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Abstract
We study quantum state tomography, entanglement detection and channel noise
reconstruction of propagating quantum microwaves via dual-path methods.
The presented schemes make use of the following key elements: propagation
channels, beam splitters, linear amplifiers and field quadrature detectors.
Remarkably, our methods are tolerant to the ubiquitous noise added to the
signals by phase-insensitive microwave amplifiers. Furthermore, we analyse our
techniques with numerical examples and experimental data, and compare them
with the scheme developed in Eichler et al (2011 Phys. Rev. Lett. 106 220503;
2011 Phys. Rev. Lett. 107 113601), based on a single path. Our methods provide
key toolbox components that may pave the way towards quantum microwave
teleportation and communication protocols.
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1. Introduction

In circuit quantum electrodynamics (cQED) [1, 2], a superconducting qubit is coupled to the
quantized modes of the electromagnetic field in a superconducting microwave resonator. In the
last few years, we have witnessed tremendous progress in this field, and cQED has developed
into a promising platform for quantum computing or quantum communication. Since the typical
operating frequency of the system ranges between 1 and 10 GHz, and since the output signal
of the resonator can propagate along transmission lines, it is of key importance to study how
to measure propagating quantum microwave signals and how to use them to perform quantum
information processing (QIP) protocols [3]. Two basic problems have to be tackled in order to
reach this goal: the measurement of the quantum state with its partial or full reconstruction,
known as quantum tomography, and the detection and quantification of entanglement.

Quantum state tomography is an important tool in quantum information. It consists in
the reconstruction of a quantum state by means of measurements. The importance of quantum
tomography in QIP lies in its power to benchmark protocols, e.g. it allows to check whether
a quantum system evolves as expected. For this reason, great efforts have been taken to
develop quantum state tomography techniques and to create suitable measurement devices in
various systems. The latter include, e.g. trapped ions [4], optical signals [5], cavity QED [6, 7]
and cQED [8]. The resulting progress has also improved the abilities to detect and quantify
the fundamental resource of most QIP protocols, i.e. entanglement. In other words, a direct
detection method for entanglement is essential if we want to check the feasibility of such a
protocol.

In this paper, we describe a quantum state tomography method and a quantum entangle-
ment detection scheme for propagating microwave fields. Despite some theoretical [9, 10] and
experimental efforts [11], no efficient photodetectors are available in the microwave regime
yet. Thus, the tomography schemes developed in quantum optics cannot be readily applied to
the microwave domain. More specifically, quantum microwaves must be amplified because of
their comparably low energy. In practice, this amplification process adds a significant amount of
noise [12]. The first experimental result of quantum state tomography in the microwave regime
is reported by Menzel et al [12]. It is based on a technique called the dual-path method (DPM),
and was inspired by earlier consideration of Mariantoni et al [13]. Even though the experiment
in [12] was carried out for coherent states, it involved only few microwave photons and showed
that the DPM could be extended to nonclassical states. Such a nonclassical state was finally
reconstructed in a later work by Menzel et al [14]. The first aim of the present paper is to de-
velop the full quantum formalism for the DPM, giving explicit formulae for the quantum state
reconstruction. We use only linear devices such as linear detectors, linear amplifiers and weak
thermal or vacuum ancilla states. Furthermore, we avoid standard quantum homodyne detection,
which makes use of photodetectors to measure a quadrature observable. Instead, we divide the
signal via a 50:50 beam splitter using the vacuum on the ancillary input port, amplify the output
signals by phase-insensitive microwave amplifiers and, finally, measure the field quadratures in
each channel. By calculating suitable auto- and cross-correlations of these noisy signals, we find
that it is possible to reconstruct the moments of the input signal and those of the amplifier noise
with the knowledge of only the first two moments of the ancilla. The obtained moments can
be used to reconstruct the Wigner function of the input signal [15], or to study the behaviour
of superconducting devices, e.g. Josephson parametric amplifiers (JPA) [16–18]. An alternative
approach to tomography of propagating microwaves is homodyne detection by pre-amplifying
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a single quadrature via a JPA [21, 22]. In fact the JPA allows, in principle, to measure a sin-
gle quadrature without adding noise. Since this method is conceptually very different from our
moment-based approach, we choose to compare our method to the single-path, or reference
state, method (SPM) implemented in [19, 20], which reconstruct the moments of the input sig-
nal by using only a single path with a previous tomography of the amplifier noise. Finally, we
demonstrate that the dual-path experimental setup can be used to directly detect entanglement
between the two output signals of the beam splitter by means of moment based entanglement
witnesses (or criteria) [23–25]. We outline this aspect and describe a scheme to detect these cor-
relations experimentally [14]. In summary, we analyse, from a theoretical perspective, the rich
physics of quantum microwave signals incident at a beam splitter whose outputs are connected
to noisy amplification chains. While most of our results are quite general, we put particular
emphasis on the continuous-variable scenario.

The paper is organized in the following way. In section 2, we first present the fundamentals
of the dual-path scheme. Then, in section 3, we describe the SPM and the DPM, and compare
their performance with respect to the tomography of a few-photon state. In section 4, we discuss
the entanglement detection scheme using the dual-path setup. Finally, in section 5, we show
experimental examples for quantum tomography of a squeezed state and entanglement detection
of a two-mode squeezed state.

2. Dual-path fundamentals

In this section, we present the basic elements that we use in the dual-path scheme, providing
their input–output relations.

2.1. Beam splitter

In the quantum regime, a beam splitter is a linear device that superposes two input signals (see
figure 1(a)). Here, we consider only 50:50 beam splitters with input–output relations(

â1

â2

)
=

1
√

2

(
1 1

−1 1

)(
â

v̂

)
, (1)

where â, v̂ are the input signal operators and â1, â2 are the output signal operators, obeying
the bosonic commutation relations, e.g. [â, â†] = 1. In the case of propagating signals in the
frequency range of 1–10 GHz, hybrid ring structures [26, 27] have already been used as beam
splitters in several experiments.

2.2. Phase-insensitive amplifier

In our scheme, we use devices that amplify all quadratures in the same way, the so-called phase-
insensitive amplifiers (represented in figure 1(b)). The input–output relations for these devices
are [28]

â′
=

√
g â +

√
g − 1 ĥ†

amp, (2)
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â

v̂

(b)(a) (c)

amph

gg
ââ
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ĥ†amp

Figure 1. (a) Beam splitter scheme. (b) Phase-insensitive linear amplifier scheme. (c)
Beam splitter model for the IQ mixer.

where ĥamp is a bosonic operator needed in order to make â′ to fulfil the bosonic commutation
relations and g > 1 is the power gain. An example for devices working in our frequency range
and providing sufficient gain are high-electron-mobility transistor (HEMT) amplifiers. In these
devices, the amount of noise added depends on the design, material system and operation
temperature, but ĥamp is typically associated with a state with 10–20 photons.

2.3. In-phase-quadrature-mixer

In quantum optics, a quadrature measurement can be implemented via a homodyne technique
using two photodetectors. This method consists in superimposing the signal with a strong
coherent state on a 50:50 beamsplitter, measuring the number of photons at the outputs
and calculating their difference. It involves photon-number measurements, which can be
implemented in quantum optics using photodetectors, and it allows for single shot quadrature
measurements. In the microwave regime, efficient, low-noise photodetectors are not readily
available. However, if the signal is strong enough, we can measure its quadratures using an
in-phase-quadrature (IQ) mixer [29]. The IQ mixer allows us to measure simultaneously both
quadratures at the cost of adding noise. It can be modelled using a beam splitter and an ancilla
v̂IQ in a thermal state [30], e.g. the vacuum (see figure 1(c)). From the input–output relations (1),
we see that the quadrature operators X̂ 1 ≡

√
2x̂1 and P̂2 ≡

√
2 p̂2 (where 1 and 2 label the two

outputs of the beam splitter) have the same first moment of x̂a and p̂a respectively, but different
variances

〈X̂ 1〉 = 〈x̂a〉, 1X̂ 2
1 = 1x̂2

a + 1x̂2
vIQ

, (3)

〈P̂2〉 = 〈 p̂a〉, 1P̂2
2 = 1 p̂2

a + 1 p̂2
vIQ

. (4)

Here, 1 Â2
≡ 〈 Â2

〉 − 〈 Â〉
2 indicates the variance of the observable Â, and we have defined the

quadratures as x̂ ≡ (â + â†)/
√

2 and p̂ ≡ −i(â − â†)/
√

2.

3. Quantum tomography of the input state

In this section, we describe the SPM [19, 20], and the quantum DPM [12, 14]. We test the
performance of the two techniques by numerical simulations applying a weak squeezed state.
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Figure 2. Single-path scheme with losses and amplifier in series. (a) Loss before
amplification. Here, ĥloss is the noise added due to the losses, ĥamp is the noise added by
the amplifier, g is the power gain and v̂IQ is the ancilla needed to measure x̂ and p̂ (see
IQ mixer model). (b) Loss after amplification.

3.1. Single-path (reference-state) method (SPM) revisited

Suppose we have a microwave signal â and we want to know its state. As the interesting
signals are too weak to be detected, we need to amplify before performing a measurement,
as in equation (2) (see figure 2). In the SPM, we first send a known state to characterize ĥamp,
and then we measure with â as input. If we send, for instance, a known coherent state |α〉 as
input, we can retrieve the moments of ĥamp from the moments of the outcoming signals in a
recursive way

〈ĥl
ampĥ†m

amp〉 =
〈â′†l â′m

〉

(g − 1)
l+m

2

−

l∑
i1=0

m−1∑
i2=0

(
l

i1

) (
m

i2

) (
g

g − 1

) l+m−(i1+i2)

2

(α∗)l−i1αm−i2〈ĥi1
ampĥ†i2

amp〉

−

l−1∑
i1=0

(
l

i1

) (
g

g − 1

) l−i1
2

(α∗)l−i1〈ĥi1
ampĥ†m

amp〉. (5)

The gain g can, in principle, be found by comparing the first moments (g = |〈â′
〉/α|

2, assuming
α 6= 0). However, in reality this is difficult since in a typical experiment situation α is not well
known. Hence, g is determined in a calibration experiment with thermal states [14, 26]. Once
the calibration is done, usually the vacuum (α = 0) is chosen as reference state. This leads to
the formula

〈ĥl
ampĥ†m

amp〉 =
〈â′†l â′m

〉

(g − 1)
l+m

2

. (6)
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Once we have characterized the amplifier noise, we can perform tomography of a general
quantum state â. In fact, by inverting equation (2), we obtain

〈â†l âm
〉 =

〈â′†l â′m
〉

g
l+m

2

−

l∑
i1=0

m−1∑
i2=0

(
l

i1

)(
m

i2

)(
g − 1

g

) l+m−(i1+i2)

2

〈â†i1 âi2〉〈ĥl−i1
amp ĥ†m−i2

amp 〉

−

l−1∑
i1=0

(
l

i1

)(
g − 1

g

) l−i1
2

〈â†i1 âm
〉〈ĥl−i1

amp 〉, (7)

where 〈ĥl
amplĥ

†m
ampl〉 is derived in equation (5).

In an experiment, the channel is lossy. We can model the losses with a beam splitter

b̂out =
√

η b̂in +
√

1 − η ĥloss, (8)

where 0 < η < 1 is the power loss, and ĥloss is the noise added by the environment, strictly
related to its temperature. If we have losses and amplification in series as in figure 2, we can
consider the channel as amplifying or lossy, depending on the value of gη. For the detection
of quantum microwaves, a large value of the effective gain gη on the order of 104 is required,
so that the amplified signal amplitudes are well above the noise added by the next components.
Firstly, we consider the case that the losses occur before the signal is amplified (see figure 2(a))
and rewrite equation (2) as

â′
=

√
gηâ +

√
gη − 1V̂ † (9)

with gη > 1 and V̂ =

√
1−η

η−
1
g
ĥ†

loss +

√
1−

1
g

η−
1
g
ĥamp '

√
1
η
− 1ĥ†

loss +
√

1
η
ĥamp ≡ V̂a in the limit g � 1,

obtaining an equivalent model, but with an effective gain and noise mode V̂ . Therefore, we
can still use equation (5) to reconstruct the moments of V̂ and equation (7) to retrieve the
moments of â. Secondly, if the losses occur after the amplification (see figure 2(b)), we get

the same effective gain gη, but the noise mode V̂ =

√
1−

1
g

1−
1

gη

ĥamp +
√

1−η

gη−1 ĥ†
loss ' ĥamp ≡ V̂b in

the limit gη � 1. We conclude that the lossy models are equivalent to the ideal one, but with
different amplifier gains. Furthermore, we note that if the gain is large enough, the effect of
the losses occurring after the amplification are negligible. In classical network theory, this is
well-known [31]. In fact, assuming ĥamp and ĥloss in thermal states and g � 1, we have that
〈V̂ †

b V̂b〉 = 〈ĥ†
ampĥamp〉 < ( 1

η
− 1) + ( 1

η
− 1)〈ĥ†

lossĥloss〉 + 1
η
〈ĥ†

ampĥamp〉 = 〈V̂ †
a V̂a〉, ∀η ∈ (0, 1), so the

model in figure 2(b) contains less noise than the one in figure 2(a). Regarding the optimization
of experimental setups, minimizing the losses occurring before amplification is crucial under
the assumption that g is large enough, which usually holds. In the remainder of this work, we
use the ideal amplifier model of (2), treating g and ĥamp as effective parameters.

3.2. Dual-path method (DPM)

We now describe the quantum formalism of the DPM, including explicit formulae for the
reconstruction of the moments. Our method assumes minimum information on an ancilla, i.e.
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ĥ†1
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Figure 3. Dual-path scheme for the quantum state tomography of a microwave
signal. The signal is divided into two parts via a beam splitter. The two outputs are
then amplified and detected. The auto- and cross-correlations of the two measured
quadratures allow for the retrieval of both the moments of the input signal and those
of the amplifier noise fields.

the knowledge of its first two moments, and it allows to reconstruct the moments of the input
signal and of the amplifier noise fields at the same time. The scheme is depicted in figure 3.
We send a signal â to a 50:50 beam splitter with an ancilla v̂, and we direct the output fields
(ĉ1 and ĉ2) of the beam splitter to two amplifiers, obtaining

ĉ′

1 =

√
g

√
2
(â + v̂) +

√
g − 1ĥ†

1, (10)

ĉ′

2 =

√
g

√
2
(−â + v̂) +

√
g − 1ĥ†

2, (11)

where we have assumed for simplicity the same gain g for both channels. Lastly, we measure
the quadratures x̂ and p̂ of both channels with IQ mixers. It is useful to introduce the complex
envelopes [30]

Ŝ1,2 ≡
x̂1,2 + i p̂1,2

√
g

=
ĉ′

1,2 + v̂
†
1,2

√
g

, (12)

where x̂1,2 and p̂1,2 are the quadrature operators for the channels 1 and 2, v̂1,2 are the ancillas in
the IQ mixer model, and the last equality can be easily checked from the quadrature definition
and the beam splitter relation [30]. Finally, we obtain

Ŝ1 =
â + v̂
√

2
+ V̂ †

1 , Ŝ2 =
−â + v̂

√
2

+ V̂ †
2 (13)

with V̂1,2 =

√
1 −

1
g ĥ1,2 +

√
1
g v̂1,2 ' ĥ1,2 in the limit g � 1.
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We now iteratively find the relation between the moments of the detected signals and the
moments of the input signal. For the first moment, we obtain

〈Ŝ1〉 =
〈â〉 + 〈v̂〉

√
2

, 〈Ŝ2〉 =
−〈â〉 + 〈v̂〉

√
2

, (14)

where we have assumed 〈V̂ †
1 〉 = 〈V̂ †

2 〉 = 0. This is a safe assumption for any kind of noise.
From (14) we derive

〈â〉 =
1

√
2
(〈Ŝ1〉 − 〈Ŝ2〉), (15)

〈v̂〉 =
1

√
2
(〈Ŝ1〉 + 〈Ŝ2〉). (16)

We assume the knowledge of the first two moments of the ancilla v̂, so we leave (16) as a
consistency check. From the second moments

〈Ŝ2
1〉 =

〈â2
〉

2
+

〈v̂2
〉

2
+ 〈â〉〈v̂〉 + 〈V̂ †2

1 〉, (17)

〈Ŝ2
2〉 =

〈â2
〉

2
+

〈v̂2
〉

2
− 〈â〉〈v̂〉 + 〈V̂ †2

2 〉, (18)

〈Ŝ1 Ŝ2〉 = −
〈â2

〉

2
+

〈v̂2
〉

2
, (19)

we get by linear inversion

〈â2
〉 = −2〈Ŝ1 Ŝ2〉 + 〈v̂2

〉, (20)

〈V̂ †2
1 〉 = 〈Ŝ2

1〉 −
〈â2

〉

2
−

〈v̂2
〉

2
− 〈â〉〈v̂〉, (21)

〈V̂ †2
2 〉 = 〈Ŝ2

2〉 −
〈â2

〉

2
−

〈v̂2
〉

2
+ 〈â〉〈v̂〉. (22)

Similar formulae hold for 〈â†â〉 and 〈V̂1,2V̂ †
1,2〉 (see the appendix). In the derivation of the above

formulae, the mutual statistical independence of â, v̂, V̂1 and V̂2 is crucial. This is a reasonable
assumption if we consider, for instance, that the two amplifiers are spatially well separated and,
hence, have different environments.

We note that we have derived the moments of the input field via the cross-correlation terms,
and, using this result, we have derived the moments of the noise via the auto-correlation terms.
This calculation can be iterated over every order, and in this way, we can retrieve the moments of
the input state and the noise. We also note that from the third moment on, we do not need further
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assumptions on the ancilla v̂. For instance, the third moments of the measurement outcomes are

〈Ŝ3
1〉 =

〈â3
〉

2
√

2
+

〈v̂3
〉

2
√

2
+ 〈V̂ †3

1 〉 + 〈 f Ŝ3
1
(â, v̂, V̂1)〉, (23)

〈Ŝ2
1 Ŝ2〉 = −

〈â3
〉

2
√

2
+

〈v̂3
〉

2
√

2
+ 〈 f Ŝ2

1 Ŝ2
(â, v̂, V̂1, V̂2)〉, (24)

〈Ŝ1 Ŝ2
2〉 =

〈â3
〉

2
√

2
+

〈v̂3
〉

2
√

2
+ 〈 f Ŝ1 Ŝ2

2
(â, v̂, V̂1, V̂2)〉, (25)

〈Ŝ3
2〉 = −

〈â3
〉

2
√

2
+

〈v̂3
〉

2
√

2
+ 〈V̂ †3

2 〉 + 〈 f Ŝ3
2
(â, v̂, V̂2)〉, (26)

where the f... are functions of the operators, and 〈 f...〉 contain moments up to the second order.
Making the right combinations, one derives

〈â3
〉 =

√
2(〈Ŝ1 Ŝ2

2〉 − 〈Ŝ2
1 Ŝ2〉 + 〈 f Ŝ2

1 Ŝ2
〉 − 〈 f Ŝ1 Ŝ2

2
〉), (27)

〈v̂3
〉 =

√
2(〈Ŝ1 Ŝ2

2〉 + 〈Ŝ2
1 Ŝ2〉 − 〈 f Ŝ2

1 Ŝ2
〉 − 〈 f Ŝ1 Ŝ2

2
〉), (28)

〈V̂ †3
1 〉 = 〈Ŝ3

1〉 −
〈â3

〉

2
√

2
−

〈v̂3
〉

2
√

2
− 〈 f Ŝ3

1
〉, (29)

〈V̂ †3
2 〉 = 〈Ŝ3

2〉 +
〈â3

〉

2
√

2
−

〈v̂3
〉

2
√

2
− 〈 f Ŝ3

2
〉. (30)

This calculation can be generalized to any higher-order moments (see the appendix).
Summarizing, we present a method to simultaneously reconstruct the moments of an input state
and the moments of the noise added in the channels, assuming a minimum information on an
ancilla.

3.3. Comparison of the SPM and the DPM

In this section, we compare the DPM to the SPM with respect to the reconstruction of the
quantum state moments of an input signal. We numerically test the methods with a squeezed
state with squeezing parameter ξ = 0.5i [32] as input state, corresponding to a photon number of
0.27. We model the amplifier noise fields and the ancilla states with thermal states with photon
numbers namp and nanc and restrict our analysis to the first four moments. We have simulated
several experiments to study the dependence of the statistical uncertainty of the reconstructed
signal moments on the number of measurements N and on the photon number of the amplifier
noise namp. For fixed namp, we compare the two methods in the following way. For the SPM we
perform N measurements allowing the reconstruction of the amplifier noise by using a vacuum
state as input. Then, we simulate N measurement results for the reconstruction of the squeezed
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Figure 4. Ratio of the standard deviations for (selected) reconstructed signal moments
of the DPM (σDP) and the SPM (σSP) in dependence on the number of measurements
(N ).

state chosen as input. For the DPM, instead, we simulate N measurements of each channel,
that allow us to calculate all the needed auto- and cross-correlations to reconstruct the input
state. To obtain the individual measurements at the outputs of the IQ mixers, we use random
numbers obeying a multivariate Gaussian statistics. The latter is determined by a covariance
matrix, which is calculated using the input–output relations of all components. For a certain N ,
we estimate the average values of the simulated quadrature moments by using the sample mean.
For the DPM the sample mean is

〈x ′k1
1 p′l1

1 x ′k2
2 p′l2

2 〉est =
1

N

N∑
j=1

x ′k1
1 j p′l1

1 j x
′k2
2 j p′l2

2 j , (31)

where j labels the single outcomes. For the SPM we apply an analogous formula. We use
the reconstruction formulae of the SPM and DPM to retrieve the moments of the input states.
In order to access the statistical properties of the two methods, the described procedure is
repeated 5000 times (for each parameter combination). We divide the data into 20 blocks
with 250 samples each. The 250 samples are used to calculate the standard deviation σ of the
reconstructed signal moments for the DPM and SPM. Finally, we compare the two methods by
calculating the ratio σDP/σSP. Thereby, a higher standard deviation means worse performance.
The 20 blocks allow us to estimate the uncertainty of the obtained mean value of the ratio
σDP/σSP.

In experiments at millikelvin temperatures nanc is negligible small. Therefore, we set
nanc = 0 in all presented simulations. The results are depicted in figures 4–6, where we assume
namp = 10 for all amplifiers. Additionally, we have assumed that the first moment of the noise is
zero in the SPM. This is not needed in the single-path reconstruction, but it is necessary if we
want to have a fair comparison to the DPM, as in the latter this assumption is fundamental. In
figures 4–6, we see that the DPM and the SPM have the same performance regarding the first
and second moments, while for the third and the fourth moments the dual-path has an edge.

10



New J. Phys. 16 (2014) 015001 R Di Candia et al

0.5

0.6

0.7

0.8

0.9

1

1.1

Re
â
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Figure 5. Ratio of the standard deviations for the reconstruction of the DPM (σDP) and
the SPM (σSP) for all moments until the fourth order.
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Figure 6. Standard deviations (σ ) for the reconstruction using the DPM and the SPM
for different moment orders. Symbols: simulation results. Solid lines: exponential fit
curves.

The result is not dependent on the number of measurements (see figure 4). For an individual
moment, the standard deviation scales as 1/

√
N (data not shown). In figure 5 we note that the

moment 〈â†a2
〉 performs better than 〈â3

〉 even if they are of the same order. This is because
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Figure 7. Ratio of the standard deviations for the reconstruction of the DPM (σDP) and
the SPM (σSP) in dependence on the photon number namp of the amplifier noise fields.

〈â†a2
〉 can be estimated in more ways than 〈â3

〉, and we are considering the average over
all the possible combinations (see the appendix). Figure 6 shows that for both methods the
standard deviation scales exponentially with the moment order, but the rate of the DPM is
lower.

As second numerical test, we fix the number of measurements to N = 107, and we simulate
the two methods with different namp. Throughout this work, we assume that namp is the same
for all amplifiers. In figures 7(c), (d) and 8(c), (d), we observe that the DPM performs better
than the SPM for the third and fourth moments for high namp, while for namp = 0 both methods
have approximately the same performance. From the good agreement between the polynomial
fit curves and the data in figure 8, we conclude that the standard deviation depends on the
amplifier noise as σ ∝ nk/2

amp for large namp, where k is the order of the considered moment.
The exponent k/2 has also been observed in simulations of an early version of the DPM for
sinusoidal signals [34].
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Figure 8. Standard deviations (σ ) for the reconstruction using the DPM and the
SPM for different amplifier photon noises (namp). The results are fitted with functions
a (namp + b)k/2, where k is the order of the moment and a, b are the fitting coefficients.

4. Characterization of the output state

In addition to quantum tomography of the input state, the DPM also allows one to obtain
the output state of the beam splitter by simply using the beam splitter relations. Moreover,
if the input signal of the beam splitter shows nonclassical behaviour, then the output can be
entangled [33]. Such entanglement can, in principle, be calculated from the reconstructed output
state. However, it is desirable to measure the entanglement in the output state independently
from a verification of the nature of the input state. Hence, we study a reliable scheme to
directly detect entanglement between the two output signals, by making minimal assumptions
on the beam splitter [14]. Indeed, we retrieve the moments of the output state by extending
the reference-state method introduced in section 3.1 to a two-path situation. Then, one can use
entanglement witnesses or criteria based on moments [23–25] and, under certain reasonable
assumptions, quantify the entanglement by using an entanglement measure [35].
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4.1. Dual-path reference-state method

We want to check and estimate the entanglement between the output modes of the beamsplitter
ŝ1 and ŝ2, by minimal assumptions on the beam splitter. To achieve this goal, we can perform
a reference-state method adapted for two channels. First, we send a known state to characterize
the correlations between the two amplifier noise fields 〈V̂ k1

1 V̂ † j1
1 V̂ k2

2 V̂ † j2
2 〉 by making use of the

known moments of the reference state 〈ŝ†l1
1 ŝm1

1 ŝ†l2
2 ŝm2

2 〉, and algebraically inverting the following
equation:

〈S†l1
1 Sm1

1 S†l2
2 Sm2

2 〉 =

l1∑
k1=0

l2∑
k2=0

m1∑
j1=0

m2∑
j2=0

(
l1

k1

)(
l2

k2

)(
m1

j1

)(
m2

j2

)

× 〈ŝ†l1−k1
1 ŝm1− j1

1 ŝ†l2−k2
2 ŝm2− j2

2 〉〈V̂ k1
1 V̂ † j1

1 V̂ k2
2 V̂ † j2

2 〉 . (32)

Here, we have used the complex envelopes defined in (12)

Ŝ1 = ŝ1 + V̂ †
1 , (33)

Ŝ2 = ŝ2 + V̂ †
2 . (34)

We note that by measuring correlations, we can also evaluate whether the two amplifier noise
contributions are correlated or not, while in the DPM it was assumed that they are uncorrelated.
In the case of vacuum as inputs of the beam splitter, which is the most simple choice in the case
of microwave experiments at millikelvin temperatures, we have simply

〈ŝ†l1−k1
1 ŝm1− j1

1 ŝ†l2−k2
2 ŝm2− j2

2 〉known = δl1,k1δm2, j2δm1, j1δl2,k2 . (35)

Then, we send the desired input signal and measure the correlations between Ŝ1 and Ŝ2.
Inverting (32) with respect to 〈ŝ†l1−k1

1 ŝm1− j1
1 ŝ†l2−k2

2 ŝm2− j2
2 〉, we find auto- and cross-correlations

between the two modes ŝ1 and ŝ2. We note that we have not used any details of the beam
splitter, such as input–output relations, in the derivation of equations (33)–(35) and thus treat
it as a black box. We only assume that if the input states are vacuum states, also the output is
a vacuum state. This assumption is well justified since a cold beam splitter is a passive device
containing no energy sources [27, 29].

4.2. Entanglement detection

Once we have measured the correlations of the two output modes, we can use criteria based on
moments to check if there is entanglement. These kind of criteria have been well investigated
in [23–25]. As example, we consider an entanglement witness based on the entanglement of
Gaussian states. Another issue is how to quantify entanglement starting from the measured
moments. There are different entanglement measures based on different features, but all of them
obey some basic properties [35]. The estimation of an entanglement measure for an arbitrary
state is still an open problem. Analytical solutions have been proposed for some classes of states,
e.g. Gaussian states [36] (see section 5.2). Furthermore, techniques have been proposed [37, 38]
to determine a lower bound for the degree of entanglement even in the case when only a finite
number of moments is available (incomplete tomography). Usually, they require the solution
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of a convex optimization problem, that can be done efficiently if the dimension of the Hilbert
space is not too large. For instance, let us define the negativity [39]

N (ρ) ≡
‖ρT1‖1 − 1

2
, (36)

where ρ is the density matrix of the two-mode state after the beam splitter and ρT1 denotes the
partial transpose with respect to the system 1. A lower bound on N (ρ) is given by solving the
minimization problem

minimize N (σ )

subject to 〈ŝ†k1
1 ŝk2

1 ŝ†k3
2 ŝk4

2 〉σ = 〈ŝ†k1
1 ŝk2

1 ŝ†k3
2 ŝk4

2 〉ρ, (37)

σ � 0,

Tr σ = 1,

that can be reshaped as a semidefinite program [37].
Finally, we emphasize that the proposed detection method respects some basic criteria

for a reliable experimental entanglement verification [40]. In particular, it does not make any
assumption on the input state and it is independent of the state generation process.

5. Examples

The DPM has been applied in an experiment to reconstruct the Wigner function of squeezed
states [14]. In the same work (see also [41] for an alternative method), the authors use the dual-
path setup to generate and quantify spatially separated entanglement, by sending a squeezed
state and a vacuum to a microwave beam splitter [26, 27]. In this section, we present two
experimental examples, corresponding to similar data. In the first one, we perform quantum
tomography of the input state, assuming the beam splitter input–output relations. In the second
one, we detect entanglement of the beam splitter output making the black box assumption. For
this purpose, we use an entanglement witness based on the analytical solution of the negativity
for Gaussian states [36].

5.1. Experimental reconstruction of a single squeezed vacuum state

In the experiment, we send a squeezed vacuum state and a vacuum state to a beam splitter.
The squeezed state is generated by sending the vacuum signal produced by a 50 � resistor to
a JPA operated in the degenerate mode. The operation point of the JPA is characterized by a
non-degenerate signal gain of 5.1 dB. The two outputs of the beam splitter are amplified via
two HEMT amplifiers working at 4 K. The measurements are performed using two IQ mixers
working at room temperature. The data processing is realized using an FPGA logic [14]. The
number of the measurements registered is ∼5 × 109. In figure 9, we represent the reconstructed
moments for the input signal â. We compare these moments with the ones of the Gaussian
state defined by the first two reconstructed moments. We see that the moments correspond very
well to the ones expected for Gaussian states. We note that the reconstructed squeezed state is
not pure, because we have 1x̂2

θ = 0.179 ± 0.001 and 1x̂2
θ+ π

2
= 5.326 ± 0.006, where x̂θ is the

quadrature with minimum variance, and these values lead to 1x̂θ1x̂θ+ π
2
= 0.978 ± 0.006 > 0.5.
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â
2

Re
â
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â
3

Im
â
3

â
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Figure 9. Values of the reconstructed moments of the input signal â versus the
theoretical values. The error bar is in the linewidth.

For this reason, four moments are not enough for full-tomography, so we simply check the
Gaussianity of the state by comparing the third and fourth moment with their theoretical values
(see figure 9). The squeezing obtained is 4.45 ± 0.03 dB with respect to the variance of the
vacuum state [14], and this is a witness of non-classicality of the state [42] (we note that the
squeezing depends only on the first two moments, which are very well estimated). The moments
of the amplifier noise operators agree with a thermal state with an average photon number
12.239 ± 0.002 and 12.805 ± 0.002, similar to the value used for the simulations in section 3.3.

5.2. Experimental detection of a path-entangled continuous-variable microwave state

In the next example, we use the extended reference-state method to detect the entanglement of
the output of the beam splitter, in the same experimental conditions as in the previous example.
As we want to prove that the beam splitter is an entangler, we do not assume its input–output
relations. In this sense, we need first to send vacuum as input to reconstruct the HEMT amplifier
noise, and, then, we measure the output moments sending a squeezed state as input. We can
reconstruct the moments of the beam splitter output by using equation (32), and by using
witnesses based on moments, we can assert whether there is entanglement. The witness that
we have used is based on the analytical solution of the negativity for a two-mode Gaussian
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state, given by [36]

N (ρG) = max

{
0,

1 − ν

2ν

}
≡ max{0, ÑK}, (38)

where ρG indicates a Gaussian state, and ν is the smallest symplectic value of the two-mode
Gaussian state [36] (see supplementary material of [14] for an explicit expression). Here, the
negativity kernel ÑK [14] is an entanglement witness, given that if a non-Gaussian state has the
same first two moments as an entangled Gaussian state, then it is entangled [43]. If we assume
the Gaussianity of the state, as it is in our case, then ÑK is directly related to an entanglement
measure via equation (38). By using the same sample data of the previous example, we obtain a
negativity of 0.489 ± 0.004.

6. Summary and conclusions

We have studied the quantum aspects of the dual-path state reconstruction method introduced
in [12], giving explicit formulae for the reconstruction of the field quadrature moments. Our
numerical simulations show that the DPM performs better than the SPM introduced in [19, 20]
at the cost of some experimental resources: an additional beam splitter and an additional
amplifying channel. We have investigated the entanglement generated at the output of the
beam splitter by proposing a detection scheme that does not assume the knowledge of beam
splitter relations. Furthermore, we have experimentally tested the method with a squeezed state
and vacuum as input fields of the beam splitter, showing that the method works in a realistic
situation. In conclusion, we have proposed a toolbox for quantum information with propagating
quantum microwaves, consisting of different quantum tomographic and entanglement detection
schemes. With respect to a possible application of our dual-path tomography in quantum
information architectures, scaling to multiple modes is straightforward in two important cases.
Firstly, for frequency multiplexing, a single beam splitter is sufficient and only the processing
of its two output paths needs to be changed (e.g. multichannel digital down conversion and
parallel processing). Secondly, for the analysis of signals consisting of multiple spatially
separate modes, each mode needs its own beam splitter. In this way, one obtains the noise
moments of each output path in analogy to the single-mode case and the multi-mode state
can be reconstructed. All in all, our results may pave the way for future microwave quantum
teleportation and microwave quantum communication developments.
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Appendix. Dual-path formulae

Here, we write the general formulae to retrieve the moments of an input field 〈â†l âm
〉 (l + m > 1),

the moments of the noise in the channels 〈V̂ r
1,2V̂ †s

1,2〉 (r + s > 2) and the moments of the ancilla
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〈v̂†l v̂m
〉 (l + m > 3), from the observable moments of the outcoming signal 〈Ŝ†l1

1 Ŝ†l2
2 Ŝm2

2 Ŝm1
1 〉,

with l1, l2, m1, m2 > 0. The formulae are recursive, in the sense that the higher-order moments
depend on the lower-order ones.

From equation (13) we derive the general expression for the observable moments of the
outcoming signals

〈Ŝ†l1
1 Ŝ†l2

2 Ŝm2
2 Ŝm1

1 〉 =

l1∑
k1=0

l2∑
k2=0

m1∑
j1=0

m2∑
j2=0

l1−k1∑
k′

1=0

l2−k2∑
k′

2=0

m1− j1∑
j ′

1=0

m2− j2∑
j ′

2=0(
l1

k1

)(
l2

k2

)(
m1

j1

)(
m2

j2

)(
l1 − k1

k ′

1

)(
l2 − k2

k ′

2

)(
m1 − j1

j ′

1

)(
m2 − j2

j ′

2

)
×2−(k1+k′

1+ j1+ j ′

1+k2+k′

2+ j2+ j ′

2)/2(−1) j2+k2〈â†k1+k2 â j1+ j2〉〈v̂†k′

1+k′

2 v̂ j ′

2+ j ′

1〉

×〈V̂
l1−k1−k′

1
1 V̂

†m1− j1− j ′

1
1 V̂

l2−k2−k′

2
2 V̂

†m2− j2− j ′

2
2 〉, (A.1)

where we have used the binomial theorem and the fact that different modes commute with each
others and that the noise fields are independent from the signal. In the following we will assume
that the two noise fields V̂1 and V̂2 are independent from each others. At this point, we have a
series of equations, each of which corresponds to a different choice of l1, l2, m1 and m2. Solving
this system of equations, we find the required formulae. A possible solution for the moments of
â is

〈â〉 = 2−1/2(〈Ŝ1〉 − 〈Ŝ2〉), (A.2)

〈â2
〉 = −2〈Ŝ1 Ŝ2〉 + 〈v̂2

〉, (A.3)

〈â†â〉 = −(〈Ŝ†
1 Ŝ2〉 + 〈Ŝ†

2 Ŝ1〉) + 〈v̂†v̂〉, (A.4)

〈â†l âm
〉 =

1

lm + m + l − 1

l∑
l1=0

m∑
m1=0

〈â†l âm
〉l1m1(1 − δl1,lδm1,m − δl1,0δm2,0), l + m > 2. (A.5)

Here, 〈â†l âm
〉l1m1 is the algebraic inversion of (A.1) with m2 = m − m1 and l2 = l − l1

〈(â†)l âm
〉l1,m1 = (−1)l−l1+m−m12(l+m)/2

〈Ŝ†l1
1 Ŝ†l−l1

2 Ŝm−m1
2 Ŝm1

1 〉

−

l1∑
k1=0

l−l1∑
k2=0

m1∑
j1=0

m−m1−1∑
j2=0

l1−k1∑
k′

1=0

l−l1−k2∑
k′

2=0

m1− j1∑
j ′

1=0

m−m1− j2∑
j ′

2=0

(
l1

k1

)(
l − l1

k2

)(
m1

j1

)

×

(
m − m1

j2

)(
l1 − k1

k ′

1

)(
l − l1 − k2

k ′

2

)(
m1 − j1

j ′

1

)(
m − m1 − j2

j ′

2

)
×(−1)l−l1+m−m1+ j2+k22(l+m−k1−k′

1− j1− j ′

1−k2−k′

2− j2− j ′

2)/2
〈â†k1+k2 â j1+ j2〉

×〈v̂†k′

1+k′

2 v̂ j ′

2+ j ′

1〉〈V̂
l1−k1−k′

1
1 V̂

†m1− j1− j ′

1
1 〉〈V̂

l−l1−k2−k′

2
2 V̂

†m−m1− j2− j ′

2
2 〉
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−

l1∑
k1=0

l−l1∑
k2=0

m1−1∑
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l1−k1∑
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j ′
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k ′
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k ′
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j ′
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)(
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k ′

2
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〈â†k1+k2 âm

〉〈v̂†k′

1+k′

2〉〈V̂
l1−k1−k′

1
1 〉〈V̂

l−l1−k2−k′

2
2 〉

−

l1−1∑
k1=0

l1−k1∑
k′

1=0

(
l1

k1

)(
l1 − k1

k ′

1
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1)/2
〈â†k1+l−l1 âm

〉〈v̂†k′
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1
1 〉. (A.6)

The moments of the channel noise fields V̂1 and V̂2 are

〈V̂1〉 = 〈V̂2〉 = 0, (A.7)

〈V̂ r
1 V̂ †s

1 〉 = 〈Ŝ†r
1 Ŝs

1〉 −

r∑
k1=0

s−1∑
j1=0

r−k1∑
k′

1=0

s− j1∑
j ′

1=0

(
r

k1

)(
s

j1

)(
r − k1

k ′

1

)(
s − j1

j ′

1

)

×2(k1+ j1−r−s)/2
〈â†k′

1 â j ′

1〉〈v̂†r−k1−k′

1 v̂s− j1− j ′

1〉〈V̂ k1
1 V̂ † j1

1 〉

−

r−1∑
k1=0

r−k1∑
k′

1=0

(
r

k1

)(
r − k1

k ′

1

)
2(k1−r)/2

〈â†k′

1〉〈v̂†r−k1−k′

1〉〈V̂ k1
1 V̂ †s

1 〉, (A.8)

〈V̂ r
2 V̂ †s

2 〉 = 〈Ŝ†r
2 Ŝs

2〉
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r−k1∑
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s− j1∑
j ′
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)(
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)(
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1

)(
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1
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1〉〈V̂ k1
2 V̂ † j1

2 〉

−

r−1∑
k1=0

r−k1∑
k′

1=0

(
r

k1

)(
r − k1

k ′

1

)
(−1)k′

1 2(k1−r)/2
〈â†k′

1〉〈v̂†r−k1−k′

1〉〈V̂ k1
2 V̂ †s

2 〉 (A.9)
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and, the moments of the ancilla v̂ are

〈v̂†l v̂m
〉 =

1

lm + m + l − 1

l∑
l1=0

m∑
m1=0

〈v̂†l v̂m
〉l1m1(1 − δl1,lδm1,m − δl1,0δm2,0), l + m > 2, (A.10)

where 〈v̂†l v̂m
〉l1,m1 is given by equation (A.6) after replacing: v̂ → â (v̂†

→ â†) as well as
(−1)l−l1+m−m1 → 1, (−1)l−l1+m−m1+ j2+k2 → (−1) j ′

2+k′

2 , and (−1)l−l1+k2 → (−1)k′

2 .
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