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Abstract: Small-molecule drug design aims to identify inhibitors that can specifically bind to a
functionally important region on the target, i.e., an active site of an enzyme. Identification of potential
binding pockets is typically based on static three-dimensional structures. However, small molecules
may induce and select a dynamic binding pocket that is not visible in the apo protein, which presents
a well-recognized challenge for structure-based drug discovery. Here, we assessed whether it is
possible to identify features in molecules, which we refer to as inducers, that can induce the opening
of cryptic pockets. The volume change between apo and bound protein conformations was used
as a metric to differentiate chemical features in inducers vs. non-inducers. Based on the dataset of
holo–apo pairs, classification models were built to determine an optimum threshold. The model
analysis suggested that inducers preferred to be more hydrophobic and aromatic. The impact of
sulfur was ambiguous, while phosphorus and halogen atoms were overrepresented in inducers.
The fragment analysis showed that small changes in the structures of molecules can strongly affect
the potential to induce a cryptic pocket. This analysis and developed model can be used to design
inducers that can potentially open cryptic pockets for undruggable proteins.

Keywords: pocket change; ligand; inducer; pocket volume; machine learning

1. Introduction

Receptor-based drug design is performed when a new drug target is discovered and
the protein structure is available to be explored. Provided that it has (a) druggable pocket(s),
virtual screening of a chemical library, such as by docking a large number of compounds
into the binding pocket and selecting promising compounds followed by their biological
testing, is one of the most efficient ways to find active compounds. However, sometimes,
the determined pockets are not druggable, which means that their targeting does not
cause sufficient inhibition, activation, or selectivity as is required for a proper biological
response [1]. Structure-based drug discovery usually focuses on small-molecule therapeutic
agents. Two decades ago, Hopkins and Groom estimated that only ~10–14% of the human
proteome was druggable [2]. Further, they identified only 120 out of ~600–1500 potential
drug targets as targets of approved small-molecule drugs. By 2017, the number of targets
for small-molecule drugs plus biologic drugs had reached 601 [3,4].

For the remaining 85% of “undruggable” proteins, one can explore their conforma-
tional changes, which contribute to the appearance of new pockets, to make them drug-
gable. Imatinib (Figure 1) is an antineoplastic agent, which inhibits the Abelson (Abl)
tyrosine kinase by capturing a transient state [5–8]. It specifically binds with the preformed
ATP pocket and an adjacent allosteric pocket, which likely appears after being induced
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by the ligand itself. Both experimental and computational approaches were used to ex-
plore the existence of transient pockets, also known as cryptic sites [9]. Cryptic binding
sites are absent or occluded in unbound proteins but are present in ligand-bound struc-
tures. Mizukoshi et al. developed a strategy to identify cryptic sites and manipulate their
dynamic changes through nuclear magnetic resonance (NMR) combined with allosteric
mutations [10]. Kii et al. identified an inhibitor (FINDY) targeting transient pockets in
dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), although the
folding intermediate interfered with by FINDY has not been determined [11]. Cimermancic
et al. created the CryptoSite dataset of apo–holo pairs with cryptic sites and used machine
learning to predict cryptic sites with relatively high accuracy (AUC = 0.83) [12]. They
found that cryptic sites were less hydrophobic and more flexible than traditional binding
pockets. Beglov et al. explored the extended CryptoSite dataset by detecting hot spots
using FTMap [13,14]. Their results showed that regions around cryptic sites had above-
average flexibility. Moreover, they observed that cryptic sites, which were formed solely
by side-chain motion or the motion of less than five backbone residues, showed weak
ligand binding potential with limited use for drug discovery. Clark et al. investigated
the structural flexibility of proteins by root-mean-square deviation (RMSD) calculations
of backbone atoms and X1 angles of side-chain atoms [15]. The ligand-induced backbone
flexibility across apo–holo pairs was slightly larger than the inherent backbone flexibility
of the apo and holo states. Upon ligand binding, side-chain X1 angles were frequently
pushed into new orientations outside the range seen in apo states. They found that the
influences on binding site variation could not be easily attributed to features such as ligand
size or X-ray structure resolution. More recently, Evans et al. developed a machine learning
method (TACTICS) to predict cryptic sites [16]. TACTICS was trained on an extended
CryptoSite dataset and used molecular dynamics (MD) simulation data as input. This
advanced method successfully detected the active sites and multiple allosteric sites in the
SARS-CoV-2 main protease. The increasing use of MD simulations in conjunction with
machine learning algorithms will likely contribute immensely to the identification of cryptic
pockets and the expansion of the scale of druggable proteins in the foreseeable future [17].
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Figure 1. The structure of imatinib is given as an example of an inducer (left). Two crystal structures 
of Abelson (Abl) tyrosine kinase bound with small-molecule ligands were aligned (PDB ID: 1iep, 
imatinib, green; PDB ID: 2v7a, PHA-739358, red). In the binding site, the major structural 
displacement was present in the rotation of the activation loop (residues 381–402 in Abl kinase). 
Imatinib (green) binds to the preformed pocket and the adjacent subpocket, which is caused by the 
rotation of the loop. 

Figure 1. The structure of imatinib is given as an example of an inducer (left). Two crystal structures
of Abelson (Abl) tyrosine kinase bound with small-molecule ligands were aligned (PDB ID: 1iep,
imatinib, green; PDB ID: 2v7a, PHA-739358, red). In the binding site, the major structural displacement
was present in the rotation of the activation loop (residues 381–402 in Abl kinase). Imatinib (green)
binds to the preformed pocket and the adjacent subpocket, which is caused by the rotation of the loop.

The aforementioned works studied the cryptic pockets regarding the inherent flexibil-
ity and diverse dynamics of the protein. In addition, the ligand contributes to inducing the
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pocket adjustment to accommodate itself in the binding process as well. We were interested
in identifying the structural features of ligands that were important for inducing the open-
ing of cryptic sites. This information can be useful for designing new active compounds
targeting currently undruggable proteins or discovering new pockets for underexplored
proteins. An inducer fragment library can be screened in a fragment-based approach. To
our knowledge, no such study has been reported thus far.

Here, we classified the ligands into two groups: the first group consisted of the
ligands that induced the opening of cryptic pockets, called “inducers”, and the second
group included those that could not open the pockets, referred to as “non-inducers”. The
classification criterion was based on the volume change of the pocket between the unbound
state (apo) and the bound state (holo). The degree of enlargement of a pocket considered to
be “opening” is discussed.

2. Materials and Methods
2.1. Datasets
2.1.1. Dataset I: PDBbind-CN

PDBbind-CN [18,19] v.2020 includes all types of biomolecular complexes and their ex-
perimentally measured binding affinity data deposited in the Protein Data Bank (PDB) [20].
Starting from 5316 crystal structures of holo proteins, we established a dataset comprising
apo (does not contain a bound ligand) and holo (complex with a ligand) protein pairs. The
protein and ligand structures of the holo complexes were retrieved using their PDB IDs.
The requirements were that only one ligand was in the same pocket, as identified by the
ligand ID [21], and that the resolution of the crystal structure was better than 2.5 Å. The
initial set of apo structures included PDB proteins with the same resolution requirements.
The binding pocket was defined by the residues within 10 Å of the cognate ligand. Since we
were only interested in drug-like small molecules, holo structures whose identified ligands
were peptide-like, cofactors, detergents, or crystal additives were excluded, as suggested
in previous work [15]. Next, the sequence of each holo protein was analyzed using the
blastp program [22] to generate a list of PDB IDs with descending similarity between the
holo and apo protein sequences. We determined that no ligands were bound in the same
binding pockets of the apo structure, and the protein pair with the highest similarity score
was retained for analysis. Both the retrieval and calculation processes were automatically
carried out by the PyMOL [23], blastp, and SiteMap [24–26] programs with the help of
custom scripts.

Moreover, the CryptoSite dataset [13] was combined with the PDBbind dataset as
the training set, which has been commonly used in previous studies on cryptic pock-
ets [9,12,13,16]. Originally, this dataset contained 93 holo proteins, each matching with
multiple apo structures. Eight items binding to either multiple ligands or oligosaccharides
in the pocket were removed. After the removal of duplicates from the CryptoSite dataset
that overlapped with the PDBbind dataset, we retrieved 84 pairs of holo–apo proteins
as well as their ligands. All of these ligands were labeled as inducers because the corre-
sponding receptors had cryptic sites that were manually curated and illustrated by the
creators.

2.1.2. Dataset II: NR-DBIND

Nuclear receptors (NRs) are important drug targets, and their ligand-binding is gener-
ally accompanied by large conformational changes. We implemented the same workflow
as the PDBbind dataset to build a dataset comprising apo and holo NR pairs. To this end,
the nuclear receptor database (NR-DBIND) [27] was used as the starting point. These data
indicated whether the PDB ID corresponded to a holo or apo structure, which helped us to
validate the in-house-developed search script.

Below, we describe the tools and procedures used to analyze the retrieved structures
and create datasets for analysis.
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Structure Preparation and Visualization

PyMOL [23] was used to retrieve structures from the PDB database, define the pocket
and align holo–apo pairs. It was also used to visually validate the matching results from
in-house scripts.

The quality of starting structures is critical for computational drug design. Therefore,
all protein structures were processed using the Schrödinger Protein Preparation Wizard [28].
This script is a tool for correcting common structural problems with experimentally derived
structures to create reliable protein models. We used this tool (1) to assign bond orders
in known residues and small molecule components based on their SMILES strings in the
Chemical Component Dictionary [21], (2) to add explicit hydrogens, and (3) to generate a
favorable ligand protonation state based on the number of H-bonds and the Epik penalty
score [29].

Identification and Characterization of Binding Pockets

The SiteMap [24–26] of the Schrödinger suite was used to identify and calculate the
pocket volumes of the preprocessed proteins. This program first detected all sites suitable
for docking in the protein structure and then individually calculated the corresponding
pocket volume. In this way, we obtained the volumes of the identical pocket in the holo and
apo structures. In particular, it was performed using trajectory_binding_site_volumes.py with
the -sitemap_site_asl option by specifying the residues constituting the pocket of interest.
SiteMap determined the pockets suitable for docking using geometry- and energy-based
algorithms. As a result of this restriction, around 1000 input structures failed in this step
and thus were not further considered in this work.

The structures that were present in both databases were retained in the PDBbind set
for model training and removed from NR-DBIND, which comprised the external validation
set. Thus, neither dataset had overlapping structures. In total, we obtained 992 and 135
apo–holo pairs in PDBbind and NR-DBIND, respectively. Among them, 675 and 117 pairs
increased the pocket volume, i.e., Vholo − Vapo > 0 Å3. Small changes in the volume could
also be due to fluctuations in the volume or restricted conformational adjustments, and
thus, the use of a threshold could be beneficial. A detailed procedure for defining the
threshold to separate inducers and non-inducers is described in the Results section.

2.2. Methods
2.2.1. Development of Models to Separate Inducers and Non-Inducers
Model Building

We used the OCHEM platform [30] to develop classification models for inducers
and non-inducers. The models were developed with data from the PDBbind set, and the
NR-DBIND set was used as external validation. We explored different machine learning
methods and descriptors available in OCHEM. Random forest (RF) and ALogPS and
OEstate (AO) descriptors contributed to the models with the highest accuracy and were
selected for all analyses. Below, we briefly describe them.

Random forest (RF) [31] is an ensemble of several decision trees that are used to classify
a new sample by a majority vote of individual decision trees. It is an effective tool for
predictions and is widely used as a reference in classification and regression tasks. There
are two important tuning parameters that significantly affect the performance of RF models:
numFeatures and numTrees. For the first parameter, we followed the recommendation of
previous work [32] and set this parameter to the sqrt(p) of the number of descriptors, p,
used to build the models. Increasing the number of trees above 512 did not lead to better
models, as shown in other previous work [33]. Therefore, we used fixed values of both
parameters.

The ALogPS and OEstate [34] (AO) descriptors include the octanol/water partition
coefficient (logP), solubility in water (logS) [34–36], and electrotopological state (E-state)
indices that combine the electronic properties and topological context of skeleton atoms
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derived from the molecular hydrogen-depleted graph [37–40]. The E-state index is defined
as follows:

Si = Ii + ∆Ii = Ii +
A

∑
j=1

Ii − I j(
dij + 1

)k (1)

where Si is the E-state of the ith atom, Ii is the intrinsic state of the ith atom, ∆Ii is the
field-effect on the ith atom calculated as a perturbation of the intrinsic state of the ith atom
by all other atoms in the molecule, dij is the topological distance between the ith and jth
atoms, and A is the number of atoms. The exponent k is a parameter that modifies the
influence of distant or nearby atoms in particular studies. This is usually taken as k = 2.
The intrinsic state of the ith atom is calculated as:

Ii =
(2/Li)

2 ·δv
i + 1

δi
(2)

where Li is the principal quantum number, δv
i is the number of valence electrons, and δi is

the number of sigma electrons of an atom in the H-depleted molecular graph. The intrinsic
state of an atom can be simply considered the ratio of π and lone-pair electrons over the
σ bond count in the molecular graph. Therefore, the E-state index is a measure of the
electronic accessibility of an atom and can be interpreted as the probability of interaction
with another molecule.

Atom-type E-state indices encode electronic and topological information related to
particular atom types in molecules. They are calculated by summing the E-state values of
all atoms of the same atom type in the molecule. The symbol of each atom-type E-state
index is a composite of three parts. The first part is “S”, which refers to the sum of the
E-states of all atoms of the same type. The second part is a string representing the bond
types associated with the atom (“s”, “d”, “t”, and “a” for single, double, triple, and aromatic
bonds, respectively). The third part is the symbol identifying the chemical element and
eventually bonded hydrogens, such as CH3, CH2, and F.

The bond E-state index is defined as:

BSb = BIb + ∆BIbt =

(
Ii + Ij

)
b

2
+ ∑

t 6=b

BIb − BIt

(rbt + 1)2 (3)

where BS is a bond-state index, b is the bond formed by atoms i and j, t runs over all of the
remaining bonds other than bond b, BI is the bond intrinsic state defined by the intrinsic
states I of the adjacent vertices, ∆BS is the perturbation term, and rbt is the average bond
length of bonds b and t.

Some non-E-state descriptors, such as molecular weight, number of hydrogen bond
acceptors/donors, rotatable bonds, etc., were also included.

Model Validation

N-fold cross-validation was used to evaluate the accuracy of the models. The method
was performed as follows: (i) the initial dataset was randomly divided into n mutually
disjoint subsets of the same size; (ii) (n–1) subsets were used to train the model, and the
remaining subset was used as a test set. The prediction results for the respective test sets
were collected and used to evaluate the prediction performance of the final model, which
was developed using the initial dataset. In this study, 5-fold stratified cross-validation was
used to account for data imbalance.

Performance Measurement

The predictions of the models were evaluated based on prediction accuracy and
balanced accuracy. They are calculated by:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (4)
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Balanced Accuracy =
TP

TP+FN + TN
TN+FP

2
× 100% (5)

Here, true positives (TP) is the number of inducers predicted correctly by the model,
true negatives (TN) is the number of non-inducers predicted correctly, false positives (FP) is
the number of non-inducers predicted as inducers, and false negatives (FN) is the number
of inducers predicted as non-inducers.

Balanced accuracy is the average accuracy for the prediction of inducers and non-
inducers. This measure better reflected the accuracy of models when using different
thresholds to separate inducers and non-inducers, which contributed to their imbalances.
In addition, AUC, the area under the receiver operating characteristic (ROC) curve, was
used.

Interpretation of Models

The Shapley value was introduced by Lloyd Shapley [41], and it provides a natural
way to compute the features that contribute to a prediction. Shapley Additive exPlanations
(SHAP) [42] is a unified framework for the class of additive feature attribution methods,
including LIME [43], DeepLIT [44], layer-wise relevance propagation (LRP) [45], Shapley
regression values [46], Shapley sampling values [47], and quantitative input influence [48].
SHAP combines all of the characteristics of the six aforementioned methods and has three
additional desirable properties (local accuracy, missingness, and consistency). Features
contributing to the predicted classification are evaluated via the absolute values as well as
the plus/minus signs corresponding to positive/negative impacts.

TreeExplainer [49] is specifically implemented for tree-based models to compute
SHAP values for trees and ensembles of trees. Variables enter the machine learning model
sequentially or repeatedly in the trees of the model. In every step of tree growth, the
algorithms evaluate each of the variables equally to settle on the variable that contributes the
most. In total, thousands of trees are constructed. It is possible that various permutations
of the variables are available. Therefore, the marginal contribution of each variable is
calculated. TreeExplainer computes local explanations based on exact Shapley values in
polynomial time and extends local explanations to directly capture feature interactions so
that it can interpret a model’s global behavior based on many local explanations.

The RF model to estimate the SHAP values was built by scikit-learn [50]. The same
default feature filtering as that used for the OCHEM model was used using the same
parameters for RF as described above to keep both models as similar as possible. The
model was explained by TreeExplainer, which allowed us to identify important descriptors
in terms of structural features and properties.

2.2.2. Analysis of Similarity of Ligands

We used RDKit, which is an open-source toolkit for chemoinformatics [49], to load
and convert the 3D structure files of ligands to 2D molecular graphs to facilitate their
presentation. It was also used to perform fragment analysis based on functional-class
fingerprints (FCFPs) [51]. FCFP4 (radius = 2) was used to calculate the similarity between
molecules based on the Tanimoto coefficient37. Tanimoto (SAB) is one of the most popular
methods for comparing fingerprints and is also known as the Jaccard coefficient. It is
defined as:

SAB =
c

a + b− c
(6)

where a and b are the number of bits set in FCFP4 fingerprints of compounds A and B,
respectively, and c is the number of bits shared between the two.

2.2.3. Molecular Dynamics (MD) Simulations on Mdmx Inhibitors

MD simulation is a method for numerically solving Newton’s equations of motion for
a system of atoms and molecules to obtain insight into the conformational dynamics of the
system at nano-to-millisecond time scales at atomic resolution. Given an initial position
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and velocity, the object will move following the laws of mechanics in a fixed period of time;
ideally, the system reaches a dynamic equilibrium governed by molecular mechanics force
fields. By analyzing the trajectories of atoms and molecules, one will know more about
the interactions in a multibody system and the conformational change of each component.
While the computation of an MD simulation is more complex than docking, this is offset by
the chance that the results could be more accurate because conformational dynamics are
considered. Virtual screening, which implements docking followed by MD simulations,
leads to more reliable hit compounds and assumptions of the binding mode between ligand
and receptor so as to be more likely to be in good agreement with subsequent experimental
validation.

Because our interest is in the anticancer target Mdmx (mouse double minute x), which
is a negative regulator of the p53 tumor suppressor [52], we designed a series of Mdmx
inhibitors. MD simulations were used to study the conformational changes in the Mdmx
complexes with these newly designed molecules and known Mdmx inhibitors, i.e., WK298
and WK23 [53].

In this work, all-atom MD simulations were implemented using the AMBER 20 soft-
ware on GPUs [54]. The initial structures were the binding poses selected from the docking
results. Each system consisted of one copy of the Mdmx protein (PDB ID: 3dab [55]) sur-
rounded by TIP3P [56] water molecules and one chloride ion neutralizing the entire system.
The partial atomic charges of the ligands were derived using the antechamber module im-
plemented in the AMBER software package to calculate AM1-BCC charges [57–59]. The
other force field parameters of ligands derived from the general AMBER force field (GAFF,
version 2) [60] and the AMBER FF14SB force field [61] were employed to model Mdmx.
Antechamber prepared residue topologies for ligands and LEaP for Mdmx.

For each system, the solvent of the MD system was first minimized using the XMIN
method across 20,000 steps. All of the solutes were restrained using a harmonic potential
with a force constant of 100 (kcal/mol)/Å2. The MD simulation consisted of three phases:
the relaxation phase, equilibrium phase, and sampling phase. In the relaxation phase, the
simulation system was heated progressively from 0 to 300 K in steps of 50 K and 5 ps
each with a force constant of 2 (kcal/mol)/Å2, followed by maintaining the temperature
at 300 K in the last 20 ps. After the heating steps, the system was equilibrated at 1 bar
for 10 ns but without any restraints or constraints in the last 5 ns. Finally, a 100 ns MD
simulation was performed for each system. In total, 10,000 frames were recorded during the
production phase. Additional settings for constant volume and pressure MD simulations
performed in this work are as follows: the temperature was regulated by the weak-coupling
algorithm; pressure was regulated by the isotropic position scaling algorithm with the
pressure relaxation time set to 1.0 ps; integration of the equations of motion was conducted
at a time step of 0.5 fs for the heating steps and 2 fs for others. All bonds involving hydrogen
atoms were constrained using the SHAKE algorithm in the MD simulation stages. The
particle mesh Ewald (PME) procedure processed long-range electrostatic interactions.

Mdmx has two transient conformational states concerning the binding pocket, which
are determined by the side-chain torsion angle of Tyr99 (χ1). The “open” and “closed”
states correspond to χ1 of around 180◦ and 300◦, respectively [55,62]. The open state yields
an enlarged pocket and provides a transient subpocket. Thus, the χ1 angle of Tyr99 is an
indicator of the open/closed state of Mdmx. A cluster analysis of the frames was carried out
with a distance metric (RMSD of backbone atoms) using the K-means clustering algorithm.
Both the representative and last frames were used to analyze the binding conformation.

3. Results
3.1. Model Performance

The PDBbind and NR-DBIND databases were processed using the protocol described
in the Datasets section. We did not limit the number of holo structures or apo structures
considered for the same protein. Thus, our data covered the same protein binding with
different ligands. Both agonists and antagonists were used in our analysis. In some cases,



Informatics 2022, 9, 8 8 of 17

a protein had more than one resolved apo structure, providing diverse conformations
during the movement of this protein in the ligand-free state. The 474 holo structures in
the PDBbind set and 53 holo structures in the NR-DBIND set had only one matched apo
structure. The remaining holo structures had multiple apo structures deposited in the PDB
database, which were tentatively retrieved (at most 10 apo structures per holo structure)
to exactly determine the classification labels of the ligands. Of all apo structures (which
were considered to be produced by the intrinsic flexibility of proteins), we selected the one
with the maximum pocket, which was used as a reference for comparison with respective
holo structures. To some extent, this analysis eliminated the cryptic pocket formed by the
conformational selection.

Before modeling, both datasets were manually checked to ensure that the apo structure
correctly matched the corresponding holo structure; the blastp identities for holo–apo pairs
were greater than 85% for PDBbind and NR-DBIND sets. OCHEM was used to build
classification models to separate inducers and non-inducers.

For each protein, we identified the pair with the largest differences in the volumes of
apo and holo pockets. The number of pairs that had Vholo − Vapo > 0 Å3 was more than
twice the number of pairs that had a negative change in volume (Figure 2). However, a
small change in pocket size should not be considered a pocket opening. This could be
simply pocket adaptation or pocket fluctuation. The minimum volume of the holo pocket
identified by SiteMap was 41 Å3, and the minimum ligand (pyruvic acid) was 67 Å3 in size.
We expected that an optimum threshold to separate inducers and non-inducers would be
of similar size.
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Figure 2. The distribution of two classes of ligands in the PDBbind set (based on optimal threshold =
60 Å3). When the threshold was 0 Å3, the number of pairs that had Vholo − Vapo > 0 Å3 was more
than twice those that had a negative change in the volume. This is inconsistent with the common
knowledge that the minority of ligands have the ability to induce the opening of the pocket. The
optimum threshold, which was determined in this work based on classification model performance,
provided a more intuitive separation of both classes of ligands.

To determine an optimal threshold, we investigated different ∆V values from 20 to
100 Å3 at intervals of 10 Å3. Our assumption was that if inducers and non-inducers have
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different features, then an optimal threshold should correspond to the model with the
highest performance.

After analyzing the performance of machine learning methods and descriptors avail-
able in OCHEM, we found that random forest (RF) [31] combined with AlogPS [36] and
OEstate [34,37] (AO) descriptors provided models with higher performances on average
compared to other analyzed methods and descriptors. The highest average AUC value
for both sets was obtained with a threshold of 60 Å3 (Table 1). For this threshold, 132 and
93 ligands were classified as inducers for the PDBbind and NR-DBIND sets, respectively.
The binding of NR ligands usually triggered large movements of NR, and thus, most of
the ligands binding these proteins were likely to be inducers. Therefore, the change in the
threshold did not notably change the number of inducers and non-inducers for this set. For
the training set, the selection of the threshold strongly affected the ratios of inducers and
non-inducers.

We had 95 types of proteins in the training set. The model was trained with diverse
proteins and was tested on the test set exclusively containing nuclear receptors. It had a
lower AUC accuracy for the test set as compared to that for the training set. Nevertheless,
the difference in the performance was not large (AUC 0.71 vs. AUC 0.65).

Table 1. Accuracy of classification models when using different thresholds.

Threshold
(∆V, Å3)

No. of
Inducers

No. of
Non-

Inducers

Training Set External Validation Set

AUC Balanced
Accuracy Accuracy AUC Balanced

Accuracy Accuracy

0 759 (117) * 317 (18) * 0.61 68 72 0.56 56 81
20 498 (112) 578 (23) 0.67 69 69 0.51 51 76
30 405 (110) 671 (25) 0.69 73 75 0.59 59 78
40 356 (105) 720 (30) 0.68 73 76 0.54 54 67
50 319 (103) 757 (32) 0.7 74 78 0.58 58 75
60 293 (100) 783 (35) 0.71 76 80 0.65 65 80
70 251 (97) 825 (38) 0.73 77 81 0.60 60 73
80 216 (93) 860 (42) 0.68 75 81 0.67 67 79
90 185 (90) 891 (45) 0.64 73 83 0.57 57 64

100 170 (86) 906 (49) 0.68 77 86 0.60 60 64

* The number of inducers/non-inducers was determined by the threshold used. Numbers in brackets correspond
to the validation set.

3.2. Interpretation of Models

Table 2 contains the top 20 most important descriptors identified by the SHAP algorithm.
The top 20 AO descriptors were plotted in descending order of their respective impor-

tance in the model (see Supplementary Materials, Figure S1). There are several features
related to heteroatoms. Sulfonyl (SddssS) and Se1C3S4ad had a positive impact, while
the sulfones/sulfoxides (SdO (sulfo)) and sulfur atoms (S) were not beneficial as induc-
ers. These results indicate that the influence of sulfur on the target property might be
ambiguous and requires a deeper analysis to determine which fragment it participates
in. Moreover, three nitrogen-containing substructures showed negative impacts, such
as aromatic (SaaNH and SeaC3NHaa) and primary (SsNH2) amino groups. In addition,
the molecular weight (MW), halogen (HALOG), phosphorus (P), and the double-bonded
oxygen of carboxylic acids (SdO(acid)) also contributed to the probability that the ligand
is an inducer. Interestingly, RBONDS descriptors suggested that sufficient flexibility is
necessary for an inducer to adapt itself to a transient pocket, which is consistent with the
conclusions of Cimermancic et al. [12] and Beglov et al. [13].
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Table 2. The most influential descriptors to classify ligands as inducers a.

Increases Probability of Being Inducers Decreases Probability of Being Inducers

Descriptor Description Descriptor Description
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With regard to carbon atoms, descriptors such as SaaCH, SaasC, SeaC2C2aa, SeaC2C3aa,
and the number of aromatic atoms (aCNOS) were derived from aromatic atoms, indicat-
ing the importance of aromatic interactions between protein and ligand to the inducer
properties of ligands.

The lipophilicity of molecules (ALogPS_logP) increased the ability of molecules to
act as inducers, while their solubility (ALogPS_logS) had the opposite effect. The more
hydrophobic a molecule was, the more likely it was an inducer.

3.3. Analysis of Functional Groups

The OCHEM SetCompare tool [63–65] used a hypergeometric distribution to identify
the functional groups [66] that were overrepresented in inducers and non-inducers. As
shown in Table 3, sulfonic acid derivatives appeared more often in non-inducers, and
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sulfonamides accounted for 97% of these derivatives (179 out of 184 ligands). Note that
the primary amine was favorable for non-inducers, as indicated by the descriptor SsNH2
in the previous section. Here, we observed inducers that showed a propensity to have
aromatic structures substituted by tertiary amines or halogens. In addition, phosphoric and
carboxylic acids were overrepresented in the inducer cohort. These features are consistent
with the explanation of the model by SHAP but also offer some new clues that have not
been shown before. Pyridine and five-membered heterocycles with two heteroatoms were
two substructures particularly identified by SetCompare, which could be used as building
blocks for inducers.

Table 3. Functional groups overrepresented in inducers and non-inducers are listed as well as the
p-value of the respective distribution.

Functional Group The Ratio
in Inducers (%)

The Ratio in
Non-Inducers (%) p-Value

Sulfonamides 6.3 23.4 −4.8 × 10−12

Sulfonic acid derivatives 7.3 24.1 −4.03 × 10−11

Halogens 44.1 28.7 1.93 × 10−6

Halogenated benzene 28.1 15.1 1.83 × 10−6

Aryl halides 36.5 24.3 7.79 × 10−5

Tertiary mixed amines 11.5 4.5 6.66 × 10−5

Five-membered heterocycles with two heteroatoms 17.4 9.9 9.45 × 10−4

Pyridine 11.8 5.6 7.52 × 10−4

Phosphorus 13.5 6.8 6.28 × 10−4

Phosphoric acids 10.1 4.3 5.95 × 10−4

Carboxylic acids 31.6 21.2 3.62 × 10−4

Aromatic halogen 33.3 22.1 1.61 × 10−4

3.4. Fragment Analysis on PDBbind Set

Some ligands targeting the identical protein had similar structures (similarity score ≥ 0.9,
calculated on FCFP4) but had different effects on cryptic pocket opening, as shown in
Figure 3, where the structures are grouped according to the effect type.

In group A, inducers preferred to have a long fatty acid chain with unsaturated bonds.
A short aliphatic chain or a halogen atom turned non-inducers into inducers, as shown
in groups B, C, and D. In group D, the ligand in the crystal structure with the PDB ID
4agm [67] had an additional tertiary amine and closed one of the tertiary amines forming
piperidine as compared to the similar non-inducer structure of the PDB ID 4agl [67]. This
emphasizes the importance of high hydrophobicity and of tertiary amines for inducers.
The addition of singly bonded oxygen helped to obtain inducers in groups E and F.

In group F, replacement of the benzene ring by a pyrazole turned a non-inducer into
an inducer, which is consistent with the SetCompare result, indicating that five-membered
heterocycles with two heteroatoms were overrepresented in the inducers. In group G, the
difference between inducers and non-inducers was the amide substructure substituted by
alkyl chains or a furan ring. In group H, the inducer in the crystal structure with the PDB
ID 5fnr [68] became a non-inducer with the addition of a sulfonamido group, which may
suggest that sulfur atoms can decrease the propensity of a chemical structure to act as an
inducer. In the crystal structure with the PDB ID 5fnt [68], the addition of another benzene
ring did not influence the ability of the structure to act as an inducer.

These examples illustrate that tiny changes in chemical structures can change their
ability to act as inducers or non-inducers. These changes follow the general tendencies
identified using the SHAP and SetCompare algorithms.
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3.5. Analysis of Mdmx Inhibitors

We are interested in the promising anticancer target Mdmx. Mdmx has two transient
states, i.e., the open and closed states of Tyr99 χ1. The open state yields an enlarged pocket
and provides a transient subpocket. In our previous work [69], we designed a series of
Mdmx inhibitors and used MD simulations to study them and known Mdmx inhibitors.
Dynamic changes in χ1 in Mdmx complexes show differences in the binding properties
of Mdmx ligands. As seen from Figure 4, the increase in the number of rotatable bonds,
molecular weight (MW), and aromatic atoms increased the probability of the ligands
binding to the open state of Mdmx during the simulation time. Indeed, ligands LG5
and LG6 only partially bonded the Mdmx open state, while NC4, which combined both
ligands and thus had increased rotatable bonds and MW as well as aromatic atoms, did
so continuously (Figure 4A). Figure 4B shows three ligands with a common core structure
consisting of single phenyl, indole, and pyrazole rings. Compared to WK23 and NT3,
WK298 had more rotatable bonds and greater MW. The addition of the tertiary amine
substructure also promoted the inducing property of WK298 [53], while WK23 [53] and NT3
were both non-inducers. Changes in the inducing propensity of ligands are thus consistent
with the analysis of the descriptors and functional groups described in Section 3.3.
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Figure 4. MD simulations and structural features of Mdmx inhibitors. WK23 (non-inducer) and
WK298 (inducer) are known Mdmx inhibitors, while the others are computationally predicted
structures. The open conformation of Mdmx corresponds to Tyr99 χ1 of around 180◦, while the
closed one has χ1 of around 300◦. Dynamic changes in χ1 in Mdmx complexes with the analyzed
ligands show differences in binding properties of inducers (NC4 and WK298) as compared to the
other analyzed ligands. NC4 and WK298 have more data points of χ1 around 180◦, i.e., more open
states; the others have more data points of χ1 around 300◦, i.e., more closed states.
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4. Discussion

The aim of our analysis was to determine which characteristics of small molecules
were important to induce the opening of cryptic pockets, including their structural features
and physical and chemical properties.

We created a training set by combining the CryptoSite [13] and PDBbind [18,19]
databases and used NR-DBIND [27] as the external validation set. The volume change be-
tween the holo and apo pockets was used as a metric to identify whether the ligand was an
inducer. We developed classification models by using the random forest algorithm [31] and
determined that the optimum threshold to separate the two types of molecules was 60 Å3.
The analysis of the developed machine learning model indicated that higher hydrophobicity
and aromaticity increased the propensity of ligands to act as inducers. Inducers also tended
to have tertiary amines, rather than primary or secondary amines. The impact of sulfur
groups was ambiguous. Our analysis suggested that sulfones/sulfoxides substituents
decreased the probability of molecules being inducers. The presence of phosphorus or
halogen atoms increased the probability of molecules being inducers, as identified by
the SHAP [49] and SetCompare [63–65] methods. Five-membered heterocycles with two
heteroatoms and pyridine were overrepresented in the class of inducers, as identified
by the SetCompare analysis. We also analyzed pairs of similar molecules with opposite
properties and showed that small changes in the structures of molecules could result in a
change in the class of compounds. Finally, we validated our findings about the inducing
properties on Mdmx inhibitors. Based on the results of MD simulations, Mdmx inhibitors
that induced the opening of the transient pocket possess the same features as summarized
in the previous analysis of the inducers.

We also applied Lipinski’s rule of five implemented by Schrödinger software to
inducers and found that majority of them (64%) were in agreement with the rules. A deep
learning classification model [70] was used to evaluate the aggregation propensity of the
analyzed ligands. As a result, 92.7% of the proteins in our dataset were predicted to be
non-aggregators, and thus, aggregation propensity did not affect the conclusion of this
work.

The proposed approach is a general one and can be adopted to analyze, e.g., peptide
ligands or identify inducers of enzymes or/and signaling proteins involved in extensive
protein/protein interaction networks. Since this is a statistical approach, a sufficiently large
dataset should be collected from the literature to develop these models. Depending on
the target class of compounds, additional descriptors could also be considered, e.g., by
encoding the conformational information of peptide ligands.

This study revealed structural features that are important for molecules to induce
cryptic sites in a potential protein target, and the developed model can be used to perform
such an analysis of potential ligands.

The calculated models have a rather low accuracy, which can be attributed to the
complexity of the analyzed property. Indeed, if the molecule has features that make it an
inducer, it may not always induce a new pocket if there is already a suitable pocket for
binding. Moreover, the protein should also have structural features that can enable cryptic
pocket opening. The analysis provided and the features identified could be important for
researchers in the design of new molecules that can open cryptic pockets. This topic is
worth being further investigated together with wet-lab work in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/informatics9010008/s1, Figure S1: The SHAP values calculated for the filtered descriptors;
Figure S2: The distribution of pocket residues compared between holo and apo pockets for both
groups of ligands.
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