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Abstract: The design of a multi-stream plate-fin heat exchanger is a highly integrated task with
multiple opposing objectives and many degrees of freedom. This work shows how it can be fully
or partially automated by the combination of a detailed three-dimensional simulation model and
an optimization routine. The desired task is formulated as the target of a multi-objective optimiza-
tion and solved using a genetic algorithm. The workflow is presented using a cryogenic plate-fin
heat exchanger with four process streams. The design is optimized towards high efficiency, low
pressure drop, and low unit weight by adjusting the outer geometry, the inlet and outlet distributor
configuration, and the detailed stream geometry. A detailed analysis of the Pareto-set gives a good
overview of possible solutions, and the optimization routine can automatically find a feasible design
with a reasonable tradeoff between the objectives. All elements of the framework are implemented
in open source software. A highlight of this research is that a very comprehensive and detailed
simulation model is employed in the optimization framework. Thus, the presented method can be
easily adjusted to fit the needs of other engineering tasks.

Keywords: plate-fin heat exchanger; design optimization; computational fluid dynamics; multi-
objective optimization; genetic algorithm

1. Introduction

Aluminum-brazed plate-fin heat exchangers (PFHEs) are among the most widely
used types of compact heat exchangers in the process industry. Their high efficiency and
relatively small package space makes them the primary design choice in many energy-
intensive applications such as cryogenic air separation, hydrogen and helium liquefaction,
and processing of natural gas [1]. In comparison with other types of heat exchangers, PFHEs
offer a high surface area for heat transfer, allowing for small stream-to-stream temperature
differences [2]. Their advantages further include the ability to carry more than 10 process
streams with large design flexibility, which allows for high process integration [3].

However, the design of a compact PFHE with a high number of process streams is
a complicated task with many degrees of freedom and multiple objectives such as low
operating and investment costs as well as high efficiency. Hence, many researchers have
worked on the design methodology even though a general guideline was presented by
Kays and London [4] several decades ago. Reneaume and Niclout [5] show an approach
for automated design of a PFHE based on an optimization of manufacturing costs. After
this early work, many studies were dedicated to researching how optimization routines
can support the design process of PFHEs.

Some groups focus on a single element of the PFHE design, the arrangement of layers
in a multi-stream PFHE. For example, both Wang et al. [6] and Cho et al. [7] present an
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optimization study for the layer arrangement in a PFHE using commercial design software
coupled with a genetic algorithm. Similar work is carried out by Tian et al. [8] where a
custom distributed parameter model is used for the design evaluation. Peng et al. [9,10]
optimize the layer arrangement of heat exchangers using a hybrid particle swarm algorithm
and also consider the influence of flow maldistribution in their study. A comprehensive
overview of other work in the field of optimizing the layer pattern is given in a review by
Wang and Li [11].

Another topic that is addressed frequently is the design and selection of fin materials.
Guo et al. [12,13] present a method for optimizing the parameters of fin geometry by
evaluating pressure drop and heat exchanger volume in a multi-objective analysis based
on a lumped parameter model for the PFHE. Liu et al. [14] apply a multi-objective genetic
algorithm in combination with a computational fluid dynamics (CFD) simulation in order
to optimize the shape of an offset strip fin by increasing the Colburn factor and decreasing
the friction factor in a specific application. Li et al. [15] study the optimum design of
serrated fins, using maximum performance and minimum thermal stress as objectives. Do
Nascimento et al. [16] combine a CFD simulation of fins with neural networks to optimize
the pressure drop and heat transfer characteristics of fins in a two-stream PFHE. In a similar
approach, Yu et al. [17] use a CFD simulation with radical basis functions to employ the
detailed simulation model of wavy fins in an optimization routine using a multi-objective
genetic algorithm. Cui and Song [18] also focus on the heat transfer and pressure drop
performance of wavy fins. They employ a model based on correlation equations and find
that a genetic algorithm can be an efficient tool for the optimization of the fin geometry.
Li et al. [19] successfully use a detailed CFD simulation to manually optimize the geometric
parameters of serrated fins at various flow conditions.

In contrast to the studies focusing on single aspects of the design process, Wang et al. [20]
present a comprehensive optimization framework for the steady-state design of a PFHE
considering stream and layer arrangement, fin selection, and the outer geometry of a PFHE.
The optimization is based on a single objective, the maximum temperature field synergy.
Pattison and Baldea [21] use hot and cold composite curves to optimize the design of multi-
stream heat exchangers. Some recent studies also include economic objectives. Sanaye and
Hajabdollahi [22] study the optimum parameters of serrated fins with regard to the overall
cost of a PFHE in a furnace application. Najafi et al. [23] use a genetic algorithm and a lumped
parameter model for PFHE efficiency to study the effect of fin dimensions on heat transfer
and annual cost of an industrial heat exchanger. Song and Cui [24] perform both single-
and multi-objective optimization of a PFHE design using a genetic algorithm, targeting both
efficiency and annual cost of the apparatus. Hajabdollahi et al. [25] study the effect of flow
maldistribution on the thermal efficiency, pressure drop, and annual cost of a PFHE.

The optimization studies presented in the literature are typically tailored for a specific
use case. They cannot be easily adapted for any other purpose because they use simplified
or non-comprehensive simulation models for the PFHE evaluation or a highly customized
optimization routine. The Kopernikus project “SynErgie” investigates synchronizing the
energy demand of industrial processes such as cryogenic air separation [26,27] with the
availability of renewable energy sources via flexible operation in order to stabilize the
power grid [28,29]. Process integration is a key factor in this highly energy-demanding
application [30,31]. Hence, it is one of the main targets of the sub-project “FlexASU” to
enhance the knowledge about the employed PFHEs [32–34]. In this scope, a comprehensive
three-dimensional model for steady-state and transient thermo-fluid simulation of PFHEs
has been developed by the authors [35,36]. This work shows how the detailed simulation
model can be combined with an optimization routine to form a flexible framework which
can be used for the automated design of PFHEs using arbitrary objectives and design
variables. The novelty of the presented workflow is that it is easily adjustable to the
requirements of various tasks that may occur in the design and operating phase of a PFHE.
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2. Modeling Framework

This work presents a general method for the optimization of PFHEs. The basis of the
approach is the combination of a detailed and automated simulation model with a flexible
optimization routine. The optimization routine is implemented in DAKOTA 6.12 [37], and
each function evaluation results in the setup, execution, and postprocessing of a three-
dimensional PFHE simulation. The PFHE model itself is implemented in OpenFOAM
v6 [38] and automated with Python 3 [39]. To connect the detailed simulation model and
the optimization routine, an interface is implemented in Python 3. For each evaluation,
the interface passes a set of design variables x to the automated case setup, controls
the execution of a PFHE simulation, and passes the evaluation results f (x) back to the
optimization routine. The entire framework is implemented in freely available open source
software. A visualization of the framework is shown in Figure 1.

Optimization routine

Settings

Optimization Results

Interface

Automated
case setup PFHE simulation

Result
evaluation

Parameters

x

f (x)

Simulation results

DAKOTA OpenFOAM v6Python 3

Figure 1. Visualization of the framework for automated PFHE optimization.

2.1. Simulation Model

One key element of the modeling framework is the actual simulation model which is
used for the evaluation of a PFHE design. In this work, a comprehensive model for both
steady-state and transient simulation of PFHE is used. The model itself is described and
validated in the earlier work of the authors. Hence, this section gives a brief overview
of the most important features. Readers are also encouraged to find more details, an
extensive validation, and a detailed PFHE geometry study in the authors’ earlier work on
the model [35,36].

2.1.1. PFHE Geometry Representation

The model in this work uses a very detailed, three-dimensional representation of the
brazed block of a PFHE which is represented in Figure 2. Each layer of the PFHE is captured
with its respective collector, distributor, and core fins and the surrounding sidebars and
parting sheets. An example of a layer geometry is shown in Figure 2a. Each process stream
flows through multiple equally designed layers, a flow passage, of the PFHE. The layers of
different streams are arranged in a specific stacking order. Hence, the design of the block
shown in Figure 2b is a result of the individual layer design and the stacking order.

Headers are used to connect the inlet and outlet of each layer to the surrounding
piping of a process stream. However, they do not actively contribute to the desired heat
transfer. Hence, their positioning is accurately captured but the headers themselves are
omitted in the simulation model.
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Figure 2. Overview of PFHE geometry as captured by the model; (a) Geometry of a layer inside the
PFHE; (b) Outer geometry of the PFHE block.

While parting sheets and sidebars are directly resolved by the computational grid, the
small-scale geometry of fins, i.e., the individual channels, serrations, and perforations, are
not resolved. Instead, a porous modeling approach which allows for the use of a relatively
coarse computational grid is employed. The grid is visualized in Figure 3.

Parting sheet FinComputational grid

Figure 3. Visualization of the computational grid used in the porous modeling approach.

The different orientations of the fin channels in the distributor, core, and collector of
a flow passage are accurately captured by the porous medium representing the fin. This
approach allows for accurate consideration of the distributors and collectors in the thermo-
fluid simulation of the entire PFHE with reasonable computational resources. The porous
modeling approach is described in great detail in the original articles on the simulation
model [35,36].

2.1.2. Mathematical Modeling

The simulation model is based on the solver chtMultiRegionFoam available in Open-
FOAM v6 and uses a finite volume discretization of the governing equations. Sidebars and
parting sheets are treated as solids and mathematically described with an energy equation
as given in Equation (1), where $ denotes density, h is enthalpy, t is time, λ is thermal
conductivity, and T denotes temperature [36]:

∂($ h)
∂t

= ∇ · (λ∇T) . (1)

Each process stream is treated as a separate compressible fluid with a unique set of
thermophysical properties. Each fluid is mathematically described by an energy equation,
a momentum equation, and a continuity equation. Since, as seen in Figure 3, the interface
between fluids and fins is not explicitly resolved by the computational grid, respective
source terms are added to the momentum and energy equations. These source terms are
used to model heat transfer and pressure drop occurring at the non-resolved surfaces
between fins and fluids based on established correlations taken from Kays et al. [4]. A
detailed description of how these correlations are implemented in a three-dimensional
geometry using the source terms can be found in the authors’ earlier work [36].
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The continuity equation of a process fluid is given in Equation (2), where v denotes
the vector of the velocity field [36]:

∂$

∂t
+∇ · ($v) = 0 . (2)

The energy equation of process fluids is given in Equation (3), where k denotes kinetic
energy, p is pressure, τ is the stress tensor, g is the gravitational acceleration, and ωh is the
respective source term for convective heat transfer between fluid and fin [36]:

∂($ h)
∂t

+
∂($ k)

∂t
+∇ · ($ v h) +∇ · ($ v k) = ∇ · (λ∇T) +

∂p
∂t
− $ g · v +∇ · (τ · v) + ωh . (3)

The source term ωh is used to implement empirical correlations for convective heat transfer
based on measurements of the Colburn factor of the fin material [4].

The momentum equation of process fluids is given in Equation (4), where ω$v denotes
the respective source term for flow resistance caused by interactions on the surface of
fins [36]:

∂($v)
∂t

+∇ · ($v⊗ v) = −∇p +∇ · τ + $ g + ω$v . (4)

The source term ω$v is used to implement empirical correlations for flow resistance based
on the Fanning friction factor of the fin material [4].

Fins are treated as porous solids because their actual geometry is not resolved by the
computational grid as visualized in Figure 3. Hence, they are described with a modified
energy equation containing the source term ωh for convective heat transfer with process
fluids as given in Equation (5) [36]:

∂($ h)
∂t

= ∇ · (λ∇T) + ωh . (5)

The cells are considered to be porous, meaning that they are only partially filled with solid
material. The porosity is directly linked to the fin geometry and can be calculated directly
from its dimensions [35]. Porosity is reflected in the energy equation via the reduced
density and thermal conductivity of the solid material, accounting for the fact that the solid
volume is only a fraction of the cell volume. This approach averages small variations on
the scale of individual channels of the fin material in order to save computational resources,
while it maintains sufficient accuracy for the proper calculation of temperature and flow
distribution in the entire heat exchanger [36].

Details on the calculation of thermophysical properties, the definition of the source
terms for heat transfer and pressure drop, and the solution procedure can be found in the
original articles describing the simulation model [35,36].

2.2. Multi-Objective Optimization

A practical optimization task for a multi-stream PFHE can have any number of ob-
jective functions and design variables. Hence, a general optimization framework that is
not tailored to a specific task has to rely on algorithms that work with multiple objectives.
Because of the generalized approach presented in this work, possible correlations between
objectives and design variables are considered to be unknown. They are only accessible
through a numerical solution of the PFHE simulation model, which is thus treated as a
blackbox [40]. Derivative-free evolutionary algorithms are suitable for the global opti-
mization of such tasks [41]. This work uses the multi-objective genetic algorithm (MOGA)
available in DAKOTA [37]. A simplified flowchart of the genetic algorithm is shown in
Figure 4.
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Figure 4. Simplified flowchart of a genetic algorithm.

In a genetic algorithm, a set of design variables x is referred to as an individual.
Multiple individuals are created in the initialization step and referred to as a population.
The fitness f (x) of each individual is evaluated by using the fitness function, i.e., the
PFHE simulation model. After evaluation of each individual in the first population, the
reproduction process creates a new population to continue the algorithm. The main steps
of reproduction are the selection of individuals with desirable fitness, recombination of
multiple individuals to form new individuals, and mutation, which randomly changes
parts of randomly selected individuals. The algorithm continues until certain criteria for
its convergence or termination are reached. The interested reader is encouraged to find a
more detailed description of genetic algorithms in the respective literature [41,42].

The advantage of using DAKOTA in the presented optimization framework is that
the application is not limited to one algorithm. Instead, the MOGA algorithm could be
exchanged for other optimization routines available in DAKTOA if required.

2.3. Interfacing

The interface handles all required communications between the simulation model and
the optimization routine. After the optimization routine selects a set of variables x to be
evaluated, the interface controls the setup, execution, and evaluation of a corresponding
PFHE simulation. Since the simulation model includes an automated setup, the task of the
interface is to translate the design variables of the optimization routine to the actual model
parameters required by the automation [35]. After evaluation of the PFHE simulation, the
interface returns the processed simulation results f (x) to the optimization routine.

Using an interface instead of directly connecting the optimization routine to the PFHE
simulation greatly enhances the flexibility of the modeling framework. In most use cases,
not all parameters of a PFHE simulation are considered as independent variables in the
optimization routine. The interface is used to handle dependencies between variables that
are and those that are not part of the optimization routine. For example, if the fin selection
is to be optimized, the interface could adjust the number of layers for each process stream
in order to keep a constant overall size of the PFHE despite varying fin dimensions. The
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interface can further be used to implement arbitrary constraints, which can be useful if the
selected routine can only handle linear constraints.

3. Use Case: PFHE Design Optimization

The presented optimization framework uses a comprehensive simulation model which
can evaluate the steady-state and transient operation of a PFHE. The optimization routine
can be adapted with an arbitrary number of independent design parameters and objective
functions. Hence, the framework can be applied to a wide range of use cases in both the
design and operation of the apparatus. This work uses a steady-state design optimization
as an example study because this task is commonly addressed in the literature.

3.1. Objective Functions

Defining a suitable steady-state design of a PFHE is a typical task in which multiple
independent targets have to be achieved: A good design should achieve a high level of
performance at a reasonable cost. One possible approach to express these objectives with
the results of a thermo-fluid simulation is to use the amount of heat transferred between
hot and cold process streams, the pressure drop of each process stream, and the size or
weight of the evaluated heat exchanger.

In some applications, it is possible to combine the individual objectives into a single,
highly concentrated objective function. In contrast, this case study underlines how the
optimization framework can be used with an arbitrary number of independent objectives.
Hence, three independent objective functions are treated in this work: thermal efficiency,
overall pressure drop, and unit weight.

Thermal efficiency ε is a suitable measure of the overall heat transferred from hot to
cold process streams. Following the more detailed description given in [36], it is calculated
using Equation (6):

ε =
Q̇

Q̇max
=

Q̇
Ċmin ·

(
Tin

hot − Tin
cold
) , (6)

where Q̇ is the total amount of heat transferred, and Q̇max is the maximum amount of heat
that can be transferred between the process streams. The latter can be calculated from Ċmin,
the minimum heat capacity flow, and Tin

hot and Tin
cold, the averaged inlet temperatures of

hot and cold process streams. Hence, Q̇max can be calculated from the definitions of the
process streams and is independent of the PFHE’s performance. In contrast, Q̇ differs for
each PFHE design and can be evaluated by volumetric integration of the convective heat
transfer source term ωh in the computational domain V of all hot or cold process streams
as given in Equation (7):

Q̇ = ∑
cold

∫

V
ωh dV = ∑

hot

∫

V
ωh dV (7)

Because the optimization routine in DAKOTA is set up to minimize objective functions,
efficiency is internally transformed to a suitable objective for minimization by using 1− ε
as the target function.

The overall pressure drop ∑ ∆p is calculated by summation of the pressure drops
of each individual process stream i. The pressure drop of each stream is calculated by a
comparison of pressure at the inlet and outlet as presented in Equation (8):

∑ ∆p =
n

∑
i=1

(
pin

i − pout
i

)
(8)

Since the inlet and outlet are two-dimensional surfaces on which the pressure is not
necessarily uniform, flow-averaged values are calculated by the simulation model [36]. As
pressure drop should be minimized, the overall pressure drop can be used directly as an
objective function.
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The unit weight can be calculated by integrating the density of all solid parts of the
PFHE, hence parting sheets, sidebars, and fins, in the volume of the computational domain
as given in Equation (9):

M = ∑
solid

∫

V
$ dV . (9)

The unit weight M of an optimized design should be minimized; hence, it can directly be
used as an objective function.

3.2. Design Variables

In theory, any design variable captured by the simulation model can be used in the
optimization routine. In a practical application, each variable vastly increases the number
of possible combinations and thus adds to the complexity of the task. In contrast to other
optimization studies, the presented framework uses a very comprehensive simulation
model that includes many design variables and utilizes a significant amount of computa-
tional resources to evaluate each individual design. Hence, it is reasonable to exclude some
possible design variables from the optimization routine.

Since numerous previous studies focus on layer arrangement and fin selection, this
work excludes these parameters from the optimization and instead focuses on the PFHE
sizing, on positioning of stream inlets and outlets, and on the distributor and collector
geometries. These geometric details have not been assessed in previous optimization
studies because they require a three-dimensional simulation model to be evaluated properly.
However, previous work has shown that the configuration of individual stream inlet and
outlet positions and geometry type can have a considerable impact on the steady-state
performance of a PFHE [36].

Theoretically, all PFHE dimensions are continuous variables. However, the application
of a numerical grid with a certain resolution limits the possibilities to a set of discrete values.
The same applies to the manufacturing process, where, typically, only a set of discrete
dimensions can be used for any component. To speed up the optimization process, a
reasonably large step size can be selected for these variables in combination with a lower
and upper bound. The type of distributor and collector for each process stream is treated as
a discrete variable. The geometries that are accessible via the simulation model are shown
in Figure 5.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Possible types of distributor and collector geometries with fin orientation depicted by hatch
angles. (a) Type A; (b) Type B; (c) Type Cl ; (d) Type Dr; (e) Type Er; (f) Type Fr.
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The geometries of type C, D, E, and F are marked with a superscript l or r because
they can be mirrored horizontally, resulting in two possibilities for the header position.
Hence, 10 different geometry types are available for each distributor and collector, resulting
in 100 possible combinations for each process stream.

3.3. Constraints

The presented design optimization is treated without any specific constraints in order
to keep it as general as possible. The only constraint considered in this work is that the
resulting design has to be feasible for manufacturing. On the one hand, this is achieved
by using appropriate lower and upper bounds for the design variables. On the other
hand, the geometry types of all process streams have to be compatible with each other.
The latter is a rather complicated constraint that is very specific for the task of a PFHE
design optimization: The inlet and outlet of each stream have to be positioned so that
they do not overlap with those of any other process stream. Otherwise, it is impossible to
properly place inlet and outlet headers and facilitate a proper connection of the PFHE to
the surrounding piping. The constraint is visualized in Figure 6.

1

1

2

2

3

3

4

4

Overlapping
headers

1

1

2

2

3

3

4

4

Feasible
geometry

Figure 6. Visualization of the geometry constraint with an unfeasible (left) and a feasible (right)
configuration of a four-stream PFHE.

The MOGA algorithm can only handle linear constraints and thus cannot directly
capture the complicated geometric feasibility constraint. However, the interface between
the optimization routine and the PFHE simulation is very flexible. Thus, the interface is
used to detect designs with an an unfeasible geometry and assigns a very low fitness to
them instead of running a real simulation. This behavior saves computational resources
and ensures that unfeasible designs are sorted out by the optimization routine.

Studies presented in the literature typically do not require a feasibility constraint
because the distributors and collectors are not part of the design variables. However, a
similar constraint has been proposed by Reneaume and Nicolut [5].

4. Case Specification

This section presents the specific details of the case study. These include the process
and geometry definitions for which the PFHE should be optimized as well as the settings
for the optimization routine.

4.1. Process Conditions

A cryogenic heat exchanger with two hot and two cold streams is used as an example in
this work. The process streams consist of air, nitrogen, and oxygen at atmospheric pressure
and reflect a possible use case in an air separation unit. All definitions of the process are
listed in Table 1. The parameters of the selected fins are taken from the literature [4].



ChemEngineering 2021, 5, 82 10 of 18

Table 1. Definition of process conditions for the optimization task.

Stream 1 2 3 4

Composition Nitrogen Air Nitrogen Oxygen
Type hot cold cold hot

Tin [K] 300 120 140 280
Ṁ [kg/h] 6480 5400 4320 3780
pout [bar] 1.013 1.013 1.013 1.013

Fin type [4] 11.11a 11.11a 1/8-15.2 17.8-3/8W

4.2. Geometry and Mesh

As discussed in Section 3.2, some geometric parameters are excluded from the op-
timization study. This simplifies the optimization task and reflects the reality of a PFHE
design process in which some dimensions are fixed by constraints from the manufacturing
process. Hence, the width of sidebars is set to 20 mm, and the thickness of parting sheets is
set to 1.5 mm. The stacking order of the process streams is (1243 · 30), and cyclic boundary
conditions are applied so that only a single repeat of the periodic stacking order is actually
calculated by the model. The validity of this approach is discussed and established in
earlier work on the simulation model [35].

The resolution of the computational grid is 50 cells
m in the plane of each layer. In the

direction of the stacking height, each parting sheet is resolved with one cell, and each layer
is resolved with two grid cells. Earlier research shows that this resolution is sufficient to
achieve mesh independency. Similar settings were successfully used in the validation and
other applications of the simulation model [35,36].

4.3. Range of Design Variables

Considering the definitions given in the previous section, all remaining degrees of
freedom are treated as design variables in the optimization routine. These include the
overall dimensions of the heat exchanger as well as the details of the stream geometry.
The outer dimensions of a PFHE and the inlet width of each process stream are subject
to a lower and upper bound. A reasonable step size is used to speed up the optimization
process. The respective values are given in Table 2.

Table 2. Definition of value ranges for the continuous design variables.

Parameter Lower Bound Upper Bound Step Size

PFHE length [m] 0.50 2.90 0.20
PFHE width [m] 0.40 0.96 0.08
Inlet width [m] 0.14 0.34 0.04

In addition to the selection of dimensions listed in Table 2, all geometry types described
in Section 3.2 are available for each process stream. For simplification, one geometry type
(A through F) is selected per stream and then used in the distributor as well as the collector.
Hence, the widths of the inlet and outlet are always equal. For the geometry types C, D, E,
and F, the distributor and collector are mirrored horizontally because this general design
practice decreases the risk of process flow maldistribution. The simplification reduces the
number of possible geometry types for each process stream from 100 to 10. The naming
convention is chosen so that the superscript describes the header position at the hot (top)
end of the heat exchanger, as already displayed in Figure 5. In total, this definition of the
design variables allows for more than one billion possible combinations.

4.4. Optimization Settings

The optimization routine is set up in DAKOTA. All relevant settings are given in
Table 3.
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Table 3. Settings for the optimization with MOGA in DAKOTA.

Parameter Value

Population size 1000
Initialization flat_file

Crossover type multi_point_real 2
Crossover rate 90%
Mutation type replace_uniform
Mutation rate 20%

Replacement type elitist
Fitness type domination_count
Termination max. 60 generations

An initial population of 1000 unique, geometrically feasible configurations is randomly
created at the beginning of the optimization run and supplied to DAKOTA as a text file.
The rate of crossover events is set to 90%, and the two designs selected in each crossover
switch their variables at two randomly selected positions. Mutation occurs with a rate of
20% and randomly changes a single variable of selected configurations. The replacement
type elitist keeps the total population size at 1000 by allowing the required number of
individuals to survive into the next generation, while the weaker designs are replaced
by new configurations. The fitness type domination_count is used to handle the multi-
objective nature of the optimization problem. The overall fitness of each individual is
evaluated based on the number of individuals it dominates in each objective function.
A more detailed description of the optimization settings can be found in the respective
documentation of DAKOTA [37].

5. Results and Discussion

The multi-objective optimization routine does not result in a single design. Instead, it
results in a set of Pareto-optimal solutions. A Pareto-optimal design is characterized by the
fact that no other design outperforms it in each of the objective functions. In the specific
use case of this work, a design can be part of the Pareto-set because it results in the highest
efficiency at a certain combination of overall pressure drop and mass.

After the specified optimization run using MOGA with 60 generations and 1000
designs per generation, the Pareto-set contains 1842 designs. The distribution of these
designs and the selection of a single optimum are discussed in this section.

5.1. Distribution of the Pareto-Set

In the set of Pareto-optimal solutions, each objective function can be regarded as a
separate spatial dimension. A general approach to visualizing the Pareto-set for more
than two objectives is to plot multiple two-dimensional projections. The Pareto-set of this
optimization with three objective functions can be visualized as shown in Figure 7 using
three two-dimensional projections. Each design in the Pareto-set appears as a data point in
each of the three projections.

It can be seen from Figure 7 that solutions in the Pareto-set spread over a wide range of
objective function values. The combined pressure drop ∑ ∆p ranges between 110 mbar and
522 mbar, the thermal efficiency ε between 0.540 and 0.935, and the unit mass M between
282 kg and 3190 kg. For visual reference, the utopia point is also plotted in the diagrams
along with its nearest neighbor. The utopia point is a hypothetical point which shows the
best value for each of the three objective functions but does not correspond to an actual
design. The utopia point and its nearest neighbor are further addressed in Section 5.2.
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Figure 7. Two-dimensional representation of the distribution of Pareto-optimal solutions.

The wide range of results in the Pareto-set shows that there are opposing trends
between the different objectives: It is not possible for a single design to achieve the best
results in all three objectives, and a tradeoff has to be made. The distribution further
indicates that there is a correlation between mass and thermal efficiency, with higher
weight leading to higher efficiency. This behavior is expected because a larger PFHE can
generally facilitate better contact between hot and cold process streams. The correlations
between mass and pressure drop are fairly weak because even large units can show a
relatively low pressure drop and vice versa. A possible explanation is that the pressure
drop is mainly affected by the geometry type and dimensions of the inlet and outlet,
while mass is mainly affected by the outer dimensions of the PFHE. Similarly, correlations
between pressure drop and thermal efficiency are not strongly pronounced.

Figure 8 shows the relative frequency of each possible value for each design variable
among the Pareto-set. The frequencies are normalized so that uniform distribution would
result in a relative frequency of one for each possible value.
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Figure 8. Distribution of design variable values among the Pareto-set.

The distribution of parameters generally shows that nearly all possible values of the
design parameters appear in the Pareto-set. This behavior confirms the opposing trends
and the necessary tradeoff between the individual objective functions. No variable shows
a uniform distribution. This indicates that each variable is relevant for one or more of
the objectives.

Most optimal designs range between 0.7 m and 1.3 m in length, which is near the lower
boundary. However, designs with the maximum length of 2.9 m are also present in the
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Pareto-set, indicating that the higher weight caused by longer PFHEs can be balanced by
their increased efficiency. Designs with a width above 0.64 m are rare among the Pareto-set,
indicating that PFHEs with high width can hardly make up for their increased weight by
lowering pressure drop or increasing efficiency. While the inlet width of process stream
1 and 2 is distributed relatively evenly, stream 3 shows a strong tendency, and stream
4 a weak tendency, towards the upper boundary. This can indicate that stream 3 and
stream 4 are more sensitive with regard to an increased pressure drop at smaller inlet and
outlet dimensions.

Among the different types of geometries, an interesting finding is that geometry type
A does not occur in the Pareto-set, and designs with geometry type B are very rare. The
absence of designs with type A geometries is caused by the feasibility constraint. Without
further adjustments, e.g., by shortening the flow length of one stream, it is impossible to
fit the headers of four process streams on a PFHE if one stream uses the type A geometry.
The rarity of designs with type B distributor geometries could not be predicted and is
an interesting result of the optimization. Using the type B distributor in one process
stream drastically limits the remaining space for the other streams at the hot and cold
ends of the heat exchanger, which is not beneficial for the overall design according to
the results. Another interesting result is that all process streams show high frequencies
of geometry type C. This distributor and collector geometry seems to result in the best
tradeoff between pressure drop and thermal efficiency for the given process conditions. In
contrast, geometry type E appears less frequently among the Pareto-set and is likely not
ideal for the specified task.

5.2. Selection of a Design from the Pareto-Set

Without further weighting between the individual objective functions, each design
in the Pareto-set can be considered as an optimal solution. However, in an engineering
task, one design with a desirable tradeoff between the objectives has to be selected from
the Pareto-set.

One way of selecting a design is by using the utopia point as a reference. An optimal
design can be selected by picking the nearest neighbor of the utopia point. Since each
objective function is represented by a different spatial dimension, each dimension is
normalized by the distance between the best and the worst result among the Pareto-set.
The nearest neighbor of the utopia point can be selected by searching the smallest distance
between any design and the utopia point along these normalized axes. Both the utopia
point and its nearest neighbor are shown in Figure 7.

Applying this procedure, the best design for the task is 1.3 m long and 0.64 m wide.
The outer geometry of the PFHE is visualized in Figure 9, and the geometry type of each
stream is described in Table 4.

1

1

2

2

3

3

4

4
0.64 m

1.3 m

Figure 9. Outer geometry of the optimized design.
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Table 4. Inlet configuration of the optimized design.

Stream 1 2 3 4

Geometry type Dr Cl Cr Dl

Inlet width [m] 0.18 0.26 0.34 0.34

It can be seen that the design does not violate the geometry constraint but fully utilizes
the available space at the hot and cold ends of the PFHE with relatively wide inlets and
outlets for streams 2 and 3. The optimized design achieves an efficiency of ε = 0.833 at a
combined pressure drop of ∑ ∆p = 144 mbar and a mass of M = 1026 kg. The design was
evaluated in generation 26 of the optimization routine.

The temperature distribution in the optimized design is shown in Figure 10 along
with a visualization of the detailed stream geometry. It can be seen that the arrangement
of the stream inlet positions leads to a relatively even temperature distribution, indicat-
ing a balanced thermal design [11,36]. The wide inlets of each stream and the selected
distributor types favor a low overall pressure drop. The outer dimensions of the PFHE
are closer to the lower boundaries specified in Table 2, leading to a relatively low unit
weight. Hence, it is obvious how each of the objective functions influences the PFHE design.
Overall, the optimized design can be considered as a well-rounded tradeoff between the
desired objectives.

1

1

2

2

3

3

4

4

120 165 210 255 300

T [K]

Figure 10. Detailed stream geometry and temperature distribution of the optimized design.

5.3. Relative Weighting the Objective Functions

An advantage of the multi-objective optimization is that the weighting between
different objectives occurs only in the last step when a design is selected from the Pareto-set.
The weighting does not influence the optimization routine and can easily be altered after
the optimization run in order to adjust the tradeoff between the individual objectives.

The weighting can be applied by skewing the normalized axes before picking the
nearest neighbor of the utopia point. If the axis of one dimension is shortened, the weighting
of the respective objective function increases. Table 5 shows the performance data of various
optimized designs that are selected with different weighting of the objective functions.
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Table 5. Performance of various designs which are optimized for different weighting of the objective
functions.

Weights Efficiency Pressure Drop Mass
ε-∑ ∆p-M ε [-] ∑ ∆p [mbar] M [kg]

1-1-1 0.833 144 1026
5-1-1 0.877 188 1323
1-5-1 0.821 132 1020
1-1-5 0.795 187 690
1-1-0 0.920 142 3174

It can be seen that by changing the relative weighting between the objectives, de-
signs with different tradeoffs between efficiency, pressure drop, and mass can be achieved.
Increasing the weight of one objective always leads to a significant increase in the perfor-
mance of the respective objective, while the performance of at least one other objective
decreases. The weights can be adjusted arbitrarily until a desirable design is found for the
engineering task. It is also possible to fully disregard one of the objectives by setting the
according weight to zero.

5.4. Computational Effort

In the presented case study, application of the algorithm requires 60,000 evaluations
of a three-dimensional CFD model. The numerically efficient porous modeling approach
and the periodic boundary conditions facilitate the evaluation of a single simulation within
minutes on a single CPU core of a modern workstation. The simulations required for the
evaluation of a single generation of the algorithm can be evaluated in parallel, resulting in
a nearly linear performance increase with the number of available CPU cores. The results
presented in this work are calculated on a 48-core workstation with dual AMD EpycTM

7451 CPUs.
However, the computational effort for each evaluation scales with the size of the PFHE

and could drastically increase if the stacking order is not periodic. If a use case requires
time-consuming evaluations of large PFHE geometries, it is recommended to split the main
optimization task into multiple smaller tasks, each containing a subset of the optimization
variables. This approach reduces the overall number of possible variable combinations and
thus the number of required function evaluations.

6. Conclusions

This work presents an easily adjustable framework for the multi-objective optimiza-
tion of plate-fin heat exchangers. A highly detailed simulation model implemented in
OpenFOAM is coupled with the external optimization software DAKOTA via an interface
programmed in Python. The novelty of this work is that a very comprehensive simu-
lation model is fully automated and employed in combination with a multi-objective
genetic algorithm. Hence, the framework can be adjusted to fit the needs of arbitrary
practical engineering applications. A task is implemented by the selection of respective
objective functions and design variables, while the model and the optimization routine
remain unchanged.

One possible use case for the framework is the steady-state design optimization,
which is a typical task with multiple opposing objectives and many design variables. The
example discussed in this work shows the optimization of a cryogenic PFHE with four
process streams and targets high thermal efficiency, low pressure drop, and low unit weight.
The design variables are focused on the outer geometry of the apparatus and include the
arrangement of inlet and outlet positions and the distributor and collector geometry of
the process streams. The task is formulated with three objective functions and a total of
ten independent design variables. To ensure that only feasible geometries are evaluated, a
tailored geometry constraint for PFHEs is implemented. Since the required computational
resources for evaluation of the detailed PFHE simulation are relatively high, some possible
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design variables are excluded from the study and reasonable upper and lower boundaries
are used.

The resulting set of Pareto-optimal solutions gives a good overview of the performance
envelope that is achievable under the defined conditions. Both the extension and shape
of the Pareto-set and the distribution of design variables among PFHE designs in the set
indicate the opposing tendencies of the objective functions, highlighting the necessity of a
multi-objective optimization. The best design is selected based on the smallest distance
from the utopia point and shows a reasonable geometry with an even tradeoff between
the objectives. Relative weighting of the individual objectives can be applied during the
selection. Hence, the tradeoff can be steered towards a better fulfillment of a single objective
if required.

Application of the optimization framework can yield the fully automated, detailed
design of a multi-stream PFHE. The presented workflow is adaptable to any application
with multiple objectives and can solve reappearing engineering questions with highly
reduced manual labor. This is achieved because a detailed and comprehensive simulation
model is used in the optimization framework. Future research could show an application
of the framework in a more specialized tasks from the design or operating phase of a PFHE.
Another possible topic could be a comparison of the performance of different optimization
algorithms in a specific use case.
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Abbreviations
The following abbreviations are used in this manuscript:

PFHE plate-fin heat exchanger
MOGA multi-objective genetic algorithm
CFD computational fluid dynamics
Symbols
Ċ heat capacity flow J/(K s)
cp specific isobaric heat capacity J/(kg K)
g gravitational acceleration m/s2

h specific enthalpy J/kg
k specific kinetic energy J/kg
M mass kg
Ṁ mass flow kg/s
T temperature K
t time s
p pressure Pa
Q̇ heat flow W
v velocity m/s
V volume m3

x set of variables -
f (x) evaluation result -
ε thermal efficiency -



ChemEngineering 2021, 5, 82 17 of 18

λ thermal conductivity W/(m K)
τ stress tensor Pa
$ density kg/m3

∑ ∆p overall pressure drop mbar
ω$v source term in momentum equation kg/(m2 s2)
ωh source term in energy equation W/m3

Sub- and superscripts
in inlet
out outlet
cold cold stream
hot hot stream
min minimum
max maximum
i stream index
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