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In circuit-based quantum computing the available gate set typically consists of single-qubit gates acting
on each individual qubit and at least one entangling gate between pairs of qubits. In certain physical
architectures, however, some qubits may be “hidden” and lacking direct addressability through dedicated
control and readout lines, for instance, because of limited on-chip routing capabilities, or because the
number of control lines becomes a limiting factor for many-qubit systems. In this case, no single-qubit
operations can be applied to the hidden qubits and their state cannot be measured directly. Instead, they may
be controlled and read out only via single-qubit operations on connected “control” qubits and a suitable set
of two-qubit gates. We first discuss the impact of such restricted control capabilities on the performance of
specific qubit coupling networks. We then experimentally demonstrate full control and measurement
capabilities in a superconducting two-qubit device with local single-qubit control and iSWAP and controlled-
phase two-qubit interactions enabled by a tunable coupler. We further introduce an iterative tune-up process
required to completely characterize the gate set used for quantum process tomography and evaluate the
resulting gate fidelities.
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I. INTRODUCTION

The sizes of engineered quantum systems encountered in
state-of-the-art laboratories [1–5] have been steadily
increasing, enabled by progress in packaging technology
[6] and integration of control electronics [7]. Scaling such
systems even further, however, still raises practical chal-
lenges as the amount of required control hardware and
signal lines is proportional to the growing number of qubits.
A less well explored approach to scaling, complementary to
control electronics integration, is to reduce the number of
control lines per qubit.
Traditionally, superconducting circuit systems are

designed with individual charge and flux controls for each
qubit [8] or with charge controls for qubits and flux controls
for qubit couplers [9]. Here, we focus on the latter control
approach which for large linear chains or square lattice
arrangements with nearest-neighbor couplings results
in approximately two or three input lines per qubit,

respectively. A more favorable ratio of control lines per
qubit may be achieved by forgoing the direct control lines
of a fraction of the qubits and controlling them indirectly by
means of their coupling to neighboring qubits. We call such
qubits hidden, and as we show here, they allow one to
reduce the total number of control lines without compro-
mising the computational power of the device.
In setups using multiplexed measurement schemes

[10,11], readout only accounts for a small fraction of the
total microwave line count, so the potential for improve-
ment by reducing the number of readout lines may at first
sight seem more limited than for control lines. In these
layouts, a single feed line is shared between multiple
readout resonators. Nevertheless, each qubit needs to be
coupled to its own readout resonator, taking up a significant
fraction of the area on the chip. Reducing the number of
qubits with direct readout may therefore still be beneficial
as it would allow a more economical use of the chip area.
We therefore consider hidden qubits that lack not only
direct control but also direct readout.
The lack of direct addressability of some subsystems is

also an inherent feature in certain devices such as quantum
memories using multimode microwave circuits [12] or
nanomechanical resonators [13]. Also, silicon spin qubits
[14,15] would strongly benefit from the development of
indirect control and readout techniques [16] because of the
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envisaged dense integration [17] where exchange-type
coupling between qubits can be controlled directly by a
gate voltage, but readout and single-qubit control require
additional complexity.
Here, we first discuss quantum computing architectures

making use of hidden qubits and analyze a specific two-
dimensional grid configuration as an example. We study
the resulting trade-off between the increased number of
available qubits (at a fixed number of controls) and the
increased time and number of gates required to execute a
given quantum circuit.
We further present an experimental demonstration of full

control and readout of a superconducting qubit system with
one control and one hidden qubit. We show that despite the
lack of direct control and readout of one of the qubits, we
can reliably tune up all the gates necessary to fully control
and measure the two-qubit system.
We also develop a modified quantum process tomogra-

phy (QPT) method which allows us to characterize the
gates in a way that is robust against state preparation and
measurement errors. This is especially important for
systems with hidden qubits where preparation and meas-
urement of arbitrary states relies heavily on the use of
typically more error-prone two-qubit gates, but our tech-
nique can in principle also be applied to standard network
topologies without hidden qubits.

II. CONFIGURATIONS WITH HIDDEN QUBITS

To illustrate the reduction in readout and control lines we
consider different qubit networks as shown in Fig. 1. The
linear chain and the square lattice with direct control and
readout of all qubits shown in Figs. 1(a) and 1(d) serve as
our baseline to evaluate configurations with hidden qubits.
The numbers of control lines nc per qubit (in the limit of a
large number of qubits N) for the linear chain and the
square lattice are nc ¼ 2 (one control for each qubit and one
for each coupler) and nc ¼ 3 (one control for each qubit
and two for each coupler), respectively. In both cases, there
is nr ¼ 1 readout resonator per qubit. Each qubit is directly
controllable and measurable, which we express using the
maximum distance dc from any qubit to the nearest control
and readout qubit, in these cases trivially dc ¼ 0. Another
important parameter that characterizes the network’s con-
nectivity is the average distance d̄ between a pair of
randomly chosen qubits. For the linear chain and the
square lattice, this distance can be approximated to leading
order in N as d̄ ¼ N=3 and d̄ ¼ 2N1=2=3, respectively.
In our discussion of networks with hidden qubits, we

restrict ourselves to configurations in which each hidden
qubit is at most a distance 1 away from a control qubit. That
is, dc ¼ 1. We consider two types of such networks. In the
first network, shown in Figs. 1(b) and 1(e), we convert a
certain fraction of the controllable qubits from Figs. 1(a)
and 1(d) into hidden qubits. If we wish to satisfy the
condition dc ¼ 1, we can have at most two hidden qubits

per control qubit in the one-dimensional chain and four
hidden qubits per control qubit in the two-dimensional grid.
The number of controls (single-qubit drives as well as
coupler drives) per qubit is then reduced to nc ¼ 4=3 and
nc ¼ 11=5, respectively. This reduction of roughly 30% is
not exceptionally large because the number of couplers per
qubit is unchanged in this configuration. The number of
readout resonators per qubit is however lowered quite
substantially to nr ¼ 1=3 and nr ¼ 1=5. The connectivity
of the network and therefore also the average distances d̄
between random pairs of qubits are the same as for the fully
controlled networks from Figs. 1(a) and 1(d).
In the second type of network we consider, shown in

Figs. 1(c) and 1(f), the control qubits have the same
connectivity as in the fully controlled configurations from
Figs. 1(a) and 1(d), but eachof themhas a numberh of hidden
qubits coupled directly to it. In such networks, the control
qubits form bottlenecks because they have to mediate all
interactions between hidden qubits. Moreover, the need to
couple a large number of hidden qubits to a single control
qubit without introducing unwanted direct couplings
may pose additional microwave engineering challenges.
Nevertheless, these network configurations compare

(a) (b)

(c)

(d)

(e)

(f)

FIG. 1. Illustration of a few different one-dimensional (a)–(c)
and two-dimensional (d)–(f) qubit network configurations. Panels
(a) and (d) represent the standard setting with direct control and
readout of each qubit. Panels (b) and (e) are similar configura-
tions but with a fraction of the qubits hidden. This fraction is
chosen such that each hidden qubit is adjacent to a control qubit.
Panels (c) and (f) are settings where each control qubit has a
number h of hidden qubits attached to it in a star geometry. The
number of control lines per qubit nc, the number of readout
resonators per qubit nr, the maximal distance to a control qubit
dc, and the average distance d̄ between two randomly chosen
qubits as a function of the total number of qubits N are listed for
comparison of the different configurations.
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favorably to the ones from Figs. 1(b) and 1(e) in terms of the
number of control lines nc per qubit (by a factor approaching
3=4 as h → ∞ in the 1D case and 5=11 in the 2D case) and
readout resonators nr per qubit [by a factor of 3=ðhþ 1Þ in
the 1D case and 5=ðhþ 1Þ in the 2D case]. We therefore
choose to focus on them in the subsequent discussion.
To quantify the potential advantages of a system with

hidden qubits, we analyze the two-dimensional qubit net-
works from Fig. 1(f) in more detail. By varying the
parameter h—the number of hidden qubits per control
qubit—we can compare the standard two-dimensional grid
(h ¼ 0) with systems in which hidden qubits dominate
(h ≫ 1). We estimate the number of elementary two-qubit
gates (taking into account the limited connectivity of the
network which also depends on h) and the amount of time
necessary to implement average quantum circuits of a given
depth. The algorithm we use to do this is described in the
Appendix A and the obtained results illustrated in Fig. 2(a).
It shows the number of time steps ns per single circuit layer
for a given number of qubits. Clearly, by increasing the
number of hidden qubits, ns increases because of the
limited control. The slope of the nsðNÞ dependence for
h ¼ 0 corresponds to an approximate ns ∝

ffiffiffiffi
N

p
scaling [the

dashed line in Fig. 2(a)]. This agrees with a simple estimate
assuming that the number of steps grows linearly with the
average distance between qubits in the 2D grid. At a fixed
number of controls, we observe faster than linear growth of
ns with N [dotted line in Fig. 2(a)], which we attribute to
the bottlenecks presented by the control qubits. This scaling
suggests that the benefit of hidden qubits could materialize
especially in shallow circuits [18] where the reduction of
fidelity due to an increase in ns would be smaller and more
likely to be outweighed by the increase in circuit width.
Figure 2(a) also illustrates that by introducing a modest

number of h ¼ 4 hidden qubits per control qubit, we
increase the number of qubits at a fixed number of control
lines by approximately a factor of 2. This is not far from the
factor of 3 which would be expected in the limit h → ∞
(see Fig. 1). Increasing h to much higher values than h ¼ 4
is unlikely to be worth the diminishing returns in practice.
For perfect gates and a fixed number of control lines,

adding hidden qubits will always be advantageous in terms
of computational power. However, to make meaningful
statements about potential advantages of hidden qubits, we
need to specify how the gain in the number of available
qubits is weighed against the loss of fidelity due to the
increased total gate count. While this is necessarily appli-
cation dependent, for instance, the quantum volume VQ
[19,20] provides a single figure of merit combining these
two factors. It is defined in terms of the minimum of the
circuit’s depth and width [see Eq. (A1)]. Qualitatively, this
implies that for a sufficiently low error rate, it depends
solely on the number of qubits and increases with it. When

(a)

(b)

(c)

FIG. 2. (a) Number of time steps per single circuit layer as a
function of the number of qubits for h ¼ 0 to h ¼ 4 hidden qubits
and a constant number of control lines (100, 400, and 1000).
(b) Estimated quantum volume as a function of the number of
control lines for different numbers h of hidden qubits per control
qubit. The gray dots mark the set of grids for which the quantum
volume was calculated. The value indicated by the density plot
and the contours was obtained by interpolation from these. The
curved dashed lines indicate constant total numbers of qubits. In
(b), we assume all qubits are subject to the same error probability
per two-qubit gate duration Γτ and compare two different values
of this parameter (0.004 and 4 × 10−6). In (c), we assume only
control qubits undergo significant decoherence with a probability
ΓðcÞτ ¼ 4 × 10−6 per two-qubit gate duration.
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this is the case, VQ will clearly increase when we add
hidden qubits at a fixed number of controls. To assess the
influence of the error rate for a given number of qubits
quantitatively and identify optimal values of h, we estimate
VQ, using the following simple assumptions: the errors in
the system are dominated by decoherence (while control
errors are neglected) and the overall error probability, i.e.,
the loss of process fidelity of the full quantum circuit, can
be estimated as ΓNT, where Γ is an effective error rate per
qubit, N is the number of qubits, and the total duration of
the circuit is T. We then analyze the results for VQ as a
function of a natural dimensionless parameter describing
errors in the circuit: the error probability per qubit Γτ in the
amount of time τ taken by a typical (two-qubit) gate.
Current state-of-the-art superconducting qubit systems

achieve coherence times around 50 μs while two-qubit
gates take on the order of 200 ns [21–23]. This means that
for a realistic decoherence-limited system, we have
Γτ ≈ 0.004. One could argue that since a two-qubit gate
involves the evolution of a pair of qubits, its error due to
decoherence should be on the order of 2Γτ, in our case
0.008. This is consistent with current best two-qubit gate
fidelities above 99% [21,24–26].
The results of the VQ calculation for Γτ ¼ 0.004 and for

hypothetical lower values which may be reached with
future improvements of quantum hardware are shown in
Figs. 2(b) and 2(c). In the topmost plot, we observe that
with currently achievable error probabilities Γτ ≈ 0.004,
systems with h > 0 are not advantageous. That is, at any
number of control lines, the quantum volume is highest on
the bottommost horizontal line, at h ¼ 0. Our calculations
also indicate that the maximum number of controls at
which h > 0 would be advantageous strongly depends on
error rates. Cutting-edge systems with 50–100 controls
would start benefiting from a hidden-qubit architecture
once error probabilities Γτ are reduced to the order of 4 ×
10−6 and below. The absence of direct control and readout
lines on hidden qubits better isolates them from their
environment. Thus, they may reach longer coherence times
than control qubits. We therefore also analyze a hypothetical
setting in which the decoherence rate of hidden qubits is
negligible when compared with control qubits (for which we
again take Γτ ¼ 4 × 10−6). The results shown in Fig. 2(c)
demonstrate that in this setting, systems with h > 0 provide
an advantage for even higher numbers of control lines, up to
around 120. We note that these numbers are only indicative
andmay varywhen considering different network topologies
or different ways toweigh the trade-off between circuit width
and depth. Quantum volume is a figure of merit which favors
“square” circuits and therefore penalizes the increase in
circuit depth due to reduced connectivity more than neces-
sary for analyzing, for instance, shallow circuits [18]. We
therefore expect that statements of practicality based on
quantum volume may be rather on the conservative side.

III. MEASUREMENT AND CONTROL

The gate set required for full control and measurement of
a system with hidden qubits is inherently different from the
universal gate sets in devices where all qubits are directly
accessible. To illustrate this, we focus on a device with one
hidden and one control qubit as in our experiment.
To achieve full controllability [27,28] in two-qubit sys-

tems which can implement arbitrary single-qubit operations,
only one additional two-qubit gate is needed. Let us assume
that this gate is generated by a Hamiltonian H [i.e., its
corresponding unitary is expð−iHt=ℏÞ] and that we can also
realize its generalized version with arbitrary other evolution
times (rotation angles) t. Then the condition for full con-
trollability is that the smallest operator algebra containingH
together with σi ⊗ 1 and 1 ⊗ σi (where i ∈ fx; y; zg) is the
full spaceW of 4 × 4 (traceless) Hermitian matrices [29]. In
other words, the set of arbitrary nested commutators formed
from these operators needs to span W. This condition is
satisfied by a number of two-qubit gates. For instance
controlled phase (cPHASE) gates, iSWAP-type and SWAP-type
gates, generated by σz ⊗ σz, σx ⊗ σx þ σy ⊗ σy, and
σx ⊗ σx þ σy ⊗ σy þ σz ⊗ σz, respectively, all have the
required property and therefore form a universal set of gates
in combination with single-qubit operations on both qubits.
When we remove the single-qubit rotations of the hidden

qubit from the generator set, we find that cPHASE- or iSWAP-
type gates are no longer sufficient for full controllability.
SWAP-type gates, on the other hand, still form a universal
gate set and so do the cPHASE- and iSWAP-type gates
together. Our experimental setup based on a tunable
coupler is better suited for implementations of cPHASE-
and iSWAP-type gates rather than a SWAP-type gate and we
therefore use them to form the required gate set. Note that
in other types of physical systems with full Heisenberg
interaction of the form σx ⊗ σx þ σy ⊗ σy þ σz ⊗ σz (for
instance, in chains of spin qubits in quantum dot devices
[30]), the SWAP-type gates would be a more natural choice
to implement a universal gate set and realize state transfer
within the qubit network [31,32].
In addition to full controllability, it is also important to be

able to fully measure the state of our system. Joint dispersive
readout of both qubits [33] or simultaneous single-shot
readout [34], commonly used in superconducting systems,
is equivalent to measuring the native observables 1 ⊗ 1,
1 ⊗ σz, σz ⊗ 1, and σz ⊗ σz. Applying unitaries Ui to the
final state ρf before dispersively measuring the operator M

allows us to measure other operators U†
i MUi as the trace is

cyclical, i.e., Tr½U†
i MUiρf� ¼ Tr½MUiρfU

†
i �. To perform

quantum state tomography and thus fully characterize the
state of the system, the set of unitary transformationsUi must
be complete in the sense that they map the four native
measurement operators onto a set spanning the full space of
measurement operators. In the fully controlled casewith joint
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two-qubit readout, this is achievable with only single-qubit
rotations, as illustrated in Fig. 3(a).
If qubit 1 is directly controlled andmeasuredwhile qubit 2

is hidden, the native measurement operators accessible by a
dispersivemeasurement are only 1 ⊗ 1 and σz ⊗ 1. It is then
no longer sufficient to apply only single-qubit rotations to the
state onwhichwewish to perform tomography. To access the
full space of measurement operators, we must extend the set
of applied unitaries to contain rotations on qubit 1 as well as
two-qubit operations. Figure 3(b) shows that the iSWAP and
cPHASE gates we have chosen for our universal gate set are
also sufficient for full two-qubit tomography. Other combi-
nations of gates are discussed in Appendix B, together with
the method we use to determine whether a particular set of
gates is sufficient for full two-qubit tomography.

IV. EXPERIMENTAL SYSTEM AND
CALIBRATION OF HIDDEN-QUBIT OPERATIONS

To demonstrate the principle of hidden-qubit architec-
tures, we have performed experiments on a fixed-frequency

two-qubit system with one control and one hidden qubit.
This device is the same as in Ref. [25]. The control qubit at
6.19 GHz is coupled to a drive line and a readout resonator
while the hidden qubit at 5.09 GHz interacts only with the
control qubit via a parametric tunable coupler. The coupler
is operated at a bias point around 7.7 GHz. Both qubits are
transmons with anharmonicities of −290 and −310 MHz.
Their exchange-type interaction with the coupler has a
strength of 116 and 142 MHz, respectively. The coherence
times of the qubits undergo slow variations over time but
are most typically around T1 ≈ 30 μs, T2 ≈ 30 μs for the
control qubit and T1 ≈ 60 μs, T2 ≈ 20 μs for the hidden
qubit.
The basic parameters of the control qubit are determined

by standard spectroscopy while the hidden qubit can be
characterized by spectroscopy of the parametric drive,
detecting transitions j01i ↔ j10i and j11i ↔ j20i. The
exchange interaction strength between the qubits and the
coupler may be extracted from theory fits to shifts of qubit
frequencies as a function of the tunable coupler frequency.
The coherence times of the hidden qubit are easily
measured once the iSWAP gate has been calibrated. It allows
us to both prepare an arbitrary initial state and perform
arbitrary-basis measurements on the hidden qubit.
The iSWAP gate is realized by parametric driving of the

tunable coupler between the two qubits at a frequency close
to the difference between the qubits’ transition frequencies
[9,35–37]. The drive pulse has a square envelope and its
frequency and duration are chosen to obtain maximal
excitation transfer from the control to the hidden qubit.
This is done by preparing the control qubit in its excited state,
applying the iSWAP pulse, and measuring the remaining
excitation of the control qubit. The length and frequency of
the pulse are then adjusted until the final excitation is
minimized.
The cPHASE gate is implemented using the transition

j11i ↔ j02i (where the first state refers to the control qubit
and the second to the hidden qubit) [25,37], again induced by
parametric driving of the coupler at the appropriate difference
frequency. A 2π rotation in the fj11i; j02ig subspace imparts
a phase of π to the initial j11i state. To set up the drive pulse
for this operation,we prepare the system in the j11i statewith
the previously calibrated iSWAP gate, and after applying a
square-envelope flux pulse to the coupler, we measure the
excitation of the control qubit. Similarly to the setup of the
iSWAPgate,we then adjust the length of the pulse tomaximize
the final population of the control qubit’s j1i state. As in
Ref. [25], we fine-tune the frequency of the j11i ↔ j02i
drive to bring the extra phase accumulated by the j11i state as
close to π as possible.
In general, the drives enabling the iSWAP and the cPHASE

gates also induce single-qubit phases on the individual
qubits. To eliminate these phases, each gate is followed by a
virtual Z gate [38], that is, a shift of the rotating frames
associated with the qubits. The appropriate frame shifts are

FIG. 3. Accessibility of the entire space of two-qubit measure-
ment operators (a) in the normal case with full control and readout
of both qubits and (b) with the second qubit hidden. The native
measurement operators in each case are marked in green while the
arrows show transformations of the measurement operators by

different gates applied prior to the measurement. RðjÞ
x and RðjÞ

y

denote π=2 rotations around x and y applied to qubit j.
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determined by measuring the single-qubit phases in
Ramsey-type experiments similar to Ref. [25], as described
in Appendix C.
Apart from the basic controllability aspects, calibration

of the gates needed for full controllability of the system
with a hidden qubit is more involved than in the fully
controlled setting because of interdependencies between
the calibration steps. For instance, if both qubits are directly
controllable, then characterization of the controlled phase
gate requires only single-qubit rotations and joint readout in
addition to the gate being characterized. But with a hidden
qubit, the superposition states needed to establish the
parameters of the cPHASE gate can only be prepared and
measured using iSWAP gates. Similarly, some of the
parameters of the iSWAP gate such as the phases it imparts
to the computational states can only be obtained using
pulse sequences containing several iSWAPs (one iSWAP is
needed to prepare states with excitation in the hidden qubit
and one more for readout). In contrast with the fully
controlled case where such parameters can be measured
using a single instance of the iSWAP gate together with
single-qubit gates and joint readout, this introduces a
nontrivial interplay between different parameters of the
gate. Consequently, the parameters of the gate set must be
tuned up in a self-consistent way and in the correct order. In
our experiment, the single-qubit operations on the control
qubit are set up with standard Rabi and Ramsey measure-
ments. The two-qubit gates are then calibrated as described
above and in more detail in Appendix C.

V. PROCESS TOMOGRAPHY—
DEMONSTRATION OF STATE PREPARATION

AND READOUT

As shown in Sec. III, we can perform full state
tomography on a system with one control and one hidden
qubit with a suitable set of 15 operations consisting of
single-qubit gates on the control qubit, an iSWAP and a
cPHASE gate. This set is

ID;

Rjðπ=2Þ for j ∈ fx; yg;
iSWAP;

Rjðπ=2Þ:cPHASE for j ∈ fx; yg;
Rjðπ=2Þ:iSWAP for j ∈ fx; yg;
Rjðπ=2Þ:iSWAP:cPHASE for j ∈ fx; yg;
Rkðπ=2Þ:iSWAP:Rjðπ=2Þ for j; k ∈ fx; yg;
Rxðπ=2Þ:cPHASE:Rxðπ=2Þ;

which effectively transform the native measurement oper-
ator σz ⊗ 1 into all 15 nontrivial two-qubit Pauli operators
[see Fig. 3(b)]. Here, we write sequences of gates in the
form Gn: � � � :G2:G1, chronologically ordered from right to

left. ID is the identity operation (empty gate sequence) and
RjðφÞ with j ∈ fx; yg denotes a single-qubit rotation
around axis j by an angle φ.
To prepare a full set of basis states for the two qubits, we

apply a suitable set of 16 sequences to the initial ground state
j00i. We use sequences of the form A2:iSWAP:A1 (option-
ally without the iSWAP if A1 ¼ ID) in any of the 16 possible
combinations, where the subsequences A1;2 are one of
the following four operations Ai ¼ fID;RxðπÞ;Rxðπ=2Þ;
Ryðπ=2Þg acting on the control qubit. The basis state
preparation together with the state tomography procedure
allows us to perform quantum process tomography [39,40]
and characterize an arbitrary process X. This is based on 240
measurements with sequences B:X:A, where A is any of the
16 state preparation sequences and B any of the 15
tomography sequences described above.
The unknown process is reconstructed by solving the

least-squares problem:

argminX
X
A;B

jTr½MB∘X∘Aðρ0Þ� − μA;Bj2: ð1Þ

Here, M ¼ σz ⊗ 1 is the native measurement operator,
ρ0 ¼ j00ih00j the initial state, and μA;B the measurement
outcome for the pair of preparation and tomography
sequences A and B. The symbols A, B, and X stand for
the superoperators describing the sequences A and B and
the unknown process X. The minimization above is
performed under the constraint that X is a completely
positive trace-preserving map. This is equivalent to a
semidefinite programming problem [41] which we solve
using the cvxopt module in PYTHON.
We test this QPT procedure by applying it to the four

basic pulses: Rxðπ=2Þ, Ryðπ=2Þ, iSWAP, and cPHASE. The
results are shown in Fig. 4(a) where the extracted processes
are represented by their Pauli transfer matrices (i.e.,
matrices describing the action of the process on a density
matrix expressed in the basis of Pauli operators [42]). While
the obtained process matrices are relatively close to those of
the ideal gates, there are also clear deviations. The fidelities
of the extracted processes are around 0.935 for the single-
qubit gates and 0.92 for the two-qubit gates. This unex-
pectedly large discrepancy is an artifact of the QPT method
and highlights one of the drawbacks caused by the
inaccessibility of the hidden qubit: In contrast to the
standard setting with fully controllable qubits where the
state preparation and tomography operations are single-
qubit gates, here they are relatively complex sequences of
both single-qubit and two-qubit gates. Consequently, state
preparation and tomography errors due to imperfections in
the gates are significantly more pronounced in a system
with hidden qubits.
In principle, the effect of systematic gate errors can be

compensated if the preparation and tomography operations
are fully characterized. That is, if the processes A and B
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describing the nonideal gate sequences in Eq. (1) are
known, the unknown process X can still be accurately
extracted. However, we do not have any means of precisely
characterizing the sequences without the very process
tomography procedure we are trying to set up. To get
around this circular dependency problem, we adopt an
iterative method. Note that this particular technique for
analyzing process tomography in a self-consistent manner

may prove useful even for standard QPT with directly
accessible qubits.
The QPT procedure applied to the gates Rxðπ=2Þ,

Ryðπ=2Þ, iSWAP, and cPHASE allows us to extract the process
matrices P ¼ fPx; Py; PiSWAP; PcPHASEg of the four gates.
In addition to the set of measurement data D, the obtained

result P also depends on the process matrices PðSPAMÞ ¼
fPðSPAMÞ

x ; PðSPAMÞ
y ; PðSPAMÞ

iSWAP ; PðSPAMÞ
cPHASEg assumed for the state

preparation and measurement:

P ¼ QPTðD;PðSPAMÞÞ:

Alternatively, with the measured data fixed, the QPT
procedure is a function mapping the set PðSPAMÞ of four
16 × 16 process matrices describing the gates used in the
preparation and tomography sequences to the process
matrices for the same four gates estimated by QPT.
Since the gates we are characterizing are the same as the
ones forming the state preparation and tomography sequen-
ces, we would like to find a self-consistent set of process
matrices for the gates; that is,

P ¼ QPTðD;PÞ: ð2Þ

In other words, we wish to find a setting in which the
process matrices describing the gates in the state prepara-
tion and tomography sequences are identical to the process
matrices resulting from the QPT analysis. Solving this
equation for P is generally difficult and is at the core of self-
consistent tomography techniques proposed for robust
characterization of gate sets [43–45]. These self-consistent
approaches aim to correctly split the errors between the
preparation and measurement gates and the process to be
characterized.
Ifwewish to solveEq. (2), it is important to notice that due

to the absence of direct control over the hidden qubit, its
solutions will be degenerate in the following sense: Both the
initial state j00ih00j and the native measurement operator
σz ⊗ 1 commute with rotations of the hidden qubit around
its z axis. Hence, if we rotate all the gates in a sequence by an
arbitrary angle φ around this axis (i.e., we replace each
gate G by R†∘G∘R, where R is the superoperator
R½ρ� ¼ eiφðσz⊗1Þ=2ρe−iφðσz⊗1Þ=2), the measurement outcome
remains unchanged.Thus, such rotations haveno observable
effect and so our process tomography by means of solving
the self-consistency equation (2) can determine the gate set
only up to a rotation around the hidden qubit’s z axis.
However, the same reason that gives rise to this ambi-

guity—the fact that a global rotation of all the used gates
around the hidden qubit’s z axis has no effect on any
experimental outcomes—means we are free to assume an
arbitrary value for this rotation parameter. Equivalently,
since no drive pulses are applied directly to the hidden
qubit, the phase of its rotating frame is a parameter which

(a)

(c)

i

(b)

FIG. 4. (a) Pauli transfer matrices of the π=2 pulses on the
control qubit, the iSWAP and the cPHASE gate, extracted in the first
round of QPT. We do not show transfer matrices of ideal gates
since they are essentially equal to the experimental matrices with
all matrix elements rounded to −1, 0, orþ1. (b) Average errors of
the extracted processes (calculated as 1 − F̄ , where F̄ is the
average fidelity of the process) before and after the iterative
procedure. (c) Deviation of the extracted iSWAP Pauli transfer
matrix from the ideal value, before and after the iterative
procedure.
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we can freely choose without having to make any changes
to the applied pulse sequences.
We approximate a solution to Eq. (2) with an iterative

algorithm. The ideal process matrices PðidealÞ ¼ fPðidealÞ
x ;

PðidealÞ
y ; PðidealÞ

iSWAP; P
ðidealÞ
cPHASEg for the four gates are a good

starting approximation for P. When the sequence of iterates
defined by

P0 ¼ PðidealÞ;

Piþ1 ¼ ð1 − λÞPi þ λQPTðD;PiÞ

converges, its limit is a solution to Eq. (2). The parameter λ
can be adjusted to improve the convergence properties. We
use λ ¼ 0.1, and find that while the iteration does not
converge, the difference Pi − QPTðD;PiÞ {which may be
seen as an indicator of how close Pi is to a solution of
Eq. (2)] decreases for the first 30–40 iterations. Once it
starts increasing, we stop the iteration and use the last value
of Pi as the result of our self-consistent QPT.
Note that apart from using the ideal gate process matrices

as the starting point of the iteration, the procedure does not
make use of the ideal gates in any way. There is thus no
a priori reason to expect the process matrices resulting from
the iterative method to be closer to the ideal gates than the
ones obtained initially from standard QPT. Nevertheless, we
find that the fidelities of the gates extracted by the iterative
method are significantly improved [see Fig. 4(b)], reaching
approximately 0.99 for the single-qubit gates and 0.98 for the
two-qubit gates, consistent with fidelities obtained by ran-
domized benchmarking in Ref. [25].
In Fig. 4(c), we show the difference between the

experimentally determined Pauli transfer matrix of the
iSWAP gate and the ideal matrix. This difference is clearly
reduced by the iterative procedure, indicating that the self-
consistent approach works as intended—the initial round of
QPT assumes perfect state preparation and measurement
and therefore all imperfections are lumped into the char-
acterized gate. The self-consistent solution correctly takes
into account that both the preparation and measurement
gates as well as the characterized gate contribute to the
overall error. Consequently, only a fraction of the total error
is due to the characterized gate.
Note also that there are alternative methods to state or

process tomography reconstruction [46,47] which sidestep
the need to solve a general semidefinite programming
problem. However, these rely on the measurement oper-
ators having the ideal form—namely the set of 15 nontrivial
two-qubit Pauli matrices. As we do not assume the
measurement gates to be perfect, these methods are not
directly applicable here.

VI. CONCLUSIONS

We have discussed potential merits of systems in which
some qubits are not directly controlled but are instead

accessible only via other control qubits and two-qubit
operations. Such devices can reach higher numbers of qubits
for a fixed number of control and readout lines. As suggested
by our analysis, this may pave a path to systems with higher
quantum volumes in settings where control lines and the
associated hardware are a limiting resource. On the topology
discussed here [see Fig. 1(f)], we find that for average
decoherence-limited gate errors that are an order of magni-
tude lower than currently realized errors in superconducting
qubits,Γτ ≲ 10−4, higher quantumvolumesmaybe achieved
by increasing the number of hidden qubits while keeping the
number of control lines constant. In the specific topology we
decided to study, all hidden qubits are connected directly to a
neighboring control qubit. We expect that other topologies
may lead to a more efficient use of hidden qubits for a fixed
number of control lines, presenting a promising area of future
research. The advantage of hidden-qubit architectures may
be even more pronounced if hidden qubits can reach longer
coherence times due to the lack of coupling to direct control
and readout lines.
To demonstrate the operation of such a system and

highlight some of the challenges and ways to address them,
we have experimentally characterized a device with one
control and one hidden qubit.We have shown that despite the
absence of a direct drive on the qubit as well as the lack of a
readout,we can calibrate a gate setwhich gives us full control
over the system, allowing us to perform quantum process
tomography. This becomes possible by implementing both
iSWAP and cPHASE gates based on a parametrically driven
tunable coupler side by side. These gates form, together with
full control of a single qubit, a complete set of gates.
To address the problem of state preparation and measure-

ment errors in the tomography procedure, we have imple-
mented an iterative algorithm that extracts the process
matrices for the calibrated gate set in a self-consistentmanner.
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APPENDIX A: NUMERICAL CALCULATION OF
THE NUMBER OF TIME STEPS PER UNIT

CIRCUIT DEPTH

To compare the fully controlled square grid configura-
tion from Fig. 1(d) with the network containing hidden
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qubits as in Fig. 1(f), we should determine the number of
gates and the amount of time needed to realize a quantum
circuit with a given depth. The circuit depth is defined as
the number of circuit layers, where each layer consists of
single-qubit gates followed by two-qubit gates among N=2
disjoint qubit pairs.
In a system without all-to-all connectivity, each two-

qubit gate typically needs to be decomposed into several
gates between nearest neighbors. Each circuit layer will
therefore contain many more two-qubit gates than single-
qubit gates. Since the error probability of single-qubit gates
is typically lower than that of two-qubit gates, the error
probability will be dominated by the two-qubit gates. For
simplicity, we therefore ignore single-qubit gates in the
subsequent analysis.
The decomposition of a set of N=2 two-qubit gates into

nearest-neighbor operations will consist of ng ≥ N=2 gates.
These can be split into groups acting on disjoint pairs of
qubits and each group can be applied simultaneously in a
single time step of length τ. The overall procedure will
therefore take ns ≤ ng time steps.
If we assume that errors are dominated by decoherence

mechanisms and the total error per circuit layer can be
approximated as a function of the number of time steps ns,
then this quantity becomes the central figure of merit which
is traded off against the increased number of qubits when h
is increased.
While this is a rather simplistic error model, the analysis

we are about to describe also gives us access to quantities
such as the typical number of gates of each type (SWAP

gates or entangling gates) used in the decomposition of a
random circuit layer. It can therefore be used in a
straightforward manner even for models where the total
error probability depends on the number of gates (as it
would for control errors) and is not equal for all gates.
Our analysis is based on a specific algorithm for

decomposing an arbitrary set of gates between disjoint
pairs of qubits into nearest-neighbor gates. We then sample
random choices of the qubit pairs to obtain the average
numbers of gates ngðNÞ and time steps nsðNÞ. This
algorithm—an instance of a transpiler—is described in
more detail below. We have not compared its performance
with other, more sophisticated transpiler algorithms [20].
While our quantum volume estimates may be lower than
what could be achieved with highly optimized transpilers,
we believe that a meaningful comparison can still be made
between grids with hidden qubits and fully controlled ones.
Let us assume a grid size of k × k control qubits, each

connected to h hidden qubits as shown in Fig. 1(f) (the fully
controllable system has h ¼ 0). We will call every con-
trolled qubit with its h associated hidden qubits a grid
group. In total, we have N ¼ ðhþ 1Þk2 qubits in k2 grid
groups. A simple example with k ¼ 2 and h ¼ 4 is shown
in Fig. 5(a). The gate decomposition algorithm is based on
moving the paired qubits [Fig. 5(b)] around the grid by

SWAP operations until they are next to each other, then
applying the desired two-qubit gate and finally swapping
them back to their original locations. For simplicity, we
assume that the targeted two-qubit operation counts as a
single gate and we will not distinguish between its error
probability and those of the SWAP gates. A more accurate
analysis would take into account the decomposition of the
entangling operation into a library of “hardware-native”
gates [48,49].
The overall procedure to implement the gates between

the desired pairs of qubits is accomplished in the follow-
ing steps.
(1) Split the ðhþ 1Þk2=2 qubit pairs into groups

G1; G2;… such that for each Gi no two pairs
belonging to it share a grid group [see Fig. 5(c)].

(2) Take one of these groups and swap all its hidden
qubits with their corresponding controlled qubits,
except for pairs where both qubits belong to the
same grid group. In this case, swap only one of them
if both are hidden, otherwise do nothing. This step is
depicted by the solid arrows in Fig. 5(d).

(3) Permute the controlled qubits using SWAP gates [as
depicted by the dashed arrows in Fig. 5(d)] in such a
way that the paired qubits end up next to each other.

(4) Apply two-qubit gates between the paired qubits
[shown by dotted lines in Fig. 5(d)].

(5) Undo swaps from step 3.
(6) Undo swaps from step 2. If there are more groupsGi

to be processed, go to step 2. Otherwise the process
is finished.

To realize step 1, we construct a graph with vertices
representing the grid groups andwith an edge for each pair of
qubits belonging to the two grid groups (since multiple pairs
of qubits can be shared between two grid groups, this means
theremay bemore than one edge between two vertices of the
graph, making it in graph theory language a multigraph).
Such a multigraph for the example pairing from Fig. 5(b) is
shown in Fig. 5(e). Splitting the qubit pairs into the groups
G1; G2;… is equivalent to splitting the edges into sets where
edges in the same set do not share vertices, in other words to
edge coloring of the multigraph. One possible coloring for
our example is illustrated in Fig. 5(f). This results in the
groups from Fig. 5(c). We find these colorings using the
networkx PYTHON module. As an aside, since each vertex
of the multigraph clearly has degree hþ 1, a classic theorem
on multigraph edge coloring by Shannon [50] allows us to
upper bound the required total number of pair groups Gi

by 3
2
ðhþ 1Þ.

In step 2, we take one of the groups Gi and move its
qubits onto the grid vertices, such that we can start moving
them toward each other in the next step. The condition we
placed on the groups Gi (that qubit pairs within Gi do not
share a grid group) ensures that there are no collisions in
this step.
Step 3 essentially means picking a certain permutation of

the grid qubits that brings the pairs to be coupled next to
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each other and then realizing it by means of nearest-
neighbor swaps. The permutation is obviously not unique
since there is a lot of freedom in choosing at which nearest-
neighbor sites the individual qubit pairs will meet. We
choose the option which minimizes the sum of the L1

distances by which the individual qubits need to be moved
from their original positions to their destination sites. Note
that this summed distance is not equal or even directly
related to the length of the paths which will actually be
taken by the qubits nor to the total number of SWAP gates
used. This is because the algorithm chosen to realize the
permutation (described below) does not send each qubit via
the shortest path. We merely choose the sum of the shortest
path distances as a convenient heuristic to roughly judge
the suitability of each qubit rearrangement. This type of
constrained assignment problem, which asks to map each
qubit pair to some nearest-neighbor pair of sites such that
the sites chosen for different qubit pairs do not overlap and
that the sum of distances is minimized, can be formulated
as an integer linear programming problem. We solve this
problem numerically using the cvxopt PYTHON package.
To realize the chosen permutation using nearest-neighbor

swaps, we use a method described in Ref. [51] where an
arbitrary permutation is decomposed into three permutations,
the first and last being columnwise and the middle one row-
wise; i.e., qubits are permuted only within individual
columns or rows. A permutation within a column or a row
is seen as a simple sorting task whose implementation as a
series of nearest-neighbor swaps is given for instance by the
bubble sort algorithm. Importantly, the swaps within distinct
columns or rows can be realized in parallel.
With the results obtained using this algorithm, we can for

instance evaluate the quantum volume (as defined in
Ref. [20])—a figure of merit which quantifies the trade-
off between the increased number of qubits and the
increased value of ns which translates into decoherence
error probabilities.
We estimate the typical circuit depth dðNÞ which is in a

certain sense “achievable” in a network with N qubits.
While the exact meaning of achievable differs between
references, we adopt the simple definition from Ref. [19]
where dðNÞ is the number of layers at which the expected
overall error probability reaches some fixed threshold ε. At
the same time, we assume error probabilities are small and
combine additively over qubits and gates. Then, if the
typical total error per circuit layer is εlðNÞ, we approximate
the achievable circuit depth as dðNÞ ¼ ε=εlðNÞ.
If an average circuit layer can be implemented in ns time

steps of length τ (given roughly by the typical duration of a
two-qubit gate), the total error per circuit layer can be
approximated as NnsðNÞΓτ, where Γ is an effective error
rate per qubit. The achievable circuit depth is then

dðNÞ ¼ ε

NnsðNÞΓτ ;

(a) (b)

(c)

(e) (f)

(d)

FIG. 5. (a) Example of a network with k ¼ 2 and h ¼ 4 hidden
qubits per grid site. The circles indicate the grid groups of qubits.
(b) One instance of a grouping of the 20 qubits into 10 pairs which
are to be coupled by two-qubit gates. (c)Decomposition of the pairs
into groups G1;…; G5 such that for each Gi no two qubit pairs
belonging to it share a grid group. (d) Implementation of the gates
between the qubit pairs in each group as a combination of swaps
between hidden and control qubits (solid arrows), swaps between
control qubits (dashed arrows) and entangling gates (dotted lines).
(e) Multigraph corresponding to the qubit pairing from (b) and its
edge coloring (f) which results in the decomposition from (c).
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and the quantum volume is

log2 VQðNÞ ¼ min

�
ε

NnsðNÞΓτ ; N
�
: ðA1Þ

Since hidden qubits may be better isolated from certain
dissipation and dephasing channels and could therefore
reach longer coherence times than control qubits, we also
consider an alternative setting where the two types of qubits
have different associated probabilities of decoherence-
induced errors. We assume the hidden qubits experience
a lower error rate Γ per qubit while control qubits may still
be subject to a higher error rate ΓðcÞ. This can be taken into
account simply by replacing the term NnsðNÞΓτ in the
denominator in the equation for VQðNÞ with

nsðNÞðNcΓðcÞ þ NhΓÞτ;

where Nc and Nh are the numbers of control and hidden
qubits, respectively.

APPENDIX B: SUFFICIENCY OF A GIVEN GATE
SET FOR TWO-QUBIT TOMOGRAPHY

To determine if a given set of gates G ¼ fU1; U2;…g is
sufficient to realize full two-qubit tomography with a
specific set of native measurement operators M1;M2;…,
one can employ the following algorithm.

(i) Initialize the set of reachable measurement opera-
tors S ¼ fM1;M2;…g.

(ii) Calculate operators UMU† for all combinations of
U ∈ G and M ∈ S.

(iii) Find a basis of the linear space W spanned by the
operators from the previous step. Use this basis as
the new set S.

(iv) Go back to step 2 and repeat until the dimension of
W stops increasing.

Now if W is the full space of two-qubit Hermitian
operators, the set of gatesG is sufficient. Otherwise it is not
and W is the incomplete set of reachable measurement
operators.
With this approach, we can verify for instance that when

only qubit 1 is directly measurable (and qubit 2 is hidden),
neither of the two-qubit gates {cPHASE, iSWAP, SWAP}
together with qubit 1 rotations is sufficient by itself
[Fig. 6(a) shows what is missing from the set of reachable
measurement operators in these cases]. On the other hand,
qubit 1 rotations together with any pair of two-qubit gates
from the set {cPHASE, iSWAP, SWAP} are sufficient and
Figs. 6(b) and 3(b) show how the transformations induced
by the gates lead to all of the Pauli matrices.

APPENDIX C: TUNE-UP OF THE GATE SET

Here we summarize the procedure used to calibrate our
gate set. Parts of the process are similar to that described in
Ref. [25]. Calibration of single-qubit gates on the control
qubit is standard and we do not describe it here. The main
differences from Ref. [25] are the methods used to measure
the two-qubit phase of the cPHASE gate (here we make use
of a spin echo measurement) and the necessity to treat the
iSWAP phase tune-up differently because the hidden qubit is
not directly accessible.
As in the main text, RjðφÞ will denote single-qubit

rotations around axis j by an angle φ. In addition to
j ∈ fx; yg, we also denote rotations around an arbitrary
axis in the xy plane with azimuthal angle θ by j ¼ θ. The
gates whose parameters we are adjusting in the tune-up
procedure will be called SW and CP (to distinguish them
from the ideal or already tuned-up gates iSWAP and
cPHASE).
All sequences end with a qubit state measurement which

we do not explicitly write out.

1. Calibrating iSWAP pulse length and frequency

With sequences

SWn:RxðπÞ; ðC1Þ

where the superscript n denotes repetition of the gate n
times, we prepare the control qubit in its excited state, then
apply the candidate SW gate and measure the control qubit’s
final excitation pe. In addition to a single SW gate (n ¼ 1),
we also use sequences with multiples of them (n ¼ 3 and
n ¼ 5). This repetition increases the sensitivity of the
measurement to deviations of SW from the ideal iSWAP gate.

(a)

(b)

FIG. 6. (a) Illustration of the unreachable measurement oper-
ators (crossed out in red) when the gate set consists of single-
qubit gates on the control qubit together with one two-qubit gate
from the set {cPHASE, iSWAP, SWAP}. (b) Similarly to the
combination of cPHASE+iSWAP, combinations SWAP+iSWAP and
SWAP+cPHASE also allow full two-qubit tomography.
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After running this experiment for a range of lengths of
the SW pulse, we find the length which leads to minimal pe
[see Fig. 7(a)]. We then perform the same experiment but
this time for different detunings of the SW pulse. Again, we
choose the detuning which minimizes pe. If needed, we
repeat the cycle consisting of length and detuning opti-
mization several times until the parameters have converged.

2. Calibrating iSWAP single-qubit phases

Assuming the population transfer of the SW gate has
already been optimized and is perfect, the unitary describ-
ing the gate has the form

0
BBB@

1 0 0 0

0 0 eiγ1 0

0 eiγ2 0 0

0 0 0 eiγ3

1
CCCA;

in the basis fj00i; j10i; j01i; j11ig. Here the first of the two
qubits is the control and the second the hidden one.
In the standard setting where both qubits are directly

controllable, we would implement iSWAP by following this
gate with rotations of the two qubits around their individual
Z axes (which is usually done virtually, i.e., by shifting the
qubits’ rotating reference frames [38]). If the virtual Z
phases are δ1 and δ2, the unitary above is transformed into

0
BBB@

1 0 0 0

0 0 eiðγ1−δ1Þ 0

0 eiðγ2−δ2Þ 0 0

0 0 0 eiðγ3−δ1−δ2Þ

1
CCCA: ðC2Þ

With only two degrees of freedom to tweak, we cannot
in general adjust all of the matrix elements to achieve the
ideal iSWAP values (i.e., eiðγ1−δ1Þ ¼ eiðγ2−δ2Þ ¼ i and
eiðγ3−δ1−δ2Þ ¼ 1) unless the phases γ1;2;3 are related such
that eiðγ1þγ2Þ ¼ −eiγ3 . In practice, because of the coupling
of j11i to neighboring higher-excited states this relation
does not hold exactly but is a good approximation. We have
γ3 þ π ¼ γ1 þ γ2 þ β, where β is small. We typically set
the frame shifts δ1 and δ2 such that γ3 − δ1 − δ2 ¼ 0 and
γ1;2 − δ1;2 ¼ π=2 − β=2, a setting that leads to a lower error
than the alternative γ1;2 − δ1;2 ¼ π and γ3 − δ1 − δ2 ¼ β
(see Ref. [25]). This leads to the unitary

0
BBB@

1 0 0 0

0 0 ie−iβ=2 0

0 ie−iβ=2 0 0

0 0 0 1

1
CCCA; ðC3Þ

where eiβ is close to 1.
In the setting where one of the qubits is hidden, there are

a few crucial differences. Since excitations can be created
and measured only in the control qubit, any Ramsey-type
measurement of the phases γ1;2;3 needs to involve an even
number of swaps (the excitation swapped into the hidden
qubit is swapped back when measured). Therefore, the
phases γ1 and γ2 are not observable individually but only
via their sum Σ≡ γ1 þ γ2.
Another way to see this is the following: Neglecting

decoherence, the result of any experiment involving
the setup with one control and one hidden qubit is described
by the probabilities TrðP0Un…U1ρ0U

†
1…U†

nÞ and
TrðP1Un…U1ρ0U

†
1…U†

nÞ, where Pj are the projections
onto the computational states of the control qubit
Pj ¼ jjihjj ⊗ 1, ρ0 is the initial state j00ih00j, and Uk

the unitaries describing the individual gates.
If Rz is a rotation of the control qubit around its Z axis by

an arbitrary angle δ, the probabilities above do not change
when we perform a replacement X → RzXR

†
z on all the

operators. Moreover, all the unitaries except the swap

(a) (b)

(c)

FIG. 7. Experimental data from typical gate calibration mea-
surements. (a) Calibration of iSWAP pulse length. The final
excitation probability of the control qubit reaches its minimum
at the optimal pulse length. We extract this optimum by fitting a
quadratic function in the vicinity of the minimal value. The pulse
lengths obtained from measurements with 1, 3, or 5 repetitions of
the pulse are consistent. (b) Calibration of iSWAP single-qubit
phases. The final control qubit excitation after the Ramsey
sequence shows a cosine oscillation as a function of the phase
θ of the second π=2 pulse. The shift of this curve between
Ramsey sequences with and without two SW pulses gives us the
phase sum Σ ¼ γ1 þ γ2. (c) Calibration of cPHASE frequency. The
two-qubit phase δ ¼ γ11 − γ01 − γ10 is measured with a Ramsey
sequence utilizing spin echo. As in (b), the phase θ of the final
π=2 pulse is varied and the shift of the obtained cosine
dependence between sequences with and without the CP pulse
is the desired phase δ. We perform this measurement for varying
detuning of the CP pulse and find a dependence which is well
approximated by a linear function. Using this fit, we obtain the
optimal detuning where δ ¼ π.
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operations commute with R and therefore the outcome of
the experiment remains unchanged when we replace just
the swaps among the Uj operators by RzUjR

†
z. This

replacement is equivalent to changing γ1 → γ1 þ δ and
γ2 → γ2 − δ. Hence, the outcome probabilities p0;1 as a
function of the parameters γ1;2;3 satisfy

p0;1ðγ1; γ2; γ3Þ ¼ p0;1ðγ1 þ δ; γ2 − δ; γ3Þ

for arbitrary δ. Choosing specifically δ ¼ γ2, we see that
p0;1ðγ1; γ2; γ3Þ ¼ p0;1ðγ1 þ γ2; 0; γ3Þ. This result shows
that the (only) observable quantities in this system depend
on γ1 and γ2 only via Σ ¼ γ1 þ γ2.
While this implies that we can indeed measure only the

sum and not the individual parameters γ1;2, it also means we
do not need to. Any experiment using iSWAP gates imple-
mented as the unitary given in Eq. (C2) will be equivalent
to one where the iSWAP has the proper form from Eq. (C3)
as long as

γ1 þ γ2 − δ1 − δ2 ¼ π − β: ðC4Þ

We are free to choose the rotating frame shifts δ1 and δ2 as
long as they together satisfy this equation.
This may sound suspicious—we might think that since

no pulses are applied to the hidden qubit, the frame change
δ2 does not affect the experiment in any way (in which case
δ1 would have to be irrelevant as well). However, we need
to bear in mind that the parametric drive inducing the iSWAP

process is defined in a rotating frame which is derived from
the individual qubits’ frames (loosely speaking as their
difference). Therefore δ2 enters into the experimental
parameters via the shift of the parametric drive frame
which has to be δ1 − δ2 ≡ δp.
In our calibrationmeasurement, we determineΣ¼ γ1þ γ2

in a Ramsey-type measurement consisting of the pulse
sequences

Rθðπ=2Þ:SW:SW:Rxðπ=2Þ; ðC5Þ

Rθðπ=2Þ:Rxðπ=2Þ: ðC6Þ

By measuring the final qubit excitation as a function of the
angle θ, we get an oscillatory dependence whose phase shift
gives us the orientation of the final qubit Bloch vector in the
xy plane. The difference in the Bloch vector orientation
between the sequences with and without the SW pulses
directly gives us the phase Σ ¼ γ1 þ γ2 [see Fig. 7(b)].
Repeating Eqs. (C5) and (C6) with the hidden qubit

prepared in its excited state, i.e., using the sequences

Rθðπ=2Þ:SW:SW:Rxðπ=2Þ:SW:RxðπÞ; ðC7Þ

Rθðπ=2Þ:Rxðπ=2Þ:SW:RxðπÞ; ðC8Þ

yields the phase γ3 − γ1 − γ2 ¼ β − π.We can then correctly
set the frame changes, for instance, by arbitrarily choosing
δ2 ¼ 0 and then calculating δ1 ¼ δp from Eq. (C4).

3. Calibrating cPHASE pulse length

Similarly to the iSWAP length calibration, we use the
sequences

CPn:RxðπÞ:iSWAP:RxðπÞ: ðC9Þ

The gates RxðπÞ:iSWAP:RxðπÞ prepare the state j11i, after
which the candidate CP gate is applied (n ¼ 1, 3, or 5
times). This measurement is repeated for a range of lengths
of the CP pulse to find the one which maximizes final
control qubit excitation pe.

4. Calibrating cPHASE pulse frequency

Detuning the CP pulse changes the phase accumulated by
the j11i state. To make it equivalent (up to single-qubit
rotations) to a cPHASE gate, the phases γ01, γ10, and γ11
accumulated by the computational states (relative to the
j00i state) must satisfy

γ11 − γ01 − γ10 ¼ π:

We measure this combination of phases by using the two
sequences

Rθðπ=2Þ:CP:FLIP:CP:Rxðπ=2Þ; ðC10Þ

Rθðπ=2Þ:FLIP:Rxðπ=2Þ; ðC11Þ

where FLIP ≔ iSWAP:RxðπÞ:iSWAP:RxðπÞ. These
Ramsey-type measurements, where FLIP flips the states
of both qubits, can be interpreted as a spin echo experiment
measuring the difference between the phases induced by
the CP pulse on the control qubit when the hidden qubit is in
the ground or the excited state. This difference is exactly
δ≡ γ11 − γ01 − γ10. The second sequence without the CP

pulse serves as a reference to subtract phases induced by the
iSWAP gate [see Fig. 7(c)].
We perform this experiment for a range of detunings of

the CP pulse and choose the value for which the measured
phase δ≡ γ11 − γ01 − γ10 is closest to π.

5. Calibrating single-qubit phases induced by cPHASE

To adjust the single-qubit phases γ01 and γ10 to zero, we
first measure them and then compensate them by shifting
the qubits’ reference frames.
The phase induced on the control qubit can be measured

in a straightforward Ramsey experiment:

Rθðπ=2Þ:CP:Rxðπ=2Þ; ðC12Þ
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Rθðπ=2Þ:Rxðπ=2Þ: ðC13Þ

For the hidden qubit, we need to add iSWAP gates after the
first and before the second π=2 pulse. In this case, the
reference measurement without the CP pulse is used to
subtract any potential phases induced by the iSWAP gate:

Rθðπ=2Þ:SW:CP:SW:Rxðπ=2Þ; ðC14Þ

Rθðπ=2Þ:SW:SW:Rxðπ=2Þ: ðC15Þ
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