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Abstract: Automation and electrification are changing vehicles and mobility. Whereas electrification is
mainly changing the powertrain, automation enables the rethinking of the vehicle and its applications.
The actual driving range is an important requirement for the design of automated and electric vehicles,
especially if they are part of a fleet. To size the battery accordingly, not only the consumption of
the powertrain has to be estimated, but also that of the auxiliary users. Heating Ventilation and Air
Conditioning (HVAC) is one of the biggest auxiliary consumers. Thus, a variable HVAC model for
vehicles with electric powertrain was developed to estimate the consumption depending on vehicle
size and weather scenario. After integrating the model into a tool for autonomous and electric vehicle
concept development, various vehicle concepts were simulated in different weather scenarios and
driving cycles with the HVAC consumption considered for battery sizing. The results indicate that
the battery must be resized significantly depending on the weather scenario to achieve the same
driving ranges. Furthermore, the percentage of HVAC consumption is in some cases higher than
that of the powertrain for urban driving cycles, due to lower average speeds. Thus, the HVAC and
its energy demand should especially be considered in the development of autonomous and electric
vehicles that are primarily used in cities.

Keywords: battery electric vehicles; vehicle concept; autonomous; HVAC; auxiliary; WLTP; optimization

1. Introduction

The trend towards sustainable and automated mobility is currently changing the
automotive industry [1]. While automation still faces hurdles in terms of legislation [2]
(p. 4), numerous governments already support the sale of battery electric vehicles (BEVs)
by introducing subsidies or increasing the taxation rate for vehicles with higher CO2
emissions [3] (p. 2). As a consequence, the share of new registrations of BEVs is rising and
reached 6.2% in the European Union in 2020 [4]. However, BEVs still have problems with
low ranges and high battery costs [5].

Despite the mentioned problems, automation promises a lot of advantages and changes
to mobility. However, its potential is heavily dependent on its applications. Private
Autonomous Vehicles (AVs) will continue to be oversized in most cases, to completely cover
the mobility demand of a single person [6] (p. 580). However, AVs used in combination
with new business models, such as ridesharing, will have their full saving potentials when
they are the right size. Designing an AV fleet, for example for 99% instead of 99.9% of
car trips in Germany, reduces the required range from 475 km to 135 km [6] (p. 580). In
order to derive the battery size from the range of such a fleet vehicle, both the consumption
of the powertrain and also of the auxiliary consumers (e.g., air conditioning) must be
considered [7] (p. 142).

Up until now, auxiliary power consumption played a minor role in vehicle develop-
ment. It was not considered since it is not part of the consumption calculation using driving
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cycles, such as the WLTP [8] (p. 30). However, since BEVs are more sensitive to increased
auxiliary power due to the higher mass and volume of the battery [9] (p. 17), the real-world
range deviates significantly from the range provided by the manufacturers. This especially
occurs in cold or warm conditions due to the heating, ventilation, and air conditioning
(HVAC) [10] (p. 423).

As described, the range of BEVs is highly sensitive to HVAC and knowledge of the
range is, in turn, essential for the development and fleet planning of AVs. Consequently,
auxiliary users and their energy demand are crucial for battery electric AVs. In addition
to the HVAC, the automation system is considered as a second large auxiliary consumer
for AVs. It consists of sensors and computers, which can lead to an increase in electricity
consumption. Gawron [11] estimates an increase during the use of the vehicle between
around 2% and 15%, depending on the sensor set. Because there is still a lot of discussion
about the correct sensor setup in industry and science and its energy consumption, mainly
the HVAC system is considered in the scope of this paper.

In the following, we present a method to consider the HVAC system in the develop-
ment of AVs (Figure 1). In this paper, we only consider battery electric AVs, although they
could be equipped with other powertrain technologies. First, we describe the state of the
art regarding cabin and HVAC models and vehicle concept development and derive the
research gap (Section 2). Thereafter, we formulate requirements for the cabin and HVAC
model and describe its design (Section 3.1). After validating the model with measured
real-world data (Section 4), we develop a regression model (Section 5) to reduce computing
time to allow the results to be used by the other researchers without needing any specific
software. In parallel, we present the Autonomous Vehicle Concept Development Tool (Au-
VeCoDe), which supports the development of vehicle concepts in the early development
phase. Using this tool, we show the impact of the HVAC system on different battery electric
AVs (Section 6) as an example.
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2. State of the Art

Simulation models are needed to estimate the energy demand of HVAC systems
during operation in the early development phase. For this scope, vehicle concepts are vir-
tually developed to find optimal solutions before building expensive hardware prototypes
(Section 2.1). In this process, thousands of possible vehicle configurations can be simulated
to find the best combination. Those configurations include various sizes and shapes of the
vehicle, which is why all models, including an HVAC model, have to be parametric.

Therefore, we first analyze the current state of the art for modeling the vehicle HVAC
system (Section 2.2). Then, we evaluate whether an existing model is suitable for vehicle
concept development. After evaluating the different approaches, we formulate the research
gap (Section 2.3).

2.1. Vehicle Concept Development

Simplified concepts are initially used in the early development phase of a vehicle,
to define the most important parameters for the subsequent steps. The vehicle concept
process was established in order to iteratively find optimal solutions during this phase and
avoid expensive changes in the later phases [1] (p. 1). Numerous vehicle parameters can be
varied in the search for good solutions. Nicoletti et al. [12] (p. 1) describe the importance of
those parameters and the need to define them to avoid late and expensive changes. They
also highlight the problem of new technologies, such as electrification of the powertrain,
creating the challenge of finding parameters without having any predecessor vehicle.

To overcome the problem of not having parameters from predecessor vehicles, several
methodologies were developed to achieve optimal sets of parameters for vehicle concepts
right from the start. Most of these methodologies consider electrification as new technol-
ogy [13,14]. Since, to our knowledge, no methodology for concept design optimization of
autonomous vehicles exists [1] (p. 6), we adapt the existing ones [15]. The consideration of
the auxiliary consumers is an important part of this, because, as mentioned above, their con-
sumption can account for a high proportion of the total consumption [15]. This is especially
due to the higher auxiliary power consumption of autonomous vehicles. Furthermore,
Schockenhoff [16] points out that autonomous vehicles also need an adaption of the concept
development process. Therefore, we also ensure that our methodology is applicable to new
versions of the process.

2.2. HVAC Models

HVAC models can be divided into cabin models and models of the HVAC system
around the cabin. Wagner [17] describes four different cabin modeling types that can be
used for the HVAC simulation:

• Empirical models (e.g., climate control);
• Single zone models (e.g., concept design);
• Multi-zone models (e.g., design of vehicle cabin);
• Co-simulation (e.g., optimization).

Whereas the cabin model includes glazing, passengers, and other thermal masses, the
HVAC system models include components of the heating and the cooling cycle, as well
as the ventilation for the cabin and the condenser air. In the following, we provide an
overview of the relevant work that considers either the cabin, the HVAC system, or both.

Al Faruque et al. [10,18] modeled the consumption of the HVAC system in conjunction
with a BEV architecture and a battery management system. The authors investigated
the impact of the HVAC performance on the vehicle’s range and battery lifetime. The
implementation is done in AMESim and ADVISOR. The cabin is modeled using the single
volume method, and also considers the heat input due to solar radiation. The methodology
neglects the heat dissipation of the occupants, the transmittance of the windows, and
the cabin geometry. There is no modeling of the refrigeration cycle and its components.
However, the model calculates the cooling and heating power consumption, as well as the
power of the fan, using three equations with constant values for the efficiencies.
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Broglia et al. [19] present a simulation model to estimate the energy consumption for
air conditioning of electric vehicles and its influence on the available range and the cabin
temperature. The authors evaluate various technologies and their impact during the SFTP-
US06 driving cycle and various ambient temperatures. In this context, the refrigeration
cycle with the refrigerant R134a, an electrical PTC-heater, and the vehicle cabin are modeled
using AMESim. The results show that the HVAC-System is responsible for an increase
in energy consumption of around 30% at ambient temperatures between −5 ◦C and 0 ◦C.
For cooling the vehicle cabin at ambient temperatures of 30 ◦C and 35 ◦C, the simulations
show an increase of approximately 5%. A point of criticism is that the authors do not
consider humidity.

Fritz [20,21] presents a holistic tool for truck air conditioning, focusing on energy
consumption and thermal comfort. In addition, the author deals with the development of
a complete vehicle test rig. The simulation model consists of the following sub models:
vehicle environment, powertrain, HVAC system, passenger compartment, and operation
strategy. For the HVAC performance calculations, Fritz only refers to the performance of
the compressor and blower, neglecting the condenser fan. An advantage of this method is
the short computation time.

Ganesan et al. [22] develop a parametric HVAC model in Matlab/Simulink focusing on
climate control studies. The HVAC system is modeled using look-up tables, characteristic
curves, and differential equations. This approach includes a model of the vehicle cabin as
one single volume, neglecting solar radiation and cabin geometry. A simplified vehicle
model only considering the longitudinal motion of the car is integrated to simulate the
impact of the HVAC system on the fuel economy. The authors estimate an increase in
energy consumption of 25% when the HVAC system is switched on.

Jefferies et al. [23] model the air conditioning of an electric bus in the simulation
environment Modelica. The authors investigate several air conditioning concepts based on
their economic efficiency and energy consumption. For the HVAC performance calculation,
the approach considers all relevant components. The simulations determine a range
reduction of 15% by cooling the cabin on hot days. For heating, the electric PTC heater
achieves a reduction of 39% and an R744 heat pump achieves 22%.

Kiss et al. [24] describe the HVAC model CoolSim in Matlab/Simulink. This consists
of a model of the refrigeration cycle and a simplified single-zone cabin model including all
relevant heat flows but neglecting the cabin geometry. The authors model the individual
components of the HVAC system using mathematical equations and lookup tables. In
another work, Kiss et al. [25] extend the model with a cooling cycle, an electric heater, and
a heat pump function. This enables the modeling of the entire thermal management of an
electric vehicle. The SC03-cycle is used for illustrating the capabilities of the model.

Lajunen [26] presents a simulation model for air conditioning and thermal manage-
ment of electric vehicles. In this context, the author models the cooling and heating system,
as well as the heat flows of the vehicle cabin while neglecting its geometry parameters. The
implementation is done in AMESim. Using different driving cycles, the approach analyzes
the impact of the HVAC system on the driving range. A comparison is done between a heat
pump, a PTC-heater, and a heat exchanger for heat recovery. At moderate temperatures,
the use of the heat pump leads to a range increase between 6% and 22%.

Lee et al. [27] present a transient thermal model of a vehicle cabin in combination with
an HVAC model. The modeling of the components of the air conditioning is done in an
F-chart. The authors analyze different refrigerants regarding their power consumption
and Coefficient of Performance (COP). The simulations show that the refrigerant R1234yf
yields the largest improvements. However, the model does not include heating systems.
Validation of the cabin model shows a maximum deviation of the cabin temperature from
the measured data of 5%.

Nielsen et al. [28,29] simulate the energy consumption of a Volvo S60, modeling the
HVAC system and the vehicle cabin. Furthermore, the approach considers the air handling
unit as well as the engine and its cooling system. The implementation is done in GT-
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Suite and the interior cabin model consists of 28 volume units. Using Computational
Fluid Dynamics (CFD) simulations, the heat and mass flows between the individual zones
are calculated before the actual simulation. Nielsen et al. verify the simulation data
with the measured performances in the New European Driving Cycle. The maximum
deviation of the compressor performance is 59%. The maximum deviation of the total
HVAC performance is 13%.

Sevilgen et al. [30] present an HVAC and cabin model in AMESim, focusing on the
analysis cooling and heating process of the passenger compartment. In addition, the paper
deals with the COP calculation of the two refrigerants, R134a and R1234yf, with the former
getting a slightly better result. The authors describe the influence of solar radiation, the
temperature inside the cabin, and various refrigerants on HVAC performance.

Song et al. [31] present a method for the development of HVAC systems for BEV,
focusing on the energy consumption and the design of the heat exchanger in e-Thermal
and SINDA/FLUINT. Furthermore, the authors simulate the influence of the HVAC system
on the available battery capacity. The results show a reduction of 13% in the self-designed
driving cycle, having an active air condition with various vehicle operating modes, includ-
ing soaking, idle, and several vehicle speeds (50, 80, and 110 km/h). This corresponds to a
range of 42 km.

Subiantoro et al. [32] model an HVAC system for electric vehicles in Matlab/Simulink,
studying different measures to reduce energy consumption. The approach considers the
compressor power and the COP of the HVAC system. However, the energy demand from
blowers and the heating system are not considered. The simulations show that an increase
of the set temperature inside the passenger compartment from 20 ◦C to 24 ◦C results in an
energy saving of 22% and an increase of the COP of 13%.

Torregrosa-Jaime et al. [33] model the HVAC system of an electric minibus in Mat-
lab/Simulink, focusing on the design and optimization of the air conditioning. The ap-
proach calculates the HVAC energy consumption with various environmental conditions,
considering all relevant component performances. The modeling of the refrigeration cycle
is done with IMST-ART. For heating the passenger compartment the authors focus on the
heat pump, neglecting PTC-heaters. In another paper, Torregrosa-Jaime et al. [34] detail
the lumped parameter model for the passenger compartment. They consider all relevant
heat flows using mathematical equations and distinguish between a driver and passenger
zone. The research shows that solar radiation is responsible for up to 18–31% of the thermal
load. In addition, the authors determine that the electrical auxiliary consumers contribute
to the total energy consumption with a share of between 29 and 40%, depending on the fan
activation set point.

Valentina et al. [35] present a simulation model to estimate the energy consumption of
the HVAC system for BEVs, including models for the battery and the passenger compart-
ment, taking into consideration the thermal comfort of the users. Connecting this approach
to the navigation system of the car allows for the calculation of the impact of the HVAC
system on the range of the vehicle. This model is suitable for applications in real-time.

Zhang and Canova [36] model an HVAC system for ICEV in Matlab/Simulink. This
model allows for the calculation of the dynamic pressure profiles of the two heat exchangers
and the compressor power. However, the performance of the blowers and the heating
system is neglected. Validation is performed on a vehicle test bench. The authors only
validate the pressure curves at the two heat exchangers.

The previous section summarized the state of the art for HVAC models. In the next
step, the different approaches are evaluated, and the following criteria are defined:

• HVAC performance: This category shows whether the model calculates the perfor-
mance of the HVAC system. Full compliance (•) is achieved when the model considers
the performance of all components. This includes the compressor, blower, condenser
fan, and heating systems. Partial compliance (
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• Modeling level HVAC: This category addresses the level of detail of the HVAC sys-
tem and the refrigeration cycle. Full compliance (•) is when the authors model all
components of the refrigeration cycle and the two-phase behavior of the refrigerant.
The simulation environments AMESim and GT-Suite, for example, meet these require-
ments. Partial fulfillment (
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Auxiliary consumers, such as HVAC, are gaining importance for automated and elec-

tric vehicles. On the one hand, HVAC has a higher impact on the driving range of BEVs 
compared to vehicles with internal combustion engines due to the electric powertrain. On 
the other hand, AVs will have the highest potential when being sized correctly for specific 
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compared to vehicles with internal combustion engines due to the electric powertrain. On 
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2.3. Research Gap

Auxiliary consumers, such as HVAC, are gaining importance for automated and
electric vehicles. On the one hand, HVAC has a higher impact on the driving range of
BEVs compared to vehicles with internal combustion engines due to the electric powertrain.
On the other hand, AVs will have the highest potential when being sized correctly for
specific applications, instead of being oversized to meet every possible application. To
be sized for specific applications, the vehicle range has to be known for optimal route
planning and vehicle distribution. Until now, the literature considers the loss of range
due to rising energy consumption in hot and cold scenarios, which would then result in
climate and location-dependent re-planning of the routes. As an example, the same vehicle
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might operate fewer hours per day without charging in cities with higher temperatures
than in cities with moderate temperatures. Taking the increased energy consumption
by HVAC into account already during the development phase, and thus adapting the
battery size accordingly, has not yet been considered. However, this would help ensure that
vehicles achieve the required range at the planned location of operation under prevailing
climate conditions.

Engineers try to find optimal solutions for vehicle concepts in the early phase of
development to avoid expensive iterations and quickly adapt to new technologies. During
this process, the important vehicle parameters are varied in order to investigate as many
combinations as possible. One parameter is the vehicle and interior size, which, in turn, has
an influence on the HVAC consumption. Consequently, an HVAC consumption model with
variable vehicle sizes as an input is required. However, most of the current approaches to
modeling the HVAC system and its power consumption do not consider different vehicle
geometries and the sizes of the passenger compartment. Thus, they are not suitable for the
early conception of autonomous electric vehicles.

Therefore, in this paper, we develop a model for BEVs to estimate the HVAC con-
sumption depending on the vehicle size. Since the computing time of the used simulation
model is too high, we derive regressions as a meta model (Section 5). Lastly, we investigate
how HVAC impacts battery electric AV concepts when it is already considered during
development (Section 6). We thus use a tool for the concept development of autonomous,
electric vehicles to show the impact of exemplary climate scenarios on vehicle dimensions.

3. Modeling of the HVAC and Autonomous Vehicle Concepts

As is usual with simulation, a compromise must be found between computing time
and accuracy. Furthermore, the components of the model must be parameterized as
accurately as possible in order to accurately represent the real system. The simulation
software KULI [37] from Magna best meets the requirements and was therefore used to
build up and validate our model. In the first step, we describe the used modeling approach
for the vehicle cabin and the HVAC system (Section 3.1). The description of the tool for
vehicle concept development, which is used for investigating the influence of HVAC on the
vehicle design, will be the second step (Section 3.2).

3.1. Modeling the Passenger Compartment and the HVAC System

KULI offers holistic engineering support for the design of specific air conditioning
components and the overall thermal management of vehicles [37]. This includes the re-
frigerant and cooling cycle, the thermal management of the powertrain and the battery,
as well as the passenger compartment. This tool offers a simple model and an extended
model for modeling the passenger compartment and the interior climate comfort. The
former models the cabin as one volume with one homogeneous interior temperature. The
extended model includes different zones with an individual temperature. CFD-Simulations
are needed for calculating the heat and mass flows between the single zones. CFD models
have their strength in the temperature distribution, which is needed for comfort assess-
ment, for example. Since concept optimization normally calculates thousands of different
variations of vehicles, computing time and an easy parameter variation were important re-
quirements. Thus, the extended model of the passenger compartment is not suitable for the
development of the vehicle concept. Furthermore, numerous simulations must be carried
out to generate data points for the creation of the meta model (Section 5). Therefore, we
decided to use the simple 1D-model for the cabin and HVAC system with one homogenous
interior temperature.

All relevant heat flows, including the calculation of the heat entry caused by the solar
radiation, were considered in the 1D model. In KULI, the position of the sun is defined
by two angles: the vertical angle of the sun to the street and the angle to the x-axis of
the car. The windows of the vehicle are defined by three angles: The angle of the front
window/windshield α, the side window β, and rear window γ (Figure 2). KULI calculates
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the incoming heat on the glass areas using these angles and the area of the front, side,
and rear windows. A coefficient of transmission calculates the partial heat that enters the
interior of the passenger compartment through the window areas. Thus, the approach
allows the analysis of the impact of different window areas and angles, as well as the sun’s
intensity and position. Different climate conditions and global locations (e.g., Munich or
Singapore) can be modeled. Moreover, the size of the cabin influences the heat exchange
with the ambient temperature. The larger the vehicles, the higher the amount of heat
exchange, which in turn depends on the temperature difference between the cabin and the
environment. These parameters influence the power of the HVAC system.
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For modeling the refrigerant circuit, KULI offers a user interface that enables adding
and connecting different components, fans, and cooling circuits. The air conditioning model
consists of modular independent component models based on geometric and measured
data. Thus, the heat exchange between the fluids and the air flow as well as the performance
of the whole air conditioning system and its dependencies can be analyzed during the
design stage of the project. We model an HVAC system consisting of an electric refrigerant
compressor, condenser and fan, an expansion valve, an evaporator, and a blower. The
refrigerant compressor has a maximum power output of 4350 W. The refrigerant flow
ranges between 0.02 and 0.06 kg/s with a total of 0.75 kg in the entire circuit. The cabin
blower is limited to a maximum air mass flow of 12 kg/min and a maximum electrical
power of 162 W. For cabin heating, an electrical Positive Temperature Coefficient (PTC)
heater was used. The maximum heating power is limited to 7000 W with an efficiency of
95%. For the parametrization of the model, we refer to values from test benches and other
literature. The software includes the thermal properties of more than 25 fluids. An interface
with common software tools, such as Matlab and Excel, allows external control of KULI
and automation of the simulation. Furthermore, the main advantage of KULI is the low
computing time.

The simulation parameters can be assigned based on a user interface. They were
categorized into three groups (Table 2). Moreover, the driving velocity, initial temperature
and humidity inside the cabin, the number of passengers, and the transmittivity of the
different windows can be entered as simulation parameters.

Table 2. Input parameter of the HVAC and cabin model.

Ambient Conditions Vehicle Concept HVAC-System

Ambient temperature in ◦C Cabin surface area in m2 Set temperature in ◦C
Ambient humidity in % Cabin volume in m3 Blower mass flow kg/min

Sun position (two angles) in ◦ Windshield angle in ◦ Recirculation ratio in %
Sun intensity in W/m2 Side window angle in ◦

Initial cabin temperature in ◦C Rear window angle in ◦

Initial cabin humidity in % Windshield area in m2

Side windows area in m2

Rear window area in m2
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Control of the HVAC system is performed by KULI. It controls the refrigerant com-
pressor, the condenser fan, and the PTC heater depending on the ambient conditions, the
heat exchange of the cabin, the air mass flow, and the desired set temperature. The energy
consumption of the HVAC system, depending on the ambient conditions, the geographic
location, and the size and shape of the vehicle cabin can be calculated using the presented
KULI model.

3.2. Modeling of Autonomous Vehicle Concepts

A tool is needed to calculate the complete vehicle in order to investigate the impact
of HVAC consumption on the vehicle concept. We, therefore, use the current version of
the autonomous vehicle development tool (AuVeCoDe), which will be provided as open
source MATLAB simulation within the dissertation of the first author next year. The first
concept of this research was published in [15] and it has now been extended with several
already published and validated models:

• Calculation of tires and wheelhouses [38];
• Weight regressions of complete vehicles [39];
• Longitudinal dynamic simulation [40];
• Package calculation of autonomous vehicles [41];
• Calculation of gearboxes for electric powertrains [42];

The longitudinal dynamic simulation and weight regressions already help to roughly
recreate the results of this paper together with the following HVAC consumption regressions.

The process (Figure 3) starts with user inputs, e.g., the required interior layout and
space and desired range and acceleration. The package is calculated after conducting a first
longitudinal dynamic simulation to size the battery, gearbox, and electric machine. The
battery design fills the available space with cells and completes the information to estimate
the mass of all components. The calculation of auxiliary consumers is optional and can
be selected by giving information about the weather scenario and sensor setup. This step
integrates the regressions of the HVAC model presented in this paper (Orange, Figure 3).
Since the vehicle mass and auxiliary power consumption are an input for the longitudinal
dynamic simulation, another iteration must be started with re-calculation of the vehicle.
When data such as motor and battery size or vehicle weight converge, the vehicle design is
finished, and the resulting vehicle data are given back to the user.
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A tool validation with BEVs will be shown in future publications after finalizing all
sub-models. Since AVs are not yet available as series production cars, conventional BEVs
are used to validate the tool. As an example, we show the current deviation (Table 3) when
calculating the Volkswagen (VW) ID.3 and the corresponding plot of the calculated package
(Figure 4).

Table 3. Current validation status by example of VW ID.3.

Parameter Manufacturer Simulation Deviation

Acceleration time 0–100 km/h 7.3 s 7.3 s ~0%
Maximum speed 160 km/h 160 km/h ~0%

Driving range 426 km 430 km +0.9%
Battery capacity (usable) 58 kWh 60.3 kWh +3.9%

Consumption 1 13.6 kWh/100 km 14.0 kWh/100 km +2.9%
Machine max. power 150 kW 160 kW +6.5%
Vehicle empty weight 1805 kg 1843 kg +2.1%

1 Calculated with range and usable battery capacity, since the consumption provided by the manufacturer includes
charging losses.
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Figure 4. Current VW ID.3 validation status of the package plot of the AuVeCoDe Tool.

The package already exhibits a good fit with the real vehicle, although partial models,
such as the body-in-white, are still in progress. The simulation results only show minor de-
viations, except for the electric machine. This is because we used a Model 3 PMSM efficiency
diagram [43,44] for the calculation since we do not yet have an efficiency diagram of a VW
ID.3 available. This diagram has a different ratio of maximum speed to base speed than the
actual machine and thus leads to a different ratio of torque to power. However, it provides
high accuracy in the consumption simulation due to a similar efficiency distribution.

4. Validation of HVAC Model

For an understanding of the behavior of both the cabin and complete HVAC model,
we validated them separately. First, the validation of the cabin model is presented, par-
ticularly in its behavior of heating due to solar radiation on a BMW i3 and a Volkswagen
eGolf. Second, we present the validation of the complete system including the cabin and
components for heating and cooling, using our own measurements from a Volkswagen ID3,
Tesla Model 3, and BMW i3.

4.1. Cabin Model

The cabin model is validated using heating curves due to solar radiation. The cabin
model includes the heat exchange between the interior and environment and the influence
of solar radiation entering through the windows. To measure the heating curves of the
real cars, a specific orientation of the vehicle towards the sun and a specific day time was
defined. This configuration was later also set in the simulation model. The change in the
air temperature inside the real vehicle was measured by placing temperature loggers at the
head and foot area in the car. These temperatures are used to calculate an average interior
temperature. The first vehicle, a VW eGolf, results in a maximum deviation of 1.34 ◦C
(5.53%) and a mean absolute percentage error of 2.14% (Figure 5).
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Figure 5. Comparison between heating curve of a Volkswagen eGolf/BMW i3 and simulation.

The second vehicle, a BMW i3, could also be replicated by the model, with a maximum
temperature deviation of 1.69 ◦C (5.62%) and a mean absolute percentage error of 2.22%
(Figure 5). The validation indicates that the cabin model is suitable for predicting the
average air temperature within the passenger compartment. The deviations were mainly
caused by unknown material characteristics and simplifications in the simulation model
like a single volume cabin, constant solar radiation, and sun angle.

4.2. Complete Model

In the next step, the HVAC model was validated, focusing on its energy consumption
for heating and cooling the passenger compartment. In this context, we look at the power
of the PTC-heater and the refrigerant compressor. Due to the lack of data, the power of
the fans was neglected. This assumption can also be made because the PTC-heater and
refrigerant compressor are responsible for the majority of the total energy consumption
of the system. For the validation, the BMW i3, the Tesla Model 3, and the Volkswagen
ID.3 were used for having a holistic validation with different cars and different ambient
conditions. While the BMW i3 and Model 3 could be used for the validation of the heating
model, only the VW ID.3 could be used for the cooling model. This was due to the limited
availability of data from those vehicles. A data logger plugged into the on-board diagnostic
connector collected information about the HVAC consumption and temperatures inside
and outside the car and the HVAC settings (e.g., the set temperature).

For cooling the VW ID.3, a different set temperature was used, having different
measured sun intensities due to a changing sun angle. The set temperatures vary between
18 ◦C and 21 ◦C. The former is adjusted to a sun intensity of 850 W/m2, the latter to
650 W/m2. Both values could be collected from a measurement station near the vehicle [45].
Table 4 shows the validation of the approach based on the three cars.

The deviations can be explained with the simple cabin model on the one side, which
only provides one average temperature of the cabin. On the other side, parameters of
the vehicle, such as the heat transfer coefficient, are not known and have to be estimated.
Furthermore, the battery and other components that can thermally interact with the cabin
or the coolant cycle were not considered. Nevertheless, the model reproduces the measure-
ment data sufficiently and accurately and is suitable for calculating the energy consumption
for heating and cooling the passenger compartment.
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Table 4. Validation of the HVAC model using the energy consumption for heating and cooling of the
passenger compartment.

Vehicle Ambient
Temperature

Set
Temperature Simulation Measurement Derivation

BMW i3
(Heating)

6.06 ◦C 24 ◦C 1557 W 1393 W 11.77%
3.54 ◦C 23 ◦C 1447 W 1318 W 9.79%
−2.80 ◦C 24 ◦C 2454 W 2277 W 7.77%

Tesla Model 3
(Heating)

4.37 ◦C 20 ◦C 2917 W 2963 W −1.55%
11.9 ◦C 20 ◦C 1454 W 1408 W 3.27%

VW ID.3
(Cooling)

24 ◦C 18 ◦C 1439 W 1553 W −7.34%
25 ◦C 21 ◦C 566 W 604 W −6.29%

5. Regressions

Since thousands of calculations have to be performed during the concept development
optimization, the computing time of the simulation has to be minimized. For this reason,
we decided to derive a meta model built with regressions. They result in low computing
time and can be integrated into every other model to estimate the energy consumption due
to HVAC.

For the scope of this research, the weather parameters are reduced to three different
scenarios (Table 5). Because we want to estimate the greatest possible change in the vehicle
concept, we decide to choose worst case scenarios for winter and summer. To cover all
possible weather scenarios, the variety of inputs would have to be extended and more
complex metamodels would be required. If computing time does not play a major role, the
HVAC simulation model can also be directly integrated into the concept development tool,
which would lead to higher accuracy and the possibility to select weather configurations
different from the three mentioned in Table 5.

Table 5. Climate scenarios.

Parameter Winter Spring/Fall Summer

Operation mode Heating Heating Cooling
Angle of sun - 45◦ 60◦

Solar radiation - 450 W/m2 850 W/m2

Ambient temperature −8–5 ◦C 10 ◦C 25–32 ◦C

For the winter scenario, we do not consider heating of the cabin due to solar radiation,
which corresponds to a very cloudy day with low sun. For the summer scenario, we
consider a high sun position in Munich, which is around 60◦, and solar radiation of
850 W/m2. For the moderate scenario, the sun position is reduced to 45◦ and the solar
radiation to 450 W/m2.

Either the model for heating or the model for cooling can be used during the calculation
of the regression. A mixed scenario, where the need for heating or cooling depends on the
vehicle and window sizes, is therefore not possible. Consequently, the ambient temperature
of 10 ◦C for the spring/fall scenario was selected to ensure the operation mode of heating
for every vehicle and window size.

As an initial step for deriving the regression model, the most influential parameters
were determined that are relevant for HVAC consumption. For this scope, we conducted a
sensitivity analysis for every above-mentioned scenario to evaluate the influence of every
parameter on the energy consumption in the model. The sensitivity analysis shows that
different parameters were relevant for the different scenarios. Table 6 shows the most
important parameters.
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Table 6. Table of relevant input parameters for regressions.

Winter Spring/Fall Summer

Ambient temperature TAmb Ambient temperature TAmb Ambient temperature TAmb
Blower mass flow ṁBlower Vehicle type Vehicle type
Cabin surface area ACabin

3 Windshield angle α Windshield angle α

Percentage circulated air pcircair Side window angle β Side window angle β
Rear window angle γ Rear window angle γ

Windshield area AFront Windshield area AFront
Side window area ASide Side window area ASide
Rear window area ARear Rear window area ARear

Cabin surface area ACabin Cabin surface area ACabin
Blower mass flow ṁBlower

While only one regression shows good results for the heating scenario, several have
to be calculated for the moderate and cooling scenarios to get satisfactory results. This is
because, on the one hand, the value range for window angles and surface areas is divided
into conventional vehicles and one-box design vehicles. On the other hand, using only one
regression for the summer scenario leads to high deviations of the regression compared to
the simulation data. A possible reason could be the variable efficiency of the compressor,
the heat exchange between the refrigerant and the air and the HVAC control. Consequently,
a separate regression is created for every ambient temperature in the summer scenario,
which improves the results.

The value range for the conventional vehicles is defined by measuring several vehicles
(Table 7) selected from different body types (Hatchback, Sedan, SUV, Mini-Van) and classes.
The parameter set is selected so that most of the vehicles are covered. We also include three
examples for autonomous one-box design (VW Sedric, Cruise Origin and autoTAXI) to
cover non-conventional shapes. The values of the side window area refer only to the one
side of the vehicle (left or right) due to symmetry.

Table 7. Table of relevant input parameters for regressions.

Vehicle Front Window
AFront in m2/α in ◦

Side Window
ASide in m2/β in ◦

Rear Window
ARear in m2/γ in ◦

Smart ForTwo 1 1.0/52 0.35/70 0.46/18

VW Polo 1 1.16/29 0.5/65 0.5/40

BMW i3 1 1.4/31 0.78/67 0.48/44

VW ID.3 1 1.36/27 0.67/65 0.5/41

VW eGolf 1 1.2/29 0.6/65 0.5/49

BMW X5 1 1.3/33 0.8/67 0.6/43

BMW 7er 1 1.2/31 0.57/65 1.1/24

VW Touran 1 1.3/30 0.9/74 0.58/59

VW Sedric 2 0.3/62 1.5/83 0.5/69

Cruise Origin 2 0.7/90 1.3/87 0.7/90

autoTAXI 1 1.8/72 1.16/86 1.6/72
1 Own measurement, 2 Estimation based on pictures.

Using the simulation model in KULI, we create a data set to adapt the model and a data
set to prove the accuracy of the regression. As mentioned, we differ between conventional
(e.g., SUV, Sedan) and one-box design vehicles in the summer and spring/fall scenario. For
the winter scenario, this differentiation is not considered since solar radiation is neglected.
Table 8 shows the variation within the relevant input parameters for the regression for the
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two vehicle groups. In both cases, the cabin surface area ACabin was varied between 5, 7.5,
and 10 m2.

Table 8. Differentiation between conventional and One-Box design vehicles based on their exte-
rior dimensions.

Parameter Conventional One-Box-Design

Windshield area AFront 1.1–1.5 0.6–1.8
Rear window area ARear 0.4–1.0 0.6–1.8
Side window area ASide 0.5–1.1 1.1–1.7

Windshield angle α 25–40 75–90
Side window angle β 65–85 75–85
Rear window angle γ 20–60 75–90

To find the best compromise between under- and over-fitting, we fit equations with
linear and quadratic correlations. For every solution, the deviation for the data points
used is evaluated. Furthermore, we conduct inter- and extrapolation with additional data
points, which were not used for the calculation of the regression. The results show that the
combination of a simple linear regression led to the best results (Equation (1)). Input is the
parameters x (Table 6), output is the energy consumption E, and the coefficients p have to
be determined using the simulation data.

EReg (x1, . . . , xn) =
p1 x1 + . . . + pn xn + x1 (pn+1 x2 + . . . + pn+(n−1) xn) + . . . + xn−1 (pi = n(n+1)/2 xn) + pi+1

(1)

The mean and maximum absolute and relative error show only small deviation
(Table 9) for the data points used for the regression, as well as additional data points
tested for inter- and extrapolation. A range of error is given for the spring/fall and summer
scenarios since several regressions are used to achieve higher accuracy. The maximum error,
especially in the summer, is caused by complex relationships, such as unfavorable operating
points of the compressor, that cannot be represented with linear regression. Nevertheless,
polynomial regressions showed especially worse results for inter- and extrapolation due to
overfitting, which is why we decided to use linear regressions.

Table 9. Deviation of the regressions to the simulated data points.

Type of Error Winter Spring/Fall Summer

Mean absolute error (MAE) 20.4 W 0.91–3.3 W 8.4–73 W
Mean relative error (MRE) 0.7% 0.06–0.27% 1.3–3.1%

Maximal error
(absolute/relative) 114 W/10.4% 11.2 W/2.5% 631 W/18.5%

MRE interpolation 0.9% 0.04–0.24% 1.4–2.8%
MRE extrapolation 3.8% 0.06–0.37% 1.2–2.8%

We did not include parameters in the appendix due to the high quantity of numbers,
which therefore needed space. Instead, the regressions can be downloaded from Github [46],
including an already usable MATLAB function for the calculation.

6. Results

In this section, we present the results obtained with the AuVeCoDe Tool and show
the influence on the vehicle when the HVAC consumption is already considered in the
early development phase. For this scope, the HVAC meta-model was included in the
AuVeCoDe tool, and three autonomous and electric vehicles are investigated with variable
ambient temperatures. The small-size vehicle, mid-size vehicle, and vehicle with one-
box design are shown in Table 10. We use two different driving cycles to differentiate
between the conventional development (WLTP cycle) and development for urban areas
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(ARTEMIS Urban cycle). Furthermore, we use the summer and winter scenarios as worst-
case scenarios and do not consider additional consumption by HVAC in a reference scenario
in order to have a basis for comparison. We take the mid-size vehicle as our reference
vehicle and impose with a range similar to the VW ID.3 in the WLTP cycle, which is 420 km.
In the ARTEMIS Urban cycle, the average speed is 17.65 km/h, whereas the WLTP cycle is
46.50 km/h. We assume the operation time is the same for every vehicle, which is about
9 h. Considering the lower average speed, this means only about 160 km of range in the
ARTEMIS Urban cycle to achieve equal operation time. Although the HVAC is normally
switched off during these cycles, we consider HVAC consumption to show its influence.

Table 10. Investigated autonomous and electric vehicles: small vehicle, mid-size vehicle, one-box
design vehicle.

Input Parameter Small Vehicle (e.g., Smart Fortwo 1) Mid-Size Vehicle (e.g., VW ID3 1) One-Box Vehicle (e.g., Autotaxi)

Plot of package
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Driving range WLTP: n.a. 
ARTEMIS U.: 160 km 

WTLP: 420 km 
ARTEMIS U.: 160 km 

WTLP: 420 km 
ARTEMIS U.: 160 km 

Maximum speed 130 km/h 160 km/h 130 km/h 
Acceleration 
0–100 km/h 11 s 7.6 s 10 s 

Seating layout 
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Conventional 
Five seats 

Vis-à-vis 
Four seats 

1 Assumption that this vehicle would be available as an autonomous vehicle. 

Depending on the given scenarios, all three vehicles are calculated, and the resulting 
battery capacity is plotted (Figures 6 and 7). For all scenarios, a basic auxiliary consump-
tion is considered in addition to the HVAC consumption. As mentioned in Section 1, the 
consumption due to sensors and computers has high uncertainty. We, therefore, calcu-
lated with an optimistically low consumption of 600 W [47] (p. 4). We assume this con-
sumption to be the same for every vehicle size to get better comparability and because the 
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Maximum speed 130 km/h 160 km/h 130 km/h

Acceleration
0–100 km/h 11 s 7.6 s 10 s

Seating layout Single rowTwo seats ConventionalFive seats Vis-à-visFour seats

1 Assumption that this vehicle would be available as an autonomous vehicle.

Depending on the given scenarios, all three vehicles are calculated, and the resulting
battery capacity is plotted (Figures 6 and 7). For all scenarios, a basic auxiliary consumption
is considered in addition to the HVAC consumption. As mentioned in Section 1, the
consumption due to sensors and computers has high uncertainty. We, therefore, calculated
with an optimistically low consumption of 600 W [47] (p. 4). We assume this consumption
to be the same for every vehicle size to get better comparability and because the type and
number of sensors and computers required are probably dependent on the automation
level and not the vehicle size.
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Figure 6. Change of battery size depending on weather scenario using the WLTP cycle for mid-sized
vehicle and one-box vehicle.
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Figure 7. Usage of available battery space for vehicles sized based on the WTLP cycle with ambient
temperature of −5 ◦C and a desired range of 420 km.

For the WLTP cycle (Figure 6), we only considered the mid-size and one-box vehicle,
because a range of 420 km was not achievable with the small-size vehicle due to missing
package space for the battery. The winter scenario causes higher consumption than summer,
which agrees well with the literature. The main reason for this is a lower conversion
efficiency by the PTC heater (<1) in comparison to the climate compressor (Coefficient of
Performance (COP) > 1). In both cases, the one-box vehicle is more sensitive to changing
weather conditions. The maximal increase of battery for this vehicle is 87% in the winter
scenario, mainly due to a higher cabin surface, which leads to a higher loss of heating
energy to the outside. The one-box vehicle also has a higher energy demand for the
summer scenario because of the larger windshield and side windows. They cause higher
solar radiation into the cabin and, as a consequence, a maximal battery increase of 47%.

The change in powertrain consumption due to a larger battery, and thus a high vehicle
mass, is only minor. On the one hand, the cause lies in the fact that a dominant percentage
of aerodynamic drag determines the energy demand in the WLTP, and neither frontal
surface nor the drag coefficient are affected by the battery sizing. On the other hand, BEVs
are not as sensitive to mass as ICEVs because they can recuperate energy during braking.

The vehicles designed for −5 ◦C almost require the entire available battery space due
to the higher HVAC consumption (Figure 7). For temperatures below −5 ◦C, the simulation
leads to unfeasible vehicles since the required battery capacity no longer fits in the available
installation space. For these temperatures, the target range has to be reduced or the vehicle
needs to be redesigned to provide more battery space.

Vehicles designed for an urban application and identical operation time can be
equipped with a much lower battery compared to vehicles designed with the WLTP
cycle (Figure 8). Especially, a lower average speed leads to reduced energy demand from
the powertrain. However, when using HVAC, the required battery capacity increases
significantly more. The reason for this is the time-dependent energy consumption of the
HVAC system. The slower the vehicle is driving, the more sensitive it is to auxiliary power
consumers since the percentage of needed auxiliary energy per distance is increasing. This
was also stated by Grube [9].

Again, the one-box vehicle has the highest consumption caused by higher cabin and
glass surfaces. The increase is significantly higher than for the WLTP. For heating, a battery
enlargement of 250% is required, and for cooling, 134% is required, or in other words, more
than a tripling of the battery size. In comparison to the WLTP, the auxiliary consumers
already cause more than half of the total energy demand for 10 ◦C ambient temperature.
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Figure 8. Change of battery size depending on weather scenario using the ARTEMIS Urban cycle for
a small-sized vehicle, a mid-sized vehicle, and a one-box vehicle.

7. Conclusions

The results from Section 6 show that for urban or in general low-speed applications,
the auxiliary consumers can demand more than half of the total energy. Consequently,
improvements of auxiliary consumers are as important as, or even more important than,
the powertrain to reduce battery size and thus costs. Especially heating with PTC heaters
still has efficiency disadvantages, which is why the use of heat pumps should be promoted
and expanded.

Another result is the recommendation that auxiliary consumers should be considered
as a requirement for the development of autonomous vehicles since they have a strong
influence on the battery size. Depending on cabin surface area, window area and angles,
and weather scenario, significantly different sizes of batteries are required to achieve the
same driving range. For both winter and summer scenarios, the cabin surface area should
be minimized to reduce the loss of heating or cooling energy to the ambient surroundings,
which thus decreases energy demand. In the summer scenario, higher window areas lead
to higher energy demand due to solar radiation heating up the cabin, in addition to heat
transfer through the cabin walls.

To be capable of achieving desired ranges, especially in urban areas with high solar
radiation, the window areas should be reduced to a minimum, where a compromise
between economy and ergonomics is achieved. If autonomous vehicles are designed
without a driver space, the windows can be more tinted since laws on visibility to the
outside no longer have to be fulfilled. Better insulation also helps to reduce energy losses,
especially during cold ambient temperatures. The reduced consumption and the resulting
smaller battery size could amortize their costs.

8. Discussion and Outlook

Several simplifications have to be made during the development of the HVAC model.
Due to computing time, the vehicle cabin is modelled with the single-volume method. This
requires assuming that the average temperature in the vehicle cabin has no differentiation
between the temperatures in the first and second row and the neglect of temperature
stratification. In reality, there is a division of air flows for the foot and head areas caused
by different temperatures of the incoming air flows. Modeling the vehicle cabin with the
single-volume method also complicates the validation. Due to a lack of data, assumptions
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have been made for the transmittivity of the different windows. Furthermore, two different
refrigerants are used in the cooling validation. The simulation model works with the
refrigerant R1234yf, and the VW ID.3 uses R744. Information was neither available on the
interaction between the HVAC system and the cooling of the battery storage unit nor the
size and layout of the condenser and evaporator.

The regression models of Section 5 deviate with a discrepancy from the simulation
model in KULI. Depending on the cabin geometry and the environmental conditions,
deviations of several hundred watts can occur in individual cases. These deviations show
the trade-off between the degree of modeling and the computing time. However, the
substitute models are suitable for interpolation and extrapolation as shown.

The results show three vehicles as examples with specific weather configurations. In
reality, the weather conditions and sun position are constantly changing and thus lead
to continuous slight changes in HVAC consumption and driving ranges. Nevertheless,
the calculation of best and worst cases gives the range of needed battery capacities to
developers and researchers and helps them make fleet planning decisions.

At this time, HVAC and other auxiliary power consumers are not considered when
estimating the consumption and range of a vehicle. This could change in the future since
the results show that HVAC is, especially with lower speeds, as important as the powertrain
in terms of energy demand. The European Union also plans to consider eco-innovations,
such as a more efficient HVAC system, in addition to the powertrain from 2025 [48]. So
far, only measures to the powertrain, for example by coasting functions or more efficient
alternators, have been considered [48] (p. 5).
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