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Abstract
The generous application of robot-assisted minimally invasive surgery (RAMIS) promotes human-machine interaction (HMI). Identifying various beha-

viors of doctors can enhance the RAMIS procedure for the redundant robot. It bridges intelligent robot control and activity recognition strategies in

the operating room, including hand gestures and human activities. In this paper, to enhance identification in a dynamic situation, we propose a multimo-

dal data fusion framework to provide multiple information for accuracy enhancement. Firstly, a multi-sensors based hardware structure is designed to

capture varied data from various devices, including depth camera and smartphone. Furthermore, in different surgical tasks, the robot control mechan-

ism can shift automatically. The experimental results evaluate the efficiency of developing the multimodal framework for RAMIS by comparing it with a

single sensor system. Implementing the KUKA LWR4+ in a surgical robot environment indicates that the surgical robot systems can work with medi-

cal staff in the future.
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Introduction

Background of robot-assisted minimally invasive
surgery

Surgical robots can perform many kinds of operations with

higher accuracy and flexibility, which is significant to achieve

accurate, safe, and minimally invasive surgery. Therefore,

robot-assisted minimally invasive surgery (RAMIS) (Su et al.,

2021a) has attracted more attention over the past decades.

The RAMIS system consists of three parts: a teleoperated

console, a slave manipulator system, and the teleoperation

control system (Caccianiga et al., 2020). Doctors use local

manipulators to remotely operate surgical instruments in

patients and observe the operating environment through a

three-dimensional (3-D) endoscopic camera (Milstein et al.,

2018). Compared with traditional minimally invasive surgery,

minimally invasive surgery (RAMIS) has a more delicate

operation, clearer vision, and a more comfortable operation

process. Besides, patients obtain all the benefits of traditional

minimally invasive surgery, such as small incision size, short

wound healing time, less pain, and low risk of surgical infec-

tion (Enayati et al., 2016), which promotes the broad applica-

tion of RAMIS. However, compared with traditional

minimally invasive surgery, the evidence of improved prog-

nosis in patients with RAMIS is unclear in some procedures,

and the application of RAMIS in other operations is still lim-

ited. At present, some limitations of RAMIS can be alleviated

by optimizing the controller of the system and the guidance

approaches so that the doctor’s operation will be more precise

(He et al., 2020). Compared with traditional open surgery,

RAMIS has made significant progress in a large number of

intervention surgeries. RAMIS provides a fantastic potential

for further improvement of MIS. Many RAMIS platforms

on the market, such as Da Vinci, Blu ray, and versions. They

are convenient for operation with high-definition 3D vision

and various intelligent surgical tools (Konstantinova et al.,

2014). However, the high cost of custom-made surgical robots

limits the hospital’s purchase of them. Industrial robots with

redundant manipulators, such as the KUKA robot, have

been successfully developed with high-performance control-

lers for decades. The lower cost of specialized surgical robots

has increased their medical application prospect Chen et al.

(2019, 2020), especially in RAMIS.
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Human activity recognition using multi-sensor fusion

Sensor-based human activity recognition (HAR) has been

widely used in various fields, including intelligent medicine,

smart home, and sports activities. In the past decade, with the

development of sensor technology and the reduction of sensor

equipment cost, various sensors are widely used in human

activity recognition (Mario, 2018). HAR based on multi-

sensor fusion has essential application value for guiding

RAMIS. The rapid development of artificial intelligence (AI)

technologies provides many effective methods to build a HAR

classifier. Many HAR models have been proposed during the

last 10 years by manually extracting typical features from the

raw signals. A deep convolutional neural network for efficient

HAR using smartphone sensors was proposed in Tufek et al.

(2019), and features were automatically extracted from raw

data. A deep belief network (DBN) was trained with features

extraction from raw data of human activities by kernel princi-

pal component analysis (KPCA) and linear discriminant anal-

ysis (LDA) in Hassan et al. (2018). A kernel extreme learning

machine (QPSO-KELM) based on kernel discriminant analy-

sis (KDA) and quantum-behaved particle swarm optimization

was designed to extract features and enhance the accuracy of

the HAR system (Alharthi et al., 2019). A classifier based on

multiple support vector machines (SVMs) was proposed, and

specific SVM models were trained respectively for each type

of feature (Mondéjar-Guerra et al., 2019). A transition-aware

human activity recognition (TAHAR) system architecture

based on SVMs was proposed, realizing real-time classifica-

tion with a series of inertial sensors (Reyes-Ortiz et al., 2016).

A new fusion model was proposed in Huynh-The et al. (2020).

In the fusion model, manual features and in-depth features

are fused by a multi-class SVM classifier. Essentially, SVM is

of a convex quadratic optimization problem with linear

inequal constraints. SVM can separate binary class data from

one class to another through searching for the optimal separ-

ating hyperplane (Mathur and Foody, 2008). SVM was used

to classify the spatiotemporal parameters of the preoperative

gait of patients with knee osteoarthritis (Naik et al., 2018). An

augmented feature space was established by using a combina-

tion of SVM and hidden Markov model (HMM) in robot-

assisted surgical systems (Tatinati et al., 2014). Based on

multi-sensor HAR, the data collected by multi-sensor need to

be fused. Researchers have proposed different data fusion

strategies for multi-sensor data fusion (Gravina et al., 2017).

However, using traditional machine learning (ML) methods

for data fusion, each data fusion strategy has advantages and

disadvantages. A single sensor’s ability to recognize that

human activity is limited, and multiple sensors can provide

more recognition ability. More complex activities can be iden-

tified by processing and analyzing the data collected by vari-

ous sensors (Wang et al., 2018). However, when using

multiple sensors for activity recognition, some sensor data

play a decisive role in the activity recognition model, while

others may have negative effects (such as noise or damaged

signals) in the learning process (Norgaard et al., 2019).

Moreover, when using multiple sensors to identify activities,

some sensors are not effective for some activities. Some redun-

dant data will increase the amount of calculation and may

lead to an overfitting phenomenon, which may deteriorate the

classification model (Ehatisham-Ul-Haq et al., 2019).

Therefore, multi-sensor data fusion is of great significance.

Multimodal framework for HAR

Therefore, this paper discusses a multi-sensor fusion HAR

based on the SVM algorithm. Human activities will be col-

lected and preprocessed by a multimodal sensor fusion sys-

tem. Then, we use SVM-based model to classify human

behaviors and intentions. The ensemble learning-based SVM

by using the fusion of data preprocessing and features extrac-

tion is explored. Some studies work about imbalanced data

classification with SVM has been achieved. The study for a

multi-class SVM ensemble learning algorithm has been

explored on HAR’s RAMIS application occasion. In the

robot’s operational space (Gao et al., 2021), the robot’s con-

trol strategy is automatically switched according to different

surgical tasks and human activities. The proposed HAR-

RAMIS method is a step forward in exploring the higher-

level surgical knowledge given by artificial intelligence tech-

nology so that more surgical robots can carry out the intelli-

gent and efficient operation and cooperation. In our previous

works, a multi-sensors-based HAR system was proposed to

monitor breathing patterns during different activity (Qi and

Aliverti, 2019). The framework integrated both physiological
and physical sensors to capture multiple data. Also, a

smartphone-based HAR framework is proposed by combin-

ing multiple signals collected from the inertial measurement

unit (IMU) sensors (Qi et al., 2020).
In this article, we propose a multimodal data fusion frame-

work to identify elaborate behaviors and hand gestures. A

hardware wireless connection system is designed to collect 3D

joints and IMU data simultaneously for providing more infor-

mation to increase the recognition accuracy. The following

items list the contributions of the proposed multimodal data

fusion framework:

� A wireless connection hardware system, is designed to

capture multiple data simultaneously;
� A multimodal data fusion framework is proposed to

process and analyze the raw data.

The paper is organized into the following four sections.

The general architecture of the proposed multimodal data

fusion framework and the implemented wireless connection

system are described in Section 2. Section 4 shows the perfor-

mance evaluation of the proposed SVM-based modal by com-

paring with other ML models. Section 5 summarizes the

achievements of this article and delineates further work.

Methodology

The multimodal data fusion framework in RAMIS

The scenario of the multimodal data fusion operating room is

depicted in Figure 1. It uses Kinect cameras, IMU sensors,

and virtual reality (VR) techniques to capture the mentioned

data, combined to achieve complex instrument operation pro-

cedures. To enhance the recognition rate, we collect various
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data, including 3D joints, orientation, acceleration, and angu-

lar velocity (Li et al., 2017). The surgeon’s behaviors are sig-

nificant to be monitored, which contributes to the intelligent

behavior of the robot. In order to avoid interference and pos-

sible collision, different data based on IMU, electromyogra-

phy (EMG) sensors, and depth cameras are collected to

establish the classifiers. Then, the position, action intention,

and direction can be predicted.
According to the given scenario in the surgery room, mul-

tiple data are collected using several devices. Figure 2 shows

the procedure from data collection to analyzing. Both depth

data and signals are captured from depth cameras and sen-

sors (e.g., IMU and biosensors), including 3D joints and

physical and physiological signals. In the data analyzing unit,

this information is processed in a fixed procedure. First, the

depth vision data should be transferred into the body frame

(calibration). Then, the existing noises and baseline drifting

are removed from the raw signal because they will affect com-

puting physiological parameters’ accuracy. Several signal pro-

cessing algorithms are combined to solve these problems,

including wavelet denoising, baseline drifting removal,

Kalman filter, and particle filter (Su et al., 2020b). Notably,

Figure 1. The general scenario in the operating room for human activity and hand gesture recognition using multimodal fusion-powered devices.

Figure 2. The procedures of data collection, processing, and modeling.
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the usable range should be adjusted based on the raw data/

signal. The doctor’s directions and positions will then be cali-

brated on the depth data (3D joints) for accuracy enhance-

ment. For acquiring suitable segments, all data are divided

into several data parts with the same detection length. In this

paper, the SVM approach is proposed to build the classifier.

The 3D joints data are used to label the segments; then, the

SVM classifier can be trained based on these labels.

Meanwhile, the SVM-based classifier is established using mul-

tiple data, including depth vision, IMU signals, and biosensor
data. Where acceleration, angular velocity, and direction are

the primary information for identifying the activities. The

operator carries more IMU sensors, which can provide multi-

ple data for recognizing complex motions or gestures (see

Figure 3). Meanwhile, it reduces unnecessary interference

during the surgical operation by perceiving action intention

(Yang et al., 2018).
In the real operation scene, it should consider achieving

smoothness, stability, and safety (Li et al., 2020). The multi-

modal system also needs to sense and rearrange the priority
tasks. Hence, it should utilize a continuous adaptive control

approach to ensure the level of switching of the tasks, shown

in Figure 4. It consists of two primary modules of the event-

driven and hierarchical control architecture, where the SVM

algorithm is implemented to identify human activity and hand

gestures by adopting multiple data.
In the RAMIS, the serial robot’s redundancy can be uti-

lized to accomplish manipulability optimization, compliant

safety enhanced strategy, human-like behavior, and remote

center of motion (Atawnih et al., 2014; Sandoval et al., 2018).

Figure 4 displays the three levels control objectives. Firstly, it
needs to ensure a successful surgery during RAMIS (Liu

et al., 2020). Secondly, the small incision on the abdominal

wall is respected by producing a kinematic constraint, known

as a remote center of motion (RCM) (Qi et al., 2019; Wang

et al., 2019). Thirdly, extra tasks are utilized by the other

redundancies of the robot arm (Li et al., 2019; Qi et al., 2020;

Su et al., 2020a, 2021b).

SVM-based modeling

In Figure 4, the operators’ behavior needs to be monitored

by the SVM-based classifier. This article considers using

the SVM method to build the multi-class classifier for

recognizing four hand gestures and several activities.

Shortly, the SVM approach can be described by the fol-

lowing notations.
The collected data are divided into training and testing

parts. The data couple (xi, yi)
N
i= 1 is set as the training data

set, where xi 2 R
d is the i th input matrix and yk 2 R

1 is the

one dimension output. The constructed classifier form is

y(x)= sign½
XN

i= 1

aiyic(x, xi)+ b� ð1Þ

a and b are the parameters set. The typical function of the

SVMmodel c can be chosen as linear SVM, polynomial SVM

of degree p, radial basis function (RBF) SVM, or two layer

neural SVM.

c=

xTi x

xTi x+ 1p

exp�kx�xik2
2
=s2

tanh½kxTi + u�

8>><
>>:

ð2Þ

where s, k and u are constants, and the classifier is con-

structed by

Figure 3. The multiple devices based recognition system.
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vTu(xi)+ b ø 1, if yi = + 1,

vTu(xi)+ b ø � 1, if yi = � 1
ð3Þ

which is equivalent to

yi½vTu(xi)+ b�ø 1, i= 1, . . . ,N ð4Þ

where u( � ) is a nonlinear function which projects the input
space into a higher dimensional space.

The multisensors wireless connection
system

Figure 5 describes the data processing procedure from the
capture module to the vision computer. The considered multi-
ple signals would be captured by the three devices, namely
Kinect V2 camera, IMU sensors, and Myo armband. The

former two devices are used to identify human activities,

while the depth vision and the Myo armband can be adopted

to recognize hand gestures. Finally, the collected data are

saved and processed in the server unit.
The considered sensors of this hardware system are listed

as follows:

� Two cameras are embedded in the Kinect V2 sensor

(Microsoft, USA). One is 1920x1080 pixels RGB cam-

era, and the other is 512x424 pixels infrared. The hori-

zontal and vertical depth-sensing are 70 and 60

degrees. The frame rate is set up to 30Hz.
� Three sensors (i.e., accelerometer, magnetometer, and

gyroscope) are included in the 9D IMU (WIT, China).
� The server computer aims to save the captured data

with 64GB RAM, i9-9900K (3.6 GHz) CPU, and

Quadro M5000 GPU.

Figure 4. The event-driven scheme based on control model and SVM classifier.

Figure 5. The hardware system structure for data collection and processing.
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� The display equipment is the processor with i7-

4720HQ CPU (2.60GHz) and 8GB RAM.

Experiments

To evaluate the performance of the proposed multi-sensors

system, we design two experiments with the following proto-

col. The first one aims to verify HAR’s identification ability

based on the proposed SVM classifier using IMU or Kinect

data. The second one is to prove hand gesture recognition

capability by using Myo armband and Kinect. The compari-

son results can not only evaluate the classification ability but

also prove the capability to recognize more activities or hand

gestures.

HAR

We invited 10 volunteers aged 18 to 35 to participate in this

experiment, including five men and five women. They were

asked to do five typical activities in the operating room, that

is, walking, sitting, standing, bending over forwards, and a

series of transfer motions. Each activity had been done for

one minute. These participants carried two IMU sensors in

the left pant’s pocket and on the waist. 3D joints data were

collected by the Kinect camera to calibrate the results of the

SVM classifier. Finally, there are 9000 samples collected based

on the same sampling frequency (30Hz) of the two devices.

We adopt the leave-one-out strategy to evaluate the accuracy

and SVM classifier’s speed of the IMU and Kinect sensors.

The data collected from nine subjects is adopted to train the

SVM modal, then the last one for testing. The IMU sensors

were carried on the waist and pocket. The classifiers were

trained based on the selected datasets of nine subjects, while

the last one was used to test the classification accuracy.
We compared the recognition rate among six classifiers,

namely multi-class SVM, k-nearest neighbor (k-NN), differ-

ent types of single neural networks (SNN), and multiple

neural networks (MNN). This paper sets 60 and 80 nodes in

the single hidden layer of SNN to build the two ANN-based

classifiers. We adopted two hidden layers to establish two

MNN models with [40, 80] nodes and [20, 100] nodes, respec-

tively. Figure 6 shows the designed multiple SVM classifiers

to identify human activities. The multi-class SVM model used

one versus one strategy.
The results will be tested 20 times for avoiding overfitting

or underfitting. Also, different types of data were collected to

explore the best combination of sensors. Table 1 presents the

classification accuracy of five activities based on the men-

tioned six ML algorithms. To verify the effect of multimodal

data fusion on the accuracy, we set up four kinds of data col-

lection methods, including IMU on the waist, IMU in the

pocket, two IMUs, and depth vision.
The performance of SVM is better than other classifiers

by comparing the accuracy. It can be noted that data from

the waist possess higher accuracy than that from the pocket.

Moreover, the combination of the two data can improve the

prediction accuracy of the models. Considering that depth

Figure 6. The schematic diagram of multi-class SVM model.

Table 1. The human activity identification results under six classifiers by combining IMU and Kinect devices.

Devices Parameters SVM k-NN SNN1 MNN1 SNN2 MNN2

IMU (waist) Accuracy (%) 72:3664:39 54:3563:22 51:2763:03 54:2662:92 59:7763:26 57:3662:52

Time (s) 0:29 0:15 1:77 2:98 2:03 3:66

IMU (pocket) Accuracy (%) 77:2663:47 60:2863:90 59:7362:98 62:9163:19 67:4862:77 65:1563:01

Time (s) 0:31 0:19 1:57 2:55 1:99 3:83

2 IMUs Accuracy (%) 82:9164:04 66:3864:89 64:2963:11 67:4963:72 72:3563:26 70:0063:53

Time (s) 0:28 0:20 1:68 2:77 2:11 4:02

2 IMUs+Kinect Accuracy (%) 88:1763:77 72:4963:13 70:9362:99 67:4962:01 78:4662:74 75:5062:11

Time (s) 0:30 0:22 1:49 2:55 1:99 3:83
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data can provide position information, we combined data

from two IMUs and Kinect to expand the data’s richness.

The fourth-row results show that it can enhance these five

activities’ classification accuracy by using more sensors.
Furthermore, the prediction time of human activity shows

that SVM is a faster classifier than other ANN models.

Although the time of the k-NN algorithm is the fastest, its

classification accuracy is low. Therefore, the multi-class SVM

has the advantages of high accuracy and fast recognition, and

it does not require high hardware computing ability due to its

simple structure, which determines that SVM can be used as

an ideal classifier of human activity.

Hand gesture recognition based on Myo armband
and Kinect

Figure 7 demonstrates the recognition process of hand ges-

tures. The same 10 participants wore the Myo armband on

their forearms and performed four-hand gestures, that is, two,

five, eight, and 10. In this experiment, the surface EMG sig-

nals and depth data were collected to train different classifiers.

Similarly, to verify the superiority of data fusion, different

types of sensors were combined to compare the six models,

including Myo armband, Kinect, and IMU. The data col-

lected from nine subjects are used for training the SVM

modal, while the last one was for testing. Besides, we used the

cross-validation method and tested the results 20 times to

improve the data’s credibility.
Table 2 presents the accuracy of four gesture recognition

based on the combination of different models and sensors. It

can be seen that the SVM classifier is the most accurate model

to recognize hand gestures. Furthermore, the data collected

by the combination of EMG signals and depth vision can

train a better classifier than a single sensor. However, the data

based on the IMU sensor can not be used to recognize hand

gestures. On the other hand, the recognition time of hand ges-

tures also reflects the superiority of SVM. It can balance the

recognition accuracy and speedwell.
These two experimental results present that the HAR sys-

tem based on multi-class SVM can distinguish human activi-

ties and recognize various hand postures accurately and

quickly. Moreover, the method based on multimodal data

fusion can further enhance classification accuracy.

Conclusion

A multimodal data fusion framework to identify human activ-

ities and hand gestures are proposed in this paper. It adopts

multiple sensors to capture different human body data, such

as IMU, Myo armband, and Kinect camera. By comparing

the trained SVM classifier’s performance among these sen-

sors, multi-class SVM based on data fusion can construct clas-

sifiers of higher accuracy and faster recognition compared

with other algorithms. Notably, combining multiple sensors

can get better performance of the system than using a single

sensor. Given the obtained results, ML-based methods are

used to identify human behaviors and intentions, which can

promote intelligent interaction between humans and robots

and further improve operational safety and efficiency. These

advantages show their potential value in future RAMIS.
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Figure 7. The diagram for recognizing four hand gestures using Myo armband and Kinect camera in the surgery environment.

Table 2. The multiple class hand gestures identification results under six classifiers by combining IMU and Kinect devices.

Devices Parameters SVM k-NN SNN1 MNN1 SNN2 MNN2

Armband Accuracy (%) 86:3563:99 80:0363:26 77:5864:78 82:5463:03 80:0363:31 82:1763:05

Time (s) 1:08 0:85 2:07 3:02 2:58 4:14

Armband & camera Accuracy (%) 90:2664:04 83:2863:98 80:3365:38 85:2863:64 84:1762:84 86:3662:47

Time (s) 0:94 0:79 2:55 3:11 2:82 4:21

IMU sensors Not work

2 IMUs sensors Not work
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