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Abstract. We discuss how low-energy collective interband plasmon excitations can be used to
tune the optical properties of individual single wall carbon nanotubes. Two specific examples are
considered. We show that interband plasmons can efficiently mediate enhanced electromagnetic
absorption by pristine semiconducting carbon nanotubes and bipartite entanglement in hybrid
metallic carbon nanotube systems. We develop a theory for (non-linear) optical monitoring
and control of the above phenomena. Our findings pave the way for the development of a new
generation of tunable optoelectronic device applications with individual carbon nanotubes.

1. Introduction
Carbon nanotubes (CNs) — graphene sheets rolled-up into cylinders of one to a few nm
in diameter and up to one cm in length [1, 2] — have been successfully integrated into
miniaturized electronic, electromechanical, and chemical devices [3], scanning probes [4, 5],
and into nanocomposite materials [6, 7]. Over the past years, optical nanomaterials research
has uncovered intriguing optical attributes of their physical properties, lending themselves to
attractive device applications [8, 9, 10]. It is currently realized that pristine semiconducting
CNs, which are direct-band semiconductors, can be used both to generate and to detect
light [11, 12]. Recent studies of CN based optical nanoscale devices have shown that CNs
are able to perform as single-photon sources for quantum computing, communication, or
cryptography [13]. Hybrid CN systems containing extrinsic atomic type species (dopants) such
as semiconductor quantum dots [14, 15], extrinsic atoms or ions [16, 17], are shown to be
promising candidates for the development of the new generation of tunable nanooptoelectronic
devices — both application oriented, e.g., photovoltaic devices of improved light-harvesting
efficiency [18, 19], and for fundamental research including nanophotonics, nanoplasmonics, cavity
quantum electrodynamics, and quantum information [13, 20, 21, 22]. Thus, nanotubes offer a
great potential for building a unified optoelectronic technology based on the same material —
new technology that, due to the outstanding mechanical and chemical stability of CNs, could
be seamlessly integrated into state-of-the-art semiconductor nanotechnology.
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Figure 1. Surface dielectric response functions and local photonic density-of-states (DOS)
functions for semiconducting (left panel) and metallic (right panel) CNs. Top left : Fragment of
the energy dependence of the dimensionless (normalized by e2/2πh̄) axial surface conductivity
σzz of the semiconducting (11,0) nanotube along the CN axis. Ovals mark exciton (E11, E22)
and interband plasmon (P11, P22) excitations [peaks of Reσzz and Re(1/σzz), respectively].
Top right : Same for the metallic (9,0) nanotube (plasmon resonance not to scale). Bottom:
Local photonic DOS functions for the semiconducting (11,0) nanotube (left) and metallic (9,0)
nanotube (right), when the TLS is placed on the nanotube symmetry axis. Dimensionless energy
is defined as [Energy]/2γ0, where γ0 = 2.7 eV is the C-C overlap integral.

However, the true potential of CN based optoelectronic devices lies in the ability to tune
their properties in a controllable way. Here, we discuss how low-energy collective interband
plasmon excitations can be used to tune the optical properties of individual single wall CNs.
We demonstrate that interband plasmons can efficiently mediate enhanced electromagnetic
absorption by pristine semiconducting CNs and bipartite entanglement in hybrid metallic CN
systems. We develop a theory for optical monitoring and control of the phenomena above.

2. Pristine semiconducting carbon nanotubes
In general, plasmons cannot be excited by light in optical absorption since they are
longitudinal excitations, while photons are transverse. Small-diameter (∼1 nm) semiconducting
CNs, because of their quasi-one-dimensionality (1D), predominantly absorb the external
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Figure 2. Exciton-plasmon
dispersion relation (bottom)
as a function of a perpen-
dicular electrostatic field ap-
plied (schematic on the top)
and longitudinal momentum
for the lowest bright exci-
ton [E11 in Fig. 1 (top left)]
when coupled to the near-
est interband plasmon [P11

in Fig. 1 (top left)] in the
(11,0) nanotube. Dimension-
less momentum is defined as
3b [Momentum]/2πh̄, where
b = 1.42 Å is the C-C inter-
atomic distance. See Fig. 1
caption for the dimensionless
energy definition.

electromagnetic (EM) radiation polarized along the CN axis to excite excitons [23]. Figure 1 (top
left) shows a typical dynamical dielectric response function for a semiconducting CN [24, 25].
One can see both of the collective excitations, both excitons and interband plasmons, to originate
from the same electronic transitions and, therefore, to occur at similar energies (∼ 1 eV), as
opposed to bulk semiconductors, where they are separated by tens of eVs. These excitations
do have different physical nature. Their coexistence in semiconducting CNs is a unique general
feature of confined quasi-1D systems where the transverse electronic motion is quantized to form
1D bands and the longitudinal one is continuous.

Optically excited quasi-1D excitons have their transition dipole moments and translational
quasi-momenta both directed along the CN axis (z axis of the problem — Fig. 2 (top); cylindrical
coordinates are used). Therefore, they can couple to their neighboring longitudinal interband
plasmon modes [24, 25]. The exciton-plasmon coupling can be controlled and tuned by means
of an electrostatic field applied perpendicular to the CN axis [schematic in Fig. 2 (top)] via the
quantum confined Stark effect (QCSE) [24, 26]. Figure 2 (bottom) shows a typical exciton-
plasmon dispersion relation in this case [26]. We see the anti-crossing ∼ 0.1 eV, both in the
energy-momentum plane and in the energy-field plane, revealing the QCSE as an efficient tool
to control the exciton-plasmon coupling strength in individual CNs.

The formation of coupled exciton-plasmon excitations can be viewed as an additional non-
radiative channel (in addition to phonons [27] and defects [28]) for the exciton relaxation in
CNs, where optically excited excitons decay into low-energy interband plasmons. In so doing,
excitons generate the quanta of plasma oscillations on the CN surface, on the one hand, and this
shortens their lifetime, on the other. Thus, by varying the exciton-plasmon coupling strength
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Figure 3. Non-radiative decay of optically excited excitons into plasmons. Calculations for the
1st bright exciton in the (11,0) CN. Top to bottom left : Schematic of the plasmon generation
by the exciton. (a),(b) Exciton excitation by external EM radiation. (c),(d) Charge plasma
oscillations (shown by + and – signs) produced by the non-radiative exciton decay are periodic
opposite-phase displacements of electron shells relative to ion cores in the neighboring elementary
cells (blue and yellow) of the CN. Top to bottom right : Plasmon population (also representing
light absorption by excitons) and local surface field amplitude as functions of temperature and
perpendicular electrostatic field applied. See Fig. 1 caption for the dimensionless energy.
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using the QCSE, one controls both the radiative emission from an individual CN and surface
electric field fluctuations associated with plasmons generated by excitons on the CN surface.
This latter phenomenon is similar to the SPASER effect (Surface Plasmon Amplification by
Stimulated Emission of Radiation) reported earlier for hybrid metal-semiconductor-dielectric
nanomaterials [29]. In our case, the effect takes place in individual semiconducting CNs.

Plasma oscillations generated by the non-radiative exciton decay into the nearest interband
plasmon mode are standing charge density waves due to the periodic opposite-phase
displacements of the electron shells with respect to the ion cores in the neighboring elementary
cells on the CN surface [Fig. 3 (left)]. Such periodic displacements induce local coherent
oscillating electric fields of zero mean, but non-zero mean-square magnitude, concentrated locally
across the diameter throughout the length of the nanotube. The mean-square longitudinal local
field magnitude can be calculated as the expectation value E2

z (n)=⟨[−∇n φ̂(n)]
2
z⟩ of the quantum

electrodynamical (QED) longitudinal-electric-field operator at the lattice site n={RCN , φn, zn},
to result in [26]

E2
z (n) =

h̄L

2π2c2RCN

∑
k=kφ,kz

fex(k, T )

∫ ∞

0
dω ω3Re

1

σzz(k, ω)

[
N(k, ω)+

1

2

]
. (1)

Here, N(k, ω) = (4πc/L)I(k, ω) is the number of plasmons generated by excitons with the
momentum k = {kφ, kz} of the 1st Brillouin zone on the surface of the tubule of length L
[circumferential confinement of the system results in kφ being quantized to represent electron (e)
and hole (h) subbands, while kz remains continuous to characterize the longitudinal motion of the
exciton with the effective mass Mex(kφ) = me(kφ) +mh(kφ)], I(k, ω) = |C(k, ω, t→∞)|2 is the
exciton emission intensity distribution written in terms of the probability amplitude C(k, ω, t)
to generate plasmons, and fex(k, T ) = exp[−h̄2k2z/2Mex(kφ)kBT ]/Qex is the exciton momentum
distribution function with the partition function Qex(T ) =

∑
k exp[−h̄2k2z/2Mex(kφ)kBT ].

Equation (1) tells us that in order to produce strong local mean-square fields and related
stronger optical absorption by excitons, the exciton emission resonance must overlap with the
neighboring plasmon resonance. In other words, in terms of Fig. 1 (top left), the resonance of
Reσzz(ω) at ω∼E11 [yielding the peak of N(k, ω∼E11) = (4πc/L)I(k, ω∼E11) in Eq. (1)] must
overlap with the resonance of Re[1/σzz(ω)] at ω∼P11. We see in Fig. 2 (bottom) that this can
be achieved by carefully tuning the exciton excitation energy and the nearest interband plasmon
energy by means of the QCSE. Increasing the perpendicular electrostatic field brings E11 and
P11 closer together, pushing the coupled exciton-plasmon system into the strong coupling regime
where all of the optically excited excitons decay non-radiatively to generate interband (same-
band) plasmons. This yields the peak optical absorption [Fig. 3 (top and middle right)] due
to the efficient exciton-plasmon generation associated with the strong local mean-square fields
induced by plasmons throughout the CN surface [Fig. 3 (bottom right)]. As the temperature
grows, higher momenta excitons start contributing to the process, lowering the field necessary
to achieve the strong coupling regime [blue contrast in Fig. 2 (bottom)].

3. Hybrid metallic carbon nanotube systems
In hybrid CN systems consisting of a metallic nanotube and extrinsic atomic type dopants, such
as semiconductor quantum dots [14, 15], extrinsic atoms or ions [16, 17], the long-range EM
interaction between the CN and the dopants [modeled by electronic two-level systems (TLS)]
is theoretically demonstrated to enter the strong coupling regime as the TLS–CN distance
decreases [30]. In the strong coupling regime, the two TLSs, that are properly positioned
relative to each other and are close enough to the CN surface, can be significantly entangled
even if they are a few tens of Angstroms apart [31]. This bipartite entanglement is due to the
strong coupling of each individual TLS to the same surface plasmon resonance of the metallic
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Figure 4. Calculations of the experimental 2D photon-echo signal for hybrid (atomically doped)
metallic CN systems. Top: Schematic of the optical 2D photon-echo spectroscopy experiment for
the detection of the bipartite entanglement between the two spatially separated dipole emitters
A and B, which may be a pair of atoms, ions, or quantum dots, coupled to the same surface
plasmon resonance mode of a metallic CN (sketch shown in the inset). Bottom: 2D optical
photon-echo signals calculated in the cases where the bipartite entanglement is absent from (left
graph), or present in (right graph) the system. The presence of the cross-peaks on the right
panel indicates that the distant dipole emitters are coupled to the same CN surface plasmon
resonance and ”talk to each other” via the virtual plasmon exchange, being entangled.

CN [see an example in Fig. 1 (top right)]. The coupling is mathematically represented by the
strong, sharply peaked, isolated resonance of the local density of photonic states (DOS) typical
for metallic, and not for semiconducting, nanotubes (cf. left and right panels in Fig. 1).

Entanglement is a measure of strong quantum correlations (coherences) between quantum
objects, which make the wave function of the correlated pair unseparable. To detect the
entanglement by optical means, a spectroscopic technique is needed that would allow one to
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directly monitor coherences. 2D optical photon-echo spectroscopy has such a potential [32, 33].
To probe our system by means of the 2D optical spectroscopy, we have to consider its interaction
with three laser pulses all polarized along the CN axis. It is this laser polarization that is
needed to excite the two-level atomic dipole transition in order to couple it to the (same-energy)
longitudinally polarized surface EM mode (the plasmon) of the CN. The three laser pulses will
excite the TLSs and not the CN, since in metallic nanotubes there are no excitons in the optical
spectral range (cf. top left and right panels in Fig. 1). Therefore, for the reasons discussed in
Sec. 2 above, no optical laser excitation is possible of metallic CNs by the pulses in question.

Once one of the TLSs is laser-excited, it starts exchanging virtual surface plasmon excitations
with its companion a distance away. This will make the spatially separated TLSs entangled
(bipartite entanglement) through the coupling of each individual companion to a common
coherent interaction energy exchange channel (the CN interband plasmon mode). To make
this channel really coherent is not an easy, but doable, task. Indeed, if the TLS transition
energy does not originally match the CN photonic DOS resonance [Fig. 1 (bottom right)], then
it could still be possible to tune them up by using the QCSE. This narrows the metallic CN first
excited band gap [34], shifting the photonic DOS resonance (the interaction energy exchange
channel) to the red. At the same time, this leaves the TLS transition energies virtually unaffected
(at least to the first order in the perpendicular electrostatic field applied), as they are selected
to be excited by the laser field polarized along the CN axis and obey the selection rules that
are different from those the perpendicular electrostatic field interaction follows. Thus, if the
experiment is properly set up, the 2D photon-echo signal allows one to control and monitor the
net response and the degree of the entanglement of the TLS dopants in the hybrid CN system.

In 2D photon-echo spectroscopy [32, 33], one is interested in the third-order non-linear
polarization due to three external laser pulses, P3P (τ, T, t), which obeys the phase-matching
condition k3P = −k1 + k2 + k3 [see the schematic in Fig. 4 (top)]. The response signal of the
system is then given by the double Fourier transform of the third order polarization

I(ωτ , ωt, T ) = i

∫ ∞

−∞
dτdt exp (−iτωτ + itωt)P3P (τ, T, t). (2)

Figure 4 (bottom) shows the 2D spectra for the (9,0) metallic nanotube with the pair of
TLSs coupled to its low-energy plasmon resonance (sketch on the top of Fig. 4). The data are
obtained using Eq. (2) and the methods of P3P calculations developed in Ref. [35]. The left
graph and the right graph show the spectra for the weak coupling and strong coupling regimes,
respectively, with identical TLS–CN coupling constants for both TLSs and no relaxation. (The
theory and more details on these calculations will be published elsewhere [36].) The presence of
the cross-peaks along with the absence of the pronounced central peak in the 2D spectra are the
signatures of the quantum entanglement in the hybrid CN system. The time evolution of the
cross-peak intensities allows one to further monitor the entanglement dynamics in the system
in the real time scale, thus demonstrating the superior diagnostic power of 2D photon-echo
spectroscopy as applied to the phenomena discussed.

4. Conclusion
We consider two examples of how low-energy collective interband plasmon excitations in
individual CNs can be used to tune their optical properties. For pristine semiconducting
nanotubes, we show that the nonradiative exciton-to-plasmon energy transfer, whereby the
external EM radiation absorbed to excite excitons transfers into the energy of surface plasmons,
can efficiently mediate and greatly enhance the EM absorption. This enhancement is caused
by the buildup of the macroscopic population numbers of coherent localized surface plasmons
producing high-intensity local oscillating fields throughout the CN surface. The entire process
can be controlled by means of the QCSE. Strong local coherent fields produced in this way can
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be used in various new technological applications of individual CNs, such as near-field sensing,
optical switching, electromagnetic energy conversion, and materials nanoscale modification.

For hybrid metallic CN systems, we show that 2D photon-echo spectroscopy is a very sensitive
tool for detecting the quantum entanglement of a pair of spatially separated, properly positioned
dopant TLSs due to their coupling to the same surface plasmon resonance of a metallic CN.
This bipartite entanglement can be identified through the presence of cross-peaks in the 2D
photon-echo spectra.
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