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Simple Summary: The European roe deer is the most abundant ungulate in Europe. Information on
the number of animals and the factors that influence this are essential for the effective management
of this species. We developed a model to estimate the pellet group density using transect surveys of
dung pellets in the federal state of Bavaria, south-eastern Germany. We used the pellet group density
as a proxy for roe deer relative abundance. Our results show that climate, habitat type and wildlife
management approach determine the relative number of roe deer. Influential factors differed between
seasons and were expected due to changes in food and shelter availability. Although recognized
as a woodland species, the majority of roe deer are expected in agriculture-dominated landscapes,
which shows their ability to adapt to a wide range of landscape types, especially those with high
food availability. Higher numbers were also predicted in regions with intermediate temperatures.
Estimates of relative number do not give the actual absolute number of animals but are useful in
determining which conditions will have more or fewer animals and can provide information for
broad-scale management recommendations. Our results also provide insights into possible future
changes in the distribution of relative numbers of roe deer due to climate and land-use change.

Abstract: European roe deer (Capreolus capreolus L.) are important given their economic, recreational
and ecological value. However, uncontrolled roe deer numbers can result in negative impacts on
forest regeneration and agricultural crops, disease transmission and occurrences of deer-vehicle
collisions. Information on the abundance and distribution is needed for effective management. We
combined distance sampling (DS) of roe deer dung pellet groups with multiple variables to develop
a density surface model (DSM) in the federal state of Bavaria in south-eastern Germany. We used the
estimates of pellet group density as a proxy for roe deer relative abundance. We extrapolated our
best DSM, conducted a quantitative evaluation and contrasted relative abundance along climate and
land-use gradients. Relative abundance of roe deer was influenced by a combination of habitat type,
climate and wildlife management variables, which differed between seasons and which reflected
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changes in food and shelter availability. At the landscape scale, the highest abundance was observed
in agriculture-dominated areas and the lowest in urban areas. Higher abundance was also observed
in areas with intermediate temperatures compared to the warmest areas. Our results provide
information on possible future changes in the distribution of relative abundance due to changes in
climate and land-use.

Keywords: density surface model; distance sampling; roe deer; GAM; climate change; land-use;
spatial modelling; extrapolation; dung pellets

1. Introduction

European roe deer (Capreolus capreolus L.) populations have increased dramatically
in numbers and geographical distribution in recent decades [1]. This is indicative of the
species’ ability to adapt to a wide range of landscape types and climatic conditions [2,3].
Effective management of this species is important because of its economic (meat and hunt-
ing), recreational (hunting, wildlife photography) and ecological value (biodiversity) [4].
However, the current trend of increasing population sizes in multi-use landscapes has led
to numerous conflicts such as damage to agricultural crops, compromised forest regenera-
tion due to selective browsing, disease transmission and an increase in collisions between
deer and vehicles [5–9]. Therefore, effective future wildlife management strategies, which
require information on abundance and distribution, are needed [10].

Wildlife monitoring include direct and indirect methods. Direct methods involve
counting individuals of the target species, while indirect methods focus on counting traces
left by animals (e.g., nests, tracks, dung), which can be converted to the absolute number of
animals using multipliers [11–13]. There have been numerous attempts to estimate ungulate
population sizes using various methods, including direct line transect surveys [14,15],
thermal imaging [16,17] or camera surveys [18,19] and indirect pellet group counts [20]
(methods reviewed in [21], population density estimates in [22]). However, the ability to
estimate abundance gradients on a larger geographical scale is limited by the high monetary
and labor costs of these methods [12]. Because of these limitations, Morellet et al. [23]
argued for a shift in focus from estimating absolute abundance to understanding the
interaction between animal populations and habitat quality and determining the ecological
status of the ungulate-habitat system. They suggested that relative abundance indices
might be sufficient for management decisions.

Previous studies have highlighted the importance of shelter or the combination of food
and shelter for roe deer [22,24,25]. Natural predators were identified as important top-down
control in some populations [22]. Especially in the absence of large predators, hunting is
often considered an important management tool for population control of roe deer [26,27].
Climate-related variables, such as severe winter conditions, spring temperatures and
precipitation that affect forage quality, and droughts in summer, can also contribute to
population dynamics [28–30].

Given the importance of habitat and climate-related variables for roe deer density
and the current trend of human-induced landscape and climate changes, we estimated
the relative abundance of roe deer along a climate and land-use gradient. We used an
indirect method of dung-pellet-based distance sampling because it accounts for imperfect
detection and has been shown to be a robust method for estimating deer abundance [11,20].
Density surface modelling allowed us to estimate relative abundance at a larger scale,
including areas not covered by the field survey [31]. This method has also been used to
estimate the abundance of roe deer in the Mediterranean, but at a smaller spatial scale [32].
Other examples of method application include estimation of abundance and distribution
of various species, such as birds [33], marine [34] and terrestrial mammals [35]. We then
utilized a recently developed workflow to evaluate extrapolation quality [36].
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Specifically, we aimed to (1) model the seasonal relative abundance of roe deer (2)
determine the relationship between relative abundance and various habitat, climate and
management variables, (3) quantitatively evaluate the spatial extrapolation, (4) compare
relative abundances at sites within a climate and land-use gradient and (5) assess the
feasibility of the methodology for state-wide data-driven management decisions. We
expected the relative abundance of roe deer to be affected by a combination of climate,
land-use and wildlife management variables. Lowest abundances were expected both in
the coolest climate zone, due to harsher winters, and in the warmest one, due to higher risk
of drought in summers. In addition, we expected that densities in land-use types would
vary seasonally due to changes in food and shelter availability in the forests and open areas.

2. Materials and Methods
2.1. Survey Region

This study was conducted in the federal state of Bavaria, south-eastern Germany
(Figure 1), which is the largest federal state, with an area of 70,000 km2 [37]. It is character-
ized by diverse climates and high heterogeneity of habitats. The area is composed of 53%
agricultural and 7% urban; the remaining areas are predominantly managed forests, nature
protection regions, and near-natural habitats (40%, [38]).
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Sixty study regions were selected based on an existing 5.8 km × 5.8 km grid (hereafter,
quadrants) covering the whole of Bavaria (‘TK25′ topographical map established in 1868,
scale 1:25,000; Figure 1). These quadrants were divided into five climatic zones (climate 1:
<7.5 ◦C, climate 2: 7.5–8 ◦C, climate 3: 8–8.5 ◦C, climate 4: 8.5–9 ◦C and climate 5: >9 ◦C,
based on multi-year mean temperature 1981–2010, [39]) and three landscape types based on
the dominant land-use (near-natural, agricultural and urban). Land-use was classified using
CORINE (2012) land cover classification with the following classes: quadrants classified as
‘near-natural’ consist of more than 85% near-natural vegetation, with a minimum of 50%
forest; ‘agricultural’ quadrants of more than 40% arable land and managed grassland; lastly,
‘urban’ quadrants contain more than 14% housing, industry and traffic infrastructure. Based
on these classifications, 4 replicate quadrants were selected for each of the 15 (5 times 3)
climate-land-use classifications, yielding a total of 60 quadrants.

Using a novel correlation heatmap approach [40], three local study plots (0.5 ha)
with different local land-use types (forest, grassland, arable land, or settlement) were
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identified in each quadrant as sites for different research initiatives related to biodiversity
and ecosystem services, including this study. The heatmaps were created for each local
land-use type in each quadrant to visualize the correlation between landscape composition
(proportional cover of each land-use type) and configuration (edge density) in the entire
quadrant. Local study plots were established in sites with the lowest possible correlation
between landscape composition and configuration. The selection of quadrants and study
plots is described in detail in Redlich et al. [40].

2.2. Field Survey

We combined two types of distance sampling surveys with different sampling inten-
sities for roe deer dung pellet groups using 200-m line transects in spring-summer and
autumn of 2019 [31,41]. First, a designed survey, where transects were randomly placed
across the entire quadrant, was applied in eight so-called “focal” quadrants, covering the
climate classes 1–4 and landscape types near-natural and agricultural (Figure 1). Here,
surveys were designed using the software Distance 7.3 [13]. The design class was a system-
atic segmented trackline with 75% effort in woodlands and 25% in open areas (excluding
settlements), which translated to 16 to 29 transects per quadrant. Stratification of the design
based on habitat-type was done using the CORINE [42] land-use classification map. The
survey design was originally planned for 9 focal quadrants and generated 206 transects. We
later decided to do the surveys in eight quadrants for a balanced design (four near-natural
quadrants, four agricultural quadrants). Out of 206 transects generated by the software,
150 transects were sampled in the focal quadrants in spring and 168 transects in autumn. In
addition to the transects from the discarded quadrant (n = 24), more transects were skipped
because these were too difficult to access due to steepness, very dense vegetation or being
located in arable land with crops. The different land-uses were, however, still properly
represented, with a 75:25 woodland to open area ratio in the number of transects in spring
and 77:23 ratio in autumn. In many cases, the survey was still done in arable land with
crops, but at the border. All transects in the designed survey had a west–east direction.

For the second type, undesigned distance sampling surveys were conducted in both
focal and non-focal quadrants across Bavaria. One to two 200-m transects were sampled in
52 (out of 60) quadrants in spring and 56 quadrants in autumn, with one transect in the
forest study plot and another in the arable or grassland study plot. The starting point of
each transect was chosen randomly within a 30-m radius to the center of the study plot.
The direction was towards a wildlife camera (data for another study) installed in areas with
signs of ungulate presence (e.g., animal tracks, dung, etc.). The data for the spring model
came from surveys done primarily in Spring (April and May, 83% of the transects) and
were carried out by 26 observers from 2 April to 11 August 2019, while the autumn surveys
were carried out by 12 observers from the 20 September to 11 November.

A roe deer dung pellet group was considered a detection if it contained at least five
pellets that could fit inside the palm of the hand of the observer. Each detection was
recorded as the perpendicular distance between the center of the dung pellet group and
the transect line. Transitions in the ground cover within the transect were noted because
this affects detectability; they were also used as a basis for segmenting the transects for the
density surface model. Ground cover classes were: bare ground, grass and forb, shrub with
height less than 30 cm, height 30 to 100 cm, and height of more than 100 cm.

2.3. Model Development

We used the two-stage approach proposed by Hedley and Buckland [43], wherein the
detection function is modelled in the first stage and density surface modelling (DSM) in
the second stage. The detection function is a model of the probability of detecting a dung
pellet group at a distance x from the transect line, wherein x is equal to or more than 0
and less than or equal to the truncation distance (0 ≤ x ≥ truncation distance). Next, the
DSM approach was used to predict spatially explicit pellet group density as a function of
significant variables using a generalized additive model (GAM, [44]). The DSM model
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outcome was pellet group density; however, this was used as a proxy for roe deer relative
abundance. The two terminologies are, therefore, equivalent in this study. These two stages
were implemented in R 4.0.2 [45] using the packages distance [46] and dsm [31].

Because this study aimed to estimate relative abundance in spring and autumn to
account for seasonal differences in food and shelter availability, separate detection functions
were fitted for spring and autumn data. All distance data were truncated at 1.5 m, discard-
ing approximately the farthest 5% of the data [13]. We assessed the effect of observation-
level covariates on the detection probability using multiple covariate distance sampling
(MCDS) [47]. Detection probability is the probability of detecting a dung pellet group given
its distance from the transect and as a function of a set of covariates. Covariates tested
were the observer group and the type and height of the ground cover. Observers were
post-stratified according to the total length (effort) of transect survey that they conducted
into groups of a minimum of 70 detections in total, which is a prerequisite for fitting
detection functions [41]. This led to five observer groups in spring-summer and three
groups in autumn. Detections were fitted with half-normal and hazard-rate key functions
with (cosine, hermite, simple polynomial) and without adjustment terms [48]. Models
with covariates did not include adjustment terms. The best model was selected using
Akaike’s information criterion (AIC). Model evaluation was done using the Cramér–von
Mises goodness of fit criterion [13].

We started the second stage in model development (DSM) by segmenting our transects
based on habitat transition points identified during the field surveys. Segment lengths
ranged from 3 m in heterogeneous to 200 m at homogenous survey sites. For each segment
centroid, a buffer with a radius of 500 m was generated, representing the average roe
deer home range size (if simplified as a circle) in Germany at a monthly scale [49]. These
buffered segment centroids were characterized by a combination of habitat-related features
(land-use [42], topography [50], edge proximity from CORINE forest class [42], NDVI [51]),
climate variables [52–55], and forest ownership type [56] as a proxy for management dif-
ferences at different resolutions ranging from 25 m to 1000 m (Table 1). We reclassified
the land-use classes in CORINE [41], as shown in Table S1. Climate variables (mean tem-
perature, temperature range and precipitation) were retrieved from the seasonal gridded
product of the German Meteorological Service [52–55] for the year 2019. Spring, summer,
autumn, and winter refer to the standard meteorological seasons (MAM, JJA, SON, DJF,
respectively). The seasonal temperature range was calculated as the difference between the
monthly averaged daily maximum and minimum air temperature [53,54]. Covariates were
summarized as the mean of all values within these buffered regions or as percentage cover
for the land-use and forest ownership variables.

Table 1. In total, 26 covariates were considered and included (4) in the density surface models. A vari-
able was removed if it was correlated with an ecologically more relevant variable (Pearson’s r > |0.7|),
marked as x (1 correlated with winter mean temperature; 2 correlated with summer mean temperature;
3 correlated with arable; 4 correlated with summer temperature range).

Variable
(Model Abbreviation) Units Data Source Spring Model Autumn Model

Coniferous forest (coniferous) % cover
CORINE

land cover
2018 [42]

4 4

Deciduous and mixed forest
(deciduous_and_mixed)

Arable land (arable)
% cover 4 4

Grass and shrublands
(grass_and_shrubs) % cover 4 4

Water and other unsuitable
areas (water) % cover 4 4

Artificial surfaces (artificial) % cover 4 4
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Table 1. Cont.

Variable
(Model Abbreviation) Units Data Source Spring Model Autumn Model

Winter mean temperature
(win_mean_temp)

◦C

German
Meteorological
Service (DWD)

seasonal
gridded data
2019 [52–55]

4 -

Spring mean temperature
(spr_mean_temp)

◦C x1 -

Summer mean temperature
(sum_mean_temp)

◦C - 4

Autumn mean temperature
(aut_mean_temp)

◦C - x2

Winter temperature range
(win_temp_range)

◦C 4 -

Spring temperature range
(spr_temp_range)

◦C 4 -

Summer temperature range
(sum_temp_range)

◦C - 4

Autumn temperature range
(aut_temp_range)

◦C - 4

Winter accumulated
precipitation (win_acc_precip) mm x1 -

Spring accumulated
precipitation (spr_acc_precip) mm 4 -

Summer accumulated precipitation
(sum_acc_precip) mm - 4

Autumn accumulated precipitation
(aut_acc_precip) mm - 4

Private forest (private_forest) % cover Forest
overview
map [56]

4 4

State forest % cover 4 4

Corporate forest
(corporate_forest) % cover 4 4

NDVI seasonal mean (ndvi) * - MODIS/Terra
Vegetation Index [51] 4 x3

Elevation (elev) degrees
EU-DEM v.1.0 [50]

x1 x4

Slope (slope) degrees 4 4

Aspect (aspect) m 4 4

Edge proximity (edge_proximity) m

Proximity raster
generated from

distance to woodlands
in CORINE 2018 [42]

4 4

* spring model—mean NDVI from the start of winter 2018 to the last day of sampling in summer; autumn
model—mean NDVI from summer to autumn.

A Horvitz–Thompson-like estimator was applied to estimate abundances in each
segment; this was modeled with a tweedie or negative binomial distribution as a function
of the sum of the smooth functions of different habitat, climate and management related
covariates. The covariates were first tested for collinearity and one of two correlated covari-
ates (Pearson’s r > |0.7|) was discarded based on ecological significance (e.g., elevation
discarded instead of winter mean temperature and summer temperature range). Thin plate
regression splines (TPRS) [44] were used to automatically select knot positions. Model
selection was done using a backward stepwise approach until all approximate p-values
were significant (p < 0.05) [57]. There were, thus, four candidate models, two (tweedie and
negative binomial distribution) for spring and two for autumn [31]. The best model for
each season was selected by comparing several established metrics: AIC, percent deviance
explained and comparison of quantile-quantile plots [44].
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2.4. Prediction and Uncertainty Analysis

Using the spring and autumn DSM, we predicted the abundance of dung pellet groups
for the whole of Bavaria on a 1 km × 1 km grid. We used this estimated density (n/km2) as
a measure of relative abundance. We did not convert the abundance of dung pellet groups
to animal abundance, as this would have required region-specific estimates of production
and decay rates, which were not available. We used the delta method to estimate the
uncertainty associated with the abundance estimate in each 1-km2 cell [58].

The coverage of the field survey was very limited relative to the prediction area, so we
conducted a quantitative and spatially explicit evaluation of the extrapolation [59,60] using
the R package dsmextra [36]. We used the two proposed metrics: the extrapolation detection
(ExDet) tool [59] and the percentage of data nearby (%N) [61,62]. The extrapolation detec-
tion tool computes an index that can be classified according to three classes: (1) analogue,
wherein the prediction was interpolated in a particular grid cell, (2) combinatorial, wherein
the novel combinations of values encountered are within the univariate range of reference
covariates and (3) univariate or when the prediction was made using values that were
outside the range of each covariate in the DSM. The percentage of data nearby (%N) for any
grid cell was quantified as the proportion of survey data within a given radius that was
used as the basis for prediction [60]. The value of the radius is the mean Gower’s distance
between all pairs of reference points. The theory behind this metric is that the reliability
of predictions depends on the density of nearby observational data [36,62]. Based on the
extrapolation evaluation metrics results, extrapolated (univariate) predictions with a %N
of less than 5% were discarded.

There are no abundance estimates for roe deer for all of Bavaria. As an alternative to
validation with an independent abundance dataset, we tested for a possible relationship
between our estimated relative abundance and the total number of roe deer killed by
hunting (hereafter, harvest) for 2019 using non-parametric Spearman correlation. Harvest
data from official government statistics were expressed as densities for each game man-
agement district (n/km2) and estimated pellet group densities (n/km2) were averaged
for all grid cells within a game management district. A game management district was
excluded from the comparison if the total area of valid predicted cells (after extrapolation
evaluation) within the district was less than 50% of the hunting district area. Out of the
746 game management districts in Bavaria, 506 were included in the autumn comparison
(240 excluded) and 322 in the spring comparison (424 excluded).

2.5. Relative Abundance in a Climate and Land Use Gradient

We then presented the estimated distribution of the relative abundance of roe deer
within the 60 study quadrants, which were classified according to the climate (class 1–5) and
land-use (near-natural, agricultural and urban) gradients. Separate boxplots were made for
harvest data as well as spring and autumn abundance predictions to compare trends along
the gradients visually. These were not statistically compared because values are model
predictions and therefore have smoothed variability which does not satisfy independence.

3. Results

A total of 1680 dung pellet groups were recorded on 512 transects of 200-m length,
corresponding to a total effort of 102.4 km. After truncation, 891 detections were used to
develop the habitat-based density model in spring, while 700 detections were used for the
autumn model. The average number of detections per 200-m transect was 6.1 (standard
deviation (sd) 8.10) in spring and 4.8 (sd 5.15) in autumn, and the maximum number of
detections was 46 in spring and 24 in autumn.
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3.1. Detection Function

The best models for the detection function fitted using MCDS were those with a hazard
rate key function without adjustment terms and observer group as covariate (Figure 2).
Ground cover type and height had no significant effect on detection probability according to
AIC model selection. Table S2 shows the AIC comparison results for all model versions for
both spring and autumn detection functions. The average detection probability for spring
was 0.50 with a coefficient of variation (CV) of 0.042. The average detection probability
in autumn was 0.38 with a CV of 0.043. The selected detection function models also met
the weighted Cramér-von Mises goodness-of-fit tests with p = 0.39 for spring and p = 0.49
for autumn.
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Figure 2. Distribution of observed distances between centers of roe deer dung pellet groups and the
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for experience. The solid line is the average estimated detection function.

3.2. Density Surface Models

Density surface models with a tweedie distribution were selected for both spring
and autumn as these provided a better fit than the negative binomial in terms of AIC
and percentage deviance explained (Table 2). Comparison of the quantile-quantile plots
(Figure S1) also supports this choice.

The estimated abundance of roe deer pellets was in both seasons best explained by a
combination of climate, habitat-related and management covariates (Table 2). Significant
predictors in spring included both the mean and temperature range in winter, temperature
range and accumulated precipitation in spring, the percent coverage of all habitat types
(except artificial and water and other unsuitable areas, Table 1) and the percent coverage of
privately-owned forests. Of all the climate-related variables, only the temperature ranges
were significant in the autumn model. Moreover, edge proximity, the proportion of grass-
lands and shrublands, private and corporate forests were significant in the autumn model.
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Table 2. Comparison of seasonal GAM models using tweedie and negative binomial distribution. The
model outcome is the estimated relative abundance of roe deer dung pellet groups in each segment.
Offset is the area of the segment. For variable names, see Table 1. The model formula shows the
summation of the significant smooth (s) terms after model selection.

Season Distribution Model Formula AIC
(∆AIC)

% Deviance
Explained

Spring Tweedie

s(coniferous) +
s(deciduous_and_mixed) +

s(arable) +
s(grass_and_shrubs) +

s(private_forest) +
s(win_mean_temp) +
s(win_temp_range) +

s(spr_acc_precip) + offset

1046.11 (0) 32.8%

Spring Negative
binomial

s(artificial) +
s(win_mean_temp) +

s(spr_acc_precip) + offset
1064.06 (17.95) 14.7%

Autumn Tweedie

s(edge_proximity) +
s(private_forest) +

s(corporate_forest) +
s(grass_and_shrubs) +
s(sum_temp_range) +

s(aut_temp_range) + offset

1177.12 (0) 34.3%

Autumn Negative
binomial

s(edge_proximity) +
s(corporate_forest) +

s(grass_and_shrubs) +
s(sum_temp_range) +

s(aut_temp_range) + offset

1248.35 (71.23) 21.9%

Areas with a higher proportion of forest, arable land, grass or shrubland cover were
favorable for roe deer in the spring model (Figure 3a). Relative abundance was also
predicted to be higher in areas with larger proportions of privately owned forests, with
an intermediate winter mean temperature, a broader winter seasonal temperature range,
a lower temperature range in spring, and medium cumulative spring precipitation. The
range of the estimated effect of the selected predictors suggests that the habitat-related
variables have a stronger influence on the estimated abundance than the climate and
management variables.

Areas near forest edges were predicted to have a higher relative abundance of roe
deer in the autumn model (Figure 3b). The percentage of private and corporate owned
forests also had a significant positive effect on the abundance of roe deer pellet abundance.
Fewer pellets were predicted in open habitat such as grasslands and shrublands. In terms
of temperature, higher pellet abundance was predicted for medium temperature range
in summer and a minimum range in autumn. Based on the estimated effects, areas with
70–80% of corporate forests contributed to higher pellet abundance.
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in the best models for (a) spring, and (b) autumn. Points are partial residuals. The scale of the y-axis
is shifted by the value of the intercept so that each plot shows the prediction of dung pellet group
abundance using the selected predictor and assuming that all other variables are kept at their average
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distribution of the available data. For variable names, see Table 1.
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3.3. Prediction, Uncertainty and Validation

The spring model predicted an interquartile range (IQR) of 668 to 4693 pellet groups
with a mean of 3800 for an area of 1 km2, while the autumn model predicted an IQR of
827 to 5272 pellet groups with a mean of 4284. The spatial variability of the predictions of
relative abundance is shown in Figure 4a for spring and Figure 4d for autumn.
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Figure 4. Prediction of relative roe deer pellet abundance and extrapolation evaluation of the density
surface models in spring (a–c) and autumn (d–f). Relative abundance (a,d), extrapolation type (b,e)
and calculation of the neighborhood metric of extrapolation (%N—c,f). Predicted relative abundance
was divided into seven quantiles with 1 representing the lowest abundance and 7 the highest. The
red squares in the extrapolation type maps (b,e) are the study quadrants where relative abundance
was compared in a climate and land-use gradient.

Uncertainty associated with predicted abundance of dung pellet groups is provided
by the CV around the abundance estimate. The CV from the detection function in the
spring model was 0.04, while the CV of the GAM was 0.25. The total CV calculated using
the delta method was 0.26. The autumn model also had a CV of 0.04 from the detection
function and a lower CV of the GAM of 0.16. The total CV of 0.12 was consequently lower
than for the spring model. Spatially explicit estimates of CV for both models are included
in the supplementary material (Figure S2).
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Quantitative and spatially explicit evaluation of the extrapolation showed that 13.06%
(9026 grid cells) of the predictions in spring and 3.23% (2230 grid cells) in autumn were
univariate (Figure 4b,e). Only a minority were combinatorial with 0.91% or 630 grid cells
in spring and 0.13% or 88 grid cells in autumn. Analogue conditions (all values at the
prediction site observed at the survey sites) were found for the majority of the grid cells
in spring (86%, Figure 4b) and autumn (97%, Figure 4e). Of all the significant predictors
in the spring model, the winter temperature range was the most influential covariate in
univariate extrapolation. For the autumn model, edge proximity was the most influential
covariate to univariate extrapolation.

Figure 4c,f show the quantitative measure of the amount of data available and used
to support the prediction in each grid cell. Given the results of the extrapolation evalua-
tion, model validation and further analysis were limited to areas that were analogue or
combinatorial and with %N of more than 5%.

We found that there was moderate, but significant positive correlation of annual
harvest densities with the spring model predictions (Spearman rank correlation r = 0.349,
p < 0.01) and a lower, but also significant and positive, correlation of harvest densities with
the autumn model predictions (Spearman rank correlation r = 0.136, p < 0.01).

3.4. Relative Abundance in a Climate and Land-Use Gradient

The predicted relative abundance of roe deer in the different climate zones and land-
use types in spring and autumn as well as in harvest data are presented in Figure 5. Harvest
density was lowest in the coldest climate in both agricultural and near-natural landscapes.
In contrast, relative abundance in the autumn model was highest at the coldest sites in the
agricultural landscape and second highest in the near-natural landscapes. For the spring
model, however, data was limited as only nine grid cells in the agricultural landscape and
three in the near-natural landscape fell into this category.

There was a general pattern of decrease in roe deer harvests from areas with interme-
diate temperatures (climate 3) to the warmest areas (climate 5). Harvest density in climate 3
in agricultural landscapes had a median value of 5.7/km2 as compared to 4.1/km2 in areas
with climate 5. The same pattern was observed for near-natural landscapes with a median
harvest density of 4.7/km2 in climate 3 and 4.1/km2 in climate 5. This pattern was equally
predicted by both the spring and autumn models. In the spring model, the median pellet
group density was 3909.5/km2 in climate 3 in agricultural landscapes and 942.2/km2 in
climate 5. In the near-natural landscapes, it was 1805.8/km2 in climate 3 and 473.1/km2 in
climate 5. In the autumn model, the median density in climate 3 in agricultural landscapes
was 4798.1/km2 and 2041.4/km2 in climate 5. The only exception were the near-natural
landscapes in the autumn model, where the median density in climate 3 (2104.9/km2) was
almost the same as in climate 5 (1961.3/km2).

Relative abundance also differed between landscape types in both spring and autumn
models with pooled data from the different climate classes. The highest predicted relative
abundance of roe deer pellets was found in agricultural landscapes and the lowest in urban
landscapes. Most importantly, the autumn model estimated higher relative abundance of
roe deer at the study sites than the spring model (Figure S3).
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Figure 5. Relative abundance of roe deer in a climate and land-use gradient across Bavaria (a) spring
model estimates, (b) autumn model estimates, (c) harvest data. Climate 1 to 5 indicates cooler to
warmer mean multi-annual temperatures, which are inversely related to annual precipitation sums.
The numbers at the bottom of each boxplot indicate the number of data points: number of 1 km2 grid
cells for the spring (a) and autumn (b) models and number of game management districts for the
harvest data (c).

4. Discussion

Conventional distance sampling has been used to estimate abundance of ungu-
lates [63,64] including roe deer [65,66]. Here, we used the model-based approach of
density surface modelling (DSM), which combines spatial modelling with distance sam-
pling [41,48]. This allowed us to extrapolate to a larger area by combining data from sites
with intensive sampling and random placement of transects (designed survey) with those
from sites with few transects without random placement (undesigned survey) [31]. This
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is the first DSM for roe deer at this large scale of 70,000 km2 and a total sampling effort
of 102.4 km of transects. In comparison, the study of Valente et al. [32] reported on a roe
deer DSM with 635 km2 and 26 km transects. In addition, we provided a quantitative
analysis of the quality of our extrapolation [36]. This method allowed us to combine field
data with spatially-explicit covariates to determine environmental and management factors
that significantly influenced the seasonal relative abundance of roe deer in a climate and
land-use gradient. Consistent with previous studies [67,68], climate and land-use variables
were predictive of roe deer relative abundance. In addition, the type of forest ownership,
which can be a proxy for the management scheme, was also found to significantly influence
the relative abundance.

Distance sampling of roe deer dung provides estimates of relative abundance from a
snapshot of the period prior to the actual field survey, with its length depending on the
decay rate of the dung [41]. Decay rates should be determined specifically for a given
site; however, a previous study done in a forest in Poland gave a rough estimate of the
possible season-specific decay rates. Roe deer dung deposited in late autumn and early
winter persisted for an average of 118 days, in spring for 70 days and in summer for
only an average of 26 days [69]. Only a few (17%) transects for the spring model were
sampled in summer, and those detections accounted for only 4% of all detections in the
spring model, this small inclusion of summer data may therefore have minimal influence
on the relative abundance estimates. Based on the decay rate values from literature and
the survey schedule, the results of the spring model are therefore an estimate of relative
abundance primarily from winter to spring, while the autumn model represents the period
from late summer to autumn. The differences in the significant variables for these two
models provide insights on the changes in food availability and shelter between the two
periods [70]. The spring model captures both the harsh conditions of winter and food-rich
start of the growing season in spring and tentatively excludes dung placed by offspring
which are born in May/June [71] due to differences in size and consistency (and possibly
more difficult to detect) compared to adult dung. Therefore, we consider the spring model
a pre-birth-pulse estimate of relative abundance. This sampling period also includes the
start of the hunting season in Bavaria (1 May for bucks and female yearlings, [72]).

Roe deer generally prefer heterogeneous habitats, such as early successional wood-
lands [73], but may forage in meadows and agricultural fields [3]. A higher proportion of
forests and open habitats (arable, grasslands and shrublands) was beneficial for roe deer
in the spring model. The affinity to woodlands in this model could be partially due to
food availability in this season [31,74], but is more likely due to better cover to reduce risks
posed by hunting [75], thermoregulation in winter [76] and shelter for offspring in Spring.
The importance of meadows and arable land supports the findings of previous studies that
food in these areas is of higher quality, especially in spring, and, therefore, is preferred by
roe deer [77,78].

The autumn model rather reflects the summer conditions, when there is plenty of crop
yield in arable fields, but also the constant threat from hunting, which is the main cause
of roe deer mortality in the absence of predators [4]. In Bavaria, the hunting season for
bucks is from the 1 May until the 15 October, for does and fawns between the 1 September
and 15 January, for female yearlings between the 1 May and the 15 January [72]). This may
explain the importance of edge proximity rather than individual habitat types on relative
abundance estimates. Our results show that relative abundance is higher in areas close to a
forest edge, where roe deer can easily commute between forests and fields [79]. Studies
on the effects of hunting on the behavior of roe deer have shown that these ungulates
adjust their behavior during the hunting season by being more vigilant [80] and using
more woodlands during the day and open fields at night [75]. In contrast to the spring
model, hunting was present during the entire period covered by the autumn model. This
may explain why the relationship between relative abundance and the percentage of
grasslands and shrublands in this open habitat, where animals are highly visible, changed
from a positive relationship in the spring model to a negative relationship in the autumn
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model. The total pellet abundance was higher in the autumn model (post-birth-pulse
model). A possible reason for this is the addition of spring-born fawns [81]. Furthermore,
in both seasons, a higher proportion of private forests positively contributed to relative
roe deer abundance, while the effect of state forests was not significant. Since there are no
predators in most of Bavaria, with the exception of lynx (Lynx lynx) in the East, populations
of ungulates are controlled by hunting [82]. Hunting quotas are commonly based on
browsing pressure; however, actual hunting pressure may differ due to the different
motivation of hunters in different forest types [83]. Hunters in most non-state forests tend
to hunt rather recreationally and may be rather motivated by good hunting opportunities,
while foresters of state forests argue that hunting should be driven by reducing ungulate
densities to promote natural forest regeneration [82]. As such, differences in relative
abundance between state-owned and non-state-owned forests could reflect differences in
the motivation of hunters in the respective ownership types.

Climate affects roe deer populations both directly (e.g., harsh winters; [84,85]) and in-
directly (e.g., trophic interactions; [86,87]). Our GAM results highlighted the importance of
winter conditions on relative abundance. Of all seasonal variables, only mean temperature
in winter was significant in our model, with intermediate values being favorable to the roe
deer. Winter conditions have been shown to be limiting for roe deer due to higher ther-
moregulation and locomotion costs coupled with less food availability [24,88,89]. Seasonal
temperature ranges, rather than mean temperature, were significant for all other seasons.
Harvest density was also lowest in the areas with the coldest climate in agricultural and
near-natural landscapes. Our models overestimated abundance as compared to the harvest
data in the same areas; this may also be due to stronger seasonality and seasonal shifts in
home ranges due to migration [90]. Unfortunately, in our models, predictions in these ex-
treme climates for spring and autumn were often discarded in the extrapolation evaluation.
Data was limited and insufficient for some areas, but the quantitative evaluation of the
extrapolation allowed us to automatically identify these areas of uncertainty and exclude
them from further analysis. The uncertainty of the predictions in the coldest areas arises
from limited data. Our focal plots with intensive sampling and random arrangement of
transects did not include sites in climate 1 due to limitations in resources. We therefore had
very limited data for climate 1 and the covariate values were often outside the fitted range.
We recommend extra sampling effort in environments at the endpoints of the climate con-
tinuum and emphasize the importance of the quantitative evaluation when extrapolating
predictive models.

At the landscape scale, our results showed that the highest abundance of roe deer is
expected in agriculture-dominated landscapes and the lowest in urban landscapes for both
seasons. It is well known that roe deer is well adapted to fragmented landscapes due to
their foraging [2] and behavioral [91] plasticity. While historically roe deer occurred in
predominantly forested environments, they have been taking advantage of a wide variety
of habitats, including agricultural plains. Habitats providing a heterogeneous matrix of
agriculture and shelter belts and small woodland structures may especially support high
densities [92]. While being a very flexible and adaptable species, the lower abundance in
urban landscapes might be attributed to the fact that less suitable habitat in terms of forage
and shelter is available in these landscapes. Also, human settlements carry a higher risk of
encounters with hunters and dogs, and also a higher risk of vehicle collisions [3,93,94].

The potential of DSM using an indirect method of distance sampling for population
size estimations and ecological assessment has been previously recognized [32]. Advan-
tages include the simplicity of the field survey, the ability to predict relative abundance
in areas not covered by the survey, and the insights gained from the relationship between
abundance and various covariates. The limitations of this first attempt to estimate rela-
tive abundance at a larger scale should serve as recommendation for future surveys and
monitoring programs. The first challenge was the time-period covered by the field survey.
Our spring survey slightly extended into summer; it was expected that the distribution of
resources used by roe deer had changed within this period. However, since the majority



Animals 2022, 12, 222 16 of 20

of the transects and detections were in spring itself, the results are solid, but it would be
better if the period for sampling was reduced. In autumn, we were able to prevent this
limitation, and consequently, the autumn survey was restricted to a shorter period. The
second challenge was that a considerable number of observers was needed for the field
surveys across Bavaria. MCDS [47] would provide the means to account for the differences
in detection rates per observer; however, we suggest that each observer should satisfy
the minimum of 70–80 observations [48] to avoid pooling of observers and to obtain an
independent detection function for each observer.

We suggest that the relative abundance estimates as an index and the insights into
the relationships with land cover types, climate and management variables in this study
are of considerable value for data-based management in itself [23]. Yet, it must be noted
that relative abundance could be converted into an absolute measure of population size by
adding the defecation and decay rates of dung as an offset to the DSM [32]. Previous studies
have used a common rate for the entire study area [11,15]; however, this should not be the
case for larger scale studies, as production and decay rate depend on various factors such
as deer habitat and local climate variables such as temperature and precipitation [95,96].
The ideal monitoring program for absolute population size should, therefore, include
habitat-specific experiments to estimate production and decay rates.

5. Conclusions

The findings of this study provide important insights for the management of roe deer
in human-modified landscapes. Europe has the highest rate of human-induced forest
fragmentation in the world [97]. Habitat fragmentation, which is characterized by habitat
loss, has consistent negative impacts on biodiversity [98]. However, this may not apply
to a generalist species such as the roe deer, which we have shown to be relatively more
abundant in agricultural than in near-natural landscapes. This supports the hypothesis that
deer may be able to exceed the carrying capacity of woodlands due to their adaptability
to agricultural landscapes [99]. Especially in landscapes where agriculture provides extra
nutrition, densities in adjacent forests may be too high to promote forest regeneration. In
the absence of predators, hunting plays an important role in the management of this species.
However, our results show that private forests are linked to higher relative abundances,
which could also be due to differences in hunting pressure. There is a need for studies that
focus on the importance of hunting for wildlife and forest management.

Monitoring of abundance and distribution of large herbivores is challenging. The
modelling methodology that we used allowed us to create abundance distribution maps
that can be useful for resource managers and non-experts. Despite the limitation to relative
abundances rather than absolute abundances, these estimates can still be useful for data-
based management interventions.

However, the challenge of validating model predictions remains. Agreement with
harvest data from hunting statistics was not expected, as harvest data may be biased
and does not account for effort [100]; however, we found a significant medium degree
of correlation. Other possibilities for validation include data from direct surveys such as
those using thermal infrared cameras and also with other indices of animal abundance,
such as the vehicle collision index [68], browsing index [101] and estimates of occupancy
from camera traps [102]. We focused on a single important species; however, future studies
should explore modelling relative or absolute abundances of coexisting species and to
relate this with long-term fitness data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12030222/s1, Table S1: Land cover classification, Table S2:
Comparison of detection functions, Figure S1: Comparison of models with tweedie and negative
binomial distributions with quantile-quantile plots, Figure S2: Maps of Coefficient of variation (CV)
associated with the abundance estimation, Figure S3: Comparison of relative abundance between
landscape types and between seasons.
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