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We introduce topological invariants for gapless systems and study the associated boundary phenomena.
More generally, the symmetry properties of the low-energy conformal field theory (CFT) provide discrete
invariants establishing the notion of symmetry-enriched quantum criticality. The charges of nonlocal
scaling operators, or more generally, of symmetry defects, are topological and imply the presence of
localized edge modes. We primarily focus on the 1þ 1d case where the edge has a topological degeneracy,
whose finite-size splitting can be exponential or algebraic in system size depending on the involvement of
additional gapped sectors. An example of the exponential case is given by tuning the spin-1 Heisenberg
chain to a symmetry-breaking Ising phase. An example of the algebraic case arises between the gapped
Ising and cluster phases: This symmetry-enriched Ising CFT has an edge mode with finite-size splitting
scaling as 1=L14. In addition to such new cases, our formalism unifies various examples previously studied
in the literature. Similar to gapped symmetry-protected topological phases, a given CFT can split into
several distinct symmetry-enriched CFTs. This raises the question of classification, to which we give a
partial answer—including a complete characterization of symmetry-enriched 1þ 1d Ising CFTs. Non-
trivial topological invariants can also be constructed in higher dimensions, which we illustrate for a
symmetry-enriched 2þ 1d CFT without gapped sectors.
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Quantum Physics, Statistical Physics

I. INTRODUCTION

Topological phases of quantum matter are fascinating
emergent phenomena, commonly characterized by non-
local order parameters in the bulk and exotic behavior at the
boundary. A subclass of gapped topological phases are the
so-called symmetry-protected topological (SPT) phases,
which are only nontrivial in the presence of certain global
symmetries [1–8]. In one dimension, SPT phases have
ground-state degeneracies associated with their boundaries
called zero-energy edge modes [9,10]. These edge modes
are often exponentially localized with the same length
scale as the bulk correlation length, seemingly suggesting
that the bulk gap is essential. However, in recent years,
studies have shown the existence of critical chains that

nevertheless host topologically protected edge modes,
with either algebraic or exponential finite-size splitting
[11–36]. Our work provides a unifying framework for this
phenomenon, placing it into the more general context of
symmetry-enriched quantum criticality. The idea is sim-
ple: A given universality class can split into various
distinct classes when additional symmetries are imposed.
These can be distinguished by symmetry properties of
either local or nonlocal operators. The latter nonlocal case
serves as a topological invariant and can imply emergent
edge modes.
Our work unifies in two respects. First, as already

mentioned, it offers a framework that incorporates pre-
viously studied examples, giving a common explanation for
the observed edge modes at criticality while also introduc-
ing qualitatively novel cases. Second, the invariants we
introduce are direct generalizations of those studied in
the gapped case, protecting edge modes in both settings.
In particular, gapped SPT and spontaneously symmetry-
breaking (SSB) phases correspond to the special cases
where the bulk universality class is chosen to be trivial
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(i.e., there are no low-energy degrees of freedom). This puts
in perspective how much is left to be explored: One can
repeat the study and classification for any choice of
universality class. In this work, we focus on universality
classes described by conformal field theories (CFTs).
Examples of symmetry-enriched criticality are hiding in

plain sight. These tend to occur at phase transitions where
all neighboring gapped phases are nontrivial (either SPT or
SSB). For example, a paradigmatic SPT phase is the
Haldane phase realized in the spin-1 Heisenberg chain
[3,10,37–40]. By introducing an easy-axis anisotropy, the
SPT phase can be driven to an Ising phase:

HXXZ ¼ J
X
n

ðSxnSxnþ1 þ SynS
y
nþ1 þ ΔSznSznþ1Þ: ð1Þ

These two gapped phases are separated by an Ising
critical point at Δc ≈ 1.1856 [41]. We point out that,
although the bulk correlation length diverges, a twofold
degeneracy with open boundaries remains exponentially
localized, shown in Fig. 1. We show that this Ising CFT
is topologically enriched by π rotations around the
principal axes (a Z2 × Z2 group), explaining the observed
edge modes.
The concepts developed in this work apply to symmetry-

enriched CFTs with a general on-site symmetry group G;
we refer to them also as G-enriched CFTs, or G-CFTs for
short. This is not only relevant for condensed matter
systems, such as the example described above, but also
to high-energy physics; in particular, G-CFTs can be
related to discrete torsion of orbifold CFTs arising in string
theory [42–45], although edge modes have not yet been
pointed out in that context. While we introduce our
framework for general symmetry groups G and discuss a
variety of examples, for clarity we illustrate these concepts
in detail for two particular symmetry groups: the unitary

group Z2 × Z2 and the antiunitary Z2 × ZT
2 (where com-

plex conjugation is defined relative to an on-site basis).
In particular, for the Ising CFT, the former (latter) sym-
metry group gives rise to edge modes whose finite-size
splitting is exponentially (algebraically) small in system
size. For the algebraic splitting, we show that the power is
remarkably high, scaling as 1=L14. This is derived by
studying the symmetry properties of descendant operators
in the CFT. To emphasize the generality of our approach,
we present examples for other symmetry groups, including
Uð1Þ × Z2 × ZT

2 , Uð1Þ⋊ZT
2 , and Z3 × Z3. We also discuss

the classification of such symmetry-enriched CFTs, pro-
viding a complete answer in the case of the Ising CFT for a
general symmetry group G. The topological invariants we
introduce can also be generalized to higher dimensions,
which we illustrate at the end of this work.
The remainder of this paper is organized as follows.

Since the essential concepts can be readily understood, we
give an overview in Sec. II. This provides a self-contained
summary for the reader in a hurry and can serve as a guide
to the other sections. In particular, it introduces and
motivates the notion of symmetry flux: This is the key
player throughout this work and allows us to define
topological invariants at criticality. Moreover, Sec. II gives
a sense of how this invariant protects edge modes at
criticality. Symmetry fluxes and edge modes are discussed
more systematically in Secs. III and IV, respectively.
Section V concerns the classification of G-enriched
CFTs. A Z3 × Z3 and a fermionic Zf

2 × ZT
2 example are

presented in Sec. VI, and in Sec. VII we show how previous
works fit into our framework. Finally, Sec. VIII discusses
generalizations to higher dimensions.

II. A CONCEPTUAL OVERVIEW

This section functions as a primer, motivating concepts
introduced in greater generality in subsequent sections.
The reader seeking a taste of symmetry-enriched criticality
may choose to read only this section. Alternatively, readers
preferring generality and not requiring motivational exam-
ples may skip this section altogether and continue to
Sec. III.
We first review the known order parameters for gapped

phases in 1D, which are either local (SSB) or non-
local (SPT). In Sec. II B, we show that, similarly, critical
points can also host local and nonlocal order parameters.
Nontrivial nonlocal order parameters can be related to the
existence of edge modes discussed in Sec. II C. Comments
on the classification of such symmetry-enriched critical
points, fermionic versions, and higher-dimensional gener-
alizations can be found in Secs. II D, II E and II G. These
subsections serve as pointers to the main sections of
this paper.
In order to present some of the key concepts of this work

in a simple manner, in this overview we fix the symmetry

FIG. 1. Persistent edge mode in a spin-1 XXZ chain at criticality.
(a) The bulk correlation length ξ blows up, whereas the edge mode
localization length ξloc stays finite. (b) The latter can be measured in
two ways: the two ground states j ↑l ↓ri � j↓l↑ri have a splitting
which is exponentially small in system size L, or, equivalently, the
two states differ by an operator which is exponentially localized
near the edges (L is the region we trace out near an edge before
calculating the distance of the two density matrices). The dashed
lines are proportional to expð−L=ξlocÞ with ξloc ≈ 3.3.
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group G ¼ Z2 × ZT
2 as an illustrative example (ZT

2 denotes
the group generated by an antiunitary symmetry that
squares to the identity). Other symmetry groups encoun-
tered in this work include Z2 × Z2 (Sec. III), Z3 × Z3 and
Zf

2 × ZT
2 (Sec. VI), Uð1Þ × Z2 × ZT

2 , Uð1Þ⋊ZT
2 (Sec. VII),

and Z2 × Z2 × Z2 (Sec. VIII). Below, we consider spin-
1=2 chains, denoting the Pauli matrices by X, Y, and Z, and
representing the symmetry group Z2 × ZT

2 by the spin-flip
P≡Q

n Xn and an antiunitary symmetry given by complex
conjugation in this basis, T ≡ K.

A. Local and nonlocal order parameters
for gapped phases

Naturally, phases that spontaneously break a symmetry
can be diagnosed by long-range order of some local
operator with a nontrivial charge (i.e., the operator does
not commute with the symmetry). The standard example is
the Ising chain HIsing ¼ −

P
n ZnZnþ1, where the ground

state has limjn−mj→∞hZmZni ≠ 0. Since Zn has charge −1
under the Z2 Ising symmetry P, this is distinct from the
trivial phase, which can have long-range correlations only
for operators with charge þ1. Moreover, a physical state
(i.e., without long-range cat-state-like entanglement) will
obey clustering: limjn−mj→∞hZmZni ¼ hZmihZni. We con-
clude that hZni ≠ 0, which means the ground state is no
longer invariant under the Z2 symmetry (otherwise,
hZni ¼ hZnPi ¼ −hPZni ¼ −hZni ⇒ hZni ¼ 0), imply-
ing a ground-state degeneracy.
In the presence of Z2 symmetry there is only one

symmetry-breaking “Ising” phase. If we additionally
impose complex conjugation symmetry ZT

2 , then this single
Ising phase subdivides into two distinct phases. Indeed,
consider H0

Ising ¼ −
P

n YnYnþ1. If we preserve only Z2,
one can smoothly connect HIsing to H0

Ising without closing a
gap by rotating Yn into Zn. However, the Ising order
parameter Yn is imaginary, whereas Zn is real. Hence, these
two Hamiltonians cannot be connected while preserving
Z2 × ZT

2 . They must be separated by a quantum phase
transition. (In fact, a direct phase transition between the two
(e.g., the XX chain) would be an example of a deconfined
quantum critical point in one dimension [46–48].) We see
in Sec. II B that if the system is gapless, the charges of local
operators can distinguish phases even in the absence of
symmetry breaking.
A SPT phase, on the other hand, cannot be probed

by any local observable. Instead, one can associate with
any (this is simplest for on-site symmetries; for other
cases, see Ref. [49]) unbroken symmetry a string order
parameter (this is derived using the concept of sym-
metry fractionalization [2,40] as we discuss in Sec. III
and review in the Appendix A 3). For instance, the
trivial paramagnet Htriv ¼ −

P
n Xn has long-range order

limjn−mj→∞hXmXmþ1 � � �Xn−1Xni ≠ 0, whereas the para-
digmatic cluster SPT model [50–54]

Hcluster ¼ −
X
n

Zn−1XnZnþ1 ð2Þ

has long-range order

lim
jn−mj→∞

hZm−1YmXmþ1 � � �Xn−1YnZnþ1i ≠ 0: ð3Þ

(the simplest way of deriving this is by noting that it equals
the product

Q
n
k¼m Zk−1XkZkþ1, and Zk−1XkZkþ1 ¼ þ1 in

the ground state). We see that in both cases, the string is
made out of the unbroken Z2 symmetry P. However, their
end-point operators are distinct: In the trivial (nontrivial)
case it is real (imaginary). As before, these discretely
distinct charges mean that the two Hamiltonians must be
separated by a quantum phase transition.
In the SSB case, the long-range order of a local operator

together with the clustering property allows us to derive a
bulk degeneracy. This does not work for stringlike objects
since there is no natural way of factorizing the correlation
function. However, if we consider the system with open
boundaries, then it is well defined to consider a string with a
single end point (i.e., the other end disappears into the
boundary). More precisely, consider the long-range order
with the end points of the strings close to the left and right
boundary; now act with the global symmetry

Q
n Xn and

apply clustering. It is for this reason that SPT phases come
with protected zero-energy edge modes. In the case of the
above cluster model, there is a protected qubit (a Kramers
pair) at each edge, giving a global fourfold degeneracy with
open boundaries [50–54].
More generally, the string order parameter [49,55] for an

on-site symmetry
Q

n Un has the form

Sn ¼ � � �Un−2Un−1On; ð4Þ

where On is some local operator such that hS†
mSni has

long-range order, as in Eq. (3). In this work, we use
the term “symmetry flux” for such a string operator.
In principle, one could use this terminology more broadly
for any string operator of the form of Eq. (4), since it acts
like a source of flux for operators charged under the
symmetry (see Sec. II G). We use this term in the more
restrictive sense (i.e., for end-point operators that give rise
to long-range order) since it is the symmetry properties
of its end-point operator On which encode the projec-
tive representation (or, equivalently, the second group
cohomology class) labeling the gapped phase [49,55].
(Relatedly, it has been appreciated how SPT phases can
be diagnosed by what happens when you gauge the global
symmetry, in which case, these symmetry fluxes become
local operators [56]; see also Refs. [57,58].) In this work,
we generalize these string order parameters (equivalently,
symmetry fluxes) to cases where long-range order is
replaced by “longest-range order” as we discuss now.
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B. Generalized order parameters for gapless phases

We see that for gapped phases the key idea is that
symmetry properties of both local and nonlocal operators
allow us to define discrete invariants. We now show that
this generalizes to gapless phases.
Let us note that we do not consider the trivial instance

where the symmetry group of interest acts exclusively on
gapped degrees of freedom (i.e., gapless modes would
be uncharged). For instance, if one stacks a gapped SPT
phase on top of a critical chain such that all the symmetries
protecting the former act trivially on the latter, then the
SPT phase is automatically stable by virtue of, e.g., there
not being any symmetry-allowed way of coupling the
SPT edge mode operators to the critical bulk. We exclude
such cases, instead focusing on situations where (part of)
the protecting symmetry acts on the gapless low-energy
theory—making the gaplessness an essential piece of the
physics at play. Remarkably, there are still local and
nonlocal order parameters in this case.
The simplest example—with a local order parameter—is

given by the two critical Ising chains:

H ¼ −
X
n

ðZnZnþ1 þ XnÞ;

H0 ¼ −
X
n

ðYnYnþ1 þ XnÞ: ð5Þ

These are at a phase transition between the trivial para-
magnet and the above HIsing and H0

Ising, respectively.
Both are described by the Ising universality class, or,
equivalently, the CFT with central charge c ¼ 1=2 [59].
This universality class has a unique local operator
σðxÞ with scaling dimension Δσ ¼ 1=8 [meaning that
hσðxÞσð0Þi ∼ 1=x2Δσ ] [59]. The lattice operators that have
overlap with this continuum field σ are naturally given by
the Ising order parameters of the nearby phases, i.e., σðxÞ ∼
Zn for H and σðxÞ ∼ Yn for H0 [60]. We observe that these
two operators transform differently under complex con-
jugation T. We say that these two Ising CFTs are enriched
by the ZT

2 symmetry T, with the former CFT obeying
TσT ¼ þσ and the latter TσT ¼ −σ. Indeed, one can argue
that this charge is always discrete, i.e., TσT ¼ �σ, and that
it is well defined; i.e., all choices of lattice operators that
generate σ in the low-energy effective theory have the same
charge (or sign) if T is an unbroken symmetry. [Both
statements follow from that the fact that if O1 and O2 both
generate σ, then hO1O2i ≠ 0 (following from the fusion
rule σ × σ ¼ 1þ ε), which must be real if T is unbroken.]
This discrete invariant cannot change as long as we stay
within the Ising universality class.
What is the consequence of such an invariant? It means

that any G-symmetric path (here G ¼ Z2 × ZT
2 ) of gapless

Hamiltonians connecting H and H0 must at some point go
through a different universality class. For example, con-
sider the interpolation λH þ ð1 − λÞH0 (with 0 ≤ λ ≤ 1):

This is everywhere in the Ising universality class except at
the halfway point λ ¼ 1=2, where the system passes
through a multicritical point (with a dynamical critical
exponent zdyn ¼ 2). Alternatively, λH − ð1 − λÞH0 passes
through a Gaussian fixed point (central charge c ¼ 1) at
λ ¼ 1=2. It is at these non-Ising points that the property
TσT ¼ �σ changes. Of course, theG symmetry of the path
is key: H and H0 are unitarily equivalent by a rotation

around the x axis e−iα
P

n
Xn (0 ≤ α ≤ π=4), but this path

violates complex conjugation symmetry T. This is similar
to how we see that the nearby gapped phases HIsing and
H0

Ising are distinguished by the additional symmetry.
The above examples could be distinguished by sym-

metry properties of local operators. A more interesting case
is when two enriched critical points can be distinguished
only by the symmetry properties of nonlocal operators. An
example is given by

H ¼ −
X
n

ðZnZnþ1 þ XnÞ;

H00 ¼ −
X
n

ðZnZnþ1 þ Zn−1XnZnþ1Þ: ð6Þ

The former (latter) is a phase transition between the trivial
phase and the Ising (cluster SPT) phase that we encounter
above. These two systems H and H00 cannot be distin-
guished by a local operator; in particular, both are described
by the Ising universality class with σðxÞ ∼ Zn [61], imply-
ing TσT ¼ þσ. In previous work,H andH00 were shown to
be topologically distinct by mapping them to free-fermion
chains and then appealing to a winding number [33,61].
In this work, we go significantly beyond this by identifying
a topological invariant which is well defined in the presence
of interactions. Indeed, the Ising CFT also has a nonlocal
operator μðxÞ with scaling dimension Δμ ¼ 1=8—this
is related to the local σðxÞ under Kramers-Wannier duality.
For the usual critical Ising chain, this is known to be the
string operator μðxÞ ∼ � � �Xn−2Xn−1Xn at any position n.
For H00, however, one can show that μðxÞ ∼ � � �
Xn−2Xn−1YnZnþ1 [61]. [Note that in both cases, the nearby
symmetry-preserving phase [62] has long-range order
limjx−yj→∞hμðxÞμðyÞi ≠ 0—see, e.g., Eq. (3)—as expected
by Kramers-Wannier duality.] This suggests that the two
models are two distinct G-enriched Ising CFTs distin-
guished by TμT ¼ �μ. To establish this, we need to ensure
that the charge of μ is well defined; i.e., that it is
independent of our choice of operator on the lattice.
This requires us to generalize the notion of symmetry flux
or string order parameter (which we review in the previous
subsection) to gapless cases.
The symmetry flux of P ¼ Q

n Xn is a string operator
consisting of the same on-site unitaries as P, i.e.,
Sn ¼ ðQm<n XmÞOn, with a condition on the end-point
operator On. In the gapped case, we can choose the latter
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such that the string operator has long-range order. In the
gapless case, we generalize this condition by demanding
thatOn is chosen such that hS†

mSni has the slowest possible
algebraic decay. For the Ising CFT, it is known that
Δ ¼ 1=8 is the smallest possible scaling dimension [59].
Hence, the above discussion about μ tells us that the
symmetry flux of P has the end-point operator On ¼ Xn
for H and On ¼ YnZnþ1 for H00; note that their charges
under T are distinct. One can argue—as we do in Sec. III—
that once one fixes the Z2 symmetry under consideration
(here P), then the Ising universality class has a unique
symmetry flux, even in the presence of additional gapped
degrees of freedom [63]. This means that we have a well-
defined charge TμT ¼ �μ. We say that the above two
models H and H00 realize two distinct (Z2 × ZT

2 )-enriched
Ising CFTs. Moreover, since this is based on charges of
nonlocal operators, we say that they are topologically
distinct.
We thus propose that distinct symmetry-enriched CFTs

can be distinguished by how symmetry fluxes of g ∈ G are
charged under the other symmetries in G. For the models in
Eq. (6), the discrete invariant is the sign picked up when
conjugating the symmetry flux of P by T. A nice feature of
this definition of symmetry flux is that in the gapped case it
reduces to the usual string order parameter. Indeed, in that
case, asking for the slowest possible decay is asking for
long-range order. Moreover, in the gapped symmetry-
preserving case, one can argue that the symmetry flux is
always unique in one spatial dimension; this follows from
the principle of symmetry fractionalization [1,2]. Indeed,
the symmetry properties of its end-point operator On
encode the projective representation (or, equivalently, the
second group cohomology class) labeling the gapped
phase. In the gapless case, the uniqueness or degeneracy
of the symmetry flux depends on the particular CFT, as we
discuss in detail in Sec. III.

C. Edge modes from charged symmetry fluxes

If a symmetry flux has a nontrivial charge under another
symmetry, then this can be linked to ground-state degen-
eracies in the presence of open boundary conditions. This is
well known for the case with a bulk gap [49], and in this
work we show that it extends to the gapless case. We argue
this more generally in Sec. V; here we illustrate this for the
lattice model H00 in Eq. (6), taking a half-infinite system
with sites n ¼ 1; 2;…. We show that the boundary of this
critical chain spontaneously magnetizes (see Ref. [28] for a
related system with G ¼ Z2 × Z2). Indeed, on the lattice
we see that Z1 commutes with H00; the spontaneous edge
magnetization Z1 ¼ �1 thus gives a twofold degeneracy.
To see that this magnetization is not a mere artifact of our
fine-tuned model, we can study its stability in the Ising CFT
starting with hσðx ≈ 0Þi ≠ 0 (with the boundary at x ¼ 0).
If we add theP-symmetry flux μð0Þ to the Hamiltonian, this
would connect the two ordering directions and hence

destabilize them. This is what would happen for the usual
Ising chain H, where the symmetry flux is condensed
near the boundary (hμð0Þi ≠ 0), giving us a symmetry-
preserving boundary condition (hσð0Þi¼0) [64]. However,
if TμT¼−μ, theZT

2 symmetry prevents us from adding this
perturbation, and, remarkably, the edge magnetization is
stable. Indeed, in Sec. IV we show that all symmetry-
allowed perturbations correspond to operators with scaling
dimension greater than one, implying that they are
irrelevant for the boundary RG flow. In summary, the
zero-dimensional edge spontaneously breaks P symmetry
stabilized by the (Z2 × ZT

2 )-enriched bulk CFT.
It is important to note that this degeneracy crucially relies

on the presence of an edge. The key reason for this is that,
while μðxÞ is nonlocal in the bulk, it is local near a
boundary. I.e., its string can terminate [note that terminat-
ing its string in the bulk would effectively lead to a two-
point operator μðxÞμðyÞ]; see Sec. IV for how this enters
the general argument. Indeed, H00 has a unique ground
state with periodic boundary conditions. In fact, in that case
H and H00 are related by the unitary transformation
U ¼ Q

nðCZÞn;nþ1, where CZ is the control-Z gate, and
it is well established that the critical Ising chain H has a
unique ground state. This unitary transformation also
relates the trivial gapped phase to the nontrivial gapped
cluster phase [51].
Thus far, we have focused on a single end, giving the

complete story for a half-infinite system. For a finite system
of length L, we need to consider the finite-size splitting of
the symmetry-preserving states which entangle both edges:

j ↑l ↑ri � j↓l↓ri and j ↑l ↓ri � j↓l↑ri: ð7Þ

In general, to analytically determine such finite-size split-
ting, it is useful to start in the scale-invariant RG fixed-point
limit and then consider what additional perturbations
are necessary to distinguish the states. For example, if
the system is gapped, then all four states in Eq. (7) are
degenerate in the fixed-point limit. The only way a local
perturbation can then couple the two edges is at Lth order in
perturbation theory. Indeed, for gapped SPT phases, the
finite-size splitting is exponentially small in system size
[54]. For critical systems, however, the RG fixed-point limit
is richer, being described by a CFT. In particular, it is
known [65] that the two antiferromagnetic states in Eq. (7)
are split from the ferromagnetic ones at the energy scale
1=L, the same as the finite-size bulk gap. This is due to the
spontaneous boundary magnetizations sensing their (mis)
alignment through the critical bulk. The remaining two
states j ↑l ↑ri � j↓l↓ri are exactly degenerate within the
CFT. They can be split by perturbing away from the
fixed-point limit by adding RG-irrelevant perturbations.
The splitting can already occur at second order in
perturbation theory (intuitively, each edge has to couple
to the critical bulk). Nevertheless, we show that the
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dominant contribution has a surprisingly large power,
scaling as 1=L14, caused by the so-called seventh
descendant of μ; see Sec. IV for a derivation.
The above twofold degeneracy with open boundaries is

the generic result for a topologically nontrivial symmetry-
enriched Ising CFT. The nature of its finite-size splitting
depends on the protecting symmetry. In the above case,
where μ is odd under an antiunitary symmetry, we find an
algebraic splitting of order 1=L14. In other scenarios, μmay
be odd under a symmetry associated with additional gapped
degrees of freedom, which by the same perturbative argu-
ment would lead to an exponentially small finite-size
splitting. The latter case is in agreement with the obser-
vations in Ref. [28] and is also what we observe in Fig. 1.
Both scenarios are discussed in detail in Sec. IV.
Since algebraically localized edge modes are not

common in the current literature (exceptions being systems
with long-range interactions [66–69]), one might wonder
to what extent they are, in fact, localized. The key feature
that makes an edge mode meaningful is normalizability.
Indeed, this is what allows one to make statements of
the type “90% of the weight is contained in the first five
sites.” Algebraic modes can still be normalizable. For
instance, suppose one has a Majorana edge mode of the
form γL ∼

P
nð1=nαÞγn (where γn is a Hermitian Majorana

mode on site n, satisfying fγn; γmg ¼ 2δn;m), by which we
mean [70] that if jψi is a ground state, then so is γLjψi.
Then, γ2L ¼ 1

2
fγL; γLg ∼

P
nð1=n2αÞ, which is finite if

α > 1=2; i.e., the operator is normalizable. Relatedly, an
algebraic edge mode has a localization length. One way of
understanding this is by noting that their localization is
determined by perturbations which are irrelevant in the
renormalization-group flow, and such operators naturally
have a length scale. To the best of our knowledge, this work
contains the first example of an algebraically localized
edge mode that cannot be destroyed while preserving the
symmetry and universality class.

D. Classifying G-CFTs

In Sec. II B, we define discrete invariants. Two natural
questions arise: Given a universality class, how many
distinct invariants can one realize, and are these invariants
complete? More precisely, if all local operators and sym-
metry fluxes have the same symmetry properties, can the
models be smoothly connected while preserving their
universality class? We explore this in Sec. V, arguing
that these invariants are indeed complete for the Ising
CFT. In particular, we discuss the case of the symmetry
group G ¼ Z2 × Z2 for illustrative purposes. We first
recall the six distinct gapped phases in this symmetry
class, after which we study the universality classes that
naturally arise at the direct transitions between these
phases. In particular, we find nine distinct (Z2 × Z2)-
enriched Ising (c ¼ 1=2) universality classes, whereas
we show that all (Z2 × Z2)-enriched Gaussian (c ¼ 1)

transitions can be connected (if they have minimal codi-
mension, as we explain in Sec. V). For the c ¼ 1 case, we
construct exactly solvable models that allow us to connect
symmetry-enriched CFTs which have seemingly distinct
symmetry properties. This is possible since—unlike for the
Ising CFT—there is a connected family of different c ¼ 1
universality classes along which scaling dimensions can
cross, such that the symmetry properties of symmetry
fluxes need not be invariant for c ¼ 1. However, as we
discuss in Secs. Vand VII, there are still nontrivial G-CFTs
for c ≥ 1.

E. Majorana edge modes at criticality

The edge mode encountered in the spin chain H00 in
Eq. (6) is rather unusual from the gapped perspective. First,
the ground state is unique with periodic boundary con-
ditions, and twofold degenerate with open boundaries (we
do not count the states whose finite-size splitting scales as
the bulk gap of order 1=L). There is no gapped bosonic SPT
phase with this property. Moreover, while the ground states
j ↑l ↑ri � j↓l↓ri can be toggled by a local edge mode
operator Z1 ∼ σð0Þ, such cat states are unstable, and the
system would collapse into j ↑l ↑ri or j↓l↓ri (i.e., the zero-
dimensional edges exhibit spontaneous symmetry break-
ing, which is not possible in the absence of a bulk).
In this collapsed basis, one would need an extensive
operator P to toggle between them.
In Sec. VI B we show that under a Jordan-Wigner

transformation, the above becomes a fermionic example
where the edge mode is more conventional: The bulk is a
free Majorana c ¼ 1

2
CFT, and each boundary hosts a

localized zero-energy Majorana edge mode. This system
has the same ground-state degeneracy as the usual gapped
Kitaev chain [71]. Moreover, similar to the latter, there is an
edge Majorana operator that toggles between the two
(stable) ground states. The system is characterized by
the symmetry flux of fermionic parity symmetry being
odd under spinless time-reversal symmetry.
This critical Majorana chain arises as a phase transition

from the gapped phase with two Majorana modes (per edge)
protected by spinless time reversal, to the Kitaev chain phase
with one Majorana mode (per edge); at the transition, one
edge mode delocalizes, becoming the bulk critical mode,
whereas the othermode remains localized [33].Mapping this
back to the spin-chain language, starting from the gapped
cluster phase, two of the four degenerate ground states with
open boundary conditions have a splitting that is determined
by the bulk correlation length: These become delocalized at
the critical point toward the Ising phase, with only the above
twofold degeneracy remaining. Entering the gapped Ising
phase, we have an edge magnetization which gradually
merges with the bulk magnetization as we go deeper into the
phase; see also Ref. [72] where an analogous case with
gapped degrees of freedom is discussed.
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F. A unified language

There is already a considerable body of work on critical
one-dimensional systems with topological edge modes
[11–36]. Section VII is devoted to demonstrating how
our formalism allows us to unify previous works. We
illustrate this for Refs. [11,16,19,28,33], showing how the
models introduced therein can be interpreted as G-enriched
Ising or Gaussian CFTs. This automatically identifies novel
discrete bulk invariants for these systems in terms of their
symmetry fluxes, ensuring the presence of protected
edge modes.

G. Generalization to arbitrary dimensions:
Twisted sectors

While the present work focuses on one spatial dimen-
sion, these concepts can be generalized to higher dimen-
sions, which is the focus of Sec. VIII. To this end, we
first reformulate the topological invariant in the one-
dimensional case. Any string operator associated with an
on-site symmetryU can be interpreted as creating a flux for
that symmetry. To see this, one can imagine inserting this
operator in spacetime, then any operator charged under U
will pick up a phase factor when encircling the end point of
the string—the defining characteristic of a flux. More
precisely, in Sec. VIII we explain how the operator-state
correspondence relates the symmetry flux operator defined
above (i.e., the slowest-decaying string operator) to a
Hamiltonian in the presence of an external flux (i.e., certain
terms in the Hamiltonian have been “twisted” by phase
factors). In particular, the charge of the end-point operator
of the symmetry flux naturally coincides with the charge
attached to the external flux. This gives a different
perspective on the topological invariant for both gapped
and gapless models. In the gapped case, this coincides with
a well-known approach for detecting and classifying SPT
phases in terms of the response functions of external flux
insertions [5,6,57,58,73–82]. For a simple illustration of
detecting the SPT invariant for the cluster chain by inserting
fluxes (i.e., twisting certain terms), see Eqs. (31) and (32) in
Sec. VIII.
We show how this approach of encoding SPT invariants

in the charges of external fluxes can generalize to the
gapless case in general dimensions. In particular, we con-
sider two-dimensional systems where the Hamiltonian has
been twisted along a one-dimensional line (i.e., flux threads
through the system). If the corresponding ground state is
unique and its charge is distinct from the untwisted case, it
provides a bulk topological invariant even in the gapless
case, which can moreover be linked to edge modes. This
idea is broadly applicable, and we illustrate it in detail for
several copies of the 2þ 1D Ising CFT with a nontrivial
topological invariant protected by Z3

2 symmetry; this
constitutes an example which does not rely on any gapped
sector.

III. SYMMETRY FLUXES AND
TOPOLOGICAL INVARIANTS

In this section, we explain how to define discrete
topological invariants for both gapped and gapless systems
in one spatial dimension (higher-dimensional generaliza-
tions are discussed in Sec. VIII). We do this by introducing
the notion of symmetry fluxes; their charges will be the
invariants. In Sec. III B, we illustrate how this indeed
associates a topological invariant with the Ising critical
point of the spin-1 XXZ chain encountered in Fig. 1. These
invariants constrain the possible structure of phase dia-
grams, as we illustrate in Sec. III C. This section is devoted
to bulk properties; the related phenomenon of topological
edge modes is discussed in Sec. IV.

A. Defining symmetry fluxes and their charges

Consider a symmetry element g ∈ G, where G is the
symmetry group of the Hamiltonian. If this is represented
on the lattice by an unbroken on-site unitary operator
Ug ¼ Q

n U
g
n, we can associate with it a symmetry flux.

This is defined to be a (half-infinite) string operator of the
form Sg

n ≡ � � �Ug
n−3U

g
n−2U

g
n−1O

g
n where the local end-point

operator Og
n is chosen such that the resulting correlator

hSg†
m Sg

ni ¼ hOg†
mUg

mU
g
mþ1 � � �Ug

n−1O
g
ni ð8Þ

has the slowest possible decay as a function of jn −mj.
In practice, the correlator in Eq. (8) has two possible
functional forms depending on whether or not Ug is
associated with gapped degrees of freedom—meaning that
all particles charged under this symmetry are massive. If
this is the case, its symmetry flux has long-range order (i.e.,
it tends to a finite positive value). Otherwise, there is
algebraic decay, hSg†

m Sg
ni ∼ 1=jn −mj2Δg . (Note that any

decay faster than algebraic would imply symmetry break-
ing.) The exponent Δg is called the scaling dimension of Sg

and is by definition as small as possible; long-range order
can be seen as the special case Δg ¼ 0. The universality
class of the system determines the value of Δg.
An obvious and important question is whether—for a

given model—the above definition specifies a unique
symmetry flux. Note that we want to avoid trivial over-
counting: Multiplying any symmetry flux by, e.g., a phase
factor eikn will again give a symmetry flux. For this reason,
we consider only nonoscillatory symmetry fluxes; i.e.,
limjn−mj→∞ jn −mj2ΔghSg†

m Sg
ni should be a well-defined

finite value. Moreover, if Sg and S̃g differ only by
subleading correlations, then we do not want to count
them as being distinct. In other words, we define an
equivalence class where Sg and S̃g are in the same class
if and only if Sg − S̃g is not a symmetry flux (i.e., its
two-point correlator decays faster than 1=jn −mj2Δ). We
then naturally have a vector space spanned by the (classes
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of) symmetry fluxes of g ∈ G, and its dimension Dg is a
property of the universality class, as we soon discuss. For
instance, we see that this space is one dimensional for
gapped systems and for the Ising universality class, which
simplifies things considerably. We now discuss the action
of the symmetry group G on this vector space of symmetry
fluxes.

1. Charges of symmetry fluxes

The group G has a natural action on symmetry fluxes via
conjugation:

UhSgUh† ¼ � � �Uhgh−1

n−2 Uhgh−1

n−1 ðUhOg
nUh†Þ: ð9Þ

It is easy to see [83] that this is a symmetry flux for hgh−1.
It is hence natural to take h to be an element of the subgroup
of all elements commuting with g—the stabilizer CðgÞ—
which implies thatUhSgUh† is again a symmetry flux for g.
Let us consider the case where the space of symmetry

fluxes of g is one dimensional. Then the new fluxUhSgUh†

and Sg must be linearly dependent. We define the relative
phase to be the charge of the symmetry flux of g under h.
In general, the charge χgðhÞ ∈ Uð1Þ is given by the pre-
factor in UhSgUh† ¼ χgðhÞSg þ Sg

sub, where Sg
sub is the

subdominant (i.e., faster-decaying) piece. This charge is
well defined, i.e., independent of the choice of symmetry
flux (within a given class), since this choice would affect
only the subdominant piece. However, in practice one
chooses the end-point operator Og to transform nicely
under CðgÞ, in which case we can directly read off the
charge from UhSgUh† ¼ χgðhÞSg. If G is Abelian, it can be
shown that these charges are classified by H2(G;Uð1Þ);
see Appendix A for details.
The charges under antiunitary symmetries are slightly

more subtle, since they seemingly change if we redefine
Sg → iSg. Here we show how to properly define such a
charge for a symmetry flux of a unitary symmetry g of
order 2 [i.e., ðUgÞ2 ¼ 1], which will be enough for all the
antiunitary cases studied in this work. The key point is that
a unitary that squares to unity must necessarily be
Hermitian: Ug ¼ Ug†. Using this, one can show that
one can always choose the end-point operator Og of its
symmetry flux to be Hermitian [84], in which case, its
charge under an antiunitary symmetry is well defined
(alternatively, one can combine the antiunitary symmetry
with taking the dagger to get an effective unitary action).
This framework of symmetry fluxes applies to finite and

continuous groups alike. However, in practice it is often
sufficient to consider the charge of discrete subgroups. This
is already well known for gapped SPT phases [e.g., the
Haldane phase can be said to be protected by the SO(3)
group of spin rotations, but just as well by its Z2 × Z2

subgroup of π rotations [38] ]. The reason for this is simple
to understand: The symmetry flux is well defined for any

element g of a continuous group, but usually the charges
under its stabilizer CðgÞ are trivial. For instance, for a
generic rotation in SO(3), the only elements that commute
with it are other rotations along the same axis, and one can
argue that these always lead to trivial charges. It is only at
special high-symmetry points of SO(3), namely. at π
rotations, where the stabilizer contains nontrivial elements
(such as π rotations along orthogonal axes).
The above shows that charges are straightforwardly

defined if the symmetry flux is unique, directly giving
access to discrete invariants. We now show that this
uniqueness is indeed guaranteed if, for example, the bulk
is gapped or described by the Ising universality class. We
also touch upon the more general case where the space of
symmetry fluxes is higher dimensional; in this case, one
can also obtain discrete invariants.

2. Symmetry fluxes for gapped phases

In the gapped case, the symmetry flux for any unbroken
symmetry g ∈ G is unique; i.e., any two symmetry fluxes
are linearly dependent. This follows from the concept of
symmetry fractionalization (see Appendix A 3 for a proof).
Indeed, in this case the above definition of the symmetry
flux coincides with the well-known notion of a string order
parameter characterizing the phase [49,55]. Note that this
uniqueness applies even to critical systems as long as Ug

acts nontrivially on gapped degrees of freedom only, at least
if we restrict ourselves to cases without bulk degeneracies
(from the perspective of conformal field theory, this means
that we assume that there is only a single local operator of
scaling dimension zero). The uniqueness of this symmetry
flux implies we have well-defined charges χgðhÞ.
It is known that gapped phases are classified by

topologically distinct projective representations of G which
are labeled by a so-called cocycle ω ∈ H2(G;Uð1Þ) [1–3].
The above charges χgðhÞ can be expressed in terms of this
cocycle (see Appendix A 3). The converse is also true, e.g.,
for Abelian groups G: In Appendix A 3 we prove that the
cocycle can be reconstructed from knowing the charges.
This is not true for arbitrary groups G. Nevertheless, in
practice, knowing the charges is often equivalent to
knowing the projective representations (the simplest known
counterexample involves a group of 128 elements [49]).

3. Symmetry fluxes for the Ising universality class

We now show that if one is given a G-symmetric lattice
model where some degrees of freedom are described by the
Ising universality class and other degrees of freedom (if
present) are gapped, then any g ∈ G has a unique symmetry
flux Sg. First, the Ising CFT is known to have an emergent
Z2 symmetry (i.e., this makes no reference to what the
symmetries of the lattice model might be), and it is known
that this has a unique symmetry flux μ which moreover has
scaling dimension Δμ ¼ 1=8 [59] (it is unique because the
partition function in the sector twisted by the emergent Z2
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symmetry has a unique ground state; see Sec. VIII).
Second, this is the only unitary on-site symmetry of the
Ising CFT [85]; hence, any lattice symmetry which acts
nontrivially on the local degrees of freedom of the CFT
must coincide—for the gapless part of the spectrum—with
the emergent Z2 symmetry, thereby inheriting the unique-
ness of its symmetry flux. A part of the symmetry can of
course also act nontrivially on additional gapped degrees of
freedom, but as we argue in Sec. III A 2, this does not affect
the conclusion of uniqueness.
In summary, for any g ∈ G we have a unique symmetry

flux. Its scaling dimension isΔg ¼ 1=8 if g acts nontrivially
on theCFT, otherwiseΔg ¼ 0. Aswedescribe inSec. III A 1,
this uniqueness gives us well-defined charges χgðhÞ ∈ Uð1Þ
under any symmetry h that commutes with g. These charges
form a discrete invariant of the symmetry-enriched Ising
CFT. We see an example of this in Sec. III B.

4. Symmetry fluxes for general universality classes

In the above two cases, for each g ∈ G, the vector space
of symmetry fluxes happened to be one dimensional. More
generally, it might have some dimensionDg, such that each
basis of symmetry fluxes Sg

α come with an additional label
α ¼ 1;…; Dg. Hence, the subgroup of elements that com-
mute with g (the stabilizer of g) has a higher-dimensional
representation on this space of fluxes, Uh½Sg

α�Uh† ¼
Rg
α;βðhÞ½Sg

β�, where ½Sg� denotes the equivalence class
defined above. For example, Dg > 1 generically happens
at transitions between distinct SPT phases (or between
G-CFTs), where the different symmetry fluxes become
degenerate.
A higher-dimensional representation can of course still

come with discrete labels (in particular, there are cases
where all degenerate fluxes have the same charges; see
Sec. VII), but extra care has to be taken before one can
conclude that these give invariants of the G-enriched CFT.
In particular, in rare cases, some CFTs allow for marginal
perturbations which can changeDg. For example, the c ¼ 1

Z2-orbifold CFT allows for one-dimensional vector spaces
of symmetry fluxes (Dg ¼ 1), but this CFT can be smoothly
tuned to a compact boson CFT where this representation
becomes two dimensional. Such a process is explored in a
lattice model in Sec. V where we use this to connect
apparently distinct G-CFTs with c ¼ 1.

5. Implications for phase diagrams

Identifying discrete invariants for symmetry-enriched
universality classes has strong implications for the possible
structure of phase diagrams. In particular, if two models are
described by the same CFT at low energies but by distinct
symmetry-enriched CFTs, then these two transitions cannot
be smoothly connected in a larger phase diagram. This
means that any path attempting to connect them must
have an intermediate point where the universality class

discontinuously changes—either to a distinct CFT (neces-
sarily of higher central charge) or to something that is not a
CFT (e.g., a gapless point with dynamical critical exponent
zdyn ≠ 1). Examples are discussed in Sec. III C.

B. Topological invariant for the critical spin-1
anisotropic Heisenberg chain

Having laid out the general structure of symmetry fluxes,
we are now in a good position to apply this to a concrete
model: the spin-1 XXZ chain. As we mention in the
Introduction and as shown in Fig. 1, as one tunes the
easy-axis anisotropy Δ (not to be confused with a scaling
dimension) from the topological Haldane phase to the
symmetry-breaking Ising phase, there remains a localized
edge mode at the Ising critical point. Here we identify
a bulk topological invariant at criticality, establishing that
it indeed forms a novel symmetry-enriched Ising CFT.
This invariant also explains its edge behavior, as we discuss
in Sec. IV.
The gapped Haldane phase is known to be protected by,

for example, the Z2 × Z2 group of π rotations (represented
by Rγ ¼

Q
n e

iπSγn for γ ¼ x, y, z). This SPT phase has long-
range order in hSγi expðiπ

P
i<k<j S

γ
kÞSγji. The symmetry

flux of Rγ is thus
Q

m<n e
iπSγmSγn. Its long-range order is

shown in Fig. 2(a) for γ ¼ x, which indeed vanishes at the
critical point Δ ¼ Δc. In the Ising phase for Δ > Δc, we
have the local order parameter Szn characterizing the
spontaneous breaking of Rx and Ry.
Despite the vanishing of the long-range order of these

order parameters, they still play an important role at
criticality: They are identified by their scaling dimension
1=8, as shown in Fig. 2(b). We thus conclude that—similar
to the known gapped case—the symmetry flux of Rx at
criticality is still the Haldane string order parameter. As we

FIG. 2. Order parameters and symmetry fluxes for the
spin-1 XXZ chain. (a) The Haldane string order parameter and
Ising order parameter have long-range order in the SPT and
symmetry-breaking phase, respectively. (b) At criticality, the
long-range order is replaced by algebraic decay. Both operators
have the same scaling dimension (i.e., their correlators decay as
1=jn −mj2Δ with Δ ¼ 1=8; the dashed lines are a guide to the
eye) and in the continuum limit correspond to the μ and σ
operators of the Ising CFT, respectively. We conclude that μ has
nontrivial charge under other symmetries, which functions as a
topological invariant.
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discuss in Sec. III A 3, this means that the Ising critical
point is nontrivially enriched by Z2 × Z2 symmetry.
More concretely, if we denote the symmetry flux of Rx
by μ (using the traditional notation of scaling operators
of the Ising CFT) [86], we have the nontrivial charge
RzμRz ¼ −μ.
One can also consider the symmetry flux for Rz. In fact,

since the local fields of the Ising transition are all neutral
under Rz, this symmetry remains gapped. As a conse-
quence, the topological string order parameter for Rz has
long-range order throughout this whole region of the phase
diagram. This thus also functions as a topological invariant.
This is a general feature of gapless SPT phases which are
(partially) protected by gapped degrees of freedom. The
case without such an additional gapped sector is thus
arguably the most novel: There is no long-range order to
appeal to, making the CFT-based approach essential. This
is the case, for example, for H00 encountered in Sec. II, and
as we see in Sec. IV, this difference has an important
consequence for the edge modes.
We note that the gapped Haldane phase is also known to

be protected by time-reversal symmetry Tspin ¼ RyK
(where K is complex conjugation in the local z basis).
Similarly, the Ising criticality at Δ ¼ Δc is enriched by the
Z2 × ZT

2 symmetry generated by Rx and Tspin. Indeed, we
see that TspinμTspin ¼ −μ. It would be interesting to define a
notion of symmetry flux for antiunitary symmetries, which
in this case would have to be charged under the unitary
symmetries Rγ as well as under itself.

C. Implications for phase diagrams: Bond-alternating
spin-1 Heisenberg chain

Having identified the discrete invariant RzμRz ¼ −μ for
the spin-1 XXZ chain at criticality, we can distinguish it
from a trivial Ising criticality where RzμRz ¼ μ. Whereas
the former appears at a phase transition between an Ising
phase and a nontrivial SPT phase, the latter appears as one
tunes from/to a trivial SPT phase (condensing μ would lead
to a symmetric gapped phase, with its symmetry properties
determining its phase). The discreteness of RzμRz ¼ �μ
means that these two Ising criticalities cannot be smoothly
connected, constraining the possible structure of phase
diagrams containing such Ising transitions. This can be
illustrated by adding, e.g., bond alternation:

H ¼ J
X
n

½1 − δð−1Þn�ðSxnSxnþ1 þ SynS
y
nþ1 þ ΔSznSznþ1Þ:

ð10Þ

The two-parameter phase diagram obtained with iDMRG

[87,88] is shown in Fig. 3(a) (see also Refs. [89,90]).
For large δ, we can realize a trivial Ising CFT where
the symmetry flux of Rx is not charged, being given by

μ ∼ eiπ
P

m<n
Sxm . We observe that the two topologically

distinct symmetry-enriched Ising CFTs (with central charge
c ¼ 1=2) are separated by a point where the universality
class changes (hollow white marker). In this case, this
“transition of transitions” is described by the Wess-
Zumino-Witten SUð2Þ1 CFT with central charge c ¼ 1.
Here, the symmetry flux of Rx still has scaling dimension
ΔRx

¼ 1=8, but this space is now two dimensional (i.e.,
there are two linearly independent symmetry fluxes of Rx).

Indeed, one symmetry flux is nontrivial eiπ
P

m<n
SxmSxn and

the other, trivial eiπ
P

m<n
Sxm . This degeneracy of symmetry

fluxes is in fact true along the whole line of c ¼ 1 CFTs
separating the trivial and Haldane SPT phase, which is
natural given the emergent duality symmetry at this
transition.
Similar phenomenology can already be observed in an

exactly solvable spin-1=2 chain which realizes the same
three gapped phases, as shown in Fig. 3(b). In this case, the
two topologically distinct Ising CFTs are now separated by
the c ¼ 1 free Dirac CFT, where the two symmetry fluxes
of Rx again become degenerate (now with scaling dimen-
sion ΔRx

¼ 1=4). The Hamiltonians for these spin-1=2
chains are introduced and discussed in detail in Sec. V, and
the phase diagram is calculated in Appendix B.

IV. EDGE MODES AT CRITICALITY

In the previous section, we introduce the notion of a
symmetry flux and its corresponding charge. In this section,
we relate this bulk property to degeneracies in the presence
of open boundary conditions. This section is naturally
divided in two: In Sec. IVA, we focus on a single boundary
of a half-infinite system, where we explain how a charged
symmetry flux can lead to the boundary spontaneously
breaking a symmetry; in Sec. IV B, we study the coupling
between such boundary magnetizations and calculate the
finite-size splitting of the degeneracy. Throughout this
section, we use the Ising CFT as an illustrative example,
but the method which we lay out is generally applicable.

FIG. 3. Transitions between topologically distinct Ising uni-
versality classes. (a) Phase diagram of the bond-alternating S ¼ 1
XXZ chain. There is a c ¼ 1 transition between the topologically
distinct c ¼ 1=2 transitions. The tricritical point (hollow marker)
is a Wess-Zumino-Witten SUð2Þ1 CFT, where the trivial and
Haldane string order parameters both have scaling dimension
1=8. (b) Similar phase diagram for an exactly solvable S ¼ 1=2
model; in this case, the c ¼ 1 boson CFT is in the free Dirac
universality class [inset, analog of Fig. 1(a)].
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In fact, at the end of every subsection, we indicate what the
necessary analysis would be for a general CFT.

A. Half-infinite chain: A single boundary

Let us consider a half-infinite system, allowing us to
study a single edge. We furthermore presume that the
system is described by the Ising universality class. To study
what happens near its boundary, we use the fact that all
possible boundary RG fixed points describing the (0þ 1)-
dimensional edge of this CFT are known [65,91]. There are
three distinct fixed points, as sketched in Fig. 4; these have
different behavior with respect to theZ2 symmetry intrinsic
to the Ising CFT.

(i) The free boundary fixed point: This preserves the Z2

symmetry. The symmetry flux of this Z2 symmetry
denoted by μðxÞ can be said to have condensed.
Indeed, hμðxboundaryÞi ≠ 0 [64]. Note that in the bulk,
the one-point function of μðxÞ is not well defined
due to it being nonlocal. However, near the boun-
dary, μðxÞ becomes local.

(ii) The (explicitly) fixed� boundary fixed point: This
requires explicitly breaking the Z2 Ising symmetry
at the level of the Hamiltonian (near its boundary).
The local spin operator σðxÞ points up or down near
the edge hσðxboundaryÞi ≠ 0; its sign depends on the
explicit breaking of the Z2 symmetry. This fixed
point is excluded by enforcing Z2 symmetry of the
Hamiltonian.

(iii) The spontaneously fixed boundary fixed point: The
symmetry is not broken at the level of the Hamil-
tonian, but the ground state spontaneously magnet-
izes. More precisely, it is a two-dimensional Hilbert
space which is the direct sum of the two symmetry-
broken orderings.

The latter fixed point (note that this is not a Cardy state in
the boundary conformal field theory) is not often men-
tioned in the literature, but this is for a good reason: It is
usually an unstable [92] RG fixed point. A generic
perturbation would condense μðxÞ near the boundary,

flowing to the free fixed point. From the RG perspective,
this is due to the boundary scaling dimension of μðxboundaryÞ
being 1=2; this is smaller than 1, implying it is relevant
for (0þ 1)-dimensional RG flows. However, if μðxÞ is
charged under some additional symmetry, then this RG
flow is prohibited, and the spontaneous fixed boundary
condition—along with its twofold degeneracy—is stabi-
lized. The above is summarized in Fig. 4. This explains the
edge modes observed in Sec. II and in Fig. 1, confirming
that these are not fine-tuned features.
One can in principle repeat the above analysis for any

CFT. The necessary information to set up the problem
is the list of possible conformal boundary conditions, as
well as the boundary condition changing operators and
their (boundary) scaling dimensions. Supplemented by the
symmetry properties of these operators, one can study
which boundary RG fixed points are stable and (non)
degenerate.

B. Finite-size splitting: Coupled boundaries

As we argue in the previous subsection, if the Z2-
symmetry flux μðxÞ of the Ising CFT is charged under an
additional symmetry, the boundary spontaneously magnet-
izes. We now investigate the resulting degeneracy and its
finite-size splitting for a finite chain of length L (with
x ∈ ½0; L�). Since the bulk gap vanishes as 1=L, we can
only meaningfully speak of degeneracies whose finite-size
splitting decays faster than this. There are four candidate
degenerate ground states labeled by their boundary mag-
netizations:

j ↑l ↑ri; j ↑l ↓ri; j↓l↑ri; j↓l↓ri: ð11Þ

However, presuming the model under consideration has a
ferromagnetic sign, the antiferromagnetic states in Eq. (11)
are split from the ferromagnetic ones at the scale of 1=L
[65,91]. Intuitively, this is because the edges can sense their
(mis)alignment through the critical bulk. We thus have only
two ground states: j ↑l ↑ri and j↓l↓ri. In fact, within the
CFT, these are exactly degenerate eigenstates. This does
not mean that they have no splitting in realistic systems: By
definition, a CFT has no length scales; hence, the only
quantity with units of energy is 1=L. If we perturb the CFT
with RG-irrelevant perturbations present in any realistic
system, then the twofold degeneracy could be split by the
smaller energy scales of order ξα=L1þα or of order
expð−L=ξÞ (where ξ is a constant with units of length).
As a consistency check, note that in the RG fixed-point
limit, ξ=L → 0, confirming that splittings which are faster
than 1=L are indeed not visible in the CFT.
The purpose of this section is to determine whether

the finite-size splitting of the aforementioned twofold
degeneracy is algebraic or exponential in system size.
This comes down to analyzing the possible perturbations

Spontaneously fixed B.C.

FIG. 4. Topologically protected edge modes in the Ising CFT.
Boundary RG flow for the Ising CFT: Usually the free boundary
condition (B.C.) is stable (when preserving global Z2), but it can
be prevented when μ is charged under additional symmetries.
In that case, the spontaneously fixed boundary condition (with a
global twofold degeneracy) is stable.
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V one can add to the CFT Hamiltonian H ¼ HCFT þ V
mixing j ↑l ↑ri↔ j↓l↓ri. To connect these two states
which break the Ising symmetry, we need to perturb with
the corresponding symmetry flux. Indeed, μðxboundaryÞ is
known to be a boundary-condition-changing (BCC) oper-
ator toggling between the two fixed� boundary conditions
[65,91]. We already established that we cannot add μðxÞ
due to it being charged under an additional symmetry.
However, there is a whole tower of BCC operators: the
descendants of μðxÞ, with scaling dimensionsΔn ¼ 1=2þn
(where n ¼ 1; 2; 3;…). Note that since Δn > 1, these are
RG irrelevant for the (0þ 1)-dimensional edge. This means
they do not affect the analysis in Fig. 4, but they can indeed
contribute to finite-size splitting. Whether it is possible to
add such descendants of μðxÞ depends on the protecting or
enriching symmetry. Determining which descendant—
if any—is allowed, determines whether the splitting is
exponential or algebraic (along with its power), as we
explain now.

1. Exponential splitting

If μðxÞ is charged under a symmetry U which is
associated with gapped degrees of freedom (d.o.f.), then
all its descendants have the same nontrivial charge. To see
this, note that the descendants are created by applying
the local Virasoro generators Ln to μðxÞ, andU acts trivially
on local gapless d.o.f. In conclusion, there is no per-
turbation within the low-energy CFT that can couple
j ↑l ↑ri↔ j↓l↓ri. Any effective interaction must hence
be mediated through gapped d.o.f., which can lead at most
to a finite-size splitting of order exp ð−L=ξÞ. This applies
whenever the protecting symmetry is unitary: The only
unitary symmetry of the Ising CFT is its Z2 symmetry [85],
such that any additional unitary symmetry must be asso-
ciated with gapped d.o.f.. A case in point is the critical
spin-1 XXZ chain, where μðxÞ is charged under Rz (see
Sec. III B). This explains the exponentially localized edge
mode observed in Fig. 1. A similar conclusion was drawn
in the work by Scaffidi et al. [28], where the gapped
degrees of freedom stabilized a spontaneous boundary
magnetization in a critical Ising chain.

2. Algebraic splitting

In case μðxÞ is charged under an antiunitary symmetry T,
then the charge of its descendants can be different. More
generally, if On is the lattice operator for a continuum
operator φðxÞ, then its first descendants can be realized
by ∂xφðxÞ ∼Onþ1 −On and ∂tφðxÞ ∼ i½H;On�. Hence, we
see that ∂xφðxÞ has the same charge under T as φðxÞ,
whereas it is opposite for ∂tφðxÞ. For the boundary operator
μð0Þ, we have only the timelike derivative; i.e., μð0Þ has a
unique first descendant with charge T∂tμð0ÞT ¼ þ∂tμð0Þ.
We are hence allowed to add a perturbation H ¼

HCFT þ λ∂tμð0Þ. Remarkably, however, this descendant
cannot split the twofold ground-state degeneracy. Indeed,

the perturbation disappears after a well-chosen change of
basis:

H ¼ HCFT þ iλ½H; μð0Þ� ¼ e−iλμð0ÞHCFTeiλμð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡H̃CFT

þOðλ2Þ:

ð12Þ
Note that since Tμð0ÞT ¼ −μð0Þ, our rotated Hamiltonian
H̃CFT is still symmetric: TH̃CFTT ¼ H̃CFT. Equation (12)
tells us that the perturbed Hamiltonian H is equivalent to a
Hamiltonian with the same spectrum as the unperturbed
case [plus perturbations given by higher descendants at
order Oðλ2Þ]. In particular, the ground state degeneracy is
not split by the first descendant.
To summarize the above: The zeroth descendant [i.e.,

μð0Þ] was not allowed by symmetry, whereas the sym-
metry-allowed first descendant could be “rotated” away
using the zeroth descendant. Interestingly, this pattern
continues for a while, but not indefinitely. First, it can
be shown that any even descendant is T-odd [93] and is
hence excluded by symmetry. Second, while all odd
descendants are allowed by symmetry, many of them
can be removed by using the fact that even descendants
generate symmetry-preserving rotations. More precisely, if
we denote the number of nth descendants of μð0Þ as Nn
(which have scaling dimension Δn ¼ 1=2þ n), then only
N2mþ1 − N2m descendants [94] at level 2mþ 1 cannot be
rotated away and can hence actually cause a finite-size
splitting. We thus need to determine the smallest odd n such
that Nn > Nn−1. Fortunately, the number of descendants of
μð0Þ can be read off from the (chiral) partition function, i.e.,P

n Nnqn ¼ q−
23
48χ1;2ðqÞ [59], where

q−
23
48χ1;2ðqÞ ¼ ð1þ qþ q2 þ q3

þ 2q4 þ 2q5 þ 3q6 þ 4q7 þ � � �Þ: ð13Þ

We see that N7 − N6 ¼ 4 − 3 ¼ 1, leaving us with a single
symmetry-allowed seventh descendant of μð0Þ, which we
denote by μð7Þð0Þ, that cannot be rotated away. We conclude
that the perturbation V ¼ λ(μð7Þð0Þ þ μð7ÞðLÞ) can split the
degeneracy. Since we need to flip both edges in order to
couple j ↑l ↑ri↔ j↓l↓ri, we have to go to second order in
λ to observe a splitting, i.e., λ2=Lβ. Since this has to have
units of energy, we can conclude that β ¼ 1–2½λ�, where the
unit of λ is ½λ� ¼ 1 − Δ7. In summary, we find an algebraic
splitting with power β ¼ 2Δ7 − 1 ¼ 14.
This remarkably fast algebraic decay can be confirmed in

the spin model H00 ¼−
P

L−1
n¼1ZnZnþ1−

P
L−2
n¼1ZnXnþ1Znþ2

introduced in Sec. II. This fine-tuned model has exact
boundary magnetizations Z1 ¼ �1 ¼ ZL. For this system,

μðxÞ ∼ � � �Xn−2Xn−1YnZnþ1;

∂tμðxÞ ∼ � � �Xn−2Xn−1Xn: ð14Þ
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In particular, we see that ∂tμð0Þ ∼ X1. This operator is
allowed by symmetry but does not contribute to the
splitting, as we discuss above. We consider a dressed
operator X1Z2Z3, which should generically contain all
possible descendants of μð0Þ which are T-even. Our
perturbed Hamiltonian is thus H¼H00 þλðX1Z2Z3þ
ZL−2ZL−1XLÞ. In Fig. 5(a), we see the finite-size splitting
obtained with exact diagonalization for λ ¼ 0.1. The data
are consistent with the CFT prediction of 1=L14. We can
also analytically predict the next-to-leading-order con-
tribution, which arises from acting with the seventh
descendant of μ on one end and with the ninth descendant
on the other, generating a splitting of order 1=LΔ7þΔ9−1 ¼
1=L16. The gap thus scales as 1=L14 þ α=L16, which means
that the effective exponent of the algebraic decay is L
dependent: −d logðgapÞ=d logL ≈ 14þ 2α=L2 for large
L. The numerical data in Fig. 5(b) show perfect agreement
with this formula.
The above focused on the illustrative example of the

Ising CFT, but the principle is much more general. Once
one has studied the boundary RG flow diagram and
concluded the presence of edge modes due to charged
symmetry fluxes (as in Sec. IVA), one can study the finite-
size splitting by determining the dominant symmetry-
allowed BCC operator. In the antiunitary case, one can
use the fact that the contributions of descendants can be
rotated away by other descendants, which applies to any
CFT. One important difference will be the counting
appearing in the tower of states such as in Eq. (13).

V. CLASSIFYING G-ENRICHED CFTS IN 1+ 1D

The previous sections show how a given bulk univer-
sality class (with, in particular, a fixed central charge c) can
split up into distinct classes when additional symmetries are
enforced. The concept of a symmetry flux and its associated

charge allows us to distinguish such symmetry-enriched
CFTs. However, there are various invariants one can
associate with G-symmetric universality classes.

(i) Spontaneously broken symmetries. At the coarsest
level, there is the phenomenon of symmetry
breaking. The invariant this allows us to define is
the subgroup Geff ⊂ G of unbroken symmetries.
In particular, the absence of symmetry breaking
means Geff ¼ G.

(ii) Charges of symmetry fluxes. As we define and
discuss in Sec. III, with any g ∈ Geff we can
associate a symmetry flux Sg. We can measure
the charge of Sg with respect to any other symmetry
h ∈ Geff which commutes with g. The universality
class tells us whether this charge is an invariant of
the phase (e.g., if the space of g-symmetry fluxes is
one dimensional).

(iii) Gapped symmetries. Another robust invariant of the
phase is the list of the unbroken symmetries which
act only on gapped degrees of freedom forming a
subgroup Ggap ⊂ Geff . We refer to symmetries in
Ggap as being gapped. (Note that having a largerGgap

is not necessarily correlated with having a smaller
central charge; it does, however, usually imply that
the critical degrees of freedom are more unstable.)

(iv) Charges of local scaling operators. Lastly, for any
unbroken symmetry g ∈ Geff which is not gapped
(i.e., g ∉ Ggap), we can study the charges of local
low-energy CFT observables under g. Similar to the
charges of symmetry fluxes, these charges can lead
to invariants of the phase (e.g., a unique local
operator with a particular scaling dimension has
an invariant charge). For example, recall the Ising
operator σ from Sec. II that was either real or
imaginary.

For gapped phases, the third and fourth invariants are
trivial (since Ggap ¼ Geff ). Indeed, in most practical cases,
the first two provide a complete classification of gapped
one-dimensional phases protected by an on-site symmetry
group G [1–4]. A natural question is whether the above
invariants are also complete forG-enriched CFTs. We show
that this is the case for the Ising CFT, which we first
illustrate for the symmetry group Z2 × Z2. For Gaussian
CFTs, we give a partial answer, showing that the c ¼ 1
transitions arising between gapped (Z2 × Z2)-symmetric
phases can all be smoothly connected. We also use the latter
case as an instructive example for the more subtle points
encountered in Sec. III, showing that G-CFTs with appa-
rently distinct charges for their symmetry fluxes can be part
of the same G-CFT. In this section, we limit ourselves to
unitary symmetries.
Throughout this section, we discuss the example

G ¼ Z2 × Z2 in the context of a spin-1=2 chain, with
the symmetries realized by the group of π rotations

Rγ ¼
Q

n R
ðnÞ
γ , where

FIG. 5. Finite-size splitting of edge mode in the Ising CFT. If a
unitary symmetry protects the edge mode, finite-size splitting is
exponentially small in system size. For an antiunitary symmetry,
however, the field theory analysis in the main text suggests a
splitting of order 1=L14. (a) We confirm the latter numerically in a
spin-chain model where μ is charged under ZT

2 . Note that for
L ¼ 15, the gap is around machine precision. (b) To separate out
higher-order corrections present in (a), we extrapolate the leading
exponent of 1=L; the data agree with the predicted splitting of
order 1=L14 × ð1þ α=L2Þ.
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RðnÞ
x ¼ X2n−1X2n; RðnÞ

y ¼ Y2n−1Y2n; RðnÞ
z ¼ Z2n−1Z2n:

Note that the way we write these symmetries betrays that

we have fixed a unit cell, such that the RðnÞ
γ symmetries

indeed commute. This property ensures that these operators
define a linear, on-site representation of Z2 × Z2.
In Sec. VA, we recall the six gapped phases that

can occur for this symmetry group, along with solvable
models which are used in the following two subsections. In
Sec. V B, we classify the symmetry-enriched Ising CFTs.
In Sec. V C, we discuss the case of the Gaussian CFT.

A. Gapped bulk

To keep this work self-contained, we briefly review the
gapped phases with this symmetry group. According to the
classification for spin chains with Z2 × Z2 symmetries,
there are exactly two gapped phases where the ground state
preserves the full symmetry group [1–4]. These are the
trivial phase and the topological Haldane phase, which can
be realized in a spin-1=2 chain, respectively, as follows:

H1 ¼
X
n

ðX2n−1X2n þ Y2n−1Y2nÞ;

HHal ¼
X
n

ðX2nX2nþ1 þ Y2nY2nþ1Þ:

For both Hamiltonians, the ground state is a product of
singlets, but forH1 each singlet is within a unit cell, whereas
for the latter, it is across unit cells. The latter is reminiscent of
the ground state of the well-known spin-1 Affleck-Kennedy-
Lieb-Tasaki (AKLT) model; indeed, by introducing a term
that penalizes spin-0 states in each unit cell, HHal can be
adiabatically connected to the AKLT model [9,95] [which in
turn can be connected to the spin-1 Heisenberg chain in
Eq. (1)]. Relatedly, while both models clearly have a unique
ground state for periodic boundary conditions, HHal has a
zero-energy spin-1=2 degree of freedom at each open
boundary. (Note that to keep the on-site representation of
Z2 × Z2 well defined, we can cut the chain only between
unit cells.) These two symmetric phases can be distinguished
by their symmetry fluxes: E.g., for H1 the symmetry flux

of Rx is Sx ¼ � � �Rðn−2Þ
x Rðn−1Þ

x RðnÞ
x , whereas for HHal it is

Sx ¼ � � �Rðn−2Þ
x Rðn−1Þ

x X2n−1. These clearly have different
charges under Ry and Rz.
In addition to these two symmetry-preserving phases,

there are four symmetry-breaking phases (which can be
labeled by Geff ). Three of these preserve a Z2 subgroup
generated by one of the Rγ¼x;y;z:

Hx ¼
X
n

XnXnþ1; Hy ¼
X
n

YnYnþ1; Hz ¼
X
n

ZnZnþ1:

We label these three Ising phases as Ix, Iy, and Iz,
respectively. The fourth breaks the complete Z2 × Z2

symmetry group (i.e., Geff ¼ f1g) and is realized by

H0 ¼ −
X
n

ðX2n−1X2nþ1 þ Y2nY2nþ2Þ: ð15Þ

These six Hamiltonians satisfy a very useful duality pro-
perty: There is a nonlocal change of variables which effec-
tively interchanges Hx↔H1, Hy↔HHal, and Hz↔H0.
We give an explicit lattice construction in Appendix C.
Physically, this transformation can be interpreted as gaug-
ing Rz (while keeping Rx fixed).
Lastly, we note that phases of matter can be stacked. Two

G-symmetric models can be combined into a two-leg
ladder; the new on-site symmetry is simply the tensor
product of the two individual on-site symmetries. One can
then study what phase the stacked model belongs to. E.g.,
stacking the trivial phase onto any other phase leaves the
latter invariant; it acts as the identity element, explaining
our notation H1. Oppositely, stacking any phase onto the
phase that breaks all symmetries remains in the latter phase;
it hence acts as the zero element explaining the label H0

(together with the relations Hal � Hal ¼ 1, Iγ � Hal ¼ Iγ ,
and Iγ � Iγ ¼ Iγ , the Abelian semigroup of Z2 × Z2 phases
is completely specified).

B. Ising criticality (c= 1=2)

Weclassify (Z2 × Z2)-enriched IsingCFTswith a straight-
forward generalization to general symmetry groups G.
This will show that the four invariants mentioned above
form a complete set of invariants for this universality
class. Our principal focus is on symmetry-enriched Ising
CFTs which naturally occur as phase transitions between the
aforementioned gapped phases. Practically, this means that
such Ising CFTs have a single symmetry-allowed bulk
perturbation which can open up a gap (a relevant operator).
I.e., only one parameter needs to be tuned to achieve criti-
cality; such CFTs are said to have codimension one. Ising
CFTs with higher codimension can occur but physically
correspond to accidental criticalities in a phase diagram; we
discuss them at the end of this subsection. Ising CFTs of
codimension one are characterized by having an unbroken
symmetry Z2 ⊂ Geff which anticommutes with the local
Ising scaling operator σ (i.e., this Z2 ⊄ Ggap). Indeed, this
nontrivial charge forbids us from adding σ as a perturbation,
such that there is only one relevant symmetric operator
which can open up a gap (commonly denoted by ε).
We now demonstrate how the four labels we propose

allow us to derive that there are at least nine codimension-
one Ising CFTs; afterward, we confirm that this list is
complete. First, we have to determine the group of
unbroken symmetries. If there is symmetry breaking
at the critical point, we have Geff ≅ Z2 (the symmetry
group cannot be completely broken if we consider a
codimension-one CFT). There are three choices for the
unbroken symmetry Rγ (γ ¼ x, y, z). Note that the
remaining invariants are already determined: σ must be
odd under this remaining symmetry, and a single bosonic
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Z2 on-site symmetry flux cannot be charged under itself,
i.e., χgðgÞ ¼ 1. We can also determine which gapped
phases this CFT can be perturbed into. If we condense σ
(corresponding to perturbing with, say, −ε), we arrive at the
phase breaking all symmetries (labeled by 0), whereas if we
condense μ (perturbing with þε), then we flow to a gapped
phase with a single-Z2 symmetry Rγ, which can be only the
Ising phase Iγ. We use the shorthand notation [0,Iγ] to
denote this transition, which is realized by, for example, the
lattice Hamiltonian H0 þHγ .
If there is no symmetry breaking, then Geff ¼ Z2 × Z2.

We can then continue to determine its gapped subgroup
Ggap. This cannot be empty, since it is known that the Ising
CFT (without gapped degrees of freedom) does not have a
Z2 × Z2 symmetry at low energies [85]. Moreover, Ggap

cannot be the full group if we are to have a codimension-
one Ising CFT. We thus conclude that Ggap ≅ Z2. There are
three choices for this gapped symmetry Rγ (γ ¼ x, y, z).
Note that this implies that σ is odd under the nongapped
symmetries. Physically, one side of the Ising transition—
where we condense σ—is thus the Ising phase Iγ .
The remaining invariant of the G-CFT is the charge
of the symmetry fluxes. These symmetry fluxes determine
the nearby gapped symmetric phase (where μ is con-
densed); hence, we know that there are only two distinct
choices labeled by whether the symmetry flux of Rγ is even
or odd under one of the other symmetries. We thus arrive at
the transitions [1,Iγ] and [Hal,Iγ], respectively; these are
realized by H1 þHγ and HHal þHγ .
These nine distinct symmetry-enriched CFTs are sum-

marized in Fig. 6(a). Three of these, namely, [Hal, Iγ]
(γ ¼ x, y, z), are topologically nontrivial with exponen-
tially localized edge modes. We identify the critical spin-1
XXZ chain in Eq. (1) as being in the class [Hal, Iz].
A priori, it could have been that there are additional
(codimension-one) Ising CFTs which cannot be smoothly

connected to one of these nine, meaning that they would
fall outside our proposed set of invariants. However, one
can prove (see Appendix D) that once one fixes the
unbroken symmetry group Geff and a list of charges for
σ, then any G-enriched Ising CFT can be obtained by
stacking with (and coupling to) a G-symmetric gapped
phase; see Fig. 6(b). Note that the previous list is already
closed under this action—e.g., stacking the Haldane phase
on top of [1, Iγ] gives us [Hal, Iγ]—and is hence complete.
To generalize the above discussion to a general symmetry

group G, note that the first step involves determining the
unbroken symmetry group Geff . The possible choice of
gapped symmetriesGgap is then constrained by ensuring that
our Ising CFT has codimension one. The only remaining
nontrivial labels are the charges of symmetry fluxes, which
can be related to the topological properties of the nearby
gapped phases. Altogether, this straightforwardly leads to a
general classification [which is complete due to the bait-and-
switch lemma; see Fig. 6(b) and Appendix D]:

Classification of symmetry-enriched Ising CFTs of
codimension one for a unitary group G: These CFTs
are labeled by a choice of nested subgroups Ggap ⊂
Geff ⊂ G such thatGeff=Ggap ≅ Z2, and by an element
ω ∈ H2(Geff ;Uð1Þ), i.e., a class of projective repre-
sentations of Geff .

Note that the quotient of unbroken symmetries and
gapped symmetries Geff=Ggap can be identified with the
Z2 symmetry that is intrinsic to the IsingCFT,which ensures
that the CFT has codimension one (note that σ is odd under
any g ∈ Geff −Ggap). The projective class specifies the
symmetry fluxes of Geff such that if we condense μ, we
enter the gapped phase labeled by this projective class. If we
instead condense σ, we break the symmetry group down to
Ggap, with the resulting gapped phase identified by
ωjGgap

∈ H2(Ggap;Uð1Þ). Let us illustrate the above general
classification for G ¼ Z2 × Z2. One choice of nested sub-
groups is Ggap ¼ f1g ⊂ Geff ¼ Z2 ⊂ G ¼ Z2 × Z2, with
three choices for the unbroken symmetryGeff and no choice
for an element in H2(Z2;Uð1Þ) ≅ f1g. The other choice is
Ggap ¼ Z2 ⊂ Geff ¼ G, with three choices for the gapped
symmetryGgap and two choices ofω∈H2(Z2×Z2;Uð1Þ)≅
Z2. We thus recover all 3þ 3 × 2 ¼ 9 distinct (Z2 × Z2)-
enriched Ising CFTs of codimension one.
Let us briefly comment on G-enriched Ising CFTs of

codimension two. These occur if Ggap ¼ Geff , since then
both σ and ε can open up a gap. This is the maximal
codimension. Since such an Ising CFT requires the fine-
tuning of two parameters, it generically appears in two-
dimensional phase diagrams as an isolated point (with a
first-order line emanating from it). The symmetry group
acts only on gapped degrees of freedom, and the latter can
realize any of its phases labeled by a choice ofGeff ⊂ G and
ω ∈ H2(Geff ;Uð1Þ). For Z2 × Z2, there are thus six such

FIG. 6. Classifying (Z2 × Z2)-enriched Ising CFTs. (a) There
are nine distinct Z2 × Z2 Ising CFTs of codimension one coming
in groups of three: One nearby gapped phase is in the trivial or
nontrivial SPT phase or the phase that breaks the full Z2 × Z2;
the other side is an Ising phase preserving a Z2 symmetry Rγ

(γ ¼ x, y, z). All nine can be distinguished by symmetry
properties of local operators and/or symmetry fluxes. (b) To
see that these nine exhaust all options, we prove that all G-
enriched Ising CFTs (Ising G-CFTs, in short) can be obtained by
stacking gapped phases on top of a reference Ising G-CFT; the
latter is chosen to be a transition between the trivial gapped phase
and an Ising phase.
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symmetry-enriched Ising CFTs of codimension two. More
generally, for any CFT, one can consider the symmetry
enrichment where G ¼ Ggap. However, this is not a very
interesting example: It recovers the gapped classification
and the CFT is a mere spectator. In particular, one can apply
the usual mechanism of symmetry fractionalization, imply-
ing that the degeneracies with open boundary conditions
(and their finite-size splitting) exactly coincide with that of
the purely gapped case.

C. Gaussian criticality (c= 1)

There are six gapped phases for (Z2 × Z2)-symmetric
Hamiltonians, and thus, at least ð6

2
Þ ¼ 15 direct transitions

to consider. Six of these are Ising transitions of codimen-
sion one, such that they are indeed neighboring only two
gapped phases; these were considered in Sec. V B and are
all found to be distinct. However, we see that the remaining
direct transitions are Gaussian CFTs (where the central
charge c ¼ 1), but there is no codimension-one Gaussian
CFT with Z2 × Z2 symmetry. As we see, the smallest
codimension is two, and these phases are proximate to
three or four distinct gapped phases. Hence, there are more
than the naive 15 − 6 ¼ 9 remaining direct transitions.
Nevertheless, in this section we see that all of these can be
smoothly connected. In particular, this means that the set of
gapped phases which are proximate to a given (symmetry-
enriched) Gaussian CFT are not an invariant: They can
change when tuning through the moduli space of CFTs.
Relatedly, charge assignments of dominant (local and
nonlocal) scaling operators can change when tuning
through special points of this moduli space. Note that this
phenomenon of level crossing in the universal spectrum is
very particular to CFTs with symmetry-allowed marginal
deformations.
Proving that all these symmetry-enriched Gaussian CFTs

can be connected is somewhat technical—requiring a
certain familiarity with these CFTs—and is explained in
Appendix E 1. In the main text we focus on illustrative
examples which contain all the key ingredients for the
general case: For each of the six aforementioned pairs
of gapped phases, we consider a Gaussian CFT that
separates them. We note that different types of direct
transitions can be realized as direct interpolations between
the fixed-point Hamiltonians introduced in Sec. VA, as
shown in Fig. 7. We first discuss these transitions from the
lattice perspective, which has the benefit of being concrete
and constructive. Afterward, we rephrase it in the field-
theoretic language, which emphasizes the generality of
these examples and makes a direct link with established
CFT methods.

1. A lattice perspective

One generically needs to tune two parameters to find the
direct transitions in Fig. 7, otherwise they split up into two

separate Ising transitions. Relatedly, each of these transi-
tions is proximate to two other gapped phases, which are
not shown. The clearest instance of this is the XY model
HXY ¼ P

nðXnXnþ1 þ YnYnþ1Þ which appears twice in
Fig. 7, once in each panel (red dot); indeed, HXY ¼
Hx þHy ¼ H1 þHHal. If one breaks its U(1) symmetry,
one flows to one of the Ix or Iy phases (left panel). If one
instead dimerizes the chain, one flows to either the trivial or
topological Haldane phase (right panel); see also the
discussion in Sec. VA. To ensure that the CFT has
codimension two, we need the full Z2 × Z2 symmetry to
act nontrivially on the CFT; see Sec. V C 2. In other words,
Geff ¼ Z2 × Z2 and Ggap ¼ f1g. The remaining invariants
which we propose are thus the charges of local operators
and of symmetry fluxes.
At first glance, such charges seem to indicate distinct

Gaussian Z2 × Z2 CFTs. For instance, let us compare the
[Ix, Iy] transition to the [Ix, Iz] transition. The former has a
U(1) symmetry in the x-y plane, and indeed, Xn and Yn
have the same scaling dimension Δθ ¼ 1=4 for HXY,
whereas Zn has Δφ ¼ 1. The roles are reversed in the
latter, where Yn is now the one with larger scaling
dimension. Does this not give us a discrete invariant?
I.e., for HXY we can say that all local operators of
lowest scaling dimension are odd under Rz. This discrete
statement is surely true, but not invariant: The Gaussian
CFT has a marginal tuning parameter that smoothly
connects a whole line of universality classes [59,96].
Indeed, this is well known for the spin-1=2 XXZ
chain H ¼ P

nðXnXnþ1 þ YnYnþ1 þ Δ̃ZnZnþ1Þ, which is
described by a range of Gaussian CFTs for −1 < Δ̃ ≤ 1. As
one tunes Δ̃ from 0 to 1, the scaling dimensions of Xn, Yn,
and Zn smoothly evolve toward the same value (this being
1=2); at Δ̃ ¼ 1, the three operators are related by the SU(2)

FIG. 7. Classifying (Z2 × Z2)-enriched Gaussian CFTs. All
Z2 × Z2 CFTs with c ¼ 1 can be connected (for Ggap ¼ f1g and
Geff ¼ G). The U(1)-symmetric spin-1=2 XY chain appears
in both panels (red dot). (a) The black lines are c ¼ 1 CFTs
whose (dominant) local operators have different symmetry
properties; nevertheless, these operators become degenerate at
the SU(2)-symmetric point, smoothly connecting these c ¼ 1
CFTs. (b) Obtained from the former by a (nonlocal) unitary
transformation which can be interpreted as gauging Rz symmetry.
Two of the three c ¼ 1 lines are described by orbifold CFTs; the
dominant symmetry flux is symmetry-even (Ising2) or symmetry-
odd [ðIsing2Þ�], becoming degenerate at the Kosterlitz-Thouless
(KT) point.
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symmetry of the model. All three [Iγ,Iγ0 ] transitions can
clearly be connected through this point, as shown in Fig. 7.
The takeaway message is that the space of local operators
with smallest scaling dimension can change: This two-
dimensional space becomes part of a larger-dimensional
vector space at the SU(2)-symmetric point. The above
attempt at defining a discrete invariant charge is thus not
well-founded.
The discussion above demonstrates a subtlety in asso-

ciating invariant charges with local observables. Something
similar happens for the charges of symmetry fluxes. To find
a Gaussian CFT whose symmetry fluxes have nontrivial
charge, we need to consider transitions which are not
invariant under stacking with the gapped Haldane phase:
Since the latter comes with charged symmetry fluxes, any
transition that is not affected by this could not have had
well-defined charges for its symmetry fluxes to begin with.
To make clear what we mean, consider [1, Hal], as realized
by the XY chain. At this transition, the two distinct
symmetry fluxes of Rγ for H1 and HHal—as described in
Sec. VA—become scaling operators with the same scaling
dimension Δ ¼ 1=4. We can thus not associate a unique
charge with the symmetry flux of Rγ . This is related to the
fact that ½1;Hal� � Hal ¼ ½1;Hal�, since it would merely
interchange both sides of the transition. Similarly, the
[Iγ ,Iγ0 ] transitions considered above would also absorb
such a SPT phase (since Iγ � Hal ¼ Iγ).
We can, however, find c ¼ 1 transitions which are

(seemingly) not invariant under such a stacking: Con-
sider the transition between the trivial phase and the phase
that completely breaks Z2 × Z2, i.e., [1,0], realized by
H1 þH0. Conceptually, one can think of this as two
separate Ising transitions occurring at the same point.
Indeed, the field theory describing this critical point is
not a usual Gaussian CFT, but rather the direct product of
two Ising CFTs usually denoted by ðIsingÞ2. Accordingly,
each Rγ has a unique symmetry flux and hence a well-
defined charge. For [1,0], these fluxes commute with all
symmetries, whereas for [Hal,0], they anticommute.
Indeed, stacking with the Haldane phase interchanges these
two transitions. However, despite having distinct discrete
charge in these two cases, these models can be smoothly
connected by tuning to H1 þHHal þH0, as shown in
Fig. 7(b). The catch is that at this special point, the space
of symmetry fluxes becomes two dimensional, and the
aforementioned charge is no longer well defined; this arises
naturally from a careful study of the Gaussian universality
class (see Sec. V C 2). Note that the novel phase diagram in
Fig. 7(b) can be obtained from the known phase diagram in
Fig. 7(a) by applying the duality transformation mentioned
in Sec. VA.
In conclusion, all (Z2 × Z2)-enriched CFTs with central

charge c ¼ 1 can be smoothly connected if they are of
codimension two (see Appendix E 1 for further details). For
higher codimension, there are distinct symmetry-enriched

CFTs. Examples have already appeared in the literature
[11,34], and we touch upon this in Sec. VII.

2. A field-theoretic perspective

We now give a field-theoretic interpretation of Fig. 7,
which is complementary to the previous discussion.
Let us recall the compact boson CFT (also known as the

one-component Luttinger liquid), which contains a phase
field θðxÞ and its conjugate field ∂xφðxÞ that generates
shifts in θðxÞ, i.e., ½∂xφðxÞ; θðyÞ� ¼ 2πiδðx − yÞ [59,96].
Both fields are 2π periodic and the Hamiltonian is given by

H ¼ 1

2π

Z �
1

4K
ð∂xφÞ2 þ Kð∂xθÞ2

�
dx: ð16Þ

Here, K is the stiffness or Luttinger liquid parameter
(sometimes one instead speaks of the compactification
radius [97] rc ¼

ffiffiffiffi
K

p
). There is thus a one-parameter family

of compact boson CFTs with a duality K ↔ ð1=4KÞ which
interchanges the two fields. Particularly important are the
primary vertex operators e�iðmφþnθÞ which have scaling
dimension Δm;n ¼ m2K þ n2=ð4KÞ (and conformal spin
sm;n ¼ mn). These vertex operators are local if and only
if n;m ∈ Z.
To see how the Z2 × Z2 symmetry acts in this field

theory, it is useful to use a lattice-continuum corres-
pondence. Let us consider the XY chain HXY ¼
−
P

nðXnXnþ1 þ YnYnþ1Þ: This can be mapped to free
fermions, allowing for a straightforward continuum limit of
the lattice model, which ends up with the compact boson
CFT where K ¼ rc ¼ 1, also called the free Dirac CFT.
This route gives a direct relationship between lattice
operators and operators of the CFT [98–100]. For instance,
the generator of the on-site lattice U(1) symmetry Zn maps
to the generator in the continuum ∂xφ. Similarly useful
correspondences are Xn ∼ cos θ and Yn ∼ sin θ. From such
relations—and from knowing how the symmetries act on
the lattice operators—we can infer that Rx, Ry, and Rz act in
the continuum as

Rx∶
�
φ → −φ;
θ → −θ;

Ry∶
�
φ → −φ;
θ → π − θ;

Rz∶
�
φ → φ;

θ → θ þ π:

ð17Þ

(Note that Rz ¼ RxRy, as required. Moreover, in
Appendix E 1 we show that up to relabeling the CFT
fields, this is the only Z2 × Z2 action on the φ; θ
fields of the compact boson CFT.) Enforcing these
symmetries constrains the possible perturbations of the
CFT. In fact, only two relevant operators commute with
this symmetry, namely, the vertex operators cosð2θÞ and
cosðφÞ with scaling dimension Δ ¼ 1 < 2 at K ¼ 1 [on
the lattice, these correspond to XnXnþ1 − YnYnþ1 and
ð−1ÞnðXnXnþ1 þ YnYnþ1Þ, respectively]. Hence, this
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(Z2 × Z2)-enriched c ¼ 1 CFT has codimension two. For
example, sinð2θÞ—which is also relevant—is odd under Rx
and is thus forbidden [the lattice-continuum correspon-
dence is XnYnþ1 þ YnXnþ1 ∼ sinð2θÞ]. We note that
� cosð2θÞ drives to Ix and Iy, whereas � cosðφÞ drives
to the trivial and Haldane phase; this is consistent with the
red dot in Figs. 7(a) and 7(b).
The above action of Z2 × Z2 is established at K ¼ 1, but

we see that it must continue to hold for any value of K (since
R2
γ ¼ 1). Nevertheless, we obtain other actions when consid-

ering, e.g., a transition [Ix,Iz] instead of [Ix,Iy]. Indeed, for
H ¼ −

P
nðXnXnþ1 þ ZnZnþ1Þ we also arrive at the Dirac

CFTin the continuum limit,wherewenowdenote the fields by
φ̃ and θ̃ to avoid confusion. The lattice-continuum correspon-
dence including Yn ↔ ∂xφ̃ and Zn ↔ sinðθ̃Þ implies

Rx∶
�
φ̃ → −φ̃;
θ̃ → −θ̃;

Ry∶
�
φ̃ → φ̃;

θ̃ → θ̃ þ π;
Rz∶

�
φ̃ → −φ̃;
θ̃ → π − θ̃:

ð18Þ
The same lattice symmetries Rγ¼x;y;z thus act differently in
the low-energy compact boson CFTs for these distinct
transitions, as evidenced by Eqs. (17) and (18). In particular,
this tells us that the local vertex operators of these
CFTs (identified by their scaling dimensions) carry
seemingly distinct charges, as already observed in the previous
subsection.
Nevertheless, these two compact boson CFTs are merely

two extremes of a single unified CFT. To see this, we use that
tuning K preserves criticality. This corresponds to the black
lines in Fig. 7(a) emerging from the phase diagram’s edges.
As K → 1=2, we reach the center of the phase diagram. To
see that the CFTs in terms of φ; θ and φ̃; θ̃ truly coincide at
this point, we use the fact that the self-dual point K ¼ 1=2 is
known to have an emergent SUð2Þ × SUð2Þ symmetry. As
we show in Appendix E 2, this allows us to perform a change
of variables that leaves the action invariant:

∂xθ̃ ¼ −2 cos θ sinφ; ∂xφ̃ ¼ −2 sin θ cosφ: ð19Þ

Note that under this correspondence, Eqs. (17) and (18)
coincide. The identification in Eq. (19) tells us how these
seemingly distinct compact boson CFTs are glued together.
This can also be understood from the fact that atK ¼ 1=2, the
CFT has nine marginal perturbations [96]. Only three of these
are compatible withZ2 × Z2 symmetry, corresponding to the
three gapless lines emanating from this point in Fig. 7(a).
Let us now consider the other c ¼ 1 transitions shown in

Fig. 7(b). As mentioned in the previous subsection, this
phase diagram is obtained from Fig. 7(a) by a nonlocal
change of variables which maps the XY chain to itself (see
Appendix C). In the field theory, this can be interpreted as
gauging Rz, the effect of which depends on how Rz acts on
the fields. If Rz is a subset of the U(1) rotation θ → θ þ α—
as happens for [Ix,Iy] [see Eq. (17)]—then gauging Rz

amounts [101] to rc → 1=rc, or, equivalently, K → 1=K
[96]. This indeed keeps the free Dirac point with K ¼ 1
invariant (the red dots in Fig. 7). The self-dual point
K ¼ 1=2—in the middle of the phase diagram—maps to
K ¼ 2, which is called the Kosterlitz-Thouless (KT) point
since at this point there are no relevant U(1)-symmetric
operators. However, if Rz negates the fields—as happens
for [Ix,Iz] [see Eq. (18)]—then it is known that gauging this
is no longer the usual compact boson CFT. Instead, we
obtain a so-called orbifold CFT (this can also be seen as the
boson CFT compactified on S1=Z2) [96]. In particular, the
free Dirac CFT in Fig. 7(a) maps to a stack of two Ising
CFTs in Fig. 7(b), usually denoted by ðIsingÞ2, which is a
c ¼ 1 orbifold CFT with orbifold radius rorbifold ¼ 1 [96].
This remains critical as one tunes rorbifold → 1=

ffiffiffi
2

p
, reach-

ing the center of the phase diagram. Indeed, it is known that
at the particular value rorbifold ¼ 1=

ffiffiffi
2

p
, the c ¼ 1 orbifold

CFT coincides with the aforementioned KT point of the
compact boson CFT [96]. The interpolation between the
three models H1, HHal, and H0 thus provides a concrete
lattice realization—incidentally solvable by the Bethe
ansatz—of the deep fact that the c ¼ 1 orbifold CFT and
compact boson CFT can be connected by a marginal
perturbation, which in this case also preserves Z2 × Z2.
Lastly, we comment on symmetry fluxes from the

perspective of field theory. For the compact boson CFT,
the space of symmetry fluxes for Rγ is two dimensional.
This is easiest to see for Rz in the case where it acts as
θ → θ þ π [see Eq. (17)]. The two independent fluxes are
then cosðφ=2Þ and sinðφ=2Þ with dimension Δ ¼ K=4 (on
the lattice, these correspond to � � �Zn−2Zn−1Zn with n even
and odd, respectively). The former (latter) is even (odd)
under Rx and Ry. We thus cannot associate a unique charge
with the symmetry flux of Rz. The situation is seemingly
different for the orbifold CFT, which we illustrate for the
ðIsingÞ2CFT as realized by H ¼ H1 þH0 [appearing in
Fig. 7(b)]. Recalling the definition ofH0 in Eq. (15), we see
that if σi denotes the spin operators of the two copies of the
Ising CFT, then σ1 is odd under Ry and Rz (but even under
Rx), and the same is true for σ2 with Rx and Ry inter-
changed. From this, we can infer that the symmetry flux for
Rz is μ1μ2 (with dimension Δ ¼ 1=4). Most importantly,
this is unique. Indeed, its dimension is well separated from
that of ðμ1μ2Þ × ðσ1σ2Þ ∼ ψ1ψ2 for whichΔ ¼ 1 (similarly,
the unique symmetry flux of Rx is μ2 with Δ ¼ 1=8; its
subdominant flux is σ1μ2 with Δ ¼ 1=4). As we discuss in
Sec. III, we can associate charges with unique symmetry
fluxes. For the transition [1,0], it is easy to see that the
symmetry flux of Rz is even under Rx and Ry, whereas for
[Hal,0] it is odd. Hence, the two orbifold lines in Fig. 7(b)
seem topologically distinct. The catch, however, is that
both lines connect to the compact boson line, as we discuss
above. At that point, the scaling dimensions of μ1μ2 and
ψ1ψ2 meet, coinciding with the aforementioned cosðφ=2Þ
and sinðφ=2Þ. Hence, to realize topologically nontrivial
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symmetry-enriched c ¼ 1 CFTs, one either needs to go to
higher codimension or larger symmetry groups; examples
for both are discussed in Sec. VII.

VI. OTHER EXAMPLES IN 1+ 1D

Although the framework we introduce is generally
applicable, we have thus far shown examples only for
symmetry groups Z2 × Z2 and Z2 × ZT

2 . The purpose of
this section is to add two more illustrative examples to this
list: a bosonic Z3 × Z3 and a fermionic Zf

2 × ZT
2 . Various

other symmetry groups will appear in the next section
(Sec. VII on previously studied examples in the literature).

A. Z3 × Z3 example

We consider a one-dimensional chain where each site
consists of a qutrit. For each qutrit, let X and Z denote the
analogs of the Pauli matrices (also known as the clock
matrices):

X ¼

0
B@ 0 1 0

0 0 1

1 0 0

1
CA and Z ¼

0
B@ 1 0 0

0 ω 0

0 0 ω2

1
CA; ð20Þ

where ω ¼ e2πi=3. Note that XZ ¼ ωZX. Subdividing the
chain into two sublattices (labeled A and B), we define the
Hamiltonian

H ¼ ηtrivHtriv þ ηSSBHSSB þ ηSPTHSPT; ð21Þ

where

Htriv ¼ −
X
n

ðXA;n þ XB;nÞ þ H:c:; ð22Þ

HSSB ¼ −
X
n

Z†
B;nZB;nþ1 þ H:c:; ð23Þ

HSPT ¼ −
X
n

ðZ†
B;n−1XA;nZB;n þ ZA;nXB;nZ

†
A;nþ1Þ

þ H:c: ð24Þ

For all parameters, this Hamiltonian has a (Z3 × Z3)-
symmetry group generated by PA ¼ Q

n XA;n and
PB ¼ Q

XB;n. The fixed-point Hamiltonian Htriv has a
product state ground state, whereas HSSB spontaneously
breaks PB such that the remaining symmetry group is Z3

generated by PA. More interestingly, HSPT is a generali-
zation of the cluster model encountered in Sec. II and is one
of the two nontrivial SPT phases protected by Z3 × Z3

[102,103] (the other being given by the site-centered
inversion of HSPT).
We consider only non-negative tuning parameters in

Eq. (21). There are two limiting cases of this model which
have been studied before. First, if ηSPT ¼ 0, then the A sites

remain in a decoupled product state, and the B sites are
described by the three-state Potts chain. In particular, the
transition between the trivial and SSB phase (ηtriv ¼ ηSSB)
is known to be described by the three-state Potts CFT with
central charge c ¼ 4=5 [59,104,105]. Second, if ηSSB ¼ 0,
then we have a direct SPT transition which is known to be
described by an orbifold CFT with central charge c ¼ 8=5
[106]. This gives us two edges of the phase diagram in
Fig. 8(a); we obtain the rest of the phase diagram using
DMRG. We observe that the Potts criticality is stable over a
whole line; this is consistent with the Potts CFT having
only a single relevant perturbation in the presence of Z3

symmetry (in this case being PB, which is spontaneously
broken on one side of the transition). Note that with
periodic boundary conditions, there is a duality [107] that
mirrors the phase diagram (ηtriv ↔ ηSPT); hence, the critical
line between the SPT phase and the SSB phase is also three-
state Potts criticality. Nevertheless, we see that these two
Potts criticalities are distinct symmetry-enriched versions,
the latter being topologically nontrivial.
Let us focus on the symmetry flux for PB. In the trivial

gapped phase, its end-point operator is trivial, whereas in
the gapped SPT phase, we have [108] long-range order in
the string

SB
n ¼ � � �XB;n−2XB;n−1OB

n with OB
n ¼ Z†

A;n: ð25Þ

Since PAOB
nP

†
A ¼ ωOB

n , long-range order in this charged
symmetry flux indeed implies a nontrivial SPT phase.

FIG. 8. (Z3 × Z3)-enriched Potts universality with topological
edge modes. (a) Phase diagram of Eq. (21) with Z3 × Z3

symmetry generated by
Q

n XA;n and
Q

n XB;n obtained with
DMRG. The blue phase spontaneously breaks the latter symmetry.
The two black lines (despite appearances, these are not straight) are
two topologically distinct Potts transitions separated by a CFTwith
central charge c ¼ 8=5. (b) String correlation functions for the red
point in (a) given by ðηtriv; ηSSB; ηSPTÞ ≈ ð0.8; 1; 1.775Þ. The
symmetry flux for

Q
n XA;n has long-range order, whereas the

one for
Q

n XB;n has algebraic decay; their end-point operators are
nontrivially charged under the global symmetries, protecting a
threefold degeneracy with open boundaries (see main text). The
dashed lines are the analytic predictions; the algebraic decay has
dimension Δ ¼ 2=15. Without the charged end-point operator, the
decay is exponential (the black line is multiplied ×10 for
visibility).
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We expect that these symmetry fluxes will still distinguish
the two Potts transitions from the trivial or SPT phase to the
symmetry-breaking phase. In particular, in Fig. 8(b) we
show that at the critical point neighboring the SPT phase,
the charged symmetry flux in Eq. (25) has the slowest
possible decay:Δ ¼ 2=15 is the smallest scaling dimension
of the Potts CFT [59]. If we leave out the charged end-point
operator, the correlation function decays exponentially.
This is in contrast to the vanilla-flavored Potts criticality
between the trivial and symmetry-breaking phases, where it
is the uncharged string that has the slowest possible decay
(Δ ¼ 2=15). Similar to the Ising CFT, the Potts CFT has a
unique nonlocal scaling operator with this dimension [59].
In conclusion, we find two topologically distinct Potts

transitions which are enriched by Z3 × Z3 symmetry; these
are distinguished by the symmetry properties of certain
nonlocal scaling operators. One consequence is that despite
both transitions being a Potts universality with central
charge c ¼ 4=5, they have to be separated by a different
universality class. For instance, in Fig. 8(a) the two phase
transitions meet at a multicritical point with central charge
c ¼ 8=5. Another consequence of this topological invariant
is that with open boundaries, the transition between the
SPT and symmetry-breaking phases host exponentially
localized edge modes, as we explain in Sec. IV.

B. A fermionic example

Thus far, we have discussed examples of bosonic
G-CFTs. However, the concept also applies to fermionic
systems. We illustrate this by reinterpreting the noninter-
acting critical chains of Ref. [33] as Majorana CFTs
enriched by fermionic parity symmetry Zf

2 and spinless
time-reversal symmetry ZT

2 ; this demonstrates that it is
stable to interactions. The nontrivial case hosts zero-energy
Majorana edge modes. (The models we discuss are related
to the spin models encountered in Sec. II by a Jordan-
Wigner transformation; however, since this nonlocal map-
ping changes the physical interpretation, we keep this
section self-contained within the fermionic language.)
We consider spinless fermions fc†n; cmg ¼ δnm, where

spinless time-reversal symmetry T acts in the occupation
basis, i.e., TcnT ¼ cn and Tc†nT ¼ c†n. It is useful to
introduce the basis of Majorana modes γn ¼ c†n þ cn
and γ̃n ¼ iðc†n − cnÞ. We see that TγnT ¼ γn and
Tγ̃nT ¼ −γ̃n. Using these modes, we now define two
critical Majorana chains which are symmetric with respect
to T and fermionic parity symmetry P ¼ Q

Pn [where
Pn ¼ iγ̃nγn ¼ ð1 − 2c†ncnÞ]:

H ¼ i
X
n

γ̃nðγn þ γnþ1Þ;

H00 ¼ i
X
n

γ̃nðγnþ1 þ γnþ2Þ: ð26Þ

These are sketched in Fig. 9 (for a half-infinite chain).
In the bulk, both systems are described by the Majorana
CFT with central charge c ¼ 1=2 [33]. Nevertheless, they
show distinct behavior near their boundaries: H00 has a
dangling Majorana edge mode, as shown in Fig. 9(b).
In Ref. [33], which considered only noninteracting sys-
tems, it was proven that as long as we preserve P and T
symmetry and keep the bulk in the universality class of the
Majorana CFT, then this edge mode remains exponentially
localized, despite the absence of well-defined gapped
degrees of freedom.
We now illustrate how these two models are distin-

guished by the charges of the symmetry fluxes of P.
Interestingly, for fermionic systems it is possible for a
symmetry flux to be charged under itself: The symmetry
flux of fermionic parity can itself be fermionic. Indeed,
both H and H00 have one symmetry flux of P which is odd
under P, and one which is even. The former is the same for
both models, being given by � � �Pn−2Pn−1γn (with scaling
dimension Δ ¼ 1=8) [61]. Physically, this corresponds to
both phases being proximate to the topological Kitaev
phase where this symmetry flux has long-range order. The
symmetry flux of P which is even under P (with the same
scaling dimension) is given by [61]

SP
n ¼ � � �Pn−2Pn−1Pn ðfor HÞ;

SP
n ¼ � � �Pn−2Pn−1ðiγnγnþ1Þ ðfor H00Þ: ð27Þ

(The prefactors of the end-point operators are chosen such
that the symmetry fluxes are Hermitian; see Sec. III.)
We observe that the former is even under T, whereas
the latter is odd under T. This defines a discrete bulk
invariant. Analogous to the discussion in Sec. IV, the
latter protects a Majorana edge mode at each boundary,
giving a global twofold degeneracy with a finite-size
splitting of order 1=L14. Indeed, under a Jordan-Wigner
transformation—which is exact for open boundary
conditions—the models in Eq. (26) are mapped onto the
spin chains in Eq. (6) discussed in Sec. II. It would be
interesting to work out the analogous case for phase

FIG. 9. Examples of (Zf
2 × ZT

2 )-enriched Majorana CFTs. Both
Majorana chains are described by the Majorana CFT (c ¼ 1=2)
but fall into distinct symmetry-enriched classes. (a) For the
standard translation-invariant Majorana chain, the P-even sym-
metry flux of P is even under spinless time-reversal symmetry T.
(b) For this chain, the P-even symmetry flux of P is odd under T;
this protects a Majorana edge mode with finite-size splitting of
order 1=L14 (if the system is noninteracting, the finite-size
splitting is exponentially small).
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transitions between distinct SPT phases in parafermionic
chains [109,110].

VII. APPLICATION TO PREVIOUS WORKS

In this penultimate section, we demonstrate how pre-
vious works on critical systems with edge modes can
be placed into the framework of symmetry-enriched
CFTs proposed in this work. Considering the extent of
the literature on topologically nontrivial gapless phases
[11–36], a complete demonstration would constitute a work
on its own. Here, we limit ourselves to a few (chronologi-
cally ordered) case studies. We point out how these systems
can be interpreted as nontrivial symmetry-enriched CFTs,
for which we identify bulk invariants.
For clarity, let us mention that in 2011 there were several

contemporaneous works discussing algebraically ordered
superconductors with topological edge modes [12–14].
However, these are not examples of edge modes protected
by a symmetry-enriched CFT. This can be seen from the
fact that in these cases, the edge modes have algebraic
finite-size splitting of order 1=Lβ where the power β is
proportional to the Luttinger liquid parameter K. This
means that the edge modes can be destroyed by smoothly
tuning K to a small enough value. Hence, there cannot be a
discrete bulk invariant associated with the c ¼ 1 CFT. This
is consistent with symmetries not being important to
stabilize the edge modes in Refs. [12–14] [aside from
the U(1) symmetry stabilizing criticality].

A. Prediction of a gapless topological Haldane
liquid phase in a one-dimensional cold

polar molecular lattice

In Ref. [11], Kestner et al. introduced a gapless analog
of the spin-1 Haldane phase. Because of the context
of the work (i.e., dipolar gases), long-range interactions
were considered. Nevertheless, a nearest-neighbor model is
straightforward:

H ¼
X
n

½ðSxnSxnþ1 þ SynS
y
nþ1ÞðSzn þ Sznþ1Þ2 þ ΔSznSznþ1�:

ð28Þ

The Hamiltonian looks similar to the spin-1 XXZ chain,
with an extra factor in the spin-hopping term such thatP

nðSznÞ2 is conserved—this makes all the difference. For
0 < Δ < 1, the system is critical with central charge c ¼ 1,
and using the methods of Ref. [11], it can be shown that the
system is topologically nontrivial: There is still long-range
order in the Haldane string order parameter � � �Rz

n−2R
z
n−1S

z
n

and the ground state is twofold degenerate with open
boundary conditions.
We note that this model is an example of a c ¼ 1 CFT

enriched by the Z2 × Z2 group of π rotations Rx, Ry,
and Rz [in fact, the latter symmetry is enhanced to a

full U(1) generated by
P

n ðSznÞ2]. Indeed, the fact that
� � �Rz

n−2R
z
n−1S

z
n has long-range order, tells us, first, that the

symmetry flux of Rz is unique and, second, that it has a
nontrivial charge with respect to Rx and Ry. This thus gives
us a discrete topological invariant for the critical bulk.
In Sec. V C we see that there are no topologically nontrivial
(Z2 × Z2)-enriched CFTs of minimal codimension. Indeed,
Eq. (28) is of higher codimension and is not naturally
interpreted as a critical point between phases with Z2 × Z2

symmetry. However, it is a (Z2 × Z2 × ZT
2 )-enriched CFT

of minimal codimension. More precisely, it occurs as a
direct transition between two gapped phases which are
topologically distinct with respect to Tspin ¼ RyK but
which are topologically identical and nontrivial with
respect to Z2 × Z2. To see this, and to shed light on
the unusual conservation law, it is useful to consider the
unitary U ≡ exp ½iðπ=2ÞPnðSznÞ2�. It can be shown that
this commutes with Rγ¼x;y;z but not with Tspin, i.e.,
UTspinU† ¼ RxK ≠ Tspin. Hence, if HXXZ is the spin-1
XXZ chain, which is nontrivial with respect to π rotations
and time reversal, then UHXXZU† is still nontrivial with
respect to the former, but not the latter. Remarkably, the
model in Eq. (28) is exactly the halfway interpolation
between these two, H ¼ 1

2
ðHXXZ þ UHXXZU†Þ. Indeed,

since U toggles between the two gapped phases, the
transition must occur at the

PðSznÞ2-symmetric point.
Lastly, note that both gapped phases have the same

symmetry flux for Rz (this can hence remain long-range
ordered at criticality) but have distinct symmetry fluxes for
Rx, i.e., � � �Rx

n−2R
x
n−1S

x
n and � � �Rx

n−2R
x
n−1ðSynSzn − SznS

y
nÞ.

At the critical point, these symmetry fluxes for Rx become
algebraically ordered with the same scaling dimension.
They are thus degenerate, but both have the same nontrivial
charges with respect to Ry and Rz, consistent with this
being a nontrivially enriched CFT.

B. Quantum criticality in topological insulators and
superconductors: Emergence of strongly coupled

Majoranas and supersymmetry

One of the phase transitions considered by Grover and
Vishwanath in Ref. [16] is between a topological super-
conductor in class DIII (protected by an antiunitary
symmetry satisfying T2 ¼ P) and an Ising phase which
spontaneously breaks T. It was demonstrated that the edge
flows to an unusual fixed point, exhibiting itself in unusual
fermionic correlations near the boundary (as a function
of time).
We point out that this transition is an Ising CFT enriched

by T and fermionic parity symmetry P. The clearest way of
seeing this is that the symmetry flux of P (which has long-
range order for this bosonic transition) can be shown to be
odd under T. In an approximate converse, the μ operator of
the Ising CFT is odd under fermionic parity symmetry:
PμP ¼ −μ; see Appendix F 1 for details. As we discuss in
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Fig. 4, this nontrivial charge stabilizes the spontaneously
fixed boundary condition. According to the analysis in
Sec. IV, we thus expect that this class of transition generically
has a global twofold degeneracy for open boundaries whose
finite-size splitting is exponentially small in system size.

C. Gapless symmetry-protected topological phase
of fermions in one dimension

In Ref. [19], Keselman and Berg show that spinful
fermions with attractive triplet pairing stabilize a c ¼ 1
CFTwith exponentially localized edge modes protected by
fermionic parity symmetry P [enhanced to a full U(1) in
their particular model] and time-reversal symmetry T
(obeying T2 ¼ P). In addition to a field-theoretic analysis,
this is numerically demonstrated in a simple lattice model:

H ¼ −
X
n;σ

ðc†n;σcnþ1;σ þ H:c:Þ þU
X
n

Δ†
nΔn; ð29Þ

where σ ∈ f↑;↓g and Δn ¼ cn;↑cnþ1;↓ þ cn;↓cnþ1;↑ [on
the lattice, the symmetries are given by P ¼ Q

j Pj where

Pj ¼ eiπðnj;↑þnj;↓Þ and T ¼ Q
j e

iπSyjK with Syj ¼ ði=2Þ×
ðc†j;↓cj;↑ − c†j;↑cj;↓Þ]. For U < 0, the spin sector is gapped,
whereas charges remain gapless. The stability of the
edge mode was argued to be a consequence of the gap
to single-fermion excitations (which moreover implies that
the phenomenon persists upon adding spin-orbit coupling).
Moreover, in Ref. [19] it was shown that fermionic parity
symmetry anticommutes with T near the edges, implying
edge modes.
We remark that this c ¼ 1 CFT is nontrivially enriched

by P and T. We find that for U < 0, the symmetry flux
of P has long-range order and is given by SP

j ¼
� � �Pj−2Pj−1ðnj;↑ − nj;↓Þ, which obeys TSPT−1 ¼ −SP.
See Appendix F 2 for numerical details. This generalizes
the observation of Ref. [19] that P and T anticommute near
the boundary to a topological invariant in the bulk. This
moreover confirms that the phase is protected by virtue of P
being a gapped symmetry. The fact that the nontrivial
symmetry flux is for a gapped symmetry is naturally related
to the exponentially small finite-size splitting observed
in Ref. [19].

D. Gapless symmetry-protected topological order

In Refs. [28,34], Scaffidi et al. extended the well-known
mechanism of creating gapped SPT phases by decorating
domain walls [111] to critical systems. The idea is
illustrated straightforwardly with an example (their mecha-
nism also applies to higher dimensions, but here we limit
ourselves to one dimension). Let U be the unitary which
maps the gapped Z2 × Z2 paramagnet to the (Z2 × Z2)-
SPT phase. As a starting point, take a HamiltonianH which
consists of trivial gapped degrees of freedom decoupled

from a critical bulk; moreover, presume that one of the
Z2 ⊂ Z2 × Z2 acts only on the former gapped chain. The
claim is then that UHU†, which is clearly still critical, is
topologically nontrivial. This was diagnosed in terms of
edge properties. In particular, in the above case, the ground
state will be twofold degenerate for open boundary con-
ditions (with exponentially small finite-size splitting).
Through a combination of perturbative arguments and
numerical calculations, this topological phenomenon was
shown to be stable.
The above procedure, which can be applied for any

symmetry group G, indeed creates nontrivial G-enriched
CFTs. This can be seen from the perspective of symmetry
fluxes: By construction, part of the symmetry group will
be gapped, which ensures that the associated symmetry
fluxes are unique. This means that the nontrivial charge
endowed by the SPT entangler U will be a well-defined
topological invariant, even at criticality, as we discuss in
Sec. III. Using the boundary RG analysis of Sec. IV, this
nontrivial symmetry flux can be used to argue the presence
of edge modes. The notion of charged symmetry flux thus
gives a topological bulk invariant for the cases studied in
Refs. [28,34]. We note that the presence of gapped degrees
of freedom is not essential to make domain-wall decoration
work at criticality (which goes beyond the scope of
Ref. [28]): The models H and H00 in Sec. II are related
by the SPT entangler U ¼ Q

nðCZÞn;nþ1; in this case, we
find the finite-size splitting to be algebraic.
The one-dimensional system which Ref. [28] focuses on

is the cluster SPT model with an Ising coupling which
preserves Z2 × Z2 symmetry. We identify its bulk topo-
logical invariant in Appendix F 3. We note that Ref. [28]
also presented a 2þ 1d example, which we revisit in
Sec. VIII where we generalize our topological invariants
to higher dimensions.

E. Topology and edge modes in quantum
critical chains

In Ref. [33], a subset of the current authors showed that
exponentially localized edge modes can exist in critical
systems without gapped degrees of freedom. This work was
restricted to noninteracting fermions, where arbitrary mod-
els with fermionic parity symmetry P and spinless time-
reversal symmetry T (T2 ¼ 1)—realizing the so-called BDI
class—could be described in terms of a complex function
fðzÞ. The number of roots of this function on the unit circle
tells us the central charge of the bulk CFT. The number (and
norm) of roots strictly within the unit disk tell us about the
number of topological edge modes (and their individual
localization lengths). In particular, this shows that in this
noninteracting setup, one can have edge modes for an
arbitrary (half-integer) central charge c.
These critical systems can indeed be seen as CFTs

enriched by P and T symmetry. Since there are no addi-
tional gapped degrees of freedom, all symmetry fluxes are
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algebraic. Nevertheless, these can still have nontrivial
charges. In particular, as we show in Sec. III, the Ising
CFT (c ¼ 1=2) has unique symmetry fluxes. And indeed,
as we discuss in Sec. VI B, this allows us to extend some of
the nontrivial CFTs considered in Ref. [33] to the interact-
ing case, where the finite-size splitting becomes algebraic,
scaling as 1=L14 (the algebraic splitting does not show up in
the noninteracting limit since the descendant responsible
for the splitting is intrinsically interacting). For more
general CFTs (c ≥ 1), a case-by-case study is necessary:
Some remain nontrivial with interactions, while others do
not; this can be determined by examining the symmetry
action on the higher-dimensional space of symmetry fluxes.
We leave an exhaustive discussion of these more general
situations to future work.

VIII. ON TWISTED SECTORS
AND HIGHER DIMENSIONS

Thus far, we have discussed topological invariants and
edge modes in one-dimensional critical systems in great
detail. The purpose of this last section is to give some
higher-dimensional generalizations. A complete characteri-
zation of gapless topological phases is a challenging
endeavor, since—as we will argue—it would require the
knowledge of topological defects in conformal field the-
ories, which in higher dimensions is itself a nascent field
with a great promise for rich physics [112–125]. We first
give an equivalent reformulation of our one-dimensional
invariant (restricted to unitary symmetry groups) in
Sec. VIII A, which is then extended to higher dimensions
in Sec. VIII B.

A. Reformulation in terms of twisted sectors

Let us first explain why a reformulation is natural when
trying to generalize to higher dimensions. In Sec. III,
topological invariants at criticality are defined in terms of
the symmetry charges of (slowest-decaying) string oper-
ators. Since these strings consist of a symmetry

Q
n Un, one

possible generalization to 2D would be to consider mem-
brane operators corresponding to a symmetry

Q
m;n Um;n.

One could thus attempt to define a “slowest-decaying”
membrane operator and study its symmetry properties.
However, this is a less natural object to define and study
than in 1D since the boundary of an L × L membrane
grows like L. This means that generically the expectation
value of the membrane operator will decay exponentially in
both the gapped [126] and gapless case [127,128], making
the notion of slowest decaying less practical and straight-
forward compared to 1D.
Fortunately, we can avoid this subtlety by instead

working with static or external symmetry defects, which
are more natural objects in CFTs (in arbitrary dimensions).
In 1D, this will turn out to be equivalent to what we
have already discussed. To define a symmetry defect (or

equivalently, symmetry twist) in 1D, consider a local
Hamiltonian H ¼ P

n hn and an on-site unitary symmetry
Ug ¼ Q

n U
g
n (i.e., UghnUg† ¼ hn). A system with a g

defect or twist at site n0 in an infinite chain is defined as
the Hamiltonian Htwist ≔ Vn0HV†

n0 with Vn0 ¼
Q

n≤n0 U
g
n.

Crucially, since H is local and symmetric, Htwist differs
fromH only near the defect n ≈ n0. (See also the discussion
in Ref. [77].) This thus also defines a g defect for a finite
system on a ring (as long as the system size is larger than
the support or range of the terms in the Hamiltonian). One
can refer to Htwist as the twisted sector, since a periodic
system with a g defect can be interpreted as having a
boundary condition which has been twisted by g.
A key claim is that the topological invariant which

we define in Sec. III, i.e., the charge under Uh of the
symmetry flux Sg associated with Ug is identical to the
charge under Uh of the ground state of the g-twisted
sector Htwist (reminder: we take g; h ∈ G to be two
commuting symmetries). Indeed, this is a direct conse-
quence of the operator-state correspondence. To see this,
note that this correspondence, which involves conformally
mapping the (punctured) plane to the spacetime cylinder
[59,129], relates the scaling dimensions of local operators
to the finite-size energy spectrum on a circle [59]. Similarly,
as illustrated in Fig. 10, scaling dimensions of nonlocal
string operators whose string consists of a symmetry
operator are in 1-to-1 correspondence with the finite-size
energy spectrum on a circle with a twisted boundary
condition, i.e., the spectrum of Htwist. In particular, the
leading scaling dimension (i.e., the slowest-decaying string
operator) then naturally corresponds to the ground state of
Htwist. The claimed identification of their charges thus
follows. Note that the symmetry twist on a ring can
equivalently be interpreted as threading a flux through
the ring; this explains our nomenclature of symmetry flux
in Sec. III. Indeed, in the case of gapped SPT phases it is
well known that SPT invariants are encoded in the charges
attached to external fluxes [5,6,57,58,73–82].
Let us illustrate this equivalence for the cluster model

with a single-sublattice Ising coupling [28]:

H ¼ −
X
n

ðZA;nXB;nZA;nþ1 þ ZB;n−1XA;nZB;nÞ

− J
X
n

ZA;nZA;nþ1: ð30Þ

This has a Z2 × Z2 symmetry generated by PA ¼ Q
n XA;n

and PB ¼ Q
n XB;n. Reference [28] showed that the edges

mode of the cluster SPT phase (jJj < 1) persist at the Ising
critical point at jJj ¼ 1 (beyond which there is a phase that
spontaneously breaks PA), although no bulk invariant was
identified. Using the methods introduced in Sec. III, one
can straightforwardly derive a bulk topological invariant for
these two cases (i.e., jJj ≤ 1): We find that the symmetry
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flux of PA is odd under PB (and vice versa); the derivation
can be found in Appendix F 3.
We now demonstrate how to obtain the same nontrivial

invariant using symmetry twists. Twisting Eq. (30) by PA
gives us

Htwist ¼ −
X
n

ð−1Þδn;n0ZA;nðXB;n þ JÞZA;nþ1

−
X
n

ZB;n−1XA;nZB;n: ð31Þ

Note that ZA;nXB;nZA;nþ1 is a local integral of motion.
We thus read off that the ground state is in the sector
ZA;nXB;nZA;nþ1 ¼ ð−1Þδn;n0 implying a quantum number

PB ¼
Y
n

XB;n ¼
Y
n

ZA;nXB;nZA;nþ1 ¼ −1: ð32Þ

This is in contrast to a trivial decoupled case [for instance,
a unitary mapping can disentangle Eq. (30) into H ¼
−
P

n ðXA;n þ XB;n þ JZA;nZA;nþ1Þ], where the ground
state in the PA-twisted sector satisfies PB ¼ þ1. These
quantum numbers are robust invariants on the condition
that level crossings are not possible without leaving the

phase. For a gapped symmetric phase, this follows from
having a unique ground state in the twisted sector (this
property in turn follows from symmetry fractionalization).
For a CFT, the noncrossing follows from the low-energy
spectrum being universal [130]. E.g., for the Ising criticality
under consideration, for asymptotically large system sizes
the finite-size energy gap in the twisted sector can be
related (by the operator-state correspondence) to the differ-
ence in scaling dimension between the disorder operator
(Δμ ¼ 1=8) and the fermion (Δψ ¼ 1=2), preventing a
crossing [see, e.g., Eq. (7.25) in Ref. [96] ]. We thus arrive
at a nontrivial topological invariant for jJj ¼ 1. In contrast,
in the Ising phase (jJj > 1) the ground-state manifold of the
twisted sector is extensively degenerate and not universal;
this can be understood by noting that it traps a domain wall
whose energy (relative to the untwisted sector) becomes
infinite when flowing to an RG fixed point. Thus, in the
symmetry-breaking case, it does not provide an invariant
[e.g.,H ¼ −

P
n ½ZA;nZA;nþ1 þ XB;nð1 − λþ λZA;nZA;nþ1Þ�

is in an Ising phase for all λ, but the PA-twisted sector has a
crossing at λ ¼ 1=2 where its PB charge swaps].

B. Generalizations to two dimensions

The idea that charges of twisted sectors provide topo-
logical invariants naturally generalizes to arbitrary dimen-
sions, as has already been well explored in the gapped case
[5,6,57,58,73–82]. First, the notion of the symmetry twist
or defect is entirely analogous to what we see in 1D:
Consider a local Hamiltonian H which is periodic along,
say, the y direction, and infinite along x. If Ug ¼ Q

x;y U
g
x;y

is an on-site unitary symmetry, then its twist along
the y direction is defined as Htwist ≔ Vx0HV†

x0 with Vx0 ¼Q
x≤x0

Q
y Ux;y. Because of Ug being a symmetry and H

being local, we see thatHtwist differs only fromH for terms
x ≈ x0. Hence, this also defines the meaning of a symmetry
twist on a torus geometry (even though in that case,Htwist is
not necessarily unitarily equivalent to H).
In 2D, if we have two defect lines (say, aUg twist in the x

direction and a Uh twist in the y direction), then their
intersection is a point in space, and it is thus natural to
measure “its” charge (i.e., the charge of the ground state in
this twisted sector) with respect to a third symmetry.
For gapped symmetric phases of matter, the ground state
in the twisted sector is unique (indeed, symmetry fraction-
alization implies that the twisted sector is unitarily equiv-
alent to the untwisted sector, and the latter is gapped by
definition) such that its charge is a quantized topological
invariant. Our contribution is to point out that this can also
work for symmetry-preserving gapless systems: The low-
energy spectrum (be it in a twisted sector or not) is
universal, which in particular means that there can be no
level crossings (except for the case where there are
marginal operators, whose existence is known for a typical
CFT). Hence, the charge of the ground state(s) in twisted

FIG. 10. Operator-state correspondence for symmetry fluxes.
(a) The black wiggly line represents a two-point function of a
symmetry flux operator Sg as defined in Sec. III. The red dashed
lines represent a commuting symmetry Uh; the figure shows how
UhSgUh† can be represented in spacetime as Sg with a Uh loop
wrapped around its end point. (b) The first equality is simply the
definition of the charge χgðhÞ of the symmetry flux, as defined in
Sec. III. For operator-state correspondence [59], we perform
radial quantization (i.e., the new time τ runs radially; the blue
dotted line is a spatial slice); by conformally mapping the plane to
the cylinder, the operator Sg acts at τ ¼ −∞, such that on the
dashed line we have a state denoted by jSgi, which is defined for
g-twisted boundary conditions. Because of the symmetry flux
being the slowest decaying string operator, jSgi is the ground
state of the twisted sector. We see that UhjSgi ¼ χgðhÞjSgi, i.e.,
χgðhÞ can be obtained by considering a lattice model with g-
twisted boundary conditions and measuring the h charge of its
ground state.
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sectors can serve as a topological invariant for gapless
systems.
We note that the low-energy spectrum for 2þ 1D

CFTs has been studied before on a torus geometry where
the claim of universality was numerically confirmed
[131–135]. We are not aware of similar numerical explora-
tions for the case with a symmetry twist (although an
epsilon expansion was studied in Ref. [133]), but it is a
natural extension; in particular, the symmetry twist is
expected to flow to a conformal defect of the CFT. We
numerically confirm this for the transverse-field Ising
modelH ¼ −

P
hn;mi ZnZm þ g

P
n Xn; we set g to achieve

2þ 1d Ising criticality, whose value is known for a variety
of lattices [136]. In Ref. [131], the universal finite-size
spectrum on a torus geometry was studied. In the present
work, we rescale the spectrum such that the finite-size gap
(in this untwisted sector) is asymptotically E1 − E0 ∼ 1=L.
We can now twist one of the periodic directions with the Z2

symmetry (this involves flipping the sign of ZnZm on
certain bonds). In Fig. 11(a), we show the finite-size energy
gap in this twisted sector for the square, triangular, and
honeycomb lattices. First, up to a global prefactor of 1=L,
we observe that the gap tends to a finite value; i.e., the
ground state is unique also in the twisted sector. Second, its
asymptotic value coincides for the triangular and honey-
comb lattices: This confirms our claim of universality

(since in the scaling limit, only the information of the
modular parameter remains, which for both lattices is
τ ¼ eπi=3). In Fig. 11(b), we confirm that the universality
also appears for the cylinder geometry. Hence, as we
explain above, the charge of its ground state can serve
as a robust topological invariant, as we illustrate in the next
subsection.
In fact, one can argue that the following stronger

property holds: a conformal symmetry defect or twist is
automatically also a topological defect [137]; i.e., the
universal finite-size energy spectrum is independent of
deformations of the line defect. This property is not needed
to define the topological invariant, but it is key in arguing
that a nontrivial value of the invariant implies edge modes,
as we discuss in Sec. VIII B 2.

1. Examples in 2D

Let us illustrate the above 2D topological invariant in a
variety of examples. For simplicity, all of these will focus
on the symmetry group Z2 × Z2 × Z2. As a natural setting
for this symmetry, we consider the triangular lattice with
the three sublattices shown in Fig. 12(a); for each sub-
lattice, we define the Z2-symmetry operator Pλ ¼

Q
n Xλ;n

with λ ¼ A, B, C. For any symmetric Hamiltonian H, we
can twist by PA and PB along the two dashed lines in
Fig. 12(a), leading to Htwist. If the ground state of Htwist is
unique, it must have a well-defined charge under PC,
providing a topological invariant [138]. This can also apply
in the case of degeneracy, e.g., if all ground states have the
same charge under PC.
Before we discuss examples of concrete Hamiltonians

H satisfying the above condition, let us note that topo-
logical invariants are interesting only if we can also
realize a phase with a different value of the invariant.
Fortunately, we have a general result to this end: defi-
ning the SPT entangler U2D ¼ Q

△ CCZ (applying the
control-control-Z gate [this three-site gate is defined as

FIG. 11. Symmetry defect in the 2þ 1D Ising CFT. We
consider the critical ferromagnetic Ising model in a transverse
field on the square, triangular, and honeycomb lattices, respec-
tively, denoted by (blue) squares, (red) triangles, and (white)
hexagons. (a) The bottom curve shows the finite-size energy gap
for periodic boundary conditions (i.e., the torus); since this is a
CFT, E1 − E0 ∼ Δ=

ffiffiffiffi
N

p
(for total number of sites N ¼ L × L).

For each lattice, we rescale the y axis such that the extrapolated
prefactor Δ is unity. The other data are for a torus twisted by the
Z2 symmetry of the Ising model; again we extract the finite-size
energy gap in this twisted sector. With the aforementioned
rescaled y axis, we find the universal y intercepts approximately
equal to 2.4 (for square lattice, i.e., modular parameter τ ¼ eiπ=2)
and 2.5 (for triangular and honeycomb lattices, i.e., τ ¼ eiπ=3).
(b) Similar setup for the cylinder geometry (i.e., open in one
direction, periodic in the other). Here too we find that the twisted
sector has a unique ground state with the finite-size energy
splitting in this rescaled y axis giving the universal intercepts
approximately equal to 1.6 (for τ ¼ eiπ=2) and 1.5 (for τ ¼ eiπ=3).

FIG. 12. Triangular lattice, twists, and the Yoshida SPT model.
(a) The triangular lattice with A (green), B (red), and C (blue)
sublattices. The dashed lines denote possible ways of twisting by
PA and PB symmetry (e.g., the latter corresponds to conjugating
H by

Q
XB;n on the shaded red area). (b) An elementary term in

the Yoshida SPT model protected by Z3
2 symmetry; the wiggly

line represents a product of control-Z gates.
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CCZjσ1σ2σ3i ¼ ð−1Þδσ1σ2σ3 ;↑↑↑ jσ1σ2σ3i] on every triangle
of the triangular lattice), we derive the following in
Appendix G.

Different topological invariants in 2D.—Let H be a
(gapped or gapless) model on the triangular lattice
commuting with PA, PB, and PC, and suppose it has a
well-defined topological invariant as described above
(e.g., all ground states in the twisted sector have the
same PC charge). Then H and H0 ≔ U2DHU†

2D have
distinct topological invariants. More precisely, ifHtwist
is defined as above, then its ground-state charge under
PC is opposite that of ðH0Þtwist.

The simplest example is the trivial gapped paramagnet, e.g.,
H ¼ −

P
n ðXA;n þ XB;n þ XC;nÞ. In this case, Htwist ¼ H,

such that we read off that the ground-state charge is PC ¼ 1

(since XC;n ¼ 1). The SPT-entangled Hamiltonian H0 ¼
U2DHU†

2D is Yoshida’s Z3
2 SPT model [139,140]. The terms

inH0 are of the formU2DXλ;nU
†
2D ¼ Xλ;n ×

Q
hex CZ where

the product runs around the six neighboring sites as shown in
Fig. 12(b). By the above general result, we see that in the
twisted sector of the Yoshida model, the ground-state charge
is PC ¼ −1, giving a nontrivial value of the topological
invariant. (This particular case is calculated explicitly in
Appendix G 1.) This confirms that these two models cannot
be adiabatically connected while preserving the symmetry
and the universality class (in this case, the finite-energy gap).
Note that we even obtain a stronger condition: Any critical
point between the trivial and nontrivial SPT phase must have
a degeneracy in the twisted sector (labeled by opposite
charges PC ¼ �1).
Let us discuss topological invariants in gapless exam-

ples. First note that in the above gapped example, to derive
PC ¼ 1 (for the twisted sector) we do not actually use that
PA and PB are gapped symmetries (i.e., that the A and B
degrees of freedom are gapped). The argument relied only
on H not coupling the sublattices. Hence, the same con-
clusion follows as long as at least one of the three
symmetries is gapped; without loss of generality, let this
be PC. In particular, let H ¼ HC þHAB with HC ¼
−
P

n XC;n and HAB an arbitrary (symmetry-preserving)
Hamiltonian on the A and B sublattices. Twisting by PA and
PB will clearly not affect the C degrees of freedom, such
that the ground state satisfies Xn ¼ þ1 and thus PC ¼ 1 in
the twisted sector. Note that the ground-state subspace is
not necessarily unique: Twisting by PA and PB could
introduce a degeneracy, but this argument shows that
PC ¼ 1 for all ground states. This charge acts as a
topological invariant, with H0 ¼ U2DHU†

2D giving a model
with PC ¼ −1. Let us stress that although we obtain the
invariant in a fine-tuned limit where the C sites satisfy
XC;n ¼ 1, by virtue of universality the resulting topological
invariant is well defined and robust as long as one does not
leave the universality class.

This simple insight applies to a whole array of examples,
including the 2D example discussed by Scaffidi et al. [28]
whereH is decoupled such that the A sites formed a gapless
U(1) spin liquid and the B and C sites were gapped. In that
work, it was demonstrated that H0 ¼ U2DHU†

2D has topo-
logically protected edge excitations. Here, we derive a bulk
topological invariant distinguishing the models H and H0
studied in Ref. [28]. The invariant is well defined by virtue
of having a gapped sector; it is not sensitive to the particular
choice of gapless degrees of freedom. Another interesting
by-product is that any continuous phase transition between
the trivial phase and the Z3

2 SPT phase must necessarily be
gapless for all three symmetries (otherwise, its remaining
gapped degrees of freedom would remember the topologi-
cal invariant, preventing the required self-duality of a SPT
transition).
Our topological invariant can also apply to systems with

no gapped symmetries. As a concrete example, let us
consider Ising3 ¼ Ising × Ising × Ising criticality, where
we define H as having a copy of the critical Ising model
on each of the three sublattices of the triangular lattice.
Twisting by PA and PB again does not affect the C sites.
From Ref. [131], we learn that the ground state of the
critical Ising model on the torus is unique and satisfies
PC ¼ 1. We can thus already conclude that H has a well-
defined topological invariant, with all the ground states in
the twisted sector satisfying PC ¼ 1. In fact, from Fig. 11
we see that this ground state is unique (although this is
strictly speaking not necessary to have a well-defined
invariant). Using our general result above, we see that
H0 ¼ U2DHU†

2D gives a version of the Ising3 criticality
which has the opposite invariant PC ¼ −1 in the twisted
sector. As long as one preserves Ising3 criticality, these
two symmetry-enriched versions cannot be connected.
Moreover, as we see in the next subsection, H0 must host
nontrivial edge phenomena, which are protected by this
bulk topological invariant.
The above Ising3 example is a good proof of principle for

the existence of topologically distinct symmetry-enriched
versions of the same universality class (even in the absence
of gapped degrees of freedom). However, to some extent
the example is academic in nature: If one does not enforce
the Ising3 criticality by hand, then energy-energy pertur-
bations between the distinct sublattices are expected to
trigger a flow to O(3) criticality with cubic anisotropy
[141]; see also Refs. [142–146]. Fortunately, our general
result above still applies: If the O(3) criticality has the
property that all ground states in the sector twisted by PA
and PB have the same PC charge (in particular, it is
sufficient to show that the ground state in the twisted
sector is unique), then the SPT entangler U2D gives a
topologically nontrivial version of O(3) criticality [this
reasoning applies to both the standard O(3) fixed point
as well as its cubic perturbation]. While we expect this
property of O(3) criticality to hold, its numerical
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confirmation goes beyond the scope of the present work
such that we leave it to future studies. Moreover, it could be
explored via ε expansion using the methods of Ref. [133].
If true, this means that the two O(3) critical lines that
appeared in Ref. [147] are in fact topologically distinct and
must be separated by a multicritical point where the twisted
sector becomes degenerate. (The particular model studied
in Ref. [147] instead has an intermediate symmetry-break-
ing phase, suggesting that such a multicritical point
requires more fine-tuning.)

2. Implications for the edge

In this last section, we sketch an argument for why a
nontrivial value of the topological invariant (i.e., the charge
in the twisted sector is different from the untwisted case)
implies a nontrivial boundary theory. This generalizes the
bulk-boundary correspondence to cases with a gapless
bulk. The idea is to consider the above charge not as a
property of the system as whole, but rather as being
associated with the intersection of two symmetry defects.
This intuitive idea is consistent with two facts: First, as we
discuss above, the symmetry defect is actually topological,
which means the charge is unchanged when we arbitrarily
deform the defect lines, and second, if one repeats the
above arguments and calculations for nonintersecting
defect lines, one finds that the charge remains trivial;
i.e., the presence of intersecting defects is crucial in the
examples we discuss.
Using this basic idea, one can infer a nontrivial constraint

on the edge theory. Indeed, for a closed spatial manifold—
like the torus considered above—the intersection cannot be
removed by deforming the defect lines. In contrast, for a
manifold with a boundary, such intersections can be
undone. For concreteness, let us consider the situation in
Fig. 13(a), where the bulk has two intersecting symmetry
defects. If the boundary theory also preserves the sym-
metries, then the defects are topological both in the bulk
and the boundary, such that we can freely move the defect
lines. In particular, nothing prevents us from sliding the

intersection upward, such that it eventually disappears as in
Fig. 13(b). We end up with an apparent paradox if the
original intersection carried a nontrivial charge, since
the final configuration has no more intersection to host a
nontrivial charge (seemingly violating the topological
nature of these defects). The resolution is that the localized
points where the symmetry defect intersects the boundary
must themselves be nontrivial. In particular, if these
localized points carry a degeneracy with opposite charges,
then it can freely absorb the bulk topological invariant
without causing an inconsistency. Note that this nontrivial
property excludes a trivial boundary condition.
Let us illustrate this for the Ising3 CFT discussed in

Sec. VIII B 1. For the nontopological case of three
decoupled copies of the Ising CFT on each of the three
sublattices of the triangular lattice, we find that the
intersection of the PA and PB symmetry defects hosts a
trivial charge PC ¼ 1. In this case, one can freely slide
off the intersection without obtaining a condition on the
boundary theory. In contrast, for the SPT-entangled
version, we find a charge PC ¼ −1. Hence, the above
argument implies that either the boundary spontaneously
breaks PA or PB, or where the PA (or PB) defect intersects
the boundary it must host a degeneracy with charges
PC ¼ �1. This excludes the free boundary condition:
Fig. 11(b) shows that an Ising CFTwith a symmetry defect
intersecting the free boundary condition has a unique
ground state. We thus conclude that the topologically
nontrivial Z3

2-enriched Ising3 CFT cannot have a free
boundary condition. Possible alternatives are symmetry-
breaking or fine-tuned gapless edges; we leave a study of
concrete lattice models to future work. Note that a trivial
Ising CFT can also have a symmetry-breaking edge,
but in that case, one can drive a boundary phase transition
into a free boundary condition: Here that is impossible
without also driving the bulk into a different universal-
ity class.

IX. OUTLOOK

Similar to how gapped degrees of freedom can realize a
multitude of distinct phases of matter in the presence of a
global symmetry G [1–4], a given universality class has
many distinct symmetry-enriched versions. This forms the
concept of G-enriched quantum criticality. We introduce
various invariants to characterize this, the crucial one being
the symmetry flux associated with a global symmetry in the
1D case. In the simplest case, this has a well-defined charge
which then serves as a topological invariant. We relate this
to the presence of edge modes, whose finite-size splitting
depends on whether the flux is charged under a gapped
symmetry. A particularly novel aspect to come out is that
the Ising CFTenriched by an antiunitary symmetry can host
an edge mode whose finite-size splitting scales as 1=L14.
The aforementioned invariants also allow us to broach the
classification of G-CFTs, giving a complete picture for the

(a) (b)

FIG. 13. Edge modes from 2D topological invariant. (a) We
start with two intersecting symmetry defects (red and green
dashed lines) in a system with a boundary (solid gray line). (b) If
the boundary is symmetry preserving, the defect is topological
and can be moved upward such that the intersection can be “slid
off” the system. If the intersection carried a nontrivial charge (i.e.,
the bulk is topologically nontrivial), then consistency demands
that the intersections of the defect line at the boundary are
themselves nontrivial, excluding a trivial boundary condition (see
main text for details).
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Ising CFT and a partial understanding for the Gaussian
CFT. The latter serves to discuss various subtleties, such as
how the c ¼ 1 orbifold CFT seemingly has a nontrivial
topological invariant. We also demonstrate how the concept
of symmetry-enriched quantum criticality allows us to
unify previous works into a single picture. Lastly, we show
how these novel topological invariants can be generalized
to higher dimensions by studying symmetry charges of
CFTs in twisted sectors.
Examples of topologically nontrivial symmetry-enriched

CFTs are presumably rather ubiquitous, once one knows
where to look. For example, one can expect them to occur—
although not exclusively—at transitions between gapped
SPT phases and symmetry-breaking phases where the
ground-state degeneracies (for open boundaries) have com-
patible symmetry properties. Indeed, this guideline suggests
that it should occur for the spin-1 XXZ chain, as we confirm
in Fig. 1. Moreover, as we establish in Sec. VII, various
known examples of critical systems with edge modes can be
reinterpreted as phase transitions between distinct nontrivial
gapped phases of matter (see also Ref. [72]). It would hence
be interesting to uncover more experimentally relevant
examples of this sort. It is likely that these are already
present—but overlooked—in known phase diagrams (the
critical spin-1 XXZ chain illustrates this).
Related to finding more physical realizations of this

phenomenon, is the question of what its practical use
could be. The unique phenomenology of topologically
nontrivial symmetry-enriched quantum criticality is that it
allows for a localized topological edge modes which is
apparently oblivious to long-range correlations in the bulk.
Relatedly, it allows for quantum information to remain
localized while the bulk is tuned through a quantum critical
point. Such surprising stability of quantum information
could conceivably prove to be useful.
On the theoretical front, an obvious—and important—

challenge is the complete classification ofG-enriched CFTs
for which we give partial results in one spatial dimension.
Such a task is vast, as it contains the classification of all
CFTs as a subset. A more realistic question is thus, what is
the classification for G-CFTs where the CFT is already
known and understood in the absence of additional sym-
metries? In this work, we provide the answer for the Ising
CFT. Despite making progress for the case of the sym-
metry-enriched c ¼ 1 CFT, its classification is still an open
issue for general symmetry groups, as it is for all remaining
CFTs. As a first step, it is conceivable that our classification
for the Ising CFT can be extended to all minimal unitary
models. Moreover, in our classification we presume a
unitary group G for convenience, even though we discuss
antiunitary examples. It would hence be useful to extend
this to include the case of time-reversal symmetry, and
perhaps even spatial or anomalous symmetries, which
we do not touch upon. An equally exciting question is
whether our topological invariants can be efficiently
detected in a tensor-network representation of the ground

state, such as the multiscale entanglement renormalization
ansatz (MERA) [148].
Finally, while the last section of this paper already touches

upon generalizations of these topological invariants to
higher dimensions, many exciting open questions remain.
The most nontrivial setting is the one where there are no
gapped degrees of freedom to appeal to. An interesting case
studybeyond the Ising3 discussed in the presentwork isO(3)
criticality in 2þ 1d: As we discuss in Sec. VIII, it admits
a topological invariant if twisting the x (y) direction by, say,
a π rotation around the internal x (y) axis gives rise to a
unique ground state. [Indeed, the Z3

2 subgroup discussed in
Sec. VIII can be identified—as a subgroup of O(3)—with
the Z2 × Z2 subgroup of π rotations and the Z2 subgroup
generated by −I ∈ Oð3Þ.] In fact, this will give a nontrivial
topological invariant for the O(3) criticality between the
Néel phase and 2D Affleck-Kennedy-Lieb-Tasaki state
found in Ref. [149]. More generally, one can revisit well-
studied CFTs in 2þ 1d from the perspective of studying
their twisted sectors. As we discuss above, the invariants
embedded in these twisted sectors can put nontrivial con-
straints on the possible boundary fixed points, which also
deserves further study.We suspect that the tools presented in
thiswork are timely considering the recent foray into higher-
dimensional gapless topological phases [28,149–154]
which have thus far been lacking a unifying framework.
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APPENDIX A: SYMMETRY FLUXES
AND THEIR CHARGES

1. Symmetry properties of unique symmetry fluxes

For any g ∈ G and h ∈ CðgÞ, we define χgðhÞ through
UhSgUh† ¼ χgðhÞSg [presuming we choose the end-point
operator Og such that CðgÞ acts nicely on it; see the
discussion in Sec. III]. From this definition, it directly
follows that χgðhkÞ ¼ χgðhÞχgðkÞ, i.e., χg∶CðgÞ → Uð1Þ is
a one-dimensional representation. Other useful properties,
which hold for bosonic systems which are gapped or
described by a CFT, are χgðhÞ ¼ χhðgÞ−1 and χgðgÞ ¼ 1.
In the gapped case, these can be derived from the concept of
symmetry fractionalization. More generally, these can be
argued based on modular invariance of the partition
function. Note that χgðgÞ ¼ 1 need not be true for fermionic
systems: The Kitaev chain is a paradigmatic example where
the symmetry flux of P is charged under itself.

2. From Abelian charges to cocycles

Here we show how specifying the above charge χg for
any g ∈ G is equivalent to specifying a projective repre-
sentation of G if G is Abelian.
Because of the structure theorem, we have G ≅ Zr1 ×

� � �Zrn (for convenience, we take G to be finite). Let
g1;…; gn be a set of generators. We now define a central
extension of G, which is a group G̃ generated by the
symbols ĝ1;…; ĝn, and complex phases. To define the
relations between these generating elements, it is useful to
introduce the shorthand ½a; b�≡ aba−1b−1. The relations of
G̃ are then ĝ

rj
j ≡ 1 and ½ĝj; ĝk�≡ χgkðgjÞ. A priori, it is not

trivial that this definition is consistent, since there are
nontrivial relationships between commutators. In particu-
lar, ½a; b� ¼ ½b; a�−1 and ½a; bc� ¼ ½a; b�½b; ½a; c��½a; c� and
½g; g−1� ¼ 1. However, the properties of χg mentioned in the
previous subsection indeed show that the consistency
relations are satisfied.
We thus define a central extension Uð1Þ → Ĝ → G. This

short exact sequence simply means that G ≅ G̃=Uð1Þ,

as one can readily verify. This is equivalent to defining
a projective representation of G. The latter is often
characterized in terms of a cocycle ωðg; hÞ. The standard
way of obtaining this from the extension is by first
defining a section s∶G → Ĝ, i.e., an embedding of the
original group into the extended one. It is sufficient to
define this on the products of the generating elements:
sðgk11 � � � gknn Þ≡ ĝk11 � � � ĝknn . The cocycle is then determined
via ωðg; hÞ ¼ sðgÞsðhÞsðghÞ−1.

3. Gapped symmetries

In this subsection, we focus on symmetries which act
only on gapped degrees of freedom.

a. Symmetry flux from symmetry fractionalization:
String order parameter

For gapped symmetries, there is the notion of sym-
metry fractionalization [1,2]. This says that if one
acts with the symmetry operator on a finite but large
region, it effectively acts nontrivially only near the edges:
Ug

mU
g
mþ1 � � �Ug

n−1 ¼ Ug
LU

g
R. These obey a projective rep-

resentation Ug
RU

h
R ¼ eiωðg;hÞUgh

R ; here, ωð·; ·Þ characterizes
the so-called second group cohomology class. These frac-
tional symmetries Ug

L and Ug
R might have nontrivial

symmetry properties which force their expectation value
to be zero. A string order parameter is then usually defined
by finding an operator Og that cancels these symmetry
properties such that hOg†

mUg
Li ≠ 0 and hUg

RO
g
ni ≠ 0. The

resulting string order parameter is then Og†
mUg

mU
g
mþ1 � � �

Ug
n−1O

g
n, which has long-range order by construction. Note

that this exactly satisfies the condition for the symmetry
flux of g as defined in Sec. III A.

b. Uniqueness of symmetry flux

Suppose one has a second operator Õ that satisfies
the same properties. In particular, hÕg†

mUg
Li ≠ 0 and

hUg
RÕ

g
ni ≠ 0. Then the linear combination T g

n ≔ hUg
RÕ

g
ni×

Sg
n − hUg

RO
g
ni × S̃g

n no longer has long-range order, and
thus by the definition of the equivalence class in Sec. III,
the symmetry fluxes Sg and S̃g generate the same class; i.e.,
the symmetry flux is unique. To prove the above claim:

hT g†
m T g

ni ¼ hðhUg
RÕ

g
niOg

m − hUg
RO

g
niÕg

mÞ†Ug
mU

g
mþ1 � � �Ug

n−1ðhUg
RÕ

g
niOg

n − hUg
RO

g
niÕg

nÞi ðA1Þ

¼ h� � �i × hUg
RðhUg

RÕ
g
niOg

n − hUg
RO

g
niÕg

nÞi ¼ h� � �i × ðhUg
RÕ

g
nihUg

RO
g
ni − hUg

RO
g
nihUg

RÕ
g
niÞ ¼ 0: ðA2Þ

c. Charges from the cocycle

Having shown the uniqueness of the symmetry flux of
g ∈ G, we can now consider its symmetry properties. For
any h ∈ CðgÞ (i.e., the elements of commuting with g), we

can considerUhSgðUhÞ† ¼ χgðhÞSg with χgðhÞ ∈ Uð1Þ. As
noted before, the function χg∶CðgÞ → Uð1Þ∶h↦ χgðhÞ is a
one-dimensional representation of the stabilizer of g. We
now show that χgðhÞ ¼ e−i(ωðh;gÞþωðhg;h−1Þ). By definition of

GAPLESS TOPOLOGICAL PHASES AND SYMMETRY-ENRICHED … PHYS. REV. X 11, 041059 (2021)

041059-29



Og, it has the opposite symmetry property of Ug
R (indeed,

otherwise OgUg
R could not have a nonzero expectation

value), hence, UhUg
RU

h† ¼ χ�gðhÞUg
R. The left-hand side

equals Uh
RU

g
RU

h†
R ¼eiωðh;gÞUhg

R Uh−1
R ¼ei(ωðh;gÞþωðhg;h−1Þ)Ug

R.▪
Note that in Sec. A 2, we prove that this relationship can

be inverted if G is Abelian.

APPENDIX B: SYMMETRY-ENRICHED ISING
CFT IN AN EXACTLY SOLVABLE MODEL

Here we solve the Hamiltonian H ¼ J1H1 þ JHalHHal þ
JxHx by mapping it to free fermions. We use the
formalism of Ref. [33] to obtain a simple solution that

straightforwardly allows us to extract bulk correlation
lengths and edge mode localization lengths from zeros
of holomorphic functions.
After a Jordan-Wigner transformation, we have a quad-

ratic fermionic chain. More generally, when there is a two-
site unit cell, it is useful to write the Hamiltonian as follows:

H ¼ −i
X
n∈sites

X
α∈Z

ðγ̃2n−1; γ̃2nÞTα

�
γ2ðnþαÞ−1
γ2ðnþαÞ

�
: ðB1Þ

In particular, for the above Hamiltonian, we obtain

T−1 ¼
�
0 JH
0 0

�
; T0 ¼

�
0 J1 þ Jx
J1 0

�
; T1 ¼

�
0 0

JH þ Jx 0

�
: ðB2Þ

As in Ref. [33], it is useful to consider

FðzÞ ≔
X
α

Tαzα ¼
�

0 J1 þ Jx þ JH=z

ðJH þ JxÞzþ J1 0

�
¼

�
0 hðzÞ

gðzÞ 0

�
; ðB3Þ

where we define hðzÞ ¼ ðJ1 þ Jx=zÞ½zþ ðJH=J1 þ JxÞ�
and gðzÞ ¼ ðJH þ JxÞ½zþ ðJ1=JH þ JxÞ� (written in such
a way that their zeros can be read off). In the style of
Ref. [33], we can associate a correlation length with both
functions (the extra factor of 2 in the numerator is due to the
two-site unit cell):

ξh ¼
2

j ln j JH
J1þJx

jj and ξg ¼
2

j ln j J1
JHþJx

jj : ðB4Þ

The correlation length of the system is then given by
ξ ¼ maxfξh; ξgg.
For edge modes and topological invariants, it is useful to

consider the winding number ω ¼ Nz − Np associated with
hðzÞ and gðzÞ denoted by ωh and ωg, respectively. Their
values are shown in the phase diagrams in Fig. 14. This
figure clarifies that the topological phase transition is
driven by hðzÞ, whereas the topology of gðzÞ is stable

throughout that same region. It is hence natural to conclude
that ξloc ¼ ξg. (This is also confirmed with numerics.)
In Fig. 3(b) of the main text, the red path is parametrized

by Jx ¼ 2λJ1 and JH ¼ 2ð1 − λÞJ1 (for λ ∈ ½0; 1�). Hence,
ðJ1=JH þ JxÞ ¼ 1

2
and ðJH=J1 þ JxÞ ¼ ½1 − λ=ð1=2þ λÞ�

From Eq. (B4), we conclude that the edge mode has
constant localization length ξloc ¼ 2= ln 2, whereas the
bulk correlation length is

ξ ¼
( 2

j lnð 1−λ
1=2þλÞj

for λ ∈ ½0; 1=2�;
2
ln 2 for λ ∈ ½1=2; 1�:

ðB5Þ

APPENDIX C: DUALITY MAPPING
ðIx;Iy;IzÞ↔ ð1;Hal;0Þ

One can define the following unitary mapping (ignoring
boundary conditions):

FIG. 14. The first two plots show the topological invariant associated with hðzÞ and gðzÞ. The third plot shows the BDI topological
invariant which can be expressed as ω ¼ ωh þ ωg. In the last plot, we show ω0 ≔ jωhj þ jωgj, which is the one to consider in this case.
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X2nþ1 ¼ ð−1ÞnZ̃1 � � � Z̃2n−1Z̃2n; ðC1Þ

Y2nþ1 ¼ ð−1ÞnZ̃1 � � � Z̃2n−1Ỹ2nỸ2nþ1; ðC2Þ

Z2nþ1 ¼ −X̃2nỸ2nþ1; ðC3Þ

X2nþ2 ¼ ð−1ÞnZ̃1 � � � Z̃2n−1Z̃2nX̃2nþ1X̃2nþ2; ðC4Þ

Y2nþ2 ¼ ð−1Þnþ1Z̃1 � � � Z̃2n−1Z̃2nZ̃2nþ1; ðC5Þ

Z2nþ2 ¼ Ỹ2nþ1X̃2nþ2: ðC6Þ

One can check that as thus defined, the operators satisfy the
relevant algebra: Operators on different sites commute, and
on the same site they form a representation of the Pauli
algebra.
From the above correspondences, one can derive

X2nX2nþ1 ¼ Ỹ2n−1Ỹ2n; ðC7Þ

Y2nY2nþ1 ¼ Ỹ2nỸ2nþ1; ðC8Þ

X2nþ1X2nþ2 ¼ X̃2nþ1X̃2nþ2; ðC9Þ

Y2nþ1Y2nþ2 ¼ X̃2nX̃2nþ1: ðC10Þ

This directly implies that Hx ↔H1 and Hy ↔HHal.
Similarly, one can check

Z2nZ2nþ1 ¼ −Ỹ2n−1Ỹ2nþ1; ðC11Þ

Z2nþ1Z2nþ2 ¼ −X̃2nX̃2nþ2; ðC12Þ

−Y2nY2nþ2 ¼ Z̃2nZ̃2nþ1; ðC13Þ

−X2nþ1X2nþ3 ¼ Z̃2nþ1Z̃2nþ2: ðC14Þ

Hence, Hz ↔H0. [Caveat: Depending on which direction
of the mapping one takes, H0 has XX couplings on even or
odd sites. However, since all five other Hamiltonians are

inversion symmetric (when inverting along bonds between
two-site unit cells), we can always concatenate with spatial
inversion to obtain the desired variant.]

APPENDIX D: THE BAIT-AND-SWITCH LEMMA

Consider two G-enriched Ising CFTs, which we refer to
as the A and B systems. Suppose that each has the same
charge for their σ operator. We now prove that if we stack
the A system which has been perturbed into its gapped
symmetry-preserving phase on top of the critical B system,
then we can smoothly connect this to the B system in its
gapped symmetry-preserving phase stacked on top of the
critical A system. Conceptually, this says that all (non-
symmetry-breaking) G-enriched Ising CFTs with the same
charges for local operators can be realized by stacking
gapped SPT phases on top of a reference Ising CFT. (Note
that in the presence of symmetry breaking, one can apply
this lemma to the remaining symmetry group.) This lemma
can be seen as a generalization of Corollary 1 in the
Appendix of Ref. [33] to the interacting case.
It is convenient to use the representation of the Ising CFT

as a ϕ4 theory. In particular, for a decoupled stack of the
above two critical Ising CFTs, the Lagrangian would be

L0 ¼
X
i¼A;B

½ð∂ϕiÞ2 − ϕ4
i −m2

cϕ
2
i �: ðD1Þ

The parameter mc is taken such that we are at the Ising
fixed point. (This is roughly m2

c ≈ 0.5 according to
Ref. [155], but its precise value is not important to the
argument.) We now show that the situation where (only) the
A system is gapped, i.e., L ¼ L0 −m2ϕ2

A, can be smoothly
connected to where (only) the B system is gapped, i.e.,
L ¼ L0 −m2ϕ2

B, preserving both the Ising universality
class and the G symmetry throughout.
Since by assumption the ϕA and ϕB fields have the same

charges under each element of G, we can consider the
following symmetric coupling (where θ ∈ ½0; π=2� is a free
parameter):

L ¼ L0 −m2(ðcos θÞϕA þ ðsin θÞϕB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡φ1

)2 þ fðm; θÞ½−ðsin θÞϕA þ ðcos θÞϕB|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡φ2

�2: ðD2Þ

For θ ¼ 0 [taking fðm; 0Þ ¼ 0], the A d.o.f. are indeed gapped out and decoupled from the critical B d.o.f., whereas for
θ ¼ π=2 the roles are reversed. We now show how to define fðm; θÞ to keep the system Ising critical for intermediate values
of θ.
If we express the Lagrangian in terms of the new fields φ1 and φ2 which are defined in Eq. (D2), we obtain

L ¼
X
i¼1;2

�
ð∂φiÞ2 −

�
3þ cosð4θÞ

4

�
φ4
i −m2

cφ
2
i

�
−m2φ2

1 þ fðm; θÞφ2
2 − V; ðD3Þ

where the coupling V arises due to the quartic term V ¼ 3
2
½1 − cosð4θÞ�φ2

1φ
2
2 þ sinð4θÞðφ1φ

3
2 − φ3

1φ2Þ. If we work in the
limit of large m2, then φ1 will be pinned to φ1 ¼ 0, such that
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L ¼ ð∂φ2Þ2 −
�
3þ cosð4θÞ

4

�
φ4
2 −

�
m2

c þ
3

2
½1 − cosð4θÞ�hφ2

1im;θ − fðm; θÞ
�
φ2
2: ðD4Þ

Here hφ2
1im;θ depends on the UV (lattice) scale a. (Note that there is no effective coupling through hφ1i or hφ3

1i since
symmetry forces this to be zero.) The Lagrangian in Eq. (D4) is at the Ising critical point if we enforce the ratio

m2
c ¼

m2
c þ 3

2
½1 − cosð4θÞ�hφ2

1im;θ − fðm; θÞ
3þcosð4θÞ

4

⇒ fðm; θÞ≡ sin2ð2θÞ
�
m2

c

2
þ hφ2

1im;θ

�
: ðD5Þ

Note that when integrating out φ1, higher-order corrections
can be generated; these can be included, leading to a slight
shift in fðm; θÞ. The main conceptual point is that we can
reach (or better yet, stay on) criticality by tuning a single
parameter.

APPENDIX E: THE CURIOUS CASE OF c= 1

1. The (Z2 × Z2)-enriched c= 1 CFTs
of codimension two

We consider the compact boson CFT and the c ¼ 1
orbifold CFT; These constitute the main component of
the moduli space of c ¼ 1 theories [96,156–158]. Focusing
on CFTs of codimension two, we show that any two
(Z2 × Z2)-enriched versions of the aforementioned CFTs
can be smoothly connected without abruptly having to
change the universality class at some intermediate point
(i.e., they are connected by a path of symmetric marginal
perturbations). More precisely, we characterize all possible
symmetry assignments of local operators and nonlocal
symmetry fluxes and demonstrate that these form a con-
nectedmoduli space. For the case of the Ising CFT, we prove
that it is sufficient to consider such symmetry assignments
(see the bait-and-switch lemma inAppendixD); whilewe do
not have a proof for the analogous statement for these c ¼ 1
CFTs, we suspect it to be true.
Let us first consider the compact boson CFT, with fields

½∂φðxÞ; θðyÞ� ¼ 2πiδðx − yÞ (see also Sec. V C of the main
text). To achieve the lowest possible codimension (i.e., two)
with a Z2 × Z2 symmetry, the symmetry needs to act
within the CFT (i.e., it cannot act on only gapped degrees of
freedom). The symmetry group of the compact boson
(which is generically Uð1Þ × Uð1Þ⋊Z2, although our dis-
cussion is not limited to generic cases) admits various
Z2 × Z2 subgroups. However, there are only two such
subgroups which are not related by conjugation; equiv-
alently, by appropriately redefining our fields, the only two
Z2 × Z2 subgroups to consider are those generated by C, S
and those generated by C; S̃, where

C∶
�
θ → −θ;
φ → −φ;

S∶
�
θ → θþ π;

φ → φ;
S̃∶

�
θ → θ;

φ → φþ π:

ðE1Þ

We refer to C as charge conjugation and to S; S̃ as shift
symmetries (one could also consider the shift symmetry
SS̃ which shifts both fields, but this is anomalous and
thus cannot arise from an on-site Z2 symmetry on the
lattice). Moreover, by applying T duality (which corre-
sponds to defining the new fields φ̃ ≔ θ and θ̃ ≔ φ), one
can interchange S and S̃ at the cost of changing the
Luttinger liquid parameter K → 1=ð4KÞ. Since such dual
points are connected along the compact boson line (by
tuning K) [96], it is sufficient to consider the case where our
Z2 × Z2 symmetry is generated by charge conjugation C
and shift symmetry S.
With regard to symmetry assignments of symmetry

fluxes, note that this corresponds to the charges of states
in twisted sectors. If two symmetry-enriched CFTs have the
same charges for local operators, then the charges of
twisted sectors can differ only by a relative global charge
(otherwise, one can argue that there exists a local operator
with a different charge in the two CFTs). By standard
arguments, as in Appendix A 2, these charge assignments
naturally form a group cocycle in H2(G;Uð1Þ). Hence,
we need only to consider stacking the CFT with gapped
SPT phases. However, as we discuss in the main text (see
Sec. V C), the compact boson CFT is invariant under
stacking with the Z2 × Z2 Haldane SPT phase.
In conclusion, a (Z2 × Z2)-enriched compact boson CFT

is unique up to matching the physical symmetries (say, Rx,
Ry, Rz) to the continuum symmetryZ2 × Z2 generated by C
and S. Since C and CS are related by conjugation (i.e., there
is no observable or absolute difference between them), the
only real choice is in which of the three symmetries
corresponds to S. This thus gives us three copies of the
compact boson line, as shown in Fig. 15 (two of which are
shown in gray). These naturally join at the SU(2)-invariant
point (where the Luttinger liquid parameter K ¼ 1),
where Rx, Ry, and Rz are all symmetry equivalent (see
Appendix E 2 where this is discussed in more detail, as well
as the related discussion in the main text in Sec. V C).
Let us now focus on the cases with only two relevant

symmetry-allowed perturbations. Since eiðmφþnθÞ has dimen-
sionm2K þ n2=ð4KÞ, this region is 2=9 < K < 9=2. Along
this line, we show the nearby two-parameter phase dia-
gram in Fig. 15. In particular, region I corresponds to
2 < K < 9=2, where the relevant operators are cosð2θÞ
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and cosð4θÞ; the latter can lead to a first-order transition
(dashed line in Fig. 15). When a nearby phase has sponta-
neous symmetry breaking, we denote which symmetry is
preserved (if any). Region II has 1=2 < K < 2, containing
the free-fermion point at K ¼ 1; this corresponds to the XY
chain in Fig. 7 [where Fig. 7(a) corresponds to the cosð2θÞ
perturbation and Fig, 7(b) to the cosðφÞ perturbation].
Finally, region III has 2=9 < K < 1=2, which also contains
a dual free-fermion point at K ¼ 1=4 (however, unlike the
K ¼ 1 above, the symmetry-allowed perturbations are no
longer quadratic in the fermionic representation).
The discussion of the orbifold CFT is quite similar. One

way of viewing this CFT is as a marginal perturbation of
ðIsingÞ2, with Ising fields σ1 and σ2 and marginal pertur-
bation ε1ε2. Now the symmetry group is D8, the symmetry
group of the square, which admits the representation
hr; sjr4 ¼ s2 ¼ srsr ¼ 1i (geometrically, r is rotation and
s is reflection) where

r∶
�
σ1 → −σ2;
σ2 → σ1;

s∶
�
σ1 → σ1;

σ2 → −σ2:
ðE2Þ

As before, there are two inequivalent choices of a Z2 × Z2

subgroup generated by r2; s or r2; sr. And, as before, these
two different choices are in fact related by T duality and lie
on the same orbifold line. The self-dual point is where the
orbifold line meets the compact boson line [96]. E.g., if one
passes from II’ to III’ (in Fig. 15), the roles of s and sr are
reversed. In particular, coming from one side (II’), we can
equate s ¼ C (by identifying σ1 ¼ cos θ and σ2 ¼ sin θ,
where the latter are the compact boson fields at the KT
point) and from the other side, sr ¼ C (by identifying
σ̃1;2 ¼ cos θ � sin θ); we see that in both cases r2 ¼ S.
Note that either side of the KT point has an ðIsingÞ2 point

(i.e., in II’ and in III’), and for conceptual simplicity, we
denote the fields in terms of the respective Ising operators
(using tilde variables in III’ to avoid confusion); these are
related under T duality, in particular: σ̃1;2 ¼ σ1 � σ2.
As we argue above, the nonlocal charges can be toggled

by stacking with G-SPTs. Stacking with the unique
Z2 × Z2 SPT, we obtain the twisted “orbifold*” line in
Fig. 15. Indeed, note that in the nearby phase diagrams, the
roles of trivial and SPTare reversed in I”, II”, III” relative to
I’, II’, III’. In all cases, these nearby phase diagrams can be
obtained by a direct inspection of the symmetric relevant
operators, but a shortcut for the two orbifold lines is by
noting how these CFTs (and their nearby phase diagrams)
can be obtained by gauging charge-conjugation symmetry
of the compact boson CFT [96]. Note that as in the case of
the compact boson, we consider only the part of the
orbifold branch where there are two relevant symmetry-
preserving perturbations.

2. SU(2) symmetry at the self-dual radius

At the self-dual radius of the compact boson CFT (i.e.,
K ¼ 1=2 or rc ¼ 1=

ffiffiffi
2

p
), we have an emergent SUð2Þ ×

SUð2Þ symmetry generated by the following operators with
dimensions (1,0) and (0,1), respectively,

Jx ¼ cosðθþφÞ; Jy ¼ sinðθþφÞ; Jz ¼ 1

2
i∂zðθþφÞ;

J̄x ¼ cosðθ−φÞ; J̄y ¼ sinðθ−φÞ; J̄z ¼ 1

2
i∂ z̄ðθ−φÞ:

ðE3Þ

For clarity, we are using a convention such that θ þ φ is
holomorphic and θ − φ is antiholomorphic at K ¼ 1=2.

FIG. 15. The moduli space of (Z2 × Z2)-enriched c ¼ 1 CFTs of codimension two (containing the compact boson and its Z2

orbifold). The compact boson line appears thrice (twice in gray), corresponding to different identifications of the Z2 × Z2 subgroup
generated by charge conjugation C and shift symmetry S; these lines are joined at the SU(2)-invariant point (K ¼ 1=2). Each compact
boson line sprouts two orbifold lines at the KT point (K ¼ 2) which are pairwise related by a SPT entangler. Together, there are
3 × 3 × 3 ¼ 27 distinct regions which are all smoothly connected; for each region, the nearby phase diagram is sketched.
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We can define a change of variables which corresponds to a
rotation generated by Jx, such that J̃x ≡ Jx but J̃z ≡ Jy and
J̃y ≡ −Jz (and similar for the antiholomorphic sector).
Note that this transformation is a symmetry only at the
self-dual radius (i.e., at that point the theory is identical in
these new variables). We thus find

∂xθ̃ ¼ −2 cos θ sinφ; ∂xφ̃ ¼ −2 sin θ cosφ;

cos θ̃ cos φ̃ ¼ cos θ cosφ; sin θ̃ sin φ̃ ¼ sin θ sinφ:

ðE4Þ

APPENDIX F: RELATION TO THE
LITERATURE

1. Quantum criticality in topological insulators
and superconductors: Emergence of strongly

coupled Majoranas and supersymmetry
(Grover, Vishwanath)

In this subsection, we discuss a model appearing in
Ref. [16], reinterpreting certain aspects in terms of sym-
metry-enriched quantum criticality. For that reason, we
closely follow the notation used in that paper. To start, let us
consider a model which does not directly appear in
Ref. [16], but which will aid our analysis:

H ¼
X
n≥1

�
Jn mod 2 χ2n−1χ2nχ2nþ1χ2nþ2

−
g
2
iχ4n−1χ4nþ1 þ

g
2
iχ4nχ4nþ2

�
: ðF1Þ

The Hamiltonian is pictorially represented in Fig. 16. It has

an antiunitary symmetry T− defined by ðχ2n−1; χ2nÞ ↦
T−

ðχ2n;−χ2n−1Þ satisfying T2
− ¼ −1. If we set J0 ¼ J1 ¼ 0

(but g ≠ 0), then in Fig. 16 we directly see that we are in a
topological phase with two zero-energy Majorana edge
modes at a edge, χ1 and χ2, which T− prevents us from
gapping out. This is the only nontrivial class in DIII.
Oppositely, if we make J0 and J1 positive and large, then
the ground state wants to occupy vertical bonds, sponta-
neously breaking T−.
Note that—similar to the SSH model—the above model

is only nontrivial if we fix our convention of the physical
unit cells to be (1234)(5678)� � �, i.e., the blue boxes
in Fig. 16.

a. Deriving an effective (almost-)spin
model (as J0 → +∞)

Note that the J0 term is an integral of motion. In fact,
it is already minimized in the above phase, so we
can adiabatically ramp up the term J0 such that J0 ≫
maxfjJ1j; jgjg. We can then work in the subspaceH0 where
for all n, we have χ4n−1χ4nχ4nþ1χ4nþ2 ¼ −1. In this sub-
space, we can define the following bosonic operators:

σzn ≔ iχ4n−1χ4n ¼ iχ4nþ1χ4nþ2; ðF2Þ
σxn ≔ iχ4n−1χ4nþ1 ¼ −iχ4nχ4nþ2: ðF3Þ

In this sector, we then obtain

Heff ¼
X
n≥1

ðJ1χ4n−3χ4n−2χ4n−1χ4n − giχ4n−1χ4nþ1Þ ðF4Þ

¼ −J1σz1iχ1χ2 −
X
n≥1

ðJ1σznσznþ1 þ gσxnÞ: ðF5Þ

The model in Eq. (F5) is the one appearing Ref. [16]
[Eq. (1) of that work]. The antiunitary symmetries acts the

following way on the bosonic operators: ðσxn; σyn; σznÞ↦
T−

ðσxn; σyn;−σznÞ. In other words, for the spin variables, we can
write T−;eff ¼ ðQ σxnÞK. Note that this implies T2

−;eff ¼ þ1.
We see that the antiunitary symmetry in Heff is sponta-

neously broken for jJ1j > jgj, whereas for jJ1j < jgj we
have two protected Majorana modes (per edge).

b. Symmetry fluxes

Let us first obtain the symmetry flux for fermionic parity
symmetry P ¼ Q

n Pn where Pn ¼ γ4n−3γ4n−2γ4n−1γ4n is
the fermionic parity per unit cell (i.e., per blue box in
Fig. 16). Since we work in the limit where J0 → þ∞,
we have that the product of red boxes has long-range
order. We conclude that the symmetry flux of P is SP

n ¼
� � �Pn−2Pn−1ðiγ4n−3γ4n−2Þ [note that the i is there to ensure
that hðSP

n Þ2i > 0]. We observe that T−SPT− ¼ −SP; i.e.,
the symmetry flux of P is odd under T. This gives us a
discrete label which is moreover topologically nontrivial.
By the reciprocal nature of charges of symmetry

fluxes, we expect that the symmetry flux of T should be
odd under P. However, in this work we do not study the
notion of symmetry fluxes for antiunitary symmetries.
Nevertheless, a closely related statement is that we expect
that PμP ¼ −μ. To make this precise, we can consider
a lattice Z2 symmetry which we can relate to the unitary
Z2 symmetry of the Ising CFT. This is of course

Q
n σ

x
n,

or in the original fermionic model, the fermionic parity
symmetry of a single leg, Podd ¼

Q
nðχ4n−1χ4nþ1Þ. Indeed,

for J0 → þ∞, one can derive that Podd ¼
Q

n σ
x
n (at least

without boundaries). Similar to P, the symmetry flux
of Podd has an extra Majorana mode: SPodd ¼ � � �
ðPoddÞn−2ðPoddÞn−1χ4n−1. Hence, we conclude that the

FIG. 16. A strongly interacting Majorana model [see Eq. (F1)]
in the DIII class.
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symmetry flux of Podd is odd under fermionic parity
symmetry. Equivalently, the symmetry flux of

Q
n σ

x
n is

� � � σxn−2σxn−1χ4n−1; we thus conclude that PμP ¼ −μ.
If we do not enforce the lattice Z2 symmetry

Q
n σ

x
n, then

it becomes subtle to claim that PμP ¼ −μ is well defined.
However, in this particular case, we expect that due to T−
symmetry being enforced, this invariant remains well
defined even in the absence of explicit

Q
n σ

x
n symmetry;

the methods developed in this paper do not allow us to
prove this.

c. Edge modes

Since μ is charged under P, we know that by the gen-
eral arguments in Sec. IV, the Ising CFT will have a
degeneracy with open boundaries. This is in fact easy to

see in Eqs. (F1) and (F5). In both cases, we see that
iχ1χ2 and χ1σ

x
2σ

x
3 � � � are symmetries of the Hamiltonian,

whereas they mutually anticommute. The half-infinite
geometry thus has a twofold degeneracy labeled by
the occupation iχ1χ2 ¼ �1. Remarkably, this degeneracy
is protected by the bulk CFT being enriched nontrivially
by P and T−. Even with generic symmetry-preserving
perturbations, the system will have a global twofold
degeneracy whose splitting is exponentially small in
system size.

2. Gapless symmetry-protected topological phase of
fermions in one dimension (Keselman, Berg)

Let us recall the model in Eq. (29) of the main text:

H ¼ −
X
n;σ

ðc†n;σcnþ1;σ þ H:c:Þ þ U
X
n

ð−c†n;↑cn;↓cnþ1;↑c
†
nþ1;↓ þ H:c:þ ni;↑niþ1;↓ þ ni;↓niþ1;↑Þ: ðF6Þ

If we relabel the indices as 2j − 1≡ ðj;↑Þ and 2j≡ ðj;↓Þ, then one can straightforwardly apply the Jordan-Wigner
transformation to obtain the following spin-1=2 chain:

H ¼ 1

2

X
i

ðXi−1ZiXiþ1 þ Yi−1ZiYiþ1Þ þ U
X
i

ðSþ2i−1S−2iS−2iþ1S
þ
2iþ2 þ H:c:þ n2i−1n2iþ2 þ n2in2iþ1Þ; ðF7Þ

where S� ¼ ðXi � iYiÞ=2 and ni ¼ ð1þ ZiÞ=2. In this
bosonic language,wehave the symmetriesP ¼ Q

i Pi (where

Pi ¼ Z2i−1Z2i) and T ¼ Q
j e

iðπ=4ÞðSx
2j−1S

y
2j−S

y
2j−1S

x
2jÞK. Note

that T2 ¼ P.
We consider the two string operators ðOP

�Þi ≡ � � �
Z2i−3Z2i−2ðZ2i−1 � Z2iÞ. Note that TOP

�T
−1 ¼ �OP

�.
If U ¼ 0, the bulk is a c ¼ 2 CFT and both operators
have the same scaling dimension Δ ¼ 1=2. For U ≠ 0, the
bulk gaps out the spin sector (of the original spinful
fermions), stabilizing a c ¼ 1 CFT. We confirm this in
Fig. 17(a) for U ¼ −0.9. Moreover, we find that OPþ
remains critical, whereas OP

− now has long-range order;

this is shown in Fig. 17(b). We conclude that the system has
flown to a c ¼ 1 CFT which is nontrivially enriched by P
and T; in particular, the (unique) symmetry flux of P is odd
under T.

3. Gapless symmetry-protected topological order
(Scaffidi, Parker, Vasseur)

We consider the cluster model with an Ising term on one
of the two sublattices [28]:

H¼−
X
n

ðZA;nXB;nZA;nþ1þZB;n−1XA;nZB;nþJZA;nZA;nþ1Þ:

ðF8Þ
This model has a Z2 × Z2 symmetry generated by PA ¼Q

n XA;n and PB ¼ Q
n XB;n. To obtain its phase diagram,

note that the unitary U ¼ Q
nðCZÞA;n;B;nðCZÞB;n;A;nþ1

mapsH to two decoupled chains. In particular, if we define8>>>>><
>>>>>:

X̃A;n ≔ UXA;nU† ¼ ZB;n−1XA;nZB;n;

X̃B;n ≔ UXB;nU† ¼ ZA;nXB;nZA;nþ1;

Z̃A;n ≔ UZA;nU† ¼ ZA;n;

Z̃B;n ≔ UZB;nU† ¼ ZB;n;

ðF9Þ

then for periodic boundary conditions, Eq. (F8) becomes
an Ising chain on A sites and a fixed-point paramagnet
on B sites:

FIG. 17. Spinful fermions with triplet pairing: The model of
Ref. [19] as shown in Eq. (F6) [or Eq. (F7)] with U ¼ −0.9.
(a) Confirmation that the bulk (which has central charge c ¼ 2 for
U ¼ 0) has flown to central charge c ¼ 1. The black line is a fit
S ∼ ðcfit=6Þ ln ξ with cfit ≈ 0.994. (b) Correlation function forOP

�
(where TOP

�T ¼ �OP
�). We find that the T-odd string operator

has long-range order; this is thus the unique symmetry flux of P.
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H ¼ −
X
n

X̃B;n −
X
n

ðX̃A;n þ JZ̃A;nZ̃A;nþ1Þ: ðF10Þ

Hence, from this we infer that Eq. (F8) is in the SPT cluster
phase for jJj < 1, spontaneously breaks PA for jJj > 1, and
is at an Ising critical point for jJj ¼ 1. In Ref. [28], it was
pointed out that for Eq. (F8) with open boundary conditions,
the edge modes of the SPT phase (partially) survive at the
Ising critical point (even upon including arbitrary (Z2 × Z2)-
symmetric perturbations).
Using the concepts introduced in Sec. III, we can

identify a nontrivial bulk topological invariant explaining
the aforementioned edge modes. It is straightforward
to obtain the symmetry flux associated with PB: We see
that Eq. (F10) has long-range order in

Q
m≤n X̃B;m ¼

ðQm≤n XB;mÞZA;nþ1, which is odd under PA. This charge
thus gives us a topological invariant whenever PA is
preserved [159]: I.e., in the gapped SPT phase (jJj < 1)
or at the critical point (jJj ¼ 1). The fact that it has long-
range order is due to the symmetry being gapped; it is thus
also instructive to consider the other symmetry, which is
more representative of the purely gapless case. In particular,
at criticality (jJj ¼ 1), the Ising chain Eq. (F10) has an
algebraically decaying disorder parameter μ∼

Q
m≤n X̃A;n ¼

ðQm≤n XA;nÞZB;n with scaling dimension Δ ¼ 1=8 (e.g.,
see the discussion in Sec. II). We thus see that the Ising
critical point of Eq. (F8) has a disorder operator μ which
is odd under PB, encoding the nontrivial topological
invariant.

APPENDIX G: DETAILS ABOUT THE
CONSTRUCTION OF 2D EXAMPLES

LetH be a spin-1=2model on the triangular lattice which
is symmetric with respect to the Z2 × Z2 × Z2 symmetry
generated by PA ¼ Q

n XA;n, PB ¼ Q
n XB;n, and PC ¼Q

n XC;n (here A, B, C denote the three sublattices which
are, respectively, colored green, red, and blue in Fig. 18).
Denote U2D ¼ Q

△ CCZ which applies the CCZ gate on
every triangle of the triangular lattice, and define H0 ¼
UHU (note that all unitary operators considered in this
section will square to unity, so we will not distinguish U
from U†). We now show that the twisted sectors of H and
H0 twisted by PA and PB are unitarily equivalent in such a
way that eigenstates with well-defined PC have opposite
quantum numbers.

1. Warm-up: The fixed-point case

It is instructive to first consider the simpler case
where H ¼ −

P
r Xr [here r is shorthand for ðλ; nÞ with

λ ¼ A, B, C]. In this case, H0 ¼ UHU corresponds to the
Yoshidamodelwhich is aZ3

2 SPTphase [139,140].Using the
property that ðCCZÞ1;2;3X1ðCCZÞ1;2;3 ¼ X1ðCZÞ2;3, we see
that UXrU ¼ Xr

Q
hexðrÞ CZ where the product of CZ gates

runs along the hexagon surrounding the site r; see Fig. 12(b).

Since each term inH commutes with PA and PB, twisting
has no effect on the trivial Hamiltonian, i.e., Htwist ¼ H.
In particular, since the ground state satisfies Xr ¼ 1,
the ground-state parity in the twisted sector is PC ¼Q

n XC;n ¼ 1. (This signifies that we are in a trivial Z3
2

SPT phase.)
In contrast, the terms in the Yoshida model H0 are

affected whenever they overlap with the defect line. Let us
first twist by PA, which corresponds to conjugating the
Hamiltonian term with a product of XA;n operators if n lies
below or on the green dashed line in Fig. 18. Using the fact
that X1ðCZÞ1;2X1 ¼ ðCZÞ1;2Z2, we see that Hamiltonian
terms that intersect the defect line will acquire extra factors
of ZB;n or ZC;n after twisting with PA. The net result can be
phrased as follows: If after twisting with PA we conjugate
the term again with U2D (i.e., removing the

Q
CZ around

the hexagon), we end up with a trivial Xr except along the
green wiggly line in Fig. 18 where the Hamiltonian is the
1D cluster chain.
Twisting by PB is analogous, with one exception: The

blue site at the intersection of the two twist lines (indicated
in Fig. 18) also obtains a minus sign since only one of the
two ZB;n operators is acted on by the PB twist (and ZB;n of
course anticommutes with XB;n). In summary, twisting
by PA and PB for the Yoshida model is equivalent to con-
jugating by U1DU0D where U1D ¼ Q

CZ with the product
running along the green and red wiggly lines in Fig. 18 and
where U0D ¼ ZC;n0 with n0 being the (blue) site at the
intersection of the two defect lines. More precisely,H0

twist¼
U1DU0DH0U1DU0D¼VHV with V¼U2DU1DU0D. We
thus obtain that the ground state of H0

twist satisfies
VXC;nV ¼ 1, such that

FIG. 18. If one starts with the trivial paramagnet on the
triangular lattice, and then SPT entangles using U2D, twists by
PA along the green dashed line, and SPT entangles back, then the
resulting model is a trivial paramagnet except for the sites along
the green wiggly line, where it is in a 1D cluster model. Similar
for twisting by PB along the red dashed line. If one twists by both
symmetries at the same time, then the blue site near the defect
intersection is mapped to the five-site operator as shown, with a
minus sign due to the Z operator on the green wiggly line
anticommuting with the PB twist. After a global unitary trans-
formation (V ¼ U0DU1DU2D in the text), the system can be
mapped back to the original trivial paramagnet, at the cost of
flipping the sign of PC.
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PC ¼
Y
n

XC;n ¼ −
Y
n

U0DXC;nU0D ¼ −
Y
n

U0D

� Y
m∈l∪l0

Z2
B;m

�
XC;n

� Y
m∈l∪l0

Z2
B;m

�
U0D ðG1Þ

¼−
Y
n

U0DU1DXC;nU1DU0D ¼−
Y
n

U0DU1D

�Y
△

ðCCZÞ2
�
XC;n

�Y
△

ðCCZÞ2
�
U1DU0D ¼−

Y
n

VXC;nV ¼−1: ðG2Þ

Here we use the aforementioned properties that
ðCZÞ1;2X1ðCZÞ1;2 ¼ X1Z2 and ðCCZÞ1;2;3X1ðCCZÞ1;2;3 ¼
X1ðCZÞ2;3, and l and l0 denote the sites along the green
and red wiggly lines in Fig. 18.

2. The general case

In the simple case above, we see that the twisted sector
of H0 (i.e., H0

twist) is in fact unitarily equivalent to H0

(which is in turn unitarily equivalent to H). The above
derivation directly extends to Hamiltonians which contain
only products of Xr operators. However, H0 and H0

twist
are no longer unitarily equivalent when there are also
terms containing Zr (or Yr, but this need not be discussed
separately since one can rewrite this as the product iXrZr).
Fortunately, it is still true that Htwist and H0

twist are unitarily
equivalent. The idea is simple: For any Xr that appears, we
apply the previous unitary mapping, whereas for any Zr
that appears, the twisting by PA and PB is the same for both
H and H0.
Let us now confirm that the details work out. Without

loss of generality, we can write (note that α is just a label
and need not be interpreted as a spatial index) H ¼ P

hα
where each hα is a product of Pauli operators: hα ¼
aα

Q
r∈Sα;x Xr

Q
r∈Sα;z Zr where aα is a number and Sα;γ¼x;z

are unspecified sets of indices (note that Sα;x ∩ Sα;z could
be nonzero, corresponding to a Pauli-Y operator; hence,
Hermiticity requires aα ∈ ijSα;x∩Sα;zjR).
The twisted sector of H can then be written as Htwist ¼P
α htwist;α with htwist;α ¼ aα

Q
r∈Sα;x XrT ðQr∈Sα;z ZrÞ. Here

T ð·Þ simply denote the twisting operation; the result of
twisting the Zr operators could be written out more
explicitly but we do not need such detailed expressions
to establish the unitary equivalence.
We now turn to H0 ¼ UHU ¼ P

α h
0
α with h0α ¼

aα
Q

r∈Sα;x ðUXrUÞQr∈Sr;z Zr. Twisting this gives
H0

twist ¼
P

α h
0
twist;α and h0twist;α ¼ aαð

Q
r∈Sα;x T ðUXrUÞÞ×

T ðQr∈Sα;z ZrÞ. From the discussion in Sec. G 1 we learn
that T ðUXrUÞ ¼ VXrV with V ¼ U2DU1DU0D. Hence, if
we define the new variables under the unitary mapping,
X̃ ¼ VXrV and Z̃ ¼ VZrV ¼ Zr, then we see that the
twisted sector ofH andH0 is unitarily equivalent. However,

P̃C ¼
Y
n

X̃C;n ¼
Y
n

VXC;nV ¼ −
Y
n

XC;n ¼ −PC: ðG3Þ

In other words, the unitary mapping between Htwist and
H0

twist toggles the eigenvalue of PC (for each eigenstate).
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