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In the literature, various numerical methods for the simulation of ion-transport in concentrated binary electrolytes for lithium ion
batteries can be found, whereas the corresponding transport parameters are rarely discussed. In this contribution, a novel method
for the determination of the transference number in non-aqueous electrolytes is proposed. The method is based on data from a
concentration cell and on the value of the thermodynamic factor obtained from independent measurements based on quantifying
the redox potential of ferrocene. The concentration dependent transference numbers obtained by this new method are compared to
values obtained by the classical approach, which is based on experiments in a polarization cell and a concentration cell. For the latter,
a set of commonly used and some newly proposed analysis methods as well as their theoretical justification are discussed. Using an
exemplary electrolyte (lithium perchlorate in a mixture of ethylene carbonate and diethyl carbonate), we will demonstrate that our
newly proposed method based on concentration cell experiments and a thermodynamic factor derived from independent measurements
is a more accurate approach for obtaining concentration dependent transference numbers. At the end, the experimentally determined
concentration dependent transference numbers are compared to data available in the literature.
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Numerical simulations are based on four different concentration
dependent transport parameters, namely the conductivity κ(c), the
binary diffusion coefficient D±(c), the transference number t+(c), and
the thermodynamic factor (TDF) or the mean molar activity coefficient
f±(c), respectively. The accurate determination of these parameters
is key for the reliable simulation of the charge/discharge performance
of lithium ion batteries. The conductivity κ(c), the binary diffusion
coefficient D±(c),1 and the thermodynamic factor2 can be determined
by a single experiment for each concentration. The determination of
the concentration dependent transference number is more elaborate. In
the following, an overview of various experimental techniques for the
determination of transference numbers in lithium based electrolytes
is given. In the context of this work the term transference number is
used as defined in Newman and Thomas-Alyea.3

The transference number t+(c) can be determined directly by the
Hittorf method which is discussed for polymer electrolyte solutions
by Bruce et al.4 An alternative version of the Hittorf method for
liquid electrolytes was applied by Valøen and Reimers for LiPF6 in
PC:EC:DMC (10:27:63 v:v:v).5 Since the influence of diffusion pro-
cesses on mass transport is neglected in the derivation of the Hittorf
method,5 it can be not used for an accurate determination of the trans-
ference number in general. Additionally, the noise level observed with
the Hittorf method as reported by Valøen and Reimers is too large for
the determination of the transference number as a function of the
concentration.5 On the other hand, for dilute electrolyte solutions, the
potentiostatic polarization method introduced in Bruce and Vincent6

can be used for the direct determination of the transference number.
In this work, as well as in Hiller et al.,7 the method is used for polymer
electrolytes, while Mauro et al.8 and Zugmann et al.9 applied the same
method for liquid electrolytes such as LiClO4 dissolved in PC and for
LiPF6 in various solvents, albeit at concentrations which cannot any-
more be considered as dilute electrolytes. In Zugmann et al., three ad-
ditional methods, namely the electromotive force method, the NMR
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method, and the galvanostatic polarization method are discussed.9

The electromotive method is based on data from a concentration cell
with transference,10 including concentration overpotentials. In such
an experimental setup, the transference number can be determined
either in the dilute electrolyte limit,5 where the thermodynamic fac-
tor can be assumed to be unity,3 or the functional dependence of the
thermodynamic factor on salt concentration has to be known or as-
sumed. It would also be possible to use a concentration cell without
transference,10 but it is difficult to find appropriate salt bridges for
aprotic lithium based electrolytes, which would satisfy the condition
t+ = t− = 0.5.9 The transference number can also be determined by
measuring the ionic self-diffusion coefficients.11,12 In Zhao et al.,13 the
method introduced by Bruce and Vincent6 is compared to the NMR
method, revealing that completely different values for the transfer-
ence number are obtained, even for the smallest concentrations. In
Sethurajan et al., the differences between transference numbers deter-
mined by NMR and other techniques are explained by the effect of
ion-pairing.14 In their publication, it is strictly distinguished between
the transference number which is defined based on a current fraction
versus the transport number which is defined based on the ionic dif-
fusion coefficients. In the absence of ion-pairs, both definitions are
equivalent, as can be concluded from the derivation of concentrated
solution theory presented in Newman and Thomas-Alyea.3 The most
popular method to determine the transference number is the galvano-
static polarization method. It is used for polymer electrolytes in Ma
et al.,15 Ferry et al.16 or Doeff et al.17 However, the determination
of the transference number by the galvanostatic polarization requires
knowledge about the diffusion coefficient and thermodynamic factor.
Therefore, it is necessary to perform three different experiments to
determine the transference number, which usually results in an accu-
mulation of inaccuracies from the errors in each experimental proce-
dure and due to the necessity to use arbitrary functional relationships
(e.g., assuming a concentration independent transference number in
some cases). Alternatively, the diffusion coefficient, the transference
number, and the thermodynamic factor can also be determined by
a numerical optimization approach as shown in the publications by
Georén and Lindbergh,18 Nyman et al.,19 and Lundgren et al.20 In
this approach, usually, the same or similar experiments as for the
galvanostatic polarization are performed.
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In the following, various of the aforementioned electrochemical
methods for the determination of the transference number are reviewed
regarding theoretical assumptions, experimental accuracy, and appli-
cability. Additionally, an alternative method for the determination of
the transference number based on the combination of measuring the re-
dox potential of ferrocene/ferrocenium vs. lithium salt concentration2

and a concentration cell is introduced. All discussed methods are also
investigated experimentally before the final conclusion is presented.
After presentation of the used materials and measurement setups in
the Experimental section, the relevant theoretical framework is dis-
cussed in the Theory section, summarizing the equations used for
the determination of the transference number used in the literature
as well as newly introduced analysis methods. Validity and accuracy
of the introduced techniques are analyzed and compared in the Nu-
merical Validation section. Because theoretically expected transients
are more obvious in simulated experiments, this section aids in un-
derstanding experimental data. In the Results and discussion section,
the transference number is obtained from measurements in previously
described cell setups. A short summary and a conclusion are given in
the Conclusions.

Experimental

Ethylene carbonate (EC, 50%, by weight, Sigma Aldrich, anhy-
drous, 99%) and diethyl carbonate (DEC, 50%, by weight, Sigma
Aldrich, anhydrous, >99%) were used as solvents for self-prepared
electrolytes containing lithium perchlorate (LiClO4, Sigma Aldrich,
99.99%) salt, whereby all components were mixed in an argon filled
and temperature controlled glove box (MBraun, 25◦C ± 1◦C, water
content <0.1 ppm, Ar 5.0, Westfalen, 99.999% vol). LiClO4 concen-
trations ranged from 0.1 × 10−3 to 2 M. Metallic lithium (Rockwood
Lithium, 0.45 mm, high purity) was used as counter electrode (CE)
and working electrode (WE).

In this contribution, a polarization and a concentration cell are
used for the determination of transference numbers. The polarization
cell consists of two parallel and aligned lithium electrodes which are
separated by porous separators, as described in detail in part I of
this publication, where we presented the determination of diffusion
coefficients.1 The concentration cell consists of two parallel lithium
stripes which are in contact with a stripe of glass fiber separator
soaked with two electrolyte solutions which differ in their lithium
salt concentration. To minimize electrolyte evaporation, separator and
electrodes are sandwiched between two glass plates as depicted in
Figure 1. Concentration cell potentials were measured over a time
interval of four minutes using either a handheld voltmeter (Voltcraft
VC830) inside the glove box or a potentiostat (Biologic VMP3).

Theory

In the following, the theoretical foundations of various methods for
the determination of the transference number are discussed. First, the
direct determination of the transference number for dilute electrolytes
introduced by Bruce and Vincent6 is embedded into the concentrated
solution theory. Afterwards, the classical method for the determina-
tion of the transference number in concentrated electrolytes based
on measurements in a polarization and concentration cell is shortly
reviewed. A basic element of this method is the Sand equation. In

Figure 1. Concentration cell setup for the determination of concentration
overpotentials between two lithium electrodes contacted by a glass fiber
separator soaked with an electrolyte of two different salt concentrations
(side view).

the following, the same experimental setup is used to determine the
transference number, but the Sand equation is replaced by several al-
ternative analytical relations, which so far have not been used for the
determination of the transference number. In the end of this section, a
novel method for the determination of the transference number in con-
centrated electrolytes is introduced, which is based on measurements
in a concentration cell and which makes use of the quantification of
the thermodynamic factor in an independent experiment2 based on
measuring the redox potential of ferrocene/ferrocenium vs. lithium
salt concentration (further on referred to as “ferrocene cell”).

Direct determination of the transference number by steady-state
polarization experiments.—The direct determination of the transfer-
ence number t+ for dilute electrolyte solutions is based on the appli-
cation of a constant cell potential Up until the steady-state current is
reached. Theoretically, it is possible to calculate the transference num-
ber t+ from the ratio between the initial current I0 and the steady-state
current Is. However, a correction term for variable electrode kinetics as
a result of, e.g., the SEI formation or the growth of mossy lithium has
to be considered. In the original form introduced by Blonsky et al., the
method was restricted to dilute electrolyte solutions with a constant
diffusion coefficient.21 Bruce and Vincent6 extended it to electrolyte
solutions with a variable ionic diffusion coefficient. In this extension,
it is argued that the thermodynamic factor has to be close to unity in
order to apply the dilute solution theory. However, it is also possible to
derive the method from the more general framework of concentrated
electrolyte solutions as discussed, e.g., in Doyle22 and Ehrl.,23 which
is outlined in the following (Eq. 1 to 24). Comparison of the result
obtained using this approach with the Bruce-Vincent equation will
allow to obtain a mathematical condition which has to be fulfilled for
the dilute solution theory to be applicable. The potential difference
�� between the anode A and the cathode C for a one-dimensional
approximation of an electrochemical cell is given by the integration
of Eq. 3 in part I of this publication (Ref. 1).

�� = I
∫ A

C

(
1

κ (c0)

l

A

τ

ε

)
dx + ν

ν+z+

RT

F

[
1 + ∂ ln f± (c0)

∂ ln c

]

· (1 − t+ (c0))
�c

c0
[1]

The potential difference �� denotes the volumetric intrinsic phase
average of the electric potential, I the current, A the electrode area,
l the distance between the electrodes, and c0 the initial volumetric
intrinsic phase average of the concentration.1 The porosity ε and the
tortuosity τ are parameters related to the morphology of the porous
medium and are frequently used, e.g., to obtain the so-called effec-
tive binary diffusion coefficient D±,eff = ε τ−1 D± or the effective
conductivity κeff = ε τ−1 κeff . While porosities can be measured
gravimetrically the tortuosity of porous media may be determined
from impedance measurements in symmetric cells.24 The conductivity
κ(c0), the transference number t+(c0), and the thermodynamic factor[
1 + ∂ ln f±(c0)

∂ ln c

]
are the first order approximations of the concentration

dependent conductivity κ(c), the transference number t+(c), and the
thermodynamic factor

[
1 + ∂ ln f±(c)

∂ ln c

]
.1 The coefficient ν = ν+ + ν−

is based on the stoichiometry coefficients ν+ and ν− resulting from
the dissociation of a binary salt in its components (e.g., ν = 2 for
the typical 1:1 salts used in lithium ion batteries). The gas constant is
denoted by R (8.314 J/(mol K)), the Faraday constant (96485 As/mol)
by F, and the temperature by T (in units of Kelvin).

In contrast to Eq. 8 in part I of this publication (Ref. 1) which is only
valid in the absence of current flow, an additional ohmic contribution,
accounting for the current flow through the cell, has to be considered
for the potential difference ��. The integral in Eq. 1 is equivalent
to the ohmic resistance Rel of the electrolyte solution. Therefore, the
initial potential difference ��0 during the polarization reads

� �0 = Rel,0 I0 [2]

since the concentration difference �c is very small directly after the
application of the cell potential Up. The initial electrolyte resistance
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is denoted by Rel,0. At the steady-state, the potential difference ��s

is given by

��s = Rel,s Is + ν

ν+z+

RT

F

[
1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c0))

�cs

c0

[3]

The initial and the steady-state electrolyte resistance measured by
impedance spectroscopy (high frequency resistance) can be assumed
to be identical

Rel,0 = Rel,s = Rel [4]

since the variation of the conductivity is negligible for small concen-
tration variations. It is also assumed that the concentration difference
�cS between the electrodes follows a linear concentration profile at
steady-state. Due to the known concentration profile, Eq. 6 in part I
of the publication (Ref. 1) can be used to express the concentration
difference between anode and cathode.

� cS = c (TI) = 1

z+ ν+ F

1 − t+ (c0)

D±,eff (c0)

l

A
Is [5]

In a next step, Eqs. 2 and 3 can be inserted into Eq. 4 and combined
with Eq. 5 giving the following equation

I0 ��s

Is ��0
= 1 + ν

ν2+ z2+

R T

F2

[
1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c0))2

D±,eff (c0)

· l

A c0 Rel,0
[6]

Eq. 6 simplifies to the following equation for dilute electrolyte
solutions

t+ = Is ��0

I0 ��s
[7]

if the following approximations are made according to the dilute
solution theory

1 + ∂ ln f± (c0)

∂ ln c
≈ 1 [8]

κ− ≈ F2

R T
z2
− ν− D− c0 [9]

in combination with the definitions for a binary electrolyte

(1 − t+) ≡ t− [10]

κeff

D±,eff
≡ κ

D±
[11]

t− ≡ κ−
κ

[12]

D± ≡ (z+ − z−) D+ D−
D+ + D−

[13]

t+ = z+ D+
z+ D+ − z− D−

[14]

Here, κ− is the anion contribution to the ionic conductivity and D+/D−
are the diffusion coefficients of the cation/anion.

An alternative formulation of Eq. 7 can be found

t+ = Is

(
Up − (RLF,0 − Rel,0

)
I0

)
I0

(
Up − (RLF,s − Rel,s

)
Is

) = Is

(
Up − (RLF,0 − Rel

)
I0

)
I0

(
Up − (RLF,s − Rel

)
Is

)
[15]

if the initial ��0 (see Eq. 2) and steady-state potential difference ��s

(see Eq. 3) are replaced by the following relation

� �i = Up − (RLF,i − Rel,i

)
Ii [16]

and if the assumption of a constant electrolyte resistance given in
Eq. 4 is used. Here, RLF denotes the low frequency (LF) resistance
determined by impedance spectroscopy. The low-frequency resistance
is the overall resistance of a serial equivalent circuit consisting of the
electrolyte resistance Rel and additional resistances such as kinetic
resistances or contact resistances. The subscript s indicates the steady
state and 0 the initial state. Due to small concentration variations,
the initial and steady-state electrolyte resistances Rel,s = Rel,0 can
be assumed to be equal as indicated already in the beginning of the
derivation. A similar formulation as given in Eq. 15 was introduced
by Bruce and Vincent.6

The comparison of Eq. 6 and Eq. 7 gives a mathematical condition
for the validity of the dilute solution theory and the corresponding
transport parameter:

t+ + t−︸ ︷︷ ︸
=1

⎡
⎢⎢⎢⎣ ν

ν2+z2+

R T

F2

(
1 + ∂ ln f±(c0)

∂ ln c

)
t+(c0)(1 − t+(c0))

D±(c0)

κ (c0)

c0︸ ︷︷ ︸
=1

⎤
⎥⎥⎥⎦=1

[17]

The expression in the brackets has to be equal to one for the dilute
solution theory to be applicable, since by definition the sum of the
transference numbers t+ and t− is one.

Considering that the initial low frequency resistance corresponds to
RLF,0 = Up /I0, and combining this with Eq. 4, allows a simplification
of Eq. 15 to

t+ (c0) = Is Rel

Up − (RLF,s − Rel

)
Is

[18]

which was introduced by Hiller et al.7 The advantage of this formu-
lation is that the number of parameters which has to be determined is
reduced compared to Eq. 15. In addition, the steady-state current Is is
much easier to determine than the initial current I0, which may include
additional effects such as double layer charging and a non-uniform
interface resistance.

The determination of the initial current I0 can be improved by
extrapolation of the initial time behavior of the current back to the
start of the polarization. The theoretical time behavior of the current
I (t) in such an experiment can be derived from the partial differential
equation of the form

∂c

∂t
− D∗

±,eff (c0) ∇2c = 0, in (0, l) × (0, TI) [19]

with the current I as boundary condition (BC) at anode and cathode.
This scalar transport equation results from the ion-transport equa-
tions given in part I of this publication (Ref. 1) by applying the one-
dimensional approximation for the ion-transport equations (compare
Ref. 1). The semi-infinite limit

limx→∞c = c0 [20]

is used as an additional condition and can be interpreted as c → c0 for
x → l/2, which introduces a limitation for the time range in which the
analytical solution is valid. A uniform concentration profile is assumed
as an initial condition. This boundary value problem can be solved
by Laplace transformation as shown in, e.g., Bard and Faulkner25

(Responses based on linear diffusion and a planar electrode, chapter
5.5.1) or Ehrl.23 As a result, the current I (t) at the anode as well as
the cathode can be expressed as

I (t) = Up

RLF,0
exp
(
H 2 t

)
erfc

(
H t1/2

)
[21]
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where erfc(H
√

t) is the complementary error function defined as 1 −
erf(H

√
t). The constant H is defined as

H = 2 ν

z2+ ν2+

R T

F2

1

A ε c0 RLF,0

[
1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c0))2√

D∗
±,eff (c0)

[22]

According to Bard and Faulkner,25 the factor exp(H 2t)erfc(H
√

t)
can be linearized for small values of H

√
t ,

exp
(
H 2 t

)
erfc

(
H t1/2

) 
 1 − 2 H√
π

√
t [23]

In this case, Eq. 21 can be written as

I (t) = Up

RLF,0

(
1 − 2 H√

π

√
t

)
= I0 − m#3

√
t [24]

where m#3 denotes the slope of the current I (t) with respect to
√

t .
Thus at the beginning of a steady-state potentiostatic polarization, a
linear relationship between the current flowing and the square root of
time is expected.

Determination of the transference number based on the Sand
equation, a concentration cell, and a known diffusion coefficient.—
As already indicated in the literature survey, this method is the clas-
sical approach to determine the transference number of non-aqueous
electrolytes. It is mainly used for polymer electrolytes as, e. g., in Ma
et al.,15 Ferry et al.16 and Doeff et al.17 In Zugmann et al., it is applied
to a liquid electrolyte solution.9 In contrast to the above described
method, three experiments in two different experimental setups are
necessary for the determination of the concentration dependent trans-
ference number t+(c). In a first step, the partial effective diffusion
coefficient D∗

±,eff (c) (≡ τ−1 · D±(c)) is usually determined in a po-
larization cell as described, e.g., in Ehrl et al.1 In a second step, the
polarization cell can also be used for a second experiment, in which
one can determine an additional factor of the form

f1

(
f±, t+, D∗

±,eff
0.5
)

≡
[

1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c0))2√

D∗
±,eff (c0)

[25]

However, to determine the transference number from the factor
f1( f±, t+, D∗

±, eff
0.5) defined in Eq. 25 and the partial effective diffu-

sion coefficient D∗
±, eff , a third experiment is necessary. Thus, in order

to close the system of equations, the factor
[
1 + ∂ ln f±(c)

∂ ln c

]
(1 − t+(c))

is determined in a concentration cell with transference10 in a third
step.

Sand equation (method #1).—The determination of the factor
f1( f±, t+, D∗

±, eff
0.5) in Eq. 25 is based on the analysis of the short-

term potential relaxation after a galvanostatic pulse polarization in a
two-electrode cell. In this method, the Sand equation for the concen-
tration difference �c between anode and cathode at the current inter-
ruption time TI (derived, e.g., in Bard and Faulkner, chapter 8.2.225)
is used to determine the factor f1( f±, t+, D∗

±, eff
0.5), i.e., the right-

hand-side of Eq. 25 corresponds to

f1

(
f±, t+, D∗

±, eff
0.5
)
|pulse−polarization
short−term relax. = z2

+ ν2
+

4 ν

√
π

F2

R T
A ε c0

U (TI)

Ip
√

TI

[26]

where the superscript of the function f1 indicates that the excitation
phase is a short-term pulse polarization (rather than a steady-state
polarization) and the subscript indicates that the function is defined
by the short-term behavior during the relaxation phase. Here, the
correlation between concentration and potential introduced in the first
part of this study is used.1 U (TI) is the cell potential measured directly
after current interruption. Therefore, the quality of the method can
be improved further if the theoretical short-term relaxation behavior

after the pulse is used to evaluate the cell potential U (TI) exactly at
the current interruption time TI. According to Hafezi and Newman,26

the cell potential U (t) is proportional to the artificial time τ∗

τ∗ =
√

TI√
t + √

t − TI
[27]

For the determination of the transference number t+(c), the tor-
tuosity τ of the porous medium is not required. The tortuosity τ of
the porous medium is only necessary to get the binary diffusion co-
efficient D±(c) from the partial effective binary diffusion coefficient
D∗

±,eff (c) measured by the methods introduced previously.1

Concentration cell.—In a concentration cell as introduced in the
Experimental section, the measured cell potential equals the con-
centration overpotential. In the absence of kinetic reactions at the
electrode for I = 0, the measured cell potential U is defined as

U =
∫ A

C
∇� dx = ν

z+ν+

R T

F

∫ A

C

[[
1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c))

]
· d (ln c) [28]

The theoretical background for the derivation of Eq. 28 is discussed
in the Theoretical background section in part I of this publication.1

In accordance with the concentration profile in a polarization cell,
A denotes the electrode which is in contact with the higher concen-
trated electrolyte solution and C the electrode which is in contact
with lower concentrated electrolyte solution. The measured cell po-
tential U is independent of the porosity ε and the tortuosity τ of the
interconnecting separator. Based on experiments with various com-
binations of electrolytes with high and low salt concentrations, the
factor

[
1 + ∂ ln f±(c)

∂ ln c

]
(1 − t+(c)) is fitted continuously by an nth order

polynomial.

Alternative methods for the determination of the transference
number.—The factor f1( f±, t+, D∗

±, eff
0.5) cannot only be determined

by the Sand equation, but also by alternative experiments in polar-
ization cells. However, for some of these experiments, the factor
f1( f±, t+, D∗

±, eff
0.5) is replaced by an alternative form

f2

(
f±, t+, D∗

±,eff

) ≡
[

1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c0))2

D∗
±,eff (c0)

[29]

Some methods from the literature as well as some novel approaches
will be summarized and introduced in the following sections.

Long-term potentiostatic polarization (method #2).—The same
framework as used for the direct determination of the transference
number in Direct determination of the transference number by steady-
state polarization experiments can also be embedded into a more
general framework which is also valid for concentrated electrolyte
solutions as discussed, e.g., in Doyle22 and Ehrl.23

Based on Eqs. 1–6 and Eq. 16 as well as the basic differen-
tial equations and reformulations as given in the first part of this
paper,1 the factor f2( f±, t+, D∗

±, eff ), i.e., the right-hand-side of Eq. 25
corresponds to

f2

(
f±, t+, D∗

±,eff

) |ss polarization
transition period =

[
I0

(
Up − (RLF,s − Rel

)
Is

)
Is

(
Up − (RLF,0 − Rel

)
I0

) − 1

]

· ν2
+ z2

+
ν

F2

R T

A

l
ε c0 Rel. [30]

where the superscript of the function f2 indicates that the excitation
phase is a steady-state polarization (rather than a pulse polarization)
and the subscript indicates that the function is evaluated at the end of
the polarization phase and at the beginning of the relaxation phase.
An alternative formulation for Eq. 30 can be derived when the relation
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for the initial low frequency resistance RLF,0 = Up /I0 is used:

f2

(
f±, t+, D∗

±,eff

) |ss polarization
transition period =

[(
Up − (RLF,s − Rel

)
Is

)
Is Rel

− 1

]

ν2
+ z2

+
ν

F2

R T

A

l
ε c0 Rel =

[
Up

Is
− RLF,s

]
ν2

+ z2
+

ν

F2

R T

A

l
ε c0 [31]

where the superscript of the function f2 indicates that the excitation
phase is a steady-state polarization and the subscript indicates that
the function is defined by data from the very beginning of the po-
larization experiment and on the current/potential at the end of and
after the steady-state polarization. As for the direct determination of
the transference number, Eq. 31 is advantageous compared to Eq. 30,
since less parameters have to be determined. Most important is this
context is that the determination of the initial current flow I0 which is
required for Eq. 30 is challenging, as mentioned already before.

Initial time behavior of steady-state polarization (method #3).—
The initial time behavior of the current following a steady-state polar-
ization can also be used to determine the factor f1( f±, t+, D∗

±, eff
0.5)

defined by Eq. 25. The basic derivation is given in Bard and Faulkner
(chapter 5.5.1).25 Based on the slope m#3 of the time dependent cur-
rent given in Eq. 24, this factor, i.e., the right-hand-side of Eq. 25
corresponds to

f1

(
f±, t+, D∗

±, eff
0.5
)
|ss polarization
short−term pol. =

z2
+ ν2

+
4 ν

√
π

F2

R T
A ε c0 RLF,0

m#3

I0

[32]

where the superscript of the function f1 indicates that the excitation
phase is a steady-state polarization and the subscript indicates that the
function is defined by the short-term behavior during the polarization
phase. If the requirements for the linearization in Eq. 23 are not
fulfilled, the additional information provided by Eq. 22 is limited,
since the unknown factor H cannot be separated from the time t . The
knowledge about the expected time behavior is also a good measure
for the quality of experimental results.

Short-term relaxation from a steady-state concentration profile
(method #4).—This method is based on the short-term relaxation be-
havior from a steady-state concentration profile as it has been used for
the determination of the diffusion coefficient in the first part of this
publication, starting with Eq. 16 in part I of this publication,1 which
can be reformulated to

U (t) = v

Z 2+ v2+

R T

F2

l

A ε c0
Is f2( f±, t+, D∗

±,eff )︸ ︷︷ ︸
U (TI)

·

⎛
⎜⎜⎝1 −

√
16 D∗

±,eff (c0)

πl2

√
t︸ ︷︷ ︸

m#4

⎞
⎟⎟⎠ [33]

by means of Eq. 81 with Eq. 91 and Eq. 5 of this paper. The basic
mathematical methods are given in Bard and Faulkner (chapter A.1,
A.1.4).25 Eq. 33 describes the linear relaxation of the cell potential
U (t) with respect to

√
t from its initial value U (TI) at the current

interruption time TI. Therefore, the factor f2( f±, t+, D∗
±,eff ) described

by the right-hand-side of Eq. 18 corresponds to

f2

(
f±, t+, D∗

±,eff

) |ss polarization
short−term relax. = z2

+ν2
+

ν

F2

RT

A

l
εc0

U (TI)

Is
[34]

where the superscript of the function f2 indicates that the excitation
phase is a steady-state polarization and the subscript indicates that the
function is defined by the short-term behavior during the relaxation
phase. Here, the cell potential U (TI) is the potential measured directly
after current interruption. The idea behind it is that the cell potential
U immediately reduces to U = �� upon switching to open circuit,

whereas the concentration difference �c will not have changed signif-
icantly, since diffusion takes place on a slower time scale. However, it
is also difficult to determine the correct potential U (TI) directly after
current interruption, since parasitic contributions interfere with the
signal as a result of the concentration difference �c between anode
and cathode. To overcome this problem, the linear relation of the cell
potential U (t) with respect to

√
t as derived in Eq. 33 can be used to

determine the cell potential U (TI) exactly at the current interruption
time TI by means of extrapolation. In addition, the observation of the
time behavior gives a good indication for the quality of experimental
data.

Long-term relaxation from a steady-state profile (method #5).—As
for the determination of the diffusion coefficient described in in part I
of this publication,1 the long-term relaxation behavior of the steady-
state concentration profile at current interruption time TI provides
information for the determination of the factor f2( f±, t+, D∗

±, eff ) de-
fined by Eq. 18. In contrast to the determination of the diffusion
coefficient, here a mathematical description for the prefactor C1 is
necessary (see Eq. 12 in Ref. 1). To be able to determine the prefac-
tors C2n−1, a steady-state concentration profile is required as initial
condition, whereas it is arbitrary how the steady-state concentration
profile is obtained. The derivation is discussed, e.g., in Polifke and
Kopitz27 (chapter 14.1) or in Ehrl.23 As a result, the time dependent
concentration difference �c(t) can be expressed as

�c (t) = 8
�c (TI)

π2
exp

(
−π2 D∗

±,eff (c0)

l2
t

)
[35]

Higher order terms are already neglected in Eq. 35. As usual, the
expression for the concentration difference �c(t) given in Eq. 35 can
be related to the potential U as explained in the section Theoretical
background of the first part of this study:1

ln U (t)

= ln

(
8 ν

z2+ ν2+

R T

F

[
1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c0))

1

π2

�c (TI)

c0

)

−π2 D∗
±,eff (c0)

l2
t = O (TI) − π2 D∗

±,eff (c0)

l2
t [36]

The long-term relaxation of the cell potential ln U (t) is propor-
tional to the time t , whereas O(TI) stands for the first term on the right
hand side of the equation, which corresponds to the value of ln U(t) ex-
trapolated to time T1 in the relaxation phase (shown later in the lower
inset of Figure 3b). Based on the constant factor O(TI) and Eq. 5, it is
possible to find the following relationship for the right-hand-side of
the factor f2( f±, t+, D∗

±, eff ) defined in Eq. 29

f2

(
f±, t+, D∗

±,eff

) |ss polarization
long−term relax. =

z2
+ ν2

+
8 ν

π2 F2

R T

A

l
ε c0

exp O (TI)

Is

[37]

where the superscript of the function f2 indicates that the excitation
phase is a steady-state polarization and the subscript indicates that the
function is defined by the long-term behavior during the relaxation
phase.

Transference number based on data from a concentration cell
and a ferrocene cell.—The transference number can also be deter-
mined by only two different types of experiments using a concen-
tration cell and our previously described method for determining
the thermodynamic factor

(
TDF ≡ [1 + ∂ ln f±(c)

∂ ln c

])
,2 which is based

on measuring the lithium concentration dependent potential of a
lithium electrode versus ferrocene/ferrocenium as introduced in Lan-
desfeind et al.2 (further on referred to as ferrocene cell measure-
ments). Based on a functional description of the TDF and the experi-
mental data obtained by a concentration cell with transference10 (see
the above Concentration cell section), it is possible to solve for the
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concentration dependent transference number from the relation given
in Eq 28.

No restrictions regarding the concentration dependence of the
transport parameters have been introduced so far. For a known func-
tional description of the concentration dependent transference number
t+(c) and for many experiments with different combinations of cA and
cC covering the concentration range of interest, it is possible to deter-
mine the necessary functional parameters of the predefined function
by numerical fitting. However, the functional description of the con-
centration dependent transference number t+(c) is usually not known
a priori.

An alternative approach is to assume a constant transference num-
ber within a narrow concentration range centered about an average
concentration of c0, expressed as c0 ± δc (with δc � c0), so that one
can determine an average transference number within a differential
concentration range, i.e., t+(c0 ± δc). In this case, Eq. 28 can be
approximated by

t+(c0 ± δc) ≈ 1 − z+ ν+
ν

F

R T
U

[∫ c0+δc

c0−δc

[
1 + ∂ ln f± (c)

∂ ln c

]
d(ln c)

]−1

≈ 1 − z+ ν+
ν

F

R T
U

[∫ c0+δc

c0−δc
TDF(c) d(ln c)

]−1

[38]

where TDF(c) represents the concentration dependent thermodynamic
factor. Compared to all other methods introduced for the determina-
tion of the concentration dependent transference number t+(c), this
last described approach requires no assumptions other than that the
transference number can be assumed constant within a differential
concentration range (i.e., that it be a smooth function with concentra-
tion). In the following this method is called the δc method.

Numerical Validation

In the following, the analytical expressions for the determination
of the transference number t+ introduced in the Theory section are
analyzed in terms of their potential applicability for the experimen-
tal determination of the transference number by means of numerical
simulations. Simulations are performed with a finite element research
code developed at the Institute for Computational Mechanics at the
Technical University of Munich. A detailed derivation to the used
numerical methods is given in Ehrl.23 The used governing equations
as well as the corresponding boundary condition are given in the first
part of this publication (Eq. 1 to 3 and Eq. 5) together with setup,
boundary conditions, and parameters used for the simulation.1

Numerical analysis of the polarization experiments.—In the fol-
lowing, the transference number t+ is calculated from the factors
f1( f±, t+, D∗

±,eff ) or f2( f±, t+, D∗
±, eff

0.5) defined in Eq. 25 and 29,
respectively, the value of which be determined by the five different
methods introduced in the Theory section and summarized in Table
I. In contrast to the experimental approach introduced in the section
Transference number based on data from a concentration cell and a
ferrocene cell, in this section the transference number is not calculated
based on data from a concentration cell but based on a given thermo-
dynamic factor TDF(c). Our newly proposed method for the direct
determination of the transference number will be discussed later on.

As shown in Figure 2, a pulse polarization experiment consists
of a polarization and relaxation phase. During the short-term polar-
ization phase, a short galvanostatic pulse with the current Ip is ap-
plied until the current interruption time T1 to establish a concentration
gradient within the two-electrode cell. The concentration difference
�c(t) between anode and cathode develops according to the Sand
equation given in, e.g., Bard and Faulkner.25 During this phase, the
cell potential U (t)is influenced by the concentration difference �c(t),
the current flow Ip, and kinetic effects at the electrode. At the time
t = TI , the current Ip is interrupted. During the following relaxation
phase, the concentration difference �c(t) as well as the corresponding
cell potential U (t) slowly relax with time. In contrast to the polariza-
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Figure 2. Simulation of a short-term galvanostatic pulse experiment accord-
ing to the parameters given in Table I in Ref. 1 with a polarization time of 30
s, a polarization current density ip = 8 · 10−3 mA mm−2 corresponding to
the polarization current Ip = 1.82 mA and an initial electrolyte concentration
c0 = 1 M.

tion phase, the cell potential U (t) is only influenced by the concentra-
tion difference �c(t). As long as the applied polarization current Ip

is small, a linear relationship between the cell potential U (t) and the
concentration difference �c(t) can be assumed, as explained in the
Theoretical background section in the first part of this publication.1

In this case, the non-linearities introduced by the concentration de-
pendence of the transport parameters and by the linearization of the
natural logarithm are negligibly small.

The expected linear behavior of the cell potential U (t) with re-
spect to the artificial time τ∗ for the short-term relaxation as well as
the linear behavior of the cell potential ln U (t) with respect to the
time (t − TI) for the long-term relaxation are clearly observable for
reasonable time periods in Figure 2. Since the determination of the
factor f1( f±, t+, D∗

±, eff
0.5)|pulse polarization

short−term relax. according to Eq. 26 (method
#1) is based on the cell potential U (TI) at the current interruption
time, the linearity in τ∗ can be used to more accurately determine the
cell potential U (TI) at current interruption time TI. This is particularly
important for experiments where the cell potential U (t) is influenced
by additional parasitic contributions as, e.g., the discharge of the dou-
ble layer. While not evident from the upper inset in Figure 2 by eye,
the simulated transient approaches the real axis for long times, i.e.,
1 − τ∗ → 1, which is automatically fulfilled as the potential relaxes
to 0 mV for long real times.

A steady-state polarization experiment also consists of two phases.
In the first phase shown in Figure 3a, the two-electrode cell is polar-
ized with a constant cell potential Up (black line) until the steady-state
current Is is established (red dashed line). The steady-state current Is

is reached once a steady-state concentration profile within the cell is
established. The electrode kinetics are modeled by a Butler-Volmer
law without concentration dependence (i.e., γ = 0), resulting in
a constant interface resistance RI due to the linearity of the Butler-
Volmer law for small surface overpotentials η. The initial current I0

is the maximum current value obtained during polarization, since the
concentration overpotential is negligibly small in the beginning. Due
to an increasing concentration overpotential with time, the current I (t)
decreases with time until the steady-current Is is reached. For con-
centrated electrolyte solutions, a steady-state experiment can be used
to determine the factor f2( f±, t+, D∗

±,eff )|ss polarization
transition period by method #2.

The short-term relaxation of the current I (t) is linear with respect
to

√
t , with the slope m#3 (see inset of Figure 3a). As shown in

the section Initial time behavior of steady-state polarization (method
#3), this is already an approximation for the more complex function
exp(H 2 t)erfc(H

√
t) given in Eq. 23. Based on the here obtained
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Figure 3. Simulation of a steady-state polarization experiment according to
the parameters given in Table II in Ref. 1, with a polarization time TI = 3300 s,
a polarization potential Up = 50 mV, and an initial electrolyte concentration
c0 = 1 M: a) polarization phase showing potential (black line) and current
(red dashed line) vs. time as well as current vs.

√
t ; b) relaxation phase showing

potential (black line) and current (red line) vs. time, with the insets showing
the short-term and long-term relaxation of the potential.

slope m#3, the factor f1( f±, t+, D∗
±, eff

0.5)|ss polarization
short−term pol. can be calcu-

lated by Eq. 32.
Once the steady-state current Is is reached, the polarization of

the cell is interrupted and the relaxation phase of the steady-state
experiment starts. During the relaxation phase, the cell potential U (t)
decreases continuously as shown in Figure 3b. The time for the relax-

ation process is much longer than in a pulse experiment because of the
larger changes to the salt concentration profile. The long-term behav-
ior of the relaxation process is characterized by a linear relationship
between ln U and (t − TI) (see lower inset in Figure 3b), from which
the value of O(TI ) can be obtained by extrapolation to (t − TI) = 0;
from the latter, the factor f2( f±, t+, D∗

±,eff )|ss polarization
long−term relax. can be cal-

culated according to Eq. 37 (method #5). Different from a pulse ex-
periment, the short-term relaxation behavior of the cell potential U (t)
in a steady-state experiment is proportional to

√
t , with the slope msqrt

(see upper inset in Figure 3b). The extrapolated cell potential U (TI)
at current interruption time TI can be used to calculate the factor
f2( f±, t+, D∗

±,eff )|ss polarization
short−term relax with Eq. 34 (method #4).

Validation of the different parameter determination methods.—
In the following, we numerically analyze how well the assumptions
made in the theoretical part of this work are met when trying to de-
termine the various transport parameters from simulated transients.
For example, the influence of non-negligible concentration variations
between anode and cathode and their impact on the determined dif-
fusion coefficients and transference numbers will be evaluated in the
following.

Influence of the magnitude of the concentration difference.—In
Figure 4, the influence of the concentration difference �c(TI) =
cA (TI) − cc(TI) between the two electrodes at current interruption
time TI is investigated numerically for a bulk salt concentration of
c0 = 1 M. In the case of a steady-state experiment, the concentra-
tion difference �c(TI) defined by the polarization cell potential Up is
the only design parameter influencing the quality of the determined
transference number.

All methods summarized in Table I are capable to determine the
correct transference number t+ for a small concentration difference
�c(TI). For higher concentration differences �c(TI), it is not possible
to determine the transference accurately by the short-term transient
of a steady-state polarization experiment (method #3; red diamond in
Figure 4), which is based on the initial time behavior of the current
I (t) during the polarization phase in a steady-state experiment. In this
case, the initial time behavior is not just influenced by concentration
dependent transport parameters and the linearization of the natural
logarithm introduced in Eq. 9 in part I of this publication (Ref. 1),
but also by the basic characteristic of the electrode kinetics. For an
increasing concentration difference �c(TI) and therefore an increas-
ing current flow, the Butler-Volmer law cannot be assumed linear
anymore, which violates the linear boundary condition used for the
derivation of Eq. 32. As a result, the linear behavior of the current
I(t) can only be observed clearly for the lowest polarization potential
Up (i.e., for the lowest concentration difference). For this method, the
linearity of the current vs.

√
t (see inset of Figure 3a) is a very good

indication for the reliability of experimentally measured data, and
therefore the method is only considered in the Results and discussion
section, if a clear linear trend is observable. All remaining methods are
accurate up to relative concentration differences �c(TI)/c0 of about

Table I. Overview of the five analytical methods described in the text for the determination of the transference number from polarization cell
experiments. Here, the right-hand-side of the definitions of the factors f1( f±, t+, D∗

±, eff
0.5) (Eq. 25) and f2( f±, t+, D∗

±, eff ) (Eq. 29) equate to
the terms shown in this table. The superscripts in the functions f1 and f2 refer the excitation phase (either pulse or steady-state polarization) and
the subscripts refers to where the function is being evaluated (from the short- or long-term behavior during either the excitation or the subsequent
relaxation phase).

method #1 f1( f±, t+, D∗
±, eff

0.5)|pulse polarization
short−term relax.

z2+ ν2+
4 ν

√
π F2

R T A ε c0
U (TI)
Ip

√
TI

Eq. 26

method #2 f2( f±, t+, D∗
±,eff )|ss polarization

transition period

[
Up
Is

− RLF,s

]
ν2+ z2+

ν
F2

R T
A
l ε c0 Eq. 31

method #3 f1( f±, t+, D∗
±, eff

0.5)|ss polarization
short−term pol.

z2+ ν2+
4 ν

√
π F2

R T A ε c0 RLF,0
m#3
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Eq. 32

method #4 f2( f±, t+, D∗
±,eff )|ss polarization

short−term relax.

z2+ ν2+
ν

F2

R T
A
l ε c0

U (TI)
Is

Eq. 34

method #5 f2( f±, t+, D∗
±,eff )|ss polarization

long−term relax.

z2+ ν2+
8 ν

π2 F2

R T
A
l ε c0

exp O(TI)
Is

Eq. 37
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Figure 4. Influence of the concentration difference �c(TI) at the current inter-
ruption time on the determined transference number for a c0 = 1 M electrolyte
solution (see Table II in Ref. 1 for other simulation parameters).

20%. Particularly the method f2( f±, t+, D∗
±,eff )|ss polarization

long−term relax. (green
circles in Figure 4) is very accurate for higher polarization potentials,
since it is based on the long-term relaxation behavior, where the re-
quirement of a small concentration difference between the electrodes
is automatically fulfilled at long times. Similar results are obtained
for a bulk salt concentration of c0 = 0.01 M and c0 = 2.0 M which
are not shown explicitly in this publication.

As explained under Direct determination of the transference num-
ber by steady-state polarization experiments, the transference number
t+ can also be calculated directly from Eq. 18 for dilute electrolyte
solutions. The method is based on the steady-state current Is , the
steady-state low frequency resistance RLF, the electrolyte resistance
Rel and the polarization potential Up. For the smallest polarization po-
tential Up, the calculated transference numbers t+ are 0.32, 0.525 and
0.465 for the concentrations 0.01 M, 1 M and 2 M, respectively. For
these concentrations the transference numbers resulting from the de-
fined simulation parameter given in Table II in part I of this publication
(Ref. 1) are 0.402, 0.475 and 0.3. Even for smaller concentrations c0,
the expected transference number t+ cannot be determined correctly,
since the mathematical condition given in Eq. 17 is not fulfilled for
the used parameter set and for c0 → 0. Theoretically, Eq. 17 could be
used as an additional condition for the determination of the parameter
set for very dilute electrolyte solutions (i.e., as c0 → 0), but the ex-
perimental methods discussed in the first and the second part of this
paper are not designed to determine the transport parameters at very
dilute solutions, as will be explained in Results and discussion.

Influence of a non steady-state concentration profile on the de-
termination of the transference number.—Although the concentration
difference �c(TI) at the current interruption time is the only design
parameter in a steady-state experiment which can be influenced by ex-
perimental design, it is possible that a non-steady-state concentration
profile at the current interruption time for an intended steady-state
polarization experiments leads to an incorrect determination of the
transference number. A non-steady-state concentration profile origi-
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Figure 5. Influence of the polarization time in nominally steady-state polar-
ization experiments on the determined transference number t+ for a polariza-
tion potential Up = 50 mV and an initial concentration c0 = 1 M (see Table
II in Ref. 1 for simulation parameters).

nates from too short polarization times or from the continuous vari-
ation of the interface resistance RI during a steady-state experiment.
The influence of a non-steady-state concentration profile as a result of
too short polarization times on the determined transference number
is depicted in Figure 5 for all corresponding methods. The method
t+|ss polarization

short−term pol. (#method 3) is not considered here since it does not
rely on a steady-state concentration profile but only on the short-term
behavior of the steady-state polarization experiment. The presented
numerical data are the results for a bulk salt concentration of c0 = 1 M
polarized with a cell potential of Up = 50 mV. This applied cell poten-
tial results in concentration difference �c(TI) at current interruption
(steady-state) of 0.1 M, which corresponds to �c(TI)

c0
= 10%. The error

for the transference number t+ based on a polarization time between
1000 and 1500 s is still below 5% (see Figure 5). For polarization
times t > 1500 s, the correct transference number is obtained for all
analysis methods. For short polarization times t < 1000 s, the error in
the transference number t+ increases rapidly (see Figure 5), because
of the large deviation from the steady-state concentration profile.

The relaxation of the current I (t) during the polarization is shown
in Figure 6a, while Figure 6b shows the relaxation behavior of the
relative cell potential U (t)/U (TI) with respect to

√
t for differently

chosen polarization times (indicated by the dashed vertical lines in
Figure 6a). Only after a polarization time of t ≈ 1000 − 1500 s,
the current I (t) approaches its steady-state value as shown in Figure
6a and the relative cell potential U (t)/U (TI) exhibits a clear linear
behavior with respect to

√
t , as depicted in Figure 6b. While for shorter

polarization times, the current is obviously still quite different from
its steady-state value (see Figure 6a), the corresponding non-linearity
of the relative cell potential U (t)/U (TI) during subsequent relaxation
is unfortunately not very apparent, as is illustrated by the U(t)/U(T1)
response for a polarization time of T1 = 500 s (see blue dash-dotted
line in Figure 6b). For longer polarization times of T1 = 1000 s, T1

= 1500 s, and T1 = 3000 s, the shape of the scaled relaxation curve
U(t)/U(T1) cannot be differentiated from Figure 6b (corresponding
magenta, red and black lines overlap). Therefore, it is important for a
steady-state experiment to carefully observe the relaxation behavior of
the current I (t) during polarization as well as the relaxation behavior
of the cell potential U (t) after current interruption in order to ensure
a steady-state concentration profile. Numerical simulations indicate
that a similar behavior can be expected for a concentration profile
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Figure 6. Polarization and relaxation phase of a nominally steady-state polar-
ization experiment according to the simulation parameters given in Table II of
Ref. 1 with the polarization potential Up = 50 mV and the intial concentration
c0 = 1 M: a) current I over time t during the initial polarization phase; b)
relative cell potential U (t)/U (TI) vs.

√
t during the relaxation phase following

the initial polarization after different current interruption times TI, indicated
by the dashed vertical lines in a). Transients for TI= 3300 s, 1500 s, and 500
s in b) overlap in the entire time range shown and are not distinguishable by
eye.

deviating from its steady-state value as a result of a continuously
varying interface resistance RI.

Influence of the polarization time on the determined transference
number in a pulse experiment.—For the determination of the trans-
ference number t+|pulse polarization

short−term relax. (#method 1), a galvanostatic pulse
experiment has to be performed as indicated in Figure 2. In this ex-
perimental setup, the concentration difference �c(TI) is influenced
by the polarization current Ip and the polarization time defined by
the current interruption time TI.25 As shown discussed in the section
Influence of the magnitude of the concentration difference, both de-
sign parameters have to be chosen so that the relative concentration
difference �c(TI)/c0 does not exceed 20%. Additionally, the current
interruption time TI has to be short enough to ensure that the semi-
infinite boundary condition used for the derivation of Eq. 26 is not
violated. For longer polarization times, the concentration profile will
slowly approach the steady-state case, which must not happen for a
pulse experiment. In Figure 7, the calculated transference number t+
with respect to the polarization time for a 1 M electrolyte solution
polarized with a current density of Ip = 0.454 mA is depicted.
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Figure 7. Influence of the polarization time in a pulse experiment on the de-
termined transference number t+ for a polarization current of Ip = 0.454 mA
and an initial concentration c0 = 1 M (see Table II in Ref. 1 for simulation
parameters). The colored crosses at times 150 s, 500 s, and 3000 s correspond
to the coloring of the transients plotted in Figure 8.

As can be seen in Figure 7, for polarization times of about 500 s,
the deviation of the determined transference number is below 5%.
The corresponding relaxation behavior of the relative cell potential
U (t)/U (TI) with respect to the artificial time 1 − τ∗ and the time√

(t − TI) are shown in Figure 8a and Figure 8b, respectively. Figure
8b is added, since for longer polarization time the concentration profile
approaches steady-state which results in a linear relaxation behavior
of the cell potential with respect to time

√
(t − TI). Additionally,

simulations with shorter and longer polarization times are shown to
visualize the differences.

Figure 8a depicts the short-term relaxation of the potential after a
pulse polarization which can be used for evaluation of the transference
number according to method #1 (see Eq. 26). This method is valid
for short polarization times, i.e., a steady-state concentration profile is
not reached yet but only the electrolyte concentration at the vicinity of
the electrodes is changed, which is the case for the 150 s polarization
(green line in Figure 8). For this short polarization time, the linear
behavior in Figure 8a is prominent and the typical S-shape can be
observed (compare inset in Figure 2). This shape, i.e., an initial linear
slope (green line between 0 and 0.5), followed by a steeper decline
(green line between 0.7 and 0.8) eventually approaching the x-axis
(green line beyond 0.8), cannot be observed for the longest polariza-
tion time of 3000 s. Note that the S-shape in Figure 8a and in Figure
2 is only partly visible as this would require much longer simulation
times, the slow approach to the real axis will be automatically ful-
filled as U → 0 mV for t → ∞. Although for all polarization times
an initially linear behavior can be observed, the steeper section of
the potential relaxation is missing for long pulse durations (compare
Figure 8a for pulse duration of 3000 s, red line), making this part
a distinguishable feature for whether or not the transference number
can be determined by using method #1. Figure 8b also shows the
short-term behavior of the potential relaxation, i.e., the same data as
in Figure 8a but plotted on a different scale. Comparison of Figure
8b with the inset of Figure 3b shows that a steady state concentration
profile is reached for the polarization time of 3000 s, evident through
the linear potential relaxation with

√
(t − TI) (compare black dashed

linear trend in Figure 8b). From Figure 8 it is concluded that method
#1 yields the most accurate results for the transference number when
the potential relaxation after a pulse polarization with 1 − τ∗ shows
the typical S-shape and when the same relaxation data do not show a
pronounced linear behavior with

√
(t − TI) which can be seen exem-

plarily for the shortest polarization time of 150 s in Figure 8. While
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Figure 8. Relaxation behavior of the relative cell potential U (t)/U (TI) after
pulse experiment with a polarization current of Ip = 0.454 mA and an initial
concentration c0 = 1 M (see Table II in Ref. 1 for simulation parameters):
a) the artificial time 1 − τ∗ and b) the time

√
(t − TI). Black dashed lines

indicate the linear ranges that would be used for analysis of experimental data.
In a) the real times are given in the respective legends, in b) only the linear
trend for TI = 3000 s can be used for analysis.

in the computer simulations shorter polarization times yield smaller
errors (compare Figure 7), in an experiment the experimental noise
of, e.g., the potential measurement has to be considered and the pulse
duration cannot be too short as the resulting concentration change
would be too small to be measurable without large uncertainty.

Results and Discussion

In this section, we will present our new proposed method to de-
termine the transference number from two sets of experiments: con-
centration cell measurements with a series of small concentration
differences combined with the concentration dependent thermody-
namic factor (TDF) obtained with a cell in which the potential of
a lithium electrode vs. a ferrocene/ferrocenium reference electrode
is measured for different lithium salt concentrations (referred to as
“ferrocene cell”).2 The concentration dependence of the transference
number obtained by this method will subsequently be compared with
the values obtained by the various polarization methods (see Table I)
in combination with a concentration cell.

Transference number based on data from a concentration cell
and a ferrocene cell.—In the following, the transference number
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Figure 9. Exemplary concentration cell potentials for the δc method ver-
sus time for EC:DEC (1:1 w:w) based electrolytes, measured for differential
LiClO4 concentrations as given in the figure. Measurement were conducted in
a temperature controlled glove box with the cell setup depicted in Figure 1. Two
individual sets of measurements for each pair of concentrations (see legend in
the figure) are depicted to illustrate the reproducibility of the measurements.

of the lithium ion will be determined from measurements with a
concentration cell (see Figure 1) in combination with the concen-
tration dependent thermodynamic factor obtained by ferrocene cell
measurements for the same electrolyte taken from Figure 9 in the
study by Landesfeind et al.2 Exemplary concentration cell potentials
(corresponding to concentration overpotentials) depicted in Figure 9
show the stability of the potential measurements over time and their
reproducibility.

The measured concentration overpotentials are linearly extrapo-
lated to t = 0 s and the obtained initial potentials were averaged. The
variation between repeat measurements is <1.5 mV at the beginning
of the measurement and differs by <1.5 mV over the course of the
measurement period. As the standard deviations of latter averages
are generally smaller than the accuracy of the potential measurement
of 0.3 mV, only the error from the measurement device is consid-
ered in the following. Figure 9 shows exemplary measurements of
our here proposed δc method, for which the concentration overpo-
tentials between two electrolytes of similar concentrations centered
about an average concentration c0 ± δc are measured, whereby δc is
a sufficiently small such that the transference number can be assumed
constant. The advantage of this approach is that no functional for the
transference number has to be assumed and that a pointwise calcu-
lation is possible to yield the average transference number t+(c0 ±
δc) within a sufficiently small δc range as shown by Eq. 38. Analo-
gously to Figure 9, also concentration cells with larger concentration
differences were measured, with the results being displayed in Figure
11. As the concentration overpotential for larger concentration differ-
ences increases, the relative error gets smaller and exemplary data are
thus not shown.

In combination with Eq. 38 and with the concentration dependent
thermodynamic factor for this electrolyte (see Figure 9 in Reference
2), the values of t+(c0 ± δc) vs. concentration depicted in Figure 10
can be obtained, whereby the used values of δc are represented by
the x-error bars. Additionally, Figure 10 shows a quadratic fit based
on data from the δc method, with its 95% confidence interval as gray
highlighted area. The obtained functional description is given by

t+ (c ± δc) = −0.117 c2 + 0.171 c + 0.472 [39]

The transference number shows a peak around a concentration of
0.8 M LiClO4, with a value of t+ ≈ 0.53. For c → 0, we find a value of
t+ ≈ 0.47, while at 2 M LiClO4 concentration the transference number
drops to t+ ≈ 0.35. For the following analysis, the transference number
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Figure 10. Concentration dependence of the transference number via the δc
method, i.e., determined by Eq. 38 from concentration cell data based on
small concentration variations (c0 ± δc) and from the concentration dependent
thermodynamic factor obtained by ferrocene cell measurements (from Figure
9 in Ref. 2). Vertical error bars represent the effect of the 0.3 mV error of
the concentration cell measurements, while the horizontal error bars indicate
the experimentally chosen concentration variation δc. The black solid line is
a quadratic fit (see Eq. 39) of all the depicted t+(c0 ± δc) data and the gray
region indicates the 95% confidence interval. The electrolyte used is LiClO4 in
EC:DEC (1:1 w:w) and measurements are done inside a temperature controlled
glove box.

determined with the δc method is used and shown for comparison.
These data will be compared to the literature later on.

Transference number via polarization cell and concentration cell
experiments.—In the following, the procedure for the determination
of the concentration dependent transference number t+(c) based on
polarization experiments in combination with concentration cell mea-
surements, as outlined in the section Determination of the transference
number based on the Sand equation, a concentration cell, and a known
diffusion coefficient is investigated. The binary diffusion coefficient
D±(c) is obtained from polarization cell experiments in symmetrical
Li-Li cells as discussed in Ehrl et al.1 The factors f1( f±, t+, D∗

±, eff
0.5)

or f2( f±, t+, D∗
±, eff ) given in Eqs. 25 and 29, respectively, are ob-

tained by experiments in a polarization cell using the various methods
discussed in the sections Sand equation and Alternative methods for
the determination of the transference number (summarized in Table I).
The factor

[
1 + ∂ ln f±(c)

∂ ln c

]
(1 − t+(c)) (see Eq. 28) is determined from

concentration cell experiments in form of a continuous functional
description. This will be described in the following.

The required concentration overpotential data were measured in
a concentration cell as described in the Experimental section, with
exemplary results shown in Figure 9. To be able to extract the fac-
tor
[
1 + ∂ ln f±(c)

∂ ln c

]
(1 − t+(c)), a set of concentration cell experiments

was conducted (over 70 concentration cells were measured, of which
most combinations were conducted at least twice). Figure 11 shows
the recorded concentration cell potentials U for different lower salt
concentrations clow versus the higher salt concentration chigh, whereby
each line corresponds to a fixed value of clow.

The solid lines in Figure 11 represent the numerical fit of the
measured concentration cell potentials using Eq. 28. As a result of the
integral in Eq. 28, a functional description has to be assumed a priori
for the factor

[
1 + ∂ ln f±(c)

∂ ln c

]
(1 − t+(c)). It is found that a third order

polynomial represents the experimental data best, polynomials with
a lower order result in a poor representation of measured data, while
higher order polynomials improve the fit quality only insignificantly
and may result in numerical oscillations. The solid lines in Figure 11
thus represent an overall third order polynomial fit of the concentration
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Figure 11. Concentration overpotentials U resulting from a set of permuta-
tions of low (clow) and high (chigh) salt concentrations measured in the concen-
tration cell setup (see Figure 1). Lower concentrations are indicated below the
fit lines inside the figure, while higher concentrations are plotted logarithmi-
cally (base 10) on the x-axis. The electrolyte used is LiClO4 in EC:DEC (1:1
w:w) and measurements are done inside a temperature controlled glove box.
The solid lines are a numerical fit to Eq. 28.

cell data with the following numerical result[
1 + ∂ ln f± (c)

∂ ln c

]
(1 − t+ (c))

= 0.105 c3 + 0.042 c2 + 0.205 c + 0.557 [40]

Based on this numerical fit, the transference number at infinite di-
lution is t+ (c → 0) = 0.44, since the thermodynamic factor (i.e., the
left-hand-term in square brackets) under these conditions approaches
unity. This is in good accordance with the the δc method, which
yields t+ (c → 0) = 0.47 (see Figure 10 and Eq. 39). The fac-
tors f1( f±, t+, D∗

±, eff
0.5) or f2( f±, t+, D∗

±, eff ) are determined based
on experiments in a polarization cell. As presented in the section
Numerical validation, five different analytical expressions based on
pulse and steady-state experiments are considered for the determi-
nation of f1( f±, t+, D∗

±, eff
0.5) or f2( f±, t+, D∗

±, eff ). The analytical
expressions for these five methods are summarized in Table I and their
accuracy was demonstrated by means of numerical simulations in the
section Validation of the different parameter determination methods.
In the following, the experimentally determined transients are shown
exemplarily for the salt concentrations 0.01 M, 0.5 M, 1.5 M, and 2 M.
Analysis of the high frequency resistance showed a steady decrease
for the 0.01 M electrolyte over the course of the experiments, which
we ascribe to side reactions which alter the electrolyte composition
(mostly via continuous SEI formation caused by reaction with the
freshly plated lithium during the polarization phase). In conclusion,
because all factors in Table I depend on the initial salt concentration c0,
the recorded transients for the nominally 0.01 M electrolytes are only
shown for the benefit of the reader and are not analyzed for their trans-
ference number in the case of polarization cell experiments. Physical
vibrations, e.g. from glove box or temperature chambers, play negligi-
ble role as a porous medium rather than a free liquid electrolyte is used
in the experimental setup. Gas generation is limited due to the small
surface area of the lithium electrodes and at ambient temperatures,
electrolyte evaporation plays no role in the tight two electrode cells
and is negligible over the time of the transference number measure-
ments (vapor pressure of linear carbonates <50 mbar). First of all,
the factor f1( f±, t+, D∗

±, eff
0.5) can be determined from pulse experi-

ments based on the Sand equation given in Eq. 26, which requires only
the cell potential U (TI) at current interruption time. The accuracy of
the method is improved by the observation of the short term relaxation
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Figure 12. Exemplary relaxation after a current pulse of ip = 0.5 mA (0.22
mA/cm2) for T1 values of 360 s or 960 s in either 1.0 M or 2.0 M LiClO4 in
EC:DEC (1:1 w:w). This was measured in the two-electrode setup shown in
Figure 1 of Ref. 1.

after current interruption, which exhibits a linear relationship with re-
spect to the artificial time τ∗ defined in Eq. 27. In Figure 12, four
normalized potential transients (two different LiClO4 concentrations
and interruption times) are depicted vs. the artificial time 1 − τ∗. The
relaxation curves resulting from the shorter polarization time of T1 =
360 s (dots in Figure 12) exhibit the theoretically expected s-shape,
which can also be observed in the numerical simulations, compare
for example the green line in Figure 8a. The linear fits indicated by
the dashed black lines correspond to real times between ≈10–150 s.
The extrapolations of these fits to (1 − τ∗) = 0 gives the desired cell
potential U (TI) at current interruption time. While a linear relaxation
behavior can also be observed for the longer polarization time of T1 =
960 s (crosses in Figure 12), the typical s-shape as depicted in Figure
8a is missing. This is an indication for a violation of the semi-infinite
diffusion boundary condition resulting from too long polarization
times, as discussed in the section Influence of the polarization time on
the determined transference number in a pulse experiment. However,
further reduction of the polarization time decreases the signal to noise
ratio and is thus unsuitable for a precise determination of the cell
potential at the polarization interruption time. The time transients for
all potential relaxation curves in Figure 12 with respect to

√
(t − TI)

show a non-linear behavior (data not shown), similar to the green
line in Figure 8b, which may be caused by the higher sensitivity of
the potential relaxation transient with

√
(t − TI) toward distortions

from, e.g., SEI recreation effects and thus prohibit the dismissal of
pulse polarization data. Thus the observation of the S-shape in Figure
12 is considered the best identifier for usability of experimental data
and the factor f1( f±, t+, D∗

±, eff
0.5)|pulse polarization

short−term relax. (method #1) is only
analyzed for pulses showing this shape, i.e., pulses of 360 s at 0.5 mA
(0.22 mA/cm2).

All other methods for the determination of the factors
f1( f±, t+, D∗

±, eff
0.5) and f2( f±, t+, D∗

±, eff ) are based on steady-state
experiments. At first, the transient behavior of the current I (t) during
the potentiostatic polarization at Up is analyzed. Exemplary current
transients for a 0.01 M, 0.5 M, 1.5 M and a 2 M salt concentration are
depicted in Figure 13.

While an initial linear current relaxation with respect to time
√

t
can be observed for salt concentrations 1.5 M (green) and 2 M (light
blue) as is predicted by Eq. 21, this linearity is not apparent for the
0.01 M (dark blue) and the 0.5 M (red) electrolyte. This cannot be
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Figure 13. Exemplary steady state polarization current transients for 0.01 M,
0.5 M, 1.5 M, and 2.0 M LiClO4 in EC:DEC (1:1 w:w) at constant polariza-
tion of 50 mV in the two-electrode cell shown in Figure 1. The gaps in the
curves toward the end of the potentiostatic polarization procedure are due to
impedance measurements which were conducted during that time.

explained by the approximation of the term exp(H 2t)(1 − erf(H
√

t))
with

√
t as outlined in the theoretical part, since the values for H

are of the same order for the depicted concentrations. However, since
the theoretical relation between the current and

√
t is derived based

on the linearized Butler-Volmer law and therefore on a constant in-
terface resistance, the observed curvature may result from parasitic
effects, which may lead to the sometimes observed decrease of the to-
tal charge transfer resistance during the polarization time. The distinct
drop of the current in the beginning of the polarization time may also
be related to this effect. For larger concentrations, this effect may be
restricted to a short time period in the beginning of the polarization,
whereas it is distributed over a longer time period for the concen-
trations 0.01 M and 0.5 M, thereby interfering with the expected

√
t

relaxation. Extrapolation of the linear region in Figure 13 allows for
the determination of the initial current I0. As a result of Figure 13,
the factor f1( f±, t+, D∗

±, eff
0.5)|ss polarization

short−term pol. (method #3, see Table I)
is determined only for concentrations c0 ≥ 1 M by means of Eq.
32. In this case, the ratio m#3/I0 is determined based on the linear
fits indicated by the black dashed lines in Figure 13. Additionally, the
required low frequency resistance RLF,0 is measured by impedance
spectroscopy before each steady-state experiment.

While for this latter method, it is not necessary that a steady-
state is reached at the end of the polarization period,
for the remaining three factors f2( f±, t+, D∗

±,eff )|ss polarization
short−term relax.

(method #4), f2( f±, t+, D∗
±,eff )|sss polarization

long−term relax. (method #5), and

f2( f±, t+, D∗
±,eff )|ss polarization

transition period (method #2), a linear, steady-state cur-
rent concentration profile is strictly required at the end of the polariza-
tion time, as discussed in the section Influence of a non steady-state
concentration profile on the determination of the transference num-
ber. In a steady-state experiment, the steady-state is indicated by a
distinct current plateau at the end of the polarization phase, which
is observed for the 0.01 M, 0.5 M, 1 M (data not shown), and 2.0
M electrolytes (see Figure 13). A anomalous time dependence of
the current at the end of the polarization phase as depicted, e.g., for
c0 = 1.5 M in Figure 13 (green line) excludes this experiment from
analysis based on methods #2, #3, and #5, because a linear con-
centration profile may not be present at the end of the polarization
phase. The increase in the current may be explained by a decreasing
interface resistance as a result of a modification of the lithium elec-
trode/electrolyte interface (supported by the fact that the electrolyte
resistance remains essentially unchanged over the time of polariza-
tion). The factor f2( f±, t+, D∗

±,eff )|ss polarization
transition period (method #2) defined
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Figure 14. Exemplary fit of time behavior after 50 mV steady-state polariza-
tion for determination of the factor f2( f±, t+, D∗

±,eff )|ss polarization
short−term relax. (method

#4) for 0.01 M, 0.5 M, 1.5 M and 2.0 M LiClO4 in EC:DEC (1:1 w:w) in a
polarization cell. Dashed lines indicate linear fits used for determination of the
transference number. The polarization times for the different concentrations
can be found in the caption of Figure 13.

by Eq. 31 is based on the steady state current IS and the low frequency
resistance RLF,S at steady state which is determined by impedance
spectroscopy at the end of the polarization time. The required steady
state current Is can be extracted from Figure 13. The short period
with a constant steady state current in this figure is the result of the
scaling with

√
t . The second factor f2( f±, t+, D∗

±,eff )|ss polarization
short−term relax.

(method #4) is based on the analytical solution for a steady state con-
centration profile at the end of the polarization phase. In this case, the
cell potential U (TI) at current interruption time and the steady state
current Is has to be determined experimentally to calculate the factor
by means of Eq. 34. As it was the case for the determination of the
factor f1( f±, t+, D∗

±, eff
0.5)|pulse polarization

short−term relax. (method #1), the short-term
relaxation behavior of the cell potential can be used to extrapolate the
exact cell potential U (TI) at the time of the potential interruption.

As shown in Figure 14, the expected linear relation with respect
to

√
t can be observed for c0 = 0.5 M and c0 = 2 M. On the

other hand, the non-linear behavior with respect to
√

t is a sign for
experimental data either with dominating parasitic effects (side re-
actions in case of the 0.01 M electrolyte) or with instationary con-
centration profiles at the end of the polarization (as seen in Fig-
ure 13 for an initial salt concentration of 1.5 M). As a result, such
experimental data are not used for the determination of the factor
f2( f±, t+, D∗

±,eff )|ss polarization
short−term relax. (method #4). In a steady-state experi-

ment, also the factor f2( f±, t+, D∗
±,eff )|ss polarization

long−term relax. (method #5) can
be determined from the long-term relaxation behavior by means of
Eq. 37. In this context, a linear fit of ln U (t) with respect to the time
t is required, as it is shown for a steady-state experiment in Figure
15 and which can be observed for the relaxation phases for all con-
centrations investigated. This linear behavior of ln U (t) with respect
to time does not depend on a steady-state profile as it is discussed
in part I of this publication (Ref. 1). However, for the determina-
tion the transference number a steady-state profile is strictly required
which means that although these linear trends are clearly visible in
Figure 15 the corresponding relaxation periods cannot be used to
calculate the transference number as side reactions (for the 0.01 M
electrolyte) or instationary concentration profiles (as clearly visible in
Figure 13) violate the theoretical assumptions (see Alternative meth-
ods for the determination of the transference number). The offset
O(T1) of such a linear fit is the basis for the determination of the
factor f2( f±, t+, D∗

±,eff )|ss polarization
long−term relax..

Figure 15. Exemplary fit of the logarithm of the potential vs. time during the
relaxation phase after steady-state polarization (50 mV), from which the factor
f2( f±, t+, D∗

±,eff )|ss polarization
long−term relax. (method #5) can be determined for 0.01 M,

0.5 M, 1.5 M and 2.0 M LiClO4 in EC:DEC (1:1 w:w) in two-electrode cells.

In Figure 16, the transference numbers calculated from polariza-
tion experiments using the diffusion coefficient from the first part of
this publication1 are shown and compared to the transference number
based on the δc method. Error bars indicate the variation between
repeat experiments as well as the error of the diffusion coefficient.
A qualitative agreement can be found when comparing the trans-
ference numbers determined by the δc method and the methods #1
(black), #3 (red), #4 (magenta) and #5 (green) utilizing the polar-
ization cell. The only outlier is the transference number calculated
from the factor f2( f±, t+, D∗

±,eff )|ss polarization
transition period (method #2, magenta

symbols/line in Figure 16), which is based on the polarization phase
of a steady-state experiment. In this case, the qualitative behavior
is in accordance with the other methods, but the absolute value is
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Figure 16. Overview and comparison of transference numbers determined
from polarization experiments via factors summarized in Table I and
comparison with transference numbers obtained from the δc method
(see Figure 10).
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significantly smaller, especially at higher concentrations. Unfortu-
nately, there is no obvious reason for this behavior. For 10 mM con-
centrations, the electrolyte resistance measured in polarization cells
by impedance spectroscopy is not constant over the entire experiment.
No final assignment of latter effect was possible which is why polar-
ization cell data with 0.01 M salt concentrations could only be used
for the determination of concentration independent transport factors;
at these low concentrations, only the diffusion coefficient could be
determined, as shown in the first part of this study.1 Thus, the only
reliable method for the determination of the transference number at
low concentrations is the δc method, as it requires no current flow
at the lithium electrodes and thereby minimizes the effect of side
reactions.

Although the qualitative results of the transference number deter-
mined by polarization experiments are comparable to the transference
number determined by the δc method in a concentration cell, the
method based on data from a concentration cell is clearly superior.
It is much easier to perform experiments in the concentration cell
than in the two-electrode cell. Another advantage of the concentration
cell is that only the concentration overpotential resulting from two
differently concentrated electrolyte solutions is measured. Therefore,
additional physical phenomena such as mass and current transport do
not influence the results. Also, the number of required experiments
is reduced from three to two experiments, resulting in a decreased
number of potential error sources. A similar result as shown in Fig-
ure 16 is obtained when the transference number is determined based
on a known thermodynamic factor and polarization cell experiments
(data not shown), rather than using the data from concentration cells
(i.e., the data shown in Figure 11).

Although the direct determination of the transference number in-
troduced in the section Direct determination of the transference num-
ber by steady-state polarization experiments has initially been de-
veloped for polymer electrolytes, it is also often applied for liquid
electrolytes,28–30 ionic liquids31 or mixtures of both,32 even though it
strictly is valid only for dilute solutions and cannot be applied to con-
centrated solutions due to a violation of the underlying assumptions
as indicated in the section Direct determination of the transference
number by steady-state polarization experiments. It is also shown that
the experimental setup of the polarization cell with two lithium metal
electrodes and the LiClO4 electrolyte, as used in this contribution, is
not suitable for low salt concentrations, since a constant electrolyte
resistance cannot be guaranteed. However, a constant electrolyte re-
sistance is the basic requirement for the direct determination of the
transference number.

Comparison with the literature.—In the literature a wide vari-
ety of transference numbers of liquid non-aqueous electrolytes is re-
ported which are collected for similar electrolyte systems in Figure
17. Basically constant transference numbers of ∼0.4 for LiPF6 in a
PC/EC/DMC mixture E(10:27:63 v:v:v, red squares),5 of ∼0.42 for
LiTFSI in PC (green pluses),14 or of ∼0.45 for LiDFOB in EC:DEC
(3:7 w:w, magenta triangles)9 are reported in the literature. While in
all these reports, in which the transference number does not change
more than 10% in the investigated concentration range, the salts and
solvents differ, also strong concentration dependencies are reported
for example for LiPF6 electrolytes. Monotonically decreasing values
for the lithium transference number are reported by Nyman et al.19

for LiPF6 in EC:EMC (3:7 w:w, red crosses) and Lundgren et al.20 for
LiPF6 in EC:DEC (1:1 w:w, red diamonds). While comparison of the
reports for LiPF6 based electrolytes (compare red symbols in Figure
17) show the influence of the solvent on the transference number,
direct comparison with the electrolyte investigated in this work is dif-
ficult due to the different salts, solvents, and measurement techniques.
Although the only reference depicted in Figure 17 using LiClO4 salt
uses PC as solvent (blue stars),18 it is closest to our electrolyte com-
position (LiClO4 in EC:DEC, 1:1 w:w, black line) and to the authors
best knowledge, no literature is available investigating exactly the
same electrolyte as used in this work. In the latter publication the au-
thors also use a second order polynomial to describe the concentration
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Figure 17. Literature comparison of transference numbers for a range of elec-
trolytes: LiPF6 in EC:EMC (3:7 w:w) - Nyman et al.,19 LiPF6 in EC:DEC (1:1
w:w) - Lundgren et al.,20 LiPF6 in PC:EC:DMC (10:27:63 v:v:v) Valøen
et al.,5 LiClO4 in PC - Georén and Lindbergh,18 LiClO4 in EC:DEC (1:1 w:w)
– this work, LiD-FOB in EC:DEC (3:7 w:w) - Zugmann et al.9 and LiTFSI in
PC - Sethurajan et al.14

dependence of the transference number resulting in a similar behavior
compared to our results, only shifted to smaller values.

At low concentrations the transference number is defined by ion-
solvent interactions, i.e., different mobility of anions and cations with
their respective solvation shell within an excess of solvent molecules,
and thus we expect different values for different solvent-salt com-
binations. In conclusion, the largely constant offset of ∼0.2 of the
transference numbers for LiClO4 in PC compared to EC:DEC (1:1
w:w) may be ascribed to the effect of the solvent. At concentrations
above ∼0.8 M the transference number of the LiClO4 electrolytes de-
creases (compare blue stars and black line in Figure 17). A decreasing
transference number with an increasing salt concentration is explained
by the formation of ion-pairs in the literature.14,15 A similar effect was
previously reported by Vatamanu et al.33 Another explanation for the
decrease of the transference number might be related to the ratio of
moles of solvent to moles of salt. Depending on the solvation struc-
ture of the salt ions, a large fraction of the solvent (predominantly
EC or PC) may be bound in the solvation shells around the ions. In
consequence, the loosely solvated ion, generally the anion due to its
large size to charge ratio, may still move mostly undisturbed through
the electrolyte at high concentrations (small solvent to salt molar ra-
tio) while movement of the strongly solvated cation is hindered by
its solvation shell which includes an increasingly large fraction of
the entire electrolyte. In the limiting case of very high molar ratios
of salt/solvent, the cations may have to drag along the entire solvent
(bound to its solvation shell), so that their mobility will decrease
strongly compared to the anions, corresponding to a decrease of the
cation transference number at high concentrations. The increase of
the transference number, as evident from the LiClO4 electrolytes for
concentrations up to ∼0.8 M (compare blue stars and black line in
Figure 17), may be explained by the coupled movement of ions at
medium concentrations, while at high concentrations the effects of
the solvation structure dominate.



A2730 Journal of The Electrochemical Society, 164 (12) A2716-A2731 (2017)

Conclusions

In this work, a novel approach for the determination of the transfer-
ence number is proposed. As a result of the direct determination of the
thermodynamic factor introduced in Landesfeind et al.,2 the transfer-
ence number can be calculated based on data from concentration cells.
The proposed procedure referred to as the δc method is based on small
concentration variations and does not require a functional description
for the concentration dependence of the transference number.

In addition to the determination via the concentration cell, the
transference number is also determined by the classical experimental
approach based on a known binary diffusion coefficient and data from
polarization cell and concentration cell experiments. This work dis-
cusses five different experimental methods for the determination of the
transference number based on polarization cell experiments, whereas
three of the five methods have not yet been used in the literature for the
determination of the transference number. These latter new methods
are based on the initial relaxation behavior of the current in a potentio-
static polarization experiment and on the short-term and the long-term
relaxation behavior of the cell potential after a potentiostatic polar-
ization experiment. The basic principle of all electrochemical pulse
experiments, the validity of the proposed methods as well as chances
and potential risks are analyzed by numerical simulations.

In the end, experimental results of all discussed methods, obtained
with an exemplary electrolyte solution (LiClO4 in EC:DEC, 1:1 w:w)
are compared. Resulting transference numbers based on polarization
cell experiments and the δc method generally agree, however, exper-
imental efforts and uncertainties are much higher in the approaches
based on polarization cell experiments, since they require to combine
results of three different experimental procedures. For a simple and
accurate determination of the transference number, measurements of
the thermodynamic factor in a ferrocene cell in combination with con-
centration cell data are superior to polarization cell experiments. It is
also shown that the direct determination of the transference number
by a steady-state potentiostatic polarization step is not suitable for
concentrated binary electrolyte solutions.

List of Symbols

Symbol Name Unit

A electrode area cm2

c ionic concentration mol/L
Di diffusion coefficient cm2/s
F Faraday constant C/mol
f1 factor defined by Eq. 25

√
s/cm2

f2 factor defined by Eq. 29 s/cm2

f± mean molar activity coefficient -
ii current density mA/cm2

I current A
l distance between electrodes μm

mln slopes of ln U vs. t during relax. after steady 1/s
state pot. pol.

m#3 slope of I (t) vs.
√

t during steady state pot. pol. A/
√

s
m#4 slope of U (t) vs.

√
t during relax. after V/

√
s

steady state pot. pol.
O constant factor in Eq. 36 -
R gas constant J/(mol K)

Rel,i electrolyte resistance �

RLF,i resistance �

t time s
ti transference number of lithium ion -
T temperature K
TI polarization time s

TDF thermodynamic factor -
Ui potential V
νi stoichiometry factor -
x space coordinate μm
zi ionic charge -

Greek

κ conductivity mS/cm
�� difference of the volumetric intrinsic V

phase average of the electric potential
τ tortuosity -
ε porosity -

�c concentration diff. betw. electrodes mol/L
τ∗ artificial time -

Subscripts and Superscripts

Symbol Name

A anode
C cathode

eff. effective value of parameter with xeff. = ε
τ

x
high higher concentration in concentration cell
low lower concentration in concentration cell
p during polarization
s steady state
0 initial state
+ cation
− anion
± of binary electrolyte
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and H. J. Gores, Electrochim. Acta, 56, 3926 (2011).
10. M. R. Wright, An Introduction to Aqueous Electrolyte Solutions, John Wiley & Sons,

Ltd, Chichester, (2007).
11. F. Castiglione, E. Ragg, A. Mele, G. B. Appetecchi, M. Montanino, and S. Passerini,

J. Phys. Chem. Lett., 2, 153 (2011).
12. C. Capiglia, Y. Saito, and H. Kageyama, J. Power Sources, 81, 859 (1999).
13. J. Zhao, L. Wang, X. He, C. Wan, and C. Jiang, J. Electrochem. Soc., 155, A292

(2008).
14. A. K. Sethurajan, S. Krachkovskiy, I. C. Halalay, G. R. Goward, and B. Protas, J.

Phys. Chem. B, 119, 12238 (2015).
15. Y. Ma, M. Doyle, T. F. Fuller, M. M. Doeff, L. C. Jonghe, and J. Newman, J. Elec-

trochem. Soc., 142, 1859 (1995).
16. A. Ferry, M. Doeff, and L. DeJonghe, Electrochim. Acta, 43, 0 (1998).
17. M. M. Doeff, L. Edman, S. E. Sloop, J. Kerr, and L. C. De Jonghe, J. Power Sources,

89, 227 (2000).
18. P. Georén and G. Lindbergh, Electrochim. Acta, 49, 3497 (2004).
19. A. Nyman, M. Behm, and G. Lindbergh, Electrochim. Acta, 53, 6356 (2008).
20. H. Lundgren, M. Behm, and G. Lindbergh, J. Electrochem. Soc., 162, 3

(2014).
21. P. Blonsky, D. Shriver, P. Austin, and H. Allcock, Solid State Ionics, 18–19, 258

(1986).
22. C. M. Doyle, PhD Thesis, Berkeley (1996).
23. A. Ehrl, PhD Thesis, München (2016).
24. J. Landesfeind, J. Hattendorff, A. Ehrl, W. A. Wall, and H. A. Gasteiger, J. Elec-

trochem. Soc., 163, A1373 (2016).
25. A. J. Bard and L. R. Faulkner, Electrochemical Methods - Fundamentals and Appli-

cations, 2nd ed., John Wiley & Sons, Inc., New York, (2001).

http://dx.doi.org/10.1149/2.1131704jes
http://dx.doi.org/10.1149/2.0651607jes
http://dx.doi.org/10.1149/2.0651607jes
http://dx.doi.org/10.1016/0167-2738(92)90295-Z
http://dx.doi.org/10.1149/1.1872737
http://dx.doi.org/10.1016/0022-0728(87)80001-3
http://dx.doi.org/10.1016/j.electacta.2013.09.138
http://dx.doi.org/10.1016/j.electacta.2013.09.138
http://dx.doi.org/10.1016/j.jpowsour.2004.09.015
http://dx.doi.org/10.1016/j.electacta.2011.02.025
http://dx.doi.org/10.1021/jz101516c
http://dx.doi.org/10.1016/S0378-7753(98)00237-7
http://dx.doi.org/10.1149/1.2837832
http://dx.doi.org/10.1021/acs.jpcb.5b04300
http://dx.doi.org/10.1021/acs.jpcb.5b04300
http://dx.doi.org/10.1149/1.2044206
http://dx.doi.org/10.1149/1.2044206
http://dx.doi.org/10.1016/S0013-4686(97)10069-X
http://dx.doi.org/10.1016/S0378-7753(00)00433-X
http://dx.doi.org/10.1016/j.electacta.2004.03.020
http://dx.doi.org/10.1016/j.electacta.2008.04.023
http://dx.doi.org/10.1149/2.0641503jes
http://dx.doi.org/10.1016/0167-2738(86)90123-2
http://dx.doi.org/10.1149/2.1141607jes
http://dx.doi.org/10.1149/2.1141607jes


Journal of The Electrochemical Society, 164 (12) A2716-A2731 (2017) A2731

26. H. Hafezi and J. Newman, J. Electrochem. Soc., 147, 3036 (2000).
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