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Abstract
A two-fold analysis of electromagnetic core tokamak instabilities in the framework of the
gyrokinetic theory is presented. First principle theoretical foundations of the gyrokinetic theory
are used to explain and justify the numerical results obtained with the global electromagnetic
particle-in-cell code ORB5 whose model is derived from the Lagrangian formalism. The energy
conservation law corresponding to the ORB5 model is derived from the Noether theorem and
implemented in the code as a diagnostics for energy balance and conservation verification. An
additional Noether theorem based diagnostics is implemented in order to analyse destabilising
mechanisms for the electrostatic and the electromagnetic ion temperature gradient instabilities in
the core region of the tokamak. The transition towards the Kinetic Ballooning Modes at high
electromagnetic β is also investigated.
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1. Introduction

Strongly magnetised fusion plasmas represent a paradigmatic
example of out-of-equilibrium systems, in which turbulence is
ubiquitous. This omnipresence originates from the concept of
magnetic fusion itself: Bringing the mix of hydrogen isotopes
into the confinement mode implies by construction the exis-
tence of strong spatial gradients. Typically, a difference of
three orders of magnitude for the temperature is present, with
∼108 K at the centre of the device, where the plasma is hot
and relatively dense and with ∼105 K close to the edge, where
the plasma is more rarefied and colder. The strong gradients
or space inhomogeneities of the temperature, velocity and

current are intrinsic to fusion plasmas, and provide sources of
free energy and therefore represent sources for instabilities.
The instabilities manifest themselves via the exponentially
growing perturbations of the electromagnetic fields. When the
critical amount of instabilities has been developed, the system
moves to a turbulent state with strongly unpredictable beha-
viour in space and time. In turn, the transport associated with
turbulence is extremely dangerous for the plasma confine-
ment. The understanding of its origins is a subject of
numerous investigations [1].

Extensive studies in the framework of different formal-
isms, from the single fluid MHD model and the multi-fluid
approaches to kinetic models, aiming to identify the
instability mechanisms, have been carried out over the past
decades, both analytically and numerically. A detailed over-
view of these studies is presented in [2], where the transition
between the electrostatic and the electromagnetic regimes is
also discussed. In particular, in low β=p/[B2/(8π)] plas-
mas, where p is the kinetic pressure and B2/(8π) the magnetic
pressure, the ion temperature gradient (ITG) instability,
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known as the ITG mode, has almost an electrostatic polar-
isation, and therefore carries almost only electrostatic energy
for the coupled drift waves and the ion acoustic waves that
gives rise to a collective instability.

In higher pressure plasmas with β>me/mi, the
electromagnetic energy is injected, and the ITG mode couples
with the shear Alfvén wave becoming a dispersive oscillation
with an electromagnetic polarisation. As the plasma pressure
increases the inductive electric field from the fluctuating
magnetic field δB⊥ begins to cancel part of the electrostatic
component of the parallel electric field. This cancellation
reduces the energy transfer rate  á ñj E and reduces the growth
rate of instability.

There are numerous studies of these weakly electro-
magnetic ITG modes including [3–6] which detail how the
ITG modes change with increasing β. At certain intermediate
values of β, both the ITG and the kinetic ballooning modes
(KBM) are present with different frequencies and growth
rates.

In this paper, we investigate the transition between the
low β and finite β regimes in the framework of the gyroki-
netic theory, both analytically and numerically.

Strongly magnetised plasma exhibits multi-scaled dynamics:
the fast rotation around magnetic field lines, called gyromotion, is
at least three orders of magnitude faster than the slow drifts
across the magnetic field lines. The gyrokinetic dynamical
reduction [7, 8] aims to simplify the dynamical description in
which fast gyration is systematically and reversibly eliminated,
resulting in considerable simplifications and a gain of computa-
tional time.

Nowadays, the gyrokinetic (GK) codes play a significant
role in the understanding of the development and the satur-
ation of turbulence and the prediction of the subsequent
transport properties [9]. Electrostatic gyrokinetic simulations
have been the topic of numerous studies during the last
decades [10–12], so that the properties of the electrostatic
instabilities in the framework of the gyrokinetic theory are
rather well known. However, global electromagnetic simula-
tions are more recent [13–15] and some elements related to
the GK electromagnetic instability mechanisms still need to
be clarified.

In order to provide a better understanding of the global
electromagnetic GK simulations, we present an analysis of the
instability mechanisms by performing global linear electro-
magnetic simulations with the particle-in-cell code ORB5. The
numerical set-up is similar to the one used for benchmarking
the global electromagnetic codes [15]. The ORB5 code is
based on the GK Lagrangian model [14, 16] and allows one to
use diagnostics tools issued from first principles, exactly
corresponding to the theoretical model.

This article is organised as follows: In section 2, the field
Lagrangian model including all approximations implemented
in the code ORB5 is presented. Section 3 provides the deri-
vation of the ORB5 energy invariant through the Noether
theorem. In section 4, the diagnostics issued from Noether’s
method are derived, and their implementation in the code

ORB5 is discussed. Finally, in section 5, the analysis of the
electromagnetic instability mechanisms is presented.

2. Variational formulation of the ORB5 code model

A detailed derivation of the ORB5 model in the framework of
the Eulerian variational principle [17] is given in [16], where
CGS units are used. In this work, we use the Lagrangian
variational formulation accordingly to [18], since the
Lagrangian formulation of the gyrokinetic field theory lends
itself to a discretisation by finite element methods. We notice
that the choice of formalism, Eulerian or Lagrangian, does not
affect the final expressions for the gyrokinetic Maxwell–
Vlasov equations.

The Lagrangian action functional for the code ORB5

depends on the fluctuating electromagnetic potentials ( )f A,1 1

and on the coordinates of the Lagrangian particle trajectories
( ) [ ( ) ( ) ( ) ( )]m q=t t p t t tZ z X z z z z, , , , , , , ,z0 0 0 0 0 , where X

are the positions of the gyrocentres, pz their momenta parallel
to the magnetic field lines, μ their magnetic moments and θ

their gyroangles. These coordinates are labelled by their
initial conditions z0 such that Z(z0, 0)=z0. The expression of
the action is given by [16]:
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where the particle Lagrangian is given by:

( ˙ ) · ˙ ˙ ( ) ( )mq= + - + dL
q

c

m c

q
H HZ Z A X, , 2s

s
s

s

s
s s0, 1,*

the generalised vector potential is defined as:

( )= +
c

q
pA A b. 3s

s
z*

The volume element in the reduced phase space is =zd 0

( ) m qmB pz Xd d d ds z, 0 0 ,0 0 0* (see [19] for more detail) where

· ( )
= ´ =BB A b Band . 4s s s s,* * * *

The dynamical distribution function is denoted by fs for each
species, and the background distribution function by fC,s. The
property of the Vlasov distribution function being conserved
along the particles trajectories translates into

( ) ( ( ) ) ( )=f f t tz Z z , ; . 5s s0, 0 0

We assume that the background distribution fC,s is frozen and
corresponds to a good approximation of fs at all times. The
first and the second terms of the action(1) correspond to the
gyrocentre reduction, and the last term is a contribution from
the perturbed magnetic field. In this model we retain only the

2
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perpendicular part of the perturbed magnetic field = ´B̂ b
A1 . This model is used in most global nonlinear gyroki-

netic codes including all the codes participating to the Eur-
opean benchmark effort described in [15].

The background Hamiltonian contains information on the
kinetic energy of a charged particle moving in a magnetic
field of amplitude B:

( )m= +H
p

m
B

2
. 6s

z

s
0,

2

The first order correction of the Hamiltonian model for the
ions is given by

( ) ( ) ( )r rf= + - +H q A
p

m c
X X , 7s s s s

z

s
1, 1 0, 1 0,

where the gyroaveraging operator ·á ñ is the average over the
fast gyroangle θ contained in the fast rotating Larmor vector
r s0, measuring the distance between the initial particle posi-
tion and the guiding-centre position. More precisely, in an
orthonormal basis ( ˆ ˆ ˆ )b b b, ,1 2 at X, the Larmor vector is given
by [ ˆ ( ) ˆ ( ) ]r m q q= -mc q m B b X b X2 cos sins s s0, 1 2 , and
the expression of the gyroaveraging is given by

( ) ( ) ( )òr rf
p

q fá + ñ = +
p

X X
1

2
d . 8s s0,

0

2

0,

For the electrons, the first order correction to the Hamiltonian
only contains the first order finite Larmor radius (FLR) cor-
rection. It corresponds to the drift-kinetic dynamics, and it is
given by

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )f= -H e A

p

m c
X X . 9e

z

e
1, 1 1

In what follows the bracketed quantities are evaluated at the
position r+X s0, , all the other quantities are evaluated at the
gyrocentre position X.

There exist several nonlinear models in the ORB5 code.
The most complete model considers the nonlinear Hamilto-
nian model H2 for the ions, including all order FLR correc-
tions in its electrostatic part and up to second order FLR terms
in its electromagnetic part. In this work, in addition to the
drift-kinetic model for the electrons, we consider the long-
wavelength approximation of the nonlinear model for the ions
(see equation (68) in [16]), i.e.:
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The second order Hamiltonian model for the electrons only
contains the drift-kinetic correction:

( )=H
e

m c
A

2
. 11e

e
2,

2

2 1
2

Before presenting the equations of motion implemented in
ORB5, we discuss all necessary approximations included in

the gyrokinetic action given by equation (1). The first term of
the action involves the full distribution function fs, while the
second term involving the nonlinear Hamiltonian H2 contains
a ‘canonical’ distribution function fC,s, which is by definition
invariant under the unperturbed Hamiltonian dynamics, i.e. it
satisfies the condition { } =f H, 0C s s, 0, gc , where the guiding-
centre Poisson bracket is defined accordingly to equation (7)
in [16]. This approximation brings several simplifications to
the model. First, it results in the linearisation of the gyroki-
netic Poisson and Ampère equations. Second, it simplifies the
gyrokinetic Vlasov equation by excluding some nonlinear
terms from the gyrocentre characteristics associated with
Hamiltonian H2.

2.1. Gyrokinetic field equation

The equations of motion are derived from

òd d= =  td 0.
t

t
ORB5

0

1

We use functional derivatives for evaluating the rhs of this
expression explicitly. As a reminder, for a functional [ ]h =

L( )ò h hrd ,n depending functionally on a scalar field η and
its gradient h , the functional derivative is defined as d dh
acting on the test function χ as:
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The corresponding quasineutrality equation in the weak form
with the test function f1 is obtained by calculating the func-

tional derivative ( ) · ò d df fxd3
1 1:
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We perform the change of variables ( )= tz Z z ,0 , and the
quasineutrality equation becomes

( ) ( )

( ) · ( )
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where  m q= mB pz Xd d d d ds z, . The Ampère equation obtained
from the same variational principle is derived from the
computation of ( ) ·  d d A A1 1 and the change of variables
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( )= tz Z z ,0 :
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2.2. Nonlinear gyrokinetic Vlasov equation

We now proceed with derivation of the particles dynamics
implemented in the ORB5 code. The equations of motion for
the particles are obtained by setting to zero the functional
derivatives with respect to the phase space coordinates

( )m q= pZ X, , ,z :
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Since in the action functional (1) the nonlinear part of reduced
particle dynamics, i.e. Hamiltonian H2 is only coupled to the
non-dynamical part of the distribution function, i.e. fC, H2

does not contribute to the particle characteristics used for
reconstructing the gyrokinetic Vlasov equation. The last term
in equation (16) vanishes when integrating the Lagrangian in
time to get the action integral. However, this term is used later
in order to determine the conserved energy of the system by
Noether’s theorem. As a consequence, the functional deriva-
tives vanish for all test functions Z if and only if the Euler–
Lagrange equation for the particles is satisfied:
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The gyrokinetic Vlasov equation is reconstructed from the
linearised gyrocentre characteristics according to the
approximations performed on the action functional given by
equation (1).
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where = + dH H Hs s s0, 1, . For the ordering considered above,
the equations for the ion characteristics become:
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while the equations for the electron characteristics contain the
first FLR corrections only:
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We notice that the equations for the unperturbed character-
istics for both species coincide:
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In ORB5 the gyrokinetic Vlasov–Maxwell system described
above is solved using particle-in-cell method combined with
finite elements [10, 14]. The so-called cancellation problem is
mitigated using an advanced control variate method [20–22].

3. Noether theorem for the ORB5 code model

In order to derive the expression for the energy, we
calculate the time derivative of the Lagrangian density =

( )q m f p AX, , , , ,z :
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Using the Euler–Lagrange equations given by equation (16),
we get:
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For the field equations, we choose the test function f =1

f¶ ¶t1 and   = ¶ ¶A A t1 1 and we use the corresponding
Euler–Lagrange equations in the weak form:

· · ( )



ò ò

d
df

f d
d

=
¶
¶

=
¶

¶
 

t A

A

t
x x0 d d . 25s

1

1

1

1

Finally, using the fact that the total time derivative of the
Vlasov density vanishes, we get the expression for the energy
invariant:
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Using the same change of variables ( )= tz Z z ;0 , as in the
Poisson and Ampère equations, we get:
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The procedure allowing one to get the power balance
diagnostics is the following one: first, we directly substitute
the expression for Hamiltonians H0,s, H1,s given by
equations (6) and (7) and H2 given by equations (10) and
(11). Then we define the unperturbed kinetic energy of the
particles:
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Next, the nonlinear term containing H2 in the expression for the
energy is rewritten using the corresponding quasineutrality and
Ampère equations in the weak form. This is achieved by
choosing a particular test function f f=1 1 and by substituting
it in equation (14). Similarly, the test function   =A A1 1 is
substituted to the corresponding Ampère equation given by
equation (15). The quasineutrality equation (14) with f f=1 1
is written as:
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The Ampère equation (15) with   =A A1 1 is written as:
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Now using equations (29) and (30) we substitute the
expressions for the electrostatic and electromagnetic contribu-
tions into equation (28) and we get equation (31):
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For clarity, we define a function for each component of EM:
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The negative sign in equation (32) can be justified with using
the fact that both terms given by equations (33) and (34) are
positive. The latter results from the fact that the lhs of
equations (29) and (30) is always positive.

4. Energetically consistent diagnostics for the
ORB5 code

The derivation of dynamical invariants via the Noether’s
method is naturally included in the Lagrangian framework. It
gives an opportunity to construct code diagnostics, allowing
one to control the quality of the simulations and to get
information about the mechanisms triggering the instabilities.

In particle-in-cell codes, the dynamics of particles and
fields is computed in two different ways: Particles are
advanced along their characteristics without the use of any
grid, while fields are evaluated on a grid. Within one calc-
ulation cycle, both sides are communicating: particle are
pushed along their renewed characteristics by using the values
of the electromagnetic fields evaluated on the grid. Then the
new values of the particle positions are deposed on the grid in
order to provide the new values for the charge and current
density entering into the electromagnetic field equations (14)
and (15).

Considering the energy exchange between particles and
fields, i.e. independently calculating the time derivatives of
kin and F , allows one to control the consistency of the
algorithm and the quality of the simulation by verifying
the energy conservation. Moreover, further application of
Noether theorem makes it possible to analytically calculate a
simplified expression for the time derivative of the field
energy F , given by the non-perturbed characteristics of the
particles only. Such a simplification gives a possibility to
access the underlying instability mechanisms through the
particle characteristics.

In this section, we provide the detailed derivation of the
ORB5 diagnostics developed from the field-particles energy
balance equation:

( )= -
 

t t
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d
, 36Fkin

where the time derivative of the lhs can be evaluated through
the particle characteristics and the rhs from the field con-
tributions evaluated on the grid.

Two diagnostics issued from equation (36) are defined:
first, the power balance diagnostics is defined as the energy
balance equation (36), normalised by the field energy F .
Second, the DF diagnostics is defined as the energy balance
equation (36) normalised by an electrostatic component of the
field energy, i.e. es.

Using the definition of the kinetic part of the energy kin,
given by equation (35), we explicitly calculate the contribu-
tions to equation (36):
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The direct implementation of the linear gyrocentre char-
acteristics for X and pz given by equations (20) and (21) leads
to the cancellation of all nonlinear terms related to the per-
turbed electromagnetic fields, i.e. the final expression contains
only the contributions corresponding to the unperturbed
Hamiltonian dynamics given by equation (22):
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The geometric contribution  ´ b to Bs* given by
equations (4), (3) is expressed by using the projection on the
parallel and perpendicular directions, following the calcula-
tions given in appendix B of [16]:

( · ) [ ]        t  ´ = ´ - ´ ´ ´ º -b b b b b b b b G,

where the scalar τ represents the magnetic twist and the vector
G is referred to as the magnetic curvature. Since

( ) p ´ ´ = - pB B 4 in single fluid MHD equilibrium,
we rewrite the curvature vector G in order to evidence the
pressure-like contributions into the characteristics:
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We also decompose the geometric magnetic field in the par-
allel and perpendicular components in the following way:
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The unperturbed characteristics in the power balance equation
are given by:
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where we have used the divergence free property of magnetic
field: · ·  = -B Bb b.

4.1. The power balance diagnostics

In order to understand and analyse possible sources of plasma
deconfinement, one aims to investigate mechanisms, triggering
the growth of microinstabilities and turbulent transport. The
mechanisms contributing to the development of micro-
instabilities are directly related to the exponential growth of
electromagnetic field fluctuations. Considering that electro-
magnetic instabilities have an exponential growth: ¯= g  eF F

t2 ,
we derive the expression for the power balance diagnostics:
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Therefore, for practical reasons, in numerical simulations, it is
useful to consider the power balance equation in the following
form (i.e. normalised by the field energy F):
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The power balance diagnostics is suitable for quality verification
in linear and nonlinear simulations. In addition to that in the case
of the linear simulations, the power balance equation not only
gives an indication about the quality of the simulation but also
can be used to measure the instantaneous growth rate of
instability [16].

Introducing the electromagnetic effects into the gyrokinetic
simulations adds significant complexity compared to the elec-
trostatic simulations, and requires a more detailed analysis for
the implementation of diagnostics. It has not been remarked in
electrostatic simulations that the normalisation of the power
balance diagnostics (41) on the field energy F together with
using this diagnostics for the growth rate calculation in linear
simulations may introduce some inconsistencies. It starts to be
evident for the electromagnetic simulations when the amount of
magnetic energy is equal to the amount of electrostatic energy,
i.e. = 0F . It is evident that in this case, equation (41) cannot be
used for measuring the growth rate. However, thanks to a small
modification, this diagnostic can be adapted for investigating the

behaviour of the instability triggering mechanisms at this tran-
sitional point (see section 4.2).

The contributions to the growth rate γ arising from the
different terms in the unperturbed guiding-centre character-
istics ˙ ∣X 0 and ˙ ∣pz 0 can be separated in the power balance
equation and give a clear vision of which type of instability is
present in the system: this diagnostics is suitable for both
linear and nonlinear electromagnetic simulations:
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Accordingly to the sign, the contributions v s, , v scurv,

v P s, and v B s, to the time derivative of the field energy are
considered stabilising when it is negative or destabilising
when it is positive.

4.2. ΔF diagnostics

In the case of electrostatic simulations, the power balance
diagnostics is sufficient for investigating the stabilising and
destabilising mechanisms. The situation is slightly different
in the case of electromagnetic simulations when = es em

therefore, = 0F and the diagnostics defined by equation (42)
is not defined. In order to investigate the transition between
electrostatic and electromagnetic instabilities, we introduce the
following diagnostics:

( )D = -
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1 d

d

1 d

d
, 48F

es

es
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em

where functions es and em are defined accordingly to
equations (33) and (34).

This diagnostics allows one to investigate the properties of
the electromagnetic simulations from different viewpoints:
first, the sign of the functionDF determines if the instability is
electrostatic (positive) or electromagnetic (negative). More-
over, DF allows one to access all stabilising/destabilising
mechanisms through equation (38) even in the situation with

= 0F . In addition, investigating functional properties ofDF
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as a function of magnetic β, i.e. the zeros and extremum points
(minimum for example) gives the possibility to analyse bifur-
cations and exchanges of stabilising/destabilising mechanisms.

5. Analysis of electromagnetic simulations

5.1. Numerical setup

The parameters used in simulations are derived from the
Cyclone Base Case (CBC), which is a well established set of
parameters for the flux tube (simulations for one magnetic
field line) and global studies (simulations covering the full
radial range in the small section of the device). First, it has
been used [23] for the benchmark of different flux tubes codes
and recently for the benchmark of global electromagnetic
codes [15]. The original discharge (H-mode shot #81499
taken at t=4000 ms and minor radius r=0.5a, where a is
the the minor radius) of the DIII-D device which serves as a
basis for the CBC has naturally more complex shaped flux
surfaces. In our case, the equilibrium magnetic configuration
is circular and concentric with the inverse aspect ratio
a/R0=0.36 and the safety factor profile [24]:

( ) ( ) ( ) ( )= - +q r r a r a2.52 0.16 0.86. 492

Here a is the minor tokamak radius and R0 is a major one,
r is the local radius of a flux surface. The temperature and
density profiles and their normalised logarithmic gradients are
given by:

⎡
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exp tanh , 50A A
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--L L L A r
r r
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ln cosh , 51A r A

A
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2 0

which gives us a peaked gradient profile of density and
temperature ( )=A n T, centred at r=r0 with maximal
amplitude κA and characteristic width wA. The macroscopic
reference length Lref is fixed to the major radius R0 in what
follows.

The values of parameters used for the benchmark are
summarised in table 1. We remark that the profiles for ions
and electrons are chosen to be identical.

The nominal reference values issued from the original
experimental work [25] are given in table 2.

In order to reduce the resolution requirement and the
computational effort, the ion-electron mass ratio is set to the
proton-electron mass ratio, i.e. the electrons are considered
being twice heavier than in reality. Concerning the spatial
resolution, the associated finite-size parameter r r= ai* ,

Table 1. List of benchmark parameters.

r0/a 0.5

a/Lref 0.36
R0/Lref 1.0

( ) ( )=T r T T r Ti e0 ref 0 ref 1.0
k k=T Ti e 6.96

=w wT Ti e 0.3

( ) ( )=n r T n r Ti e0 ref 0 ref 1.0
k k=n ni e 2.23

=w wn ni e 0.3

mi/mref 1.0
me/mref 5.446 17× 10−4

Table 2. Nominal reference and derived reference values based on
the low elongation magnetic surfaces case (CBC) [25], figure 5,
discharge#81499, at time t=4000 ms and ρ=0.5, which after the
rescaling of magnetic surfaces shape towards concentric surfaces
corresponds to r/a=0.5.

mref(=mD)/mp 2.0
( )= -n n 10 meref

19 3 4.66
( )=T T KeVeref 2.14
( ( ))=B B R Ttref mag 2.0

( )= =L R R mref 0 mag 1.67

βref 0.0045
r r= as* 0.005 55∼1/180.2

Table 3. Data corresponding to analysis of linear electromagnetic
simulations provided on figure 2.

β wORB5 gORB5 DF

in % in cs/R0 in cs/R0

10−5 0.667 0.533 0.999
10−4 0.661 0.527 0.999
0.025 0.665 0.540 0.794
0.05 0.613 0.544 0.313
0.055 0.613 0.544 0.182
0.06 0.597 0.511 0.038
0.065 0.630 0.486 −0.117
0.068 0.620 0.555 −0.217
0.07 0.677 0.516 −0.284
0.075 0.677 0.516 −0.4649
0.1 0.651 0.497 −1.576
0.15 0.710 0.477 −4.967
0.25 0.773 0.464 −17.870
0.45 0.741 0.391 −86.200
0.5 0.850 0.345 −117.734
0.6 0.910 0.270 −205.114
0.65 1.260 0.225 −256.218
0.68 3.255 0.079 −283.435
0.689 3.189 0.064 −291.325
0.69 3.456 0.0067 −293.262
0.7 3.205 0.152 −292.720
0.75 2.870 0.196 −197.360
0.8 2.701 0.438 −202.060
0.9 2.516 0.809 −208.500
1.000 2.365 1.083 −206.237
1.125 2.171 1.337 −204.897
1.25 2.191 1.532 −205.668
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defined as the ratio between the ion gyroradius ρi and the
minor radius a, is set to 1/180. In fact, considering a
hydrogen aspect ratio for ions would need smaller spatial
scales by a factor 2.

The nominal β value at the reference position r/a=0.5
is close to 0.5% assuming we have taken in consideration the

following definition of ( )b p= n T B8ref ref ref ref
2 and the nor-

malisation of nref, corresponding to the ORB5 code. Here nref
and Tref are the density and temperature taken at the reference
position r/a. Consistently with the choice of concentric sur-
faces, Shafranov shift is absent (24) and the pressure gradient
( )P to the curvature B as a magnetic equilibrium effect

Figure 1. Time evolution of the contributions v s, , á ñA v scurv, , v B s, to the  td dF diagnostics given by equation (43), corresponding to the
linear CYCLONE base case numerical configuration. The black curve corresponds to the total value of  td dF . The blue curve gives the
value associated with v s, . The red curve is the part of the curvature drift coupled with purely electromagnetic potential, á ñA v scurv, . The green
curve represents the curvature drift, v B s, . The cyan curve is set equal to zero since ( ) p ´ ´ = - pB B 4 in a single fluid MHD
equilibrium.
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( )b a ~ ¢ ~ =P 0MHD , are neglected in the following
as well.

5.2. Electrostatic and electromagnetic instability analysis

Following the electromagnetic β scan of the linear electro-
magnetic simulations, summarised in the table 3, we focus on
the sign of v s, ,v scurv, and v B s, contributions. In figure 1,
different cases of the instability triggering mechanisms are
presented. We notice that for the case with = 0F or close to
zero, additional standard linear fit diagnostics for the growth
rate is used to avoid numerical errors due to the division by a
small number in the denominator of equation (41). At the
same time, for each value of β, we monitor the value ofDF ,
defined by equation (48), as the value of the electromagnetic
field energy normalised by the electrostatic energy (see
figure 2). The change of sign for DF corresponds to the
transition from the electrostatic to the electromagnetic regime.
In figure 1, the  td dF diagnostics is presented for different
values of β. Figure 1(a) represents the electrostatic ITG with
β=0.000 01%,D = 0.99F which is mainly destabilised by
curvature contribution with >v 0B s, . Figure 1(b): β is
increased up to 0.0025%, D = 0.79F , which activates an
additional destabilising mechanism with á ñ >A v 0s1 curv, .

Figure 1(c): β=0.06% corresponds to D =E 0.03F , i.e. the
amount of electrostatic energy is almost equal to the amount
of electromagnetic energy in the system: This corresponds to
the exchange of the stabilising and destabilising mechanisms,
i.e. the mode is now destabilised by kinetic effects with

 >v 0s, . However, the growth rate and the frequency of the
mode exhibit no bifurcation. Figure 1(d): β=0.5% corre-
sponds to the electromagnetic ITG mode with D =F

-86.20, destabilised by kinetic effects  >v 0s, . Figure 1(e):
β=0.69% with D = - 296.76F , a minimal value for the
normalised field energy corresponds to the ITG to KBM
bifurcation in frequencies and the growth rates. Figure 1(f):
β=1.125% D = - 204.89F corresponds to the high fre-
quency KBM mode with  >v 0s, .

In figure 2, we perform the β-scan with both energy
conservation based diagnostics, the power balance diagnostics
given by equation (41) and the DF diagnostics. In
figure 2(a), the growth rate of the instabilities as a function of
β is calculated according to the power balance diagnostics
given by equation (41).

The value of DF decreases monotonically from β=0
to β=0.69%, indicating that the originally purely electro-
static ITG mode is acquiring an increasingly important EM
character. At β=0.69% a transition occurs. For beta values

Figure 2. Power balance diagnostics, (a) and (b), and the DF diagnostic, (c) and (d), as functions of β.
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higher than 0.69% the most unstable mode is a KBM, with
very large negative values (about −200) of ΔEF, meaning
that the mode has a very weak electrostatic component and
has an Alfvénic character. The relation between the ITG to
KBM transition and the DF diagnostic is clearly visible
when comparing figures 2(a) and (c).

6. Conclusions

In this work, the energy exchange channels leading to desta-
bilisation of the electromagnetic instabilities in global gyroki-
netic simulations with ORB5 code have been identified. First, it
has been observed through the simulations that with increasing
β the contribution of the magnetic curvature in the ITG mode
destabilisation decreases together with the mode growth rate. It
confirms the results of previous studies, indicating the stabilis-
ing role of the magnetic β on the ITG instability. Second, the
implementation of the diagnostics, issued from Noether’s
method, allows one to investigate the transition from the elec-
trostatic towards the electromagnetic ITG regime. Following the
contributions to the energy time variation, the transition from
the destabilising role of curvature drift towards its stabilising
role is identified. The implementation of the energy invariant
based diagnostic DF allowed to systematically analyse
essential features of the electromagnetic instabilities, for
instance, by looking at the zeros of DF corresponding to the
ITG instability mechanism exchange and the minimum of that
function corresponding to the bifurcation between the ITG and
the KBM mode. We observe that the transition of the
instabilities generating mechanisms in the framework of the
gyrokinetic theory follows the results obtained in previous
studies realised in the framework of fluid and kinetic approa-
ches [2]. This transition happens at β=0.06%, which follows
previous theoretical predictions for β>me/mi∼0.055%.
Finally, it has been identified that the mode bifurcation towards
the KBM dominated regime happens at β=0.65%, i.e. at a β
value 10 times higher than the β value at which mixing between
the ITG (slow) and KBM (fast) modes occurs together with the
destabilising mechanisms exchange.
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