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SUMMARY
Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in
lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both
short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in
parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority
of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state.
By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between
tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated,
giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are
coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles.
Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex
metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.
INTRODUCTION

Regulation and coordination of lipid metabolism at the whole-

body level and around the diurnal cycle is of paramount impor-

tance for metabolic health. This regulation serves to modulate

tissue-specific processes in response to changing physiological

states that, during the day, alternate between periods of ample

food intake and intermittent fasting. Dysregulation of diurnal cy-

cles is linked to metabolic diseases, such as obesity, hyperlipid-

emia, fatty liver, and type 2 diabetes (Panda, 2019; Saran et al.,

2020). Despite the enormous medical relevance and societal

impact of these conditions, the spatiotemporal regulation of lipid

metabolism is not well understood at the molecular level. Quan-

titative lipid metabolic profiling within tissues and characteriza-

tion of molecular crosstalk between organs are central to better

understanding of the mechanisms controlling whole-body

homeostasis.

More than a century of research has uncovered the general

concepts underlying regulation of whole-body lipid metabolism

across fasting-feeding cycles. A prominent metabolic hallmark

of fasting is the cycling of non-esterified fatty acids (NEFAs)
This is an open access article und
and triacylglycerols (TAGs) between adipose tissue and the liver

(Reshef et al., 2003). This process results from increased lipol-

ysis of TAGs in adipose tissue and release of NEFAs into the cir-

culation. In the liver, NEFAs can be used for energy production

and synthesis of TAGs, which become incorporated into very

low-density lipoprotein (VLDL) particles and secreted for trans-

port back to adipose tissue. Here, TAGs are again hydrolyzed,

and NEFAs are taken up and esterified into TAGs. The impor-

tance of the TAG-NEFA cycle is exemplified by the treatment

of type 2 diabetes with thiazolidinediones, which attenuates

this process by increasing the TAG storage capacity of adipo-

cytes, thereby reducing the NEFA release and ameliorating

hyperlipidemia and insulin resistance (Soccio et al., 2014). Dur-

ing feeding and the subsequent postprandial state, prominent

metabolic hallmarks, mediated by fast-acting insulin signaling,

are attenuation of lipolysis in adipose tissue (Frayn, 2002) and

increased de novo lipogenesis in hepatocytes and adipocytes

(Wallace and Metallo, 2020). Moreover, dietary fats are incorpo-

rated into chylomicrons, which are transported from the intestine

via the lymph and circulation to adipose tissue for storage as

TAGs (Bickerton et al., 2007). Overall, these metabolic states
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highlight the importance of diurnal regulation of lipid transport

between metabolically linked organs, and specifically, that this

crosstalk is coupled to dynamic changes in lipid molecular sig-

natures in the circulation. Precise time-resolved analysis of the

blood plasma lipidome and exact knowledge of individual lipid

metabolic trajectories between tissues can therefore serve as a

diagnostic window into the metabolic fitness of an entire system

of organs.

More recently, diurnal regulation of lipid metabolism has also

been ascribed to longer-timescale cell-autonomous circadian

clocks that produce a 24-h self-sustained rhythmic transcription

of target genes (Reddy and O’Neill, 2010). Some evidence exists

that this mode of regulation results in ~15% of lipids undergoing

sinusoid-like changes in mouse and human plasma, liver, and

skeletal muscle (Adamovich et al., 2014; Chua et al., 2013; Dall-

mann et al., 2012; Eckel-Mahan et al., 2013; Held et al., 2020; Ish-

erwood et al., 2017; Loizides-Mangold et al., 2017; Minami et al.,

2009). These studies have, however, been focused on capturing

oscillations over longer time frames, using regular 3- to 4-h interval

sampling, and responses over shorter timescales related to short-

acting fasting-feeding transitions might have inadvertently been

missed. Furthermore, due to technical limitations, these studies

report moderate lipidome coverage where lipids are identified at

the so-called species-level (e.g., PC 34:2), instead of reporting

at themolecular species-level by identifying the composition of in-

dividual fatty acyl (FA) chains (e.g., PC 16:0–18:2, PC 16:1–18:1)

(Liebisch et al., 2013). Adding this deeper layer of lipid structural

information provides a considerable mechanistic depth to our un-

derstanding of metabolic trajectories of individual lipid molecules

and their crosstalk between tissues.

Here, we examined diurnal oscillations in the mouse liver and

plasma lipidomes, as well as the liver proteome, using a frame-

work that in parallel captures responses to short-acting fast-

ing-feeding transitions and longer-timescale circadian rhythms.

Our data reveal that 50%, 79%, and 20% of the liver lipidome,

plasma lipidome, and liver proteome, respectively, display

diurnal oscillations, and that 66% of the liver lipidome oscilla-

tions are governed by adaptation to food intake. Beyond these

unexpected global patterns, we also uncover a distinct mode

of diurnal crosstalk where hepatic production of PC by methyl-

ation of PE gives rise to two pools of oscillating PC molecules

in the circulation: 22:6-containing PCs that are produced by

the methyltransferase Pemt and are coupled to VLDL secretion,

and 18:2-containing PCs that are likely produced by an unknown

methyltransferase and are coupled to production of HDL
Figure 1. Diurnal oscillations in the mouse liver lipidome
(A) Schematic of the experimental framework and lipidomics workflow. Mice were

samples were collected at the indicated zeitgeber time (ZT) points (indicated b

collected every hour (indicated by red triangles). Three mice were euthanized

lipidomics.

(B) Lipidome coverage and relevant data metrics compared with data of Adamo

(C) MSALL analysis shows that oscillating PC 36:3 represents three molecular lipid

indicated number of biological replicates per time point).

(D) Number of oscillating lipids distributed according to their lipid categories.

(E) Examples of oscillating lipids that are entrained by short-acting fasting-feedin

(n = 6 biological replicates).

(F) Proportion of oscillating lipids that are entrained by fasting-feeding cycles an

See also Figure S1.
particles. Altogether, this study demonstrates the power of mo-

lecular lipid timeline profiling to identify mechanisms underlying

complex lipid metabolic processes and provides a valuable

resource for the study of diurnal regulation of whole-body lipid

metabolism and homeostasis.

RESULTS

Framework for capturing responses to fasting-feeding
transitions and circadian rhythms
To explore how lipid metabolic crosstalk between the liver and

circulation is controlled by short-acting fasting-feeding transi-

tions and longer-timescale circadian rhythms, we devised a

framework that accommodates both regular 4-h interval

sampling over two diurnal cycles (i.e., 48 h) and more frequent

sampling with 1-h intervals at the onset of feeding (Figure 1A).

Specifically, we collected samples of liver and plasma every

4 h from three individual mice during the day when mice are fast-

ing (i.e., at zeitgeber time [ZT24] = 0, 4, 8, 12 h). Moreover, during

the nocturnal period when mice are feeding, we collected sam-

ples over intervals of 1, 2, and 4 h (i.e., at ZT24 = 13, 14, 16, 20

h). This design uniquely enables time-series analysis with 16

time points and three biological replicates across two diurnal cy-

cles (i.e., 48 h), which is required to ascertain true diurnal oscilla-

tions (Hughes et al., 2017), as well as stringent statistical analysis

over eight time points with six biological replicates covering a

single diurnal period (i.e., 24 h). We note that nighttime-restricted

feeding modulates whole-body energy metabolism differently as

compared with ad libitum fed mice (Bray et al., 2013), and that

this improves metabolic health and physiological rhythms (Chaix

et al., 2019; Hatori et al., 2012). Moreover, mice on this dietary

regimen consume a bigger meal during the first 1–2 h at onset

of nighttime when food is provided (i.e., ZT24 = 12 h) and then oc-

casionally consume smaller portions for the remainder of the

nocturnal period until the food is withdrawn at onset of daytime

(Bray et al., 2013).

Extensive remodeling of the liver lipidome
To obtain a temporal depiction of the liver lipidome, we per-

formed in-depth MSALL lipidomics of the collected liver samples.

MSALL analysis is a lipidomics technology that affords high-fidel-

ity identification and accurate quantification of molecular lipid

species using high-resolution tandem mass spectrometry

(Figures 1A and S1A) (Almeida et al., 2015; Freyre et al., 2019;

Gallego et al., 2018). Overall, we quantified (i.e., pmol/mg protein)
subjected to nighttime-restricted feeding (indicated in gray). Liver and plasma

y triangles) across two diurnal cycles. At the onset of feeding, samples were

per time point. Liver and plasma samples were analyzed by in-depth MSALL

vich et al. (2014).

species, each having a unique timeline. Data represent mean ± SD (based on

g cycles and longer-timescale circadian rhythms. Data represent mean ± SD

d circadian rhythms. The grouping of lipids is based on one-sample t tests.
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1,177 lipid molecules, encompassing 33 lipid classes (Figure 1B;

Table S1). 1,006 (85%) lipid molecules were identified at the mo-

lecular species-level with individual hydrocarbon chains, and

171 (15%) lipids were identified at the species-level, with assign-

ment of the total number of C atoms, double bonds, and hydroxyl

groups in all hydrocarbon chains. This coverage exceeds that of

a recent circadian lipidomics study both in extent and molecular

detail (Adamovich et al., 2014) (Figure 1B). Specifically, our more

extensive coverage stems frommonitoringmore lipid classes, as

well as resolving numerous isomeric lipid molecules that were

previously not distinguished.

For example, the lipid PC 36:3, exhibiting the most significant

oscillations in previous data, was represented by a single time-

line and ambiguously identified as PC 18:1–18:2 or PC 16:0–

20:3 (Figure 1C). In our dataset, PC 36:3 is represented by

three distinct timelines unambiguously ascribed to the molecu-

lar lipid species PC 18:1–18:2, PC 18:0–18:3, and PC 16:0–20:3

(Figure 1C). Notably, the timelines of PC 18:0–18:3 and PC

16:0–20:3 resemble that of PC 36:3 reported previously and

are characterized by a gradual decrease during fasting at day-

time, as well as an immediate increase upon the onset of

feeding at nighttime. Unexpectedly, we found that the temporal

profile of PC 18:1–18:2 contrasts with the two other PCs, hid-

den when these distinct molecules are tracked at the species

level. Importantly, these data exemplify the deeper, more

resolved lipid structural information captured by our MSALL

technology.

Next, we examined the extent to which the liver lipidome is re-

modeled across the diurnal cycle. Given that the commonly used

JTK_CYCLE algorithm for identifying circadian rhythmicity

cannot process data with unequal time intervals like ours, we

devised an alternative statistical algorithm to identify diurnal

oscillations. First, we confirmed that lipid oscillations are truly re-

petitive and not due to random noise. To do so, we implemented

a stringent filter, which is based on the Pearson correlation coef-

ficient (r) between lipid abundances measured across the first

and the second day, and rigorous inclusion of only lipids with

an interday correlation greater than 0.66. Second, we carried

out analysis of variance (ANOVA), finding that 50% of the liver

lipidome, comprising 587 lipids, displays significant diurnal

oscillations (i.e., p < 0.05 and r > 0.66) (Figure 1B). This repre-

sents a 22-fold increase in the identification of oscillating lipids

in comparison with Adamovich et al. (2014), which, in combina-

tion with our greater lipidome coverage, improves the molecular

insight dramatically.

The 587 oscillating lipidmolecules include glycerolipids (62%),

glycerophospholipids (32%), and to lesser extents, sphingoli-

pids, sterol lipids, and FAs (Figure 1D). Inspecting the underlying

lipid classes, we found that oscillations aremost frequent among

TAG (57%), followed by phosphatidylinositol (PI) (5.8%), PC
Figure 2. Four major clusters of oscillating liver lipids

(A) Fuzzy c-means clustering of oscillating liver lipids. Number of lipids and their

(B) Hierarchical clustering of the liver lipid timeline clusters.

(C) Schematic of the LENA algorithm used for lipid structure enrichment analysis

(D) Over- and under-represented structural attributes in the timeline clusters.

(E) Representative lipid molecular timelines of cluster members. Data represent

licates.

See also Figure S2.
(5.5%), and PE (3.9%) (Figure S1B). Interestingly, we also

observed oscillation of low-abundance monomethyl-phosphati-

dylethanolamine (MMPE) and dimethyl-phosphatidylethanol-

amine (DMPE) molecules, which are intermediates in PC

synthesis via the PE methylation pathway (Figure S1C). Howev-

er, the final products, PCs with identical FA chains, do not

display similar fluctuations. Thus, the in-depth lipidome analysis

also allowed us to discern critical signatures of fluctuating meta-

bolic events underlying the homeostasis of steady-state lipid

levels.

Finally, we examined the ability of our framework to disen-

tangle responses related to fasting-feeding transitions and

longer-timescale circadian rhythms. To do so, we determined

the number of lipids for which exclusion of the time points

ZT24 = 13 and 14 h would significantly bias their actual temporal

dynamics (Figure 1E). Strikingly, this revealed that the timelines

of at least 66% of all oscillating lipids are adversely impacted if

sampling is not performed at these time points (Figure 1F).

Importantly, this also demonstrates that the dynamics of

most lipids are primarily coupled to fasting-feeding cycles.

Conversely, the remaining 34% of oscillations have temporal

profiles similar to the sinusoid-like changes associated with

circadian rhythms (Figures 1E and 1F).

Taken together, our data represent a high-quality resource of

the mouse liver lipidome with unprecedented coverage and pro-

vide unparalleledmolecular insight into the interplay between the

diurnal cycle and the regulation of lipid metabolic activities.

Importantly, our data uncover that 66% of oscillations are pri-

marily entrained by short-acting fasting-feeding transitions.

Furthermore, it demonstrates that our framework captures the

impact of metabolic regulators operating at substantially

different timescales, covering circadian rhythms and physiolog-

ical adaptations to fasting-feeding cycles.

Four clusters of oscillating liver lipids
To determine whether the oscillating lipids display commonalties

in their temporal dynamics, we carried out fuzzy c-means clus-

tering (Schwämmle and Jensen, 2018). This revealed that the

oscillating liver lipids (LLs) cluster into four major timelines:

LL1, LL2, LL3, and LL4 (Figure 2A). Specifically, LL1 lipids

show a gradual increase during daytime when mice are fasting

and rapidly decrease when mice start feeding at onset of night-

time. LL2 lipids increase during fasting, albeit with a shallower

incline comparedwith LL1 lipids, then abruptly decrease 2 h after

the onset of feeding. LL3 lipids are rapidly reduced at onset of

fasting and rapidly increase upon feeding until they plateau in

the middle of the night. Finally, LL4 lipids display a shallower

decline than LL3 lipids during fasting, then temporarily decrease

at the onset of feeding, before increasing 2 h after onset of

feeding.
average Pearson correlation coefficient are denoted in individual plots.

.

median ± 95% confidence interval for the median of five to six biological rep-
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Hierarchical clustering of these timelines further revealed that

the liver lipidome transits through three temporal periods, each

with distinct physiological traits (Figure 2B). Specifically, one

period corresponds to fasting and comprises the time points

ZT24 = 4, 8, and 12 h. This is followed by a period that reflects

the onset of feeding and comprises the time points ZT24 = 13

and 14 h and, finally, a period that signifies a postprandial-like

state and covers the timepoints ZT24 = 16, 20, and 0/24 h.Overall,

these data argue that the liver lipidome oscillations, and the activ-

ity of the underlying metabolic machinery, primarily reflect physi-

ological adaptations to fasting-feeding cycles. In turn, this gives

rise to four timelines that signify early and late stages of fasting

(i.e., LL1 and LL2 lipids, respectively), acute effects of food intake

(i.e., LL3 lipids), and a postprandial-like state (i.e., LL4 lipids).

Each lipid cluster has distinct structural hallmarks
Next, we explored the lipid molecular signatures of the timeline

clusters. Similar to Gene Ontology (GO) analysis, we carried

out enrichment analysis for lipid structural attributes. Specif-

ically, we developed an algorithm, termed LENA (i.e., lipid struc-

tural enrichment analysis), which determines the probability and

odds ratio of whether a particular lipid molecular structure is

over- or under-represented within a cluster (Figure 2C).

LENA revealed that the early fasting-related LL1 lipids are

enriched in TAGswith polyunsaturated FA (PUFA) chains, as indi-

cated by the FA attribute 18:2 and the 22:6-related backbone at-

tributes 38:7, 40:7, 40:8, and 40:9 (Figures 2D and S2). Similarly,

the late fasting-related LL2 lipids are also enriched in PUFA-con-

taining TAGs, but with 20:4, 22:3, and 22:4 chains, as well as the

20:4-related backbone attributes 40:4 and 40:5. Notably, the FA

chains enriched in LL2 can be synthesized by elongation and de-

saturation of 18:2 (i.e., linoleic acid), as well as 18:3 (i.e., linolenic

acid), possibly explaining why LL2 shows a temporal delay and

shallower incline relative to LL1 during fasting (Figure 2A).

For the food intake LL3 and postprandial-related LL4 lipids, we

found two distinct patterns of structures (Figures 2D and S2). LL3

lipids are enriched in TAGs with the saturated and monounsatu-

rated attributes 16:0, 34:1, 32:0, and 34:0, whereas LL4 lipids are

specifically enriched in the membrane lipids PI, phosphatidic

acid (PA), PC, and DMPE.

Together, these findings provide several insights into the

diurnal remodeling of the liver lipidome. Specifically, during early

fasting (i.e., LL1 lipids), where the TAG-NEFA cycle is elevated,

we find that the liver produces TAGs with a high proportion of

PUFA chains, especially 22:6 (i.e., docosahexaenoic acid) (Fig-

ures 2D and 2E). These 22:6-containing TAGs would likely be

secreted as VLDL particles for transport back to the adipose tis-

sue. With this notion in mind, it is interesting that the LL2 subset

of TAGs, with 20:4 chains (i.e., arachidonic acid), accumulate in

the liver for up to 2 h after onset of food intake, possibly related to

a temporary attenuation of VLDL production and a switch to local

storage in lipid droplets. Dysregulation of such switches could

underpin the molecular defects that lead to metabolic disorders,

such as fatty liver disease.

Our findings further show that the transition from fasting to

feeding activates at least two consecutive lipid metabolic pro-

grams. The first is initiated upon food intake (within 1 h) and trig-

gers synthesis of TAGswith saturated 16:0 andmonounsaturated
6 Cell Reports 34, 108710, February 2, 2021
FA chains (i.e., LL3 lipids) (Figures 2D and 2E). These lipid struc-

tures are hallmarks of de novo lipogenesis and suggest that after

food intake the liver absorbs dietary carbohydrates, such as

glucose, and uses these for synthesis of saturated FA chains

and glycerol-3-phosphate, which are then combined to produce

TAG. After ~2 h, another metabolic program is launched (i.e.,

LL4 lipids), reflected in synthesis of the membrane lipids PI,

DMPE, and PC via the intermediate PA (Figures 2D and 2E).

Notably, all clustered DMPE and MMPE species are members

of LL4 and LL3. Moreover, in LL4, these molecules primarily

feature an 18:2 chain, whereas in LL3, they have a 22:6 chain.

Togetherwith the dynamics of LL4 and LL3 (Figure 2A), this finding

strongly argues that the PE methylation pathway is progressively

upregulated after food intake and across the postprandial state.

Profound diurnal oscillations in the blood plasma
lipidome
To investigate the crosstalk between the liver and circulation, we

determined the temporal coupling between the liver lipidome

and correlated changes in the plasma lipidome. To do so, we

carried out MSALL lipidomics of plasma across the two diurnal

cycles (Figure 1A). We quantified (i.e., pmol/mL) 867 lipid mole-

cules, belonging to 28 different lipid classes (Figure 3A; Table

S2). 770 lipid molecules were identified at the molecular lipid

species level and 97 lipids at the species level. Notably, we found

six low-abundance DMPE species, including DMPE 16:0–18:2

and DMPE 16:0–22:6. By applying the same stringent statistical

criteria used for the liver lipidome data, we found that 683 lipids

(i.e., p < 0.05 and r > 0.66), equal to 79% of the plasma lipidome,

display significant diurnal oscillations (Figure 3A). The majority of

these oscillations are represented by glycerolipids (57%) and

glycerophospholipids (18%) (Figure 3B).

Fuzzy c-means clustering of the oscillating plasma lipids

(PLs) revealed four major timeline clusters: PL1, PL2, PL3,

and PL4 (Figure 3C). Specifically, PL1 lipids increase during

fasting, rapidly decrease upon feeding onset, then gradually in-

crease during the remainder of the nocturnal period. PL2 lipids

also increase during fasting, albeit with a shallower incline than

that of the PL1 lipids, and rapidly decrease 1 h after feeding

onset. PL3 lipids are rapidly reduced upon fasting onset, then

rapidly increase following onset of feeding until they plateau

in the middle of the night. PL4 lipids show a shallower decline

compared with PL3 lipids during fasting, then increase after

feeding onset, but with a ~1-h delay relative to PL3. Hierarchi-

cal clustering of these timelines revealed that the plasma lipi-

dome transits through the same three periods as the liver lipi-

dome (Figure 3D), arguing that oscillations in the circulation

are also governed by adaptations to fasting, feeding, and the

postprandial-like state.

Assessing lipid molecular signatures by LENA revealed that

the early fasting-related PL1 lipids are primarily NEFA, lysophos-

phatidylcholine (LPC), and lysophosphatidylethanolamine (LPE)

molecules with PUFA chains, especially 22:6 (Figures 3E and

S3). Similarly, the late fasting-related PL2 lipids are also enriched

in PUFA chains, but specifically 20:4 and 20:5, as well as choles-

teryl esters (CEs). The food intake-related PL3 lipids are enriched

in TAGs with saturated FA chains and also uniquely ether-linked

PEs (i.e., PE O-), a lipid that is arguably among the least



Figure 3. Oscillations in the plasma lipidome
(A) Plasma lipidome coverage and number of oscillating lipid molecules.

(B) Number of oscillating lipids distributed according to their lipid categories.

(C) Fuzzy c-means clustering of oscillating plasma lipids. Number of lipids and average Pearson correlation coefficient are denoted in individual plots.

(D) Hierarchical clustering of the plasma lipid timeline clusters.

(E) Over- and under-represented structural attributes in the plasma timeline clusters.

See also Figure S3.
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understood in terms of circadian relevance. Finally, the post-

prandial-related PL4 lipids are enriched in TAGs and DAGs

with 18:2 and 18:3 chains.

Together with the molecular signatures and similar dynamics

of the liver timeline clusters (Figures 2A and 3C), these data sug-

gest three modes of diurnal crosstalk among the liver, the circu-

lation, and the intestine. First, the synchronous fasting-specific

increase of 22:6-containing lipids in plasma PL1 and liver LL1

are due to activation of the TAG-NEFA cycle between adipose

tissue and the liver. Second, the parallel food intake-specific in-

crease in saturated and monounsaturated TAGs in plasma PL3

and liver LL3 results from de novo lipogenesis and secretion

from the liver. Third, the parallel postprandial-specific increase

in 18:2- and 18:3-containing TAGs in plasma PL4 andmembrane

lipids in liver LL4 is partly due to influx of dietary fat as intestinal-

derived chylomicrons coupled to an efflux of membrane lipids
from the liver, possibly to aid the turnover of the incoming chylo-

microns. The fact that dietary fat contains high levels of 18:2 and

18:3 (Marcher et al., 2015) supports this notion. Further, there is a

3- to 4-h delay until chylomicrons reach the circulation (Bickerton

et al., 2007), matching the timing of the increase in the postpran-

dial-related PL4 lipids (Figure 3C).

Lipid metabolic crosstalk between the liver and
circulation
To disentangle the molecular crosstalk between the liver and

circulation, we used our lipidomics data to determine direct

lipid metabolic couplings, defined as tight temporal correlation (r

> 0.66) between identical lipid molecules or lipids with identical

backbones in the liver andcirculation (Figure4A).Overall,we found

that 169 lipids in the liver are directly coupled to an equivalent lipid

in the circulation (Figure 4B). Among the threemost tightly coupled
Cell Reports 34, 108710, February 2, 2021 7



Figure 4. Diurnal regulation of lipid metabolic crosstalk between the liver and circulation

(A) Schematic of direct lipid metabolic couplings; defined as identical lipid molecules (black arrows) or lipid molecules with identical backbones (gray arrows) that

are present in both liver and plasma and have a Pearson correlation coefficient (r) greater than 0.66.

(B) Number of lipids in LL1, LL2, LL3, and LL4 with a direct lipid metabolic coupling in the circulation.

(C) Sankey diagrams showing relationship between structural attributes from lipid classes and FA chains for coupled lipids in LL1, LL2, LL3, and LL4.

(D) Timelines of coupled LL1, LL2, LL3, and LL4 lipids in liver (blue) and counterparts in plasma (red).

See also Figure S4.
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lipids, we found the putative Pemt-product DMPE 16:0–18:2 (r =

0.98), PI 18:0–18:2 (r = 0.96), and PE 16:0–18:1 (r = 0.94)

(Figure S4A). Further analysis showed that 56, 9, 48, and 56 are

lipids in LL1, LL2, LL3, and LL4, respectively (Figure 4B).

By examining structural attributes, we found that the coupled

LL1 lipids feature a high proportion of 22:6- and other PUFA-con-

taining TAGs and DAGs, as well as NEFA 22:6 itself (Figures 4A
8 Cell Reports 34, 108710, February 2, 2021
and 4C). Coupled LL2 lipids primarily include 20:4-containing

TAGs and in cluster LL3 TAGs with 14:0, 16:0, 16:1, 18:0, and

18:1 chains. Notably, coupled LL4 lipids exclusively involve the

membrane lipids PE, DMPE, PC, and PI. By inspecting the time-

lines of the coupled lipids, we unexpectedly found that the in-

crease in the food-intake-related PLs are delayed by ~1 h relative

to their LL3 counterparts in the liver, specifically after onset of



Resource
ll

OPEN ACCESS
feeding (Figure 4D). In contrast, the timelines of coupled post-

prandial-related LL4 membrane lipids show no delay between

the liver and plasma during the feeding period. For the early fast-

ing LL1 lipids, there was a ~4-h delay relative to counterparts in

plasma, specifically during fasting. Finally, coupled late fasting

LL2 lipids and plasma counterparts uniquely accumulate in the

liver and circulation for up to 2 h after onset of feeding.

Together, this analysis shows that the early fasting-specific in-

crease of 22:6-containing TAGs in the liver and the plasma are

indeed due to the concurrent increase of NEFA 22:6 in the circu-

lation. Here, NEFA 22:6 is taken up by the liver, incorporated into

TAGs, shown by the ~4-h delay, and secreted into the circulation

as VLDL particles for return to adipose tissue. Notably, this tis-

sue-specific 22:6 crosstalk is an unexplored hallmark of the

TAG-NEFA cycle. Furthermore, our analysis also supports the

hypothesis that the food intake-specific increase of saturated

and monounsaturated TAGs in the circulation is indeed due to

de novo lipogenesis in the liver followed by onset of secretion

1 h later, supposedly as VLDL particles. Finally, our results also

provide evidence for direct postprandial-specific efflux of liver

LL4 membrane lipids, including 18:2-containing DMPE. Notably,

hepatic efflux of membrane lipids is inherent to the biogenesis of

nascent HDL particles (Phillips, 2018). As such, it is plausible that

the lipid efflux is coupled to production of HDL particles, and

interestingly, that this is temporally coordinated with the influx

of chylomicrons.

Diurnal regulation of the PE methylation pathway
Intrigued by our findings that MMPE and DMPE intermediates of

the PE methylation pathways oscillate and show diurnal cross-

talk between the liver and the circulation, we next examined their

individual timelines in closer detail. Notably, the PE methyltrans-

ferase Pemt has been proposed to be responsible for 30% of PC

synthesis in the liver, with the remainder derived from the CDP-

choline pathway (DeLong et al., 1999). This occurs through a

pathway where PE is methylated three times using S-adenosyl

methionine (Figure 5A). Tracer studies have demonstrated that

the PEmethylation pathway in vivo produces primarily 22:6-con-

taining PC molecules, albeit 18:2- and 20:4-containing PC spe-

cies are also produced (Pynn et al., 2011). Furthermore, Pemt

has been functionally linked to lipoprotein particle production,

because its genetic deletion impairs secretion of Apob-contain-

ing VLDL particles in mice (Noga et al., 2002).

By examining the temporal profiles of MMPE and DMPE, in

combination with corresponding PE substrates and PC prod-

ucts, we found that the PE methylation pathway gives rise to

two distinct pools of PC molecules with different FA chains

and patterns of oscillations in the circulation (Figures 5B and

5C). One pool comprises PC products with 18:2 chains, which

are produced and secreted into the circulation primarily during

the postprandial-like state and until the start of fasting

(Figures 5B and S5A). This is further supported by similar dy-

namics of equivalent MMPE and DMPE substrates in liver and

DMPE in the plasma. Counterintuitively, equivalent 18:2-con-

taining PCs in the liver do not show the same oscillation, sug-

gesting that their steady-state levels are maintained by the

CDP-choline pathway. Importantly, these 18:2-containing

lipids are all LL4-coupled postprandial-related membrane
lipids that appear to be released to aid the production of

HDL particles (Figure 4C).

The second pool comprises canonical PC products with 22:6

chains (Figures 5C and S5B). This pool is specifically elevated in

the circulation during fasting and rapidly lowered upon onset of

feeding. Again, counterintuitively, equivalent PCs in the liver do

not oscillate, suggesting that their levels are also maintained

by the CDP-choline pathway. Although the intermediate MMPEs

and DMPEs do oscillate in the liver, their dynamics are opposite

to that of their PC products in the circulation. This latter finding

suggests that the 22:6-containing MMPEs and DMPEs tempo-

rarily accumulate in the liver after onset of feeding until they

become fully methylated to PCs and then are secreted during

the postprandial state and fasting. Notably, these 22:6-contain-

ing PC products are among the LL1-coupled early fasting lipids

and could be released to cover the surface of the 22:6-rich VLDL

particles destined for return to adipose tissue as part of the TAG-

NEFA cycle.

PE methylation pathway enzymes are diurnally
regulated
To address whether the diurnal regulation of the PE methylation

pathway is governed by Pemt expression, and how this is linked

to remodeling of lipid metabolism more broadly, we carried out

label-free quantitative proteomics using 1D-LC-MS2 analysis of

liver samples and obtained timelines for 4,090 proteins

(Figure S6A; Table S3). To increase the proteome coverage,

we also analyzed pools of biological replicates using 2D-LC-

MS2 analysis and obtained timelines for 7,271 proteins. Com-

bined, these timelines correspond to 7,511 distinct proteins

(Figure S6B), of which 1,518 display a reproducible diurnal oscil-

lation (i.e., r > 0.66, and either ANOVA p < 0.05 or >2-fold change

in expression for proteins detected by 1D- or 2D-LC-MS2,

respectively) (Figure S6A). Fuzzy c-means clustering revealed

that the oscillating liver proteins (LPs) cluster into three major

timeline clusters: LP1, LP2, and LP3 (Figure S6C). Moreover,

hierarchical clustering of these timelines revealed the same three

temporal periods as the liver and plasma lipidomes (Figure S6D),

demonstrating that diurnal remodeling of the liver proteome is

also governed by primarily fasting-feeding cycles.

Specifically, we identified Pemt as a member of the LP1 clus-

ter (Figure S6E) and found that its expression is characterized by

temporary downregulation after food intake, followed by a pro-

gressive increase during the postprandial-like state and a

gradual decrease across the fasting period (Figure 5D). This tem-

poral dynamic is paralleled by four other LP1members and auxil-

iary factors in the PE methylation pathway: Ahcyl2 and Bhmt2,

involved in replenishment of S-adenosyl methionine, as well as

Etnk2 and Chkb, which produce the intermediate phosphoetha-

nolamine (Figure 5D). In addition, we found that Apob is an LP1

member and displays a similar temporal profile with character-

istic downregulation immediately after food intake. Finally, to

inspect the relationship between proteome remodeling and lipid

oscillations, we performed hierarchical clustering of all timeline

clusters (Figures S6F and S6G). This revealed that LP1 is specif-

ically coupled to the postprandial-related liver LL4 (r = 0.79) and

plasma PL4 (r = 0.82) lipids, which comprise themajority of oscil-

lating MMPE and DMPE intermediates.
Cell Reports 34, 108710, February 2, 2021 9



Figure 5. Diurnal regulation of the PE methylation pathway

(A) Schematic of the PE methylation pathway and proteins that are diurnally co-regulated (highlighted in blue).

(B) Timelines of PE, MMPE, DMPE, and PC molecules with a 16:0–18:2 backbone in liver (blue) and plasma (red).

(C) Timelines of PE, MMPE, DMPE, and PC molecules with a 16:0–22:6 backbone in liver (blue) and plasma (red).

(D) Timelines of liver proteins (blue and orange) involved in the PE methylation pathway and VLDL production. For comparative purposes, mRNA signals (Reads

Per Kilobase Million (RPKM)) for Pemt and Apob are shown (green). The mRNA data are from Atger et al. (2015).

Data represent median ± 95% confidence interval for the median of five to six biological replicates.

See also Figures S5 and S6.
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Overall, these results not only unequivocally demonstrate

the PE methylation pathway is diurnally regulated at the pro-

tein expression level, but also suggest that the pathway is

functionally coupled to secretion of Apob-containing VLDL

particles across the diurnal cycle. More specifically, this sug-

gests the hypotheses that plasma VLDL particles are reduced

upon food intake, and that oscillating DMPE and PC
10 Cell Reports 34, 108710, February 2, 2021
molecules in the circulation are affected by genetic deletion

of Pemt.

Lipid amount in VLDL and HDL particles is lowered upon
food intake
To specifically test whether VLDL secretion is temporarily

reduced following food intake, we carried out MSALL lipidomics



Figure 6. Reduction of VLDL in plasma after

food intake

(A) Total lipid concentration associated with lipo-

protein particles.

(B) Concentration of Pemt-relevant PC molecules

associated with VLDL and HDL particles.

(C) Model of lipoprotein metabolism with focus on

the putative roles of 22:6-containing PCs in VLDL

secretion and 18:2-containing PCs in production of

HDL particles. Phospholipid transfer protein (Pltp)

mediates rapid transfer and equilibration of mem-

brane lipids on the surfaces of lipoprotein particles.

Model is adapted from Lusis and Pajukanta (2008).

Data represent mean ± SD (n = 3 biological repli-

cates). Statistical significance was calculated using

Student’s t test.

See also Figure S7.
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of all major lipoprotein particles. Specifically, we analyzed VLDL,

low-density lipoprotein (LDL), and HDL particles after 12 h of

fasting and after 1 h of feeding (i.e., ZT24 = 12 and 13 h, respec-

tively) (Table S4). This analysis showed that each type of particle,

independently of sampling time, has a distinct lipid class compo-

sition: VLDL is primarily composed of TAG; LDL contains similar

amounts of TAG, CE, and PC; and HDL contains CE, PC, LPC,
Ce
cholesterol, PE, and PI lipids (Figure S7).

The analysis also confirmed that HDL fol-

lowed by VLDL and LDL are the most

abundant lipoprotein particles, as ex-

pected for mice (Figure 6A). Importantly,

the higher levels of PI and PE specifically

in HDL corroborate our notion that the liver

secretes these LL4-specific membrane

lipids (Figure 4C) for production of HDL

particles.

Importantly, we uncovered that the to-

tal concentration of lipids associated

with both VLDL and HDL particles are

reduced by 57% and 19%, respectively,

after 1 h of feeding (Figure 6A). In

comparison, the total concentration of

LDL-associated lipids is unchanged.

This finding confirms our hypothesis

that hepatic secretion of VLDL is tempo-

rally reduced upon food intake, possibly

to mitigate a hyperlipidemic state due

to the influx of chylomicrons. Interest-

ingly, we also found a bipartite behavior

of 18:2- and 22:6-containing PCs in the

VLDL and HDL particles (Figure 6B). In

these particles, 22:6-containing PCs

become more reduced upon food intake

as compared with the 18:2-containing

PCs, and this reduction is more pro-

nounced in VLDL as compared with

HDL particles. This finding supports the

notion of production and release of two

pools of PC products, where the
22:6-containing PCs are coupled to VLDL secretion and PCs

with 18:2 chains are important for HDL production (Figure 6C).

Pemt�/� mice produce high levels of MMPE and DMPE
Finally, to ascertain whether Pemt is responsible for the oscilla-

tion of circulating 18:2- and 22:6-containing DMPEs and PCs,

we carried out a lipidomics analysis of plasma from Pemt�/�
ll Reports 34, 108710, February 2, 2021 11



Figure 7. Unexpected production of MMPE

and DMPE lipids in Pemt�/� mice

(A) Total levels and concentrations of individual

PE, MMPE, DMPE, and PC lipids in plasma from

Pemt�/� and wild-type mice.

(B) Total levels and abundances of individual PE,

MMPE, DMPE, and PC lipids in liver from Pemt�/�

and wild-type mice.

(C) Model of enzymatic properties and functions

of Pemt and the putative PE methyltransferase

Pemt2.

Data represent mean ± SD (gray box) and cross

individual measurements (n = 6 biological repli-

cates). Statistical significance was calculated us-

ing Student’s t test.
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mice fasted for 12 h (Table S5). This verified that the fasting-spe-

cific increase of 22:6-containing DMPEs and PCs is indeed due

to Pemt, because its genetic ablation reduced their levels by up

to 7-fold as compared with wild-type mice (Figure 7A). Much to

our surprise, however, we also observed that the total levels of

MMPE andDMPE are 42- and 2-fold higher in plasma of Pemt�/�

mice. Specifically, we found that these increases are primarily

due to MMPE and DMPE molecules with 18:2 chains and, to a

lesser extent, 20:4 and 22:6 chains (Figure 7A).

It is truly mysterious why Pemt�/�mice have elevated levels of

MMPE and DMPE lipids in their circulation, which they should

not produce according to our knowledge of the PE methylation

pathway. We therefore also examined the molecular composi-

tion of MMPE and DMPE in the liver of Pemt�/� mice. This re-

vealed that the total levels of MMPE and DMPE are 136- and
12 Cell Reports 34, 108710, February 2, 2021
14-fold higher, respectively, as

comparedwithwild-typemice (Figure 7B;

Table S6). Moreover, we again found that

MMPEs and DMPEs primarily feature

18:2 chains, albeit Pemt�/� mice also

produce MMPEs with 22:6, and this FA

chain is even less abundant in the

DMPE class. Our analysis also showed

that the composition of PEs is largely un-

changed in Pemt�/� mice, with the

exception of an elevated PE 18:0–22:6

level. In addition, we observed an in-

crease in 18:2-containing PCs, as well

as a specific reduction in canonical

22:6-containing PCs, confirming that

Pemt is genuinely ablated in the knockout

mice.

Taken together, these findings provide

two fundamental insights. First, they

verify that oscillations in circulating

22:6-containing DMPE and PC, and the

corresponding MMPE and DMPE spe-

cies in liver, are due to Pemt activity. Sec-

ond, they indicate that there is another

pathway synthesizing MMPE and

DMPE, hinting at a so far undiscovered

PE methyltransferase. The activity of
this putative enzyme (which we term Pemt2) is also diurnally

regulated. This pathway primarily produces MMPE, DMPE,

and PC species with 18:2 chains (Figure 7C). Furthermore, our

different data suggest that the canonical Pemt-related products

with 22:6 chains are functionally linked to VLDL secretion,

whereas the putative Pemt2-related products with 18:2 chains

are coupled to HDL production.

DISCUSSION

We comprehensively characterized molecular oscillations in the

mouse liver and circulation using a framework that uniquely cap-

tures responses to fasting-feeding transitions and circadian

rhythms. Overall, our data reveal that 50%, 79%, and 20% of

the liver lipidome, plasma lipidome, and liver proteome,
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respectively, exhibit diurnal oscillations. Importantly, our liver lip-

idome data confirm previous findings that numerous TAGs and

PCs display oscillations (Adamovich et al., 2014) and reveal,

due to its broader coverage, that these oscillations extend to a

multitude of other lipid molecules belonging to several other lipid

classes. By time-series clustering and lipid structure enrichment

analysis, as well as integration of plasma lipidome and liver pro-

teome data, we uncover that the majority of oscillations are en-

trained by physiological adaptations to fasting, food intake,

and a postprandial-like state, and that this gives rise to three

modes of diurnal interorgan crosstalk. These modes are charac-

terized by a fasting-specific cycling of lipids with 22:6 chains be-

tween adipose tissue and the liver, a feeding-specific increase in

the production and secretion of saturated TAGs from the liver,

and a postprandial-specific increase in the biosynthesis and

efflux of membrane lipids from the liver. Altogether, our longitu-

dinal multi-omics data provide a valuable resource for the study

of diurnal regulation of whole-body lipidmetabolism and demon-

strate the utility of in-depth lipid molecular timeline profiling to

decipher complex metabolic processes.

Besides uncovering unexpected global patterns of metabolic

regulation and crosstalk, we also demonstrate that our resource

leverages insights into the regulation of distinct metabolic path-

ways. Specifically, we discover that the hepatic PE methylation

pathway is diurnally regulated, and that this gives rise to two

pools of oscillating PC molecules in the circulation. Specifically,

we find evidence that canonical PCs with 22:6 chains are pro-

duced by Pemt and coupled to VLDL secretion during fasting,

and that 18:2-containing PCs appear to be made by a so far un-

discovered PE methyltransferase and are coupled to production

of HDL particles (Figure 7C). This latter finding, corroborated by

the specific production of 18:2-containing MMPE and DMPE

species in Pemt�/� mice, as well as an overlooked residual PE

methylation activity in the knockout mice (Walkey et al., 1997),

might be a first step in a major revision of our understanding of

mammalian lipid biochemistry. These conclusions could also

help to elucidate why Pemt�/� mice are protected from diet-

induced atherosclerosis (van der Veen et al., 2017). Notably,

for the last three decades Pemt has been considered the only

PE methyltransferase in mammals (Cui et al., 1993), whereas

yeast have two enzymes: Cho2 and Opi3. Here, Cho2 can only

produce MMPE from PE, whereas Opi3, which is homologous

to Pemt, can catalyze all three methylations to produce PC

directly from PE (Bilgin et al., 2011). Thus, it is likely that the yeast

CHO2 gene and the putative Pemt2 gene are evolutionarily

related, and that the latter has evolved to also be able to convert

MMPE to DMPE and possibly DMPE to PC. It will be exciting in

the future to identify the putative Pemt2 gene and establish its

molecular functions.

Finally, we note that lipid molecular timeline profiling provides

an avenue for more accurate mapping of metabolic health that

goes far beyond comparison of lipid levels from only fasted ani-

mals. In fact, our data demonstrate that a multitude of lipids and

proteins fluctuate with different dynamics across the 12-h fasting

period. Hence single-time-point comparisons could potentially

fail to uncover physiologically relevant oscillations and be

misleading. Obviously, the use of lipid molecular timelines will in-

crease the usage of animals and demand that the lipidomics
technology can cope with the increased sample throughput.

The latter is not a limitation, as our study shows, and one can

foresee that time-series experiments with ~50 mice per cohort,

as well as storage of tissues in biobanks that can be shared

among the scientific community, would in the long run reduce

the total number of animals used for biomedical studies. Lastly,

we believe that lipid molecular timelines will be highly useful in

personalized medicine, with the potential to improve the diag-

nosis of metabolic health. Related to this, our resource also re-

veals oscillations in ceramides prognostic of cardiovascular

mortality in humans (Tarasov et al., 2014) (Figure S4B), suggest-

ing that these biomarkers are signatures of the liver’s inability to

remodel metabolic processes across the diurnal cycle.

In summary, our study provides a high-quality resource

comprising molecular oscillations in the liver and circulation of

mice, highlights that lipid oscillations are primarily governed by

physiological adaptations to fasting-feeding cycles, demon-

strates that the enzymatic activities of Pemt, as well as another

putative PE methyltransferase, are diurnally regulated, and lays

the groundwork for the use of lipid molecular timeline profiling

in the study of whole-body lipid metabolism and homeostasis.
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TAG(+2H5) 17:0/17:1/17:0 Avanti Polar Lipids Cat# 110544P

LPA O-16:0 Avanti Polar Lipids Cat# 110683

PA 17:0/20:4 Avanti Polar Lipids Cat# LM1402

LPS 17:1 Avanti Polar Lipids Cat# 800740X

PS 17:0/20:4 Avanti Polar Lipids Cat# LM1302

PS 17:0/14:1 Avanti Polar Lipids Cat# LM1304

LPE O-16:0 Avanti Polar Lipids Cat# 110703

PE O-20:0/20:0 Avanti Polar Lipids Cat# 999985C

LPC O-17:0 Avanti Polar Lipids Cat# 878101P

LPC 16:0(+2H3) Larodan AB Cat# 71-2826

PC 16:0(+2H3)/16:0(+
2H3) Larodan AB Cat# 71-3726

LPI 17:1 Avanti Polar Lipids Cat# 850103P

PI 17:0/20:4 Avanti Polar Lipids Cat# LM1502

PG 17:0/14:1 Avanti Polar Lipids Cat# LM1204

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

CL 14:0/14:0/14:0/14:0 Avanti Polar Lipids Cat# 7103320

SM 18:1;2/17:0 Avanti Polar Lipids Cat# 860585

GlcCer 18:1;2/12:0 Avanti Polar Lipids Cat# 860543

GM3 18:1;2/18:0(+2H5) Avanti Polar Lipids Cat# 860073

NEFA 17:0(+2H3) Larodan AB Cat# 71-1703

SPLASH� LIPIDOMIX� Mass Spec Standard Avanti Polar Lipids Cat# 330707

Deposited data

Proteomics data This paper Deposited to the ProteomeXchange

Consortium via the PRIDE partner

repository with the dataset identifier

PXD008944.

Experimental models: organisms/strains

Mus musculus / C57BL/6JBomTac Taconic Biosciences Cat# B6JBOM-M

Mus musculus / Pemt�/� Walkey et al., 1997 N/A

Software and algorithms

ALEX123 Ellis et al., 2018; Husen et al., 2013;

Pauling et al., 2017

http://mslipidomics.info/contents/?

page_id=525

SAS 9.4 SAS Institute Inc. N/A

Tableau Desktop 2019.1.3 Tableau Software, Inc. N/A

VSClust Schwämmle and Jensen, 2018 http://computproteomics.bmb.sdu.dk/

Apps/VSClust

ClustVis Metsalu and Vilo, 2015 https://biit.cs.ut.ee/clustvis/

Venny 2.1 N/A https://bioinfogp.cnb.csic.es/tools/

venny/index.html

Microsoft Excel 2019 Microsoft N/A

Proteome Discoverer v.2.1.1.21 Thermo Fisher Scientific N/A

Mascot server, version 2.3 Matrix Science N/A

Progenesis QI for proteomics v2.0 Nonlinear Dynamics / Waters N/A

Percolator algorithm Käll et al., 2007 N/A

Other

TriVersa NanoMate Advion Biosciences N/A

Orbitrap Fusion Tribrid mass spectrometer Thermo Fisher Scientific N/A

Bioruptor UCD-200 system Diagenode N/A

Dionex Ultimate 3000 nano UPLC system Thermo Fisher Scientific N/A

Symmetry C18 trap column (180 mm x 20 mm; 5 mm

particle size)

Waters Corporation Cat# 186007500

BEH C18 column (75 mm x 250 mm; 1.7 mm particle size) Waters Corporation Cat# 186007484

XBridge BEH C18 (300 mm x 50 mm, 5 mm particle size) Waters Corporation Cat# 186003682

Biochrom 30 amino acid analyzer Biochrom Cat# 80-6000-50

Pharmacia Smart FPLC System GE Healthcare Europe N/A

T 10 basic ULTRA-TURRAX� IKA Cat# 0003737000

Superose 6 PC 3.2/30 column Sigma-Aldrich Cat# GE17-0673-01
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Christer S.

Ejsing (cse@bmb.sdu.dk).
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Materials availability
All reagents generated in this study are available from the Lead Contact without restriction.

Data and code availability
Lipidomics data on liver, plasma, lipoprotein particles, plasma and liver from Pemt�/�mice are provided in Tables S1, S2, S4, S5, and

S6, respectively. Proteomics data is provided in Table S3. Raw LC-MS-based proteomics data is deposited in the ProteomeXchange

Consortium via the PRIDE partner repository with the dataset identifier: PXD008944.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal studies
Male wild-type C57BL/6JBomTac mice (7 weeks old) were obtained from Taconic Biosciences (Lille Skensved, Denmark) and were

allowed to adapt to the housing in the Biomedical Laboratory (University of Southern Denmark) for 1 week prior to random assign-

ment into experimental cohorts. The mice were housed under standard conditions with controlled humidity (55%) and temperature

(22 ± 3�C), 12 h light/dark cycle (light on at 6 am (ZT24 = 0) and light off at 6 pm (ZT24 = 12)) and fed a standard rodent laboratory diet

(Altromin 1324, Brogaarden) and water ad libitum. Two days prior to the study, the mice were entrained to nighttime-restricted

feeding with access to food only during the nocturnal period (6 pm (ZT24 = 12) to 6 am (ZT24 = 24/0)) and free access to water at

all times. For the time-restricted feeding study, the mice were allowed access to food only during the nocturnal period and three

mice were euthanized at the time points, ZT24 = 0, 4, 8, 12, 13, 14, 16 and 20 h, and across two diurnal cycles. Before euthanasia

mice were anesthetized and blood was sampled by retro-orbital bleeding into K3E micro tubes (Sarstedt). Plasma was separated

by centrifugation (3000 g, 15min, 4�C) and snap frozen in liquid nitrogen. Mice were perfusedwith 10mL 155mMammonium acetate

by cardiac puncture and the liver was dissected, snap frozen in liquid nitrogen and stored at�80�Cuntil further processing. The study

was conducted in accordance with the Danish law on Animal Experiments (LBK no. 1306 – 23/11/2007, amendments x 1 nr. 612 – 14/

06/2011) and approved by the Danish Animal Experiment Inspectorate.

Male Pemt+/+ and Pemt�/� mice (backcrossed into C57BL/6 for seven generations; and 8-10 weeks old) were housed under stan-

dard conditions and fed a semisynthetic diet (#F3282, Bio-Serv; 60 kcal% fat from lard) for 2 weeks. The mice were fasted for 12 h

before sacrifice by exsanguination (cardiac puncture). Liver and plasma were collected, snap-frozen in liquid nitrogen, and stored

at �80�C until further processing. The study was approved by the University of Alberta’s Institutional Animal Care Committee in

accordance with guidelines of the Canadian Council on Animal Care.

METHOD DETAILS

Lipid extraction of liver and plasma samples
Liver tissue was homogenized at 80�C in 155 mM ammonium acetate using an ULTRA-TURRAX (IKA). The homogenate was briefly

incubated in a water bath for 2 minutes at 80�C, and vortexed before taking an aliquot for total protein determination by amino acid

analysis (Højrup, 2015), after which the sample was frozen in liquid nitrogen and stored at�80�C. These liver homogenates were fast-

thawed in an 80�Cwater bath and aliquots corresponding to 25 mg total protein were subjected to two-step lipid extraction at 4�C, as
previously described (Gallego et al., 2017; Sampaio et al., 2011). Briefly, tissue homogenates were diluted with 155 mM ammonium

formate to a final volume of 200 mL and spiked with an internal lipid standard mixture containing cholesteryl ester (CE) 19:0, choles-

terol(+2H7), TAG 17:0/17:1/17:0(+2H5), diacylglycerol (DAG) 17:0/17:0(+2H5), lysophosphatidic acid (LPA) O-16:0, phosphatidic acid

(PA) 17:0/20:4, lysophosphatidylserine (LPS) 17:1, phosphatidylserine (PS) 17:0/20:4, lysophosphatidylethanolamine (LPE) O-16:0,

phosphatidylethanolamine (PE) O-20:0/O-20:0, lysophosphatidylcholine (LPC) O-17:0, phosphatidylcholine (PC) 16:0(+2H3)/

16:0(+2H3), lysophosphatidylinositol (LPI) 17:1, phosphatidylinositol (PI) 17:0/20:4, phosphatidylglycerol (PG) 17:0/14:1, cardiolipin

(CL) 14:0/14:0/14:0/14:0, ceramide (Cer) 18:1;2/17:0, sphingomyelin (SM) 18:1;2/17:0, and glucosylceramide (GlcCer) 18:1;2/12:0

(we note that it is preferable to use stable isotope-labeled standards for every lipid class and molecule, and not odd-chain analogs

as these can be of low abundance in biological matrices). Subsequently 990 mL of chloroform/methanol (10:1, v/v) was added to the

samples, which weremixed for 120min at 1400 rpm. Samples were centrifuged for 2min at 1000 g to facilitate phase separation. The

lower organic phase was collected and vacuum evaporated. The remaining aqueous phase was re-extracted with 990 mL of chloro-

form/methanol (2:1, v/v) bymixing for 90min at 1400 rpm. Samples were centrifuged for 2min at 1000 g, the lower organic phasewas

collected and vacuum evaporated.

Plasma samples (10 mL) were diluted with 155 mM ammonium formate to a final volume of 200 mL and spiked with an internal lipid

standard mixture containing CE 10:0, cholesterol(+2H7), TAG 17:0/17:1/17:0(+2H5), DAG 17:0/17:0(+2H5), PS 17:0/14:1, PI 17:0/20:4,

LPEO-16:0, PEO-20:0/O-20:0, LPC 16:0(+2H3), PC 16:0/16:0(+2H6), PG 17:0/14:1, Cer 18:1;2/17:0 and SM18:1;2/17:0. Lipid extrac-

tion of plasma samples was carried out as described above for liver.

Lipoprotein separation by FPLC
VLDL, LDL and HDL particles were isolated from 12 h fasted mice (ZT24 = 12 h) or 1 h refed mice (ZT24 = 13 h) by fast performance

liquid chromatography (FPLC), as previously described (Wiesner et al., 2009). In brief, a Pharmacia Smart FPLC System equipped
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with a Superose 6 PC 3.2/30 column (GE Healthcare Europe GmbH) was preconditioned with phosphate buffered saline (PBS;

Sigma-Aldrich) containing 1mM ethylenediamine tetraacetic acid disodium (EDTA; Carl Roth). After loading 50 mL plasma the system

was run with a constant flow of 40 mL/min, and fractionation was started after 18 min with 80 mL per fraction. Fractions 3-6 containing

VLDL particles were pooled (total volume 320 mL), fractions 7-11 containing LDL particles were pooled (total volume 400 mL), and

fractions 12-17 containing HDL particles and albumin were pooled (total volume 480 mL). The pooled fractions were snap-frozen

in liquid nitrogen and stored at �80�C until further analyses.

Lipid extraction of lipoprotein particles
Lipid extraction of the collected lipoprotein particles was performed according to Bligh and Dyer (1959). In brief, 120 mL of each li-

poprotein particle fraction (i.e., VLDL, LDL and HDL) wasmixed with 155mM ammonium formate to give a total volume of 200 mL and

thereafter spiked with an internal lipid standardmixture containing SPLASH LIPIDOMIX (i.e., PC 15:0/18:1(+2H7), PE 15:0/18:1(+2H7),

PS 15:0/18:1(+2H7), PG 15:0/18:1(+2H7), PI 15:0/18:1(+
2H7), PA 15:0/18:1(+2H7), LPC 18:1(+2H7), LPE 18:1(+2H7), CE 18:1(+2H7),

MAG 18:1(+2H7), DAG 15:0/18:1(+2H7), TAG 15:0/18:1(+2H7)/15:0, SM 18:1;2/18:1(+2H9) and cholesterol(+2H7)) plus LPI 17:1, LPS

17:1, Cer 18:1;2/17:0;1, GM3 18:1;2/18:0(+2H5), GlcCer 18:1;2/12:0, LPA O-16:0 and NEFA 17:0(+2H3). 750 mL of chloroform/meth-

anol (1:2, v/v) was added to these samples and they were then mixed for 20 min at 2000 rpm, followed by addition of 250 mL

chloroform and 250 mL 155 mM ammonium formate, and mixed for another 20 min at 2000 rpm. The samples where then centrifuged

for 3 min at 3000 g to facilitate phase separation and the lower organic phase was collected. The remaining upper phase was re-

extracted with 500 mL chloroform for 20 min and then centrifuged for 3 min at 3000 g. The lower organic phase was combined

with the previously collected lower phase and vacuum evaporated.

Lipidomics by high-resolution MSALL analysis
Lipid extracts were dissolved in chloroform/methanol (1:2, v/v) and subjected to mass spectrometric analysis using a high-resolution

Orbitrap Fusion Tribrid (Thermo Fisher Scientific) equipped with a TriVersa NanoMate (Advion Biosciences), as previously described

(Almeida et al., 2015; Gallego et al., 2017). Briefly, lipid extracts were loaded in 96-well plates, mixed with 13.3 mM ammonium

formate in 2-propanol for positive ion mode analysis, and 1.33mM ammonium formate in 2-propanol or 0.01%methylamine in meth-

anol for negative ion mode analysis. Samples were infused using a back pressure of 1.25 psi and ionization voltage of ± 0.95 kV.

FTMS data were recorded using a max injection time of 100 ms, automated gain control at 2e5, 2 microscans and a target resolution

of 500,000 (FWHM at m/z 200). FTMS2 data were acquired using max injection time of 100 ms, automated gain control at 5e4,

1 microscan and a target resolution of 30,000. All FTMS data were acquired using an ion transfer tube temperature of 275�C.

Sample preparation for proteomics analysis
Liver tissue was homogenized at 80�C in 155 mM ammonium acetate. The homogenate was briefly incubated in a water bath for

2 minutes at 80�C and vortexed before taking an aliquot for total protein determination by amino acid analysis (Højrup, 2015), after

which the samplewas frozen in liquid nitrogen and stored at�80�C. These liver homogenateswere fast-thawed in an 80�Cwater bath

and aliquots corresponding to 100 mg total protein (based on the amino acid analysis) were taken and mixed with pre-heated protein

lysis, reduction and alkylation buffer to a final volume of 100 mL with a concentration of 1% sodium deoxycholate, 10 mM tris(2-car-

boxyethyl)phosphine, 40 mM 2-chloroacetamide and 50 mM triethylammonium bicarbonate. Samples were then sonicated using a

Bioruptor UCD-200 system (Diagenode) at 4�C for 10 minutes with 30 s on/off cycles. Then 2 mg of trypsin was added to each 100 mg

protein in the solution followed by incubation at 37�C for 10 hours. Subsequently, dimethyl sulfoxide was added to a final concen-

tration of 10% followed by 400 mL ethyl acetate and trifluoroacetic acid (0.25% final concentration) and immediate vortexing for 5min

at 10�C. Samples were centrifuged for 10min at 14,000 g at 10�C, after which the peptide containing lower phasewas transferred to a

new tube and stored at �80�C until LC-MS2 analysis.

Proteomics by 1D-LC-MS2 analysis
Tryptic peptides (2 mg) were mixed with 50 fmol of the synthetic E. coli ClpB internal protein standard (Waters Corporation) to enable

estimation of absolute protein abundances by label-free quantification. Peptide separation was performed with a Dionex Ultimate

3000 nano UPLC system (Thermo Fisher Scientific) fitted with a Symmetry C18 trap column (180 mm x 20 mm; 5 mm particle size;

Waters) and an BEH C18 analytical column (75 mm x 250 mm; 1.7 mm particle size; Waters). Peptides were trapped for 2 min at

15 mL/min with 0.1% trifluoroacetic acid and separated at 350 nL/min using a 70 min gradient of 2%–35% acetonitrile with 0.1% for-

mic acid, followed by column washing at 85% acetonitrile and re-equilibration with 80 min of total data collection. Eluting peptides

were ionized at 1.7 kV using a TriVersa NanoMate (Advion Biosciences) as nanoelectrospray ion source coupled to anOrbitrap Fusion

Tribrid mass spectrometer (Thermo Fischer Scientific) with the source capillary temperature set at 275�C. Full MS scans (m/z 350-

1500) were acquired at target resolution 120,000 (atm/z 200) with wide window quadrupole isolation turned on. Full scan target was

5e5with amaximumfill time of 100ms and all data were acquired in profilemode. For tandemMS the instrument was run in top speed

mode with maximum 5 s cycles selecting precursors above 5e4 intensity with charge state 2-6. Targets were isolated at ± 0.35 Da

using the quadrupole followed by HCD fragmentation with normalized collision energy of 30% and rapid scan MS analysis in the ion

trap. For MS2 analysis the AGC target value was 1e4 with a maximum fill time of 35ms and using the all-parallelizable-time option. To

increase the overall numbers of identifications, a method variant was used alternating between each sample, using a maximum fill
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time of 100ms combined with the only-single-charge-state-per-precursor option. For both methods the dynamic exclusion time was

set to 45 s with a ± 10 ppm tolerance.

Proteomics by 2D LC-MS2 analysis
Equal amounts of tryptic peptides from each replicate per time point were pooled together (5 mg in total) and 100 fmol of the synthetic

E. coli ClpB internal protein standard was added (Waters Corporation). Peptides were analyzed by online 2D-RP-RP (high pH

reversed phase/low pH reversed phase) LC-MS2, as previously described (Casanovas et al., 2015). In short, peptides were first trap-

ped using an XBridge BEHC18 column (300 mmx50mm; 5 mmparticle size;Waters) at 2 mL/minwith 3%acetonitrile in 20mMammo-

nium formate (pH 10). To generate ten fractions, discrete two-minute steps at 2 mL/min of respectively 8%, 11.5%, 13%, 15%,

16.5%, 18%, 20%, 21.5%, 24% and 50% acetonitrile were used. Eluting fractions were online acidified and diluted 10-fold with

0.1% trifluoroacetic acid in water at 20 mL/min and trapped on a Symmetry C18 trapping column. Each fraction was separated

with an BEH C18 analytical column at 350 nL/min using a 30 min gradient of 6%–28% acetonitrile with 0.1% formic acid and column

washing at 85% acetonitrile. For each subsequent fraction the gradient start and end-points were increased with 1%with a total data

collection time of 35minutes per fraction. The total analysis time for one sample with ten fractions was about 7 hours. Eluting peptides

were ionized at 1.7 kV using the TriVersa NanoMate coupled to the Orbitrap Fusion Tribrid mass spectrometer. MS and MS2 acqui-

sitions were identical to themethod described for 1D-LC-MS2 analysis, except for using top speedmodewith maximum 1.5 s cycles,

dynamic exclusion time set to 20 s with a ± 5 ppm tolerance and not applying a second alternating method.

QUANTIFICATION AND STATISTICAL ANALYSIS

Lipid nomenclature
Lipid categories and lipid classes are denoted by their category and class abbreviations, respectively (Fahy et al., 2009; Liebisch

et al., 2013; Pauling et al., 2017). For lipids reported at the ‘‘species-level,’’ the combined number of carbons and double bonds

in the FA chains is indicated after the lipid class abbreviation. For example, ‘‘PE 38:4’’ denotes a PE lipid with 38 carbons and 4 double

bonds spread across both individual FA chains. For lipids reported at the ‘‘molecular species-level’’ (i.e., identification of individual FA

chain compositions), individual FAs are indicated in the format of ‘total number of carbons:number of double bonds’, with individual

FAs separated by a dash. For example, ‘‘PE 16:0-22:6’’ indicates a PE lipid containing a 16:0 and a 22:6 FA chain. For ether lipids,

ether-bound hydrocarbon chains are preceded with an ‘‘O’’ indicating either 1-O-alkyl ether or 1-O-alkenyl ether (plasmalogen) link-

age. For example, PEO-18:1/20:4 is a PEO- lipid with a 20:4 FA chain and an 18-carbon ether-linked chain with one double bond. The

double bond could be either that of a 1-O-alkenyl ether or positioned along the remainder of the FA chain as a 1-O-alkyl ether. We

note that sn- positions and double-bond positions of individual FAs cannot be accurately resolved by the applied lipidomics

technology.

Lipid abundances from mass spectrometric data
Identification and quantification of lipid molecules was done using the ALEX123 framework and auxiliary data processing pipelines in

SAS 9.4 (SAS Institute); as previously described (Almeida et al., 2015; Ellis et al., 2018; Husen et al., 2013; Pauling et al., 2017). Briefly,

lipid molecules detected by full-scan FTMS were identified using a maximumm/z tolerance of ± 0.0040 amu, corrected for potential
13C isotope interference, required to have a relative detection frequency of 0.66 (equivalent to being detected in 66% of all biological

replicates for a given sample group) and reported at the ‘‘species-level.’’ Lipid fragment ions detected by FTMS2were identified using

a maximum m/z tolerance of ± 0.0065 amu, required to have a relative detection frequency of 0.50 (equivalent to being detected in

50% of all biological replicates in a given sample group) and reported as ‘‘molecular lipid species-specific fragments’’ (MLF) or ‘‘lipid

class-specific fragments’’ (LCF) (Ellis et al., 2018; Pauling et al., 2017). For high-confidence identification of lipids reported at the sum-

composition-level (e.g., PC 34:1), at least one confirmatory LCF detected by FTMS2 was required. For high-confidence identification

of molecular lipid species identified by detection of MLFs, the following criteria were set: (i) the asymmetric molecular lipid species

must be detected by at least two complementary pairs of MLFs (except for protonated PE O- species that do not release abundant

complementary MLFs); (ii) the molecular lipid species must have an ALEX123 score > 0.5 (calculated as the number of detected MLFs

relative to the total number of MLFs available in the ALEX123 database) or an ALEX123 score% 0.5 but with detection of > 2MLFs (with

the exception that protonated PE O- species could be detected by at least 2 MLFs); and (iii) confirmation by detection of the corre-

sponding lipid molecule at the species-level by full-scan FTMS. Identified lipid molecules were quantified by normalizing their

measured intensities to that of respective internal lipid standards, subsequent multiplication by the amount of the respective lipid

standard and normalization to the extracted sample amount (i.e., mg liver protein or mL plasma). Visual inspection of data quality

and lipidome features was done using Tableau Desktop (Tableau Software).

Statistical analysis and clustering of lipidomics data
The inter-day Pearson correlation coefficient was calculated for averaged timelines of individual lipid molecules using SAS 9.4 (SAS

Institute). Furthermore, statistical analysis by ANOVA was also carried out using SAS 9.4. Lipid timelines with p values less than 0.05

and an inter-day Pearson correlation greater than 0.66 were considered statistically significant. For comparative visualization and

clustering analysis, individual lipid abundances were log2 transformed and converted to z-scores. Statistically significant lipid
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timelines were analyzed by fuzzy c-means clustering using VSClust (Schwämmle and Jensen, 2018). Hierarchical clustering of

centroid timeline clusters was carried out using ClustVis (Metsalu and Vilo, 2015) with Euclidean clustering distance and the Ward’s

clustering method. Statistical analysis of lipid data shown in bar graphs is done using log2 transformation and by Student’s t test in

Excel (Microsoft).

Analysis of whether omitting the time points ZT24 = 13 and 14 h significantly biases the true temporal dynamics of lipid timelines

(Figures 1E and 1F) was carried out in three steps using SAS 9.4. First, a linear regression between the time points ZT24 = 12 and 16 h

was determined for individual lipid molecules. This regression was used to estimate apparent lipid abundances at the time points

ZT24 = 13 and 14 h. Second, one-sample Student’s t testing was carried out between themeasured and apparent lipid abundances

for both the time points ZT24 = 13 and 14 h. A p value < 0.05 was considered significant (i.e., that ameasured (true) lipid abundance is

significantly different compared to the estimated apparent lipid abundance). Third, lipids with significant differences at time points

ZT24 = 13 or/and 14 h were classified as having timelines that are significantly biased (by not including the time points ZT24 = 13

and 14 h; and therefore, specifically entrained by fasting-feeding cycles.

Bioinformatics analysis of lipidomics data
Lipid structural ENrichment Analysis (LENA) was carried out using SAS 9.4 and is essentially based on the principle of contingency

table analysis and Fisher’s exact test. In brief, for lipid molecules within a given cluster as well as that of all detected lipid molecules

(i.e., background list) LENA determines four different lipid structural attributes: ‘‘lipid category,’’ ‘‘lipid class,’’ ‘‘backbone’’ and ‘‘FA

chain’’ (where the latter requires the lipid molecule to be identified at the ‘‘molecular species-level’’) (Figure 2C). LENA next computes

the (relative) occurrence of the different lipid structural attributes for lipids in the cluster as well as that among all detected lipid mol-

ecules. Using Fisher’s exact test, LENA subsequently computes the probability of the observed relative occurrence of a particular

lipid structural feature happening by random chance, as well as the odds-ratio (observed relative occurrence divided by the relative

background occurrence).

Analysis of direct lipid metabolic couplings between lipid molecules in the liver and the plasma was carried out using SAS 9.4. In

short, pairwise Pearson correlation coefficients were determined for all individual lipid timelines in liver and plasma. Next, the data

was filtered to retain only pairwise liver-plasma Pearson correlation coefficients greater than 0.66; and this data was further filtered to

only shortlist identical lipid molecules (i.e., DMPE 16:0-18:2 in liver and DMPE 16:0-18:2 in plasma) or lipid molecules with identical

backbones (e.g., DMPE 16:0-22:6 in liver and PC 16:0-22:6 in plasma, where ‘‘16:0-22:6’’ is the backbone). Next, the shortlisted lipid

molecules were grouped based on the name of their liver lipid (LL) timeline cluster and the occurrence of the lipid structural attributes

‘‘lipid class’’ and ‘‘FA chain’’ for each cluster were determined. Finally, Sankey diagrams were generated in Tableau Desktop using

the relative occurrence of the structural attributes and their molecular relationship.

Peptide identification
Fragmentation spectra were searched using the search engineMascot against a FASTA formatted database containing all canonical

and isoform UniProtKB entries for Mus musculus, version 0513 with common contaminants and protein quantitation standards

added (81029 entries in total). The search was facilitated through the Proteome Discoverer software (v2.1, Thermo Scientific) using

the following parameters: trypsin, maximum 2 missed cleavages, cysteine carbamidomethylation as a fixed modification and acet-

ylation of protein N-terminal, and oxidation of methionine as dynamic modifications. Search tolerances were set to ± 10 ppm for pep-

tide precursors and ± 0.35 Da for fragment ions. Peptide identifications were filtered at 1% false discovery rate on peptide level using

Percolator (Käll et al., 2007; Spivak et al., 2009).

Protein quantification from 1D-LC-MS2 data
Peptide abundance was estimated by label-free quantification using the Progenesis QI for proteomics software (v2.0, Waters).

Briefly, LC-MS2 maps of all samples were aligned and peptides were quantified based on peak areas of precursor ions (full-scan

FTMS). The MS2 data associated to each precursor ion were exported from Progenesis as .MGF files (Mascot generic format)

and used for peptide identification with the Proteome Discoverer software as outlined above. The peptide identifications were im-

ported into Progenesis QI and matched to the corresponding feature across the different runs. Absolute protein abundance (fmol

on-column) was estimated by the Hi3-based quantification method (Silva et al., 2006) using the known amount of spiked-in Hi3

ClpB protein standard. To determine the expression level (fmol/mg), theMwof each protein was used to calculate the total on-column

protein amount (mg) for each sample, followed by dividing individual protein fmol on-column amounts by the median total on-column

protein amount across all samples. Following protein quantification, the results were further filtered to 1% false discovery rate on

protein level by applying the standard target-decoy approach correcting for the use of separate protein target-decoy search results

(Wang et al., 2009) as obtained using Proteome Discoverer.

Protein quantification from 2D-LC-MS2 data
Peptide abundance in the 2D-LC-MS2 data was also estimated by label-free quantification using Progenesis QI for Proteomics.

Briefly, LC-MS2 maps of individual fractions (10 per time point) were separately aligned and peptides were quantified based on

peak areas of precursor ions (full-scan FTMS). The MS2 data associated to each precursor ion were exported from Progenesis as

.MGF files and used for peptide identification with the Proteome Discoverer software as outlined above. The peptide identifications
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were re-imported into Progenesis QI and matched to the corresponding feature across the different fractions. The results of the 10

fractions were then combined into a single project file followed by label-free absolute quantification (fmol on-column) using the Hi3-

based quantification method (Silva et al., 2006) and the known amount of spiked-in Hi3 ClpB protein standard. To determine the

expression level (fmol/mg), the Mw of each protein was used to calculate the total on-column protein amount (mg) for each sample,

followed by dividing individual protein fmol on-column amounts by the median total on-column protein amount across all samples.

Following protein quantification, the results were further filtered to 1% false discovery rate on protein level by applying the standard

target-decoy approach correcting for the use of separate protein target-decoy search results (Wang et al., 2009) as obtained using

Proteome Discoverer. Finally, the two proteomics datasets were combined into a single file.

Statistical analysis and clustering of proteomics data
The inter-day Pearson correlation coefficient was calculated for averaged timelines of individual proteins (based on unique combi-

nation of accession and gene name) and independently for 1D-LC-MS2 and 2D-LC-MS2 data using SAS 9.4. Furthermore, statistical

analysis by ANOVA of only the 1D-LC-MS2 data was also carried out using SAS 9.4. Protein timelines with a p value less than 0.05 and

an inter-day Pearson correlation greater than 0.66 were considered statistically significant. For the 2D-LC-MS2 data the maximum

fold-change was determined by dividing the maximum by the minimum protein abundance. Protein timelines with a maximum fold-

change greater than 2 and an inter-day Pearson correlation greater than 0.66 were considered significant. For comparative visual-

ization and clustering analysis, individual protein abundances were log2 transformed and converted to z-scores.

Statistically significant timelines of individual proteins obtained by 1D-LC-MS2 analysis was analyzed by fuzzy c-means clustering

using VSClust (Schwämmle and Jensen, 2018). The resulting centroid liver-protein timelines were subsequently compared using

Pearson correlation to that of significant protein timelines obtained by the 2D-LC-MS2 analysis. Significant protein timelines obtained

by 2D-LC-MS2 were allocated into distinct timeline clusters for which they have a Pearson correlation greater than 0.9. In a few in-

stances we noted that an identical protein, detected by both 1D- and 2D-LC-MS2 analysis, was grouped into two different clusters. In

this case, we omitted the protein timeline obtained by 2D-LC-MS2 analysis, since we only have two replicate values and not six as for

the 1D-LC-MS2 data.

Hierarchical clustering of centroid timeline clusters was carried out using ClustVis (Metsalu and Vilo, 2015) with Euclidean clus-

tering distance and the Ward’s clustering method. Statistical analysis of protein data shown in bar graphs is done using log2 trans-

formation and by Student’s t test in Excel (Microsoft).

Bioinformatics analysis of proteomics data
To shortlist lipid-related proteins we manually inspected the functionality of all protein members of the different clusters obtained by

fuzzy c-means clustering. To do so, we downloaded and made use of information on functionality, subcellular location and gene on-

tologies from the UniProt database (Figure S5E).
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