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Abstract
Purpose: To evaluate the benefit of the additional available information present in spectral CT datasets,
as compared to conventional CT datasets, when utilizing convolutional neural networks for fully
automatic localisation and classification of liver lesions inCT images.Materials andMethods:
Conventional and spectral CT images (iodinemaps, virtualmonochromatic images (VMI))were
obtained from a spectral dual-layer CT system. Patient diagnosis were known from the clinical reports
and classified into healthy, cyst and hypodensemetastasis. In order to compare the value of spectral
versus conventional datasets when being passed as input tomachine learning algorithms, we
implemented aweakly-supervised convolutional neural network (CNN) that learns liver lesion
localisationwithout pixel-level ground truth annotations. Regions-of-interest are selected automati-
cally based on the localisation results and are used to train a secondCNN for liver lesion classification
(healthy, cyst, hypodensemetastasis). The accuracy of lesion localisationwas evaluated using the
Euclidian distances between the ground truth centres ofmass and the predicted centres ofmass.
Lesion classificationwas evaluated by precision, recall, accuracy and F1-Score.Results: Lesion
localisation showed the best results for spectral informationwith distances of 8.22±10.72mm,
8.78±15.21mmand 8.29±12.97mm for iodinemaps, 40 keV and 70 keVVMIs, respectively.
With conventional data distances of 10.58±17.65mmweremeasured. For lesion classification, the
40 keVVMIs achieved the highest overall accuracy of 0.899 compared to 0.854 for conventional data.
Conclusion: An enhanced localisation and classification is reported for spectral CTdata, which
demonstrates that combiningmachine-learning technologywith spectral CT informationmay in the
future improve the clinical workflow aswell as the diagnostic accuracy.

Introduction

The liver is a common site for malignant and benign
lesions. Primary liver cancer causes the 2nd and 6th
highest number of estimated cancer deaths for men
and women worldwide [1]; additionally, the liver is
one of the most frequent sites for metastatic spread.
There is a rising number of incidentally discovered

lesions in the liver [2], due to the increasing use and
sensitivity of diagnostic imaging modalities such as
ultrasound, magnetic resonance imaging (MRI) or
computed tomography (CT). Although a majority of
incidentally detected lesions are benign, the lesion type
is often unclear at the time of initial discovery [3].
Benign lesions in the liver include hepatic cysts, which
are abnormal fluid filled spaces inside the liver. They
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are relatively common with an estimated incidence of
2.5% in the normal population [4], and usually do not
present any symptoms [5]. Malignant lesions include
primary cancers such as hepatocellular carcinoma
(HCC) as well as metastases. 40%–50% of patients
with a primary tumourwill develop hepaticmetastases
[4]. The distinction between benign and malignant
liver lesions is crucial for an appropriate and individual
treatment of each patient.

In 2006, spectral or dual-energy CTwas first intro-
duced into the clinical routine [6, 7]. During a spectral
CT acquisition, two datasets are recorded via different
x-ray spectra (e.g. 80 kVp & 140 kVp) [8, 9] or by
energy resolving detectors [10, 11]. This technology
can provide information on the chemical composition
of different tissues and materials in the human body
(e.g. kidney stones [12]) by measuring the energy and
material dependent attenuation coefficient. One spec-
tral CT feature which allows improved detection,
depiction and characterization of liver lesions in con-
trast enhanced scans is virtual monoenergetic images
(VMIs) [13, 14]. VMIs mimic a CT scan acquired with
a monoenergetic source and can be clinically calcu-
lated for the energy range 40–200 keV [15]. If image
noise is treated appropriately, low VMIs (<70 keV)
offer an improved iodine contrast and lesion to par-
enchyma contrast since the energy setting is moving
closer to the k-edge of iodine [16, 17]. In addition,
spectral curves representing HU values as a function of
VMI energy values in the portal venous phase can be
used quantitatively to classify whether tumors are
benign ormalignant [13].

An early implementation of computer-aided diag-
nostic (CAD) systems to support the classification of

liver lesions can be found in Gletsos et al [18]. Here, a
hand-crafted feature vector is used to discriminate
between normal liver, hepatic cysts, hemangiomas and
hepatocellular carcinomas. Starting in computer
vision, convolutional neural networks (CNNs) were
shown to performwell at advanced tasks such as object
classification [19]. Classification of liver lesions can
also be performed with CNNs [20]. However, the
input to the network usually needs to be a regions-of-
interest (ROIs) around the lesion manually selected by
a radiologist. Additionally, deep neural networks
require a vast number of training samples to optimise
all parameters. In the medical domain however, there
will often only be a limited amount of labelled samples
to train with. Therefore, it is common to build new
networks on top of pre-trained architectures such as
AlexNet or Resnet-50 [19, 21]. Another difficulty in
the medical domain is the acquisition of ground truth
annotations, as they are usually provided by medical
experts. If only image-level labels are available,
weakly-supervised learning can still produce localisa-
tion [22, 23]. A common approach is to use the activa-
tion of a layer within the network to find the part of the
input image that influences the network’s decision the
most [24, 25].

Automatic liver lesion classification can poten-
tially benefit from spectral CT data [26]. The mean
intensities of the lesions vary for different VMIs and
especially at lower energies, the contrast between the
different types of lesions is significantly increased
[13, 14]. In the current work, the benefits of spectral
CT in comparison to conventional CT for fully auto-
matic localisation and classification of liver lesions
with different weakly-supervised CNN models is

Figure 1.Pipeline of the localisation and classificationworkflow. After the pre-processing, the data is fed into theweakly-supervised
localisationCNN.The output gives a classification into ‘healthy’ and ‘lesion’ and activationmaps indicating the lesion position. A
heatmap can be produced by using linear interpolation. A region-of-interest can be automatically selected from the activationmap
and is fed into the second network. This CNNperforms the classification into ‘healthy’, ‘cyst’ and ‘metastasis’. The localisation results
from theweakly-supervised network on the training set are used for the training of the second network. Similarly, the validation and
test set are passed through the entire workflowwithoutmanual interaction. The data sets are described in detail in themethod section.
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evaluated. The proposed CNN-based method consists
of an initial stage for localisation of anomalies and a
second stage for classification of liver lesions (see
figure 1).

Methods

Data set and pre-processing
In this retrospective and IRB approved study, all CT
images were selected from the Picture Archiving and
Communication System (PACS). The data was
acquired with a dual-layer spectral CT (IQon Spectral
CT, Philips Healthcare, Eindhoven, The Netherlands)
from 2016–2017. VMIs from 40–140 keV and iodine
concentration maps were calculated. Conventional
and spectral reconstructions of each dataset were
transferred to a research environment for software
development (IntelliSpace Discovery, Philips Health-
care, Eindhoven, TheNetherlands).

All CT scans were acquired with contrast enhance-
ment using standard clinical iodine contrast agent
(Imeron 400, Bracco, Konstanz, Germany). The ima-
ges were taken during the portal venous phase
(delayed phase) 70 s after complete contrast agent
injection with a slice thickness of 0.9 mm. The scans
were performedwith 120 kVp, 0.984 pitch, 0.33 s rota-
tion time, 64×0.625 mm collimation and 3D dose
modulation, resulting in an average CTDIvol value of
10.6±3.5 mGy and an average DLP value of
353.0±137.85 mGy. All images had a matrix size of
512×512, the field of view was adjusted to patient
size, resulting in different resolutions. For the test set,
the in-plane pixel size ranged from 0.68 mm to 0.98
mm. For all images, a liver segmentation tool available
in the IntelliSpace Discovery platform and based on
the algorithm described in [27] was used to segment
the livers automatically. The segmentation mask,
which was obtained using the conventional images,
was applied on all corresponding spectral images of
the patient. The segmented liver images were pre-pro-
cessed before being used in the neural network. All
conventional and VMIs were clipped between −100
and 400HUproviding an ideal windowing for the liver
[28]. The values were then normalised to [0,1]. The
iodine maps were normalised to [0,1] without clip-
ping, unless strong artefacts appeared. Finally, the
image was cropped to contain the whole liver with a
small border and all slices were rescaled to 224×224
pixels in order to generate the correct input size for the
pre-trained network (see figure 1).

Patient population
This study included data from 172 different patients,
selected from the PACs system by a keyword search. 33
patients with one or multiple cysts, 57 with one or
multiple hypodense metastases and 82 patients with-
out liver lesions were included where all cases were
verified to meet the selection criteria by an expert

radiologist. The same expert radiologist also re-
confirmed the correctness of each lesion classification
as it appears in the original clinical report. For patients
with lesions, only slices containing a part of a lesion
were used during the training. Although the initial
image dataset did include a single case that contained
multi-labelled images, this case was disregarded from
final dataset used in the study. This yielded a total of
1187 slices with cysts, 5226 slices with metastases and
12236 slices with healthy liver tissue. The available
patient data was split into a 60% training, 20%
validation and 20% test set. The slices of an individual
patient were always fully contained in one set. Due to
the highly imbalanced number of slices per class, only
parts of the whole dataset were used. For the cyst class,
all available slices were used. For the metastasis and
healthy class, slices were selected automatically always
skipping a fixed number of slices. For the training of
the networks, the classes were balanced to contain
50% healthy cases and 50% lesion cases. The slices
with lesions were composed of 50% cysts and 50%
metastases slices, resulting in 1439, 704 and 740 slices
for healthy, cyst and metastasis cases in the training
set, respectively.

The test set contained a total of 739 slices that were
used for the final evaluation of the network after train-
ing. These images originated from 17 patients without
lesion, 5 with cysts and 11 with metastases. The num-
bers of slices for the healthy, cyst and metastasis class
were 255, 252 and 232, respectively. Slices with cysts
had between 1 and 7 lesions per slice and slices with
metastases had between 1 and 10 lesions per slice. The
size of the cysts ranged between 3–70 mm, metastases
measured between 3–108 mm. The lesions in the test
set were segmented manually and verified by an
experienced radiologist (6 years of experience) to serve
as a ground truth for evaluating the accuracy of lesion
localizations produced by the weakly-supervised CNN
algorithm.

Weakly-supervised convolutional neural network
The input to the algorithm contains axial conventional
or spectral CT slices of segmented livers (see figure 1,
Data-Pre-processing). The algorithm is composed of
three parts as follows. In the first part, two branches
emerge froma pre-trainedCNNwhere thefirst branch
classifies the image into ‘healthy’ or ‘lesion’ and the
outcome of the second branch are activation maps.
The activation map for the lesion landmarks alone is
further used. The second part of the algorithm acts as
an automatic ROI selection tool using the activation
maps of lesions as input. Both single instance learning
(SIL) and multiple instance learning (MIL) methods
were compared where in SIL a single ROI was selected
based on the location of maximum value within the
activation map and in MIL three ROIs where selected
based on clipping the activation map at 70% of its
maximal value [24] and analysing the resulting
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connected components. In the final part of the
algorithm, a CNN with a low number of trainable
parameters was trained from scratch to yield three
outputs which, after applying a softmax function,
constitutes the class prediction. For MIL three CNN
branches were trained in the final part of the algo-
rithm, each receiving one of the three input ROIs.

CNNs were trained and tested separately for the
conventional and each of the spectral results where the
workflow for the testing dataset is the same as for the
training and validation datasets (as shown in figure 1).
All the results in the following sections are reported for
test datasets. A more detailed overview of develop-
ment and implantation of our algorithm for localiza-
tion and classification can be found in the
supplemental material is available online at stacks.iop.
org/BPEX/6/015038/mmedia.

Metrics
For the evaluation of the classification, the number of
true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN)were counted and used to
calculate precision, recall, accuracy and F1-score.
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TP FN
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( )=
+

+ + +
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The local detection of lesions was evaluated with a
distance measure. The activation map of the lesion
class of each input image was up-sampled to
224×224 to match the image size using bilinear
interpolation. A threshold was set to 70% of its
maximumvaluewhich created one ormore connected
components. For each of these lesion candidates, the
centre of mass was computed. Similarly, the centres of
mass for all marked lesions of the ground truth
annotations were calculated. The Euclidian distances

between all centres ofmass for the ground truth and all
centres of mass for the prediction were calculated. For
the comparison of distances between the different data
types, only the shortest distance was saved for each
slice. The distance calculation can also be used to
calculate a localisation accuracy. The distances
between prediction and ground truth centres of mass
were used to define TP, FP and FN. There are no TN,
because there is no landmark to detect. If the distance
between a prediction and a lesion is below the defined
maximum distance, it is counted as TP. If a ground
truth centre of mass is not within the max distance of
any prediction, it is counted as FN. A prediction that is
not within themax distance of any ground truth centre
it is counted as FP. The accuracy is calculated per slice
and evaluates the detection of all lesions. Heatmaps
indicating the lesion position can be produced by
using linear interpolation on the activation map and
displaying it on top of the original CT image.

Results

Lesion classification
Table 1 shows a decreasing F1-score for higher
energies of the VMI reconstructions as measured on
the test dataset. The 40 keV VMIs produce the highest
results overall. The iodine maps also yield a high F1-
score, precision and recall. Conventional input images
achieve F1-scores which are comparable to 70 keV.
The lesion recall in table 1 quantifies how many of the
true lesion slices were classified correctly on the test
dataset. Training the network with 40 keV data yields
the highest lesion recall. The conventional reconstruc-
tion has a noticeably lower lesion recall, which means
that more lesions are misclassified. The classification
performance as measured on the test dataset was also
assessed with the ROC curves in figure 2. For the
prediction results of the test dataset, the true positive
rate is plotted over the false positive rate. A trend
similar to table 1 is visible. 40 keV VMIs and iodine
maps produce a higher ROC curve and larger area
under the curve (AUC) than conventional images and

Table 1.ClassificationResults.

F1-Score Precision Recall

InputData Type Healthy Lesion Healthy Lesion Healthy Lesion AccuracyOverall

40 keV 0.861 0.920 0.815 0.951 0.914 0.890 0.899

50 keV 0.833 0.904 0.789 0.934 0.882 0.876 0.878

60 keV 0.830 0.902 0.786 0.932 0.878 0.874 0.876

70 keV 0.805 0.887 0.758 0.920 0.859 0.855 0.857

100 keV 0.793 0.865 0.703 0.944 0.910 0.798 0.836

140 keV 0.802 0.872 0.715 0.947 0.914 0.808 0.844

IodineMap 0.845 0.909 0.791 0.946 0.906 0.874 0.885

Conventional 0.812 0.881 0.730 0.948 0.914 0.822 0.854

Classification results for the test dataset containing 739 slices from 33 patients comparing different spectral and

conventional data for the weakly-supervised CNN. For the definition of the different metrics and details on the test set see

themethod section.
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higher energies. The AUCs of the test datasets are
0.960 for 40 keV, 0.934 for 70 keV, 0.946 for iodine
maps and 0.936 for conventional images.

Lesion localisation
For the assessment of the localisation, only the positive
cases (cases with lesion) were considered since the
healthy cases do not have a specific landmark that can
be detected. With conventional data distances of
10.58±17.65 mm were measured; the results with
iodine maps yielded the lowest distances of
8.22±10.72 mm. 40 keV and 70 keV achieved
distances of 8.78±15.21 mm and 8.29±12.97 mm,
respectively, where all measurements are reported for
the test dataset. All data types produced very small
distances between ground truth and predicted lesion,
showing that the detection of one lesion in a slice with
the use of the activation maps is very accurate. With
spectral data, a smaller mean distance compared to
conventional data can be achieved. The localisation
accuracy was calculated per slice and evaluated the
detection of all lesions. Figure 3 shows the localisation
accuracy for the test dataset plotted over themaximum
distancemeasured in pixels.With an activationmap of
14×14 pixels and an image size of 224×224 pixels,

one activation map pixel was scaled up to 16×16. At
a maximum distance of 16 pixels, VMIs at 40 keV
yielded a localisation accuracy of 0.62±0.36, whereas
the conventional data reached 0.52±0.37.

Heatmap predictions for livers with cysts and
metastases are depicted in figures 4 and 5. The ground
truth can be compared to the results with 40, 70 and
100 keV spectral input data, iodine maps and conven-
tional CT input data. Big lesions were detected by all
input data types. However, the 40 keV and iodine
heatmaps performed best on the detection of smaller
lesions. The 40 keV heatmaps were more precise and
had fewer false positive results compared to the other
data types. This subjective observation agrees with the
evaluation of the localisation accuracy.

Region-of-interest selection
SIL with a ROI size of 48×48 achieved 90.1% correct
ROIs for the lesion cases on the test dataset for 40 keV
data. Iodine Maps showed 92.6% correct ROIs. Con-
ventional data could find 83.9% correct ROIs and 70
keV achieved 88.8%. The values were higher for MIL
with the same ROI size since up to three locations were
used. VMIs at 40 and 70 keV found 94.2% correct

Figure 2.ROC curves, asmeasured on the test dataset, for differentmonoenergetic images, the iodinemap and the conventional
reconstruction. The full ROC (a) and an enlarged part of the ROC (b) are shown.

Figure 3. Localisation accuracy evaluating the detection of all lesions on a slice. (a)Definition of themetric for true positive (TP), false
positive (FP) and false negative (FN). (b)Results for the localisation accuracy plotted over themaximumdistance between the
prediction and ground truth lesion centre ofmass. The accuracy is compared for the test dataset of different VMIs, the iodinemaps
and the conventional images.
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ROIs and iodine maps and conventional data pro-
duced 96.1% and 89.3%, respectively.

Lesion classification
Due to the small amount of training data, the network
can reach different results. Therefore, each training
was repeated five times and the mean accuracy with

standard deviation for the test dataset is reported in
table 2. VMIs at 70 keV achieved the highest overall
accuracy on the test set with 84.5%. The results show
only small differences between the SIL and MIL
approaches. The F1-score can be calculated per class
similar to table 1 for the first network. The evaluation
of the F1-score (table 3) and further metrics on the

Figure 4. Lesion localisation heatmaps for examples of livers with cysts. The top row shows the CT image of the liver slice and the
second rowdisplays the ground truth (GT) segmentation in red. The heatmaps for 40, 70 and 100 keVVMIs, iodinemaps and
conventional CT input data are shown. Red represents high activation, blue represents no activation.
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individual classes demonstrate that spectral data out-
performs conventional data for the lesion classes.
More lesions are classified correctly compared to
conventional input data.

Discussion

In this study, we illustrated the potential benefit of
using the combination of spectral CT and CNNs, as
opposed to CNNs and non-spectral CT, for localisa-
tion and classification of liver lesions. Both technolo-
gies have experienced increased interest over the last

Figure 5. Lesion localisation heatmaps for examples of livers withmetastases. The top row shows the CT image of the liver slice and the
second rowdisplays the ground truth (GT) segmentation in red. The heatmaps for 40, 70 and 100 keVVMIs, iodinemaps and
conventional CT input data are shown. Red represents high activation, blue represents no activation.
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years and the combination can significantly improve
the clinical workflow.

The low energy VMI reconstructions show an
improved contrast between lesions and healthy tissue.
In clinical routine, the optimal energy for VMIs with
iodine contrast agent is between 40–70 keV [7]. A con-
ventional image at 120 kVp has similar HU values to a
VMI at 70 keV [29]. Iodine maps can show the lesions
very well. Due to the lack of iodine or low iodine con-
centrations in cysts or hypodense metastases com-
pared to the surrounding liver tissue, these lesions
appear as hypodense areas. The classification results
for the weakly-supervised CNN illustrate the advan-
tage of the low energy VMIs over the other input types.
The CNN can benefit from the higher contrast
between lesions and healthy tissue, whichmeans more
slices with lesions are detected correctly for lower VMI
energies. The F1-score is higher, the lower the VMI
energy is (see table 1). The performance of the conven-
tional images is similar to a VMI at 70 keV, which can
be explained by the similar HU values in both images.
When comparing the localisation results, the same
trend can be seen for the localisation accuracy
(figure 3).

The heatmaps presented in figures 4 and 5 visually
illustrate the benefit of the 40 keV spectral data for the
task of lesion localisation. Big lesions are detected by
all input data types. However, the 40 keV heatmaps
outperform higher energy and conventional heatmaps
for the detection of smaller lesions. They aremore pre-
cise, have a higher response for small lesions and fewer

false positive detections. The iodine maps also per-
form well for the detection of small lesions, but some-
times give a lower response for the biggest lesion of the
slice, whichmakes VMIs at 40 keVoverallmore attrac-
tive for hypodense lesion detection.

A common limitation for the application of deep
learning in the medical domain is the need for radi-
ologists to select ROIs manually. In the current work,
an automatic workflow omitting the need for expert
interaction was presented. The lesions are classified
with ROIs chosen automatically based on the activa-
tion maps of the weakly-supervised CNN. The quality
of the ROIs was assessed; here, a good performance of
low energy spectral data for the lesion localisation can
be confirmed. For VMIs at 40 keV and 70 keV, more
accurate ROIs are selected compared to 100 keV and
the conventional CT input. The iodine maps yield an
even higher number of correct ROIs. Over 90% of all
selected ROIs for 40 keV VMIs were correct, showing
that this is a relatively robust and reliable way to
employ spectral CT data when an expert ROI selection
is not available.

The comparison of the different input data types
for the second network (classification into three clas-
ses - healthy, cyst, metastasis) used five repetitions of
each training, subsequently the mean values were cal-
culated (tables 2 and 3). The lesion classification
showed sound results for bothmethods (SIL andMIL)
tested in this study. Interestingly, the iodine maps per-
formed worst in the three class classification, despite
having selected the best ROIs. In the iodine map,

Table 2.ClassificationAccuracy for three classes.

AccuracyMean (Median)±Std

InputData Type SIL 48×48 pixel MIL 48×48 pixel MIL 70×70 pixel

40 keV 0.823 (0.821)±0.006 0.817 (0.815)±0.008 0.817 (0.817)±0.003
70 keV 0.844 (0.846)±0.003 0.845 (0.848)±0.015 0.845 (0.839)±0.014
100 keV 0.792 (0.796)±0.015 0.804 (0.805)±0.009 0.800 (0.792)±0.024
IodineMap 0.695 (0.701)±0.031 0.681 (0.685)±0.030 0.579 (0.574)±0.011
Conventional 0.803 (0.812)±0.025 0.835 (0.838)±0.012 0.772 (0.766)±0.015

Accuracy for three class classification with ROIs. Each training was repeated 5 times. Single instance

learning (SIL) and multiple instance learning (MIL) are compared for two different ROI sizes 48×48
and 70×70 pixels. The results are presented for different spectral and conventional input test datasets.
The test dataset contained 739ROIs (SIL) and 739 sets of three ROIs (MIL) from33 patients.

Table 3. F1-Scores per class for three class classification.

F1-ScoreMean (Median)±Std

InputData andMethod Healthy Cyst Metastasis

SIL 70 keV 0.849 (0.850)±0.004 0.830 (0.829)±0.003 0.855 (0.853)±0.006
MIL 70 keV 0.861 (0.857)±0.008 0.817 (0.827)±0.028 0.857 (0.861)±0.017
SILConv. 0.843 (0.845)±0.008 0.765 (0.797)±0.059 0.790 (0.790)±0.025
MILConv. 0.862 (0.859)±0.006 0.807 (0.817)±0.027 0.831 (0.833)±0.016

F1-Score results per class for classification with ROIs using 70 keV spectral and conventional input data. Single

and multiple instance learning are compared for a ROI size of 48×48 pixels. All results are reported for the

test dataset.
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lesions appear as dark shapes with strong contrast to
the surrounding tissue. Lesions in general can be
detected well by the network (as seen in table 1 and
figures 4 and 5), but the examples for cyst and metas-
tasis iodine maps look very similar and it is harder to
distinguish between the lesion types on this dataset. In
future studies, it will be necessary to evaluate if the per-
formance improves for hyperdense lesions. The over-
all accuracy was best for VMIs at 70 keV. The
classification into the three classes ‘healthy’, ‘cyst’ and
‘metastasis’ can be performed with 84% accuracy
despite the presence of some wrong ROIs in the train-
ing and test set.

This study had some limitations. Above all, the
study included only a small sample size which was
obtained from scans of 172 different patients and
accommodated all three target classes (hypodense
metastases, cyst and healthy) and was further split into
the training, validation and testing tests. In addition,
manual lesion segmentations, which were performed
by an experienced radiologist and served as a ground
truth,might includeminor segmentation errors which
could slightly affect the evaluation results. However,
these stated limitations exemplify the importance of
automatic algorithms such as a weakly-supervised
CNN for advancements in CAD technology. In addi-
tion, the CNN algorithms and architecture that were
used in this study for the classification and localization
of lesions are not state-of-the-art techniques but
rather standard CNNs that were utilized to demon-
strate that existing computer-vision methods can
indeed benefit from the additional information pre-
sent in spectral images. It is also important to note that
the level of improvement may depend on the specific
utilized technique and may defer for different algo-
rithms. A comparison of state-of-the-art techniques to
CNNs which take advantage of spectral information is
within the scope of a future study. Moreover, the
effects of reduced radiation dose levels and their asso-
ciated increase in image noise were not evaluated as
part of this study. Since these effects are expected to
decrease the resulting accuracies of both the conven-
tional and the spectral datasets, further study is
required to evaluate whether or not the demonstrated
benefit of utilizing spectral information is maintained
at low and ultra-low radiation dose levels. Finally, both
the training and test datasets used in this study did not
include image artifacts such as artifacts caused by
metals in the vicinity of the liver. While dual-energy
CT is known for its reduced metal artifacts compared
to conventional CT [30], further investigations are
required in order to assess the impact of metal and
other image quality artifacts on the interplay between
modernCNNs and spectral CT technology.

For future work investigating other pathologies
(e.g. hyperdense lesions, hepatocellular carcinoma)
and applying the lesion localisation to challenging
cases such as fatty livers will be of interest. Addition-
ally, spectral extensions to the algorithm studied in

this work, such as utilizing multiple spectral results as
multi-parametric input or an automatic keV selection
for maximizing the accuracy of specific algorithmic
tasks, i.e. classification versus localization, have the
potential to increase the overall accuracy of the
method. Finally, considering all contrast phases
(native, arterial, and portal venous) as input into a
CNN could further improve the diagnostic accuracy.
To achieve this goal, next generation spectral CT sys-
tems, which are equipped with photon-counting
detectors, are necessary because aligned data across
contrast agent phases can be generated [31–33]. In
summary, the current possibilities presented in this
study as well as further developments of both technol-
ogies have the potential to significantly aid the diag-
nostic decision process.

Summary statement

The combination of spectral CT and CNNs has the
potential to improve the detection and classification of
small liver lesions.
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