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Abstract. A procedure to quantify and correct the spatial distortions inherent
to Anger-type gamma cameras is presented. It consists in imaging a pattern of
regularly spaced holes, assigning to each pair of lattice indices the actual position
on the detector and generating a look-up matrix describing the inverse mapping.
This allows one to correct the position of the distinct events either during
or after the measurement with minimal computational effort. The corrected
spectrum is indistinguishable from a spectrum taken with an ideal detector
in a statistical sense. The effect of the increased resolution on measurements
of angular correlation of positron annihilation radiation is demonstrated. The
presented scheme is applicable for all types of area detectors.
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1. Introduction

Two-dimensional position-sensitive gamma detectors of Anger type (Anger 1958) are standard
tools in diverse fields of physics (West et al 1981, Parmar et al 1997, Schultz et al 2006, Engels
et al 2009, Coates et al 2010) and probably even more widely deployed in nuclear medicine
(Zanzonico and Heller 2007). In a camera of this type the incident gamma photon generates
a localized flash of light in the scintillation crystal, which is detected by an array of photo-
multiplier tubes. Information on the position of the event is obtained by computing the average
of the position of the responding photo-multipliers, weighted by their respective responses. It is
clear that a naive implementation of this principle would give large distortions in the position
assignment due to the fact that the detector response varies nonlinearly with the distance from
the scintillation event to the photo-multiplier centre. Also the sum signal (used for energy
discrimination) would be much higher for a photon absorbed directly before a photo-multiplier
than for a photon of the same energy detected in the area between two photo-multipliers.

The state of the art is therefore to use weighting factors for the position determination
(and for the sum signal) that depend nonlinearly on the photo-multiplier response (Short 1984).
This is normally done by an analogue or digital logic integrated in the detector. Specifically for
the position determination it is evident, however, that even if the nonlinear weighting functions
are chosen ideally, residual distortions will remain, as general two-dimensional vector fields
(the distortions) cannot be described (and inverted) by a one-dimensional nonlinear correction
function. Additionally, spatial inhomogeneities of the crystal or detector response and temporal
drift of the components will further degrade the performance.

The effect of distortions is twofold: on the one hand, features of the imaged pattern are
displaced from their ideal positions (distorted in the narrow sense of the word); on the other
hand, a spatially varying displacement also leads to modulations in the apparent brightness of
an ideally flat image, as events corresponding to a certain detector area are actually spread
over smaller or larger areas (Wicks and Blau 1979). The latter is the primary detrimental effect
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in medical applications like scintigraphy, where the intensity modulations would ideally be
given only by the varying enrichment with the radioactive tracer, on which the diagnosis relies.
In contrast, small displacements are inconsequential, as the spatial resolution for this type of
examination is poor in any case. For other applications, especially when used as detectors for
physical experiments, the situation can be different: here, very often, the position of the events
is the main experimental goal.

A number of investigations of the spatial distortions and their effects, as well as proposals
to correct for these distortions, have been put forward: Wicks and Blau (1979) showed that the
major part of the flood field nonuniformity is due to spatial distortions as opposed to variations in
sensitivity, and early solutions using a dedicated micro-processor were proposed and presented
by Knoll and Schrader (1982) and Muehllehner et al (1980). With the availability of personal
computers the possibility to treat these issues in software has become attractive, which has been
demonstrated by Stanton et al (1992) and extensively discussed by Hammersley et al (1994).
All these approaches agree in determining the distortions by imaging a mask of regularly
spaced lines or holes. In contrast, Johnson et al (1996) and Barendt et al (2007) propose to
directly determine the distortions as the minimal correction that yields an ideal flat image
from a measured flood field. Most of these proposals have been written from the viewpoint
of medical physics and therefore put the main focus on the achieved uniformity of flood
fields.

Here we present a solution to the spatial distortion problem where our main aim is the
correct assignment of the position of the detected events, and we evaluate its performance from
the viewpoint of angular correlation of positron annihilation radiation (ACPAR) (West 1995).
This method consists in detecting the deviation from anti-collinear propagation directions of
pairs of annihilation quanta, i.e. essentially summing the positions of coincident events on
opposite detectors. Our approach uses commercially available perforated sheet metal as a mask
and distortion detection and correction algorithms implemented in software. It can therefore be
used to significantly improve the performance of existing detector systems without much effort.
Even though we discuss the nature of the distortions and the achieved performance for the
special case of Anger cameras, our approach is valid for all types of position-sensitive detectors
that display spatial distortions of any kind.

2. Distortion detection and inversion

2.1. Detector specifications

We demonstrate our case with the newly installed two-dimensional ACPAR spectrometer
installed in Munich (Ceeh et al 2012). It employs Anger cameras manufactured by AuRa
Scientific that are optimized for ACPAR experiments, i.e. they have no collimator. They consist
of a regular hexagonal array of 61 photo-multiplier tubes with 6.8 cm detector separation
optically coupled to a 1.05 cm thick thallium-doped NaI crystal. The field of view is defined by a
circular lead aperture of 41.5 cm diameter. We use a sample–detector distance of 8.25 m. Energy
discrimination and position determination are done by an analogue arithmetic implemented as
a resistor network. The signals are read out with 11 bit resolution.

Due to the nature of Anger cameras, there is no inherent position discretization into pixels.
Therefore there are a number of parameters to be set manually, which include the energy
amplification and the offset and gain of the two spatial dimensions, respectively. Naturally, these
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Figure 1. Detail of the image of the hole pattern on the detector before (left) and
after enhancement (right) as discussed in the text.

are chosen so that the field of view fits comfortably into the acceptance range of the analogue-
to-digital converter. However, it is clear that this aspect necessitates a calibration of the camera
in some way so as to be able to interpret the position information quantitatively.

Additionally, the response of each of the 61 photo-multipliers can be independently linearly
amplified. We calibrated these amplification factors by the edge of the photopeak resulting
from positioning a radioactive source directly in front of the respective photo-multiplier tube.
Consequently, the intrinsic performance of the detectors is at their optimum, and residual
distortions and flood field inhomogeneities have to be due to the inherent principle of Anger
cameras (the discrete arrangement of the photo-multiplier tubes), or to deviations in the
characteristics of the photo-multipliers or the nonlinear amplification circuits of the respective
photo-multiplier signals.

2.2. Calibration pattern images

In order to determine the distortion vector field, the response of the camera to photons impinging
at known positions has to be recorded. This can be done by moving a well-collimated source
in steps over the detector (Engeland 2001). However, it is much easier and faster to illuminate
a known pattern by a distant point source. The optimal pattern has been discussed in detail
by Hammersley et al (1994), and custom-mode hole and line patterns have been used by, e.g.,
Muehllehner et al (1980) and Stanton et al (1992). On the other hand, perforated sheet metal,
which is a standard raw material and available in different arrangements and spacings of holes, is
equally suited to this task. We used an 8 mm stack of steel sheets with a hexagonal arrangement
of round holes of 3 mm diameter and 5 mm spacing (DIN 24041 Rv 3-5).

A detail of the resulting image is given in the left panel of figure 1. Although the hexagonal
pattern can be discerned clearly, it is affected by counting noise (at about 450 counts per
channel) and is rather weak, corresponding to a modulation with an amplitude of about 2.5%.
This is partly due to the fact that our 8 mm thick mask has a transmission of about 59% for
511 keV photons (we refrained from using a thicker mask due to weight issues). More important,
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however, is the fact that the width of the point spread function, i.e. the inherent statistical noise
due to the physical process of detection, is not much less than the hole diameter in our case,
leading to an overlap of the signal from neighbouring holes. Hammersley et al (1994) give
as a rule of thumb that the hole diameter should be at least six times the width of the point
spread function for the spots to be clearly separated. In our opinion, such a coarse pattern is
not advisable due to the concomitant loss of information. Rather, we enhance our pattern in
software.

We proceed as follows: we set a threshold to distinguish between the illuminated regions
and those behind the lead aperture defining the field of view. We then define an auxiliary two-
dimensional data array that has entries equal to zero in the illuminated regions and entries equal
to the mean of the illuminated regions on the outside. We then convolve this auxiliary array with
a Gaussian smoothing kernel and add it to the original data. This serves to diminish the edge
effects. As a second step, we convolve the array by the difference of two normalized Gaussian
kernels with widths that differ by a factor of 2. This effectively constitutes a band-pass filter
with smooth response characteristic. The result is given in the right panel of figure 1, which
shows that after such an enhancement the maxima are distinctly visible.

2.3. Determining the distortion vector field

Of course it is not practical to map out the positions of the mask holes on the detector by
hand. Published solutions (Stanton et al 1992, Hammersley et al 1994) agree in first assigning
the distorted positions of the mask holes exactly to the peaks and afterwards fitting a smooth
function to these positions, taking care of the unavoidable statistical errors in determining the
positions. This approach is only viable when the peaks are clearly separated and the variation
between maxima and minima is high, i.e. for a rather coarse grid. Even though the human eye
can readily discern the positions of the holes in the right panel of figure 1 due to their regular
arrangement, that is, essentially by detecting the common intersection between the three lines of
peaks crossing at any site of the hexagonal lattice, an unconstrained automatic peak search for
each maximum would lead in the present case to very ill-defined positions. We therefore chose
to determine the smooth distortion vector field directly from the image of the hole pattern (after
enhancement) as opposed to the above-mentioned two-step algorithm.

For the following discussion it is advisable to define the necessary concepts in
mathematical terms: we specify the spatial distortions via the distortion vector field f , which
maps a given point x (in Cartesian coordinates) on the surface of the detector crystal to the
two-dimensional signal f (x). This means that y = f (x) is the average detector response to a
photon impinging at x , disregarding the stochastic noise in position determination. Due to the
working principle of the detectors we can expect f to be smooth, with the spatial frequency of
the features being on the order of the distance between the photo-multiplier tubes. Note that for
an ideal detector we have f (x) = x , corresponding to absolute fidelity in position determination.
For undoing the effects of distortions we are interested in the inverse function g, so that x = g(y)

is the expected position on the detector crystal for a detector signal of y.
The positions of the peaks in the hole pattern image define the distortion vector field

yi = f (xi) evaluated at the regular positions of the holes of the mask xi . We implemented the
determination of the distortion vector field as a regularized minimization problem: define the
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objective function

F(y1, y2, . . .) = −

∑
i

∫
dyE(y)K (y − yi) + λ

∑
〈i j〉

V (yi − y j), (1)

where E is the image pattern after enhancement, K is a Gaussian kernel with a width on the
order of the width of the peaks in the pattern, λ is a regularization parameter and V is an
energy functional with a minimum at the ideal nearest-neighbour distance (i.e. we imagine the
peak positions as being connected by springs). 〈i j〉 denotes all pairs of nearest neighbours in
the hexagonal lattice. The first sum quantifies the overlap between ideal peaks at yi and the
image and therefore favours agreement between the positions yi and the (noisy) peak positions,
whereas the second term punishes large deviations of the nearest-neighbour distances in the
hexagonal lattice from their ideal values and therefore favours a smooth arrangement. The
relative importance of these two effects is controlled by the regularization parameter λ. For those
indices i whose positions yi fall within a defined distance from the boundary of the illuminated
region, the first term is ignored, leaving only the regularization constraint. Note that the integral
in the first sum is actually implemented as a sum, too, because of the discrete nature of the
pattern image, while the positions yi are treated as continuous variables.

It is advisable to solve this problem incrementally, which means to start with the central
peak, find its optimal position and then iteratively add peaks on the boundary and relax the
configuration according to equation (1). In this way, the inner peaks are already converged
and the newly added peaks are therefore in the correct basin of attraction. Consequently, the
algorithm hardly requires human guidance, only for some peaks outside of the illuminated
region it can be beneficial to fix their position manually, so as to force an agreement on the
very boundary due to the spring force. Starting with an ideal lattice and refining all positions
at once, on the other hand, leads to the analogue of dislocations in the assignment of lattice
sites to the maxima in the pattern image that anneal only very slowly, if at all. Once all the
peak positions have preliminarily been assigned, one can vary λ in order to either reproduce the
small-scale position variations or rather have smooth modulations. The long-range modulations
(on the order of the distance between the photo-multiplier tubes), however, are unaffected by a
variation of λ over a wide range. Also the position of the minimum in V does not noticeably
influence the determined peak positions within the illuminated region.

2.4. Distortion correction

For a valid implementation of distortion correction one has to consider the discretization of
the data: the image of a regular pixel grid under the correction function g will in general
not be regular. Therefore, especially for off-line algorithms, which correct whole images
after the experiment, complicated approaches have been proposed which treat the shapes
of the transformed pixels in various degrees of accuracy and re-distribute the counts to the
pixels of a regular grid in proportion to the covered area (Spector et al 1972, Stanton et al
1992, Hammersley et al 1994). Note that such a direct redistribution of the counts inevitably
leads to a smoothing and therefore destroys the Poissonian statistics of the original data. An
implementation using the mathematically rigorous approach, where the counts are distributed
stochastically according to a multinomial distribution, has not yet been reported. On-line
algorithms, which treat each event on its own, in general obviate these issues either by correcting
high-resolution signals before binning (Knoll and Schrader 1982, Johnson et al 1996) or
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correcting the analogue signal (Muehllehner et al 1980). Note that an implementation where
a digital input signal is deterministically mapped to an output signal of equal resolution and
comparable amplitude produces moiré-like effects, as some output channels receive the counts
from two input channels, whereas others stay empty (Knoll and Schrader 1982).

Due to the principle of ACPAR, for our purposes the data have to be treated on an event-
by-event basis. Personal computers have nowadays reached storage capacities and computing
powers, however, where it is possible to save the data in list mode to be evaluated afterwards,
treating each event on its own. Our implementation was guided by the requirements to be
efficient and modular, allowing for both on-line and off-line use and direct interfacing with
the other stages of the evaluation pipeline.

The knowledge of the distorted positions yi = f (xi) defines the inverse function g on a
distorted hexagonal grid. As our distortion data have a very fine resolution and are smooth due
to the regularization, we define g(y) for a general point y by barycentric interpolation with
respect to the corners of the triangle of the distorted hexagonal lattice in which y lies. For
efficiency we evaluate g for each detector on the points of a 256 × 256 square lattice covering
the whole area of the detector, and store the shifts to be applied as signed 16 bit integers in a
look-up matrix.

Our detectors are read out with a resolution of 11 bits per dimension. As the magnitude of
shifts to be applied is always below 30 channels, we use 8 bits of the look-up matrix for sub-
channel accuracy. To avoid the above-mentioned moiré effect, we add a random sub-channel
signal to our input values and truncate the output to the original resolution, which is the analogue
to the concept of dithering in image processing. To be specific, our implementation

• reads the input signal in 11 bit resolution for each dimension,

• shifts the signal 21 bits to the left and fills the lower bits randomly,

• takes the 8 most significant bits as the indices into the look-up matrix,

• takes the 8 following bits as weighting factors for bi-linear interpolation,

• computes the interpolated displacement to be applied,

• adds the displacement (right-shifted by 3 bits to match the scale) to the input and

• right-shifts the result by 21 bits and truncates.

We implemented this distortion correction algorithm as a Unix filter acting on a byte
stream, i.e. treating each event on its own. This allows us to easily set up an evaluation
pipeline, optionally comprising custom masking filters, additional off-line energy discrimination
or standard tools selecting only a subrange of events (such as head), and feeding the result into
two-dimensional histogramming tools to produce either flood fields or ACPAR spectra. All the
correction steps are implemented in 32 bit integer arithmetic and can therefore be very efficiently
computed. For an off-line correction, the run-time is limited by the data transfer rate from the
hard disk, being able to process about 2 × 107 positions per second, with a CPU load of about
30% on a contemporary personal computer. For an on-line evaluation, the load is negligible.

Any position correction of digitized signals necessarily introduces a blurring on the order
of the channel width, as the input and output channel boundaries in general do not match.
For detectors with inherent statistical noise such as Anger cameras, the detrimental effect is
negligible, however, if the resolution of the sampling is sufficiently high. If the events are
distributed to the output channels stochastically, as presented here, the statistical behaviour
of the signal is not compromised, contrary to the standard algorithms for off-line position
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correction as mentioned above. This means that the count values in the output pixels strictly
follow Poissonian statistics and are therefore indistinguishable from a signal read out from an
ideal detector, making it possible to, e.g., quantify the fit between experimental results and
models by a χ2-test.

An additional benefit of the proposed implementation of distortion correction lies in
the fact that the correspondence between the corrected position and the calibration pattern
is by definition exact. Therefore the above-mentioned problem of calibrating the analogue
amplification for each dimension of the signal for quantitative studies reduces to determining
the lattice constant of the mask pattern and the distance between the mask and the source, both
of which can be done with very high accuracy.

3. Discussion

3.1. Effects of distortion

A characterization of the determined distortions and their effect on the homogeneity of
illumination is illustrated in figure 2 for one of our detectors. Note that our goal here is to
assess the merits of distortion correction and we therefore do not use a spatially varying ‘sliding
energy window’ (Knoll and Schrader 1982) as an off-line energy discrimination step in addition
to the detectors’ built-in 511 ± 35 keV window. We begin our discussion with the original flood
field. Three principal aspects can be discerned: even though the illumination in the central part
of the detector looks comparatively homogeneous, the hexagonal arrangement of the photo-
multiplier tubes has a small influence on the apparent illumination—directly over the centres of
the tubes the count rate is higher; additionally, there are rather sharp rings with radius a little
smaller than the distance between tubes around each tube. Secondly, the detector has an obvious
flaw in the lower left quadrant, where illumination drops to around half of its mean value, which
cannot be corrected by a re-calibration of the amplification of the pertaining photo-multipliers.
Thirdly, the edge of the illuminated area shows significant deviations from the circular form
of the lead aperture. The latter effect is obviously due to distortions, whereas at this point we
cannot rule out the possibility that the two former effects are due to spatial variations in the
energy signal amplification, although the fact that the flaw in the lower left quadrant is correlated
to the deviations from the circular form in this region hints at a contribution of distortions also
to this effect.

An inspection of the flood field after distortion correction shows that most of these
effects disappear: the hexagonal pattern due to the arrangement of the photo-multiplier tubes
has completely vanished, the above-mentioned flaw is largely repaired, and the edge of the
illuminated region is nearly circular. We can therefore directly confirm that distortions are the
major reason for flood field inhomogeneity, as was already indirectly concluded by Wicks and
Blau (1979).

A direct quantification of the distortions is given in the lower part of figure 2 by an
illustration of the vertical component of the shift vector field and its divergence, corresponding
to integral and differential fidelity in position detection of the detector, respectively. The shift
field has a very smooth appearance, and even in the divergence all observable features are
directly due to effects of distortions that are also discernible in the uncorrected flood field.
This reflects the fact that the effect of distortion correction is in first order just a normalization
by the divergence, which has actually been used as an early approach for correcting the effects
of distortion (Spector et al 1972). The sharp features at the boundary of the illuminated area are
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A B

C D

Figure 2. Obtained distortions and their effect. (A) Original flood field. (B) Flood
field after distortion correction. (C) Vertical component of shifts to be applied;
the variation in greyscale corresponds to a range of 35 channels (i.e. 2.3% of
the detector diameter). (D) Divergence of the shift vector field; white and black
correspond to area expansions and contractions of about 15%, respectively.

due to manual intervention in distortion determination as mentioned above, but, being outside
of the illuminated area, these have no detrimental effects. Note that even though the displayed
images have not been smoothed, there is virtually no noise discernible in the divergence. This
demonstrates that due to the regularization the distortions can be determined very accurately
even for our fine calibration pattern, which has been noted as a stringent condition for not
introducing inhomogeneities into the corrected data by Muehllehner et al (1980) and Knoll and
Schrader (1982).

3.2. Resolution gain in ACPAR spectra

We judge the beneficial effect of distortion correction by its effect on two-dimensional ACPAR
spectra. The essence of this method is to map the transverse momenta of the electrons in the
sample by detecting the deviations from antiparallel propagation directions of pairs of photons
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Figure 3. Two-dimensional ACPAR spectra computed from the same
measurement before (left) and after distortion correction (right), rebinned to a
channel size of (0.066 mrad)2. Note that the pseudo-colour scale is common to
both plots.

resulting from a single positron–electron annihilation event, which are linked due to momentum
conservation. Here the limiting factor for the achievable resolution is the position assignment
of the photons. The effect of inhomogeneous illuminations, on the other hand, can be easily
corrected. The detrimental effect of systematic distortions due to the regular arrangement of
the detector tubes in Anger cameras has already been recognized (West 1995), and it has been
proposed to rotate the detector tube lattices with respect to each other, so that the distortions
only lead to an isotropic resolution loss as opposed to introducing artificial features into the
spectra.

An ACPAR experiment on single crystalline quartz constitutes the most sensitive test of
resolution: it is known that apart from the majority of positrons that annihilate with bound
electrons and give a broad background in the spectra, a minority of positrons capture an electron
and form a positronium state that is delocalized over the crystal. The self-annihilation of
these states yields peaks at the reciprocal lattice positions with a width that is ideally given
only by the thermal Boltzmann distribution of the delocalized positronium atoms (Brandt
et al 1969). Experimentally, the peak width is additionally broadened by the instrumental
resolution, composed of the uncertainty of the position at the detector (which, in general, is
isotropic) and the position of annihilation (which is significant only in the horizontal direction
because of the limited penetration length of the incident positron beam).

Figure 3 shows the two-dimensional spectra of a quartz single crystal, oriented with its
sixfold axis along the projection direction, both with and without distortion correction. In both
cases the sixfold symmetry with the first higher-order momentum components of delocalized
positronium, which are slightly better defined after distortion correction, is clearly visible; also
the second-order components show a faint signature. The most obvious difference is in the
central peak, however: as the same total number of counts is plotted with the same pseudo-
colour scale, the higher peak intensity after distortion correction directly shows the gain in
resolution. Furthermore, after distortion correction the resolution anisotropy due to the beam
spot size is clearly visible.
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Figure 4. Cut through the central peak after subtraction of the fitted background:
horizontal (left) and vertical cut (right), before (green) and after distortion
correction (blue). Points are data and lines are fits. The satellite peaks in the
horizontal cut are the higher-order components at the first reciprocal lattice
position of the hexagonal quartz lattice at 5.70 mrad.

For a quantitative evaluation we observe that the broad component can be well fitted by an
isotropic Gaussian with σ = 4.9 mrad, both before and after distortion correction. Cuts through
the central positronium peak, after subtracting this fitted background, are presented in figure 4.
It can be seen that the peak form (and therefore the resolution function) can be well described
by a Gaussian in the central parts, whereas the outer regions show leptokurtic behaviour. This
is in agreement with earlier findings (Kruseman 1999). We therefore fitted two-dimensional
Gaussians to the data, using the fitted function itself as the weighting factor (determined
self-consistently). The figure shows that with this approach the central parts of the peaks
can be described very satisfactorily. The resulting widths are σ h

= 0.622(1) mrad and σ v
=

0.695(1) mrad without distortion correction, and σ h
c = 0.538(1) mrad and σ v

c = 0.655(1) mrad
after distortion correction, respectively, corresponding to a mean contribution of the distortions
to the point spread function of 0.26 mrad or equivalently 2.2 mm.

The resulting resolution anisotropy is 0.374(3) mrad. It corresponds to a beam width
of 1.54(1) mm (standard deviation), which is in agreement with direct measurements (Ceeh
et al 2012).

The calibration pattern image can also be used for quantifying the statistical noise in
the position assignment: for this purpose, we subject the original calibration image to the
distortion correction algorithm and compute its two-dimensional auto-correlation function. This
auto-correlation function shows again the hexagonal pattern that quantifies the overlap between
the lattice and its shifted copy for general shift vectors. The modulation of this pattern
does not decay even for large shift vectors, which proves that no ‘lattice defects’ have
been built in during the distortion calibration step. The relative amplitude of the modulation
is only 1.22 × 10−4, reflecting the fact that also the modulation in the calibration images is
rather faint. The statistical accuracy of the modulation in the auto-correlation is very high,
however, as it quantifies essentially the overlap of every pair of peaks. Reproducing this value
by computing the auto-correlation of a model hexagonal pattern with the known geometry
smeared by a Gaussian function gives a standard deviation of 1.64 mm for the statistical point
spread function. This is in satisfactory agreement with the value of 1.9 mm obtained from a
determination of the sharpness of an illuminated edge, and the value reported by the detector
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manufacturer of 3.5 mm (full-width at half-maximum). A comparison of these values with the
reduction of the point spread function of 2.2 mm effected by distortion correction shows that
distortion correction results in an increase of the detector resolution by a factor of 1.7.

The discrepancy between the residual instrumental point spread function of about
0.20 mrad and the measured width is due to thermal excitation of the annihilating positronium
atoms. Its high value reflects the fact that the effective band mass of positronium in quartz is
much larger than the actual mass of 2me (Ikari and Fujiwara 1979).

3.3. Temporal stability

A critical issue left to treat is the temporal stability of the determined distortions. After all, the
benefit of the reported gain in detector resolution is limited if it comes at the price of having
to allocate a significant amount of measurement time to taking test patterns for recalibration.
In fact, Heiderich et al (1991) have reported the necessity for daily readjustments of the photo-
multiplier parameters in an Anger-type camera; in contrast, Muehllehner et al (1980) report
no significant variation during six months of operation. This is consistent with our experience:
for ACPAR studies it is necessary to measure, apart from the actual data taken in coincidence
mode, also flood fields, which means frames without a coincidence criterion (the so-called
singles spectra), for each detector, in order to correct for possible illumination gradients over the
detectors due to different sample absorptions for different photon directions. If such effects are
visible at all, they are very smooth due to the fact that a detector covers only a very small solid
angle. As we have demonstrated above that spatial distortions leave characteristic small-scale
modulations in the flood fields, a visual inspection of these singles spectra with regard to small-
scale inhomogeneities can serve as a criterion to judge the necessity for recalibration. In our
case, the distortion correction look-up matrix has proven to stay accurate during several months
of operation, as long as one does not change the individual photo-multiplier amplifications.

4. Conclusion

We have presented a direct determination of the spatial distortions inherent to any detector
of Anger type, and we have shown that most of the systematic deviations from an
ideal performance are due to distortions. We proposed an efficient implementation of a
correction algorithm processing each event in turn, and we demonstrated the resulting
significant improvement of detector resolution by a factor of 1.7 in two-dimensional ACPAR
measurements. The proposed algorithms are independent of the type of detector or whether
some algorithm for distortion correction is implemented in hardware and can therefore be
used to improve the performance of any existing spectrometer without much effort. As the
inhomogeneities of a flood field illumination have been demonstrated to be primarily due to
distortions, the potential gain or the need for subsequent re-calibration due to temporal drifts in
the components can be judged from the flood field appearance.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft via the Transregional
Collaborative Research Center TRR 80 ‘From Electronic Correlations to Functionality’.

New Journal of Physics 14 (2012) 123014 (http://www.njp.org/)

http://www.njp.org/


13

References

Anger H O 1958 Rev. Sci. Instrum. 29 27–33
Barendt S, Modersitzki J and Fischer B 2007 ‘Bildverarbeitung für die Medizin 2007’ Informatik aktuell ed A

Horsch, T M Deserno, H Handels, H-P Meinzer and T Tolxdorff (Berlin: Springer) pp 449–53
Brandt W, Coussot G and Paulin R 1969 Phys. Rev. Lett. 23 522–4
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