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Abstract. We apply a novel non-equilibrium Green’s function method for open quantum 

devices to analyze quantum cascade lasers. We find the carrier distribution in typical resonant 

phonon THz-QCLs to develop a periodicity that differs from the geometric periodicity of the 

QCL. We propose a design improvement that thermalizes electrons at threshold bias and 

thereby pins the electron density to the QCL periodicity. 

1.  Introduction 

Quantum cascade lasers (QCLs) have been studied experimentally [1] and theoretically.  The 

theoretical approaches used most commonly are the density matrix method [2, 3], the Boltzmann 

equation [4, 5], and the non-equilibrium Green's function method (NEGF) [6, 7]. All of these 

theoretical studies share the common approximation of invoking field periodic boundary conditions. 

We have developed a self consistent non-equilibrium Green's function method (NEGF) for 

stationary charge transport in open THz-QCL devices that are attached to dissipative leads [8]. 

Importantly, our method differs from previous models by not imposing field-periodic boundary 

conditions. Instead, the electrons can enter and leave the device via travelling eigenstates of the semi-

infinite leads. This allows us to capture non-periodic phenomena as well as investigate spatially 

extended, energetically high lying states.  

The primary goal of this paper is to illustrate the formation of electron distributions in resonant 

phonon THz-QCLs that are commensurable or incommensurable with the QCL device periods. We 

show the impact of such distributions on the device current density and the optical gain. Finally, we 

propose a design modification that pins the electrons to the QCL periodicity. 

2.  Method 

We use the non-equilibrium Green's function method (NEGF) to calculate stationary electronic 

transport and optical gain up to the threshold current in a single conduction band with an effective 

mass m*(z). We assume the QCLs to be homogeneous in the lateral x,y directions and to be in contact 

with two equilibrium reservoirs at z=0 and z=L, respectively. Thereby, we consider charge transport 

as a scattering problem from source to drain with the QCL structure being the active device. The 

source and drain leads are assumed to consist of QCL periods by themselves, albeit with zero electric 

field and with the carriers obeying equilibrium Fermi statistics. In this way, we mimic adjacent QCL 

periods. The electrons enter the device in propagating eigenstates of the respective infinitely extended 

lead Hamiltonians [8]. We take into account inelastic acoustic and polar-optical phonon scattering, 

scattering by charged impurities, interface roughness, and by electron-electron interaction in the 
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Figure 1. Calculated current density as a 
function of applied bias voltage per period of 
the QCL of [9] at 40K and a sheet doping 
density of 1.91010 cm-2 and comparison to 
experiment [9]. The results of the single-period 
model (line) and two-periods model (squares) 
agree well with experiment (dots). 

Hartree approximation. The scattering self-energies are determined in the self-consistent Born 

approximation including their full nonlocal momentum and energy dependence. The electrostatic 

potential Φ is determined self-consistently with the Green’s functions by solving the Poisson equation 

under the condition of global charge neutrality and unambiguous bias value. We calculate the optical 

absorption coefficient in linear optical response, taking into account the calculated laser states and 

non-equilibrium state occupations, but ignoring vertex corrections to the self energies. Details of the 

method are given in [8]. 

3.  Results and Discussion 

We consider electron transport in the resonant phonon THz-QCL structure of [9] which consists of 

271 identical periods of GaAs and Al0.15Ga0.85As layers of the widths (30) 92 (55) 80 (27) 66 (41) 155 

Å. The values in parentheses indicate the Al0.15Ga0.85As barriers and the underlined well is the only 

doped region with a doping density of 1.91010 cm-2. We calculate charge transport in terms of two 

models. In one model, we treat a single device period as active device, whereas the other model 

includes explicitly two device periods. In both models, the remaining periods are included in the leads 

as described above. In figure 1, we depict the calculated (black) and experimental (gray dots) I-V 

characteristics of this QCL. Both models agree with one another and reproduce the experimental data 

of the QCL up to the threshold bias. In the remainder of this section, we focus on the two-periods 

model. 

We will show now that for low carrier concentration, the electronic states follow the QCL 

periodicity, in sharp contrast to the carrier density that deviates from periodicity. In figure 2 (a), we 

show the contour plot of the spectral function at vanishing in-plane momentum in two adjacent periods 

of the QCL for a bias of 52 mV/period. The maxima of this spectral function correspond to resonant 

electronic states. The states associated with the first and second QCL period are labeled by numbers 

and primed numbers, respectively. In both periods, the injector states (5 and 5’) are seen to be aligned 

with the upper laser states (4 and 4’), whereas the lower laser states (3 and 3’) are aligned with the 

collector well states (2 and 2’). We point out that the energy difference between the lower laser levels 

(3 and 3’) and the lowest collector states (1 and 1’) match the energy of an LO-phonon in both 

periods. Nevertheless, we find the carrier distribution to deviate from the geometric QCL periodicity. 

This can be seen most clearly by a contour graph of the local energy resolved current density j(z,E) (as 

defined, e.g., in [6]). Figure 2 (b) shows this quantity for the same bias as in part (a). The function 

j(z,E) shows spatially constant (i.e. horizontal) stripes in regions where the electrons propagate without 

dissipating energy. Disruptions of these horizontal stripes mark positions where LO-phonons get 

emitted. The figure shows that the number of emitted LO phonons is no longer equal for adjacent QCL 

periods. When the electrons have passed the first period and traversed a potential drop of 52 meV, 

they have emitted only one LO-phonon of energy 36 meV. The elastic and inelastic scattering 

mechanisms are not able to dissipate the remaining 16 meV within this QCL period. This is a 
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Figure 2. (a) Calculated conduction band profile (line) and contour plot of the energy and spatially 
resolved spectral function A(z,E) at vanishing in-plane momentum in two adjacent periods of the 
QCL at a bias voltage of 52 mV per period in the relevant energy range between -121 meV and 78 
meV. The zero in energy marks the chemical potential of the source. The dotted line marks the 
boundary between first and second period. (b) Calculated spatially and energy resolved current 
density j(z,E) of the QCL in (a). 

consequence of the good state alignment that supports efficient coherent multi-barrier tunneling [8]. 

Consequently, the electrons enter the second period with an in-plane kinetic energy of 16 meV. This 

can be seen in figure 2 (b); the energy of the leftmost current stripe coincides with states 5 and 4, 

whereas the following current stripe lies above the corresponding states 5’ and 4’. Thus, these 

propagating electrons are now able to emit an LO-phonon, ending up in and occupying the lower laser 

level 3’. This occupancy leads to the build-up of the current stripe near z=80 nm in Figure 2 (b) that is 

absent in the first period. The electrons can now tunnel resonantly from 3’ into state 2’ and scatter into 

the lowest collector state 1’ by the emission of an additional LO-phonon. Thus, the electrons have 

emitted a total of 3 LO phonons (3×36=108 meV) across 2 QCL periods (voltage drop of 2×52=104 

meV) and are finally fully thermalized. The remaining small energy discrepancy can be gained from 

absorbing or emitting acoustic phonons. This process is repeated in the subsequent QCL periods such 

that we obtain a commensurable charge distribution with period two. Since the detailed energy balance 

depends on the applied bias voltage, the carrier density and current distribution may even become 

incommensurable with the geometric periods. 

A consequence of this incomplete carrier thermalization is a significant reduction in the occupation 

inversion and the optical gain in every other period. Concretely, we find a drop of approximately 65% 

in the second period at the voltage shown in figure 2. We would like to point out that the periodic 

nature of the spectral function in figure 2 (a) is intimately related to the small carrier density that does 

not distort the conduction band profile in spite of the different charge density in the second QCL 

period. This explains the good agreement between the two models (one-period and two-periods) we 

have obtained in figure 1. 

In order to estimate whether the inelastic electron-electron (e-e) scattering can relax the electrons 

and restore the periodicity of the carrier distribution to a single QCL period, we have calculated the 

Green's functions including the e-e scattering in the static GW0 approximation. However, we find this 

type of e-e interaction to be unable to thermalize the non-equilibrium subband distribution sufficiently 

strongly [8]. 

 

 

EDISON 16 IOP Publishing
Journal of Physics: Conference Series 193 (2009) 012063 doi:10.1088/1742-6596/193/1/012063

3



 

 

 

 

 

 

Figure 3. Calculated conduction band profile 
(thick line) and contour plot of the energy and 
spatially resolved current density j(z,E) in a 
single period of the proposed new QCL design 
described in the main text. The thin lines depict 
contour lines of the spectral function A(z,E) at 
vanishing in-plane momentum. The zero in 
energy marks the chemical potential of the 
source. 

4.  QCL design for fully thermalized structure 

We have seen the heated carrier distribution in the second period of the QCL in figure 2 to allow 

nonradiative transitions from the upper into the lower laser level. In order to pin the electron 

distribution to the QCL periodicity and thereby to prevent these nonradiative transitions, we propose a 

new QCL structure. We augment each QCL period from [9] by two additional layers, a 3 nm 

Al.15Ga.85As barrier, followed by a 17.1 nm wide GaAs quantum well namely. This leads to a threshold 

bias of ~72 mV per period which results in a potential drop that is commensurable with the energy of 

two LO-phonons. The purpose of these additional layers is to allow the electrons to dissipate the 16 

meV discussed above within the same QCL period rather than causing a nonperiodic density 

distribution. Figure 3 shows a contour plot of the energy and spatially resolved current density j(z,E). 

Also shown in this figure are contour lines of the spectral function at vanishing in-plane momentum.  

Most electrons that arrive in state 1 have a surplus of 16 meV of kinetic energy in the in-plane 

motion. Therefore, their total energy suffices to scatter into state 6 by the resonant emission of a 

second LO-phonon. This can be seen in figure 3 for positions z=70 nm. Here, the dominant maximum 

of j(z,E) coincides with the state 6. Thus, the main portion of the carrier distribution at the end of the 

period is reset to its original value. In this way, the electrons are almost completely thermalized and 

nonradiative transitions between the laser states of this and the following QCL period are suppressed. 
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