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Abstract. We present a novel architecture of an oscillatory neural network
capable of performing pattern recognition tasks. Two established strategies for
obtaining associative properties in oscillatory networks invoke either a physical,
time constant or a global, dynamical all-to-all coupling. Our network distributes
the complexity of the coupling between the spatial and the temporal domain.
Instead of O(N 2) physical connections or a global connection with O(N 2)

frequency components, each of the N oscillators receives an individual coupling
signal which is composed of N − 1 frequency components. We demonstrate that
such a network can be built with analog electronic oscillators and possesses
reliable pattern recognition properties. Theoretical analysis shows that the
scalability is in fact superior to the dynamic global coupling approach, while its
physical complexity is greatly reduced compared to the individual time constant
coupling.
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1. Introduction

One outstanding property of biological neural networks is the ability to perform pattern
recognition tasks. A well known mathematical model emulating the behavior of neurons on
an abstract level is the Hopfield network [1] which consists of N neurons each connected
to all other neurons individually via interconnections with synaptic strength si j . Also a
network of coupled Kuramoto oscillators [2] may exhibit associative properties similar to the
Hopfield network [3–12]. In particular, it was shown that a system of identical oscillators can
recognize binary patterns [8, 10]. In a frame of reference rotating with the natural frequency
of the oscillators, the evolution equation of each phase variable ϑi of the oscillatory network
reads

ϑ̇i =

N∑
j=1

si j sin(ϑ j − ϑi). (1)

A severe obstacle to any hardware implementation of such a network is that at least N (N − 1)

experimental parameters representing the coupling matrix si j are required. Hoppensteadt and
Izhikevich [10] suggest an alternative approach based on oscillators with distinct frequencies
and a global time dependent coupling of all neural oscillators. Applying a single external
coupling function to all oscillators replaces a hard-wired all-to-all coupling by a dynamical
all-to-all coupling. Hence, the number of coupling parameters is reduced to just one, which now
is time dependent. This concept was validated experimentally with simple electronic oscillating
circuits [13]. However, the approach has the disadvantage that the N (N − 1)/2 frequencies
present in the global coupling function must be arranged according to a so-called Golomb
ruler [14, 15], which again restricts the scalability to large systems severely. The needed
frequency range scales with N 2: 1ω

ω
< 1

N 2 , with ω being a typical oscillator frequency and 1ω

its accuracy [13].
In this work, we also consider connected neurons as weakly coupled oscillators, but we

use a qualitatively different network architecture. Our network invokes N time-dependent
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Figure 1. Schematic representation of the coupling principle. N oscillators with
different frequencies ωi receive individual coupling functions based on the
current phase information ϕ j of the other N − 1 oscillators.

coupling functions being composed of N − 1 frequency components each. In comparison, the
hard-wired all-to-all coupling uses N 2 coupling functions which are constant in time, while
the dynamical all-to-all coupling uses just a single time-dependent coupling function with
N (N − 1)/2 frequency components. Below, we will demonstrate that our proposed architecture
is more feasible for implementation as hardware than both alternative networks discussed above.
In particular, we will quantify that the restrictions on the oscillator frequencies are less severe
than for the dynamically coupled network, while the number of coupling parameters scales
only linearly with the number of oscillators. Furthermore, we will present a robust experimental
implementation of this concept with electronic oscillators.

Figure 1 shows the general idea: N oscillators with different natural frequencies ωi and
phases ϑi are subject to an individual coupling signal, which is generated by a central unit.
This unit receives the phase information of all N oscillators in the form of their phase shifts
ϕi = ϑi − ωi t and generates the N coupling functions based on this information. Later, we will
show that this system is also effectively governed by equation (1) if the phase ϑi is replaced by
the phase shift ϕi .

System (1) has fixed points (ϕi − ϕ j)
∗
= 0 or π depending on the sign of si j , with si j = ξiξ j

and ξi , ξ j = ±1. Therefore, ξi and ξ j can be regarded as pixels of a binary pattern ξ with,
e.g. ξi = 1 being black and ξi = −1 being white. This results in the differences of the phase
shifts ϕ j − ϕi of 0 for the same color (ξi = ξ j ) and π for the complementary one (ξi = −ξ j ).
For the pattern recognition process we provide a selection of M patterns ξ k by applying the
Hebbian rule: si j =

∑M
k=1 ξ k

i ξ k
j . The process of pattern recognition is the same as the one used

in [10, 13].
Note that the coupling strategy depicted in figure 1 has been mentioned before

in conjunction with linearly increasing oscillator frequencies ω1, ω1 + 1, ω1 + 21, . . . , ω1 +
N1 [10]. It turns out, however, that the coupling with this distribution of frequencies is not
feasible, which will be elaborated below.
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2. Theoretical considerations

We will now demonstrate that the dynamics of our coupling strategy is also governed by
equation (1). Having a network of electronic oscillators in mind, we start with the following
system of differential equations for each oscillator:

U̇i = f (Ui , Ii) + εai(t)
N∑

j=1

U j , (2)

İi = g(Ui , Ii). (3)

Here, Ui is the voltage of oscillator i , Ii is the current flowing through the inductance of the
van der Pol oscillator (see appendix A), and ai(t) is the individual coupling function. f (Ui , Ii)

and g(Ui , Ii) describe the uncoupled oscillator and ε is a small parameter. Since the coupling is
weak, we can describe the evolution of each oscillator with a single differential equation using
the concept of the infinitesimal Phase Response Curve (iPRC) [16]:

ϑ̇i = ωi + ε
∂ϑi

∂Ui
ai(t)

N∑
j=1

U j . (4)

We now proceed by averaging equation (4) over time as we are only interested in the long-term
behavior that varies significantly:

ϑ̇averag,i = ωi + lim
T →∞

1

T

∫ T

0
ε
∂ϑi

∂Ui
ai(t)

N∑
j=1

U j(t) dt. (5)

We use

ai(t) =

N∑
j=1, j 6=i

si j cos
(
ω j t − ωi t

)
(6)

and assume the shapes of the voltages of each oscillator Ui(t) to be sinusoidal and ∂ϑi
∂Ui

to be
cosine shaped. See appendix B for a measurement of the iPRC of the oscillators which
justifies this assumption. Note that in equation (6), for each ai(t) the summation runs only over
one index ( j), as opposed to the formulation of the global coupling function a(t) [10, 13],
where the summation runs over both, i and j . Assuming that all oscillators have identical
amplitudes, we can derive restrictions on the frequencies of the oscillators that, if fulfilled,
transform equations (5) into

ϕ̇i = cε
N∑

j=1

si j sin(ϕ j − ϕi) (7)

with c being a constant of magnitude 1. See appendix C for the detailed calculation. Equation (7)
matches the desired equation (1).

The restrictions on the oscillator frequencies are

(i) ωi 6= ω j ∀ j, i,

(ii) ωi 6=
1

2
(ωk − ω j) ∀i, j, k, (8)

(iii) ωi 6=
1

2
(ωk + ω j) ∀i, j, k.
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The first requirement simply states that all frequencies have to be different. The second one is
fulfilled if the smallest frequency in the system is greater than one third of the largest frequency.
The third one determines the scalability of the system. The set of integers that fulfill the third
requirement is composed of all integers that do not contain any 2 in base-3 notation [17], which
is de facto a Cantor set. One can show that the space required by the frequencies grows with a
power of ln 3

ln 2 :

1ω

ω
<

1

N
ln 3
ln 2

≈
1

N 1,58
. (9)

Comparing these requirements with the ones obtained for the single coupling function
network [10], one can see that they differ only in the third one. For a purely global coupling
all frequency differences need to be different, which is the definition of a Golomb ruler:
ωi − ω j 6= ωk − ωl for {i, j} 6= {k, l} and i 6= j , k 6= l. As already mentioned, this leads to a
scaling of the frequency range with a power of 2. Thus, with N individual coupling functions
instead of one global coupling function, we gain a better scalability of the system. Moreover,
each individual coupling function contains significantly less frequency components and is
therefore easier to create.

To get a better intuition for the improved scalability, suppose that you had oscillators
with an accuracy sufficient for a network of Nglobal = 10 globally coupled oscillators. Then,
you would be able to connect Ndist = 18 oscillators with the distributed coupling at hand.
For Nglobal = 100, we have Ndist = 334, and finally for Nglobal = 1000, the network with the
distributed coupling could be as large as Ndist = 6103. Hence, with the same frequency accuracy,
much larger patterns can be processed in the network with distributed coupling.

3. Experimental setup

A schematic of the electric circuitry used for the experiments can be seen in figure 2. We used
eight van der Pol oscillators, which consisted of a capacitance, a gyrator circuitry instead of a
conventional inductor and a negative impedance combined with two diodes instead of a tunnel
diode. See appendix A for the complete circuitry and the resulting differential equations. The
summation over the voltages of the oscillators was done via an adder circuit realized with an
operational amplifier. The added signal was multiplied with the individual coupling functions
ai(t) =

∑
j 6=i si j cos(ω j t − ωi t) using an analog multiplier.

In this experimental demonstration, the coupling signals ai(t) were calculated with a PC
according to the measured prevailing frequencies of all oscillators and converted to analog
signals to be passed to the multiplier. The multiplied signals were then fed back to the individual
oscillators as a small current, dimensioned by the 100 k� resistance. Thus, in our realization,
the coupling functions ai(t) were generated digitally by a PC, whereas all other computational
steps were implemented with analog circuitry.

The experiments were conducted as follows. At first, we determined the effective
frequencies of the oscillators by counting the zero crossings of the voltage signal during
a defined time interval and dividing the number by the length of this interval. Based on
these results, the coupling functions ai(t) were computed. Immediately afterwards the pattern
recognition experiment was carried out. It consisted of two parts, the initialization and the
recognition part.
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Figure 2. Schematic circuit diagram of the experimental setup. The eight van
der Pol oscillators are depicted by filled circles (please refer to appendix A for
the exact layout). The voltages of the oscillators are added via the operational
amplifier LT1055 which inverts the signal. This sum is multiplied with the
(negative) coupling signal via the analog multiplier AD633 and fed back to the
oscillators.

During the first half of the measuring interval, the pattern ξ which was to be recognized,
was initialized. Therefore, the coupling functions ai(t) =

∑8
j 6=i ξiξ j cos(ω j t − ωi t) were used.

As a consequence, all phase shifts ϕi adopted to one of two values that were π apart,
representing the pattern under investigation. One of these values was arbitrarily set to zero.
During the second fourth of the measuring interval, we again determined the frequencies as
during this time interval the phase shifts do not change anymore. These frequencies were used
to obtain the evolution of phase shifts over the entire measuring interval by comparing the actual
zero crossings of the voltage signals with the expected zero crossings.

During the second half of the measurement, the recognition was performed. The coupling
was switched to the Hebbian superposition of the M patterns ξ k , given by si j =

∑M
k=1 ξ k

i ξ k
j . The

expected result was that the system evolves from the initialized state ξ to a state corresponding
to the pattern ξ k most similar to ξ . During this process, the oscillators corresponding to the
defective pixels changed their phase shift by π .

All patterns used for recognition were orthogonal, i.e.
∑8

i ξ k
i ξ l

i = 0 with k 6= l and ξ

differed from the most similar ξ k in one pixel.

New Journal of Physics 15 (2013) 083010 (http://www.njp.org/)

http://www.njp.org/


7

Figure 3. Exemplary measurements for frequencies chosen from a Cantor set
between 25 and 70 kHz. The patterns for initialization (ξ ), and recognition (ξ 1, ξ 2

and ξ 3) are shown on top. Defective bits and corresponding phase shift curves are
marked by arrows. (a) Example of a typical pattern recognition. ξ 1 is recognized
as the magenta colored oscillator changes its phase shift. (b) Worst measurement
out of one hundred: pattern ξ 1 is still recognized as the orange colored oscillator
changes its phase shift the most.

4. Experimental results

4.1. Experiments with oscillator frequencies chosen from a Cantor set

Figure 3 shows two exemplary measurements, a typical one (figure 3(a)) and the least favorable
one (figure 3(b)) of 100 experiments performed with randomized patterns and frequencies
between 25 and 70 kHz that were chosen from a Cantor set to fulfill the restrictions derived
above, namely ω1 = 25 kHz, ω2 = 25 kHz + 1, ω3 = 25 kHz + 31, ω4 = 25 kHz + 41, ω5 =

25 kHz + 91, ω6 = 25 kHz + 101, ω7 = 25 kHz + 121, ω8 = 25 kHz + 131 = 70 kHz with 1 =

3461 Hz. During the course of the experiments, frequencies would deviate from these values
up to ±100 Hz. The initial pattern ξ (shown in the top left corner) was compared to the three
patterns ξ 1, ξ 2 and ξ 3 (shown in the top right corner). Least favorable here means that the average
deviation of all oscillators from the hypothetical ideal behavior (i.e. the defective oscillator
changes its phase shift by π , all others do not change their phase shift) was the largest for this
experimental run.

In figure 3(a), pattern ξ differs from pattern ξ 1 in the sixth pixel, which is attributed to the
magenta colored oscillator. After the change of the coupling at t = 0, this oscillator switches
from the ‘0-branch’ to the ‘π -branch’, whereas the other oscillators stay on their branches:
pattern ξ 1 is recognized. We can also observe a constant upward drift, which we do not yet
understand completely. However, as one can see, this does not affect the process of pattern
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Figure 4. Histogram of 100 recognition experiments with randomized patterns.
The oscillators that are supposed to change are colored in red (hatched), the
others in black (not filled). The height of the black columns is given by the axis
on the left, the height of the red columns is given by the axis on the right, which
is scaled down by a factor 7 (as one out of eight oscillators is defective for each
run). The outliers originate from the measurement shown in figure 3(b).

recognition as it operates on a much slower time scale than the phase shift change and, moreover,
it is constant and of equal strength for all oscillators.

Figure 3(b) shows the worst out of 100 experiments. Yet, one can see that the pattern is still
recognized, as there are two clearly distinguishable branches and the correct (orange colored)
oscillator switches its branch.

Figure 4 shows the histogram of the changes in phase shift 1ϕ for the series of 100
measurements with randomized orthogonal patterns, which also contained the measurements of
figure 3. The phase shifts were evaluated 0.04 s after the coupling was switched to recognition
mode.

The resulting distributions for the oscillators that should switch branches and for the
oscillators that should remain on their branches center close to the expected values 1ϕ = π

and 0, respectively, and are well separated. The small shift of the left peak toward higher values
of 1ϕ results from the already mentioned upward drift.

For the other peak, this effect is less pronounced because 1ϕ is slightly smaller than π .
This happens because the seven remaining oscillators experience a small recoil effect due to the
branch switching of the oscillator corresponding to the defective pixel.

Independent of these details, the important result of this series of measurements is that
every single pattern recognition measurement out of 100 was successful.

4.2. Experiments with evenly distributed oscillator frequencies

Having shown that a network with frequencies distributed according to equation (8) may
recognize patterns reliably, it would be worthwhile to also validate the scaling law equation (9)
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Figure 5. Exemplary measurements for a linear distribution of frequencies
between 25 and 70 kHz. The patterns for initialization (ξ ), and recognition (ξ 1, ξ 2

and ξ 3) are shown on top. Defective bits and corresponding phase shift curves are
marked by arrows. (a) Example of a successful pattern recognition. (b) Example
of a failed pattern recognition.

experimentally. Given the considerable effort this would require, it is more practical to
demonstrate that the network fails when the frequencies are chosen in a way that violates
equation (8). This is especially interesting since inevitable inaccuracies in the experiment might
reduce the effect of undesired resonances. In the following, we show that it is not sufficient to
distribute the frequencies evenly ω1, ω1 + 1, ω1 + 21, . . . , ω1 + N1 as an intuitive choice that
has also been mentioned before [10].

Figure 5 shows two exemplary pattern recognition experiments with evenly distributed
frequencies between 25 and 70 kHz, with deviations of up to ±50 Hz. Except for the evenly
spaced frequencies, the experiments were conducted in the same way as those depicted in
figure 3. Obviously, the oscillators do not settle for a constant distribution of phase shifts during
initialization, let alone recognition2. Instead, the time evolution of the phase shifts fluctuates
with amplitudes of up to about π/2 due to spurious resonances. Figure 5(a) shows a successful
pattern recognition as the oscillator corresponding to the red curve is the only one exhibiting a
substantial change in phase shift 1ϕ after the change of coupling. In figure 5(b), on the other
hand, the oscillator corresponding to the defective pixel (orange) does not exhibit a substantial
change in phase shift, while others do (red, green, cyan).

2 Note that in both images, the phase shifts at t = 0 were artificially clamped to the values corresponding
to a correct initialization, which is the reason why the curves converge on ϕ = 0 and ϕ = π at t = 0. This
was unavoidable due to technical reasons and leads to a certain misrepresentation of the actual phase shifts if
initialization is not perfect (each phase shift curve appears shifted by an offset, then). However, since we assess the
success of pattern recognition by computing the changes 1ϕ in phase shift during recognition, information on the
offset of the phase shift is not vital.
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Figure 6. Histogram of 100 recognition experiments with randomized patterns
and evenly spaced frequencies. The oscillators that are supposed to change are
colored in red (hatched), the others in black (not filled). The height of the black
columns is given by the axis on the left, the height of the red columns is given
by the axis on the right, which is scaled down by a factor 7 (as one out of eight
oscillators is defective for each run).

Figure 6 is comparable to figure 4. It shows the histogram of phase shift changes for a
series of 100 measurements with randomized patterns and evenly distributed frequencies, which
include the measurements of figures 5(a) and (b). In contrast to figure 4, the two distributions
overlap considerably, which results in the failure of more than 40 out of the 100 pattern
recognition runs. This serves to show that the frequency conditions derived in section 2 are
indeed relevant for the experimental system at hand, even in the presence of inherent frequency
inaccuracies, which tend to alleviate spurious resonances.

5. Conclusion

In this paper, we have presented a new type of weakly coupled oscillatory network which is
capable of recognizing binary patterns. The network allows for larger system sizes than the
network discussed in the literature [10, 13]. In addition, it is more feasible to implement as
hardware than traditional artificial neural network architectures. A simple experimental setup
was introduced which is capable of performing pattern recognition tasks reliably. The results are
a promising foundation for further development, involving, e.g. more sophisticated oscillators
or the on-chip generation of the coupling function. They also point to interesting fundamental
questions concerning the dynamics of oscillatory networks.
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Figure A.1. Electric circuit of a single oscillator.

Appendix A. Circuit details

In this work we used electronic oscillators which are essentially van der Pol oscillators. We
replaced some classic elements of the circuit. In particular, we exchanged the inductor for a
so-called gyrator circuit with a capacitor, and the tunnel diode was substituted by a negative
impedance with two diodes.

Figure A.1 shows the electric circuit of a single oscillator. In the middle of the figure
(colored in black) one can see the 1 nF capacitor of the oscillator. To the left (colored in red)
is the negative impedance circuitry with the two diodes. This circuit effectively transforms
the 6.19 k� resistor into a −6.19 k� one. Combined with the two diodes, this part in total
provides the typical U–I-characteristic of a tunnel diode. To the right (colored in blue) one
can see the gyrator which transforms the 33 nF capacitance into an inductance. The frequency
adjustments are done via the 1 k� potentiometer Rvar. Consequently, the inductance ranges
between L i = 3.3–36.3 mH; this results in a frequency range of 25 to 70 kHz. Ui is the voltage
fed into the adder circuit (see figure 2, which shows how the coupling of the oscillators is
implemented).

The whole circuit of oscillators and coupling is described by the following differential
equations:

U̇i = −
1

C

(
InegImp + Ii +

Ui

R
+

Ui

R′

)
+

1

C

ai(t)

R′10

∑
j

U j , (A.1)

İi =
Ui

L i
(A.2)

with C = 1 nF and InegImp being the current flowing through the negative impedance circuit.
R and R′ are the resistances shown in figure 1, with R = 8.25 k� and R′

= 100 k�. The
denominator in the coupling term contains a factor 10, as the AD633 Multiplier automatically
divides by 10.

If we compare equations (2) and (3) with equations (A.1) and (A.2), we obtain the

following identities: f (Ui , Ii) = −
1
C

(
InegImp + Ii + Ui

R + Ui
R′

)
, g(Ui , Ii) =

Ui
L i

and ε =
1

10·C ·R′ .
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Figure B.1. Measured PRC Zϑ ≈
1ϑ

1U of a van der Pol oscillator with 1U ≈

0.02 V, an amplitude of 0.52 V and a frequency of 61.5 kHz. The continuous line
shows a fit of the experimental data to a cosine function.

Appendix B. Measuring the phase response curve

For the measurement of the PRC we provided a short high amplitude voltage pulse (see
equation (B.2) below) to one otherwise undisturbed van der Pol oscillator and determined the
change in phase 294 times at random oscillator phases.

We connected the node at potential Ui in figure A.1 to an external voltage source Uext

which provides the pulses via a resistance R = 8.25 k�. Therefore, the voltage equation for the
oscillator reads

U̇ = −
1

C

(
InegImp + I +

U

R
+

U

R′

)
+

Uext

C R
(B.1)

(with C = 1 nF, R = 8.25 k� and R′
= 100 k�).

The amplitude of the oscillator was 0.52 V with a frequency of 61.5 kHz.
The voltage pulse we used had the shape

Uext = 1.5V e−
1
2 [ t

2.35·10−7s
]2

. (B.2)

The expected voltage jump induced by this pulse is 1U =
∫

Uext
RC dt ≈ 0.02 V. To determine the

phase response Zϑ =
1ϑ

1U we calculated the change in phase 1ϑ by comparing the time between
two zero crossings of the voltage before and right after the pulse.

Further experimental details are identical to the ones in reference [13]. Figure A.1 shows
that it is justified to model the PRC by a cosine function.

Appendix C. Averaging the phase equations

In the following, we show how averaging reduces equations (4)–(7). We start with the following
equation:

ϑ̇i = ωi + lim
T →∞

ε

T

∫ T

0
ai(t)Zmax

PRC,i cos ϑi

N∑
j=1

U max
j sin ϑ j dt (C.1)
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with

ai(t) =

N∑
k 6=i

sik cos(ωkt − ωi t).

Here, ∂ϑi
∂Ui

= Zmax
PRC,i cos ϑi is the PRC, with Zmax

PRC,i being the amplitude and U j = U max
j sinϑ j is

the voltage of oscillator j with U max
j being its amplitude. Using ϑ = ωt + ϕ, equation (C.1)

transforms to

ϕ̇i = lim
T →∞

ε

2T

∫ T

0
ai(t)

 N∑
j=1

U max
j Zmax

PRC,i( sin((ω j − ωi)t + ϕ j − ϕi) + · · ·

· · · + sin((ω j + ωi)t + ϕi + ϕ j))

]
dt. (C.2)

Now we insert the coupling function ai(t) and transform the equation via trigonometric
identities:

ϕ̇i = lim
T →∞

ε

2T
Zmax

PRC,i

N∑
j=1

U max
j

∑
k 6=i

sik · . . .

. . . ·
1

2

∫ T

0
(sin((ωk − ωi)t + (ω j − ωi)t + ϕ j − ϕi) − . . .

. . . − sin((ωk − ωi)t − (ω j − ωi)t − ϕ j + ϕi) + . . .

. . . + sin((ωk − ωi)t + (ω j + ωi)t + ϕ j + ϕi) − . . .

. . . − sin((ωk − ωi)t − (ω j + ωi)t − ϕ j − ϕi))dt. (C.3)

Since all frequencies are positive, the integral over the third term is always 0.
The integral over the first term is 0 if ωi 6=

1
2(ωk + ω j) is fulfilled.

Furthermore, the fourth term vanishes if ωi 6=
1
2(ωk − ω j).

This leaves only the second term. If we guarantee all frequencies to be different, we obtain
a non-vanishing contribution if k = j . This results in

ϕ̇i = lim
T →∞

ε

4T
Zmax

PRC,i

N∑
j=1

si jU
max
j

∫ T

0
sin(ϕ j − ϕi) dt (C.4)

=
ε

4
Zmax

PRC,i

N∑
j=1

si jU
max
j sin(ϕ j − ϕi). (C.5)

If we assume all the voltage amplitudes U max
j to be equal, we obtain the desired form.

The constant c in equation (7) is thus c =
1
4 Zmax

PRC,iU
max. Ideally, Zmax

PRC,iU
max

= 1 should hold.
During our measurement of the PRC (see appendix B) we found U max

= 0.52 V and Zmax
PRC =

1.77 rad V−1 (curve fit).
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[3] Arenas A and Pérez-Vicente C J 1994 Europhys. Lett. 26 79
[4] Park K and Choi M Y 1995 Phys. Rev. E 52 2907
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