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The emergence of evermore complex entities from prebiotic building blocks is a key aspect of origins of
life research. The RNA-world hypothesis posits that RNA oligomers known as ribozymes acted as the first
self-replicating entities. However, the mechanisms governing the self-assembly of complex informational
polymers from the shortest prebiotic building blocks were unclear. One open issue concerns the relation
between concentration and oligonucleotide length, usually assumed to be exponentially decreasing. Here,
we show that a competition of timescales in the self-assembly of informational polymers by templated
ligation generically leads to nonmonotonic strand-length distributions with two distinct length scales. The
first length scale characterizes the onset of a strongly nonequilibrium regime and is visible as a local
minimum. Dynamically, this regime is governed by extension cascades, where the elongation of a “primer”
with a short building block is more likely than its dehybridization. The second length scale appears as a
local concentration maximum and reflects a balance between degradation and dehybridization of
completely hybridized double strands in a heterocatalytic extension-reassembly process. Analytical
arguments and extensive numerical simulations within a sequence-independent model allowed us to
predict and control these emergent length scales. Nonmonotonic strand-length distributions confirming our
theory were obtained in thermocycler experiments using random DNA sequences from a binary alphabet.
Our work emphasizes the role of structure-forming processes already for the earliest stages of prebiotic
evolution. The accumulation of strands with a typical length reveals a possible starting point for higher-
order self-organization events that ultimately lead to a self-replicating, evolving system.
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I. INTRODUCTION

A key question in research on the origins of life is how
structure and biochemical complexity could emerge from
unstructured conditions on early Earth. One of the most
well-known hypotheses in this context is that of an “RNA
world” [1–6]. In this scenario, RNA oligomers acted as both
the carrier of information and “ribozymes,” i.e., catalytic
molecules allowing for the replication of this information
and other metabolic functions. Yet, the RNA-world hypoth-
esis does not address the question of how RNA strands that
are complex enough to act as functional ribozymes came

into being [7–11]. In the light of evolutionary principles,
a multistep scenario of self-organization seems plausible,
cf. Fig. 1. However, the intermediate steps on the way
toward functional polynucleotides are still not well
understood.
The smallest ribozymes known today are 50–100 nucleo-

tides (nt) long [12–14]. A common view is that the reliable
self-assembly of replicating RNA molecules required spe-
cific sequences of 20–30 nt in length [15–18]. It has been
shown that selective (Watson-Crick) base pairing can lead to
a vast reduction of complexity in sequence space, a phe-
nomenon called cooperative ligation [19,20]. Moreover, a
recent hypothesis suggests that a replicating catalytic net-
work would emerge as a “virtual circular genome,” which
self-assembles from an initial distribution of short oligonu-
cleotides [16].
The efficiency and viability of such catalytic networks

strongly depend on the relative concentrations of oligonu-
cleotides of different lengths. Commonly exponential length
distributions are assumed [16,21]. While a decay in length is
natural, the exact shape of length distributions emerging from
short building blocks is not known [16]. Models and
experiments have reported different observations [11,19,22].
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Importantly, for low concentrations, the concatenation
of oligonucleotides is dominated by a process known as
templated ligation [11,23–25]. Unlike random ligation,
where two oligonucleotides directly combine into a longer
strand [26,27], templated ligation involves a third strand,
cf. Fig. 1. The third strand, also called the “template,”
enables the covalent bonding of two other strands adja-
cently hybridized on the template. Thus, the self-assembly
of oligonucleotides cannot be captured by standard polym-
erization theory, where exponential length distributions are
well understood [28,29].
Probing the length distribution arising from templated

ligation is challenging [16]. When forming covalent bonds
between oligonucleotides, an energy gap needs to be over-
come. In enzyme-free situations, this energy can be provided
by an activation chemistry often involving imidazole or 1-
ethyl-3-(3-dimethylaminopropyl) carbodiimide [9,10,30–
32]. The yields are usually small, experiments require a
long time, and results can be obscured by side products
[7,15,33,34]. As a consequence, experimental research has
focused on so-called “primer extension,” which regards the
extension of a short (∼10 nt) oligonucleotide “primer” on a
longer template, rather than self-assembly of oligonucleo-
tides from small building blocks [30,35–41].
An alternative for providing the energy for bond formation

is using a ligase,which canbe either anRNA-based ribozyme
or a modern protein. The latter is not prebiotically plausible.
However, these enzymes drastically increase yields and
reaction speeds. While ligases require oligomers of lengths
between six and ten nucleotides, enzymatic systems can still
serve as conceptual models to explore the principles of self-
assembly and ligation-based early replication [8,19].
In order to study the self-assembly from smallest

building blocks, we employed a computational and ana-
lytical approach based on a minimal “bottom-up” model. A
transition between two dynamical regimes featuring differ-
ently decaying distributions has been reported recently
[22]. These results were obtained within a coarse-grained,

deterministic model, which does not capture the entire
complexity associated with templated ligation.
A general yet simple theory identifying the generic

properties of the self-assembly from shortest oligomer
building blocks has been missing. The goal of this work
is to close this gap. To this end, we investigated a model
that captures the elementary mechanism of self-assembly:
the hybridization of strands to form arbitrary complexes on
which templated ligation can occur. To focus on the
assembly process alone, the dependence on oligonucleotide
sequences was neglected: The binding energy of a hybridi-
zation site is proportional to its length and characterized by
a single parameter γ, reflecting a typical binding energy per
nucleotide, which emerges naturally in mean-field descrip-
tions like the “random sequence approximation” [22].
Our main result is that the competition of timescales

between (length-dependent) dehybridization, extension,
and a degradation or observation timescale generically
leads to a nonmonotonic strand-length distribution. We
show that different dynamic processes govern different
regions in the space of strand lengths. The boundaries
between these regions are given by a local minimum at a
length Lmin and a local maximum at Lmax > Lmin, which
can be approximated by two analytical length scales L� ∼
Lmin and L† ∼ Lmax. This accumulation of strands at the
typical length scale Lmax constitutes a novel structure-
forming process. Many of the microscopic details only
enter the theory via a single parameter that characterizes the
effective rate of extension. This allowed us to apply our
theory to experiments, where a nonmonotonic length
distribution emerges from the enzymatic ligation of a
random pool of DNA sequences in a thermocycler.

II. MODEL AND SIMULATION METHOD

A. State of the art

Previous theoretical work largely studied templated
ligation by effective models. The description of the state
space had been reduced to strand lengths, without taking
into account the hybridization complexes explicitly
[20,22,24,42–49]. In such a coarse-grained picture, (de)
hybridization and templated ligation are not elementary
reactions but are combined into an effective extension
reaction. To specify the corresponding rate, the intricacies
of the assembly process are neglected and a priori assump-
tions regarding the relevant configurations are made
[20,24,42–45]. Many models neglect the dependence of
the binding energy on the number of paired nucleotides
[20,24,42–45,47,48]. Others consider a length-dependent
dehybridization rate only up to some cutoff length such that
the timescale of ligation is always much larger than the
timescale of the dehybridization kinetics [22]. A study
addressing the full complexity of the assembly was limited
by small system sizes [50].

FIG. 1. Prebiotic evolution is a multistep process that creates
new entities exhibiting emergent mechanisms of interaction. Our
work outlines the emergence of structured oligonucleotides from
the smallest building blocks.
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B. Model

Figure 2(a) sketches the model dynamics. Short oligom-
ers enter a reaction volume V, where they hybridize to
form (partially) double-stranded complexes. If oligomers
aggregate in suitable configurations, they may undergo
templated ligation. Eventually, all complexes leave the
reaction vessel at a constant rate, mimicking a flow reactor.
Strands and complexes.—The basic element of our dynam-

ics is a directed oligomer called a strand, which consists of
covalently linked nucleotides. All linear conformations that
can arise from a set of strands are allowed; see Fig. 2(b). Only
self-folding and branched hybridization structures are
excluded. While these effects might become important for
longer strands, they can be neglected when dealing with the
self-assembly from short strands. The overlapping region
between two strands is referred to as a hybridization site.
Single strands are called m-mers. We explicitly refer to
monomers, dimers, trimers, and tetramers form ¼ 1, 2, 3, 4.
Elementary processes and parameters.—The internal

elementary reactions are hybridization, dehybridization,
and templated ligation; see Fig. 2(c). Hybridization and
dehybridization are assumed to be elementary and revers-
ible reactions with rates ron and roff . Thermodynamic
consistency [51,52] connects ron and roff to the free energy
ΔG∘

b of a hybridization site:

roff
ron

¼ ðVNAc∘ÞeβΔG∘
b ; ð1Þ

where β ¼ ðkBTÞ−1, kB is Boltzmann’s constant and T
denotes the absolute temperature, NA is the Avogadro
constant and c∘ ¼ 1 mol=l is the standard concentration.
When two strands of length L1 and L2 are hybridized

adjacently on a third strand, they may ligate to a new strand
of length L1 þ L2. The ligation rate rlig is assumed to be
independent of L1, L2, the directionality of the strands, and
microscopic details. The uniform ligation rate can be
interpreted as an effective average. A more detailed model
could reflect that short oligomers predominately ligate to 30
ends [16,53] due to the underlying chemistry [54,55] or
include stalling effects [39,56,57]. Since template-free
ligation is a much slower process than templated ligation
[23], it is neglected. Moreover, two external reactions
connect the system to its environment, cf. Fig. 2(d).
(i) A coupling to a reservoir fixes the concentrations cm
of m-mers with m ∈ R. (ii) Each complex exits the system
at a constant rate rout.
Thermodynamics and kinetics of hybridization.—The

binding energy ΔG∘
b of a hybridization is assumed to be

directly proportional to the length of the binding site l, see
Fig. 2(b),

βΔG∘
bðlÞ ¼ γl; ð2Þ

where γ < 0 is a parameter that gives the (negative) binding
energy per unit length in units of kBT.

(a)

(c) (d)

(e)

(f)

(b)

FIG. 2. (a) Short strands entering the reaction vessel from the reservoir are the initial building blocks of the system. Inside the vessel,
strands form various complexes via hybridization and dehybridization. Subsequent ligation leads to longer strands eventually leaving the
system. (b) Examples of higher-order complexes with multiple hybridiziation sites. (c) The internal elementary processes are
hybridization, dehybridization, and templated ligation with corresponding rates ron, roff , and rlig. (d) The external elementary processes
couple the system to its environment. Short strands of length L ¼ μ for μ ∈ R are chemostated via the coupling to an external reservoir
of initial building blocks at fixed concentrations cμ. All complexes leave the system at a constant rate rout. (e) When two complexes
collide, they can form Θ different hybridization complexes. (f) Duplexes D ≔ ðL1; L2; o1Þ are uniquely characterized by the strand
lengths L1; L2 ∈ N and one of the overhangs oi ∈ Z of strand Si, i ∈ f1; 2g, at its 30 end. Overhangs oi can be negative, as for the case of
o2 in the right-hand example.
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Equation (1) thermodynamically constrains the ratio
of ron and roff . An additional kinetic parameter is needed
for a full parametrization of the rates. Here, we use a
constant rate of collision between two complexes
rcoll ¼ ðVNAc∘t0Þ−1, where t0 ¼ ðr0Þ−1 is a microscopic,
intensive, collision timescale; see Sec. S1 of the
Supplemental Material (SM) [58]. All times are measured
in units of t0. In general, two colliding complexes can form
multiple configurations via Θ distinct hybridization chan-
nels; see Fig. 2(e). The probability of choosing each of
these channels is assumed to be equal:

phyb ¼ 1=Θ; Θ > 0: ð3Þ

Hence, the hybridization rate via a given channel is

ron ¼ rcollphyb: ð4Þ

For the dehybridization rate we obtain from Eq. (1)

roff ¼
1

Θ
eγl: ð5Þ

In reality, the collision rate depends on the properties of
the colliding complexes, the solvent, and temperature.
A parametrization where the binding energy γl is attributed
to the dehybridization rate roff is a common kinetic
assumption, and has been confirmed experimentally
[59–61]. The kinetic assumptions Eqs. (4) and (5) reduce
the computational complexity, while still maintaining the
sampling of all configurations thermodynamically consis-
tent; see Sec. S1 in the SM [58].
In addition to this standard model, we also consider a

“bounded” variant, where the dehybridization rate cannot
become smaller than a minimal rate rcut, such that roff ¼
rcut if eγl=Θ < rcut. The bounded model can be thought of
as an effective implementation of a system subjected to an
external mechanism causing dehybridization of all com-
plexes with a timescale of τ ∼ ðrcutÞ−1. Such a situation can
be realized by the thermal cycling in a “thermal trap”
situated in a hydrothermal vent or be the consequence of
other naturally occurring cycles [22,62–66].
Standard parameters.—Our primary focus is a scenario

where the building blocks entering from the reservoir are
dimers only. If not indicated otherwise, c2 ¼ 2 mM. The
volume V is chosen such that 104 single-stranded dimers
are present. This dimer-only scenario is the simplest model
allowing for templated ligation and makes analytical
considerations easier. If not otherwise stated, γ ¼ −0.5,
rlig ¼ e−6, and rout ¼ 5 × 10−9. In the bounded model rcut
is a further parameter.
Implementation.—The model dynamics were imple-

mented in C++ using the Gillespie algorithm [67–69] (see
Sec. S1 in the SM for details [58]).

III. SIMULATION RESULTS AND ANALYSIS

The main observable in this work is the length distri-
bution of strands ρðLÞ. It expresses the concentration of
strands of length L, irrespective of the complexes they
belong to.

A. Self-enhancing catalysis leads
to long-tailed distributions

Self-assembly via templated ligation is a self-enhancing
mode of growth, where long strands facilitate their own
formation. This process competes with degradation. For
large outflux rates, strands remain inside the reaction
volume only for short times and participate in few or even
no templated ligations. The resulting stationary length
distribution is therefore expected to be short tailed.
In contrast, for a small outflux rate, strands spend more

time inside the system and thus have a higher chance to
serve as a template or to get ligated, leading to the
formation of longer strands. These longer strands again
allow for larger hybridization sites and are better templates.
Consequently, we expect the existence of a crossover value
for the outflux rate rout ¼ rcout, where the formation of
longer strands is dominantly self-enhancing. In the
Appendix A, we derive the value of the crossover rate,

rcout ¼ 2ðc2Þ2ðe−4γ þ 2e−3γÞrlig; ð6Þ

under the assumption that (i) short-tailed distributions are
dominated by the smallest building blocks and (ii) time-
scales of the dehybridization of these building blocks are
small compared to the timescale of ligation.
We probed the stationary distribution for various values

of the outflux rate rout. Simulation results for the standard
model are shown in Fig. 3(a). Figure 3(b) gives the
analogous results for the bounded model.
Since the derivation of Eq. (6) does not rely on the

dynamics of long strands affected by the cutoff, we expect
the same transition from short- to long-tailed distributions
in both scenarios. For sufficiently large outflux rates the
resulting short-tailed length distributions look quantita-
tively similar. The curves for the crossover outflux rate
rcout ¼ 3.24 × 10−7 obtained from Eq. (6) are indicated as
dashed (orange) lines. The long-tailed distributions for
small outflux rates differ significantly: In the standard
model, Fig. 3(a), a local minimum and maximum emerge.
In contrast, the long-tailed distributions in the bounded
model, Fig. 3(b), decay monotonically.
This behavior is rationalized in the right-hand column of

Fig. 3, where we sketch the dependence of the (effective)
rates of the processes affecting the strand length. The
crucial effective growth process is the extension reaction,
i.e., hybridization of a third strand followed by ligation.
The effective rate is denoted by rext. In the unbounded
model, the dehybridization rate roff intersects the horizontal
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lines corresponding to constant extension and outflux rates
at two distinct length scales L� and L†. This already hints at
the two emergent length scales Lmin and Lmax in the length
distribution. This intersection does not occur for the
bounded model.
An analogous argument to Eq. (6) for the transition from

long to short tails was made in Ref. [22]. There, the authors
studied assembly in a model, where strands break by
cleavage. The crucial difference between their work and
our unbound model is that in their model ligation is always
the slowest process.

B. Competition of timescales enables extension
cascades and persisting complexes

We now focus on the standard model without effective
thermal cycling and with a sufficiently low outflux rate. It
already became clear that the nonmonotonic behavior stems
from complexes for which dehybridization is not neces-
sarily the fastest process. If the binding energy of a duplex
is close to zero, it dehybridizes quickly. In contrast, if the
binding energy has a large absolute value, the duplex is
stable and the extension with a third strand becomes
probable. The extended complex is even more stable and

another extension becomes even more probable. We call
this phenomenon an extension cascade.
Disregarding dehybridization and outflux for now, an

extension cascade only stops when no further extension is
possible. In our model this is only the case for a fully
hybridized duplex consisting of two maximally overlap-
ping strands of the same length. These duplexes persist for
long times. The fate of such a long-lived complex is
determined by either dehybridization or outflux.
Structure of complexes.—We partition complexes into

different classes by distinguishing between single strands,
duplexes, and higher-order complexes, cf. Fig. 4(a). We
further subdivide duplexes according to “parity”: Fully
hybridized duplexes have zero parity. In contrast, duplexes
with even or odd overhangs have even or odd parity. Note
that in the dimer-only model, mixed parities are excluded,
because all strand lengths are even.
Extension cascades only reach a terminal fully hybrid-

ized duplex when they start from even duplexes. Duplexes
with odd parity will undergo quasi-infinite extension
cascades. Figures 4(a) and 4(b) show the partitioned length
distribution. Short strands are mostly single stranded. In
contrast, the concentration peak is dominated by fully
hybridized duplexes. The effect of quasi-infinite extension
cascades is visible in the tail. Higher-order complexes are

(a)

(b)

(c)

FIG. 4. (a) Partitioning the contributions of the different sub-
groups to the strand-length distribution reveals the dominant
configurations: Short strands are mostly single stranded. Strands
with lengths around the peaks are in the persistent fully hybridized
zero-parity configuration. In the dimer-only model, odd duplexes
never reach a fully hybridized state and cause the long tail of the
distribution. (b) The probability of different complex types
conditioned on strand length. (c) The probability that a duplex
with nonzero parity is stable conditioned on strand length. Around
L ¼ L� [cf. Eq. (13)] this probability increases rapidly.

(a)

(b)

FIG. 3. Stationary length distributions (left) and competition of
timescales (right) for the standard model (a) and its bounded
variant (b) for different values of the outflux rate rout. In the
bounded model, dehybridization cannot become smaller than
rcut ¼ 0.05. Dehybridization is thus faster than ligation
(rlig ¼ 2.5 × 10−3) for all lengths. In both models, the length
distributions develop long tails when decreasing the outflux rate
rout. The orange (dashed) curves correspond to a systemwhere the
outflux rate takes the crossover value rout ¼ 3.24 × 10−7,
cf. Eq. (6). For outflux rates below the transition value, the
unbounded model exhibits a nonmonotonic length distribution
with a local minimum and maximum at Lmin and Lmax.
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less abundant and do not contribute significantly to the
shape of the distribution.
The minimum at L ¼ Lmin is due to the increase of

the concentration of fully hybridized duplexes at a char-
acteristic length scale L� ≲ Lmin, which we derive below.
Figure 4(c) shows that L� is the typical length scale on
which duplexes become stable enough for extension
cascades to start.
Kinetics of duplexes.—Since the dehybridization rate

depends on the length of the hybridization site, it connects
timescales to length scales. As such, the characteristic
scales L� and L† also divide the length distribution into
different dynamical regimes. Since the length distribution is
dominated by single strands and duplexes, we now consider
the kinetics of duplexes in detail.
A duplex consisting of strands S1 and S2 with lengths L1

andL2 is fully characterizedby the 3-tupleD ≔ ðL1; L2; o1Þ.
The number o1 is the (positive or negative) overhang of
strand S1 on its 30 end; see Fig. 2(f). When the two strands
collide, they can form Θ ¼ L1 þ L2 − 1 different duplexes.
Applying this to Eq. (5), the dehybridization rate becomes

rduploff ðDÞ ¼ 1

L1 þ L2 − 1
eγlðDÞ: ð7Þ

First, we formally derive the onset of extension cascades at
L�: Hybridization of a short m-mer can occur on one of the
two nonzero overhangs oi, i ∈ ð1; 2Þ, of the duplex D and
results in a triplex Ti. If them-mer is subsequently ligated to
its neighboring strand, we call the combined process an
extension. In that case, the length of the hybridization site of
them-mer with the duplex is zi ¼ minðjoij; mÞ. To calculate
an effective rate for this process, we assume that the
dynamics of the m-mer hybridization is fast compared to
the ligation rate and to the dehybridization rate of the
duplexD. Consequently, the concentrations of the duplexD
and the triplex Ti can be assumed to be at a binding
equilibrium and we obtain

cTi
¼ cDcme−γzi : ð8Þ

With this, we define the effective extension rate with an
m-mer as the ratio of the rate of ligations from that triplex and
the duplex concentration, i.e., rext;m ¼ rligcT=cD. Using
Eq. (8) and taking into account that there are generally
two ligation sites (i ¼ 1, 2), the extension rate reads

rext;mðDÞ ¼ rligcm
X

i∈f1;2g
oi≠0

e−γzi : ð9Þ

Hence, the extension rate with a short m-mer is

rextðDÞ ¼
X

m

rext;mðDÞ: ð10Þ

The ratio of rext and roff gives the condition for the onset of
extension cascades for the duplex D, 1 < rextðDÞ=rduploff ðDÞ.
As dimers are the most abundant species, we approximate
rextðDÞ≳ rext;2ðDÞ, yielding the lower bound:

1 <
rext;2ðDÞ
rduploff ðDÞ : ð11Þ

To be more systematic, we now consider a system
containing only strand lengths smaller or equal to some
fixed value L0. We then determine the minimal L0 such that
duplexes appear which can undergo extension cascades.
Using Eqs. (7) and (9) we write the ratio in Eq. (11) as

rext;2ðDÞ
rduploff ðDÞ ¼ ðL1 þ L2 − 1Þc2rlig

X

i∈f1;2g
oi≠0

e−γðlþziÞ: ð12Þ

This ratio is largest for symmetric duplexes with L1 ¼
L2 ¼ L0, where lðDÞ þ zi ¼ L0. The two duplex configu-
rations maximizing the ratio are thus the odd duplexD�1 ¼
ðL0; L0;�1Þ and the even duplexD�2 ¼ ðL0; L0;�2Þ. The
smallest L0, for which extension cascades are possible,
defined as L�, are found by solving

1 ¼ 2ð2L� − 1Þc2rlige−γL�
; ð13Þ

which yields L� ≈ 16.2. As the shortest building blocks are
dimers, L�

• ¼ ⌈L�⌉ is calculated by ceiling L� to the next
even integer, i.e., L�

• ¼ 18.
For strong binding, i.e., γ < −1, the subexpontial length

dependence which enters via the channel number Θ can be
neglected. To leading order one then has

L� ≈ ln

�
c2

rlig
r0

�
γ−1; ð14Þ

where we made the dependence of the microscopic kinetic
parameter r0 explicit.
The distinct peak in the strand-length distribution is

caused by fully hybridized duplexes ðL;L; 0Þ being end
points of extension cascades. These duplexes persist until
they dehybridize or leave the system. This gives rise to two
different fates depending on their length. For L smaller than
some critical value L†, rduploff ðL; L; 0Þ > rout, duplex pro-
duction in the stationary state is mostly balanced by
dehybridization. For long duplexes with L > L†, we have
rduploff ðL;L; 0Þ < rout, and hence the stationary concentration
is mostly determined by a balance of their production with
the outflux. The outflux rate rout is independent of L,
whereas roff decreases exponentially with L. We thus
expect the existence of two different regimes where the
stationary concentration of the fully hybridized duplexes
exhibits a different dependence on L. We can find the
length where the dehybridization rate becomes smaller than
the outflux rate by
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roffðL†; γÞ ¼ eγL
†

2L† − 1
¼ rout: ð15Þ

Solving this equation numerically for the standard param-
eters, we obtain L† ¼ 30.07. Ceiling to the next even
integer yields L†

▴
¼ ⌈L†⌉ ¼ 32.

As above, we may ignore the logarithmic kinetic
dependence on the length for strong binding and obtain

L† ≈ ln

�
rout
r0

�
γ−1: ð16Þ

From Fig. 4(a) we see that L† coincides with the position of
the maximum Lmax, whereas L� serves as a proxy for the
position of the minimum Lmin.
In Appendix B we perform an extensive screening of the

parameter space demonstrating that the analytical estimates
Eqs. (13) and (15) are generally valid. Moreover, the
transient behavior of the length distribution in a closed
system is discussed in Appendix C. There, the global
transient observation time τobs limits the maximal lifetime
of any complex and thus plays the same role as the global
degradation timescale r−1off in an open system.

C. Monomer-dimer mixtures

So far, we have studied systems using dimers as initial
building blocks. While this made our analytical consid-
erations easier, only strands of even length appeared in the
system. These strands enabled infinite extension cascades
starting from duplexes with odd parity. As a result, the
length distribution had a heavy tail; see Fig. 4(a).
Figure 5 shows the length distribution for a reservoir

containing monomers and dimers at a total building block
concentration of ctot ¼ c1 þ c2 ¼ 2 mM. The fraction of
monomers fm ≔ c1=ctot is set to 70%. Now, infinite
extension cascades are suppressed and the long tail col-
lapses. The partitioning of complexes into various sub-
structures shows that fully hybridized duplexes again

dominate the tail of the distribution. As above, duplexes
with finite overlap are distinguished by the parity of their
overhangs, with the addition of mixed parity duplexes,
having different parities at the different sites.
The general understanding of the characteristic features

of the length distribution developed above remains valid.
Repeating the calculations leading to Eq. (13) for the onset
of extension cascades with the combined extension rate for
both monomers and dimers leads to the same equation, with
the dimer concentration c2 replaced by the total concen-
tration ctot; see Appendix D. The position of the maximum
does not depend on the building block concentration,
cf. Eq. (15). Hence, the peak in Fig. 5 is roughly at the
same position as in the dimer-only system. We confirm the
validity of this result by probing different monomer
fractions fm in Appendix D.

D. Growth of complexes

The length scale L† relates the dehybridization to the
outflux timescale. However, its role in the dynamics is not
straightforward. We now show that L† is a typical scale
where self-enhancing processes leading to the growth of
strands and complexes break down.
Trajectories of stable duplexes.— In what follows, we

investigate the trajectories of extension cascades starting
from stable duplexes until they leave the system in a fully
hybridized configuration. We sample trajectories from the
steady state of the monomer-dimer system with a monomer
fraction of fm ¼ 70%; see Fig. 5. Our sampling algorithm
is consistent with the events that occur in a steady state and
is explained in Sec. S2 of the SM [58].
An initial stable duplex consists of a long strand of size

Llong and a short strand of size Lshort ≤ Llong. It has an
overlap linitial and a length Cinitial ¼ Llong þ Lshort − linitial,
cf. Fig. 6(a). These stable duplexes are the starting point for
extension cascades and eventually become fully hybridized
duplexes of length Cfinal ≥ Cinitial. If the length of the initial
complex is the same as that of the final complex,
Cfinal ¼ Cinitial, no extension occurs beyond the length of
the original duplex and we speak of pure primer extension.
In contrast, if Cfinal > Cinitial, processes occurred that
extended the length of the initial duplex and we speak
of duplex extension. A detailed look at extension cascades
involving duplex extension can be found in Appendix E.
Figure 6(b) shows the joint probability distribution

pðCinitial; linitialÞ. It is maximal for Cinitial ∼ L† and
linitial ∼ L�. The accumulation of probability at this point
characterizes a typical initial configuration, but does not
determine the length of the individual strands.
Figure 6(c) shows pðLlong; LshortÞ. We see that it is

restricted to the lower triangle defined by L� ≲ L≲ L†.
The boundaries of this region reflect our analysis above:
Strands shorter thanL� typically do not bind strongly enough
to start extension cascades. In contrast, strands longer thanL†

aremostly double stranded and thus not available to form the

FIG. 5. Partitioned length distribution for a system coupled to a
reservoir containing monomers and dimers at a monomer fraction
of fm ¼ 0.7. In contrast to Fig. 4, virtually all strands with
L > L� belong to a fully hybridized duplex.
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initial duplexes. The approximately uniform behavior of the
distribution in that region indicates that no particular combi-
nation of strand lengths is preferred.
Next, we consider the lengthCfinal of the fully hybridized

duplex that marks the end of an extension cascade. Figure 6
(d) shows the joint probability distribution pðCfinal; CinitialÞ.
The diagonal line Cinitial ¼ Cfinal indicates pure primer
extension and has a total weight of ∼17%. The point
Cfinal ¼ Cinitial ¼ 31 ∼ L† has the maximal individual
weight (∼2.5%).
Finally, Fig. 6(e) shows pðCfinal; LlongÞ. Purely autocat-

alytic processes, where the long strand facilitates the
formation of itself, are contained on the diagonal line
Llong ¼ Cfinal. These autocatalytic trajectories constitute a
fraction of about 2.5% of all extension cascades.
Autocatalytic trajectories (Llong ¼ Cfinal) are a subset of

trajectories with pure primer extension (Cinitial ¼ Cfinal).
Most extension cascades, however, lead to fully hybridized
duplexes that are longer than either of the two strands of the
initial complex. In order to emphasize the cooperative
effects, we refer to this more general process as hetero-
catalytic growth.

Catalytic growth and reassembly.—Autocatalytic and
heterocatalytic cycles are formed by combining extension
cascades with a dehybridization of the final duplex and
eventual reassembly. Figure 7(a) illustrates an autocatalytic
cycle, while Fig. 7(b) shows heterocatalytic growth. Note
that in general heterocatalytic processes involve duplex
extensions.
In the following we investigate how such catalytic cycles

shape the strongly nonequilibrium regime L� ≤ L ≤ L† of
the strand-length distribution: After a fully hybridized
duplex is reached at the end of an extension cascade it
will dehybridize or leave the system. If it dehybridizes, it
may hybridize to another single strand and create a new
stable duplex with a new overhang. By this reassembly,
long strands catalyze the formation of other long strands.
The reassembly probability pra is mostly determined by the
competition between outflux and dehybridization. A sig-
moidal dependence on the length Cfinal follows:

pra ∼
roff

roff þ rout
∼ ð1þ eγðL†−CfinalÞÞ−1: ð17Þ

The reassembly probablity pra decays exponentially with
the Cfinal. Thus, the production rate of longer strands
Cfinal ∼ L† is drastically reduced.
In summary, the strongly nonequilibrium catalytic strand

growth is constrained to strand length between L� and L†.
It is this self-enhancing dynamical behavior which leads
to the increased production of strands with lengths
L� < L < L†. This effect directly yields a region in the
strand length distribution, where concentration increases
with length. To the right of the peak at L ∼ L†, catalytic
cycles producing longer strands are too slow in order to
compete with the outflux rate rout. Similarly, in the
analogous transient situation, the observation time τobs is
too short to allow the catalytic production of strands
beyond a certain length.

(a)

(b) (c)

(d) (e)

FIG. 6. (a) Trajectories start with an initial stable duplex
characterized by its strand lengths Llong and Lshort together with
the initial overlap linitial and complex length Cinitial. Trajectories
not creating new single-stranded regions beyond the initial
complex are referred to as “pure primer extension.” In contrast,
duplex extension leads to a final complex with Cfinal > Cinitial.
(b)–(e) Trajectory statistics can be understood from various joint
probability distributions, where L� ∼ 17 and L† ∼ 31. See main
text for details.

(a) (b)

FIG. 7. Heterocatalytic (a) and autocatalytic (b) processes for
the growth of strands. In the strongly nonequilibrium regime,
extension cascades cover the available overhang of stable duplex
and form longer fully hybridized strands. These long strands can
then dehybridize and reassemble, thus creating new overhangs to
be covered by extension cascades. The reassembly probability pra
is determined by the balance between dehybridization and
outflux and decays to zero fast for L≳ L†.
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IV. EXPERIMENTAL SYSTEM

To test our theory experimentally, we used DNA strands
of length Lbb ¼ 12 as basic building blocks in a closed
volume. The strands have random sequences drawn from a
binary alphabet of A (adenine) and T (thymine). As
discussed above and in Appendix C, in closed systems
the global transient observation time τobs plays the same
role as r−1off in an open system.
Enzyme-free templated ligation is slow and not com-

patible with experimental timescales [19]. Ligases speed up
the assembly process, but require the formation of com-
plexes involving at least three strands with L⪆12 and the
ligase. The probability of finding such complexes decreases
with temperature. Further, the ligase activity itself is
temperature dependent, resulting in a nontrivial temper-
ature dependence of the effective extension rate. In iso-
thermal systems, one may encounter a stalemate situation.
For high temperatures, the extension rate is small since the
formation of the required complexes is thermally sup-
pressed. In contrast, for low temperatures, the dehybridiza-
tion rate is small and the system is effectively frozen. This
stalemate can be resolved using temperature cycles [8,19]:
During the cold phase, the extension rate is initially high
until virtually all possible ligations in existing complexes
have occurred. Hence, the hot phase is required to create
new ligatable complexes. However, temperatures in the hot
phase must still be such that the binding energy γ remains
negative. Only then is the binding energy still proportional
to the overlap length, such that the competition of time-
scales gives rise to a nonmonotonic length distribution.

A. Experimental method and results

Our experiment was performed using a Taq DNA ligase
from New England BioLabs and a ThermoFisher ProFlex
PCR system to generate the temperature profile shown in
Fig. 8(a). This setup is similar to the setup used in Ref. [8].
The analysis of the length distributions is done by running
the sample in a polyacrylamide gel electrophoresis, post-
staining the DNA with intercalating SYBR gold dye, and
taking fluorescent images of the gel in a BioRad ChemiDoc
MP. Concentration quantification is performed with a
custom software extracting the lane intensity from gel
CCD images (see Sec. S3 D in the SM [58]). The bands
visible at lengths of 16 and 24 nt for all lanes in Fig. 8(b)
are artifacts from the ligation buffer and DNA synthesis,
respectively.
We analyzed the length distribution for various observa-

tion times τobs for different isothermal conditions and cycling
scenarios, where temperature alternated between Tcold ¼
33 °C at variable temperature Thot, cf. Fig. 8(a). Isothermal
experiments resulted in no product formation within 60 and
116.5 h, cf. Sec. S3 of the SM [58]. For low temperatures,
even short duplexes with strands of length Lbb cannot
separate. For high temperatures, the extension is suppressed
because no stable ligatable complexes are formed.

Cyclic conditions led to different product distributions,
shown in Fig. 8(b). The length distribution decayed quickly
for Thot ¼ 50 °C, while it decayed slowly for Thot ¼ 58 °C.
All length distributions showed a nonmonotonic behavior
exhibiting a local minimum Lmin between 24 and 48 nt and
a maximum Lmax between 36 and 72 nt. For higher
dissociation temperatures the peak was found to be flatter
and wider. The shape of the distribution changed signifi-
cantly in a limited range for Thot.

B. Effective theory

In order to understand the behavior of the experimental
system when varying the temperature Thot in the hot
phase, we consider the thermodynamics of the standard
Gibbs free energy ΔG∘. It enters our theory as the central
temperature-dependent binding parameter ΔG∘=ðkBTÞ. To
leading order in T, the Gibbs energy can be written as
ΔG∘ ¼ ΔH∘ − TΔS∘, where the standard enthalpy ΔH∘
and standard entropy ΔS∘ are temperature-independent
microscopic parameters [70,71].
Themost significant effects occurwhen the binding energy

changes sign at the critical temperature Tc ¼ ΔH∘=ΔS∘.

(a)

(b) (c)

FIG. 8. Product concentration analysis for a 12 nt random
sequence AT-only pool. (a) Experimental temperature profile.
Ligation occurs for 120 s at 33 °C after which the sample is heated
to the variable hot reassembly temperature Thot for 20 s. (b) Image
of a polyacrylamide gel electrophoresis. The first lane on the left
shows the “baseline” sample, which is similar to the other lanes
but was not subjected to temperature cycling. The other lanes
have the same ligation conditions but different temperatures for
dissociation. (c) Quantitative results for the length distribution.
Nonmonotonic length distributions with a maximum and mini-
mum were observed.
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Assuming thatΔH∘ andΔS∘ scale linearly with the length of
the hybridization site, Tc is independent of length. For our
experiment, we estimated the expected value of Tc between
60°C and 75°C (see Sec. S3 A in the SM [58]).
At positive binding energy, i.e., for Thot > Tc, strands of

all lengths dissociate quickly in the hot phase. We are then
in a situation akin to the bounded model discussed in
Sec. III A. In order to observe a nonmonotonic distribution,
the dehybridization (and thus the reassembly) rate in the hot
phase must decay exponentially with strand length, which
requires Thot < Tc. For our effective theory we employ a
linear expansion of the binding parameter γ below the
critical temperature Tc:

γðTÞ ¼ ΔG°
1

kBT
¼ T − Tc

ξ
: ð18Þ

In this formula, ΔG°
1 is a typical binding energy per

nucleotide. The parameter ξ has units of temperature and
characterizes the (inverse) slope of γðTÞ around Tc. From
ΔG°

1 ¼ ΔH°
1 − TΔS°1 it follows that ξ ¼ −kBT2

c=ΔH°
1 ≈

30 K for typical enthalpies and entropies (see Sec. S3 A in
the SM [58]).
Unlike Tc, the parameter ξ is inversely proportional to

ΔH°
1 and thus depends on strand length. Our simplemodel is

based on effective binding energies of (self-complementary)
nucleotides. It is therefore questionablewhether the value of
ξ ≈ 30 K obtained from standard libraries for matching
nucleotides is appropriate here. Since hybridization sites
also contain mismatches, the correct value of ξ describing
the experimental behavior is likely smaller. Under the
assumption that a nucleotide has a probability of 1=2 to
encounter its complement, an adjusted value of ξ ≈ 15 K
seems reasonable. Finally, for a full parametrization of the
dehybridization rate roffðL;ThotÞ ∼ r0 exp½γðThotÞL�, we
need to specify the collision rate r0. While the exact value
of this rate depends on microscopic details, experimental
evidence suggest that a value of r0 ¼ 106 s−1 is reason-
able [72–74].
Figure 9 shows the length dependence of the dehybrid-

ization rate roff for various values of Thot below Tc ¼ 62 °C
and ξ ¼ 13 K. One should recall that the extension rate rext
is the effective rate at which a duplex binds to a third strand
and subsequently ligates. As explained initially, extensions
are likely to happen only in the cold phase. Because of
frustrated dehybridization, we expect a single extension
per duplex per cycle. Consequently, the extension rate
determining L� is given by rext ∼ τ−1cyc. In transient systems
without outflux, the inverse observation time τ−1obs ¼
Ncycτcyc replaces rout in determining L†.
For τcyc ¼ 180 s and Ncyc ¼ 1000, we obtain the two

horizontal lines in Fig. 9. The intersections with the length-
dependent dehybridization rate determines the scales L�

and L† as a function of Thot. The big dots and triangles

denote the values L�
• and LL

▴
obtained by ceiling to the next

integer multiple of Lbb.
We observe that the scales L� and L† shown in Fig. 9

agree well with the experimental observations for Lmin and
Lmax shown in Fig. 8. The exact values of L� and L† depend
on the exact values for the parameters r0, ξ, and Tc, for
which we used reasonable estimates. As such, they should
not be confused with rigorous predictions. Nonetheless,
both the order of magnitude and the qualitative dependence
of experimental results on Thot are fully captured by our
effective theory.
However, we expect the effective theory to break down

close to the critical temperature Tc. For small γ, the
contributions to the dehybridization rate due to microscopic
details play a more prominent role. Further, when
approaching Tc, the characteristic features of the distribu-
tion shift to larger lengths. Then, both the experimental
timescales and the overall oligonucleotide mass become
limiting and the depletion of building blocks starts to play a
role. Moreover, the quantitative evaluation of the gel plots
is more difficult for long strands, cf. Fig. 8(a). For this case,
other effects, like self-folding of strands, may be an
important mechanism that is absent from the theory,
cf. Ref. [8].

V. SUMMARY AND DISCUSSION

Since major transitions in evolution appear to have
occurred when smaller entities were coming together to

FIG. 9. Temperature dependence of the emerging length scales
in the effective theory. Solid lines: dehybridization rate roff ¼
r0eγðThotÞL for various values of Thot. The inset shows the linear
function γðTÞ, Eq. (18), with Tc ¼ 62 °C and ξ ¼ 13 K. Hori-
zontal dashed lines denote the effective extension rate τ−1cyc and the
inverse observation time τ−1obs. As in Fig. 3(a), the competition of
timescales determines the scales L� and L† as the intersection
between the solid and dashed lines. They are mapped to the
observable length scales Lmin (circles) and Lmax (triangles) by
ceiling the intersection point to the next multiple of Lbb ¼ 12. By
approaching Tc, the binding energy and thus the slope become
smaller in magnitude, and the intersection points move to larger
lengths.

JOACHIM H. ROSENBERGER et al. PHYS. REV. X 11, 031055 (2021)

031055-10



form larger ones [75], a multistep scenario toward
increased complexity also seems natural in a prebiotic
context. While the importance of templated ligation in this
scenario is clear [76], the assembly dynamics emerging
from this interaction of short building blocks were not fully
understood previously.
Using a minimal bottom-up model, we showed that a

nonmonotonic length distribution arises from the competi-
tion of three timescales or, equivalently, the correspond-
ing rates.
(1) The dehybridization rate roff which decreases ex-

ponentially upon increasing strand length L, with the
decay determined by the binding parameter per
nucleotide γ.

(2) An effective extension rate rext of a duplex, which is
determined by the ligation rate rlig, γ, and the
concentrations of building blocks.

(3) A global timescale determined by either the outflux
rate rout or an observational time τobs.

The competition between rext and rout determines whether
we see long-tailed distributions at all: If rout is larger than
rext, ligations are unlikely. The competition between roff
and rext leads to the emergence of extension cascades at a
typical length scale L�: As soon as strands in a hybridi-
zation complex have a length such that rext > roff , they
undergo extension cascades resulting in persistent configu-
rations, which cannot extend further. The fate of such a
configuration is determined by the competition between
roff and rout: Fully hybridized duplexes shorter than L†

dehybridize before leaving the system. The single strands
released in this way subsequently act as templates in newly
formed primer-template complexes and thus catalyze fur-
ther strand growth.
The combination of extension cascades and reassembly

represents (auto or hetero)catalytic cycles producing longer
strands from shorter building blocks. In the strand-length
distribution, this strongly nonequilibrium regime is visible
as an increase in concentration with length. Extension
cascades are fast. Therefore, the dehybridization time of the
fully hybridized duplex at the end of the cascade deter-
mines the completion-time scale of these cycles. For strand
lengths where this timescale becomes comparable to
transient or global degradation times, these catalytic cycles
have no time to complete, and the length distribution
decays.
The validity of this scenario was revealed using a state-

of-the-art simulation. To our knowledge, no comparable
simulation is available to this date. As our experiments
demonstrate, the emerging length scales can be tuned by
changing environmental parameters such as the melting
temperature Thot without changing the chemistry. On early
Earth, strands of a characteristic scale L† emerging from the
self-assembly could act as building blocks of a higher level
of organization. Moreover, length-dependent accumulation
of such strands might trigger novel effects like phase
transitions [64,65,77,78].

Advantages and shortcomings of our model.—Our min-
imal model allowed us to reveal universal features of the
self-assembly process and to derive analytical expressions
for the emerging length scales. Yet, there are several
aspects that our model does not capture. It does not
allow for secondary structures like hairpins and other
“nonproductive” configurations [8,16]. While these
(potentially functional) structures will likely be important
in later stages of evolution, in the current scenario
they probably have the same role as fully hybridized
duplexes.
The strongest simplification in this work is the negli-

gence of any explicit sequence dependence for the binding
energy, i.e., the use of self-complementary nucleotides.
However, an effective self-complementary description of
hybridization arises naturally in a mean-field random
sequence approximation [22]. It assumes that differences
in binding energies between the (complementary and
noncomplementary) nucleotide pairs are small with respect
to the average binding energy γ per nucleotide.
While this scenario constitutes the extreme of vanishing

sequence selectivity, a comparable situation arises in the
other limit of perfect selectivity. There, only fully com-
plementary strands bind, and a similar description is
achieved using a combinatorial factor for each nucleotide,
which can be incorporated by a reduction of γ or using
effective concentrations (see also Sec. S1 H of the SM
[58]). During extension cascades, the incorporation of
mismatches is suppressed, since building blocks matching
the template bind stronger and thus lead to higher extension
rates. Additional stalling effects for nonmatching short
building blocks likely enhance this effect [39,56,57].
Moreover, since ligation reactions are irreversible in our
model, it corresponds to the high dissipation limit of
sequence copying, which generally increases fidelity,
cf. Ref. [79]. Consequently, we expect that in a fully
sequence-dependent model, where mismatches are penal-
ized, the maximum in the length distribution is still present
and caused by fully hybridized duplexes with compara-
tively few errors.
Outlook.—Our work provides a first step toward under-

standing the emergence of structure in a kinetically and
thermodynamically consistent bottom-up approach.
Extending our algorithm to include sequence-dependent
parameters can be a starting point for future studies.
In any explicitly sequence-dependent model, the time-

scales involved in the extension-reassembly process would
include the sequence of the strand in addition to its length
[19]. In particular, such a model extension would allow for
a more direct study of evolutionary processes in sequence
space. As discussed above, sequence selectivity and thus
replication may arise during extension cascades. The
combined heterocatalytic and autocatalytic nature of the
assembly process emphasizes the importance of co-
operation, cf. Sec. III D. Therefore, model extensions could
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also provide a testing ground for abstract frameworks
involving catalytic networks [20,80–82].
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APPENDIX A: ESTIMATION OF THE OUTFLUX
RATE AT THE TRANSITION FROM SHORT- TO

LONG-TAILED DISTRIBUTIONS

The transition from short-tailed to long-tailed distribu-
tions occurs when the direct production of long strands
from reservoir strands is balanced by the production
involving long strands as templates, cf. Fig. 10. In the
following, the corresponding crossover value of the outflux
rate rout in the dimer-only model, Eq. (6), is derived.
Consider the total concentration ρ> of strands with a

length larger than two, i.e., strands not provided by the
reservoir. In a steady state we have

0 ¼ ∂tρ> ¼ ϕ − ρ>rout; ðA1Þ

where ϕ is the concentration flux indicating processes by
which ρ> grows, namely the formation of tetramers from
dimers. Notice that the formation of strands with L ≥ 4
does not change ρ>. In general, this templated ligation can
happen in all triplex configurations with two dimers that are
adjacently hybridized. Ignoring higher-order complexes,
we assume that the dominant contribution to the production
of longer strands arises from a ligation reaction happening
at triplexes consisting of two dimers and a templating
strand of length L ≥ 2; see Fig. 10.
As the hybridization dynamics of dimers are fast, we

assume a biding equilibrium. This means that the ratio of
the concentration of a triplex and its constituents is
determined by its binding energy.
With the elementary rates for hybridization and dehy-

bridization defined in Sec. II B, the binding energy of a
complex C is given by

βΔG∘
totðCÞ ¼ γ

X

i∈C
li þ σ lnð2Þ; ðA2Þ

where we sum over all hybridization sites. The term σ lnð2Þ
is a “symmetry penalty” that occurs if the complex is
rotationally symmetric (σ ¼ 1) and is zero (σ ¼ 0) other-
wise (see Sec. S1 G in the SM for details [58]).
Using Eq. (A2), the ligation flux for triplexes consisting

of dimers only is ϕ2 ¼ ðc2Þ3e−2γrlig; see Fig. 10(a). In
contrast, the ligation flux corresponding to templates of
length m > 2 is

ϕm ¼ ðc2Þ2½2e−3γ þ ðm − 3Þe−4γ�cmrlig; ðA3Þ

where we took into account the different configurations of
the relevant triplexes; see Fig. 10(b).
We separate the ligation flux into two components,

ϕ ¼ ϕ2 þ ϕ>. The first term, ϕ2, only involves the building
blocks provided by the reservoir. In contrast, the second
term, ϕ> ≔

P
m>2 ϕm, involves longer strands. The tran-

sition occurs when the latter dominates the former.
Assuming that the length distribution is dominated by

single strands, we approximate ρ> ≈
P

m>2 cm, to obtain an
expression (lower bound) for ϕ> as

ϕ>ðρ>Þ ≈ ðc2Þ2ð2e−3γ þ e−4γÞrligρ>:

In the stationary situation the balance equation (A1) is

0 ≈ ϕ2 þ ϕc
>ðρ>Þ − ρ>rout; ðA4Þ

which is solved by the crossover value ρ> ¼ ρc>. In this
approximation, autocatalysis starts to dominate the pro-
duction of longer strands from the background when

(a)

(b)

FIG. 10. (a) Formation of a tetramer from the dimer back-
ground. A total overlap of two leads to a total binding energy of
βΔG∘ ¼ 2γ. (b) Templated ligation of dimers on anm-mer. There
are two overhanging configurations with βΔG∘ ¼ 3γ and m − 3
configurations with βΔG∘ ¼ 4γ.
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ϕc
> ¼ ϕðρc>Þ > ϕ2. In terms of the outflux rate this means

that autocatalysis dominates if

rout < rcout ¼ 2ðc2Þ2ðe−4γ þ 2e−3γÞrlig: ðA5Þ

APPENDIX B: EXPLORATION
OF PARAMETER SPACE

To verify that our results of Sec. III B are indeed
generic, we performed an extensive parameter sweep.
In each row of Fig. 11, a single parameter is varied while
all the other parameters are fixed at their standard values.
The left-hand column in Fig. 11 shows simulated sta-
tionary length distributions. The right-hand column
presents the analytical expressions for the (ceiled) values
of L� and L† with the characteristic lengths Lmin and Lmax
from the simulation result. A colored curve in the left-
hand panel corresponds to the accordingly colored marker
in the right-hand panel. The tails of the distributions are
smoothed using a standard running-average smoothing
algorithm.
Figure 11(a) shows the result for a variation of the

outflux rate rout. The transition from a short- to a long-tailed
length distribution was already discussed in Sec. III A. As
the outflux rate should not influence the onset of extension
cascades, we expect the minimum to remain constant,
which the simulation confirms. Increasing the outflux rate
shifts Lmax to lower lengths in a logarithmic way in
accordance with Eq. (16).
In Fig. 11(b) we vary the binding energy γ. We observe

that increasing the binding energy displaces the character-
istic peak toward shorter strands. The behavior of both
curves is roughly inversely proportional: L ∝ −γ−1.
Next, we vary the bare ligation rate rlig; see Fig. 11(c).

The position of the maximum remains unchanged, since the
transition determining the fate of a fully hybridized state is
not affected by the ligation rate; see Eq. (15). In accordance
with Eq. (13), decreasing rlig logarithmically shifts the
onset of extension cascade and the position of the minimum
to larger lengths. For the smallest ligation rate plotted, we
cross the transition toward short-tailed distributions
described in Sec. III A, and the characteristic peak in the
length distribution disappears.
Figure 11(d) shows the effect of varying the dimer

concentration c2. Since reducing c2 logarithmically reduces
the effective rate of extension with a dimer, higher con-
centrations enable extension cascades already for duplexes
consisting of shorter strands, shifting the minimum to the
left. Again, the position of the peak remains constant. For
the smallest concentration shown, we cross the transition
toward a short-tailed distribution.
In summary, the phenomenological positions of the

minimum Lmin and the peak Lmax are well described by
the expressions for L� and L†, Eqs. (13) and (15).

APPENDIX C: TRANSIENT BEHAVIOR IN
CLOSED SYSTEMS

Next, we investigate a closed system without influx or
outflux. We prescribed the concentration of initial building
blocks and let the system evolve transiently. Because of the
irreversibility of the ligation reaction, closed systems are
not ergodic: Short building blocks will deplete and the final

(a)

(b)

(c)

(d)

FIG. 11. Probing the parameter space of the dimer-only model.
Left-hand column: stationary length distributions. Right-hand
column: comparison of the observed values Lmin and Lmax and the
predictions for L� and L† via Eqs. (13) and (15). Variable
parameters are (a) the outflux rate rout, (b) the dimensionless
binding energy per nucleotide γ, (c) the bare ligation rate rlig, and
(d) the concentration of chemostated single-stranded dimers c2.
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configuration contains only two very long strands.
However, this stationary state will never be reached on
practical timescales.
Thus we consider a transient state at intermediate times.

We focus on the situation where long strands have already
formed, and extension cascades are possible, with still a
sufficient amount of short building blocks available. Then,
the system behaves similar to the steady state in an open
system with small outflux rates.
As in the stationary case, we observe a minimum and

maximum in the length distribution. Figure 12(a) shows the
length distribution for the standard choice of parameters for
various values of the transient observation time t ¼ τobs.
Figure 12(b) shows that the position of the maximum
increases logarithmically with the observation time.
In order to get an intuition for this behavior, we again use

an argument involving the competition of timescales. As in
the open systems, strands longer than L� will dominantly
occur in fully hybridized configurations. In contrast, the
second timescale is not determined by a global outflux rate
and fully hybridized duplexes eventually dehybridize with
a length-dependent rate roffðLÞ.
Yet, dehybridization of duplexes of length L only plays a

role for observation times longer than τobs ∼ roffðLÞ−1.
We thus expect the global transient observation time τobs

to play the same role as the timescale r−1off in an open system.
The length scale L ¼ L† that determines the peak in a
closed system can then be obtained by replacing roff with
τ−1obs in Eq. (15) or (16). In that case, the position of the peak
should increase logarithmically with time, consistent with
the results shown in Fig. 12(b).

APPENDIX D: EXPLORING
MONOMER-DIMER MIXTURES

Figure 13(a) shows the length distribution for a reservoir
where the total initial building block concentration ctot ¼
c1 þ c2 ¼ 2 mM is constant. We then vary the monomer
fraction fm ≔ ðc1=ctotÞ from zero to 90%. The orange

curve is the dimer-only system at standard parameters,
showing the long tail caused by the infinite extension
cascades. For any finite monomer concentration, infinite
extension cascades are suppressed and the long tail
collapses.
The length distributions for finite monomer fractions

look qualitatively similar. The larger fm, the less nucleotide
mass is added by the influx, and the lower the concen-
trations. The lower the monomer concentration, the more of
the bias toward strands of even lengths is retained. The bias
dominates for short strands, leading to the zigzag pattern
visible in Fig. 5(a). For long strands, the bias vanishes. In
accordance with Eq. (15), the position of the maximum is
unchanged, as it does not depend on the building block
concentration.
The minimum position, i.e., the typical length L� for the

onset of extension cascades, is derived analogously to the
dimer-onlymodel using the condition 1 < rextðDÞ=rduploff ðDÞ,
cf. Sec. III B. Instead of considering the extension with a
dimer only, one needs to include the extension with a
monomer. The extension rate is

rextðDÞ≈ rext;1þ rext;2

¼ rlig
X

i∈f1;2g
oi≠0

ðc2e−γ½minðjoij;2Þ� þc1e−γ½minðjoij;1Þ�Þ: ðD1Þ

The criterion for extension cascades then reads

1 ≤ ðL1 þ L2 − 1Þrlig
×

X

i∈f1;2g
oi≠0

ðc2e−γ½lþminðjoij;2Þ� þ c1e−γ½lþminðjoij;1Þ�Þ: ðD2Þ

The right-hand side of the Eq. (D2) is maximal for the odd
duplex configuration D�1 ¼ ðL0; L0;�1Þ, for which
lþminðjoij; 2Þ ¼ lþminðjoij; 1Þ ¼ L0, which leads to

1 ≤ 2ð2L0 − 1Þrligðc2 þ c1Þe−γL0 : ðD3Þ

Consequently, L� for monomer-dimer mixtures obeys

1 ¼ 2ð2L� − 1Þrligctote−γL�
; ðD4Þ

where ctot ¼ c1 þ c2 is the total concentration of building
blocks.
Equation (D4) is the same formula as for the dimer-only

system, except that the dimer concentration c2 is substi-
tuted by the total concentration of building blocks ctot. In
accordance with formula Eq. (D4), we observe that the
position of the minimum is constant Lmin ¼ 19 under
variation of the monomer fraction while keeping the total
concentration fixed at ctot ¼ 2 mM; see Fig. 13(b).

FIG. 12. Transient strand distributions. Left: temporal develop-
ment of the length distribution in a closed system. Over time the
concentration of short strands decreases and the minimum
develops into depleted region. Right: the position of the maxi-
mum Lmax shifts logarithmically with time toward longer lengths.
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APPENDIX E: BEYOND PURE PRIMER
EXTENSION

Figure 6(a) already depicted an example of an extension
step leading to the growth of a complex beyond its initial
length. In the following, we take a more detailed look at this
phenomenon.
Growth happens essentially independently at each end of

a duplex. It thus makes sense to take the perspective of a
single end, since it allows us to distinguish the two strands
by their roles: We call the strand whose end is overhanging
the template, whereas the other strand is called the primer.
Moreover, we refer to the length of the overhang at the start
of a trajectory as its initial copy site length lcs.
The obvious mechanism that leads to duplex extension is

depicted in Fig. 14(b). It occurs when the original primer is
extended with a strand that is longer than the (remaining)
length of the copy site.After this extension, the roles of primer
and template are reversed and a new copy site is created. We
thus denote this process as primer-template switching.
A complex undergoing an extension cascade is not always

a simple duplex. Ligation reactions can also occur away
from the stable hybridization site. We say that template
extension occurs, if another strand facilitates the extension
of the template strand; see Fig. 14(c). From the perspective
of the stable hybridization site, the length of its associated
copy site lcs has increased.

Figure 14(d) shows the number of extension events along
a trajectory as a function of the total single-stranded length
that is covered during the trajectory, Cfinal − linitial. The
standard primer-extension steps (p, red curve) are most
common. In contrast, template extension (t, blue curve) is
rare. For large Cfinal − linitial, the number of events behaves
strictly linear and primer-template switching (s, black
curve) is approximately 3 times less likely than primer
extension. For small values of Cfinal − linitial, the relative
fraction of primer-template switching increases, since a
short available overhang increases the chance of primer-
template switching.
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