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Abstract. We present a systematic experimental investigation of an unusual
transport phenomenon observed in two-dimensional (2D) electron gases in
Si/SiGe heterostructures under integer quantum Hall effect (IQHE) conditions.
This phenomenon emerges under specific experimental conditions and in
different material systems. It is commonly referred to as a Hall resistance
overshoot but it lacks a consistent explanation so far. Based on our experimental
findings, we have developed a model that accounts for all of our observations in
the framework of a screening theory for the IQHE. Within this model, the origin
of the overshoot is attributed to a transport regime where current is confined to
co-existing evanescent incompressible strips of different filling factors.
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1. Introduction

Two-dimensional electron gases (2DEG) at low temperatures and high magnetic fields provide
a foundation to investigate the properties of interacting many-particle systems. The observation
of the integer quantum Hall effect (IQHE) [1] is one manifestation of the properties of such a
2D system and most of its essentials are successfully described within a single-particle picture
by means of the Landau–Büttiker formalism [2]. Nevertheless, many anomalies of the IQHE
that have been observed experimentally [3]–[5] cannot be explained in this framework.

One of these anomalies is the so-called quantum Hall resistance overshoot in which the
transverse resistivity ρxy exhibits an unusual behavior. Instead of monotonically increasing as a
function of magnetic field B between successive Hall plateaus, the Hall resistance overshoots
a plateau at its low magnetic field end before dropping back to the respective Hall resistance
value.

This feature has already been observed in various material systems, such as 2DEGs in
GaAs/AlGaAs [6]–[8], Si/SiGe [9, 10] and GaInAs/InP [11] heterostructures and Si-MOSFET
samples [12, 13]. From these studies, two main approaches [6, 7] have been developed to
explain the overshoot phenomenon. Yet, no model has emerged so far that describes the various
characteristics of the overshoot consistently and independently of the specific properties of a
respective material system.

In recent years, new light has been shed on the origin of the IQHE by treating 2DEGs
within a self-consistent screening theory [14, 15] that also takes into account direct Coulomb
interactions. This theory is capable of explaining many experimentally observed details of the
IQHE [3]–[5], [16, 17]. The interpretation of the IQHE within the screening theory is in contrast
with the classical Landauer–Büttiker-based edge state. In the Landauer–Büttiker picture, current
flows along independent and spatially separated 1D edge channels, whereas in the screening
theory, the imposed non-equilibrium current is confined to one incompressible (edge-)state with
a respective filling factor during the existence of a quantum Hall plateau.

We present a thorough investigation of the overshoot phenomenon based on 2DEGs in
molecular beam epitaxy (MBE)-grown Si/SiGe heterostructures for which we find the overshoot
to be well developed and tunable by different experimental parameters, in particular the
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temperature, the 2D sheet carrier density, the sample current and the sample geometry. We
develop a model for the overshoot phenomenon within the framework of the screening theory
that turns out to be a natural outcome of current confinement to co-existing incompressible
regions of different filling factors. Our model is universal to explain the Hall resistance
overshoot over a wide range of different experimental parameters and confirms our experimental
findings, while it does not rely on peculiarities of the material system. This work also illustrates
the effect of current confinement to more than one edge state within the screening theory for the
first time.

This paper is organized as follows. In section 2, we present the basics of the screening
theory of the IQHE. After introducing the experimental setup and sample structure in section 3,
we report on the experimental characterization of this quantum Hall effect anomaly in section 4.
Having identified the origin of this phenomenon, section 5 explains the existence of the
overshoot in the screening framework of the IQHE. In addition, the model is verified by
comparing its implications with our experimental data and that of other groups.

2. Screening theory of the integer quantum Hall effect: basics

At low temperatures and within certain magnetic field intervals, the screening theory gives rise
to a fragmentation of the electron gas into incompressible and compressible spatial regions [18].
The 2DEG is called compressible if the Fermi energy is pinned to one of the discrete levels. In
this case, the electrons can easily redistribute due to a high density of states. In contrast, within
the incompressible regions, all available states below the Fermi energy are occupied. Therefore,
electrons cannot be redistributed in the zero temperature limit. Hence, screening is nearly perfect
(poor) in the (in)compressible regions. Note that since all of the states are occupied within an
incompressible region, the filling factor is an integer. In this IQHE theory, the existence of an
incompressible strip (IS) leads to the confinement of the entire current distribution to such
an IS where no backscattering can occur. This current confinement leads to vanishing
longitudinal resistance and quantized Hall plateaus [14].

In order to introduce all relevant figures of merit that are required for the experimental
section, figure 1 is used to review the existence of the IQHE within the screening theory.
Figure 1(a) shows a typical set of Hall traces for ρxx and ρxy in a magnetic field interval
where two arbitrary quantum Hall plateaus are present. The overlaid red and blue crescent-
like structures highlight the transverse position x across the Hall bar of IS regions for different
magnetic fields. For a given magnetic field, the colored region is incompressible, whereas
the surrounding (white background) is compressible. The existence of ISs correlates with the
formation of the quantized regime in the resistivity tensor.

In figure 1(b), the electrochemical potential µ∗ is sketched versus the transverse position x
of the Hall bar for different magnetic fields. The traces (i)–(v) correspond to the vertical cross-
sections, as indicated in figure 1(a). Such an evolution of µ∗ for different magnetic fields has
also been observed experimentally [19] and described theoretically [20]. The experimentally
observable difference in µ∗ on both sides will be the Hall voltage VHall.

Starting at the high magnetic field end in figure 1(a), the entire sample is compressible
and consequently behaves like a metal. Hence, a linear drop of µ∗ across the sample and a
linear variation in the Hall resistance versus the magnetic field is observed, as in the classical
Hall effect. Lowering the field strength results in the formation of an IS at the center of the
Hall bar with a local filling factor ν(x) = N − 1 and ρxy becomes quantized. We will call the
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Figure 1. (a) Schematic diagram of longitudinal (ρxx) and transverse (ρxy)

resistivities as a function of the magnetic field. Crescent-like structures mark
the course of incompressible regions of the 2DEG with magnetic field for filling
factors N − 1 (red) and N (blue). The formation of IS regions correlates with the
observation of a quantized Hall resistance. In the quantized regime, the imposed
sample current is confined to the IS where no backscattering occurs. For very
narrow evanescent IS, W < λF, current leaks out of an IS and quantization is
lost. (b) The course of µ∗ across the sample for different magnetic fields. For (i)
and (ii), the current is confined to the well-developed IS resulting in a quantized
drop in the Hall voltage VHall. As an IS becomes evanescent (iii), the current also
flows in the compressible region and no transverse electric field Ex ∝ ∂xµ

∗(x, y)

is generated. Thus, the Hall plateau breaks down. For the further decreasing
magnetic fields, the current spreads over the entire sample width (iv) and µ∗

drops linearly across the sample, like in the classical Hall effect.

center of the 2DEG ‘bulk’ from now on. Due to the absence of backscattering in the IS, current
will flow in the IS only. By lowering the magnetic field, at some point the bulk of the 2DEG
becomes compressible again. The incompressible region in figure 1(a) splits and two branches
of the IS develop that approach the sample edges with further decrease in the magnetic field.
This is illustrated in cross-sections (i) and (ii): as both IS branches move to the sample edges,
they become narrower; however, the current is still confined to the IS as long as the sample is
in the quantized regime. This condition is fulfilled if the widths WN and WN−1 of these ISs are
larger than both the mean spacing between the charge carriers and the spatial extent of the wave
function. While the first scale is described by the Fermi wavelength λF ∝

√
1/n2DEG, the latter

is of the order of the magnetic length lB =
√

h̄/eB.
Below a certain width WN−1 of the IS, quantization will be lost and the IS breaks down

for two possible reasons: in the first case, if lB < WN−1 < λF, current starts to leak out of such
an IS into the surrounding compressible region. In such a case, the mean distance between the
charge carriers is larger than the width of the IS. Thus, it is statistically unlikely that any charge
carriers will be found within the IS region and the strip cannot be defined as an incompressible
state any more. The current outside an IS is not quantized due to finite scattering [21], and as a
result, the Hall resistance is reduced. This situation is depicted in cross-section (iii). We will call
the IS in this regime evanescent from now on. In the second case, for WN−1 < lB < λF at even
lower magnetic fields, the width of the evanescent IS will become smaller than the extent of the
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Figure 2. (a) Sketch of the layered structure of Si/SiGe heterostructures. (b) Hall
bar layout with markers for the relevant dimensions wbar, dcontact and wcontact.
(c) Energy level scheme for 2DES in strained Si subjected to a perpendicular
magnetic field.

wave function. Consequently, electrons will be able to tunnel through the IS and the current will
spread over the entire Hall bar, such that classical Drude-like transport is recovered. In cross-
section (iv), µ∗ will drop not only in the former IS regions but linearly across the entire sample,
and the Hall resistance will continue to decrease. The above-described scheme perfectly agrees
with local probe experiments [3, 19]. If the magnetic field is chosen such that λF < lB at the
low magnetic field end of a Hall plateau, the first case does not occur and the IS breaks down
immediately. By decreasing the magnetic field further, the bulk becomes incompressible for a
filling factor N and the current is confined to the IS again, as illustrated in cross-section (v).

This pictorial example is valid for low injected currents that do not strongly distort the
electrostatics of the problem, as in the out-of-linear-response regime that has already been
discussed within the screening theory [22, 23].

From this theory of the IQHE, it becomes clear that the existence of a Hall resistance
plateau is directly linked to the existence of one IS that carries the imposed current in a
quantized number of levels. At the low magnetic field end of a Hall plateau, the existence of
an IS itself is determined by its width, position and the energetic stability of the charge and
current distribution. These characteristics are in turn related to the respective energy gap [24],
the electron density gradient at the sample boundaries [18, 25], the strength of the magnetic
field [14], the temperature [26, 27] and the amplitude of the imposed current [28]. Thus, these
physical dependences define experimental parameters with which the existence of ISs and
possible anomalies of the IQHE can be studied.

3. Samples and methods

The sample layout is shown in figure 2(a). Samples are fabricated in a Riber Siva 45 solid
source MBE machine. Growth is initiated on a 1500 � cm (100)-oriented Si substrate. The
virtual substrate necessary for inducing the biaxial tensile strain in the Si is grown, employing
either a graded buffer virtual substrate concept with a grading rate of 8% µm−1 or a low-
temperature silicon virtual substrate [29]–[31]. The 2DEG forms in the 15 nm-thick strained
Si layer, which is followed by a 15 nm SiGe spacer layer and a 15 nm SiGe:P dopant supply
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layer. The uppermost 45 nm SiGe layer and the 10 nm cap layer combined with the doping
concentration account for the necessary band bending due to Fermi level pinning at the surface
and protect the structure against oxidation. All heterostructures studied in this contribution have
typical mobilities of 1–2 × 104 cm2 (V s)−1 at electron densities of 3–4.5 × 1011 cm−2.

The energy level structure of such 2DEGs is schematically shown in figure 2(c) for an
applied perpendicular magnetic field. Landau levels are separated by the largest energy gap
1EL = h̄ωc. Each Landau band splits into two Zeeman levels separated by 1EZ = gµB B with
an electron g-factor of 2 in Si [32]. In the strained Si two-valley system, both valley bands are
split by 1EV = 1V B, which is typically of the order of 20 µeV T−1 [33]. The various energy
gaps can only be resolved individually in magneto-transport measurements if the respective
energy splitting exceeds the level broadening 0, i.e. 0 � 1EL,Z,V.

Electrical characterization of the samples is carried out in Hall bar geometry at
temperatures down to 320 mK and magnetic fields up to 10 T in a 3He cryostat. Hall bars are
defined using photolithography and wet chemical etching. Figure 2(b) sketches a typical Hall
bar layout and names relevant length scales. The width wbar of the Hall bars is varied between 20
and 200 µm. The distance dcontact between adjacent contacts is chosen always to exceed wbar by a
factor of 10. Measurements are performed by using a standard low-frequency lock-in technique
at 17 Hz, voltage preamplifiers with 1 T� input impedance [34] and an excitation current of
typically 10 nA to avoid resistive heating of the 2DEG. In order to increase the 2D sheet carrier
density, samples can be illuminated with a red light-emitting diode at low temperatures.

4. Experiments

In this section, a systematic investigation of the overshoot strength for various experimental
parameters is discussed that were identified to have an influence on the energetic stability of an
incompressible edge state during the existence of a quantum Hall plateau.

Figure 3 presents a typical measurement recorded at T = 320 mK using an excitation
current of 10 nA in a wbar = 20 µm wide Hall bar. As expected, quantum Hall plateaus
corresponding to the experimentally resolvable filling factors develop in the Hall resistance
ρxy . In contrast to well-known quantum Hall traces, no monotonic behavior of ρxy is observed.
Instead, at the low magnetic field end, ρxy exceeds or overshoots the respective quantized
plateau value of ρxy . As a guide to the eye, the nominal values that equal RK/ν are marked
with dotted lines, with the von Klitzing constant RK = h/e2

≈ 25812.8 �. The lower right inset
of figure 3 sketches the general shape of ρxy valid for the observed overshoots. Although we
do not resolve the odd filling factors, overshoots can be attributed to the even filling factors
as the maximum of ρxy is always reached well beyond the expected position of the odd filling
factor.

We ensured that the overshoot phenomenon is no artifact due to admixtures of ρxx in ρxy .
The effect is rather reproducible for different voltage probe contacts of a Hall bar under dc or
low-frequency ac excitation, independent of sample processing and shape and width wcontact of
the probe contacts.

In our heterostructures, only even filling factors associated with Landau or spin gaps are
resolved in Hall measurements. All of them display an overshoot. Due to the small valley
splitting, odd filling factors cannot be resolved under the given experimental conditions. The
upper left inset of figure 3 shows the relative strength of the overshoot r = (ρxy,max −

RK
ν

)/ RK
ν

at
the respective filling factor and reveals that overshoots are most pronounced for Hall plateaus
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Figure 3. A typical Hall measurement of a sample showing an overshoot at filling
factors ν = 4, 6, 8, 10 and 12. Upper left inset: relative strength of the overshoot
at different filling factors. Lower right inset: sketch of ρxy . The maximum of an
overshoot preceding an even filling factor is reached after the expected position
of the unresolved odd filling factor.

of Landau-gap-associated filling factors at ν = 4, 8, 12, . . . compared to overshoots at Hall
plateaus of smaller spin-gap-associated filling factors ν = 6, 10, . . . . The energy gap size, in
turn, was identified to have an influence on the stability of an IS [24].

As the stability of an IS is strongly dependent on the electron temperature, we can also
expect the temperature to influence the overshoot effect. Heating the electron gas leads to
increased electron scattering and thus smears out the IS [27]. In figure 4, ρxy is plotted as a
function of the filling factor, and the figure illustrates the evolution of the overshoot phenomenon
for a wbar = 20 µm wide Hall bar with decreasing temperature from 1.1 K down to 320 mK. With
decreasing temperature, the magnitude of the overshoot becomes increasingly prominent at all
experimentally observed plateaus. Additionally, the position of the maximum of the overshoot
shifts away from the associated Hall plateau towards higher filling factors with decreasing
temperature. The position of the maximum of the overshoot at filling factor 4 is marked, as
a guide to the eye, with a black arrow. Furthermore, the inset of figure 4 plots the difference
1ρxy = ρxy,max −

RK
4 of the maximum of the overshoot at filling factor 4 and RK/4 as a function

of the measurement temperature. For temperatures between 1.1 K and T ≈ 600 mK, we observe
an increase of the magnitude of the overshoot. Below T ≈ 500 mK, the overshoot saturates.
This observed temperature dependence is in agreement with observations of Griffin et al [10] in
Si/SiGe 2DEGs, but deviates from observations of Komiyama et al [6] and Richter et al [7] in
GaAs.

We now study the dependence of the overshoot on the 2D sheet carrier density. A varying
density corresponds to a varying Fermi wavelength λF. In Si, λF equals 2π/

√
4πn2DEG/gsgv

with the spin- and valley-degeneracy factors gs = 2 and gv = 2. By changing the density of the

New Journal of Physics 12 (2010) 113033 (http://www.njp.org/)

http://www.njp.org/


8

Figure 4. Temperature dependence of the overshoot. The overshoot increases
with decreasing temperature. The inset shows the difference between the
overshoot maximum at ν = 4 and RK/4 plotted versus temperature.

Figure 5. Dependence of the overshoot on the 2D sheet carrier density. The
2D sheet carrier density was varied by illumination. Inset: the ρxy,max of the
overshoot at ν = 4 increases with increasing 2D sheet carrier density, i.e.
decreasing Fermi wavelength λF.

2DEG via illumination, we are thus able to tune the length scale below which an IS becomes
evanescent, as described in section 2. A low Fermi wavelength enables more narrow, but still
stable, ISs. Decreasing λF thus extends the magnetic field range in which an IS is able to
carry current. An increase in the 2D sheet carrier density improves the screening behavior in
the surrounding compressible region further and thus tends to suppress electron scattering. In
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figure 5, ρxy is plotted for six different electron densities. The overshoot is found to increase with
increasing 2D sheet carrier density. Remarkably, for the highest density, the overshoot at filling
factor 4 even exceeds RK/3 ≈ 8604.3 �, which corresponds to a valley-split energy level of the
second spin band. Moreover, with increasing density, and similar to the temperature behavior
shown in figure 4, the overshoot shifts away from the quantum Hall plateau in the direction of
higher filling factors. Exemplarily for the overshoot at filling factor 4, the inset of figure 5 plots
the maximum value of this overshoot versus λF and the corresponding sheet carrier density. We
observe an increase in the overshoot with decreasing λF.

Two main models have emerged to explain the overshoot phenomenon. In what we call the
bulk model, the overshoot is caused by backscattering in the bulk of the 2DEG due to energy
level overlaps or crossings [7, 9]. In the second approach, which we will refer to as edge model,
the origin of the overshoot is attributed to a mixing of the two spin states of a Landau level at the
sample boundaries and selective probing of only the outer edge channels by the voltage probe
contacts [6]. The energy gap, temperature and density dependence, however, provide already
strong evidence that the bulk model is not able to explain the phenomenology of our observed
overshoot effect. We find the overshoot effect to be stronger if the electrochemical potential µ∗

resides in a comparatively large Landau gap rather than a spin gap in the bulk, for the lowest
temperatures and the highest electron densities. In all three cases, inter-level scattering or level
coupling is suppressed in the bulk such that the basic ingredients of the bulk model are not
fulfilled. An alternative explanation for the overshoot is provided by the edge model, which is
based on the Landauer–Büttiker picture of the IQHE. To explain the overshoot effect, the edge
model makes a number of assumptions that cannot be applied to our system. For example, it
relies on a strong spin–orbit interaction as a mechanism that couples both spin states at the
sample edges [6].

In our experiments, we observe the overshoot anomaly to occur at the low magnetic field
end of a Hall plateau. In this regime, the current distribution is still confined to an IS in the
framework of the screening theory. However, the current distribution spreads to the next local
resistance minimum for decreasing magnetic fields as the IS becomes evanescent and breaks
down. Hence, the occurrence of the overshoot effect appears to be related to the breakdown of
the current-carrying IS.

To examine this indication in further detail, we studied the effect of imposed excitation
current over a wide range of amplitudes. According to calculations [23], the sample current
was found to predominantly affect the width and stability of incompressible edge states, which
has consequences on the breakdown of the current-carrying IS. Figure 6 shows a current
series measured with a 20 µm wide Hall bar at a bath temperature of 330 mK. The sample
is illuminated upon saturation of the sheet carrier density and the density is kept constant
for the entire measurement series at n2DEG = 4.45 × 1011 cm−2. The current is varied by three
orders of magnitude from 0.5 to 500 nA. The left panel of figure 6 shows ρxx , while the right
side presents a zoom-in of the simultaneously recorded ρxy . For the lowest sample currents,
Shubnikov–de Haas oscillations with a four-fold periodicity start around B ≈ 0.6 T for ν = 32.
Above B ≈ 2 T, Zeeman- (ν = 6) and also valley-splittings (ν = 5, 7) become resolvable. With
increasing current, the amplitudes of the oscillation in ρxx decrease and are less pronounced,
especially for higher filling factors. In ρxy , filling factor ν = 12 is resolved first and strong
overshoots are observed at filling factors ν = 8, 6 and 4. These overshoots decrease rapidly with
increasing current. The inset in the lower right side of figure 6 plots 1ρxy for filling factor ν = 4
exemplarily versus applied excitation current. Starting at low currents, the magnitude of the
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Figure 6. Excitation current dependence of the overshoot at T = 330 mK. The
overshoot can be selectively destroyed by increasing the excitation current. Inset:
magnitude of the overshoot as a function of the excitation current. The overshoot
decreases with increasing excitation current.

overshoot is almost unaffected up to approximately 10 nA. Increasing the current further leads
to a rapid decrease in the magnitude of the overshoot until complete suppression at 500 nA.
However, at 500 nA the quantized Hall plateau is still existent in ρxy . That is, by increasing the
current, the overshoot can be completely suppressed, while the quantum Hall effect is preserved
and proves to be much more stable than the overshoot.

To rule out heating of the entire 2DEG as the reason for the suppression of the overshoot,
we compare a measurement of ρxy and ρxx at a low bath temperature of 330 mK and a
high sample current of 500 nA (red dotted line) exemplarily against a measurement at a high
temperature of 1.2 K but a low current of 10 nA (black solid line) in figure 7. At T = 1.2 K,
ρxy shows signatures of the quantum Hall effect with a prominent overshoot at filling factor
4. The Shubnikov–de Haas oscillations in ρxx are pronounced but do not reach ρxx = 0 � for
any filling factor. In comparison, ρxx at T = 330 mK but 500 nA does reach ρxx = 0 � at filling
factor 4. In ρxy , however, the overshoot is completely suppressed. Consequently, a high lattice
temperature of T = 1.2 K lifts the ρxx = 0 � minimum but preserves the overshoot, whereas
a high current of I = 500 nA completely suppresses the overshoot and preserves the extended
ρxx = 0 � minimum. Hence we conclude that the selective suppression of the overshoot cannot
be explained by a current-induced 2DEG heating effect alone.

By increasing the current I with fixed wbar, the bulk current density j = I/wbar is increased,
as well. In order to be able to differentiate whether the current density j or the current I itself
is essential for the suppression of the overshoot or not, a further experiment is necessary. If
the overshoot phenomenon is caused by bulk contributions, the overshoot is expected to behave
similarly, no matter how the current density j = I/wbar is increased. To discriminate between
the effects of increasing the current density j by increasing I or reducing wbar, we designed a
Hall bar with different sections where wbar is varied in steps from 200 to 25 µm. We were thus
able to take data for each wbar and current I simultaneously on one sample under exactly equal
conditions in a single cooldown.
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Figure 7. Direct comparison of the effect of increasing sample current and
increasing temperature. At a lattice temperature of T = 330 mK and 500 nA
sample current, the overshoot is completely suppressed, still preserving ρxx = 0,
whereas at T = 1.2 K and only 10 nA sample current, the overshoot is still very
prominent but the ρxx = 0 minimum is already lifted.

Figure 8. Bulk current density dependence of the overshoot. Increasing the
current density by increasing the excitation current or by decreasing the wbar

yields opposite results. The first suppresses the overshoot, while the latter
increases the overshoot.

Starting at a low current density j , figure 8 shows an overshoot for the 200 µm wide Hall
bar section at an excitation current of 10 nA. Increasing the current density j by a factor of 8
by decreasing wbar to 25 µm while keeping I = 10 nA fixed leads to an increased overshoot.
In contrast, increasing the current density j by a factor of 10 by increasing the current to I =

100 nA while keeping wbar = 200 µm fixed suppresses the overshoot. As a similar increase in j
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leads to opposite results regarding the overshoot, the averaged bulk current density j = I/wbar is
no relevant figure of merit for describing the overshoot phenomenon. Instead, only the current
I itself, which is crucial for the current density in the incompressible edge state, determines
whether the overshoot is suppressed or not. Analogously, these measurements of the increasing
overshoot effect with decreasing sample size also demonstrate that a lower contribution of the
bulk of the 2DEG to electron transport is essential for a pronounced overshoot. Hence, we
conclude that the overshoot phenomenon originates from the edge state transport regime.

5. Discussion

In sections 2 and 4, we only discussed the IQHE and the overshoot phenomenon considering
one existing or vanishing IS. The current was flowing either in one IS or increasingly in the bulk
as an IS breaks down.

The sample current I0 imposed along a Hall bar of width 2d can be related to the
current density along the Hall bar and also by introducing jy(x) the resistivity tensor to the
electrochemical potential in the quantized regime via

I0 =

∫ +d

−d
dx jy(x) =

e

h

∫ +d

−d
dx ν(x)

∂µ∗

∂x
. (1)

In (1), the local resistivity tensor components have been introduced in jy(x) = 1/ρxx(x)Ey(x) =

1/ρxy(x)Ex(x), together with ρxy(x) = h/ν(x)e2 and Ex(x) = e−1∂µ∗(x, y)/∂x . This
description will be best towards zero temperature when the drop of µ∗(x, y) across an IS of
width WN can be approximated by a constant transverse electric field Ex comparable to the
schematic picture of figure 1(b). After integration over both branches of an IS with local filling
factor ν(x) = N at the two edges of the Hall bar, one obtains for the Hall bar current

I0 = 2
e

h
eE N

x N WN . (2)

This allows us to calculate the measured Hall voltage VHall = 2WN E N
x . We find the familiar

globally measured Hall resistance for the Hall plateau of filling factor N

ρN
xy =

VHall

I0
=

h

e2 N
. (3)

From this simple consideration, we can already conclude that as one IS becomes evanescent,
the current density jy(x) and thus ∂µ∗(x, y)/∂x will be reduced within an IS region and
consequently the Hall resistance must drop. Conversely, more than one IS is required to explain
anomalies such as the overshoot, where the drop in the chemical potential across the Hall bar
needs to rise in total.

In the following, we will first show that the co-existence of two evanescent ISs leads to the
overshoot effect and that this model explains our observations from the previous section.

5.1. Co-existence of incompressible strips

Figure 9(a) sketches the Hall resistance together with IS regions, including the overshoot
phenomenon at filling factor N . At the low magnetic field end of the ρxy plateau at filling factor
N − 1, the light colored (red) IS becomes evanescent when lB < WN−1 < λF and ρxy drops. In
this situation, lB is sufficiently small so that the next bulk IS of filling factor N forms before
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Figure 9. (a) Formation of an overshoot as a result of co-existing evanescent
IS at the low magnetic field end of the filling factor N Hall plateau. (b) Upper
panel: course of the chemical potential for cross-sections (i) and (ii) in (a). Lower
panel: current distribution for cross-sections (i) and (ii). For the cross-section (i),
despite the presence of an evanescent IS of filling factor N − 1, the current is
fully confined to the incompressible region of the filling factor N and the Hall
resistance is quantized. In (ii), the co-existing evanescent IS of filling factors N
and N − 1 constitute local resistance minima in comparison to the compressible
bulk, which is why the current is confined to them. This leads to a stronger
transverse electric field vy ∝ ∂xµ

∗(x, y) ∝ Ex and thus a larger Hall voltage is
generated.

the evanescent strip of filling factor N − 1 close to the sample edges breaks down completely.
This configuration is shown in cross-section (i) of figure 9(b). In the upper panel, we show the
course of µ∗ across the Hall bar, whereas the lower panel depicts the corresponding current
distribution jy(x) and the local filling factor ν(x). In the regime of WN > λF, µ∗ only drops in
the well-developed inner IS with local filling factor N to which the imposed current is confined.

Cross-section (ii) illustrates the situation in an overshoot regime. Now lB < (WN−1, WN ) <

λF and the IS of filling factor N becomes evanescent. This leads to current leaking out of
this IS. However, in addition, the evanescent IS of filling factor N − 1 is also still present,
which constitutes a local resistance minimum compared to the surrounding compressible region.
Hence, the current escapes from the IS of filling factor N to the IS of filling factor N − 1.
From (1), we can derive an expression similar to (2) for the situation when the imposed current
redistributes over two evanescent ISs with filling factors N and N − 1.

I0 = IN + IN−1 = 2
e2

h
(E

′ N
x N W

′

N + E N−1
x (N − 1)WN−1). (4)

The Hall voltage will essentially only be created by the decrease in µ∗(x, y) across the different
ISs; hence

VHall = 2W
′

N E
′ N
x + 2WN−1 E N−1

x

= h/e2(IN/N + IN−1/(N − 1)).

New Journal of Physics 12 (2010) 113033 (http://www.njp.org/)

http://www.njp.org/


14

By applying current conservation IN = I0 − IN−1, one can derive an approximation for the Hall
resistance in the overshoot regime.

ρN
xy =

h

e2

(
1

N
+

IN−1

I0

(
1

N − 1
−

1

N

))
. (5)

Finally, in the regime of cross-section (iii), one or both ISs N − 1 and N become smaller than
the extent of the wavefunction and the Hall resistance drops toward the next Hall plateau.

Equation (5) contains the overshooting character of the Hall resistance: since the current
redistributes from an IS with a larger filling factor N to an IS with a smaller number of levels
N − 1, electrons have to be accelerated to conform to current conservation. Hence the entire
drop µ∗(x, y) across the two ISs increases according to vy(x) ∝ ∂µ∗(x, y)/∂x . Of course, the
exact relative current IN−1/I0 < 1 will depend on local characteristics of the IS, but the deviation
in the Hall resistance ρN

xy from the Hall plateau value is always positive.
This simple model demonstrates that an overshoot effect of the Hall voltage will occur

whenever co-existing evanescent ISs are available. This is only possible if, for a given magnetic
field range, lB < WN−1, WN < λF holds. This peculiar configuration cannot be expected to be
realized under all experimental conditions and thus provides a means of testing the above model
by comparing the predictions of the overshoot model to a measured sequence of overshoots and
to the behavior of the overshoot effect with varying experimental parameters.

5.2. Comparison with experiment

The basic treatment of co-existing evanescent ISs will now be extended in order to explain all
details of the overshoot effect observed in section 4.

The lower panel of figure 10 shows an exemplary Hall resistance for a sample with
n2DEG = 4.46 × 1011 cm−2 at a bath temperature of T = 320 mK. Starting at high magnetic
fields, the evolution of different IS regions associated with different filling factors can be
reconstructed from the onset and end of both quantum Hall plateaus and overshoot regions, as
shown. Landau (blue), spin (red) or valley gap (green) associated IS regions are given different
colors. IS regions related to valley gaps are only adumbrated since such gaps cannot be resolved
experimentally in the considered magnetic field range.

The upper panel of figure 10 plots the cyclotron radius Rn
C = lB

√
2n − 1 [35] for different

Landau levels in black (solid and dashed black lines). This is a measure of the extent of the
respective wave function, with the Landau level index n and the magnetic length lB . The gray,
dash-dotted horizontal line represents the Fermi wavelength λF =

√
4π/n2DEG of the sample.

The approximate evolution of IS widths Wν is given in the same colors in the upper part of
figure 10 as the corresponding IS regions in the lower panel of figure 10. During the existence
of a Hall plateau of filling factor ν, Wν > λF. At the low magnetic field end of a Hall plateau, the
width of the respective IS is Wν ≈ λF. Both Rn

B and λF define a window in which ISs can co-exist,
become evanescent and carry current before a respective IS breaks down. Vertical dotted lines
mark magnetic field intervals in which at least two evanescent ISs co-exist as Rn

C < Wν < λF

holds for each of them.
As soon as an IS forms in the bulk for high magnetic fields, a quantum Hall plateau appears.

When the Wν of a certain IS enters the evanescence window, Wν < λF, the corresponding Hall
plateau breaks down either by ρxy dropping to the next plateau, as for filling factor ν = 2 in
the lower panel of figure 10, or by forming an overshoot. Several such situations are realized
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Figure 10. The lower panel depicts ρxy for a typical sample with n2DEG = 4.46 ×

1011 cm−2 at T = 320 mK. The onset and end of Hall plateaus and overshoots are
used to reconstruct the schematic course of incompressible regions for different
filling factors. These crescent-like IS regions are superimposed on the data.
The width Wν of different IS (red and blue solid lines), the Fermi wavelength
λF (horizontal gray dash-dotted line) and the extent of the wave function for
different Landau levels Rn

C (black solid and black dashed lines) are plotted in
the upper panel. As long as λF > Wν > Rn

C, the IS associated with the filling
factor ν is evanescent and the current is partially confined to this region before
the IS breaks down. An overshoot forms only in a regime of two co-existing
evanescent ISs, marked with vertical dotted lines of equal color, as e.g. around
B = 3.8 T. For higher magnetic fields, the current is completely confined to the
well-developed IS of filling factor ν = 4, whereas for lower magnetic fields the
already evanescent IS of filling factor ν = 2 breaks down completely as it finally
becomes smaller than Rn

C.

whenever Wν < λF until Wν−2 < Rn
C. These co-existence regimes are highlighted by solid-dotted

sections of the IS widths in the upper panel of figure 10. Thus, the overshoot at the low magnetic
field end of the ρxy plateau of the filling factor, e.g. ν = 4, is caused by co-existing evanescent
edge IS of filling factors ν = 2 and ν = 4.

We have only considered the co-existence of evanescent IS edge states stemming from
even filling factors so far. As shown in the lower panel of figure 10, an incompletely developed
bulk IS can exist at the position of the overshoot, e.g. around B = 3.8 T. In fact, such a nearly
bulk incompressible region could act as a local resistance minimum that leads to a partial
redistribution of the current to this spatial region [17]. In such a case, the co-existence of not only
two but three evanescent IS regions of three different filling factors gives rise to the overshoot
effect.
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In a next step, we can now go beyond the static view of figure 10 that explains the presence
or absence of overshoots for only one set of experimental parameters. The above considerations
can be combined with the experimental findings on the stability of overshoots under different
conditions. In the overshoot regime of a given filling factor, both contributing evanescent ISs
can be expected to be of different widths. The outer IS tends to be more fragile and is thus
closer to breakdown than the inner IS. Consequently, by varying parameters that affect the
stability of a single IS, both current-carrying ISs should be influenced. But the more fragile
IS is more easily destroyed. In this situation, the usual IQHE is recovered. Such a suppression
of the overshoot phenomenon is demonstrated in the temperature, density and current(-density)
series in section 4.

The temperature dependence of the overshoot in figure 4 corresponds to a temperature-
induced breakdown of the outer and more fragile IS [26, 27]. Only one evanescent IS remains,
explaining the reduced overshoot with increasing temperature.

The observed increase in the overshoot with 2DEG density in figure 5 can be explained
by two different effects. Firstly, screening of the disorder is improved and thus the probability
of electron scattering and tunneling through an IS is reduced [36]. Secondly, a higher 2DEG
density shifts the position of each filling factor or IS to higher-magnetic fields and thus higher-
energy gaps. Both effects contribute to more stable ISs in the evanescence window and thus to
a stronger overshoot effect.

The effect of increasing sample current in figure 6 is also twofold: in the evanescence
window, the electron gas will be heated locally when electrons start to leak out of an IS and
scatter in the surrounding compressible region at the low magnetic field end of a Hall plateau.
The more fragile, outer IS will again be affected first. The overshoot is destroyed with increasing
sample current. Nevertheless, the inner IS is less affected, leading to a preserved Hall plateau.
The second effect of high sample currents is a tilting of the potential landscape [23] in the
out-of-linear-response regime. Both evanescent ISs at one edge boundary become wider at
the expense of both ISs at the edge boundary on the other side. For a certain current amplitude,
the narrowest outer IS breaks down, resulting in a breakdown of the overshoot.

In all three experiments, a stronger outer IS should of course correlate with a more robust
inner IS. In agreement with theoretical predictions, we observe that an increasing overshoot is
accompanied by a wider extension of the quantized Hall plateau on the magnetic field axis as
well as a shift in the overshoot maximum towards higher filling factors. Both observations are
evidence for the increased stability of the inner IS.

Finally, we can explain the size dependence of the overshoot, which increases with smaller
Hall bar width, as evidenced in figure 8. At the low magnetic field end of a Hall plateau, the
current starts to leak out of the inner IS and redistribute to the next resistance minimum. The
smaller the sample width, the less current flows in the bulk and the more current is confined to
the next evanescent IS, since it constitutes a local resistance minimum. This redistribution of
the current between the bulk and the evanescent IS is responsible for the increasing magnitude
of the overshoot.

By comparing the relative overshoot strengths in figure 3, Landau-gap-associated
overshoots (ν = 4, 8, 12, . . .) were found to be comparatively strong with respect to spin-
gap-associated overshoots (ν = 6, 10, . . .). This pattern indicates the specific nature of the
energy gaps to be strongly related to the exact stability of the outer evanescent IS. The spin
polarization of the 2DEG follows an analogous pattern: spin polarization for filling factors
ν = 6, 10 is extreme, whereas it is zero for ν = 4, 8, 12. This spin polarization can lead to
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exchange-enhanced energy gaps depending on the local filling factor [37] within the 2DEG.
Such effects studied in detail could explain nuances in the relative overshoot magnitude for
different underlying energy gaps, but they have not been treated numerically in a self-consistent
fashion for the given system yet.

5.3. Overshoot in other two-dimensional (2D) electron gas host systems

The employed model relying on co-existing evanescent ISs is universal to explain all aspects
of the overshoot phenomenon in our Hall bar devices but does not depend on peculiarities of
the examined material system. A comparison of the presented results with overshoot studies in
other host systems shows that overshoots are especially strong, occur for many filling factors
in Si/SiGe and Si–MOS structures and are less pronounced in other material systems, such as
GaAs. When extending the scope of the overshoot discussion to such systems, three properties
become important: the Fermi wavelength, the energy level structure that is influenced by the
effective mass and the effective g-factor, and the confinement potential at the edges of the Hall
bar.

The Fermi wavelength in Si is a factor of
√

2 larger than in GaAs for the same electron
density, due to the valley degeneracy factor. For this reason, the evanescence window in GaAs,
in which at least two ISs can co-exist, is smaller. Thus overshoots are more unlikely to occur or
are even suppressed.

The effective mass and g-factor determine the relative gap sizes of Landau and spin gaps.
In GaAs, for example, m∗ is about a factor of three smaller than in Si, and similarly the
effective g-factor. This leads to a larger Landau level splitting and a reduced Zeeman splitting
in GaAs compared to Si. Combined with the typically much lower scattering rates in GaAs, ISs
associated with Landau gaps are more robust compared to spin-associated ISs, or all types of IS
in Si. As a result, one is more likely to find an evanescent co-existing IS of a Landau gap at the
low magnetic field end of a spin-gap-associated Hall plateau (odd filling factors) than a stable
IS of a spin gap at the low field end of a Landau gap Hall plateau (even filling factors). Indeed,
overshoots in GaAs have only been found at odd, i.e. spin-gap-related, filling factors [6]–[8].

The shape of the confinement potential of the 2DEG is predominantly influenced by
the technique used to realize a Hall bar device. Common etch-defined Hall bar devices, as
used in this work, usually present a steep confining potential, whereas gate-defined devices
present a smoother but also adjustable confinement. A steeper confinement shrinks the width
of ISs [5], thereby reducing the evanescent window such that overshoots will be smaller or
not even present. Thus, the realization and investigation of gate-defined Hall bar devices, in Si
and especially other host systems, open up a perspective to directly test the influence of the
confinement potential and the predictions of our model.

6. Conclusion

In this work, we have described an anomalous behavior of the IQHE that is referred to as a
quantum Hall resistance overshoot, both experimentally and theoretically. The quantum Hall
resistance overshoot has frequently been observed in Hall devices realized in different material
systems, but the various characteristics of the overshoot have not been examined in detail so
far and could not be explained consistently and independently of the specific properties of a
respective material system.
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Here, we investigated the nature of the quantum Hall resistance overshoot effect based
on its behavior under different experimental parameters, such as the temperature, the 2D
sheet carrier density, the sample current and the sample geometry. To model our experimental
findings, we used a theoretical approach based on the self-consistent screening theory for the
IQHE that considers direct Coulomb interaction within the 2DEG. The possibility of describing
all aspects of the overshoot phenomenon demonstrates that direct Coulomb interaction within
a 2DEG is crucial for understanding many aspects of the IQHE and the current distribution
in the quantized regime within a sample. Within the screening theory, current confinement
to one incompressible region gives rise to the IQHE. This work illustrates the effect of
current confinement to more than one incompressible region for the first time. The overshoot
phenomenon turns out to be a natural outcome of current confinement to co-existing evanescent
ISs of different filling factors at the sample edges. This model is capable of explaining all details
of our experiments and can also be extended to other material systems easily.
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