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Abstract
The influence of strong fluctuation levels on the phase velocity is studied just inside the last
closed flux surface in the edge of magnetized confined plasmas by means of gyrofluid
simulations. Linear features as growth rates and dispersion can be suppressed by small-scale
vorticity generated by nonlinear self-sustainment. Measurements of the phase velocity by
different diagnostic techniques could still provide finite values, which are not a result of linear
instabilities, but are due to the nonlinear redistribution of spectral energy.

Keywords: weak turbulence, strong turbulence, phase velocity, drift wave, self-sustainment,
plasma edge
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1. Introduction

The edge of magnetized confined plasmas is characterized by
steep gradients and is subject to a large number of different
modes resulting from various linear instabilities and diverse
nonlinear self-organized phenomena. It is widely thought that an
underlying instability grows and excites the turbulence by non-
linear saturation [1]. During such a process various features of the
underlying instability may be transmitted to the turbulence [2–4].
In plasma turbulence it is also common to classify the turbulence
according to its driving instability; the turbulence is not universal,
and is called, for example, ion temperature gradient (ITG) or
trapped electron mode turbulence. Different modes or instabilities
can be distinguished by their size, cross-phase relations between
different quantities (as density, potential, electron and ion temp-
erature, and heat fluctuations), and their dispersion relation
between wavenumber k and frequency ω. An overview of the
propagation direction, cross-phases, and typical sizes of the most
relevant instabilities for the plasma edge can be found in [5].

Since cross-phase relations are commonly not available in
experiments, the phase velocity is usually one of the key iden-
tifiers of underlying instability. This may be a proper treatment at
the low fluctuation level typically observed in the plasma core.

In ideal fluid turbulence the nonlinearity is usually strong
enough that linear instabilities are to a large extent negligible.
Here, turbulence is considered to be universal and not clas-
sified according to its initial instability. Furthermore, at some
fluctuation level the plasma turbulence should become uni-
versal. In the present contribution we study how plasma tur-
bulence can suppress linear features as growth rates and
eigenfrequencies. Plasma turbulence inside the edge of the
confined plasma is investigated in the low-confinement
regime. This region is characterized by high fluctuation
levels. In the region just inside the confined region, the tur-
bulence exhibits close to Gaussian statistics, and is to a high
degree self-similar and non-intermittent. In ASDEX Upgrade,
Joint European Torus (JET), and Alcator C-Mod, just inside
the separatrix the distribution function is close to Gaussian
[6–8], as in simulations similar to those presented in [9]. In
the scrape-off layer, just outside the separatrix, filamentary
transport becomes important [10, 11]. These filaments exhibit
characteristic sizes [12], and turbulence in the scrape-off layer
is not self-similar, but intermittent [13].
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In the following, experimental observations of the phase
velocity inside the edge of the confined region are summarized
(section 1.1). Particular attention is paid to experiments at
ASDEX Upgrade. Different measurement techniques to deter-
mine the phase velocity are discussed in section 1.2. The con-
cepts of weak and strong turbulence regimes are introduced in
section 1.3. With the help of simulations (details given in
section 2) the influence of the strength of broadband turbulence
on the measurements of a phase velocity are investigated. These
are studied in a simulated case of weak turbulence (section 3)
and strong turbulence (section 5), and in a regime between
weak and strong turbulence corresponding to the experimental
situation at ASDEX Upgrade (section 4). It will be shown that
the high fluctuation level of the turbulence (in particular the
high level of vorticity fluctuations) in the plasma edge is strong
enough to suppress linear features of the plasma turbulence.
Measured finite phase velocities can be a result of the turbulent
cascade independent of an underlying instability. A summary
and conclusions are given in section 6.

1.1. Measurements of the phase velocity

Measurements in ASDEX Upgrade with Doppler reflecto-
metry (DR) show no significant phase velocity in the plasma
edge, and the measured velocity is approximately the E×B
background velocity [14], showing no signs of dispersion
[15]. This has been also observed in W7-AS [16], and seems
to be in contradiction to drift waves being the dominant
instability in the plasma edge from a linear perspective. On
the other hand, finite phase velocities have been reported from
the plasma core in ASDEX Upgrade [17, 18] and from the
plasma at around r/a=0.8 in Tore Supra [19].

For the purpose of illustration, an example of measurements
at different wavenumbers is shown in figure 1. The data is
shown in normalized dimensionless units (left and bottom axis)

and in dimension-assigned units (right and top axis). Measure-
ments have been done at the plasma edge in the confinement
region (ρpol=0.98) which is expected to be drift wave-domi-
nated [20]. The dispersion relation of drift waves is given by
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The index l in the frequency ωl distinguishes the linear fre-
quency from the nonlinear frequency. Drift waves exhibit a
phase velocity ωl/k close to the electron diamagnetic velocity
ue, dia, and propagate binormal (k=ky) to the magnetic field
and radial direction (kx). The perpendicular plane is spanned by
the radial and binormal directions (k k ky x= +^ ). Due to
polarization effects, the phase velocity is reduced by ks

2r ^( ) at
structures close to the drift-scale T m eBs e ir = ( ), with ele-
mentary charge e, magnetic field strength B, ion mass mi, and
electron temperature Te. DR with a movable mirror allows one
to probe varying wavenumbers ( k6 12< <^ cm−1) during the
discharge, and the poloidal correlation reflectometer (PCR) [15]
is sensitive at low wavenumbers (k⊥<3 cm−1). The measured
Doppler frequency shows a linear relationship to the probed
wavenumber. The measured frequencies by the PCR aligns well
with those measured by the DR. The radial electric field in the
plasma edge is given in first-order by its ion diamagnetic
contribution with possible additional contributions from the
neoclassical viscosity and from the Reynolds stress [21]. In
ASDEX Upgrade H-modes plasmas, the radial electric field is
approximately its ion diamagnetic contribution [22]. In L-mode,
the collisionality can be expected to be higher, and therefore
neoclassical effects can be expected to be less important. In the
I-phase [23], where zonal flows are thought to be important
[24, 25], the radial electric field in ASDEX Upgrade also fol-
lows its ion diamagnetic contribution [26]. Therefore, it seems
plausible to assume that the radial electric field and E×B flow
can also be approximated by their diamagnetic contributions in
L-mode in ASDEX Upgrade. The E×B velocity has been
estimated by u en p en p1 1E B i e»  » ´ ( ) ( ) to be around
4 km s−1 (indicated by the blue shaded area in figure 1),
where the measured dispersion in the phase velocity is small
(< 0.35 km s−1) and is within the error bars of the measure-
ments. A possible phase velocity is significantly below the
electron diamagnetic velocity, which is of the order of uE×B, as
indicated by the black shaded line in figure 1.

1.2. Measured dispersion dependent on the measurement
technique

To infer spatial characteristics from temporal signals experi-
mentally, one must map time to space; this is mainly moti-
vated by Taylorʼs hypothesis of frozen turbulence [27]. It is
assumed that at a point the change of turbulent velocity
fluctuations in time can be directly related to their spatial
change via the mean convection velocity. In the fifties it was
shown that the hypothesis breaks down and is restricted to a
limited range of wavenumbers (or frequencies) for shear flows
[28]. The applicability of Taylorʼs hypothesis also depends on
the fluctuation level: to be valid, turbulent velocity fluctua-
tions must be significant smaller than the mean velocity [28].

Figure 1. Frequency versus wavenumber measured by DR (dark red
squares) and PCR (red squares) at the plasma edge (ρpol=0.985)
of a typical ASDEX Upgrade L-mode plasma at a temperature of
Te=124 eV. The frequency is normalized to the cold ion sound speed
cs, and the wavenumber to ρs=0.7 mm calculated with the magnetic
field on axis B=2.6 T. The frequency broadeningΔf (blue triangles)
is about one-third of the measured frequency. The corresponding
perpendicular velocity ∂f/∂k is not varying with the wavenumber within
the error bars. The estimate for the E×B velocity is indicated by the
blue shaded area, and an estimate of the drift wave dispersion relation is
indicated by the black shaded area.
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Due to the power distribution in the wavenumber–frequency
plane P(k, ω), the power of a single frequency will have
contributions from multiple wavenumbers. This results in two
different ways to determine average wave velocities given by
the direction of integration. One can integrate in the wave-
number direction, keeping frequency constant, or integrate in
the frequency direction while keeping the wavenumber con-
stant. Depending on the shape and broadening of the wave-
number–frequency distribution, different answers will be
obtained, as we will see in the following.

For example, by choosing the wavenumber to be con-
stant, k0, we take a cut in the frequency direction. The average
frequency is defined by
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DR measures a power spectrum P(k0, ω) at a given wave-
number k0, from which a wavenumber-dependent phase
velocity u k k

k0
0

0
= wá ñ( ) ( ) can be estimated in principle. Since

the low-frequency range is often corrupted by the directly
reflected microwave beam, this analysis approach is often
misleading, and the Doppler shift should be determined by
fitting a Gaussian to the power spectrum.

By choosing a constant frequency ω0 to examine wave
velocities, cuts along the wavenumber direction in P(k, ω0)
give an average wavenumber defined by
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A wave velocity can be estimated by u
k0

0w = w
á ñ

( ) . Measuring

a wavenumber by estimating it by the phase difference of
spatially separated points leads to such estimates. If fluctua-
tions can be represented by an eikonal iexp q~ ( ) with
θ=kx−ωt, the effective or pseudo wavenumber [29] is
given by k

x
wá ñ = q¶

¶
( ) . Mode numbers of magnetic signals are

usually estimated in this way [30]. Time delay estimation
(TDE) works in a similar manner. Here, the phase is measured
at two spatially displaced positions θ(x, t) and θ(x+Δx, t).
The time lag Δt is estimated, where both signals are in phase.
Hence, θ(x, t)=θ(x+Δx, t+Δt) or kΔx=ω Δt. From
this, a frequency-dependent phase velocity can be directly
inferred uph k

x

t
w = =w D

D
( ) . The spatial displacement Δx, a

time delay Δt, and the frequency at which the time delay is
measured are determined. What is actually estimated here is
an effective phase velocity u

kTDE
TDE

wá ñ = w
á ñ

( ) , which corre-

sponds to the effective wavenumber k t
xTDE wá ñ = Dw

D
( ) .

There are additional problems, like propagation into the
radial direction or eddy tilting, that can be diminished by
taking into account multiple spatial points; TDE methods that
include multiple spatial points [31–33] or velocimetry [34]
also rely basically on the same assumptions. However, if the
measured field contains all important spatial scales of motion,
it should be, in principle, appropriate to recover the phase
velocity. Nearly all measurements of velocities done with
Langmuir probe arrays, gas-puff or electron cyclotron

emission imaging, beam emission spectroscopy, correlation
reflectometry, or phase-contrast imaging measure an effective
wavenumber k wá ñ( ).

In this study, these two different measurement methods
for the estimation of phase velocities are investigated in the
case between weak and strong plasma edge turbulence.

1.3. Turbulence regimes

The distinction between weak and strong turbulence goes
back to Kadomtsev [1]; the latest review can be found in [35].
The regimes of turbulence are distinguished by the strength of
fluctuations represented by spectral broadening. The fre-
quency broadening is defined by
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The wavenumber broadening is defined by

k
P k k k

P k k
k

, d

, d
. 5

2
2ò

ò
w

w

w
D = - á ñ( )

( )

( )
( )

In weak turbulence, a wave-like instability grows, and its
nonlinear saturation is responsible for the turbulence. To
retain its wave-like features, the frequency is similar to the
linear eigenfrequency lw wá ñ ~ , and the growth rate is smaller
than the linear eigenfrequency γl = ωl. The weak turbulence
regime is also called wave turbulence. The growth rate of the
instability is balanced by nonlinear saturation γl∼Δω. Weak
turbulence is characterized by small frequency broadening
Δω = ωl.

In the strong turbulence regime the nonlinearities dom-
inate, and the turbulence is independent of the excitation
process. Strong turbulence is characterized by strong fre-
quency broadening Δω exceeding the analytically expected
eigenfrequency Δω?ωl. As a result, strong turbulence does
not feature a linear wave frequency due to the short decorr-
elation time τ≈1/Δω resulting in γl=Δω, ωl=Δω.
Equivalent considerations are valid for the wavenumber.

That the nonlinearity is not dominant in the weak tur-
bulence case does not mean that it does not lead to a redis-
tribution of spectral energy and that cascades are not present.
It just means that the turbulent spectral power P(k, ω) is
tightly bound to the linear dispersion relation in the wave-
number–frequency plane, as indicated by the gray region in
figure 2(a). The spectral power can be redistributed along the
dispersion relation, and a cascade can be observed as indi-
cated by the blue upper spectrum in figure 2(a). However,
vertical and horizontal cuts through the wavenumber–fre-
quency plane, corresponding to frequency (wavenumber)
spectra at a given wavenumber (frequency), show no cascades
and just the dispersion. In the case of strong turbulence
(figure 2(b)), the dispersion relation can be neglected, and the
spectral power mainly follows the Doppler shift of the
background flow. Due to the strong nonlinearity, the spectral
power spreads in all directions with the tendency to lower
frequencies and wavenumbers in the two-dimensional case.
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These can also be observed in the frequency (wavenumber)
spectra at a given wavenumber (frequency).

2. Simulation set up

Simulations for a circular plasma cross-section with toroidal
axisymmetry have been carried out with the three-dimensional
gyrofluid electromagnetic turbulence model GEMR [36, 37].
GEMR simulates the densities, parallel velocities, parallel and
perpendicular temperatures, and parallel and perpendicular
parallel heat fluxes for ions and electrons, respectively. The
coordinate system is aligned with the equilibrium magnetic
field. Despite being a δ-f limited code, the gradients evolve
freely, and GEMR is a global model. Details on the self-con-
sistent treatment of the profiles and magnetohydrodynamic
(MHD) equilibrium can be found in [36]. The main input
parameters of GEMR are a smallness parameter δ=ρs/a, a
normalized plasma beta β, and a normalized collisionality
ν=aνe/cs, with νe being the inverse Braginskii electron col-
lision time. Simulations are carried out at ASDEX Upgrade
(R=1.65m, a=0.5m, B=2.4 T, qs=4.6). The coordinate
system (x, y, s) is in the radial, binormal, and parallel direction
to the magnetic field. The simulations are performed on a
128×512×16 grid, where only the drift plane (128×512)
at the outboard midplane is analyzed here. The simulations
cover the region 0.96<ρ<1.04.

About 1 ms is simulated. The time series is split up into
six subwindows. The frequency resolution is about a/cs. For
each subwindow the wavenumber–frequency power spectrum
of the density fluctuations n y t,˜( ) at a given flux surface
x=ρ at the outboard midplane s=0 has been calculated by
the two-dimensional Fourier transform n y t n k, , w˜( ) ˜( ). All
points in the binormal direction have been used for the spatial
Fourier transform. The presented wavenumber–frequency
power spectra P k n k n k, , ,*w w w= á ñ( ) ˜( ) ˜ ( ) shown in the
following are averaged á ñ· over these subwindows. Since the
spectra are shown at one particular flux surface, effects due to
a finite radial measurement volume, which are present for

every real diagnostic, are not taken into account. Furthermore,
the spectra shown in the following are in a region with a
moderate amount of shearing. Therefore, structures propa-
gating in opposite directions, as often observed in experi-
ments [38–41], are not observed here.

Typical experimental parameters at the last closed flux
surface as the reference flux surface are chosen. The case
corresponding to the experimental situation (section 4) is at
ne=2·1019 m−3, and Te=Ti=120 eV, corresponding to
δ=1.32·10−3, β=8.39·10−5, and ν=4.08. The gra-
dient scale lengths are fixed and not allowed to evolve, and
are chosen to be L L L0.5 0.5 2.5 cmn T Te i= = = in the
experimental situation. The strong turbulence case (section 5)
is at ne = 2 · 1019 m−3, and Te = Ti = 100 eV, corresponding
to 1.20 10 , 6.99 103 5d b= =- -· · , and ν=5.88. Initial
gradient scale lengths are chosen to be L L0.5n T e= =

L0.5 T i. The radial resolution is 0.65 ρs, and the resolution of
the binormal plane is 0.55 ρs. We expect drift wave turbu-
lence under these conditions [20].

The gradients evolve in the strong turbulence case
(section 5). During the initial phase the density gradient relaxes,
and the ITG effectively steepens compared to the density gra-
dient Ln=(2/3)LTi=5 cm. The radial electric field is shown
in figure 3; it is dominated by its ion pressure contribution in the
confined region and by the sheath potential in the scrape-off
layer. The turbulence shows different features depending on the
wavenumber. At low wavenumbers (kρs<0.2), the strong
potential perturbations correspond to resistive ballooning modes
(see figure 4). At higher wavenumbers (kρs>0.2), density and
potential fluctuation amplitudes are similar, which is char-
acteristic of drift wave turbulence. At even higher wavenumbers
(kρs>0.6), the ion temperature fluctuations are strongest,
pointing to ITG drift wave turbulence.

For the sake of completeness, a weak turbulence case is
presented in section 3. Weak turbulence can be obtained for
small gradients appearing, for example, in the core. The
reference surface is chosen to be at ρ=0.5 with ne=
4.5·1019 m−3, and Te=Ti=2 keV. The simulations cover
the region 0.3<ρ<0.7, with gradient scale lengths of
L L L0.3 20 cmT T ni e= = = . ITG turbulence can be expec-
ted in such a case. The corresponding GEMR input

Figure 3. Strong turbulence case: radial electric field (black solid
line), ion pressure contribution (red dashed line), and sheath
potential contribution (blue dotted line) to the radial electric field.

Figure 2. Artistʼs view of spectral features of weak and strong
turbulence.
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parameters are δ=5.38·10−3, β=3.15·10−3, and ν=
0.03. The results are shown in section 3.

3. Weak turbulence case Δω<ωl

The wavenumber–frequency power spectrum P(k, ω) of density
fluctuations in the plasma frame of reference at ρ=0.5 are
shown in figure 5(a) in the late growth phase of the simulation.
The directions are defined positive for the ion diamagnetic
direction, and negative in the electron diamagnetic direction.
Since ω/k is positive, a clear phase velocity in the ion dia-
magnetic direction can be observed, which is a sign of ITG
turbulence. The linear phase velocity can be measured from
equation (2), and is shown by the black line in figure 5(c). Most
of the turbulence activity is restricted to this very narrow line.
This situation corresponds to the weak turbulence case, but it is
not saturated yet. The turbulence saturates at a fluctuation level
of about n n 1»˜ %. In the saturated phase the turbulence
becomes more broadband, as shown by figure 5(b). The aver-
aged frequency wá ñ, as shown by the red dotted line in
figure 5(c), is reduced compared to the growth phase, but a
phase velocity in the ion diamagnetic direction is clearly
observed. The average frequency wá ñ is above the frequency
broadening w wá ñ > D (shown by the blue line in figure 5(c)).
Therefore, this case is in the weak turbulence regime even
though it is not ideal because the frequency does not exceed the
broadening much. With respect to the linear frequency (shown
by the black line in figure 5(c)), the turbulence is in the weak
turbulence regime. The underlying instability (ITG) can imprint
its linear phase velocity to the turbulence. The linear frequency
significantly exceeds the frequency broadening lw w~ á ñ
wD and rms vorticity (this will be important later, and is

indicated by the gray region in figure 5(c)).

4. Experimental parameter case Δωωl

In the typical experimental situation in ASDEX Upgrade pre-
sented above, a significant frequency broadening is present;

however, it does not exceed the average frequency. In figure 1
the frequency broadening as estimated from DR is fmeasD
f 0.3measá ñ » . Therefore, typical L-mode plasmas at the plasma
edge in ASDEX Upgrade are closer to a weak turbulence regime.
Due to the turbulence, the frequency is broadened by Δω (k)=
kΔu+uE×BΔk+ΔkΔu, where Δk is the nonlinear wave-
number broadening and Δu is the nonlinear velocity broadening
or the velocity spectrum. The measured frequency broadening is

Figure 4. Strong turbulence case: Wavenumber spectra of normal-
ized potential (blue), density (black), and ion temperature (red)
fluctuations. Potential perturbations are strongest at low wavenum-
bers, corresponding to ballooning modes; at higher wavenumbers,
density and potential fluctuations are similar, and the ion temperature
fluctuations are strongest, pointing to ITG drift wave turbulence.

Figure 5. Weak turbulence case: wavenumber–frequency power
spectrum P(k, ω) of density fluctuations at ρ=0.5 in the plasma
frame in (a) the late growth phase and (b) the saturated phase. (c)
Frequency broadening shown by the blue solid line compared to the
average frequency in the plasma frame is shown by the black solid
(red dotted line) in the growth (saturated) phase. The rms vorticity
level is indicated by the gray area. The linear eigenfrequency (black
line) exceeds both the frequency broadening and rms vorticity level.
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not only due to fluctuations at the probing wavenumber k0, but is
also due to the finite spectral resolution Δk0 probed [39, 42],
resulting in a frequency broadening 2πΔfdiag=Δk0·u. Taking
Δk0=2.2 cm

−1, we getΔfdiag/Δfmeas≈0.5. SinceΔfdiag gives
basically the sensitivity of the diagnostics, it is likely that Δfmeas
provides the correct estimate of the frequency broadening by the
turbulence. At the very least, it is not higher Δω<2πΔfmeas. In
a conservative approach, the minimum frequency broadening by
the turbulence would be Δω>2π(Δfmeas−Δfdiag), and there-
fore 0.15 0.3w wD á ñ » – .

In contrast to plasma core parameters, a weak turbulence
regime in the plasma edge seems to not be easily accessible in
GEMR. By fixing the background profiles to the initial con-
ditions, a reduction in the spectral broadening can be
obtained. Besides, at very low frequencies the average fre-
quency strongly exceeds the frequency broadening

k kw wá ñ D( ) ( ) (figure 6(b)) by k k 4w wá ñ D »( ) ( ) –7. This
is of a similar order as in the experimental observation
(figure 1) where the average frequency exceeds the frequency
broadening by k k 1.5 3.5w wá ñ D »( ) ( ) – (taking into account
broadening by diagnostic effects discussed above, this factor
may be assumed to be k k 3 7w wá ñ D »( ) ( ) – ). An interchange
instability is present at these low frequencies. The wave-
number-frequency power spectrum is shown in figure 7(a).
The spectral power aligns well with the background E×B
velocity shown by the white line. As seen in figure 7(b),

k u kE Bwá ñ » ´( ) , and no significant wavenumber shift is
observed. Approximating velocities by the center of gravity
of the frequency [43] using equation (2) is not the usual
evaluation method. Commonly, a Gaussian is fitted to the
logarithmic power spectrum P(k0, ω). The center of the
Gaussian is equated with the Doppler shift as the advection
velocity. Thus, the background velocity is recovered. The
average wavenumber k wá ñ( ) strongly exceeds the wave-
number broadening Δk(ω) up to roughly (a/cs)ω<20
(figure 6(a)). For low frequencies with low frequency
broadening ((a/cs)ω<20), the phase velocity follows the
background velocity only by k u kE Bw á ñ » ´ (figure 7(b)). At
higher frequencies with significant broadening in wave-
number space (Figure 6(a)), a propagation in electron dia-
magnetic direction is observed (figure 7(b)). However, this
shift is mainly due to the presence of an interchange mode at

kρs≈0.1 (figure 7(a)). Also note that the measurements in
ASDEX Upgrade do not cover this region. Moreover, a fre-
quency-dependent diagnostic will usually not evaluate
equation (3), but instead estimate the velocity by correlation.
Indeed, the velocity estimated with TDE using a spatial
separation of about 5 mm (black dotted line in figure 7(b))
recovers the background velocity (blue solid line in
figure 7(b)), as shown by the overlap of the lines in
figure 7(b). In summary, this simulation does not show any
significant phase velocity in the plasma frame, nor any
dispersion.

How linear features can get lost in drift wave turbulence
can be found in [44], which is shortly summarized here. In the
weak turbulence case, the linear growth rate balances the
nonlinear broadening γl∼Δω. This is not the case for fully
developed drift wave turbulence in the plasma edge; the linear
growth rate is much smaller than the rms vorticity

l rmsg áWñ ˜ [44]. Since the nonlinear spectral transfer is done
mainly by the vorticity equation, the rms vorticity should be
of the order of the frequency broadening rms wáWñ ~ D˜ .
Regarding γ∼Δω, fully developed drift wave turbulence is
not in the weak turbulence regime [44].

The transition to turbulence occurs at the beginning of
the simulation, and the growth phase can be studied. For
t<30 cs/a the turbulence grows exponentially, as seen by
the amplitude in figure 8(a). Due to adiabatic coupling, den-
sity fluctuation also induces vorticity fluctuations (figure
8(b)), which also grow exponentially at the beginning of the
simulation. The growth rate is about γl≈0.2 cs/a, and is
carried mainly by an interchange mode at kρs≈0.1. As the
density fluctuation level increases, so does the rms vorticity
level. The vorticity is calculated by p2

ifW =  +^
˜ ( ˜ ˜ ) and

takes into account the electrostatic potential and ion pressure
fluctuations. At t≈25 cs/a the rms vorticity exceeds the
linear growth rate. Shortly after this, at t≈35 cs/a, the
growth rate drops to zero. The turbulence has to generate its
own vorticity through nonlinear self-sustainment [45, 46].
The turbulence is still driven by the background gradient, and

Figure 6. Experimental parameter case: (a) wavenumber and
(b) frequency broadening shown by blue solid lines compared to the
average wavenumber and frequency shown by red dashed lines. The
drift wave eigenfrequency is included as a black line, and the rms
vorticity level is indicated by the gray area. Data is shown in the
laboratory frame of reference. Data is shown from ρ=0.980.

Figure 7. Experimental parameter case. (a) Wavenumber–frequency
power spectrum P(k, ω) of density fluctuations at ρ=0.980. The
mode at kρs=0.1 is an interchange mode. (b) Average frequency

kwá ñ( ) (red dashed line), the mean E×B velocity ω=uE×Bk (blue
solid line), phase velocity determined by average wavenumber kw á ñ
(red dotted line), fitted mean of the Gaussian in dependence of
wavenumber (black dashed line), and corresponding phase velocity
determined by TDE (black dotted line). Data is shown in the
laboratory frame of reference.

6

Plasma Phys. Control. Fusion 60 (2018) 085002 P Manz et al



the effective growth rate (including nonlinear effects) is given
by u n dn drxá ñá ñ˜ ˜ [9]. The self generated vorticity also cor-
responds to potential and radial velocity fluctuations ux˜ ,
which lead to transport. Furthermore, the turbulence gradient
drive rate u n dn dr nx

2á ñá ñ˜ ˜ ˜ drops strongly, but not to zero.
The turbulence level saturates at this point. Since the drive is
still the background gradient, the vorticity is induced by
adiabatic coupling, and both nonlinearities (one in the vorti-
city evolution and one in the density evolution) are present;
thus, the turbulence is of a drift wave type. Similar to in a
background shear, the nonlinear vorticity scatters small
structures before they can feel a linear instability. As a con-
sequence, linear features, such as the linear growth rate or
propagation velocity, can get lost. The growth rate γl≈0.2
cs/a is much below rmsáWñ » 6–14 a/cs, and the vorticity rms
level of the electrostatic potential fluctuations is only between
3–6 a/cs. The drift wave phase velocity might survive since it
is much higher than the growth rate ωl?γl. In figure 6(b) the
black line shows the drift wave dispersion relation

u k k k1l y s x ye,dia
2 2w r= + +( ( ) ) (see equation (1)), which is

approximated by u k k1 2 se,dia
2 2r+( ) assuming isotropic

structures kx=ky. The drift wave eigenfrequency (black line
in figure 6(b)) is in a similar order of magnitude as the
spectral broadening ωl≈Δω (blue line in figure 6(b)). Note
that one should not only compare the eigenfrequency ωl(kl) at
a particular scale with its spectral broadening Δω(kl), since
the drift wave ωl(kl) is disturbed by different scales to itself

k kl¹ . The total rms vorticity level W̃ indicated by the gray
shaded area in figure 6(b)) is at least similar to the linear
eigenfrequency, and mostly exceeds it (black line in
figure 6(b)). This seems to be sufficient to mix and disturb the
drift wave during its propagation, and no typical drift wave
phase velocity is measured. The results confirm that the small-
scale vorticity is generated at a rate similar to the diamagnetic
drift frequency [46]. The structures are only advected by the
background flow. The present regime shows features of
strong turbulence γl=Δω, but since the eigenfrequency is
close to the frequency broadening, ωl ? Δω is not fulfilled.
Therefore, the presented regime is closer to strong than weak
turbulence.

5. Strong turbulence regime Δω?ωl

In these simulations the spectral broadening exceeds the aver-
aged values of both frequency and wavenumber (figure 9).
Since the broadening does not exceed the averaged values by
orders of magnitude ( k k,3

2

4

3
w wD á ñ » D á ñ » ), the simu-

lations seem to be marginally in the strong turbulence regime.
The wavenumber–frequency spectrum of density fluc-

tuations in the drift plane at the outboard midplane is shown
in figure 10. The power distribution follows more or less the
mean convective velocity ω=uE×Bk, as indicated by the white
solid line. The mean convective velocity is in the electron
diamagnetic direction, which is here defined as negative. In
figure 10 it appears as if the turbulence amplitude is sym-
metrically spread around ω=uE×Bk. By integrating in fre-
quency space to estimate the mean frequency (equation (2)), a
propagation in the ion diamagnetic direction in the plasma
frame is observed (see figure 11(a)). This is expected for ITG
modes. However, if we integrate in wavenumber space to
estimate the mean wavenumber (equation (3)), and plot the
frequency over this averaged wavenumber, modes at a higher
wavenumber propagate in the electron diamagnetic direction
in the plasma frame (figure 11(b)), which is characteristic of
drift waves. Indeed, estimating the velocity by TDE using a
spatial displacement of 5 mm results in the phase velocity as
shown by the black dotted line in figure 11(b), which is

Figure 8. Experimental parameter case: (a) density fluctuation level,
(b) vorticity fluctuation level, and (c) vorticity, growth rate γl, and
turbulence gradient drive rate at the beginning of the simulation.

Figure 9. Strong turbulence case: (a) wavenumber and (b) frequency
broadening shown by blue solid lines, compared to the average
wavenumber and frequency shown by red dashed lines. The
broadening exceeds the averaged values but is of the same order of
magnitude. Data is shown in the laboratory frame of reference.
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roughly two times the background E×B velocity. Since the
E×B velocity is roughly the ion diamagnetic velocity in the
electron diamagnetic direction, the corresponding phase
velocity as measured by TDE is the electron diamagnetic
velocity as expected for electrostatic drift waves.

In summary, the structures propagate in the ion dia-
magnetic direction at a given wavenumber and in the electron
diamagnetic direction at a given frequency. In a linear fra-
mework this seems impossible.

The reason for the discrepancy of different phase velo-
cities kwá ñ and kw á ñ is the nonlinear broadening. In the case
of drift wave turbulence, the power is transferred to low
frequencies and low wavenumbers [47–50], leading to the
power spectrum being skewed to low wavenumbers and low
frequencies. This is called the inverse energy cascade [51]. At
a given wavenumber k, the power is transferred to low

frequencies; this is responsible for a reduction in the effective
frequency wá ñ, and therefore also a reduction in propagation
velocity kwá ñ compared to the background velocity. As in
this example, the background velocity is in the electron dia-
magnetic direction, which leads to a propagation in the ion
diamagnetic direction in the plasma frame.

At a given frequency ω, the power is transferred to lower
wavenumbers. This leads to a reduction in the effective
wavenumber ká ñ at this frequency, and therefore to an increase
in the effective propagation velocity kw á ñ. As in this
example, the background velocity is in the electron diamag-
netic direction, and the propagation velocity in the plasma
frame is also in the electron diamagnetic direction
(equation (1)).

By mapping the wavenumber–frequency power spectrum
P(k, ω) to the plasma frame, P(k, ω−uE×Bk), it has to be
considered that in the present case the background velocity is
time-dependent uE×B(t). Therefore, every subtime interval has
to be mapped in the plasma frame, and the ensemble average
is done afterward. The wavenumber–frequency power spec-
trum P(k, ω) in the plasma frame is shown in figure 12. It
exhibits clear broadband characteristics. No signs of disper-
sion are observed. As in the present regime, no eigen-
frequency u kl E Bw w= á ñ - ´ is detected, and ωl=Δω. We
have seen in section 4 that the growth rate is negligible,
γ=Δω. Therefore, the presented regime is not only mar-
ginal, but clearly in the strong turbulence regime (ωl, γl
= Δω).

A shift to low frequencies due to the nonlinear energy
transfer as observed by the red line in figure 11(a) is not
observed by the DR [14–16] (figure 1b). By fitting a Gaussian,
the skewed part at particular low frequencies of the spectrum
P(k0, ω), which results from the cascade, is basically ignored.
In the average (equation (2)), the impact of this nonlinear shift
is much stronger because the power is taken into account
linearly and not logarithmically. The resulting Doppler shift
is shown by the black dotted line in figure 11(a). The
Doppler shift is more or less dispersionless, and is very close

Figure 10. Strong turbulence case: wavenumber–frequency power
spectrum P(k, ω) of density fluctuations at ρ=0.995. Data is shown
in the laboratory frame of reference.

Figure 11. Strong turbulence case: (a) average frequency wá ñ with
dependence on the wavenumber, and (b) average wavenumber ká ñ
with dependence on the frequency ω (both red solid lines), in
comparison with the mean convective velocity ω=uE×Bk (blue
dashed line) in the electron diamagnetic direction. Data is shown in
the laboratory frame of reference. The corresponding phase
velocities in the plasma frame are indicated by the arrows (ID/ED
for ion/electron diamagnetic directions, respectively). The l.h.s.
shows a phase velocity in ID, and the r.h.s. in ED. The velocity as
measured by a DR is included by the dotted black line in (a); the
velocity measured by the TDE technique is included as a black
dotted line in (b).

Figure 12. Strong turbulence case: wavenumber–frequency power
spectrum P(k, ω) of density fluctuations at ρ=0.995. Data is shown
in the plasma frame of reference. Averaged frequencies and
wavenumbers are shown by the white lines.
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to the mean E×B velocity; this is basically in agreement
with [14–16].

6. Discussion and conclusion

Plasma edge turbulence is characterized by high fluctuation
levels. In particular, the high level of small-scale vorticity
fluctuations exhibiting strong shearing rates exceeds the
growth rate by orders of magnitude lrms gáWñ ˜ [46]; fur-
thermore, they are of comparable levels to the eigen-
frequencies of possible instabilities lrms  wáWñ˜ . Thereby,
linear features such as growth rates and dispersion can be
suppressed. This seems to be the reason behind the vanishing
phase velocity in the above shown typical case for ASDEX
Upgrade L-mode discharges (figure 1). These small-scale
vorticity fluctuations are generated through nonlinear self-
instability, and the turbulence can nonlinearly sustain itself
[44–46, 49]. It is important to note that the vorticity includes
contribution from electrostatic potential and ion pressure
perturbations, where the later increase with the ion to electron
temperature ratio can be above one in the plasma edge. If no
measurements of the vorticity fluctuation level rmsáWñ˜ are
available, it might be roughly approximated by rmsáWñ »˜
1 it w+ D( ) with the ion to electron temperature ratio
τi=Ti/Te.

In the case of strong turbulence (where the frequency
broadening exceeds the averaged frequency Δω> ω=
uE×Bk) including time-varying equilibrium measurements of
the phase velocity in the laboratory frame could still provide
finite values even if the eigenfrequencies are suppressed by
the small-scale vorticity. Broadband plasma edge turbulence
shows a power law behavior in wavenumber and frequency
space, which is a result of energy transfer mainly from high to
low wavenumbers and frequencies. Due to the shift of energy
away from the line ω=uE×B k to low wavenumbers, the
wavenumber-averaged phase velocity u kw w= á ñ( ) will
be in the direction of the background velocity. As a result of
the energy transfer to low frequencies in the laboratory frame,
the frequency-averaged phase velocity u k kw= á ñ( ) will be
in the direction opposite that of the background velocity.

Only if the system is in the weak turbulence regime
ωl?Δω∼γl can the phase velocity be used as an indicator
for the underlying instability. This should be the case for core
turbulence, where the fluctuation level and hence rmsáWñ˜ and
Δω are much lower. For high confinement regimes, the
fluctuation levels are lower, but the difference to the L-mode
is not as strong as that for the cases compared in the present
study. This requires detailed investigations in the future. For
example, in H-mode quasi-coherent modes with low fre-
quency broadening are observed [52], while in I-mode a
weakly coherent mode with high frequency broadening is
observed [53, 54]. In general, it is recommended to verify
phase velocity measurements based on a frequency-dependent
technique with a wavenumber-dependent technique, and
vice versa.
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