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Abstract: Chronic respiratory diseases such as asthma are highly prevalent in industrialized countries.
As cases are expected to rise, there is a growing demand for alternative therapies. Our recent research
on the potential benefits of probiotics suggests that they could prevent and reduce the symptoms of
many diseases by modulating the host immune system with secreted metabolites. This article presents
the first steps of the research that led us to identify the immunoregulatory bioactivity of the amino
acid D-Trp reported in our previous study. Here we analyzed the cell culture metabolic footprinting of
25 commercially available probiotic strains to associate metabolic pathway activity information with
their respective immune modulatory activity observed in vitro. Crude probiotic supernatant samples
were processed in three different ways prior to untargeted analysis in positive and negative ionization
mode by direct infusion ESI-FT-ICR-MS: protein precipitation and solid phase extraction (SPE) using
HLB and CN-E sorbent cartridges. The data obtained were submitted to multivariate statistical
analyses to distinguish supernatant samples into the bioactive and non-bioactive group. Pathway
analysis using discriminant molecular features showed an overrepresentation of the tryptophan
metabolic pathway for the bioactive supernatant class, suggesting that molecules taking part in that
pathway may be involved in the immunomodulatory activity observed in vitro. This work showcases
the potential of metabolomics to drive product development and novel bioactive compound discovery
out of complex biological samples in a top-down manner.

Keywords: probiotics; solid-phase extraction; ESI[±] FT-ICR-MS; untargeted metabolomics; metabolic
footprinting; cell culture supernatant; tryptophan pathway; bioactive compounds

1. Introduction

The hygiene hypothesis suggests that the increase of atopic diseases in the mod-
ern civilization (e.g., asthma, allergic rhinitis, and atopic dermatitis) may be caused by
the decreased exposure to microbes during the children’s first year of life, particularly
in developed countries and urban areas. High hygiene standards, use of antibiotics,
less breastfeeding, and processed-food diets may prevent the normal development of
a baby’s immune system by not challenging it to respond to different threats during its
maturation [1,2]. A comparable theory was proposed by Metchnikoff at the beginning of
the twentieth century, which is considered to be the precursor of the concept of probiotic
bacteria. He suggested that the Bulgarian rural population had a longer and healthier life
span due to their high consumption of fermented milk containing the bacterium “Bulgarian
Bacillus”, today called Lactobacillus bulgaricus [3]. However, it was only in the mid-1990s that
“probiotics” received proper attention from the medical community as potential therapeutic
agents [4]. Today, probiotics represent a serious research field where health claims have
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been made on a variety of diseases and a multibillion dollar global market has emerged
around it, full of popular products that are now part of our daily life [5].

Atopic diseases occur due an exaggerated and unbalanced immune response to en-
vironmental or food allergens and their treatment is based on interventions with anti-
histamines, glucocorticoids, steroids, or bronchodilators that provide relief of symptoms
but no cure [6]. In this context, probiotics have been studied as a therapeutic alternative.
Lacticaseibacillus rhamnosus GG (LGG) was given to pregnant women prior to delivery
who had at least one first-degree relative with atopic eczema, allergic rhinitis, or asthma,
and then to the newborns for six months. The results showed the frequency of atopic
eczema in neonates was lower in the probiotic-treated group than in the placebo-treated
control group [7]. The use of the strains Bifidobacterium lactis BB-12 and LGG to control
allergic inflammation was studied in 27 newborns that manifested atopic eczema during
breast-feeding and an improvement in skin condition after two months in all the infants
receiving probiotics was reported, supported by a decrease of soluble CD4 glycoprotein
concentration in serum (a marker of T-cell activation) and eosinophil protein X in urine
(a marker for inflammatory activity) [8]. Similar results were observed in another clinical
trial where combination of probiotic strains was administered for eight weeks to 40 children
with atopic dermatitis. The total Immunoglobulin E (IgE) level in serum decreased for
the probiotic treated group; an antibody that triggers “immediate hypersensitivity” reac-
tions [9]. The called “PandA study” reported a reduced incidence of infant eczema in the
probiotic-administered group (six weeks prenatally to mothers and 12 months postnatally
to offspring) with positive effects persisting through one and two years. Reduction of
cytokines that regulate many aspects of allergic inflammation was observed in whole blood
cells obtained from probiotic-supplemented infants [10].

Nevertheless, inconsistency in clinical outcome has challenged the role of probiotics
in allergy prevention. Two reviews articles have drawn attention to the lack of robustness
of several published studies challenging the positive results observed after administra-
tion of probiotics to infants for the prevention of allergic disease [11,12]. The Food and
Drug Administration (FDA) has defined probiotics as live biotherapeutic products and
requires sufficient clinical investigation following the principles of drug-like develop-
ment [13] (p. 10). The European Food Safety Authority has issued unfavorable opinions on
health claims for probiotic and one of its major reasons was the lack of information on the
substances causing the effect on which the claim is founded [14].

Besides the efforts of the scientific community, the interaction between probiotics
and host remains only partially understood. The controversial results from probiotics
research show how complex molecular crosstalk could be between probiotic bacteria,
the gut microflora, and the immune system of the host. The ability of probiotics to reg-
ulate host immune system using several bacteria derived genes and proteins have been
described [15]. Our own commensal bacteria also regulate immune responses beyond
gut environment. It is suggested that symbiotic bacteria-derived metabolites such as
carbohydrate-binding proteins, short-chain fatty acids, long-chain fatty acids, and biogenic
amines might affect host immune maturation, activation, and functions leading to tolerance
or pro-inflammatory responses [16–18].

Studies on microbiome-related treatments for immunological disorders using sup-
plemented microorganisms are still needed. However, rational selection of the probiotic
strain(s) that should be subjected to non-clinical or clinical trials based on the potential
bioactivity of their derived metabolites, is not a common practice so far.

Bioassay-guided fractionation has been the traditional discovery approach to new
bioactive compounds. The work starts with a complex crude extract from a source of
potential bioactive chemical entities (i.e., plants, fungi, marine organisms, microorganism
cell cultures, etc.), and components are separated into fractions based on compounds
physicochemical properties using different techniques such as chromatography, liquid-
liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE),
distillation, among others. An in vitro biological system (bioassay) tests for the effect caused
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by each fraction. Alternating between further fractionation and bioassay responses will
likely lead to the isolation and identification of the compound/s with biological activity [19].
It is a time-consuming process and sometimes the bioactive effect of a fraction is lost after
successive fractionation steps due to the dilution of bioactive components to an inactive
level, lack of long-term stability of components, or lack of synergistic activity of more than
one component once each of them are separated into different fractions, for example.
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Figure 1. Schematic representation of two approaches to new bioactive compound discovery. (Left
panel) Traditional bioassay-guided fractionation is time and labor intensive due to its step-by-step
separation using chromatographic techniques followed by biological activity assessments. It removes
most of the interfering matrix compounds but may lead to losses of active compounds. (Right
panel) Holistic metabolomics approach deals with complexity, requires high level of expertise in
instrumentation and data analysis, but offers scientists a broader picture of the biological system
in study [19].
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Enormous molecular diversity and biological functionality are two important features
that metabolomics can cover at once, revealing potential bioactive compounds or at least
leading to hypothesis that will set the ground for further investigations. We recently applied
targeted and non-targeted metabolomics strategies based on mass spectrometry in a clinical
intervention trial with probiotics [20]. Metabolomics was shown to be a valuable approach
to the discover of new bioactive molecules in biosamples [21–24], and out of extremely
complex organic environmental samples [25,26]. In vitro, metabolomics can provide im-
portant information on cell-to-cell communication, on cell growth behavior, on metabolite
flux supporting metabolic engineering and industrial biotechnological processes, and has
been successfully applied to study bacterial culture supernatants [27–30]. Figure 1 shows
the workflow differences between the classical bioassay-guided fractionation and the
metabolomics approach in the discovery of new bioactive compounds.

Here we want to highlight the first research steps we followed before our discovery of
D-tryptophan as a modulator of the gut microbiome and allergic airway disease [31,32].
This study presents our rapid screening approach via direct infusion of 25 samples derived
from probiotic supernatant in high-resolution Fourier-transform ion cyclotron resonance
mass spectrometry (FT-ICR-MS), with the objective to simultaneously screen as many
metabolites as possible, and to discriminate supernatants that showed immunomodulatory
properties from inactive ones by applying multivariate statistical analysis to the acquired
data. For that, aliquots of each probiotic culture supernatant were subjected in parallel
to three different sample cleaning procedures prior to FT-ICR-MS analysis: A simple
protein precipitation from the crude supernatant and solid-phase extraction (SPE) with
the HLB hydrophilic polymeric phase and cyano-propyl sorbent (CN-E) phase (i.e., each
strain supernatant generated three samples (Crude Supernatant, HLB-SPE extract and
CN-E-SPE extract) that were analyzed after electrospray ionization (ESI) in positive and
negative modes).

2. Results
2.1. Probiotic Strains and Their Respective Supernatant Immunomodulatory Response

Each individual probiotic culture supernatant was harvested at early stationary
phase since bacteria are at their maximum size and cell density and, in theory, have
maximized production of metabolites [33]. These supernatants previously showed a
concordant immune response in two different bioassay screenings [31] (i.e., it downmod-
ulated costimulatory molecules (bioactive) or it was inactivity). The outcome was not
species-dependent (Table 1).

2.2. FT-ICR-MS Analysis and Data Processing Prior Statistics

Prior FT-ICR-MS analysis, each individual probiotic supernatant was subjected to
three different desalting extraction procedures to generate three organic extracts using
methanol: two after solid phase extraction (HLB-SPE and CN-E SPE) and one after a
simple protein precipitation of crude supernatant. These extracts also correspond to
differential chromatographic fractionations leading to chemical mixtures with various
biological responses. Analysis of each extract by FT-ICR-MS in both electrospray ionization
(ESI) modes (positive and negative) resulted in an ASCII file containing the mass to charge
(m/z) and their respective signal abundance. To investigate differences in the metabolome
data between bioactive and non-bioactive probiotic supernatants, individual sample ASCII
data files were combined according to sample type and ESI mode resulting in six data
matrix: crude supernatant/ESI[+], crude supernatant/ESI[-], HLB-SPE extract/ESI[+], HLB-
SPE extract/ESI[-], CN-E-SPE extract/ESI[+], and CN-E-SPE extract/ESI[-]. After mass
signal alignment, mass filtering and molecular formula assignment, each data matrix
showed several molecular features. The highest number of features was observed for the
data matrix HLB-SPE extract followed by the matrix CN-E-SPE extract, both in ESI negative
mode (Table 2).
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Table 1. Probiotic strain supernatants subjected to metabolite screening and their respective im-
munomodulatory response previously observed in vitro.

Bacterial Strain. Code Source Effect on DC a Effect on KM-H2 b

Bifidobacterium animalis
subsp.lactis BB-12 c Chr. Hansen,

Horsholm, Denmark + +

Bifidobacterium animalis W53 Winclove Bioindustries
BV, The Netherlands − −

Bifidobacterium breve W9 Winclove Bioindustries
BV, The Netherlands + +

Bifidobacterium breve W25 Winclove Bioindustries
BV, The Netherlands − −

Bifidobacterium lactis BB-420 Danisco, Niebüll,
Germany + +

Bifidobacterium lactis W51 Winclove Bioindustries
BV, The Netherlands − −

Enterococcus faecium W54 Winclove Bioindustries
BV, The Netherlands − −

Lactobacillus acidophilus LA-5 Chr. Hansen,
Horsholm, Denmark + +

Lactobacillus acidophilus W12 Winclove Bioindustries
BV, The Netherlands − −

Lactobacillus acidophilus W33 Winclove Bioindustries
BV, The Netherlands + +

Lactobacillus acidophilus W74 Winclove Bioindustries
BV, The Netherlands − −

Lacticaseibacillus casei LC-01 Chr. Hansen,
Horsholm, Denmark + +

Lacticaseibacillus casei W20 Winclove Bioindustries
BV, The Netherlands − −

Lacticaseibacillus casei W56 Winclove Bioindustries
BV, The Netherlands + +

Lacticaseibacillus casei W79 Winclove Bioindustries
BV, The Netherlands + +

Lactobacillus helveticus W60 Winclove Bioindustries
BV, The Netherlands − −

Lacticaseibacillus
paracasei W7 Winclove Bioindustries

BV, The Netherlands + +

Lactiplantibacillus
plantarum W21 Winclove Bioindustries

BV, The Netherlands − −

Lactiplantibacillus
plantarum W62 Winclove Bioindustries

BV, The Netherlands − −

Lacticaseibacillus
rhamnosus LGG Valio Ltd., Helsinki,

Finland + +

Lacticaseibacillus
rhamnosus W102 Winclove Bioindustries

BV, The Netherlands − −

Ligilactobacillus
salivarius W24 Winclove Bioindustries

BV, The Netherlands − −

Lactococcis lactis W32 Winclove Bioindustries
BV, The Netherlands − −

Streptococcus salivarius W122 Winclove Bioindustries
BV, The Netherlands − −

Streptococcus
thermophilus W69 Winclove Bioindustries

BV, The Netherlands − −
a Ability to decrease the percentages of human-derived dendritic cells (DCs) expressing costimulatory molecules
CD83-, CD80-, CD86-, and CD40 after lipopolysaccharide (LPS)-induced maturation, by at least 30% relative
to untreated DCs and DCs treated with supernatant from the non-probiotic Lacticaseibacillus rhamnosus DSM-
20021 (negative controls). b Ability to lower CCL17 secretion by KM-H2 cells in a dose-dependent manner to
concentrations of approx. 30% of those observed in untreated cells and in cells treated with supernatant of the
non-probiotic Lacticaseibacillus rhamnosus DSM-20021 (negative controls). c Apart from BB-12, probiotics providers
did not disclose further details on subspecies.
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Table 2. Number of m/z features present in each data matrix after data processing and molecular
formula annotation.

ESI Mode
Sample Pretreatment Applied

Crude Supernatant * HLB-SPE Extract CN-E-SPE Extract

Positive ** 344 2658 1367
Negative 1970 3932 3353

* Crude supernatant was subject to protein precipitation with cold acetonitrile, followed by centrifugation
(the upper layer of each sample was carefully taken and diluted prior analysis). No solid phase extraction was
applied. ** Signal-to noise ratio (S/N) of 4 was applied as substantial amount of noise signals was not excluded
with S/N 3. The significant lower amount of m/z annotated features presented in crude-supernatant analysis
compared to SPE-extracts can be a result of ion suppression caused by growth medium components at high
concentration; while SPE extracts concentrate metabolites and remove, to a certain extent, medium ingredients
from the sample.

2.3. Principal Component Analysis and Orthogonal Partial Least Square Discriminative Analysis

Unsupervised principal component analysis (PCA) was applied to each individual
data matrix without any input on sample classification to the model. The score plots
obtained from these analyses are shown in Figure 2. Only two models showed a group
separation trend (Figure 2D,F). The data obtained in ESI negative ionization mode for sam-
ples submitted to CN-E-SPE extraction showed a more homogenous grouping of bioactive
supernatants when compared to other models suggesting that this model has predictive rel-
evance. The strong homogeneity between the bioactive groups in that model is underlined
through the presence of some outliers (samples from W32, W54, and W53). This suggests a
more unique character of these inactive samples. Data matrix PCA analysis for HLB-SPE
extracts/ESI[-] (model D) describes a particular pattern on correlated samples belonging to
the group of non-bioactive supernatants in the lower-left quadrant. Samples in this cluster
were originated from cell culture of different probiotic species (Bifidobacterium, Lactobacil-
lus, Streptococcus, and Enterococcus), but those samples may share some similarities in
their detected metabolic profile. This model also suggests predictive relevance. Figure 3
shows the OPLS-DA score scatter plots for the six calculated models after seven-fold cross
validation. The values that indicate the goodness of the fit (R2) and the different levels
of predictability (Q2) are reported in the plots. We also added the p-values referred to
the CV-ANOVA. We could achieve for the models C, D and F a Q2 value closer to 0.5.
This could suggest that the model has predictive relevance for a particular reflective en-
dogenous latent variable (Q2 = 0.5 indicates a good model; a threshold of 0.5 is generally
admitted for metabolomics [34]). Highly divergent values of R2 and Q2 values would
indicate model over fitting (i.e., poor prediction power) [35,36]. Examining the results,
we could infer that only three out of six models had a robust classification power: model F
(CN-E-SPE extracts/ESI[-]), which showed already a separation of groups in unsupervised
PCA even though three inactive samples were misclassified to the bioactive class (W60,
W102 and W122); model D (HLB-SPE extract/ESI[-]) with its high classification power
without misclassification of samples; and model C (HLB-SPE extract/ESI[+]) which showed
also a good classification power although CV-ANOVA p-value was higher for this model
(p = 0.046) than for the models D and F.

2.4. Metabolic Pathway Assessment

The most discriminant m/z features revealed by OPLS-DA for each class in all ro-
bust models (Figure 3C,D,F) were submitted to MetaboAnalyst web-based platform for
metabolic pathway analysis using the “MS Peaks to Pathways” software feature; specially
designed for untargeted metabolomics [37]. As no library of bacteria species was available
in MetaboAnalyst by the time of this assessment, Homo sapiens was chosen as specie to per-
form pathway analysis since it has the most comprehensive organism library in the KEGG
metabolic network database [38,39]. The resulting pathways activity listed by MetaboAna-
lyst was compared to the reference pathways represented in the KEGG database for species
of bacteria analogous to those investigated in this study. Only bacteria pathways listed in
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KEGG which were the most populated with hits, and pathways reflecting the conditions
of the experiment were considered for the data interpretation (e.g., nicotine and caffeine
metabolism were excluded). Figure 4 shows that unique pathways were populated for each
class of supernatants in the three models, with little overlap between the two classes and
between the results of the three data sets.
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Figure 3. Supervised OPLS-DA scores plots. Models C, D and F are robust and have a high classi-
fication power. Discriminant molecular features (m/z) observed in these three models were submitted
to metabolic pathway analysis. The left side displays results obtained from FT-ICR-MS analyses in
ESI positive mode (A,C,E) and the right side in ESI negative mode (B,D,F).
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of hits. Pathway analysis was originated from the most discriminant mass features of each class
derived from the OPLS-DA models that showed robust classification power.

2.5. Tryptophan Metabolism

Remarkably, the tryptophan (Trp) metabolic pathway was overrepresented in the
bioactive supernatant class in all three models. Especially in the HLB-SPE extract/ESI[+]
and CN-E-SPE extract/ESI[-], no hits related to Trp metabolism were observed for the
non-bioactive class. Metabolite hits predicted in the Trp pathway were compared between
models and classes (Table 3). A comparison visualization using Venn diagrams is shown in
Figure S1. In fact, only 16 hits were obtained for the dataset HLB-SPE extract/ESI[+], but no
unique one. A total of 24 hits were obtained for the dataset HLB-SPE extract/ESI[-], where
seven hits were unique. Ten hits were obtained for the dataset CN-E-SPE extract/ESI[-],
being one hit unique. A total of 25 different hits related to tryptophan metabolism was
counted for the class of bioactive supernatants combined. Discriminant features for the non-
bioactive class of supernatants showed only three unique hits related to Trp metabolism,
while nine hits were shared with the bioactive class. Out of these nine shared hits, six were
present in all evaluated data matrices, two were present in HLB-SPE extracts but not in the
CN-E extract, and one was only present in the HLB-SPE/ESI[-] matrix. Trp amino acid was
annotated as discriminant feature only in the bioactive supernatant data set of HLB-SPE
extracts in both positive and negative ionization mode.
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Table 3. Tryptophan metabolism pathway activity prediction (hits) directly from mass peaks of the
most discriminant features (KEGG compound codes).

Bioactive Supernatants SPE Extract Non-Bioactive
Supernatants Extract Metabolite Hit Prediction *

HLB-SPE/ESI[+] HLB-SPE/ESI[-] CN-E-SPE/ESI[-] HLB-SPE/ESI[-]

C00078 C00078 NP NP Tryptophan
C00331 C00331 C00331 NP Indolepyruvic acid
C00643 C00643 C00643 C00643 5-Hydroxy-L-tryptophan
C01598 C01598 NP C01598 Melatonin
C00978 C00978 NP NP N-Acetylserotonin
C00780 C00780 C00780 NP Serotonin
C02298 C02298 C02298 C02298 N-Acetylindoxyl
C02700 C02700 C02700 C02700 L-Formylkynurenine
C00328 C00328 C00328 NP L-Kynurenine
C03227 C03227 NP NP 3-Hydroxy-L-kynurenine
C00637 C00637 C00637 C00637 Indole-3-acetaldehyde
C02693 C02693 NP NP Indole-3-acetamide
C00954 C00954 C00954 C00954 Indole-3-acetic acid
C02937 C02937 NP NP Indole-3-acetaldehyde oxime
C03230 C03230 C03230 C03230 3-Indoleglycolaldehyde
C02043 C02043 NP C02043 Indolelactate

NP C00955 NP C00955 Indole-3-ethanol

C02470 Xanthurenic acid
C01987 2-Aminophenol

C01249 7,8-Dihydro-7,8-
dihydroxykynurenate

C01717 Kynurenic acid
C00398 Tryptamine
C02172 N-Acetylisatin

C01252 4-(2-Aminophenyl)-2,4-
dioxobutanoate

C00463 Indole; 2,3-Benzopyrrole
C02775 Dihydroxyindole
C02938 3-Indoleacetonitrile
C03574 2-Formylaminobenzaldehyde

* Metabolites are not structurally elucidated by mean of FT-ICR-MS but displayed as hit prediction based on high
accuracy mass (<1.0 ppm mass error). NP: Not present.

3. Discussion
3.1. The Approach to Sample Generation and Untargeted Metabolomics

The pretreatment of biological samples is usually required prior instrumental analysis
to reduce matrix complexity and remove salts. The number of m/z features present in
each data matrix reflects that (Table 2). Solid-phase extraction was more effective in
producing a cleaner sample than a simple protein precipitation, lowering baseline noise
and improving MS detection. The influence of different sample extraction techniques and
different electrospray ionization mode on the chemical diversity detected by FT-ICR-MS
was also demonstrated, even if pathway activity assessment was performed on statically
discriminant m/z features only (Figure 4). Based on our experience and on information
provided by SPE suppliers, the HLB-SPE and CN-E SPE extraction was chosen in an
attempt to cover a significant wide range of metabolite classes [40,41]. Due to its non-
polar and polar functional groups (the hydrophilic N vinylpyrrolidone and the lipophilic
divinylbenzene), the HLB hydrophilic polymeric phase can retain a much broader range of
polar to non-polar, neutral and acidic to basic compounds than traditional reversed-phase
C18-silica-based SPEs. HLB phases are also very resistant to over-drying, making extraction
methods more reproducible and robust [42]. As a supplementary phase, the medium polar
cyano propyl sorbent (CN-E) can extract from aqueous matrices moderately polar to non-
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polar compounds that would be irreversibly retained on non-polar sorbents such as C8-
and C18-based phases.

Overlapping of discriminant metabolic pathways and metabolite hits were observed
between different data matrices, as shown in Table 3 and Figure 4. The shared hits be-
tween the bioactive and non-bioactive class in the tryptophan metabolism pathway may
be explained by the presence of structural isomers and stereoisomers (e.g., N-Acetylindoxyl,
Indole-3-acetic acid and 3-Indoleglycolaldehyde (C10H9NO2); Indolelactate and 5-
Methoxyindoleacetate (C11H11NO3); L/D-Formylkynurenine and 5-Hydroxy- L/D-
tryptophan). We believe that predicted metabolites shared between both classes of samples
still deserves an activity test in bioassays. Additionally, it is expected that some metabolites
are retained by both HLB and CN-E solid phases and/or can be ionized in ESI positive and
negative modes, and we acknowledge the redundancy potential in the data obtained from
a single probiotic supernatant that was subjected to these different techniques. However,
each individual supernatant extract originated a data set that was combined into a data
matrix, and some metabolite hits were predicted across different matrices for the group of
bioactive supernatants only (tryptophan, indole pyruvic, serotonin, etc.). Results of a single
data matrix validate the ones of other matrices as each individual probiotic sample validates
the group (bioactive or non-bioactive), reinforcing hypothesis towards potential bioactive
metabolites. Yet, it should be noted that the data generated from both SPE fractions and
ionizations modes clearly differed from each other and this piece of information can be
useful to drive the isolation and identification of a specific class of metabolites by using the
proper extraction technique. We did not want to miss that by combining different data sets
prior data processing and statistics.

3.2. Immunomodulatory Supernatants and Bioactive Pathways

The results of pathway analysis suggest that tryptophan related metabolites pro-
duced by probiotic bacteria may be involved in the underlying biological processes of
immunomodulation observed in our in vitro test systems. This study was followed by
another one where bioassay-guided fractionation was applied to the two most bioac-
tive supernatants and structural elucidation using instrumental analysis (enantiomeric
chromatography separation, NMR and FT-ICR-MS) revealed D-tryptophan has been the im-
munomodulator compound present in a bioactive fraction, which was confirmed in in vitro
and in vivo experiments [31]. In this case, the classical strategy validated the hypothesis
originated with our high-throughput nontargeted FT-ICR-MS-based metabolomics towards
the importance of tryptophan metabolic pathway to immunomodulation.

In vivo, the balance between activation and suppression of the immune response
depends on various regulatory mechanisms, where the impact of microbiome and Trp
metabolism on immune tolerance has been much investigated [43,44]. Two enzymes are
well known to drive the first step of the amino acid Trp into the kynurenine pathway. In the
human body, the rate-limiting enzyme Trp 2,3-dioxygenase (TDO) converts L-Trp into N-
formyl-L-kynurenine in the liver, while indoleamine 2,3-dioxygenase (IDO) does the same
but is primarily expressed in epithelial cells, stem cells, and cells of the immune system
such as monocytes, macrophage, and dendritic cells (DCs). Thus, IDO has been studied
and recognized to have immunoregulatory roles [45,46]. Overexpression of IDO was corre-
lated with immunosuppression and tolerance in vitro and in animal models, likely, due to
the depletion of tryptophan and production of bioactive metabolites such as kynurenine,
3-hydroxy-kynurenine, or xanthurenic acid which seems to suppress T-cell responses,
induces regulatory T cells and facilitates the development of regulatory DCs [47–49]. How-
ever, the effect of Trp degradation on human DCs is still unclear. For instance, it has been
demonstrated in vitro that human DCs increased the expression of inhibitory receptors
and showed significantly lower stimulatory capacity toward T cells under low Trp con-
centration conditions, but no difference on the stimulatory capacity was observed when a
mixture of the metabolites anthranilic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic
acid, and quinolinic acid was added a prior to the medium; contrarily of what was ob-
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served for T-cells [50]. On the other hand, Belladonna et al. showed that nearby produced
kynurenines and derived metabolites can be taken up by murine DCs inducing a tolerogenic
phenotype, independently of Trp availability and IDO activity, i.e., IDO-competent cells can
“transfer” tolerogenic potential to DCs lacking functional IDO by producing Trp metabo-
lites [51]. Manni et al. confirmed those findings showing that exogenous L-kynurenine
induced endotoxin tolerance on mice DCs that were submitted to a lipopolysaccharide
(LPS) induced hyperresponsiveness [52]. Together with Trp metabolism, immunomod-
ulation related to L-arginine metabolism (also well populated in the bioactive group of
supernatants) has been well described in the literature [53]. Co-expression and co-activity
of both IDO and Arginase 1 enzymes was shown to promote a metabolite network (intra-
and inter-cellular) that induces DCs immunosuppressive properties [54].

Gut microbiome can direct utilize the amino acid Trp limiting its availability to the
host. This per se may affect host immune system. Besides using IDO activity to generate
kynurenine or hydroxykynurenine, intestinal microorganisms can also transform Trp into
several indoles that are ligands for aryl hydrocarbon receptors (AHR) [55,56]. Such ligands
activate AHR, which was demonstrated to induce IDO expression in LPS stimulated DCs,
promoting immune tolerance and differentiation of naïve T cells into T regulatory cells [57].
It is also known that bacteria synthesize diverse D-amino acids that are then enantioselec-
tively recognized by some receptors and enzymes in mammals and may mediate adaptive
immunity [58,59]. Synthesis of D-amino acids by bacteria involves mechanisms catalyzed
by racemase, epimerase or aminotransferase enzymes, resulting in direct interconversion of
the L- and D- stereoisomers [60]. In vivo, IDO can catabolize D-Trp into D-kynurenine which
is further metabolized to kynurenic acid by D-amino acid oxidase (D-AAO) or kynurenine
aminotransferase (KAT); or it is converted into D-3-hydroxykynurenine by kynurenine
3-monooxygenase [61]. The results presented here paved the way for our research that
identified the D-form of the amino acid tryptophan, isolated from supernatants of LGG
and W56 culture, as an immunomodulator in vitro and in vivo, while its L-form and other
D-amino acids were inactive. Whether D-metabolites derived from D-Trp induce tolerogenic
DCs or not, has yet to be discovered.

Metabolic pathways involving other amino acid also characterized the group of bioac-
tive supernatants, especially aromatic ones such as phenylalanine and tyrosine which are
suggested to be putative precursors of bioactive bacterial metabolites [62]. Another exam-
ple of a pathway distinguishing the group of bioactive supernatants, which plays a crucial
role in the development of immune cells (inducing immunity or tolerance) and in many
autoimmune diseases, is the Aminoacyl-tRNA biosynthesis (ARS) [63]. The identification
of probiotic derived metabolites belonging to theses pathways and the assessment of their
potential as immunomodulators, is a stimulus for future studies. Overall, the advantage
of the FT-ICR-MS metabolomics-based supernatant screening strategy for our probiotic
research is that predicted hits (or identified bioactive compound candidates) are often
commercially available or are easy to synthetize and can be directly tested in bioassays
prior or without laborious bioassay-guided fractionation investigation.

3.3. Implications and Limitations of the Study

To reasonably compare the supernatants samples using FT-ICR-MS spectra, differences
in cell culture had to be as limited as possible, as well as the number of medium components
that could potentially cause MS detection interferences. As such, a simple chemically
defined medium (CDM1) was preferred to cultivate all 25 probiotic strains under the same
conditions whilst recognizing the fact that some strains initially available did not grow
adequately in this minimal essential medium and had to be excluded from the screening
experiment, and also the fact that a full growth medium with various sources of compounds
could potentially spark a different metabolic footprint if it was applied [64]. On the other
hand, each of the 25 probiotic supernatants harvested from CDM1 medium showed a
concordant immunomodulatory response with supernatants harvested from the same
strains cultivated in complex de Man Rogosa-Sharpe (MRS) medium [30,31].
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Centrifugation followed by fast filtration was a quick and simple method to harvest
cell-free supernatants (aliquots of supernatants were incubated after that and no cell growth
was observed proving that those supernatants were cell-free). The loss of certain set of
metabolites during this procedure due to, for example, binding to the filter material or
lack of stability was not investigated, as well as leakage of bacteria cells intracellular
metabolites into the supernatant. However, further investigation of the drawbacks of the
fast filtration method was beyond the scope of this study once immunomodulatory activity
could be proven in the harvest of cell-free supernatants thereafter (i.e., the compound/s
responsible for the immunomodulatory effect in our bioassay was/were present in the
collected supernatant sample).

The loss of metabolites during sample preparation using SPEs may not be excluded as
well. It is possible that some metabolites were not retained in the solid phase during the
first SPE step (sample load) or subsequently washed out during the washing step. Only the
eluted samples (MeOH extract) were analyzed by FT-ICR-MS. To overcome that, aliquots
of bacteria supernatants were taken crude and analyzed without being subjected to SPE
extraction, which unfortunately did not generate a robust separation in OPLS.

FT-ICR-MS analysis by direct infusion enabled us to rapidly screen the probiotic stains
of highest bioactive activity, which led to important pathway information. This analytical
approach did not enable isomer’s differentiation, but neither a classical non-targeted
LC/MS method would have been able to achieve that. Due to the well-known importance of
stereochemistry in biological processes, follow-up in vitro assays to test isomers activity and
sample analysis using complementary techniques such as enantioselective chromatography
and NMR was essential to distinguish D-tryptophan as a chiral molecule within the most
bioactive compound candidates in our follow-up study.

4. Materials and Methods
4.1. Probiotic Strains Cultivation and Supernatant Collection

Shortly, a total of 20 probiotic strains were obtained from WINCLOVE Probiotics B.V.
(Amsterdam, The Netherlands) whereas 5 other ones were purchased from three different
sources (Table 1). As already described in our former work [31], strains were cultivated
separated using chemically defined medium CDM1 [65] without Tween® 80 as it is known
to cause interferences in mass spectrometry analyses [66]. Cells were growth under sterile
microaerobic/anaerobic conditions at 37 ◦C and bacteria concentration was followed by
optical density of the medium (OD) at 600 nm. Supernatants were collected only after
cells had reached stationary phase and a minimum cell number of 108 colony-forming
units/mL. Fast filtration method was applied to separate cells from medium and cell-free
supernatants were stored at −20 ◦C right after filtration and then at −80 ◦C until analysis.
A portion of each supernatant was saved for bioassay screening as well.

4.2. Bioassays for Immunomodulatory Activity in Probiotic Supernatants

Results of two biological assays previously performed were used in this study to
assign probiotic supernatants into groups. The bioactivity screenings were based on
probiotic supernatants ability decrease the CC chemokine ligand 17 (CCL17) secretion in
a human Hodgkin lymphoma cell line (approx. 70% decrease relative to untreated cells
and to supernatant from the non-probiotic Lacticaseibacillus rhamnosus DSM-20021; negative
control), and to concordantly prevent upregulation of costimulatory molecules in LPS
stimulated human dendritic cells, both assays are described in detail elsewhere [31].

4.3. Sample Pre-Treatment Prior to Chemical Analysis

Probiotic strains were cultivated in water-based and highly salted media, which may
also contain lipids and proteins produced by the bacteria. These are potential interferes that
must be removed from the samples prior to MS analysis. Thus, Oasis® HLB SPE cartridges
(100 mg, 1 mL; Waters, Milford, MA, USA) and Bond Elut™ Cyano (CN-E) SPE cartridges
(100 mg, 1 mL, Agilent, Inc., Walnut creek, CA, USA) were first conditioned with 1 mL
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methanol and then equilibrated with 1 mL of water each. Cell-free culture supernatant
of each strain and sterile CDM1 medium (Blank) were treated as follows: A portion of
5 mL were first centrifuged at 5000 rpm for 10 min at 10 ◦C, 2 mL of the upper layer
were carefully taken and submitted to HLB-SPE and 2 mL to CN-E SPE purification. Each
cartridge was then cleaned with 1 mL water and metabolites were eluted with 1 mL MeOH.
Methanolic extracts were stored at −80 ◦C until analysis. It was also of interest to analyze
crude supernatants as well (i.e., without being submitted to SPE extraction). Thus, 2 mL
of each strain cell-free supernatant were transferred to Falcon™ tubes and were subject
to protein precipitation with 4 mL cold acetonitrile (previously stored at −20 ◦C) during
20 min in ice bath immersion. Then, solutions were centrifuged at 11,000 rpm for 10 min at
10 ◦C and the upper layer of each sample were carefully taken and stored until analysis.

All solvents and water were LC-MS grade quality (CROMASOLVE®, Fluka® Analyti-
cal, Sigma-Aldrich-Aldrich, St. Louis, MO, USA).

4.4. FT-ICR-MS Chemical Analyses

Ultrahigh resolution mass spectra were acquired on a Fourier Transform Ion Cyclotron
Resonance Mass Spectrometry (SolarixTM, Bruker Daltonics GmbH, Bremen, Germany)
equipped with a 12 Tesla super conducting magnet (magnex scientific Inc., Yarnton, GB,
UK). An Apollo II electrospray source (Bruker Daltonics GmbH, Bremen, Germany) was
used for ionization. Prior to sample analysis, the instrument was calibrated with on arginine
clusters (m/z 173.10440, 347.21607, 521.32775 and 695.43943) by injecting 1 ppm arginine
solution. Calibration errors in this mass range were below 0.1 ppm.

SPE extracted samples were diluted 1:10 (v:v) for ESI positive mode analyses and 1:50
for negative mode. Non-extracted supernatants were diluted 1:10 for both ESI positive
and negative mode analyses. Dilutions were done with 70% MeOH aqueous solution
containing 0.1% FA and these dilution factors were defined after preliminary MS detection
testes. Supernatant extracts were injected with a Gilson autosampler (223 Sample Changer,
Gilson Inc., Middleton, OH, USA) where samples were kept cooled at 8 ◦C during the
analysis. Samples were analyzed by blocks of sample types: HLB extracts, CN-E extracts,
and crude supernatants. The sample analysis order was randomized between bioactive
and non-bioactive supernatants inside each block. After the analysis of a group of 10
samples, three spectra of pure methanol were acquired to minimize cross-contamination
and ion memory effects. MS data were acquired using the program ApexControl 1.5 (Bruker
Daltonics) and the instrument has been tuned to obtain highest sensitivity for metabolite
detection in each type of sample in a 10 min run time (Table S1).

4.5. Data Processing and Data Analysis

Data processing of FT-ICR-MS spectra is an important step to originate meaningful
data matrices used in multivariate statistical analyses and data interpretation. The spectra
have been extracted and processed using the software DataAnalysis 4.0© (Bruker Dalton-
ics GmbH, Bremen, Germany). Internal calibration of positive mode spectra was done
according to a mass list of endogenous abundant metabolites such as amino acids and
cell-growth medium components, where spectra acquired in negative mode were inter-
nally calibrated with a reference mass list of fatty acids. The mass lists files (.asc) were
exported with a signal-to noise ratio (S/N) of 4 for ESI[+] and 3 for ESI[-] spectra, and were
aligned within a 1 ppm window with the software Matrix Generator 0.4, an in-house
written software [67]. Further mass filtering was performed in each data matrix and the
masses occurred in less than 10% of samples (of each class) were excluded from further
analysis. Sterile CDM1 medium samples and pure solvents spectra were equally treated.
Possible elemental formulas were assigned for each peak in batch mode using in-house
software (FormulaCalculator) [68]. The formulae generated were validated by setting
chemical constraints (N rule, O/C ratio ≤ 1, H/C ≤ 2n+2, elements count: C0-100, H0-∞,
O0-80, N0-7, S0-1) in conjunction with an automated theoretical isotope pattern compari-
son [69,70]. The different datasets were analyzed by multivariate data analysis. The data
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were scaled using the unit variance method. The first model, PCA (principal component
analysis), gave an overview of the main relations between samples and variables, without
any prior information on the diverse classes. The models revealed the first separation
between the molecular signatures. For each model we presented the amount of variance
explained by the first two components R2Y(cumulative). A discriminatory strategy, us-
ing orthogonal partial least squares discriminant analysis (OPLS-DA), was then applied
to all data matrices. The classification method drove the separation between bioactive
and non-bioactive samples, increasing the likelihood of producing biologically relevant
results. The lists of the most important masses were listed choosing the highest loadings
values. The goodness of the fit and of the prediction were evaluated with the R2Y and Q2

values. To exclude overfitting, we computed the p-value of the cross-validation analysis
of variance (CV-ANOVA). All the multivariate modelling has been done in SIMCA-P© 13
(Umetrics, Umea, Sweden). Discriminant mass features that originated OPLS DA models
were uploaded into MetaboAnalyst web-based platform with a search range of 1.0 ppm for
metabolic pathway analysis [37].

5. Conclusions

Although probiotic strains were cultivated in a closed and controlled environment
and immunomodulation was tested in vitro—which may not reflect the in vivo conditions
in the human body—untargeted analysis using direct infusion FT-ICR-MS followed by
multivariate statistical analysis enabled the distinction between the group of immunomod-
ulatory supernatants and inactive ones offering a broad overview into possible secreted
bioactive compounds and the most significant metabolic pathways that differentiates the
two classes of supernatants.

The results suggest that tryptophan metabolism may play an important role in regulat-
ing DCs immune tolerance and can be used to foster follow-up experiments. For example,
discriminant hits can be seen as potential candidate compounds to undergo bioassay
screenings which may accelerate the identification of bioactive metabolites or at least, give
scientists an indication of potential bioactive classes of compounds to be explored next.
This does not apply only to Trp metabolism but also to other discriminant pathways yet to
be explored. Often, metabolites hits are commercially available or are easy to synthetize,
but their immunomodulatory properties have been not investigated.

The findings and strategy presented here can support the selection of the most ap-
propriate strains that should go through a more expensive and complex animal or/and
human study posteriorly. It may help scientists and manufactures to better design probiotic
cocktail products tailored to a special treatment and disease, and to improve interactions
with regulatory agencies based on the characterization of strains metabolic footprinting.
The emerging trend of postbiotics is another field that can benefit from the research ap-
proach described in this work. Studies using probiotic-derived bioactive metabolites may
overcome obstacles when, for example, oral administration of probiotics is not feasible, or a
specific therapeutic dose of a metabolite is needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12010035/s1, Figure S1: A comparison visualization using Venn diagrams, Table S1:
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mode and ESI ionization.
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