FPGA resource count, listed in Table 5.2,
shows that the area model yields highly accurate estimates across all selected solutions. While
the number of DSP units is estimated correctly in all cases, the maximum error in LUT count is
4.91% (for S4) with an average deviation of 2.20% across all solutions and the worst estimation of
register count (at S2) deviates by only 0.37% from the post-synthesis result, with a mean deviation
of 0.23% across all solutions. The comparison of modeled and post-synthesis power consumption
is additionally visualized in Figure 5.5b. It can be seen that the model follows the same overall
trend that is also observed in the post-synthesis results. The mean deviation of modeled values
from the post-synthesis results is 2.47% with the worst-case error observed for S12 at 5.21%.

While the estimations obtained with the proposed resource models differ slightly from the final
post-synthesis results, the errors are reasonably low. During the optimization, the most important
aspect is that the model follows the correct relation when comparing different solutions, which is
confirmed by the reported data. The resource models are therefore capable of guiding the search
and give a reliable estimation of the actual resource consumption.

Speed In the proposed framework, all solutions use the same internal pipelining structure as the
reference implementation that operates at a speed of up to 272.16 MHz, which is slightly higher
than the target frequency of 266.66 MHz. Table 5.2 shows that all of the selected solutions are
meeting the target speed requirements as well. Furthermore, it can be seen that with increasing
amounts of approximation, the attainable speed of the application also rises. While improving the
speed of the implementation is currently not considered as a target objective beyond the satisfac-
tion of a given timing constraint, the results indicate that significant performance improvements are
possible through the use of approximations in pipelined FPGA-based stream processing systems.
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Figure 5.5: CS1: Selected solutions for model validation from ROI (a), comparison with post-synthesis

power values (b) and quality validation with test images from the validation set (c)

Table 5.2: Area, power and quality data of the selected points for CS1
Sel. Area (FPGA Resources) Power Speed Quality

Point DSPs1 LUTs Registers [mW] [MHz] PSNR [dB]
Index Model Synth Model Synth Model Synth Synth Train Test2

S1 0 358 353 485 484 12.00 11.96 371.49 30.37 27.59
S2 0 449 428 532 534 13.75 14.27 344.23 35.28 36.67
S3 0 510 497 565 567 14.95 14.41 323.59 39.47 38.97
S4 0 522 498 584 585 15.40 15.01 327.84 44.81 43.46
S5 0 604 588 607 607 16.65 16.92 303.62 50.28 46.66
S6 2 567 556 652 653 19.03 19.09 295.36 55.60 54.54
S7 5 399 392 640 642 20.08 19.58 294.63 59.41 59.57
S8 5 411 425 672 674 20.75 20.26 289.74 64.16 63.40
S9 7 259 258 670 672 21.13 20.59 279.35 70.11 69.92
S10 7 286 277 689 690 21.74 20.90 272.13 75.30 74.96
S11 7 300 298 721 723 22.43 22.03 278.19 79.65 78.99
S12 9 224 223 744 745 24.03 22.78 272.96 83.00 82.23

Ref 9 276 275 840 842 26.21 25.80 272.16 – –
1 The estimation of consumed DSPs by the proposed model matches the post-synthesis results for all systems
2 Given as the average PSNR across all images of the validation set
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Quality Figure 5.5c shows a comparison between the quality estimation using the small, ran-
domly sampled real-world training set and the results obtained with the test images from the vali-
dation set. In terms of the validation data, the plot shows the average PSNR across all test images
together with error bars indicating the standard deviation between the individual images. The es-
timated and average PSNR values of all solutions are additionally listed in Table 5.2.

The reported data and the plot show that overall, the estimation of quality translates well to the
values seen for the validation images. It can be observed that for solutions with very high quality
(S8 and higher), the difference between the individual images of the validation set is noticeably
smaller than for the other solutions. In this region, the model also matches the validation data
most closely. For the solutions with lower quality, the differences between the validation images
increases, and the estimation accuracy slightly diminishes. However, the estimated values stay
within the standard deviation of the validation set. We observe the largest absolute deviation at
S5, where the model overestimates the average quality by 3.62 dB. Hence, the quality model is a
good guide for the DSE, but it is recommended to further validate the quality of suitable candidate
solutions before final implementation.

Overall, the prediction of resource consumption and application quality by the proposed models
delivers a good indication of the actual post-synthesis area and power consumption and of the qual-
ity that will be seen in real images. They are therefore well suited for driving the search and provide
a good initial fitness assessment for candidate solutions between which a designer may choose.

5.3 Case Study 2: Display Rendering

The second case study, further denoted as CS2, targets a display rendering application containing
multiple processing stages, in which image colors are adapted to specific monitor characteristics
in terms of dynamic range, color space and electro-optical transfer function (EOTF). A high-level
overview of the application is shown in Figure 5.6.

Figure 5.6: Case Study 2: Display rendering pipeline

It can be seen as an extension of the previous case study since the second stage, i.e. the color
space conversion, has the same overall structure. However, it serves a different purpose in this con-
text. The additional stages contain non-linear transfer functions which are hard to directly compute
in FPGAs. Therefore, such functions are commonly pre-computed and stored in look-up tables on
the FPGA device [118]. These stages are predisposed for the integration of table-based approxi-
mation techniques which makes it possible to combine three different categories of approximation
methods in the same design space, namely precision scaling, approximate arithmetic units and
table-based methods. In addition to the full design space that co-integrates all of these approxi-
mation types, we also run the DSE with each of the three design sub-spaces corresponding to the
restriction to any single type for comparison.
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5.3.1 Application Description

The display rendering pipeline takes image data in a scene-referred encoding which relates to the
captured real-world luminances and colors recorded by the camera. In professional motion picture
cameras, this typically entails a logarithmic encoding of luminance and a color representation in a
so-called wide gamut color space [134]. As mentioned above, three sequential processing stages
are then used to adapt the input image to achieve a natural and pleasing rendition on a monitor
with specific characteristics. The following sections describe the purpose and functionality of the
individual stages in detail and provide the functional parameterization used for our experiments.

5.3.1.1 Tone Mapping

In the first processing stage, a tone mapping operator transforms the input luminance to achieve
a natural reproduction of the scene on a display with a different dynamic range. A large variety
of different tone mapping techniques can be found in the literature [156]. This case study uses a
global sigmoidal function based on a model of photoreceptor behavior [157]. Using this model,
the tone mapped values are calculated as

𝑋tm =
enc−1(𝑋𝑖𝑛)

enc−1(𝑋𝑖𝑛) + (ℎ𝐼𝑎)𝑘
𝑢 + 𝑣, (5.5)

where 𝑋 ∈ {𝑅,𝐺,𝐵} is the input/output luminance in any color channel. Since the operator ex-
pects linear luminance values, the input values have to be linearized if any non-linear encoding is
present in the input data. For this example, we assume a 12b logarithmic encoding which repre-
sents the luminance in terms of relative stops between -8 and 8, i.e. 𝑋log = 𝑋in

4095 ⋅16−8. With this,
the logarithmic encoding is reverted using enc−1(𝑋in) = 2𝑋log . Furthermore, the variables ℎ, 𝑘,
and 𝐼𝑎 are model parameters which control the overall luminance and contrast of the result. We
set them to ℎ = 9, 𝑘 = 0.6, and 𝐼𝑎 = 0.4 in our experiments. Lastly, the values 𝑢 and 𝑣 are used to
control the numerical range of the output by scaling and shifting the result. In order to map values
to the full 12 bit output range, the values are set as 𝑢 = 4137 and 𝑣 = −7.4797. The resulting
parameterized transfer function is plotted in Figure 5.7a.
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Figure 5.7: Plots of the transfer functions used in the display rendering pipeline
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5.3.1.2 Color Space Conversion

In the next stage, the colors are converted into the target color space of the monitor using a 3×3
conversion matrix. The values of the matrix depend on the primaries and the white point of the
source and target color spaces [158]. This case study employs the values defined for the conversion
from Alexa Wide Gamut (AWG) to sRGB [134]2:
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5.3.1.3 EOTF Compensation

In the monitor, digital luminance signals are converted to analog optical light emission. This con-
version typically follows non-linear behavior and is characterized by the monitor’s electro-optical
transfer function (EOTF). To control the light emission across different monitor types, the EOTF
needs to be equalized by applying its inverse function. Therefore, the EOTF compensation is the
final stage in the display rendering pipeline. Various standards and recommendations define cor-
responding transfer functions for different devices. In this work, we use the function defined in the
sRGB standard [159]:

𝑋𝑜𝑢𝑡 =

{

12.92𝑋𝑖𝑛 , for 𝑋𝑖𝑛 < 0.0031308,
1.055𝑋1∕2.4

𝑖𝑛 − 0.055 , for 𝑋𝑖𝑛 ≥ 0.0031308, (5.7)

where 𝑋 ∈ {𝑅,𝐺,𝐵} represents any color channel. The resulting transfer function is plotted in
Figure 5.7b.

5.3.1.4 High-Level Application Structure

The high-level structure of the display rendering application is depicted in Figure 5.8. It shows the
channel-wise application of the transfer functions in the tone mapping and EOTF compensation
stages together with channel mixers in the color space conversion stage. In the transition between
stages, the signals will be fixed to 12 bits to break potential parameter dependency paths across
stage borders. The fixation of these interfaces therefore ensures that DFG nodes and their parame-
ters can be grouped meaningfully which simplifies the definition of genetic operations and enables
reusing the operations defined for CS1 in the color space conversion stage.

5.3.2 Approximations and Design Space

Even though it serves a different purpose in the display rendering application, the structure and
general functionality of the color space conversion stage is the same as in CS1. Hence, this stage
employs the same approximations, related parameters and ranges as detailed in Section 5.2.1.

2Please note that these values are not the ones reported in the text of the cited paper but rather the values used in the
code that was published together with that paper. After reaching out to the authors of the paper, it was confirmed
that the values reported here are the correct ones.
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Figure 5.8: High-Level Structure of the display rendering application

However, this case study augments the design space of CS1 by adding table-based approxima-
tions to reduce the memory consumption in the other two stages. For this, sparse tables with the
hierarchical segmentation scheme proposed by Lee et al. [87] as described in Section 2.2.4 are
used. First, the input range is split into 𝑁sec major sections, which is limited to less than or equal
to 16 in our experiments. In the second level, each of these sections is divided further into 𝑁seg(𝑖)
sub-segments, where 𝑖 indicates the section index. The upper limit of this parameter is naturally
given by the input range covered by a section, i.e. the overall input range divided by the number of
sections. Furthermore, we add the constraint that the total sub-segment count across all sections
must be at least 16 to remove configurations of impractically low quality. Both 𝑁sec and 𝑁seg(𝑖)
are limited to powers of two which enables address mapping with little combinatorial overhead. To
reduce the reconstruction error between the sparse grid points, linear interpolation can optionally
be enabled, as controlled by the parameter 𝐼 . A summary of these parameters and their ranges is
given in Table 5.3. Since the same transfer function is applied on all three channels in the respective
processing stages, all three parallel instances share the same parameterization.

Table 5.3: Approximation parameters for the sparse tables
Name Notation and Range Instances

Interpolation mode 𝐼 ∈ {NONE,LINEAR} unique

No. of sections 𝑁sec ∈ {1, 2, 4, 8, 16} unique

No. of sub-segments 𝑁seg(𝑖) ∈
{

1, 2, 4, .., 212
𝑁𝑠𝑒𝑐

}

, so that ∑𝑁sec
𝑖=1 𝑁seg ≥ 16 𝑖 = [1, 𝑁𝑠𝑒𝑐 ]

Design Space Complexity The number of parameters used to configure a sparse table de-
pends on the number of sections 𝑁sec. Therefore, the overall design space complexity of the re-
lated design space is calculated by summing up the possible combinations across the vector of
sub-segment counts 𝑁seg and the interpolation mode 𝐼 . Under consideration of the parameter
ranges given in Table 5.3, the design space of the tone mapping respectively the EOTF compensa-
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tion step, which both employ a sparse table approximation, contains 𝐷sparse ≈ 3.706×1015 possible
configurations. The parameters and ranges for the channel mixers of the color space conversion
matrix are the same as defined in Table 5.1 for CS1. Overall, considering all possible parameter
combinations across the entire application and its three processing stages, the complexities of the
different design spaces amount to the following values:

• Full design space: 𝐷disp, full ≈ 1.526 × 1069

• Sparse tables design space: 𝐷disp, table ≈ 1.373 × 1031

• Arithmetic units design space: 𝐷disp, arith ≈ 5.439 × 1028

• Precision scaling design space: 𝐷disp, prec ≈ 2.737 × 1013

5.3.3 Genetic Encoding and Operations

The genetic encoding of the configuration for the color space conversion matrix follows the same
scheme as defined in Section 5.2.2 for CS1, yielding the list 𝐾mat. Similarly, the configuration of
a sparse table is represented by a list of the parameters described in Table 5.3 in order of their
parameterization:

𝐾sparse =
[

𝐼,𝑁sec, 𝑁seg
] . (5.8)

Since the bitwidth in the interface between the major pipeline steps of CS2 is fixed to 12 bits,
any of the steps can safely be configured independently. Therefore, the overall configuration of the
entire display rendering application can be represented by concatenating the individual encodings
for the tone mapping step, the color space conversion step and the EOTF compensation step into a
larger list:

𝐾disp =
[

𝐾TM
sparse, 𝐾mat, 𝐾EOTF

sparse
]

. (5.9)
When evolving offspring from parents, mutation and crossover are generally executed indepen-

dently for each of the three sub-lists that represent the different processing stages. In the mutation
operation, one pipeline step is chosen at random, and the mutation operation related to that step
is performed, modifying only the respective sub-list of the genetic encoding. Contrarily, in the
crossover operation, all steps and the respective sub-lists are affected, but each step is modified
separately, using the crossover operation related to it. This approach allows for changes and exten-
sions in the target application, e.g. removing, replacing or adding a major processing stage to the
pipeline, without the need to introduce changes to the GA implementation.

For the matrix multiplication in the color space conversion stage, the same genetic operations
as defined in Section 5.2.2 are used. The operations performed for the sparse tables used for the
transfer functions in the tone mapping and the EOTF compensation stages are defined as follows:

Mutation Similar to the mutation of the channel mixer encoding, the algorithm chooses ran-
domly, with equal probability, between a full and a partial random re-configuration. In the partial
reconfiguration, the interpolation mode 𝐼 and the number of sections 𝑁sec is carried over and the
vector 𝑁seg containing the number of sub-segments per section is randomly re-generated.



96 Chapter 5 Case Studies

Crossover The 𝑁seg vectors may have different lengths between the two parents chosen for the
crossover operations, depending on their respective values for 𝑁sec. Hence, a direct single-point
crossover cannot be safely used. To circumvent this issue, the crossover operation needs to ensure
the vectors are of equal length. Therefore, we implemented mechanisms to up-sample or down-
sample one of the parents so that both have the same encoding length. Consider two parents with
𝑁sec,1 < 𝑁sec,2 and the ratio 𝑟 = 𝑁sec, 2∕𝑁sec,1 that needs to be equalized. In up-sampling, the
number of sections 𝑁sec,1 is scaled up by 𝑟 so that it matches the second parent, and each entry
𝑁seg,1(𝑖) is replaced by 𝑟 scaled copies of 𝑁seg, 1(𝑖)∕𝑟. The overall number of segments and the
segment distribution stay the same when up-scaling, except for the case that the resulting entries
would be below 1. In that case, they are directly set to 1, which slightly increases the overall num-
ber of segments. On the contrary, when down-sampling the other parent, 𝑁sec,2 is scaled down by
1∕𝑟 to match the first parent, and each group of 𝑟 consecutive entries of 𝑁seg,2 is replaced by its
sum, rounded to the nearest power of two to respect the constraints of the sparse table architecture.
Note that the rounding step can lead to a change in the overall number of segments. As an example,
the down- respectively up-sampling of a parent with 𝑁seg = [256, 512] works as follows:

[1024]
down-sample
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← [256, 512]

up-sample
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [128, 128, 256, 256]

The crossover operation randomly chooses between up-sampling or down-sampling with equal
probability so that the evolution is not biased towards either smaller or larger values of 𝑁sec. Once
the encoding of both parents has been adapted to the same length, a single-point crossover can be
performed, splitting the parents within the 𝑁seg vector.

5.3.4 Optimization Setup

The internal toggle rates range between 0.22 and 0.33 between different images from the ARRI
image set [134]. Their average is roughly 0.28, which is what we set as toggle rate for the exper-
iments. For the application-specific characteristic per-unit power consumption, we extracted data
from the reference implementation as well as 3 approximate configurations that we deliberately
selected out of 10 random configurations so that different amounts of resource consumption are
covered, and averaged the results.

This application renders images for display, hence its output is directed for human consump-
tion. In order to reliably judge the application quality, we therefore use the Δ𝐸 color accuracy
measure [139]. As main target, we want to bound the worst case color deficiency, i.e. to mini-
mize the maximumΔ𝐸 across the color range. However, in preliminary experiments we found
that setting the maximum error as the only quality target in GA-based optimization leads to a less
efficient search. This is likely because in that case the optimization neglects small parameterization
changes that lead to improvements in the average error but are not reflected in the worst-case error.
However, in the long run, a sequence of such changes may eventually culminate in a reduction of
the worst-case error as well. Therefore, we added the meanΔ𝐸 as a secondary quality objective,
which improved the optimization performance. As training set, we chose a synthetically generated
data set by regularly sampling the input color space and adding noise as proposed in Section 3.4.3
since the main objective is to bound the worst-case color difference. For the experiments, we used
128 sampling steps in each direction which results in 1283 input points in the training set.

With both selected quality targets, the DSE is set up with three objectives overall, namely to
minimize(power), minimize(maxΔ𝐸) and minimize(meanΔ𝐸). Each experiment is run until 1000
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generations have evolved. Experimental studies by Stokes et al. applied differently scaled distur-
bances to a set of test images, which lead to different color differences compared to the original
image [160]. Their experiments resulted in median visual perceptibility thresholds between 1.43
and 2.63, depending on the type of disturbance but without significant impact of image content,
resulting in an average threshold of Δ𝐸 = 2.15. This gives a rough indication about the range
in which color differences may be acceptable. For the experiments, we set the ROI boundaries
to maxΔ𝐸 = 5, meanΔ𝐸 = 2.15 and power = 57.82mW (which is the power estimation of
the reference implementation), to focus the DSE search towards solutions relevant for practical
implementation.

5.3.5 DSE Results

Because we defined three target objectives for the optimization in this case study, the DSE yields
a three-dimensional trade-off front. However, the reason to add the minimization of the meanΔ𝐸
value as additional objective was mainly to improve the optimization performance. Hence, the
most relevant trade-off is given between the main targets, the maximumΔ𝐸 and the power con-
sumption. Figure 5.9 therefore depicts a projection of the results onto these two objectives. Similar
to CS1, we randomly selected 10 runs from each of the four design spaces and plotted the aggre-
gated solutions in the figure. Solutions with a maximumΔ𝐸 above 15 have been excluded from
the plot to improve visibility.
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Figure 5.9: DSE results for CS2 obtained for different design spaces, i.e. with all approximations enabled
(blue), using only approximate arithmetic units (red), using only precision scaling (yellow) and
using only sparse tables (black)

Comparing the different design spaces, the plot shows that the full design space offers the widest
range of relevant quality-resource trade-offs to choose from, with a densely populated front cover-
ing estimated power savings up to almost 50% within the ROI. In contrast, the reduced sub-spaces
are falling off beyond the quality boundary at higher power levels. The smallest benefits can be
achieved with the arithmetic units design space, which enables reasonable options down to an es-
timated power consumption of approximately 54 mW, which is only a small reduction of less than
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7% from the reference power of 57.82 mW. Next, the precision scaling design space roughly dou-
bles the savings, widening the relevant trade-off range down to around 50 to 52 mW of estimated
power. The sparse tables design space is the most proficient between the reduced ones, enabling
power savings of up to 35% while keeping the maximumΔ𝐸 below 5. Furthermore, towards the
high-power/high-quality range at power values above 50 mW, it outperforms the results from all
competing design spaces by finding solutions with the lowest errors overall. However, moving in
direction of more resource savings, the resulting fronts become less populated.

Similar to the results from CS1, this analysis shows that the simultaneous combination of dif-
ferent approximations offers the largest range of potential quality-resource trade-offs, but in cases
where the highest possible quality is needed, marginally better options are found in the sparse ta-
ble design space. Furthermore, the different fall-off points of the reduced design spaces indicate
that the power consumption of this application is dominated by the embedded memory in terms of
BRAMs used to implement the transfer functions, since across the reduced design sub-spaces, the
most benefits are achieved when using the sparse table approximations.

5.3.6 Model Validation

To validate the accuracy of the model-based resource and quality prediction for CS2, 8 solutions
were selected from the results obtained with the full design space, covering a wide range of quality-
resource trade-off options across the ROI. The selected solutions are highlighted in Figure 5.10a.
Numerical validation data for each of these solutions as well as the reference implementation is
reported in Table 5.4. The post-synthesis power consumption is reduced by the selected solutions
between 16% and 45% in comparison to the reference implementation. In terms of the quality
validation, the table lists the maximumΔ𝐸 as estimated using the synthetically sampled training
data set together with the maximumΔ𝐸 observed across all images of the validation set, for which
the same images were used as for CS1, including the Corner Case image (see Figure 5.4). How-
ever, since this application expects input data in scene-referred encoding, the logC versions of the
images were used as validation set.

Area and Power Consumption Since the number of DSPs and the amount of memory imple-
mented using BRAMs can directly be derived without error from the configuration, the consump-
tion of these units are always predicted correctly. In terms of LUTs and registers, the estimation
errors are very low, with maximum deviations of 4.84% for LUTs (at S4) respectively 0.37% for
registers (at S8) and an average deviation of 2.78% for LUTs and 0.24% for registers. Figure 5.10b
visualizes the comparison of modeled and post-synthesis power values, showing that the model
captures the overall trend closely. However, it can be noticed that it tends to overestimate the
power values, especially within the high-power region. Nevertheless, the worst-case deviation of
6.15% (at S7) and the average deviation of 3.25% are quite low. Overall, the proposed models
deliver a reliable estimation of the area and power consumption.

Speed With regards to the achievable speed, a similar trend can be observed as for CS1. All of
the solutions meet or exceed the specified target operating frequency of 266.66 MHz, with speed
trending towards higher values with increasing amounts of approximation. However, in CS2 this
trend is less pronounced, and the achievable speed improvements are overall more limited com-
pared to the results of CS1.
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Figure 5.10: CS2: Selected solutions for model validation from ROI (a), comparison with post-synthesis

power values (b) and quality validation with test images from the validation set (c)

Table 5.4: Area, power and quality data of the selected points for CS2
Sel. FPGA Resources Power Speed Quality

Point DSPs1 BRAMs1 LUTs Registers [mW] [MHz] maxΔ𝐸
Index [Units/Bits] Model Synth Model Synth Model Synth Synth Train Test2

S1 2 6 / 73 728 623 615 826 828 30.51 30.28 292.49 4.01 4.17
S2 2 6 / 73 728 630 622 847 848 30.89 30.60 294.38 3.01 2.93
S3 2 6 / 73 728 734 714 866 868 32.24 31.98 292.62 1.99 1.93
S4 6 6 / 69 120 413 434 889 887 33.40 32.67 272.97 1.51 1.74
S5 5 6 / 92 160 641 649 1036 1038 36.85 35.45 274.33 1.24 1.31
S6 5 12 / 184 320 471 490 884 883 42.90 41.12 272.74 0.93 0.96
S7 6 12 / 202 752 480 494 1029 1026 46.13 43.30 273.25 0.64 0.67
S8 7 12 / 199 680 560 541 1069 1073 48.58 45.88 272.71 0.56 0.57

Ref 9 18 / 294 912 292 302 1064 1068 57.82 55.01 269.83 – –
1 The estimation of consumed DSPs and BRAMs by the proposed model matches the post-synthesis results for all sys-
tems
2 Given as the overall maximumΔ𝐸 observed across all images in the validation set
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Quality The comparison of modeled worst-case color difference and the actual maximumΔ𝐸
observed across the test set is given in Table 5.4 and additionally visualized in Figure 5.10c. It can
be seen that while the actual worst-case disturbance found in the real images often slightly exceeds
the modeled value, it stays within a reasonable margin of error. The largest deviation is seen at
S4, where the estimated maximumΔ𝐸 is exceeded by 0.23 in the validation set. In practical sit-
uations, the designer may pre-select relevant solutions with modeled worst-case color differences
slightly below the actual target and evaluate their worst-case error with a bigger training set, i.e.
even more synthetically sampled input colors, a number of test images such as the validation set,
or a combination of both, to increase the safety of the error bound.

5.4 Case Study 3: 3D Lookup Table Color Processing

The third case study, denoted as CS3, covers another very common application often used in digi-
tal photography or motion picture production. It deals with the transformation of image colors by
means of a 3D lookup table (3D-LUT). In principle, it uses the same concept as the use of pre-
calculated data for one-dimensional transfer functions, but extends it to three dimensions. Hence,
a 3D-LUT tabulates full target output colors in terms of their 𝑅𝐺𝐵 components and in turn is
addressed by the three-dimensional input color values. Compared to the separate use of a one-
dimensional transfer function on each color component, a 3D-LUT allows more degrees of freedom
in the calculation, enabling widely variable transformations of different input colors and offering
a more nuanced control over brightness, contrast, hue and saturation. 3D-LUTs are commonly
used to render input images in scene-referred encoding into a color-graded final image in display-
referred encoding, incorporating a desired look into the image. Figure 5.11 depicts a high-level
overview of the target application containing a 3D-LUT processing stage.

Figure 5.11: Case Study 3: Processing pipeline for 3D-LUT rendering application

As the size of the input space scales exponentially with each input dimension, it is impractical to
store a full lookup table for all possible input colors. Instead, sparse tables with uniform segmenta-
tion are typically used and multi-dimensional interpolation is employed to reconstruct the outputs
for intermediate input colors [161]. Hence, classical implementations of 3D-LUTs already inher-
ently incorporate approximation by the choice of lattice density, typically using 16 or 32 segments
per dimension in hardware systems and often 64 or more in software implementations. In this case
study, we incorporate the use of non-uniform hierarchical sparse table segmentation (as used for
the one-dimensional transfer functions in the previous case study) together with targeted precision
scaling and approximate multiplication in the interpolation step to achieve better quality-resource
trade-offs compared to the traditional baseline implementation. For the color transformation itself,
we employ the ARRI Rec709 default look, using a high-precision 64-segment 3D-LUT exported
from the ARRI Color Tool [162] as baseline reference.
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5.4.1 Application Description

The implementation of a 3D-LUT contains three major parts: packing, extraction and interpola-
tion. A detailed description of color transformation using 3D-LUTs is given by Kang [161]. An
overview of the employed implementation and its structure as used in our case study is given in
the following sections.

5.4.1.1 Packing

In packing, the input space is sampled and a sparse lattice of points to be stored in the table is
formed. As mentioned, typical implementations use uniform segmentation, but non-uniform seg-
mentation can enable an optimized output reconstruction [161]. The principle of applying a non-
uniform segmentation to the 3D-LUT lattice is illustrated in Figure 5.12b in comparison to tra-
ditional uniform segmentation as shown in Figure 5.12a. Once the packing structure is chosen,
the desired color transformation is sampled at the lattice points and the outputs are tabulated into
memory. Each memory word holds the complete output color, i.e. the 36 bit wide 𝑅𝐺𝐵 triplet
related to the respective lattice point.

(a) Classical uniform 3D-LUT segmentation (b) Exemplary non-uniform 3D-LUT segmentation
Figure 5.12: Comparison of uniform and non-uniform 3D-LUT segmentations for packing

5.4.1.2 Extraction

During runtime, the 3D-LUT is accessed by the input color triplet, and the respective sub-cube that
contains the input color needs to be found. First, the lattice point number corresponding to the lower
sub-cube boundary is identified for each dimension individually. With uniform segmentation, the
lattice number simply corresponds to the log2(𝑛) MSBs of the input value in each dimension when
using 𝑛 segments, and the remaining bits form the offset within the cube for interpolation. In the
case of a non-uniform segmentation, more calculation is needed. As our implementation employs
the same hardware-efficient hierarchical segmentation scheme as used in the previous case study,
three instances of the premapper described in Section 2.2.4 are used to calculate the individual
lattice numbers and interpolation offsets. The offsets are automatically scaled correctly relative to
the respective sub-cube side lengths.
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For the employed trilinear interpolation (see Section 5.4.1.3), all 8 vertices of the extracted sub-
cube must be retrieved from memory. Generally, the entire 3D-LUT is stored in column-major
order, i.e. with the first input dimension mapping to contiguous memory locations. To allow an ef-
ficient use of dual-port BRAM (which is commonly available on current FPGA devices), the table
is split into 4 distinct tables adhering to an even/odd split in the second and third input dimension.
This means that the first table stores all lattice points with even indices in both the second and
third dimension, the second table contains all values with odd indices in the second dimension but
even indices in the third dimension, and so forth. Using this table architecture ensures that all 8
vertices can always be read simultaneously from dual-port memory without requiring redundant
table entries. To calculate the memory address, a common base address is calculated first as

𝑎base = 𝑎0 + (𝑎1 >> 1) ⋅ 𝑆1 + (𝑎2 >> 1) ⋅ 𝑆2, (5.10)

where 𝑎0, 𝑎1 and 𝑎2 are the lower lattice indices obtained from the premapper address outputs in the
first, second and third input dimension (typically referring to red, green and blue color components,
respectively), and 𝑆1 as well as 𝑆2 are the array strides, i.e. the number of table entries between
a unit increment in the second respectively third dimension. The LSBs of 𝑎1 and 𝑎2, which are
discarded in the calculation of the base address, contain information about the even/odd position
of the lower sub-cube vertices and are concatenated into a select signal. To calculate the final ad-
dresses for each of the 8 sub-cube vertice points, different stride-based address offsets are added to
the base address as chosen by the select signal. The 8 resulting addresses are distributed across the
dual input ports of the 4 tables to access the table content. Finally, the select signal is used to con-
sistently sort the individual memory outputs to signals which represent the 8 vertices in a defined
order, yielding the vertice data points 𝑝000 through 𝑝111. The offsets 𝑜0, 𝑜1 and 𝑜2, which represent
the relative position of the input within the sub-cube in each dimension, are directly generated by
the respective premapper block and forwarded to the interpolation step. Figure 5.13 illustrates the
overall structure of the 3D-LUT extraction procedure.

Figure 5.13: Implementation structure of the 3D-LUT extraction procedure
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5.4.1.3 Interpolation

Various geometrical interpolation methods have been proposed for output reconstruction at inter-
mediate input values, including trilinear, prism, pyramid and tetrahedral interpolation [161]. For
simplicity, our implementation uses a straightforward trilinear interpolation scheme which is in-
stantiated once per output channel. The trilinear interpolation executes 7 linear interpolations in
total, interpolating in consecutive stages along each of the three dimensions. First, 4 interpolations
are calculated along the respective sub-cube edges of the first dimension using the offset 𝑜0 which
represents the relative position of the input on those edges. This first step takes all 8 vertices and
yields 4 intermediate values 𝑝00, 𝑝01, 𝑝10, 𝑝11. The second stage takes these intermediate values
and interpolates along the second dimension, using offset 𝑜1, resulting in two further intermedi-
ate values 𝑝0 and 𝑝1. Finally, the last stage interpolates between those two values along the third
dimension according to offset 𝑜2 to provide the final output 𝑝out. Figure 5.14 depicts the overall
structure of the trilinear interpolation.

Figure 5.14: Implementation structure of the trilinear interpolation

Each of the linear interpolation blocks calculates its output as
𝑞out = 𝑞0 + (𝑞1 − 𝑞0) ⋅ 𝑜 (5.11)

where the lower and upper vertice values of the given edge are represented by 𝑞0 and 𝑞1, respec-
tively, and the relative position of the input along the edge given by the offset 𝑜. The corresponding
DFG of the linear interpolation block is shown in Figure 5.15.

Figure 5.15: Annotated DFG of a single linear interpolation block
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5.4.1.4 High-Level Application Structure

Each entry of the 3D-LUT tables stores the entire 𝑅𝐺𝐵 triplet of the respective destination color
in a 3 × 12 bit word. However, each of the color components needs to be interpolated separately.
Hence, the 8 vertice points are split into the respective color components which are then fed into
individual trilinear interpolation blocks. Nevertheless, each interpolation block uses the same inter-
polation offsets 𝑜0, 𝑜1, 𝑜2 for their calculations. Figure 5.16 shows the resulting high-level structure.

Figure 5.16: High-level structure of the 3D-LUT application

5.4.2 Approximations and Design Space

As mentioned above, standard implementations of 3D-LUT hardware applications already employ
a basic form of approximation by storing a three-dimensional sparse table with uniform segmen-
tation, typically using 16 or 32 segments across each dimension. In this case study, we extend
this design space by using the hierarchical non-uniform segmentation scheme described in Section
2.2.4 and apply it to each of the three input dimensions of the 3D-LUT. Since the overall table size
scales exponentially with each dimension, the parameter ranges are restricted more tightly than in
the last case study. In the upper segmentation level, we allow a choice between 4 or 8 sections per
channel for 𝑁sec. To control the overall number of segments, we restrict their total sum in each
dimension into the range between 8 and 48, which allows a redistribution among the input chan-
nels at similar overall sizes as when using 16 or 32 in all dimensions. From initial experiments,
we have observed that the ratio between the largest and smallest number of segments within each
dimension tends to be limited in most of the results. Therefore, we restricted the maximum spread
factor between the entries within any 𝑁seg vector to 4, which had a positive influence on the opti-
mization performance. The resulting segmentation parameters for a single dimension and all range
restrictions are listed in Table 5.5.

Additionally, we add arithmetic approximation and precision scaling in deliberate places within
the interpolation procedure. In terms of arithmetics, we enable a choice between the accurate mul-
tiplier implementation and the BAM which has been used also in the previous case studies. To
simplify the design space, we choose a single multiplier configuration for each interpolation stage,
so that the first stage has four equivalent multiplier instances (one per linear interpolation block),
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Table 5.5: Approximation parameters for non-uniform hierarchical segmentation in CS3
Name Notation and Range Instances

No. of sections 𝑁sec ∈ {4, 8} unique

No. of sub-segments 𝑁seg(𝑖) ∈ {1, 2, 4, 8} , so that 8 ≤
∑𝑁sec

𝑖=1 𝑁seg ≤ 48 and max
(

𝑁seg
)

min
(

𝑁seg
) <= 4 𝑖 = [1, 𝑁𝑠𝑒𝑐]

the second stage has two identical multipliers and the last stage has one. Also, we did not choose
approximate adders as the additions create a negligible amount of resource consumption in this
application. However, we additionally scale the width of the intermediate results after each inter-
polation stage, using a common width parameter 𝐹int(1) for signals 𝑝00, 𝑝01, 𝑝10, 𝑝11 and another
width parameter 𝐹int(2) for the signals 𝑝0 and 𝑝1 resulting from the second interpolation stage.
Compared to the precision scaling applied within the channel mixers in the previous steps, this
parameter represents not just a fractional width but the entire bitwidth of the intermediate interpo-
lation results. We let these bitwidths range between 10 and 14, with 14 being used in the baseline
implementation. Figure 5.15 indicates the related annotations in the DFG of the linear interpola-
tion. The respective parameters for a single trilinear interpolation block are summarized in Table
5.6. Each of the three trilinear interpolation blocks (cf. Figure 5.16) is configured separately.

Table 5.6: Approximation parameters for an individual trilinear interpolation block in CS3
Name Notation and Range Instances

Multiplier type 𝑀t(𝑖) ∈ {Acc, BAM} 𝑖 = {1, 2, 3}

BAM HBL1 𝑀h(𝑖) ∈
{

[

0, maxHBL(𝑖)
2

]

, if 𝑀t(𝑗) = BAM

ignored, otherwise 𝑖 = {1, 2, 3}

BAM VBL2 𝑀v(𝑖) ∈
{

[

𝑀h(𝑖), maxVBL(𝑖)
2

]

, if 𝑀t(𝑗) = BAM

ignored, otherwise 𝑖 = {1, 2, 3}

Fractional width of intermediate results 𝐹in(𝑗) ∈ [10, 14] 𝑗 = {1, 2}

1 maxHBL is given by the size of the smaller input of multiplier 𝑖
2 maxVBL is given by the sum of the input sizes of multiplier 𝑖

Design Spaces In this case study, we compare two different design spaces. An analysis of the
resource consumption in the baseline system shows that the application is largely dominated by the
memory used for the 3D table. Hence, we investigate the potential with a non-uniform table design
space that is limited to use only the non-uniform segmentation method and compare it to results
obtained with the full design space, including approximate multipliers and precision scaling.

Design Space Complexity When restricting the design space to include only the lattice seg-
mentation along each of the three input dimensions, it contains 𝐷3D, table ≈ 2.153 × 1012 possible
configurations. The extension to the full design space adds a range of interpolation configurations
for each parameterization of the table, bringing the complexity up further to a total number of
𝐷3D, full ≈ 5.699 × 1018 configurations.
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5.4.3 Genetic Encoding and Operations

The genetic encoding of the sparse table parameters is similar to the one used in the previous case
study, but without the interpolation parameter because interpolation is always used in this case:

𝐾sparse =
[

𝑁sec, 𝑁seg
] . (5.12)

Three instances of this list are used for the extension to three dimensions:

𝐾3D, table =
[

𝐾0
sparse, 𝐾

1
sparse, 𝐾

2
sparse

]

, (5.13)

which fully describes the configuration in the restricted non-uniform table design space.
For the full design space, we additionally encode the parameterization of any trilinear interpo-

lation block as

𝐾trilinear =
[

𝑀t,h,v(1), 𝐹in(1), 𝑀t,h,v(2), 𝐹in(2), 𝑀t,h,v(3)
] , (5.14)

which matches the correct parameterization order of configuration. Three instances of the trilinear
configuration are concatenated to cover the reconstruction of all color components:

𝐾3D, interp =
[

𝐾1
trilinear, 𝐾

2
trilinear, 𝐾

3
trilinear

] . (5.15)

The configuration of an entire candidate solution in the full design space is then represented by

𝐾3D, full =
[

𝐾3D, table, 𝐾3D, interp
] . (5.16)

Mutation and Crossover Similar to the approach used for the separate channel mixer, the
three sub-lists in 𝐾3D, table, which represent the table segmentation in each respective dimension,
are treated independently. The mutation operation chooses one of them randomly and performs
either a full or a partial random re-generation, with equal probability. In the crossover operation,
all sub-lists are affected. Choosing with equal probability, it will either perform a single point
crossover that splits between the sub-lists of 𝐾3D, table or it will perform individual crossover oper-
ations within all of the sub-lists separately and combine the results to form two offspring config-
urations. The operations performed inside each individual sub-list during mutation and crossover
are the same as described for the sparse table configuration in Section 5.3.3, but without the inter-
polation flag, which is not present in this case.

If the interpolation is included in the design space, the three sub-lists in 𝐾3D, interp are handled
similarly. The mutation will randomly choose one sub-list and perform full or partial re-generation
of the parameters, where the partial re-generation keeps both the first multiplier setup 𝑀t,h,v(1)
and the width of the first set of intermediate results 𝐹in(1) and newly generates the remaining sub-
list, namely 𝑀t,h,v(2), 𝐹in(2) and 𝑀t,h,v(3). The crossover operation on the other hand performs a
single-point crossover to mix the sub-lists from two parents.

Lastly, in the full design space, a mutation on 𝐾3D, full will randomly choose to mutate either
𝐾3D, table or 𝐾3D, interp using the methods described above, while the crossover always affects both
of these high-level sub-lists.
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5.4.4 Optimization Setup

The extraction of internal toggle rates was performed with the two baseline configurations using
16 respectively 32 segments per dimension. It resulted in values from 0.14 to 0.27 among the two
baseline setups and between the images from the ARRI set [134], with an average of 0.22. The
application-specific characteristic per-unit power consumption was extracted using the two base-
line setups and four additional configurations selected from 10 random ones to cover a wide range
in their resource consumption.

As with the previous case study, since the application output images are intended for consump-
tion by humans, we employ the Δ𝐸 color accuracy measure [139]. However, in this case, we treat
the minimization of the maximumΔ𝐸 and the meanΔ𝐸 as equivalent quality targets. Therefore,
we use a combined quality training set that contains a synthetically generated subset using 128
sampling steps in each dimension and a real-world subset containing 643 randomly sampled inputs
from the Color Wheel image in logC encoding to match the scene-referred input space of the appli-
cation (cf. Section 3.4.3). While the worst-case quality degradation in terms of the maximumΔ𝐸
is estimated across both subsets, only the results corresponding to the real-world subset are used to
estimate the meanΔ𝐸. In contrast to the previous case studies, there is no clearly defined reference
hardware implementation. Instead, we calculate the golden output with a floating-point software
implementation that uses the full 3D-LUT reference data with 64 segments in each dimension and
round the results to obtain colors with 12 bits per component.

The DSE targets the objectives minimize(power), minimize(maxΔ𝐸) and minimize(meanΔ𝐸),
with the quality targets calculated as described above, and the GA loop is iterated until 500 gener-
ations have evolved in each run. For the ROI in the objective space, we extend the maximumΔ𝐸
boundary to 10, which lies between the estimated values of the baseline solutions while keeping
the meanΔ𝐸 boundary at the human perceptibility threshold of 2.15 as in the previous case study
[160]. Due to the lack of a clear reference implementation, we set the ROI boundary in the power
dimension to 350 mW, which exceeds the estimated power consumption of the 32-segment base-
line implementation by a factor of approximately 1.5, to allow the optimization to explore solutions
around the baseline implementations.

5.4.5 DSE Results

The aggregated results of 10 runs each for the two design spaces are depicted in Figure 5.17, split
into two different two-dimensional projections of the solution space, namely maxΔ𝐸 over power
in Figure 5.17a and meanΔ𝐸 over power in Figure 5.17b.

The plots show that the solutions cover a wide range of relevant solutions within the ROI. Over-
all, the restricted non-uniform table design space and the full design space offer similar trade-offs
across the ROI. However, a pattern can be seen in the results with the restricted design space, with
noticeable gaps between different solution clusters. While this tendency is also present in the full
design space results, it is less pronounced, suggesting that the additional approximations allow for
more nuances in the trade-off. At most power levels, the full design space enables small improve-
ments in terms of maxΔ𝐸 errors while the restricted design space tends towards lower meanΔ𝐸
values. However, most of the solutions show meanΔ𝐸 values below 1, which is sufficient in most
situations. The fact that both design spaces cover roughly the same area supports the notion that
the quality-resource trade-off offered by the 3D-LUT application is largely dominated by the table
segmentation which controls the memory consumption.
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Figure 5.17: DSE results for CS3 obtained for the compared design spaces, i.e. with all approximations

enabled (blue) or using only non-uniform table segmentations (yellow), together with the es-
timated values for the baseline solutions with 16 respectively 32 uniform segments (black)

The baseline solutions with 16 respectively 32 uniform segments in each direction are marked
as B16 and B32 in the plots of Figure 5.17. When comparing the results to the performance of the
baseline solutions, the plots suggest that at a similar or lower power consumption, the worst case
quality loss can be reduced significantly while keeping the average quality at a similar or slightly
worse level. Also, both design spaces offer considerably finer gradation in tuning the trade-off
compared to the baseline solutions which do not offer intermediate configurations.

5.4.6 Model Validation

Similar to the previous case studies, we have selected 8 solutions from the results obtained with
the full design space for further investigation. Both the selected solutions and the baseline im-
plementations are highlighted in Figure 5.18, which is color coded to show all three objectives
at once. As the plot shows, solutions S1 and S2 directly compete with the lower quality baseline
implementation B16, while the other solutions S3 through S8 compete with the higher quality base-
line implementation B32. Detailed validation data of these solutions in terms of area and power
consumption, maximum speed and application quality are listed in Table 5.7.

Area and Power Consumption The estimation of consumed logic resources shows similarly
high accuracy as for the previous case studies, as shown in Table 5.7. For LUTs, the average rel-
ative error among all solutions is 0.98% while in the worst case, the deviation is 2.13% (at S2).
On the other hand, registers are estimated with an average deviation of 0.39% with a worst-case
error of 0.77% (also at S2). The table shows that while the memory consumption differs widely
between the different solutions, only a limited number of DSPs is replaced by approximate mul-
tipliers. This coincides with the observation made above that the design space is dominated by
the table segmentation, while the remaining approximations may be used to achieve fine further
improvements.
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Figure 5.18: CS3: Selected solutions for model validation from ROI (a), comparison with post-synthesis

power values (b) and quality validation with test images from the validation set (c/d)

Table 5.7: Area, power and quality data of the selected points for CS3
Sel. FPGA Resources Power Speed Quality

Point DSPs1 BRAMs1 LUTs Registers [mW] [MHz] maxΔ𝐸 meanΔ𝐸
Index [Units/Bits] Model Synth Model Synth Model Synth Synth Train Test Train Test

S1 21 12 / 151 200 1055 1040 1697 1688 74.74 78.79 281.18 7.66 7.92 0.54 1.05
S2 16 16 / 275 400 1390 1361 1831 1817 85.96 89.41 283.49 6.00 5.64 0.71 0.85
S3 20 32 / 527 544 1113 1101 1688 1679 118.14 125.54 259.23 4.61 4.19 0.45 0.64
S4 21 40 / 692 496 1435 1406 2028 2020 144.55 146.15 284.46 4.29 4.12 0.24 0.50
S5 18 52 / 910 800 1770 1755 2142 2138 174.02 168.86 275.14 3.74 3.48 0.55 0.55
S6 21 56 / 990 000 1772 1775 2099 2091 183.81 186.75 281.47 3.91 3.75 0.09 0.19
S7 16 68 / 1 200 600 2145 2162 2263 2257 213.28 206.24 279.84 3.46 3.50 0.33 0.37
S8 19 76 / 1 330 056 1849 1839 2144 2130 227.65 225.05 283.44 3.06 2.36 0.32 0.34

B16 21 16 / 186 048 1071 1067 1745 1743 84.35 89.69 284.18 12.31 10.87 0.57 0.75
B32 21 76 / 1 330 560 1770 1764 2117 2116 227.60 226.11 285.24 6.57 5.81 0.11 0.18

1 The estimation of consumed DSPs and BRAMs by the proposed model matches the post-synthesis results for all systems
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The power trend across all solutions, as captured by the model and post-synthesis, is addition-
ally visualized in Figure 5.18b. The overall trend and the relations between individual solutions
are mostly captured correctly by the model, except for the relations between S2/B16 as well as
S8/B32, which are slightly reversed in the post-synthesis results compared to the model. However,
both of these pairs have very similar absolute power values. Overall, the average and worst-case
estimation errors are reasonably low at 3.27% respectively 6.33%.

Speed In contrast to the previous case studies, there is no clear relation between the position
of a solution on the quality-resource trade-off curve and the achievable speed. Most solutions are
able to operate at speeds around 280 MHz. However, there is one outlier, S3, which only reaches
259.23 MHz and therefore fails to meet the target frequency of 266.66 MHz. This shows that the
employed mechanism to ensure meeting the timing requirements, while working adequately in most
cases, is not perfect. In such cases, the designer can try additional seeds3, increase the fitting effort
of the tool, implement manual timing optimizations or choose another solution.

Quality In this case study, we analyze both the worst-case quality degradation in terms of
maximumΔ𝐸 and the average quality loss in terms of meanΔ𝐸. Figures 5.18c and 5.18d visualize
the respective comparisons between model and validation data. As mentioned above, we can split
the selected solutions into two groups, with S1-S2 competing against B16 and S3-S8 competing
against B32. To be able to analyze the comparison within these groups more easily, the solutions
are sorted accordingly in the figures and the groups are visually separated by a vertical line. Note
that solutions S5 and S6 are reversed in the plots to match their trend in the maximumΔ𝐸 objective.

It can be seen in Figure 5.18c that the model predicts higher worst-case errors as seen in the test
images for the baseline solutions, while it underestimates them for some of the selected solutions,
especially S1 and S2. However, we can observe that the selected solutions enable a significant re-
duction of the maximumΔ𝐸 compared to the respective baseline implementation in both groups.

Regarding the average quality loss, the conclusion is less clear. As a general trend, if the varia-
tion between individual test images is high, the model predictions tend to be less accurate, which
is similar to what could be observed in the quality validation of CS1 (cf. Section 5.2.5). However,
the estimation is always within the standard deviation across the test images. In both comparison
groups we can see that the reduction in maximumΔ𝐸 is afforded by some degradation in meanΔ𝐸.
However, the meanΔ𝐸 is generally at a rather low level across all solutions with reported averages
staying below 1 in most cases.

Solution S6 should be highlighted as it achieves nearly the same average quality as B32 while
reducing the maximumΔ𝐸 in the validation set from 5.81 to 3.75 and simultaneously reducing the
post-synthesis power consumption by 17.41%.

5.5 Summary

This chapter presented three case studies that target different real-world applications for processing
image colors in digital camera systems. The proposed framework was used to integrate approx-
imations of different types, namely precision scaling, approximate arithmetics and hierarchically

3The highest speed reported for S3 across the 10 seeds used to aggregate the post-synthesis data is 265.04 MHz while
the data reported in Table 5.7 represents the average across all seeds
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segmented sparse tables into those applications, and to optimize their parameterization globally
across the respective DFGs.

The experimental results show that the proposed framework is able to effectively generate well
populated Pareto-fronts across given ROIs in the objective space. Comparing the full design space
with limited sub-spaces that cover only single approximation types showcases the benefits of com-
bining approximations across multiple types in the same application to unlock larger resource sav-
ings. The proposed framework allows such combinations by using flexibly sizable approximate
components and by considering the effects of approximations on internal signal widths and the
related implications for connected system components.

For each case study, selected solutions were synthesized for a specific FPGA device to validate
the resource consumption. The reported data shows that the models are highly accurate, with worst-
case deviations in area and power consumption rarely exceeding a relative error of 5%. Regarding
the target operating frequency, all selected solutions except one were able to meet or exceed the
timing requirements, indicating that the proposed mechanism for achieving a specific minimum
speed generally works well. Furthermore, a comparison of the quality metric values estimated
during the DSE from training sets of restricted size with validation data obtained for 12 full-size
images showed that while the quality prediction is not perfect, it provides a good indication of what
can be expected in real images in terms of quality.

In practical scenarios, we recommend using the proposed framework to prepare the design space
and run the DSE to obtain general information about the possible quality-resource trade-offs of-
fered by the target application. Based upon the model data, the designer is able to narrow down a
small set of suitable candidates close to the desired trade-off point and make a final decision based
on actual synthesis results.





Chapter 6

Conclusion & Outlook

Current research on approximate computing opens new possibilities for improving the efficiency
of computational systems, promising solutions for designers that face growing demands for their
applications while technological improvements are diminishing. The aim of the framework pro-
posed in this dissertation is to bridge the gap between the large research body containing proposals
of individual approximation methods across different categories and their practical, efficient and
symbiotic integration into real-world applications implemented in FPGA devices. This chapter
summarizes the work presented in this dissertation together with the main observed experimental
findings before outlining topics that remain open for future work.

6.1 Thesis Summary

This dissertation proposes a framework for systematic integration and parameterization of ap-
proximation methods into FPGA-based applications, which can be divided into three main design
phases, namely the implementation of scalable and reusable approximate components, their inte-
gration into target applications and lastly their optimal parameterization within the design space
spanned across the approximated application.

First, Chapter 2 laid the foundation of the framework by forming a library of approximate com-
ponents that can be flexibly integrated into FPGA-based applications. It provided an extensive
survey and categorization of approximation methods proposed in related literature which target
hardware implementations. These methods were filtered according to their suitability for imple-
mentation in typical FPGA architectures and their relevance for the target application scope, focus-
ing on in-camera pixel stream processing pipelines. Selected promising approximation techniques
from the categories of approximate arithmetic units and table-based methods were adapted for the
use in FPGA-based systems and implemented in a flexibly scalable manner so that they can be
used in conjunction with fine-grain precision scaling. The characteristics of these components,
representing their isolated quality-resource trade-off performance, were extracted using an autom-
atized workflow. Based on the characterization data, competing versions of adders and multipliers
were compared extensively, which provided valuable insights regarding their ability to translate
to FPGA architectures. Furthermore, ML-based models were trained using the characterization
data to enable a fast estimation of resource usage across various component sizes and approxi-
mation strengths. Finally, the parameterizable hardware implementations, resource models, and
behavioral software models of the selected components were integrated into a library that provides
systematic interfaces for the integration into various target applications, completing the first phase
of the proposed design flow.
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Next, Chapter 3 proposed a DFG-based representation of target applications, which enables
the integration of approximations and setting their parameter ranges via user annotations. Hence,
an annotated DFG models the entire design space of an approximated application, and a can-
didate DFG represents a single specific parameterization across all components. Furthermore,
application-level models for the resource consumption and quality degradation associated with
any candidate DFG were proposed. In terms of application resources, the area consumption is esti-
mated first in a divide-and-conquer fashion from the individual components in the candidate DFG,
and the power consumption is derived from the estimated area using the characteristic per-unit
power consumption of the different FPGA resource types. Covering the other side of the approxi-
mate computing trade-off, a simulation-based quality model was proposed that allows the designer
to integrate their preferred choice of any reference quality metric into the fitness estimation. Addi-
tionally, relevant implications for choosing suitable training input data for the quality model were
discussed, and, focusing on the applications targeted and studied in this dissertation, two types of
data sets, namely synthetic and real-world inputs, were proposed and their properties analyzed.

Chapter 4 presented the DSE procedure in the final phase of the design flow. After reviewing
related approaches a GA-based approach was selected, which is based on related work that was
developed in a collaborative project [5]. An overview of the selected method was given and its
integration into the framework described.

To demonstrate the proposed framework, Chapter 5 presented three case studies targeting dif-
ferent real-world color processing applications. Experimental results show that the framework is
able to provide a densely populated front of relevant solutions, covering a wide range of different
quality-resource trade-offs to choose from. Additionally, the DSE was executed across differently
annotated DFGs, each limiting the design space to just one singular type of approximation. The
results of those experiments have shown that a symbiotic combination of different approximation
types can achieve larger benefits than using only a single type, which is a common limitation in
related work. Lastly, the accuracy of the proposed models was analyzed by selecting a range of
relevant solutions from the DSE results and validating the modeled fitness values against post-
synthesis data and the actual quality observed in a set of real images. The comparison showed that
the fitness estimation with the proposed models holds up well to the validation data and therefore
is suitable for guiding the DSE and for providing a good indication of the expected values in final
implementations.

6.2 Open Topics and Future Work

While the case studies have shown the functionality of the proposed framework and demonstrated
its proficiency for integrating approximations across different types into FPGA-based applications,
there is still room for improvement. On the one hand, the efficiency of the framework may be
enhanced further. On the other hand, its functionality can be extended to support a wider range
of applications and design workflows as well as directly targeting improvements in computational
speed. Potential directions for future work on these topics are outlined in the paragraphs below.

Potential efficiency improvements The comparison of the full design space and the re-
stricted design spaces have shown that some solutions with low resource benefits but high applica-
tion quality were only found in the restricted design spaces. Ideally, the DSE results from the full
design space, which theoretically contains these solutions as well, should cover all Pareto-Optimal
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solutions. There is still unexploited potential in tuning the optimization methodology. First, the GA
hyperparameters such as the mutation/crossover probabilities and the number of selected parents
and created offspring per generation were set to standard values, but could be improved by perform-
ing an offline hyper-parameter search or by employing a dynamic adaption scheme during the DSE
[153]. Furthermore, the parameterization order of the DFG configuration (see Section 3.2.1) and
the derived genetic operations (see Section 4.2.2) inherently prevent the modification of parame-
ters early in the propagation chain without affecting subsequent ones. To overcome this limitation,
the mutation operators could be refined to include the possibility of changing early parameters.
However, this must be done carefully, as the modification of an early parameter may change the
meaning or interpretation of the later parameters, which may need to be adapted accordingly to
preserve their original behavior.

Supporting Spatial Processing The application scope of this dissertation focuses on FPGA-
based image processing systems which employ pixel streaming pipelines. As described in Section
3.1, the proposed framework is currently limited to operations on individual pixels, as used in color
transformations. However, some applications, e.g. FIR filters or noise reduction, need the infor-
mation of multiple neighboring pixels within a given window [163]. Typically, such a system is
represented in related work by treating each neighboring pixel as separate external system input
[124, 151, 152]. To achieve similar functionality, the DFG-based behavioral simulation could eas-
ily be extended to include an external input management that feeds correctly shifted pixel streams
to multiple inputs. However, in actual hardware implementations of spatially operating stream pro-
cessing systems, the pixel stream must be cached in local memory, e.g. BRAMs [163]. Typically,
to open a window of size 𝑊 ×𝑊 , 𝑊 −1 entire rows or columns must be buffered, depending on the
streaming order, consuming a considerable amount of memory resources. For images with large
resolutions this may even dominate the overall resource consumption of the entire system. Such
considerations are completely missing from related literature. To overcome this limitation, addi-
tional component models for row/column buffers could be added to the component library which
would allow to truthfully capture all implications introduced by spatial processing.

Integration into HLS Workflows In the current state of the framework, the DFG represent-
ing the target application has to be written manually by the designer using the interfaces provided
by the framework. In contrast, many related works already cover the integration of their design
methodologies into established HLS workflows [150, 152]. Similar extensions could be made for
the framework to improve its ease of use. Necessary modifications to achieve such an integration
comprise the automatic construction of the DFG from a high-level description or an intermediate
representation from the respective HLS workflow, if available, and a user interface to facilitate
the annotation of DFG components. The latter task could also be solved by using software-level
annotations in the high-level code that are automatically translated to DFG annotations.

Including Computational Speed as Full Optimization Target Lastly, the proposed
framework only aims to ensure the satisfaction of a given minimum timing constraint by modeling
the delay of the largest combinatorial blocks, which were the multipliers in the studied applica-
tions. However, computational speed is typically part of the traditional hardware design trade-off
(cf. Figure 1.1) and is often also included in the approximate computing trade-off space [18]. The
model validation results of the first two case studies reported in Sections 5.2.5 and 5.3.6 indicate
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that performance benefits due to the use of approximations are possible in FPGA-based pipelined
stream processing systems. However, in order to integrate speed as a full target objective, a more
sophisticated delay model that covers all paths of the application needs to be implemented. To that
end, the approach used in AxHLS could be adopted, which estimates the delay in a divide-and-
conquer manner by summing up individual component delays along the critical path [152].



Appendix A

ARRI Image Set

(a) Akademie (b) Arri (c) Church

(d) Color Test Chart (e) Face (f) Lake Locked

(g) Lake Pan (h) Night at Odeonsplatz (i) Swimming Pool

(j) Sharpness Chart (k) Night at Siegestor (l) Color Wheel
Figure A.1: Images from the ARRI Test Set in Rec709 display-referred format [134]
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