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Dynamic Analysis of a Natural Convection Loop for

Known Heat Flux

Tobias Hummela, Arturo Pacheco-Vegab1

aDepartment of Mechanical Engineering, Technische Universität München, Boltzmannstraße
15 85748 Garching, Germany
bDepartment of Mechanical Engineering, California State University, Los Angeles, Los
Angeles, CA 90032, USA

E-mail: apacheco@calstatela.edu

Abstract. In the present study we use Karhunen-Loève (KL) expansions to model the
dynamic behavior of a single-phase natural convection loop. The loop is filled with an
incompressible fluid that exchanges heat through the walls of its toroidal shape. Influx and
efflux of energy take place at different parts of the loop. The focus here is a sinusoidal
variation of the heat flux exchanged with the environment for three different scenarios; i.e.,
stable, limit cycles and chaos. For the analysis, one-dimensional models, in which the tilt
angle and the amplitude of the heat flux are used as parameters, were first developed under
suitable assumptions and then solved numerically to generate the data from which the KL-based
models could be constructed. The method of snapshots, along with a Galerkin projection, was
then used to find the basis functions and corresponding constants of each expansion, thus
producing the optimal representation of the system. Results from this study indicate that the
dimension of the KL-based dynamical system depends on the linear stability of the steady
states; the number of basis functions necessary to describe the system increases with increased
complexity of the system operation. When compared to typical dynamical systems based on
Fourier expansions the KL-based models are, in general, more compact and equally accurate in
the dynamic description of the natural convection loop.

1. Introduction

Natural convection loops are important devices used in several engineering applications, among
which geothermal energy, solar collectors, energy storage, computer and nuclear reactor cooling,
are representative examples [1, 2]. In these thermal systems, the fluid is subjected to heat
extraction in certain regions and heat addition in others. The accompanied density gradients
generate buoyancy forces, which initiate and sustain a naturally driven flow, transporting
thermal energy by convection without the need of external pumping devices. Understanding
these systems’ time-dependent behavior is important for performance prediction and control.
Therefore, toroidal and rectangular loops have been studied both experimentally [3]–[5], and
numerically [6]–[8]. From the numerical perspective, both two- and three-dimensional time-
dependent models have been developed [9, 10]; however, one-dimensional versions have been
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particularly useful to understand the occurrence of chaos in these systems.
The usual approach to the analysis of natural convection loops, since first proposed by

Malkus [11], has been the use of Fourier series expansions to transform the governing partial
differential equations (PDEs) into a system of ordinary differential equations (ODEs). Though
this methodology grants analytical treatment of the governing equations, depending on the type
of boundary conditions, the set of ODEs might not always be decoupled [8]. The resulting
infinite number of equations complicates their dynamic analysis and hence their control. It may
be, therefore, advantageous to apply alternative techniques that may provide accurate models
through a finite set of equations.

Karhunen-Loève (KL) decomposition [12, 13], known under different names in other fields [14],
is a linear technique that systematically constructs compact models from either experimental
or numerical data. The general idea is to extract orthogonal basis functions from an ensemble
of given data that contain all the information of the system. These basis functions, with their
corresponding constants, represent the characteristics of the system from which the collection
was obtained in a mathematically-optimal manner. The technique has been used extensively to
build low-order models in turbulence [15], thermal process design [16], and system identification
and control [17, 18], among other areas. Preliminary application of the method to the toroidal
loop with known wall-temperature condition has been recently reported by Pacheco-Vega and
Villarreal-Fonz [19].

In this work we expand the application of the KL technique by developing accurate and
compact dynamical models of a thermal convection loop for the case of a known heat flux
boundary condition. To this end, the thermal loop is described first. The non-dimensional
version of the governing equations, which have previously been studied via Fourier expansions
[8], are then provided. A general description of the KL methodology is presented next, followed
by numerical solutions of the foregoing equations that will serve as the basis for the development
of the dynamical models. Finally, the KL approach, along with a Galerkin projection, is used
to build the low-order representations of the thermal loop. The results show that the models
developed this way are accurate and, once built, require little CPU time to generate the dynamic
performance of the system.

2. Problem Description

The natural circulation loop considered here is depicted in Fig. 1. The loop has a toroidal shape
with radius R, built out of tubing of diameter d, filled with an incompressible fluid. The torus
can be tilted by an angle α with respect to the horizontal plane, as illustrated in the figure, with
one part of it being heated while the other is being cooled. A dotted line serves as reference for
the inclination angle and divides the heating (π ≤ θ < 2π) and cooling (0 ≤ θ < π) regions;
θ is the angular coordinate. In a gravitational field, temperature differences within the fluid
generate buoyancy forces that set the fluid in motion, transferring heat by convection from the
heated section to the cooled one.

In this study, the modeling approach is based on one-dimensional versions of the momentum
and energy equations that have been extensively used in the past [6]–[8]. In these, both the fluid
velocity u∗, and the temperature T ∗, are averaged over the cross-section, so that u∗ = u∗(t∗) and
T ∗ = T ∗(t∗, θ), with t∗ being time. The symbol (∗) indicates dimensional quantities. By using
the Boussinesq approximation for the buoyancy term, and neglecting axial conduction within
the fluid, the integral of the momentum equation over the loop and the energy equation are
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Figure 1. Schematic of a toroidal thermal loop.

given [8] as

du∗

dt∗
+

4kf
ρ0d

u∗ =
βg

2π

∫ 2π

0

T ∗ cos(θ + α)dθ, (1)

∂T ∗

∂t∗
+

u∗

R

∂T ∗

∂θ
=

4q∗

πd2ρ0cp
, (2)

where ρ0, β, and cp are the fluid density, thermal expansion coefficient, and specific heat,
respectively; g is the gravity constant, kf is the proportionality constant in the assumed linear
relationship between shear stress and mean velocity, and q∗ is the externally prescribed heat
rate per unit length of the loop. The above equations can be solved for u∗ and T ∗ after q∗ is
established. Different conditions for q∗ may be used [8]. For the present work, we focus on a
known heat flux given by q∗ = −q̂ sin θ, where q̂ is the heat amplitude.

Normalization of the Eqs. (1) and (2) can be done by defining

u =
4kfR

ρ0d
u∗; t =

ρ0d

4kf
t∗; T =

ρ20d
2βg

32k2fR
(T ∗ − T ∗

0 ); QD =
ρ20dβg

32πcpk3fR
q∗, (3)

where T ∗
0 is a reference temperature. The resulting non-dimensional version of the governing

equations are

du

dt
+ u =

1

π

∫ 2π

0

T cos(θ + α)dθ, (4)

∂T

∂t
+ u

∂T

∂θ
= QD, (5)

where

QD = −Q sin θ, with Q =
ρ20dβg

32πcpk3fR
q̂. (6)

In Eq. (6), Q is a non-dimensional heat flux. It is to be noted that Pacheco-Vega et al. [8] have
studied the thermal loop for the known heat flux, and other conditions, using Fourier series
expansions.
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3. Karhunen-Loève Expansion Technique

Mathematical details of the technique can be found in the literature, e.g., [14, 15, 17, 18]. Thus,
only a brief discussion is provided next. Given a set of data, either from experiments or numerical
simulations, being represented by functions U(x) = {vk(x)}

K
k=1

, in a specific domain DΩ, the
main idea of the KL method is to generate an “optimum” set of orthonormal basis functions
Φ = {φm} for m = 1, ...,M, for the space spanned by the given set. For each element of U , this
is given as

vk(x) =

M∑

m=1

akmφm(x), k = 1, ...,K, (7)

where K is the number of observations, M the number of terms in the expansion, and x is usually
a set of spatial variables. Further it is assumed that U belongs to a linear infinite-dimensional
Hilbert space L2([0, 1]), with the inner product (·, ·) and the norm || · ||.

Based on the procedure outlined by [17, 18], the first step in the KL methodology is to obtain
a new set of functions wk = vk − U for k = 1, 2, ...,K, locally referenced to the average of the
sequence U = 〈U〉 = 1

K

∑
K

k=1
vk(x). Using this set, we then seek functions φm that maximize

〈(wk, φm)2〉 under the restriction (φm, φm) = ||φm||2 = 1. This optimization problem leads to
the following eigenvalue problem [15]

R φm = λmφm, m = 1, ...,M, (8)

where R is the two-point spatial correlation function (covariance matrix in the discrete case)
defined as

R(x, x′) =
〈
wk(x)wk(x

′)
〉
. (9)

In Eq. (8), φm(x) correspond to the eigenfunctions (or eigenvectors), also known as KL modes

or empirical eigenfunctions, of Eq. (9), and λm are the eigenvalues, which are all real and
positive. It is important to note that them-th eigenvalue represents the average energy (captured
information) of the m-th eigenfunction.

Two equivalent methodologies, the so-called direct method proposed by Lumley [20] in the
context of turbulence, and the method of snapshots of Sirovich [21] can be used to determine
the empirical eigenfunctions φm of Eq. (7). Because of its efficiency in handling large number
of data, here we have used the latter technique.

In the method of snapshots, the eigenfunctions can be written as the linear combination

φm =
K∑

k=1

bmk wk(x), m = 1, · · · ,M, (10)

where wk(x) is the averaged ensemble of data, and the coefficients bmk are such that the set
Φ = {φm}Mm=1, will resemble the set V = {wk(x)}

K
k=1

. When wk is defined at N spatial points
xn, for n = 1, ...,N , then wk(xn) ≡ vk, and the eigenvalue problem defined in Eq. (8), can be
written in vector-matrix form as

CVm = λmVm, (11)

where the elements of the covariance matrix C, of size K ×K, are given by

Ckl =
1

K

∫

DΩ

wk(x
′)wl(x

′)dx′, (12)

= vT
k vl, (13)

for k, l = 1, · · · ,K, and Vm = [bm1 , bm2 , · · · , bm
K
]T is the m-th eigenvector. It is important to

state that v 6≡ V. A decreasing arrangement of the eigenvalues λ1 > λ2 > ... > λm > ... > λK
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indicates a direct relationship between magnitude of the eigenvalue and information carried by
the respective eigenvalue. Hence, the interest is on the firstM eigenvalues based on the following
energy criterion ∑

M

m=1
λm∑

K

k=1
λk

> p, (14)

where the value of p is specified by the user based on the desired accuracy of the reconstruction.
Once the eigenfunctions φm in Eq. (7) are determined, the corresponding coefficients, akm, can
be found using the well-known Galerkin method of weighted residuals [22].

4. Numerical Solution and Snapshots

The numerical data that will be used to generate the KL basis functions of the dynamical models,
come from the solution of Eqs. (4) and (5), along with the boundary condition (6), via the method
of finite differences under specific values of the parameters. However, the steady-state versions
of the equations are solved analytically before the dynamical solution is numerically determined.
The corresponding steady state solutions for u and T are

u = ±
√
Q cosα; T = ±

√
Q

cosα
cos θ, (15)

where the ± sign in u indicates the two possible directions of the flow: counterclockwise (+) or
clockwise (−).
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Figure 2. Steady-state velocity and temperature profiles for different values of Q. (−+−) 0.1;
(− ∗ −) 0.5; (− ◦ −) 1; (−♦−) 5; (− · −) 10.

The steady-state velocities, found analytically, are shown in Fig. 2(a) as functions of α and
Q. In agreement with Pacheco-Vega et al. [8], we have found that these exist if the tilt position
of the loop is −90◦ ≤ α ≤ 90◦, where a distinct magnitude of each direction occurring for a
specific tilt position of the loop. The maximum velocity occurs at zero tilt whereas the minimum
(theoretically zero) is at α = 90◦. Intuitively expected, the foregoing behavior holds true for
all magnitudes of prescribed heat rates, with increased magnitudes caused at higher Q-values.
On the other hand, the steady-state value of the fluid temperature depends on its location on
the loop, as shown in Fig. 2(b) for α = 45◦. The maximum and minimum values of T occur,
respectively, at θ = 0◦ (where the flow leaves the heating and enters the cooling region) and
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at θ = 180◦ (where the flow leaves the cooling and enters the heating region). The larger
the magnitude of the heat rate, the larger the temperature difference between minimum and
maximum values. The value of the tilt angle α has also an enhancing effect for both u and T .
The larger tilt angle, the larger temperature differences in the fluid. It is important to point
out that the case of a clockwise flow direction, the temperature distribution behaves exactly
in an opposite fashion, where the maximum and minimum temperatures occur at the opposite
location on the natural convection loop, because the of the reverse flow.
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Figure 3. Stability curve and numerical solutions for u(t).

In order to determine the time dependent solutions of the governing PDEs we use an explicit
finite differences scheme to integrate the temporal direction, whereas backward differences are
chosen for the space discretization. The discretized form of Eqs. (4)–(6) is given by

uk+1
i =

1

1 +∆t


uki +

∆t

π

N∑

j=1

T k
j cos(θj + α)∆θ


 , (16)

T k+1
i = T k

i +
∆t

∆θ
uk+1
i (T k

i−1 − T k
i )−

Q∆t

π
sin θi. (17)
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The foregoing equations are coupled through the velocity term uk+1
i , where the indices i =

1, 2, ..., N and k = 1, 2, ...,M indicate the spatial and temporal direction, respectively. The
solution steps to this set has been outlined in Hummel [23]; the coding was implemented in
MATLAB. The solutions have been obtained for several values of the parameters Q and α. A
typical grid-size of π/300 was used in the space dimension, whereas the time integration was
carried out from t = 0 to steady-state, with time increments of ∆t = 0.001 s.

The ensemble of numerical solutions T (t, θ) (also called snapshots), were determined for
different combinations of (α,Q). As noted by c.f. [8], the behavior of the thermal loop changes
its character based on α and Q; i.e. for certain values these parameters, the system will be
linearly stable or unstable. A linear stability analysis of Eqs. (4) and (5) provides these regions
in the parameter space as illustrated in Fig. 3(a). Also shown in the figure is the neutral stability
curve. As observed, for certain combinations of (α,Q) the loop is stable, whereas for others it
is unstable, giving rise to either a sink, limit cycles or chaos.
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Figure 4. KL modes α = 45◦; Q = 0.4.
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Figure 5. φ1, φ2 for α = 45◦; Q = 0.4.

5. Model Reduction

Once the snapshots are built we apply the KL expansion to construct the dynamical models.
To this end, a criterion for p is set as 99% of the possible information about the system, i.e., the
energy, captured by the empirical eigenfunctions.

5.1. Stable Conditions

For α = 45◦ and Q = 0.4 the flow is stable. For this condition, Fig. 4 shows the distribution
of the KL modes obtained from the eigenvalue problem given by Eq. (11). As observed, for
this case the first two eigenvalues have captured 99% of the information; hence requiring only
the corresponding first two empirical eigenfunctions φ1 and φ2 to accurately characterize the
dynamical behavior of the loop. As expected the basis functions are sinusoidal in shape as shown
in Fig. 5. The subsequent basis functions φ3, φ4...φK quickly loose their distinct sinusoidal
character and approach a constant zero value, revealing that they do not carry any significant
information.

After the Galerkin projection has been applied to find the constants akm in Eq. (7)
qualitative comparison between the numerical solutions, given as surfaces T (t, θ), and the KL
approximations is shown in Fig. 6. Quantitatively, the percentage error between the solutions
shown in Figs. 6(a) and 6(c) is actually less than 10−10. The CPU time required to compute the
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(a) Numerical solution. (b) M = 1. (c) M = 2.

Figure 6. Numerical vs. KL solutions. α = 45◦; Q = 0.4.

solutions with the KL expansion model, using MATLAB as the computer language, is of only
one second, and the finite difference integrations take more than five minutes.

5.2. Limit Cycles

For α = 60◦ and Q = 6.3, which reflects the performance of the loop in the region near the
neutral stability curve in Fig. 3(a), the dynamic condition give rise to limit cycles. This dynamic
condition is characterized as a combination of stable and chaotic dynamics, where the system
converges to an evenly oscillating, repetitive pattern around the steady state. The velocity
pattern is shown in Fig. 3(c). Similar to the stable case, only the first two eigenvalues provide
99% of the system’s information when expanded through the corresponding eigenfunctions,
leaving the remaining eigenfunctions needless.

(a) Numerical solution. (b) M = 1. (c) M = 2.

Figure 7. Numerical vs. KL solutions. α = 60◦; Q = 6.3.

For qualitative comparison, Fig. 7 provides the temperature surfaces T (t, θ) of the numerical
solution and the KL reconstructions. The powerful nature of the technique is shown by the
percentage error between the numerical and the KL solutions shown in Figs. 7(a) and 7(c),
which is less than 10−10, as well as by the CPU time required to compute the solutions being
at only two seconds, whereas the finite difference calculations last more than ten minutes.

5.3. Chaos

For α = 45◦ and Q = 6.3, which is an operation point relatively far above the neutral
stability curve of Fig. 3(a), the loop achieves chaotic behavior. A characteristic of this dynamic
condition, shown in Fig. 3(d), is a complex, unorganized, and strongly fluctuating behavior of
the fluid velocity and temperature distribution, without any convergence or repetitive pattern
be recognizable. The complex nature of these dynamics requires 33 eigenvalues to provide 99%
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of capturing energy. Hence, 33 empirical eigenfunctions are needed in the expansion (7) to
transmit all required information for an accurate reconstruction of the dynamic model via KL
expansions.

(a) Numerical solution. (b) M = 1. (c) M = 33.

Figure 8. Numerical vs. KL solutions. α = 45◦; Q = 6.3.

The temperature surfaces of a natural convection loop in chaos dynamical conditions are
shown in Fig. 8. The numerical- and KL-solutions (with 99% capturing energy), which are shown
in Figs. 8(a) and 8(c), are quasi identical –as expected. Fig. 8(b) gives an interesting insight on
the effects if only a subset of the significant information; i.e., less than M = 33 eigenfunctions
were used for the KL expansions. The resulting dynamical model is then incomplete, and does
not represent the behavior of the original system. The percentage error between the numerical
and the KL solutions is less than 10−5. The CPU time required to compute the full KL solutions
is at one second, whereas the finite difference integrations require more than twelve minutes.

Although not explicitly illustrated here for purposes of compactness, comparison between
the KL-expansion-based models and the dynamical system obtained by Pacheco-Vega et al. [8]
via Fourier expansions, are shown to be equally accurate. Using the definition of p in Eq. (14),
for the stable and limit-cycle conditions the number of eigenfunctions in the two expansion
models needed to capture at least 99% of the system information is two. For the case of chaotic
conditions, the KL expansion model requires 33 eigenfunctions whereas 40 are needed by the
Fourier-based model.

6. Concluding Remarks

Natural convection loops are important in numerous practical applications, where omission of
external pumping devices to sustain a fluid flow to transfer thermal energy may be necessary. In
this work we have used Karhunen-Loève (KL) expansions to develop low-order dynamic models
of these systems. The main advantage offered by the KL technique is that the models constructed
are ‘optimal’ in the least squares sense; so that, for a given level of accuracy, no better model
can be found.

Results for different parameter values, for three stability conditions, have shown that the
convection loop models built this way provide excellent accuracy with respect to the numerical
solutions from which they were derived, but require of only a few seconds of CPU time. For a
given level of accuracy, the number of eigenfunctions required to capture the dynamic behavior
of the loop increases with its complexity; stable versus chaotic conditions, e.g. only two empirical
eigenfunctions were required for stable conditions of the loop whereas 33 basis functions were to
be used in chaotic conditions. When compared to typical dynamical systems based on Fourier
expansions the KL-based models are, in general, more compact and equally accurate in the
dynamic description of the natural convection loop.
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