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Abstract. The standard relativistic mean-field density functionals based on non-linear meson
exchange terms are extended to include density dependent meson-nucleon coupling constants.
Special care is taken for the density dependence in the isovector channel. This provides not only
an improved description of the equation of state for neutron matter and asymmetric nuclear
matter but also for isovector properties of finite nuclei far from stability such as the neutron skin
thickness. In particular it improves nuclear binding energies considerably as compared earlier
applications of relativistic density functional theory to nuclear mass tables. An average root
mean square deviation of 900 keV is found.

1. Introduction
Radioactive beams facilities made it possible in recent years to investigate nuclei far from stability
with large neutron or proton excess. For a realistic description of such nuclei one needs a fully
self-consistent theory with a proper treatment of the spin orbit splitting, the basis of nuclear
shell structure, which is applicable over the full periodic table. Density functional theory has
played an essential concept in this field over the years. One of the major goals of modern nuclear
structure is to build a universal energy density functional theory [1]. Universal in the sense that
the same functional is used for all nuclei, with the same set of parameters.

An important class of density functionals are covariant functionals belonging to the framework
of relativistic mean-field theory (RMF). RMF-based models have been successfully applied
in the analysis of a variety of nuclear structure phenomena, not only in nuclei along the
valley of β-stability, but also in exotic nuclei with extreme isospin values and close to the
particle drip lines. The Lorentz structure of these models not only lead to include an elegant
method for nuclear saturation, but it also allows to describe the spin orbit properties in a
systematic fashion without the need of additional parameters. In this context Relativistic
Hartree Bogoliubov (RHB) theory [2, 3, 4] is a particular successful model. Pairing effects are
described here by the effective finite range pairing force of Gogny. In general, the calculated static
properties of ground states have been found in excellent agreement with available experimental
data, and with the predictions of the macroscopic-microscopic mass model [5]. This theory
has been applied not only for the description of ground state properties but also for the
investigation of essential features of collective excitations such as rotations and vibrations,
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in a unified and self-consistent way without the need of additional parameters. This theory
is an example of an effective field theory based on average fields with a definite Lorentz
structure.

It has turned out to be very important to use a carefully adjusted density dependence. In
the standard models this density dependence is taken into account by a non-linear coupling of
the corresponding meson fields [6]. The RMF framework has recently been extended to include
effective Lagrangians with density-dependent meson-nucleon vertex functions [7, 8, 9]. The
functional form of the meson-nucleon vertices can be deduced from in-medium Dirac-Brueckner
interactions, obtained from realistic free-space NN interactions, or a phenomenological approach
can be adopted, with the density dependence for the σ, ω and ρ meson-nucleon couplings adjusted
to properties of nuclear matter and a set of spherical nuclei. The latter was employed in Ref.
[8], where the relativistic Hartree-Bogoliubov (RHB) model was extended to include medium-
dependent vertex functions. The relativistic random-phase approximation (RRPA), based on
effective Lagrangians characterized by density-dependent meson-nucleon vertex functions, has
been derived in Ref. [9]. A comparison of the RRPA results on multipole giant resonances
with experimental data provide additional constrains on the parameters that characterize the
isoscalar and isovector channels of the density-dependent effective interactions. In a microscopic
analysis of the nuclear matter compressibility and symmetry energy [10], it has been shown
that the experimental data on the giant monopole resonances restricts the nuclear matter
compression modulus of structure models based on the relativistic mean-field approximation
to Knm ≈ 250− 270 MeV, while the isovector giant dipole resonances and the available data on
differences between neutron and proton radii limit the range of the nuclear matter symmetry
energy at saturation (volume asymmetry) of these effective interactions to 32 MeV ≤ a4 ≤ 36
MeV.

In a recent investigation of relativistic effective forces with density-dependent meson-nucleon
couplings a new phenomenological interaction (called DD-ME2) has been adjusted to be used
in RMF+BCS, RHB, and R(Q)RPA calculations of ground states and excitations of spherical
and deformed nuclei.

Refs. [11, 7, 12] contain a very detailed discussion of the density-dependent nuclear
hadron field theory. The relativistic Hartree-Bogoliubov (RHB) model and the random phase
approximation (RPA) based on effective interactions with density dependent meson-nucleon
couplings are described in Refs. [8] and [9], respectively. gσ, gω, and gρ are assumed to be vertex
functions of Lorentz-scalar bilinear forms of the nucleon operators.

The meson-nucleon vertex functions are determined either by mapping the nuclear matter
Dirac-Brueckner nucleon self-energies in the local density approximation [11, 13, 12], or the
parameters of an assumed phenomenological density dependence of the meson-nucleon couplings
are adjusted to reproduce properties of symmetric and asymmetric nuclear matter and finite
nuclei [7, 8]. In the phenomenological approach of Refs. [7, 12, 8] the coupling of the σ-meson
and ω-meson to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω , (1)

where

fi(x) = ai
1 + bi(x + di)2

1 + ci(x + di)2
(2)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density at saturation in symmetric
nuclear matter. The eight real parameters in (2) are not independent. The five constraints
fi(1) = 1, f ′′

σ (1) = f ′′
ω(1), and f ′′

i (0) = 0, reduce the number of independent parameters to
three. Three additional parameters in the isoscalar channel are: gσ(ρsat), gω(ρsat), and mσ -
the mass of the phenomenological sigma-meson. For the ρ-meson coupling the functional form
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of the density dependence is suggested by Dirac-Brueckner calculations of asymmetric nuclear
matter [13]

gρ(ρ) = gρ(ρsat) exp [−aρ(x − 1)] (3)

The isovector channel is parameterized by gρ(ρsat) and aρ. Usually the free values are used
for the masses of the ω and ρ mesons: mω = 783 MeV and mρ = 763 MeV. In principle one
could also consider the density dependence of the meson masses. However, since the effective
meson-nucleon coupling in nuclear matter is determined by the ratio g/m, the choice of a
phenomenological density dependence of the couplings makes an explicit density dependence
of the masses redundant.

Table 1. The parameters of the effective interactions DD-ME2 and DD-ME1. See text for
description.

DD-ME2 DD-ME1
mσ 550.1238 549.5255
mω 783.0000 783.0000
mρ 763.0000 763.0000

gσ(ρsat) 10.5396 10.4434
gω(ρsat) 13.0189 12.8939
gρ(ρsat) 3.6836 3.8053

aσ 1.3881 1.3854
bσ 1.0943 0.9781
cσ 1.7057 1.5342
dσ 0.4421 0.4661
aω 1.3892 1.3879
bω 0.9240 0.8525
cω 1.4620 1.3566
dω 0.4775 0.4957
aρ 0.5647 0.5008

The eight independent parameters: seven coupling parameters and the mass of the σ-meson,
are adjusted to reproduce the properties of symmetric and asymmetric nuclear matter, binding
energies, charge radii and neutron radii of spherical nuclei. In Ref. [8] we introduced the density-
dependent meson-exchange effective interaction (DD-ME1), whose parameters are displayed in
Table 1. The seven coupling parameters and the σ-meson mass were simultaneously adjusted
to properties of symmetric and asymmetric nuclear matter, and to ground-state properties of
twelve spherical nuclei [14, 15, 16]. For the open shell nuclei pairing correlations were treated
in the BCS approximation with empirical pairing gaps (five-point formula).

The parameters of the new interaction, denoted DD-ME2, are listed in Table 1, together
with the older parameterization DD-ME1. The DD-ME2 results for the binding energies, charge
radii and differences between radii of neutron and proton density distributions for the set
of twelve spherical nuclei, are compared with experimental data the agreement between the
calculated values and data is indeed very good. We notice that for DD-ME2 the nuclear matter
incompressibility and the symmetry energy at saturation correspond to the lower limits of the
allowed values determined by the R(Q)RPA analysis of the isoscalar monopole and isovector
dipole giant resonances in heavy spherical nuclei.
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Figure 1. Absolute deviations of the binding energies calculated with the DD-ME2 interaction
from the experimental values.

2. Applications
We have performed several tests of the new interaction in a series of RHB and R(Q)RPA
calculations of binding energies, separation energies, charge isotope shifts, deformations,
isoscalar and isovector giant resonances. Ground-state properties have been calculated in the
RHB model with the DD-ME2 effective interaction in the particle-hole channel, and with the
Gogny interaction [17] with the set D1S of Ref. [18].

In general, when compared with the results obtained with the DD-ME1 interaction [8, 19, 9],
the new interaction improves the agreement with experimental data on ground-state properties
of spherical and deformed nuclei, and excitation energies of giant resonances in spherical nuclei.

The theoretical binding energies of approximately 200 nuclei calculated in the RHB model
with the DD-ME2 plus Gogny D1S interactions, are compared with experimental values in
Fig. 1. Except for a few Ni isotopes with N ≈ Z that are notoriously difficult to describe
in a pure mean-field approach, and several transitional medium-heavy nuclei, the calculated
binding energies are generally in very good agreement with experimental data. Although this
illustrative calculation cannot be compared with microscopic mass tables that include more
than 9000 nuclei [20, 21, 22, 23], we emphasize that the rms error including all the masses
shown in Fig. 1 is less than 900 keV. Moreover, since a finite-range pairing interaction is used,
the results are not sensitive to unphysical parameters like, for instance, the momentum cut-off
in the pairing channel. When compared with data on absolute charge radii and charge isotope
shifts from Ref. [15], the calculated charge radii exhibit an rms error of only 0.017 fm. The
predictive power of the RHB model with the DD-ME2 effective interaction is also illustrated in
calculations of binding energies, radii of charge and neutron density distributions, quadrupole
and hexadecupole moments of heavy and superheavy nuclei. The calculated masses and moments
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Figure 2. Theoretical and experimental Qα values for two α-decay chains starting from the odd-
odd nucleus 288115 and the odd-even nucleus 287115. The experimental data are from Ref. [24],
and the calculated values correspond to transitions between the ground-states calculated in the
RHB model with the DD-ME2 interaction plus Gogny D1S pairing.

are in excellent agreement with experimental values. The results shown in Fig. 1 indicate that
DD-ME2 could be used as a basis for a microscopic mass table based on a relativistic universal
energy density functional. Work along these lines is in progress.

An important field of applications of self-consistent mean-field models includes the structure
and decay properties of superheavy nuclei [25]. The relativistic mean-field framework has
recently been very successfully employed in calculations of chains of superheavy isotopes. Since
generally relativistic density-dependent effective interactions provide a very realistic description
of asymmetric nuclear matter, neutron matter and nuclei far from stability, one can also expect
a good description of the structure of superheavy nuclei. The interaction DD-ME2 reproduces
ground-state properties of superheavies with high accuracy. Of course it is also interesting to
analyze predictions for decay chains. In a very recent work [24] evidence has been reported for
the synthesis of element Z = 115. The two superheavy nuclides with N = 173 and N = 172
were produced in the 3n- and 4n-evaporation channels following the reaction 243Am+48Ca [24].
The theoretical Qα values correspond to transitions between the ground-states calculated in the
RHB model with the DD-ME2 effective interaction and with the Gogny interaction D1S in the
pairing channel. The Dirac-Hartree-Bogoliubov equations and the equations for the meson fields
are solved by expanding the nucleon spinors and the meson fields in terms of the eigenfunctions
of a deformed axially symmetric oscillator potential. A simple blocking procedure is used in the
calculation of odd-proton and/or odd-neutron systems. The blocking calculations are performed
without breaking the time-reversal symmetry. We notice that for both α-decay chains the trend
of experimental transition energies is accurately reproduced by our calculations.
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3. Summary and conclusions
Effective nuclear interactions with density-dependent meson-nucleon vertex functions represent
a significant improvement in the relativistic self-consistent mean-field description of the nuclear
many body problem. In a number of recent studies it has been shown that, in comparison
with standard non-linear meson-exchange models, this class of effective interactions provides a
more realistic description of asymmetric nuclear matter, neutron matter and finite nuclei. In
particular, these interactions allow for a softer equation of state of nuclear matter (i.e. lower
incompressibility) and a lower value of the symmetry energy at saturation.

In order to illustrate the principal features of the new interaction, we have analyzed ground-
state properties and excitation energies of giant resonances. Ground states of spherical and
deformed nuclei have been calculated in the RHB model with the DD-ME2 effective interaction
in the particle-hole channel, and with the Gogny interaction D1S in the pairing channel. The
fully self-consistent RRPA and RQRPA have been used to calculate excitation energies of
giant resonances in spherical nuclei. When compared with the results obtained with DD-
ME1, the new interaction considerably improves the agreement with experimental data. We
particularly emphasize the very good results for the masses of approximately 200 nuclei, for the
isoscalar monopole and isovector dipole resonances, and the excellent agreement with the recently
reported α-decay chains of the new element 115. DD-ME2 represents a valuable addition to the
set of relativistic mean-field interactions. Future applications will include the calculation of a
microscopic mass table, mapping the drip lines, and a more extensive study of giant resonances.
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