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Abstract. We derive the asymptotic maximum-likelihood phase estimation
uncertainty for any interferometric protocol where the positions of the probe
particles are measured to infer the phase, but where correlations between the
particles are not accessible. First, we apply our formula to the estimation of the
phase acquired in the Mach–Zehnder interferometer and recover the well-known
momentum formula for the phase sensitivity. Then, we apply our results to
interferometers with two spatially separated modes, which could be implemented
with a Bose–Einstein condensate trapped in a double-well potential. We show
that in a simple protocol which estimates the phase from an interference pattern,
a sub-shot-noise phase uncertainty of up to 1θ ∝ N−2/3 can be achieved. One
important property of this estimation protocol is that its sensitivity does not
depend on the value of the phase θ , contrary to the sensitivity given by the
momentum formula for the Mach–Zehnder transformation. Finally, we study
the experimental implementation of the above protocol in detail, by numerically
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simulating the full statistics as well as by considering the main sources of
detection noise, and argue that the shot-noise limit could be surpassed with
current technology.
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1. Introduction

Quantum interferometry, a rapidly developing branch of modern physics, exploits some striking
features of quantum mechanics to build ultra-precise measuring devices [1]. It employs non-
classical states of light [2–5] or matter [6–13] to beat the shot-noise limit (SNL) 1θ =

1/
√

N—the limit of precision of the parameter estimation of a phase shift θ set by classical
physics. Here N is the number of particles in the probe state. Recent achievements in the
preparation of entangled states of atoms have put atomic interferometry [14] in the avant-garde
for the precise determination of electromagnetic [15–17] and gravitational [18–20] interactions.

A paradigmatic example and benchmark for every interferometer is the Mach–Zehnder
interferometer (MZI), where two ‘beams’ propagating along separated paths accumulate a
relative phase θ (to be estimated) and are subsequently recombined through a beam splitter.
A similar protocol that uses internal states instead of separate paths is known as Ramsey
spectroscopy [21]. It has recently been realized with a Bose–Einstein condensate (BEC) by
employing two hyperfine states of the atoms [9, 10]. The beam splitter was mimicked by
coupling the two modes with a micro-wave pulse for a precisely chosen amount of time.
Atomic interferometers with spatially separated modes, which could, for instance, be used to
measure forces decaying with the distance, are more challenging in implementation owing to
the difficulty in performing the beam-splitter transformation [22, 23].

In this paper, we consider a simple ‘double-slit’ interferometer in which two beams
are recombined through a free expansion of two initially localized clouds with the output
signal obtained by measuring the positions of the particles. After the preparation of a suitably
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entangled input state, sub-shot-noise (SSN) interferometry requires thus refined particle
detection at the output. Some new techniques of atom-position measurements, such as the micro-
channel plate [24], the tapered fiber [25], the light-sheet method [26] or techniques involving
atomic fluorescence from the lattice [27], give hope of almost 100% efficient single-atom
detection in the nearby future. Such a tool, in principle, could even give access to atom–atom
correlations at all orders.

It has been shown [28, 29] that the measurement of the N th-order correlation function is
the best possible estimation strategy for inferring the phase between two interfering BEC wave
packets, and allows one to reach the Heisenberg limit of phase uncertainty. However, even with
small BECs, the measurement of the N th-order correlation function would require substantial
experimental effort, since a huge configurational space must be probed with sufficient signal-
to-noise ratio.

The difficulty of measuring high-order correlation functions is the motivation for this work.
We show that by measuring the positions of particles the phase can be estimated with an
SSN phase uncertainty using the simple one-body density. We consider two possible detection
scenarios: the output signal consists of (i) the positions of single atoms or (ii) the number of
atoms per pixel, which corresponds to the commonly employed least-squares estimation from
the fit to the average density [30]. For both cases, we compute the general asymptotic phase
uncertainty of a maximum-likelihood phase estimation scheme using the one-body density
only.

We verify that in an MZI situation, estimating the phase from the one-body density
is equivalent to estimation from the average population imbalance between the arms of the
interferometer, and recover the known result that the sensitivity can saturate the Heisenberg
limit.

We then apply this estimation protocol to our case of interest, namely two interfering BEC
wave packets. We provide an analytical expression for the phase uncertainty which shows SSN
scaling with phase squeezed states in the input. Contrary to the MZI, the phase uncertainty
does not depend on the phase θ , which could be an important advantage. We then analyze the
full statistics of the phase estimation by numerically simulating experiments with a realistic
number of particles. We find that already small statistical samples are sufficient to saturate the
analytical asymptotic prediction for the phase uncertainty. Finally, we discuss the main sources
of noise affecting the interferometric precision, which we expect to concern the atom detection
stage. We argue that including the effect of imperfect detection the SNL can still be surpassed
and that the amount of squeezing necessary could be achieved in a realistic double-well
setup.

The paper is organized as follows. In section 2 we derive the general expression for
the uncertainty of the phase estimated from the one-body density. We consider two possible
detection scenarios. We assume either having access to positions of single particles or a coarse-
grained measurement due to a limited detection capability. In section 3, we apply the above
results to the case of the MZI. In section 4 we turn to our case study where the interferometer
consists of a simple phase imprint between the modes followed by the ballistic expansion of
the mode functions. We also show how the phase uncertainty for the phase estimation from the
density of the interference pattern is influenced by characteristic sources of noise. The details
of analytical calculations are presented in the appendices.
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Figure 1. Schematic representation of the atom-position measurement, where the
detectors (boxes) turn yellow (numbers 1, 3 and 7) when they are hit by atoms
(spheres). Some detectors, however, remain gray (such as detector no. 8), so the
detection efficiency drops, and sometimes a neighboring box turns yellow (no. 5
instead of no. 4), which limits the spatial resolution.

2. Sensitivity of the one-body density estimator

An interferometric estimation protocol can be divided into: (i) the interferometer transformation,
(ii) the measurement at the output and (iii) the phase inference through an estimator. In (i),
the interferometer imprints a relative phase θ on the N -particle input state |ψin〉. Such a
transformation can be represented by a unitary evolution operator Û (θ)= eiθ ĥ , where ĥ is
linear—i.e. can be written as a sum of operators acting on each particle separately—and does not
depend on θ . In the Heisenberg picture, the field operator evolves as 9̂(x |θ)≡ Û †(θ)9̂(x)Û (θ)
and |ψin〉 is unchanged. In the following, we will specify our arguments for the case of particle
position measurements at the output, although the results of section 2.1 are valid in general.
We will thus consider next that in stage (ii), upon leaving the interferometer, the positions
of the particles are detected. As observed above, due to the difficulty of obtaining high-order
correlation functions, often only the lowest, namely the density, can be precisely measured. This
density, when normalized, gives

p1(x |θ)=
〈9̂†(x |θ)9̂(x |θ)〉

N
, (1)

the probability density of measuring a single particle at position x given θ . The average value is
calculated for the input state |ψin〉. Next, we assume having no access to the correlations, so the
phase is inferred only using p1(x |θ) and the measurement outcomes obtained in stage (ii).

2.1. Single-atom detection

When in (ii) single-atom detection is performed, see figure 1, each experiment gives the
positions of the N atoms, Ex (i)N = x (i)1 , . . . , x (i)N , where the label i = 1, . . . ,m indicates the
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particular iteration of the experiment. The accumulated set of data, N times m positions, is
used to construct the likelihood function,

L(ϕ)=

m∏
i=1

N∏
k=1

p1(x
(i)
k |ϕ). (2)

The prescription of the maximum likelihood estimator (MLE) is to infer the phase θ (m)ML in stage
(iii) as the value of ϕ that maximizes equation (2). As demonstrated in appendix A, this MLE
is consistent, i.e. θ (m)ML → θ for m → ∞. There, we also obtain the uncertainty of the estimator
equal to

12θ
(m)
ML =

1

m

1

N F1

(
1 + (N − 1)

C

F1

)
, (3)

where C depends on the two-body probability density of detecting one particle at x1 and the
other at x2,

p2(x1, x2|θ)=
〈9̂†(x1|θ)9̂

†(x2|θ)9̂(x2|θ)9̂(x1|θ)〉

N (N − 1)
, (4)

and reads7

C =

∫
dx1 dx2 p2(x1, x2|θ)

∂θ p1(x1|θ)

p1(x1|θ)

∂θ p1(x2|θ)

p1(x2|θ)
. (5)

Furthermore, F1 is the Fisher information calculated with the probability p1,

F1 =

∫
dx

[∂θ p1(x |θ)]2

p1(x |θ)
. (6)

Equation (3) is the first important result of this paper. The phase, which is estimated from the
single-body probability, depends on both p1 and p2. If C = 0 or neglected as in [28], equation (3)
provides a shot-noise-limited phase uncertainty, since F1 6 1 [28]. However, C can assume
negative values, allowing for SSN phase uncertainty, as will be demonstrated below.

We also underline the generality of the above result, which is valid for any quantum
state, where the parameter θ is estimated from the one-body density. In analogy, if two-
body correlations can be measured in an experiment, four-body correlations would enter the
corresponding expression for the asymptotic phase uncertainty.

2.2. Multiple atom detection

It is also important to consider the possibility that the detectors cannot resolve positions of
individual particles. In this case, we need to use the coarse-grained density and assume that
in stage (ii) in the i th experiment the number of atoms n(i)k in each of the k = 1, . . . , nbin bins
is measured (the bin size 1x must be small to precisely sample the density variations). The
measurement is repeated m times and the phase is estimated from a least-square fit of the one-
body density to the accumulated data. As discussed in detail in [30], the phase uncertainty of
such a fit is equivalent to the phase uncertainty of the MLE with the likelihood functionLfit(ϕ)=∏nbin

k=1 p(n̄k|ϕ), where p(n̄k|ϕ) is the probability of detecting n̄k =
1
m

∑m
i=1 n(i)k atoms on average

in the kth bin. For large m, according to the central limit theorem, the probability p(n̄k|ϕ) is a

7 We use an abbreviated notation for the derivatives, ∂θ f = ∂θ f (θ)≡ [∂ϕ f (ϕ)]|ϕ=θ .
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Gaussian with a mean 〈nk〉 =1x N p1(xk|ϕ) and Poissonian fluctuations, 12nk = 〈nk〉 [28]. For
the phase uncertainty of this MLE, we obtain similarly as in section 2.1 that

12θ
(m)
fit =

∑nbin
k=1

[∂θ 〈nk〉]2

〈nk〉
+
∑nbin

k 6=l=1 σ
2
k,l
∂θ 〈nk〉

〈nk〉

∂θ 〈nl 〉

〈nl 〉

m
[∑nbin

k=1
[∂θ 〈nk〉]2

〈nk〉

]2 , (7)

where

σ 2
k,l = (1x)2 N [(N − 1)p2(xk, xl |θ)− N p1(xk|θ)p1(xl |θ)] .

In the continuous limit 1x → 0, formulae (3) and (7) coincide.

3. Estimation from the one-body density with the Mach–Zehnder interferometer

As a benchmark for the phase estimation protocol introduced in section 2, we first consider the
case when in stage (i) the system acquires the phase θ in an MZI. The interferometric sequence
of the MZI consists of three steps. First, the initial two-mode state |ψin〉 passes a beam splitter.
Then, a relative phase θ is imprinted between the modes. In the final stage of the interferometer,
another beam splitter acts on the state.

It can be easily shown that the evolution operator of the whole MZI sequence is
Û (θ)= e−iθ Ĵ y .8 It is convenient to switch to the Heisenberg picture. The initial field operator
reads 9̂(x)= ψa(x)â +ψb(x)b̂, where â/b̂ annihilates a particle from mode a/b and the
corresponding spatial mode function is ψa/b(x). When passing the MZI, this operator is
transformed as follows:

9̂(θ)= eiθ Ĵ y9̂(x)e−iθ Ĵ y = ψa(x)

[
â cos

θ

2
− b̂ sin

θ

2

]
+ψb(x)

[
b̂ cos

θ

2
+ â sin

θ

2

]
. (8)

We use this result to calculate the one-body (cf equation (1)) and two-body (cf equation (4))
probability densities that enter equation (3), assuming that both the mode functions are point-
like and trapped in separate arms of the interferometer, i.e. ψa(x)ψb(x)= 0 for all x . Using
an initial N -particle two-mode state |ψin〉 =

∑
j c j | j, N − j〉, where |c j |

2 is the probability of
having j atoms in mode a and (N − j) in b, we obtain

12θ
(m)
ML =

1

m

12 Ĵ z cos2 θ +12 Ĵ x sin2 θ

〈 Ĵ x〉
2 cos2 θ

. (9)

The details of the derivation are presented in appendix B. The above expression coincides with
the phase uncertainty for the estimation of the phase θ from the average population imbalance
between the two arms of the MZI. This coincidence can be explained as follows. When atoms are
trapped in two separate arms of the interferometer, their positions can be directly translated to
the number of particles in each arm, without any loss of information. It is then not surprising that
the estimators based on the average population imbalance and the average density are equivalent.

Note that for a particular case of θ = 0, we obtain

12θ
(m)
ML =

1

m N
ξ 2

n , (10)

8 The angular momentum operators are Ĵ x ≡ (â†b̂ + b̂†â )/2, Ĵ y ≡ (â†b̂ − b̂†â )/2i and Ĵ z ≡ (â†â − b̂†b̂ )/2.
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where ξn =

√
N 12 Ĵ z

〈 Ĵ x 〉
2 is the spin-squeezing parameter [21, 31] related to number squeezing of the

initial state. Expression (10) can provide up to the Heisenberg scaling of the phase uncertainty,
once the interferometer is fed with a strongly number-squeezed state [32].

4. Estimation from the one-body density with the interference pattern

We now turn our attention to the case of our interest, to which we devote the rest of this paper.
We consider that the whole phase acquisition sequence consists of two steps. First is the phase
imprint performed in the absence of two-body interactions, which in the two-mode picture is
represented by the unitary operator e−iθ Ĵ z and gives

9̂(x |θ)= ψa(x)e
i θ2 â +ψb(x)e

−i θ2 b̂. (11)

Then, the trap is opened. Since the two-body collisions are assumed to be not present, the two
wave packets freely spread and interfere. Atom interactions can strongly influence the expansion
at an early stage, when the density of the clouds is high [33, 34]. We assume that initially
ψa/b(x) have identical shape, but are centered around ±x0. After a long expansion time (in the

so-called ‘far field’) ψa/b(x)' e∓i κx
2 ψ̃

(
x
σ̃ 2

)
, where σ̃ =

√
h̄t
µ

(µ is the atomic mass and t is the

expansion time) and κ = 2 x0
σ̃ 2 , ψ̃ is the Fourier transform of the wave packets at t = 0, the same

for ψa/b [28, 29]. Note that we have dropped the common factor ei x2

2σ̃2 . Some aspects of this
simple interferometric sequence, which does not require the implementation of a beam splitter,
have been discussed in [29].

The field operator 9̂(x |θ) gives p1(x1|θ) and p2(x1, x2|θ) presented in appendix C, which
are put into equation (3). The integrals are performed analytically assuming that the interference
pattern consists of many fringes, giving

12θ
(m)
ML =

1

m N

[
ξ 2
φ +

√
1 − ν2

ν2

]
, (12)

where ξφ =

√
N 12 Ĵ y

〈 Ĵ x 〉
2 is the spin-squeezing parameter [35] related to phase squeezing of

the initial state. Also, we have introduced ν =
2
N 〈 Ĵ x〉—i.e. the visibility of the interference

fringes; see equation (C.1) and below for details. One important property of equation (12)
is its independence of the actual value of the phase θ . This can be understood as follows.
Probabilities (1) and (4) depend on θ in the same manner, i.e. via a sine or cosine function,
see equations (C.1) and (C.2). Since the integration in (5) and (6) runs over the whole space,
the shift of the trigonometric functions by a common factor θ is irrelevant, since within the
envelope ψ̃

(
x
σ̃ 2

)
there are many interference fringes. On the other hand, the sensitivity of the

MZI (9) depends on θ and has some optimal ‘working points’ because the wave packets ψa/b(x)
do not add up to a wide envelope and therefore the argument for θ independence valid for the
interference pattern does not apply here. Therefore, the θ independence of equation (12) might
be an advantage of this estimation protocol with respect to the momentum formula of the MZI,
valid when the phase is estimated from the one-body density.

Note that the phase uncertainty of the MZI (equation (10)) would closely resemble the
above result if the second term of equation (12) were absent. In the former case,12θ

(m)
ML benefits

from the number squeezing because the estimator is equivalent to the average population
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Δ θ2m.
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φ

Figure 2. The phase uncertainty (12)—black solid line—as a function of ξφ
for N = 100 particles. The dashed red line is the phase uncertainty from the
squeezing parameter (in the absence of the second term in equation (12)), while
the dotted blue line is given by the inverse of the QFI. The horizontal dashed line
denotes the SNL and the vertical dashed line indicates the position of the optimal
point. The open green circles are the result of a numerical experiment (see text)
for four values of ξφ = 0.44, 0.59, 0.72 and 0.86 with m = 10, nrep = 4000.

imbalance between the arms of the interferometer; therefore a state with reduced population
imbalance fluctuations decreases the uncertainty 12θ

(m)
ML . Analogously, in the latter case, the

decreasing fluctuations of the relative phase between the two modes would improve the
estimation precision.

However, the situation gets complicated due to the presence of the second term in
equation (12). Namely, when ξφ drops, so does the fringe visibility ν, and hence the amount of
information about the phase θ contained in the one-body density degrades. As a consequence,
the phase uncertainty of the estimation from p1(x |θ) declines.

It is now important to check whether, due to this interplay between the improvement from
the phase squeezing and the deterioration from the loss of visibility, equation (12) can give
SSN phase uncertainty at all. To this end, we calculate 12θ

(m)
ML with phase-squeezed states for

N = 100, which we generate by computing the ground state of the two-mode Hamiltonian
Ĥ = − Ĵ x + U

N J Ĵ 2
z for negative values of the interaction to tunnelling ratio U

N J . For a detailed
study on the preparation of phase-squeezed states, including experimental sources of noise,
see [35]. For every value U

N J , we find |ψin〉 and calculate ξφ and ν. These values are substituted
into equation (12) and the resulting 12θ

(m)
ML is plotted in figure 2 as a function of ξφ.

Clearly, the uncertainty drops below the SNL. We note the presence of an optimal point,
where the gain from the spin squeezing is balanced by the loss of visibility. The figure also
shows that the phase uncertainty (12) does not saturate the bound set by the quantum Fisher
information (QFI), 12θQFI ≡

1
m

1
FQ

=
1
m

1
412 Ĵ z

[36].
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m

θ
(m)

ML

(m)

MLΔm θ2

Figure 3. The upper panel shows that the phase uncertainty of the ‘experiment’
(black points) at the optimal point ξφ = 0.44 and N = 100 beats the SNL (which
is equal to m12θ

(m)
ML = 0.01 here; cf figure 2) already for m = 1 and converges

to the theoretical value (red dashed line) for m = 10. The lower panel depicts
the corresponding average plus error bars indicating uncertainties, while the true
value of θ is indicated by the red dashed line.

To support these analytical results for the asymptotics, we also study the full statistics of the
protocol by simulating a phase-estimation experiment with N = 100 particles. We generate the
input state with a desired amount of phase squeezing and evaluate the full N -body probability
pN (ExN |θ), with which we draw a single realization yielding the N positions. We repeat the
experiment m times and obtain one value of the phase θ (m)ML using MLE with equation (2). This
cycle is performed nrep times and the variance of the estimator is calculated on the resulting
ensemble. The results, plotted (empty circles) in figure 2 for four values of ξφ, m = 10, and
nrep = 4000, agree with the theoretical value calculated with equation (12). An important piece
of information in view of an experimental implementation is that although formally the MLE
saturates (12) when m → ∞, in practice m = 10 is sufficient for reaching the bound, as shown
in the upper panel of figure 3. The lower panel of figure 3 shows instead the average value of
the estimated phase plus uncertainties as a function of m. Here we have chosen the true value of
θ to be 0; thus the figure shows that the estimator is unbiased.

Our next step is to find the best scaling of equation (12) with N . In order to obtain an
analytical estimate, we model |ψin〉 with a Gaussian, see appendix D, and find that at the
optimal point m12θ

(m),opt
ML = 2N−4/3. This prediction is compared with numerical results, where

for every N we evaluate the phase uncertainty (12) at the optimal state. As shown in the inset
of figure 4, the agreement between the numerics and the Gaussian approximation is very good.
Also, we numerically obtain the scaling of the QFI at the optimal state m12θ

opt
QFI = N−4/3, which

differs from 12θ
(m),opt
ML just by a factor of 2. Next, we discuss some characteristic experimental

imperfections that can spoil the phase uncertainty (12).
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η=90%
η=100%

~
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κ
_
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η=80%

(m)

Figure 4. The phase uncertainty (13), calculated for N = 100 in the optimal
state (denoted by the vertical dashed line in figure 2), as a function of σ for
four different values of η. The horizontal dashed line denotes the SNL. The
inset shows the phase uncertainty equation (12) as a function of N (solid
black line) with the optimal state, compared to the scaling from the Gaussian
approximation, m12θ

(m),opt
ML = 2N−4/3 (dashed red line), the scaling of the QFI

m12θ
(m),opt
QFI = N−4/3 (dotted blue line) and the scaling of equation (13) with

σ =
0.2
κ

and η = 90%, giving m12θ̃
(m),opt
ML = 1.48N−1.16 (dash-dotted green line).

4.1. Impact of detection imperfections

Single-particle detection, which is the basis of the estimation scheme discussed in section 2.1,
is affected by two dominant sources of noise: limited efficiency and finite spatial resolution, see
figure 1. The former is incorporated by letting the index k run from 1 to n < N in equation (2).
In effect, n replaces N in equation (3). The finite spatial resolution modifies instead both
C and F1. We implement it by convoluting the probabilities p1(x1|θ) and p2(x1, x2|θ) with
p̃(x1|x ′

1)=
1

√
2πσ 2

e−(x1−x ′

1)
2/(2σ 2) (and analogously for x2)—a Gaussian probability of detecting

an atom at x1 given its true position x ′

1. The convolutions are calculated analytically and the
phase uncertainty becomes

12θ̃
(m)
ML =

1

m N

ξ 2
φ +

(√
1 − ν2 e−κ2σ 2 + 1

)
eκ

2σ 2
− η

ην2

 , (13)

where κ = 2 x0
σ̃ 2 and σ̃ =

√
h̄t
µ

were defined below equation (11). Above, we assumed that

N , n � 1, η =
n
N and the tilde denotes the phase uncertainty in the presence of errors. Note that

for η = 100% and σ = 0 we recover equation (12). In figure 4 we plot equation (13) as a function
of σ for N = 100 and η = 100, 90, 80 and 70%. For instance, with a resolution of (1/30)th
of a fringe (σ = 0.033 ×

2π
κ

'
0.2
κ

) and η = 90%, the SSN scaling is m12θ̃
(m),opt
ML = 1.48N−1.16,
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shown in the inset. Also note that even in the presence of the noise, the phase uncertainty (13)
does not depend on θ .

The two main sources of detection noise affecting the least-squares fit estimation protocol
defined in section 2.2, not shown in figure 1, are imperfect atom counting and the finite bin size.
To model the former, we assume that the number of atoms in each bin is measured with some
uncertainty, and convolute the probabilities entering the fit likelihood function with a Gaussian
error distribution, perr(n̄k|n̄′

k)=

√
m

√
2πσ 2

err

e−(n̄k−n̄′

k)
2/(2σ 2

err/m). As a result, the variance is increased

by σ 2
err/m. Very promising detection techniques based on the detection of fluorescence photons

rely upon detection of on average α fluorescence photons per atom, and this number fluctuates
at the shot-noise level. Error propagation gives σ 2

err =
1
α
〈nk〉 and the phase uncertainty (7)

becomes

12θ̃
(m)
fit =12θ

(m)
fit +

1

m

1

α

1∑nbin
k=1

[∂θ 〈nk〉]2

〈nk〉

.

Using N = 100 and the optimal state denoted by the vertical line in figure 2, for the bin size
1x =

0.2
κ

an SSN phase uncertainty is preserved for α & 2.2—a condition well satisfied by the
light-sheet technique, which can give α ' 10 photons per atom [26].

5. Conclusions

We have derived an expression for the phase estimation uncertainty for a generic situation where
the phase is inferred from the positions of probe particles, when only the one-body density is
known. In a Mach–Zehnder-type interferometer, the sensitivity of this protocol coincides with
the well-known error propagation formula and we recover the known Heisenberg limited phase
uncertainty, 1θ ∝ N−1. Then we consider the simplest ‘double-slit’ interferometer based on
spatially interfering wave packets suggested in [29], which still scales at best as 1θ ∝ N−2/3,
limited by the loss of fringe visibility. Nevertheless, the phase uncertainty for the interference
pattern (12) has a major advantage over the MZI (9). Namely, it performs equally well for any
value of θ , while (9) can reach very high values around θ =

π

2 and 3
2π .

The interferometric protocol employing the interference pattern could be implemented with
a BEC trapped in a double-well potential. After imprinting the phase and switching the trap off,
the two clouds would expand and interfere. The atoms could then be detected using, for instance,
the light-sheet method [26], based on the fluorescence measurement of photons scattered by the
atoms crossing a laser beam. Another possible scheme relies upon letting the atoms fall onto
an optical lattice. If the interference pattern is dilute so that there is not more than one atom
per site, their positions could be detected by a fluorescence measurement [27] with ultra-high
efficiency and resolution. Recent quantum interferometry experiments [9, 10, 12] indicate that
very important effects limiting the phase uncertainty are the detection imperfections, which
we believe to have been realistically taken into account in our proposal. Another relevant
constraint on the precision of a double-well interferometer comes from the noise present in the
interferometric sequence (i). A recent theoretical work [35] shows that the amount of squeezing
at the optimal point (ξφ = 0.44 for N = 100 particles) could be reached with a double-well BEC
using a refocusing method even in the presence of the latter source of noise.
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Appendix A. Derivation of the phase uncertainty

A.1. Single-atom detection

The proof that the estimator taken as the phase θ (m)ML which maximizes the likelihood function
of equation (2) is unbiased and has the variance of equation (3) asymptotically in m can be
performed along the lines of the standard proof that the maximum likelihood method saturates
the Cramér–Rao bound [37] for m � 1

12θ
(m)
ML >

1

m F
, (A.1)

where F is the Fisher information to be defined below. The original proof was given in [37].
A recent formulation can be found in [38], and a more accessible albeit less rigorous version is
given in [39].

The proof consists of two steps. Firstly, we show that the estimator is consistent, i.e. for
m → ∞, the probability that θ (m)ML 6= θ goes to 0, which means that the estimator approaches
the true value of the phase shift asymptotically. This demonstration follows [38]. Secondly,
we adapt the simplified proof of [39] (see also [37]) that a consistent ML estimator is also
efficient, which means that it saturates the Cramér–Rao bound, equation (A.1), for m � 1. In
particular, the proof shows that for large m, θ (m)ML is distributed with a Gaussian distribution with
the variance of equation (2) and mean θ ; hence it is also unbiased.

Before we start, a remark is in order. It might seem surprising or even wrong to use
the likelihood function of equation (2). The reason is that we use only the single-particle
probabilities to estimate the phase, even though in a single shot of the experiment, N particles
will be correlated in general. Hence, the probability that in a single shot the second particle
arrives at a position x2 generally depends on the position x1 where the first particle was detected.
In traditional ML estimation, one would therefore define the likelihood function as

L(ϕ)=

m∏
i=1

pN (Ex
(i)
N |ϕ) (A.2)

with the N -particle conditional probability density pN (Ex
(i)
N |ϕ) instead and define the estimator as

the maximum of this function. As mentioned above, it can be shown [37–39] that this estimator
is consistent, unbiased and that it saturates the Cramer–Rao bound with the Fisher information

FN =

∫
dEx

1

pN (ExN |θ)
(∂θ pN (ExN |θ))2. (A.3)
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This bound cannot be overcome by any other estimator using the results of the measurement
governed by the probability density pN (ExN |θ) or by any of its reductions.

However, there are no restrictions on how an estimator can be defined; there will only be
differences in the performance of different estimators. We define the estimator based on the
single-particle probability density only. As the proof below shows, this estimator is consistent,
unbiased and has the variance of equation (2). The variance is ultimately limited by (but is
generally larger than) the ultimate limit from equation (A.1) with the Fisher information from
equation (A.3). However, it has the advantage that it is accessible experimentally and also allows
for SSN phase estimation, as shown in the main paper.

Consistency. We recall the definition of θ (m)ML , which is the value of the parameter ϕ which
maximizes L(ϕ) from equation (1) from the main paper. Equivalently, it maximizes

f (m)(ϕ)≡
1

m

m∑
i=1

N∑
k=1

ln p1(x
(i)
k |ϕ), (A.4)

where N is the number of particles and m is the number of independent repetitions of the
experiment. The events ExN are distributed with the conditional probability density pN (ExN |θ),
where θ is the true value of the phase shift, and p1(xk|θ) is obtained from pN (ExN |θ) by
integrating over all x j 6=k .

We assume identifiability, i.e. that p1(x |θ)= p1(x |θ ′) for all x is equivalent to θ = θ ′.
Consistency is then proved by showing that f (ϕ)= limm→∞ f (m)(ϕ) has a maximum at ϕ = θ

as follows:

f (ϕ)− f (θ)= lim
m→∞

1

m

m∑
i=1

N∑
k=1

(ln p1(x
(i)
k |ϕ)− ln p1(x

(i)
k |θ))

=

N∑
k=1

∫
dExN p1(xk|θ)(ln p1(xk|ϕ)− ln p1(xk|θ))

= N
∫

dx p1(x |θ) ln
p1(x |ϕ)

p1(x |θ)
6 0, (A.5)

where we have used ln(y)6 y − 1. The equality is obtained iff y = 1. Hence the inequality
equation (A.5) is saturated iff p1(x |ϕ)= p1(x |θ) for all x . It follows that ϕ = θ by the
identifiability assumption. Hence θ (m)ML → θ for m → ∞.

Efficiency. We expand the first derivative of L from equation (1) of the main paper around θ ,

∂ϕ logL(ϕ)' ∂ϕ logL(ϕ)|θ + ∂2
ϕ logL(ϕ)|θ(ϕ− θ). (A.6)

We now set ϕ = θ
(m)
ML . Since this phase maximizes L, the left-hand side vanishes and we obtain

(θ
(m)
ML − θ)' −

∂ϕ logL(ϕ)|θ
∂2
ϕ logL(ϕ)|θ

. (A.7)

The consistency of the estimator ensures that we can neglect terms of higher order in θ (m)ML − θ

provided that m is large enough.
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In order to investigate how θ
(m)
ML − θ is distributed, we start by computing the average of the

denominator,

∂2
ϕ logL(ϕ)|θ = m

[
1

m

m∑
i=1

N∑
k=1

∂2
ϕ log (p1(x

(i)
k |ϕ))

∣∣∣
θ

]

→m�1 m
N∑

k=1

∫
dExN pN (ExN |θ)∂2

ϕ log (p1(xk|ϕ))

∣∣∣
θ

= − m N F1. (A.8)

The coefficient N results from the indistinguishability of the particles and F1 is the Fisher
information calculated with the single-particle probability density,

F1 =

∫
dx1

1

p(x1|θ)
(∂ϕ p(x1|ϕ)|θ)

2
. (A.9)

Coming back to equation (A.7), we obtain

(θ
(m)
ML − θ)'

1

m

m∑
i=1

[
1

N F1

N∑
k=1

∂ϕ log (p1(x
(i)
k |ϕ))

∣∣∣
θ

]
. (A.10)

Hence the difference θ (m)ML − θ is the average of m random variables, which in the central limit are
distributed with a Gaussian probability. With a calculation similar to that of equation (A.8), one
obtains that the average value vanishes, which means that the MLE is unbiased. The variance
of the distribution in the central limit is

12θ
(m)
ML =

1

m

1

N F1

(
1 + (N − 1)

C

F1

)
, (A.11)

where

C =

∫
dx1 dx2 p2(x1, x2|θ)

∂θ p1(x1|θ)

p1(x1|θ)

∂θ p1(x2|θ)

p1(x2|θ)
. (A.12)

Therefore, the Fisher information from equation (A.1) is

F =
N F1(

1 + (N − 1) C
F1

) . (A.13)

Hence the correlations enter via the two-particle correlation function p2 even though in the
definition of the estimator only the single-body density p1 is used.

A.2. Multiple-atom detection

The multiple-atom detection relies upon dividing the space into nbin bins, each of size 1x . In
every bin, the number of atoms is measured and this result is averaged over m realizations,
giving

n̄k =
1

m

m∑
i=1

n(i)k . (A.14)
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According to the central limit theorem, for large m the probability of detecting n̄k is Gaussian,

p(n̄k|ϕ)=
1√

2π12nk/m
e

−
(n̄k−〈nk 〉)2

212nk /m . (A.15)

Here, 〈nk〉 = limm→∞ n̄k and 12nk are the associated fluctuations and both depend on the value
of ϕ. We construct the likelihood function as follows:

Lfit(ϕ)=

nbin∏
k=1

p(n̄k|ϕ). (A.16)

Again, we follow the steps of the proof of Fisher’s theorem and expand the derivative of the
logarithm of the likelihood function around the true value and set ϕ = θ

(m)
ML ,

(θ
(m)
ML − θ)' −

∂ϕ logLfit(ϕ)|θ

∂2
ϕ logLfit(ϕ)|θ

. (A.17)

For the following calculations, we introduce the more compact notation

∂ϕu(ϕ)|θ ≡ ∂θu, (A.18)

used also in the main text. We start with calculation of the denominator of equation (A.17),
which in the large m limit reads as

∂2
θ logLfit = −m

nbin∑
k=1

[
(∂θ〈nk〉)

2

12nk
+ [〈nk〉 − n̄k]

(
∂2
θ 〈nk〉

12nk
+ ∂θ〈nk〉∂θ

1

12nk

)
+

1

2
[n̄k − 〈nk〉]

2 ∂2
θ

1

12nk

]
. (A.19)

According to (A.18), both 〈nk〉 and 12nk in the above equation are a function of θ . In analogy
to equation (A.8) for m → ∞ the above denominator is replaced with its average value. Upon
averaging, the second term vanishes and the third term is proportional to 12nk/m, which is
negligible in the limit of large m. Therefore, we obtain

∂2
θ logLfit ' −m

nbin∑
k=1

(∂θ〈nk〉)
2

12nk
. (A.20)

The average of the square of the nominator of equation (A.17) reads as

〈(∂θ logLfit)
2
〉 ' m2

nbin∑
k,l=1

∂θ〈nk〉∂θ〈nl〉

12nk12nl
〈(n̄k − 〈nk〉)(n̄l − 〈nl〉)〉

−2m2
nbin∑

k,l=1

∂θ〈nk〉

12nk
∂θ

1

212nl
〈(n̄k − 〈nk〉)(n̄l − 〈nl〉)

2
〉

+m2
nbin∑

k,l=1

∂θ
1

212nk
∂θ

1

212nl
〈(n̄k − 〈nk〉)

2(n̄l − 〈nl〉)
2
〉. (A.21)
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The second term vanishes and the last, after the average is calculated in the central limit,
becomes m independent and thus can be dropped when compared to the first term.

Let us now separate the sum over k, l into k = l and k 6= l parts. The first one simply gives

m
nbin∑
k=1

(∂θ〈nk〉)
2

12nk
. (A.22)

The non-diagonal part k 6= l depends on the two-site correlations σ 2
kl = m〈(n̄k − 〈nk〉)(n̄l −

〈nl〉)〉. To justify equation (5) of the main text, we note that the atom-number fluctuations read
as

12nk = p1(xk|θ)1x + (p2(xk, xk|θ)− p1(xk|θ)
2)(1x)2 (A.23)

and thus in a small bin-size limit are Poissonian, i.e. 12nk = p1(xk|θ)1x = 〈nk〉. Therefore,

12θ
(m)
fit =

∑nbin
k=1

[∂θ 〈nk〉]2

〈nk〉
+
∑nbin

k 6=l=1 σ
2
k,l
∂θ 〈nk〉

〈nk〉

∂θ 〈nl 〉

〈nl 〉

m
[∑nbin

k=1
[∂θ 〈nk〉]2

〈nk〉

]2 . (A.24)

The last step is to calculate the cross-correlation term

σ 2
k,l = (1x)2[〈9̂†(xk|θ)9̂(xk|θ)9̂

†(xl |θ)9̂(xl |θ)〉 − 〈9̂†(xk|θ)9̂(xk|θ)〉〈9̂
†(xl |θ)9̂(xl |θ)〉]

= (1x)2 N [(N − 1)p2(xk, xl |θ)− N p1(xk|θ)p1(xk|θ)] ,

where in the last line we used

〈9̂†(xk|θ)9̂(xk|θ)9̂
†(xl |θ)9̂(xl |θ)〉 = 〈9̂†(xk|θ)9̂

†(xl |θ)9̂(xl |θ)9̂(xk|θ)〉

= N (N − 1)p2(xk, xl |θ), (A.25)

which is true for k 6= l.

Appendix B. Derivation of the phase uncertainty for the Mach–Zehnder interferometer

When the two wave packets are fully separated, so that ψa(x)ψb(x)= 0 for all x , the one-body
probability reads

p1(x |θ)=
1

N
〈9̂†(x |θ)9̂(x |θ)〉 =

1

2

[
|ψa(x)|

2(1 − ν sin θ)+ |ψb(x)|
2(1 + ν sin θ)

]
,

where ν =
2
N 〈 Ĵ x〉 is the fringe visibility. This probability gives

F1 =

∫
dx

[∂θ p1(x |θ)]2

p1(x |θ)
=
ν2 cos2θ

2

∫
dx

|ψa(x)|4 + |ψb(x)|4

|ψa(x)|2(1 − ν sin θ)+ |ψb(x)|2(1 + ν sin θ)

=
ν2 cos2θ

1 − ν2 sin2θ
.
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Now we calculate the second-order probability and obtain (cf equation (4))

N (N−1)p2(x1, x2|θ)= 〈9̂†(x1|θ)9
†(x2|θ)9̂(x2|θ)9̂(x1|θ)〉

=
N 2

2
(|ψa(x1)|

2+|ψb(x1)|
2)p1(x2)+ (|ψa(x1)|

2
− |ψb(x1)|

2)(|ψa(x2)|
2

−|ψb(x2)|
2)

[
cos2 θ

(
〈 Ĵ 2

z〉 −
N

4

)
+ sin2 θ

(
〈 Ĵ 2

x〉 −
N

4

)]
+(|ψb(x1)|

2
− |ψa(x1)|

2)(|ψa(x2)|
2 + |ψb(x2)|

2)
N

2
sin θ〈 Ĵ x〉.

We insert this function together with p1(x |θ) into the definition of C and obtain

N (N − 1)C =
N 2

4
(α +β)2 +

(
N −

1

2

)
〈 Ĵ x〉(β

2
−α2) sin θ

+

(
〈 Ĵ 2

z〉 cos2 θ + 〈 Ĵ 2
x〉 sin2 θ −

N

4

)
(α−β)2,

where

α = −
〈 Ĵ x〉 cos θ

N
2 − 〈 Ĵ x〉 sin θ

and β =
〈 Ĵ x〉 cos θ

N
2 + 〈 Ĵ x〉 sin θ

. (B.1)

If we now combine expressions for F1 and C as in equation (3), we obtain equation (9).

Appendix C. The one- and two-body probabilities for the interference pattern

The explicit expression for the one-body probability comes directly from the definitions of
p1(x |θ) and the angular momentum operators

p1(x |θ)=
1

N
〈9̂†(x |θ)9̂(x |θ)〉 =

∣∣∣ψ̃ ( x

σ̃ 2

) ∣∣∣2 (1 +
2〈 Ĵ x〉

N
cos(κx + θ)

)
. (C.1)

Clearly, the coefficient ν ≡
2〈 Ĵ x 〉

N is the visibility of the interference fringes. The two-body
probability reads as (cf equation (4))

p2(x1, x2|θ)=
〈9̂†(x1|θ)9

†(x2|θ)9̂(x2|θ)9̂(x1|θ)〉

N (N − 1)

=

∣∣∣ψ̃ ( x1

σ̃ 2

) ∣∣∣2∣∣∣ψ̃ ( x2

σ̃ 2

) ∣∣∣2 [1 −
1

(N − 1)
cos(κ(x1 − x2))+

2〈 Ĵ x〉

N
[cos(κx1 + θ)

+ cos(κx2 + θ)] +
4〈 Ĵ 2

x〉

N (N − 1)
cos(κx1 + θ) cos(κx2 + θ)

+
4〈 Ĵ 2

y〉

N (N − 1)
sin(κx1 + θ) sin(κx2 + θ)

]
. (C.2)
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Appendix D. Gaussian scaling

To find the best possible scaling of the phase uncertainty (12) with N , we model |ψin〉 with a
Gaussian state as follows:

|ψin〉 ∝ e−i π2 Ĵ x
∑

j

e
−
( j− N

2 )
2

N ·ξφ | j, N − j〉. (D.1)

The operator e−i π2 Ĵ x represents a beam splitter which transforms the number- to the phase-
squeezed state. For ξφ = 1 the resulting state is spin coherent, and by decreasing ξφ we increase
the amount of phase squeezing.

This state is used to calculate the expectation values 〈 Ĵ x〉 and 〈 Ĵ 2
y〉 from equation (12).

For N � 1 the summation over j can be approximated with an integral. This way we obtain
analytical expressions

〈 Ĵ x〉
2
=

N 2

4
e
−

1
N ·ξφ and 〈 Ĵ 2

y〉 =
N 2

8

(
1 − e

−
2

N ·ξφ

)
, (D.2)

which are then substituted into equation (12). Taking ξφ = N−β , where 06 β 6 1, we obtain

m12θ
(m)
ML = N−(β+1) + N

β−3
2 . (D.3)

The phase uncertainty is optimal when these two terms are equal; otherwise one of them would
dominate at large N . This condition gives βopt

=
1
3 and m12θ

(m),opt
ML = 2N−4/3.
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[17] Obrecht J M, Wild R J, Antezza M, Pitaevskii L P, Stringari S and Cornell E A 2007 Phys. Rev. Lett. 98 063201
[18] Anderson B P and Kasevich M A 1998 Science 282 1686

New Journal of Physics 14 (2012) 093001 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1038/nature02493
http://dx.doi.org/10.1038/nature02552
http://dx.doi.org/10.1126/science.1188172
http://dx.doi.org/10.1038/nphoton.2010.39
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1126/science.1208798
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1103/PhysRevLett.105.080403
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/PhysRevLett.93.223201
http://dx.doi.org/10.1103/PhysRevLett.92.050404
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1126/science.282.5394.1686
http://www.njp.org/


19

[19] Fattori M, D’Errico C, Roati G, Zaccanti M, Jona-Lasinio M, Modugno M, Inguscio M and Modugno G 2008
Phys. Rev. Lett. 100 080405
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