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Quantum phase transitions are central to our understanding of why matter at very low temperatures can
exhibit starkly different properties upon small changes of microscopic parameters. Accurately locating
those transitions is challenging experimentally and theoretically. Here, we show that the antithetic strategy
of forcing systems out of equilibrium via sudden quenches provides a route to locate quantum phase
transitions. Specifically, we show that such transitions imprint distinctive features in the intermediate-time
dynamics, and results after equilibration, of local observables in quantum chaotic spin chains. Furthermore,
we show that the effective temperature in the expected thermal-like states after equilibration can exhibit
minima in the vicinity of the quantum critical points. We discuss how to test our results in experiments with
Rydberg atoms and explore nonequilibrium signatures of quantum critical points in models with
topological transitions.
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I. INTRODUCTION

Quantum phase transitions are key to our perception of
quantum matter across fields in physics, from quark-gluon
plasma and neutron stars to quantum magnets and high-
temperature superconductors [1,2]. At those transitions,
different quantities in completely different systems can
exhibit universal behavior, something that we understand
thanks to the development of the renormalization group
theory. Among the challenges that remain for each specific
system is to (if possible) find experimentally where
quantum phase transitions occur, as well as theoretically
predict their locations using simplified models. Quantum
simulators promise to overcome the latter challenge by
experimental means, as they provide pristine and control-
lable realizations of theoretical models [3,4].
Quantum simulators also provide access to real-time

dynamics, which is something that can be used to explore

unique aspects of crossing a quantum phase transition in
real time. For example, recently, a Rydberg-atom quantum
simulator was used to probe the Kibble-Zurek mechanism
of universal defect production for slow parameter sweeps
[5]. On the theoretical side, recent works have provided
evidence that nonequilibrium quantum evolution can be
used to probe quantum phase transitions in integrable
systems [6,7], in prethermal states for models close to
integrability [8], or through out-of-time-order correlators
[9]. However, identifying real-time signatures of quantum
phase transitions in generic (quantum chaotic) many-body
systems has remained a challenge.
In this work, we show that generic quantum matter can

exhibit dynamical signatures of quantum phase transitions
by the antithetic strategy of forcing these systems out of
equilibrium and, therefore, beyond the ground-state mani-
fold. We find that the intermediate-time dynamics of local
observables and of the entanglement entropy exhibit dis-
tinct features after quantum quenches in the anisotropic
next-nearest-neighbor Ising (ANNNI) chain upon tuning
the quench parameter across an underlying quantum phase
transition. Specifically, we find that the derivatives of local
observables with respect to the quench parameter develop
prominent dips and peaks in the vicinity of the quantum
phase transition. We determine the quantum real-time
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evolution by means of the infinite-time-evolved block
decimation (iTEBD), which provides numerically exact
results for the transient to intermediate-time dynamics in
the thermodynamic limit [10–12].
In order to access the long-time (asymptotic) properties

of the considered quantum chaotic system after the
expected thermalization, we employ a numerical linked
cluster expansion (NLCE) for thermal equilibrium states
[13]. We again find distinct signatures of the quantum
phase transition in derivatives of the correlation functions.
Also, the effective temperature exhibits a marked minimum
as a function of the quench parameter in the close vicinity
of the quantum phase transition. Since the considered one-
dimensional system does not support singular behavior
after equilibration, upon assuming that eigenstate therma-
lization occurs [14–17], these prominent features are not
associated with nonanalytic properties (in contrast to the
integrable systems studied in Refs. [6,7]) but, nevertheless,
represent distinct signatures of quantum phase transitions.
Finally, we discuss similar phenomena for quantum phase
transitions involving topologically different quantum
states. We also discuss how our findings can be tested in
current experiments with Rydberg atoms.
The presentation is organized as follows. In Sec. II, we

introduce the Hamiltonian of the ANNNI chain and
introduce the protocol used to probe the ferromagnetic
to paramagnetic quantum phase transition via dynamics
following quantum quenches. The results obtained for
dynamics after the quenches are presented in Sec. III,
while the results after thermalization are presented in
Sec. IV. Combining results from the dynamics and therma-
lization, in Sec. V, we report the estimated phase diagram
for the ferromagnetic to paramagnetic quantum phase
transition for a wide range of parameters of the ANNNI
chain. In Sec. VI, we discuss the feasibility of testing our
results experimentally, while in Sec. VII we discuss the
applicability of our protocol to detect topological quantum
phase transitions. In Sec. VIII, we summarize our results
and discuss their implications.

II. ANNNI HAMILTONIAN AND QUENCH
PROTOCOL

The ANNNI chain is a very well-studied spin model (see,
e.g., Ref. [18]). Its Hamiltonian in a chain with L sites can
be written as

Ĥ ≐ −
XL
i

σxi σ
x
iþ1 þ κ

XL
i

σxi σ
x
iþ2 − Γ

XL
i

σzi : ð1Þ

When mapped onto a fermionic Hamiltonian using the
Jordan-Wigner transformation [19], the next-nearest-neigh-
bor term (with strength κ) maps onto a four-fermion
interaction. At T ¼ 0, this model has a rich (and still partly
controversial) phase diagram in the κ-Γ plane. The quantum

phase transition line from the ferromagnetic to the para-
magnetic phase, which occurs as the antiferromagnetic next-
nearest-neighbor coupling κ > 0 crosses a critical value for a
fixed jΓj < 1, is a second-order phase transition (see, e.g.,
Ref. [20]). In the quadrant (κ > 0, Γ > 0), this line is well
described using second-order perturbation theory, with the
critical parameters satisfying (see Fig. 11) [20]

1 − 2κc ¼ Γc − Γ2
c

κc
2ð1 − κcÞ

: ð2Þ

To probe this ferromagnetic to paramagnetic quantum
phase transition at a fixed value of Γ, we generate a family
of Hamiltonians ĤðκÞ. We then generate a family of
nonequilibrium states via quenches with ĤðκÞ. The proto-
col (straightforward to generalize to other models) consists
of following steps (see Fig. 1).

(i) The initial state is fixed to be the ground state
jψðκIÞi of ĤðκIÞ, where κI is deep in the ferromag-
netic phase.

(ii) We suddenly change (quench) κI → κ at t ¼ 0 and
study the unitary time evolution of the system under
the time-independent Hamiltonian ĤðκÞ, i.e.,
jψðt; κÞi ¼ exp½−iĤðκÞt�jψðκIÞi (we set ℏ ¼ 1).

(iii) We compute expectation values of observ-
ables Oðt; κÞ ¼ hψðt; κÞjÔjψðt; κÞi.

(iv) For a fixed value of t, we study how Oðt; κÞ changes
with κ, focusing on the behavior in the vicinity of κc,
where κc is the critical value of κ for the transition
given the selected value of Γ.

III. QUANTUM DYNAMICS

We study the time evolution of observables after quan-
tum quenches in an infinite ANNNI chain using iTEBD
(see the Appendix A) [10–12]. Following the protocol
introduced in Sec. II (see Fig. 1), we fix Γ (we take
Γ ¼ 0.2) and then fix κI so that the initial state is a ground
state of the ANNNI chain deep in the ferromagnetic phase

FIG. 1. Schematic representation of our quench protocol,
superimposed on a schematic ground-state phase diagram of
the ANNNI chain.
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(we take κI ¼ 0). In our iTEBD calculations, we introduce a
very small (approximately 10−6) longitudinal field to pin one
of the two degenerate maximally polarized ground states.
The critical value of κ for the ferromagnetic to paramagnetic
quantum phase transition for Γ ¼ 0.2 is κc ≈ 0.41.
We first focus on the dynamics of two local observables,

the nearest- and next-nearest-neighbor longitudinal corre-
lators

Cx
1ð2Þ ¼

1

L

XL
i¼1

hσxi σxiþ1ð2Þi: ð3Þ

In Fig. 2, we show results for the time evolution of Cx
1

[Fig. 2(a)] and Cx
2 [Fig. 2(b)] for six values of κ after the

quench. The dynamics of both longitudinal correlators is
qualitatively similar for the values of κ shown. Their
decrease with time speeds up as κ increases about κc.
How the closeness to κc affects the dynamics is better seen
by plotting the correlations for fixed times t after the
quench as functions of κ [step (iv) in the protocol
introduced in Sec. II]. This plotting is done in Fig. 3,
where we show results for Cx

1 [Fig. 3(a)] and C
x
2 [Fig. 3(b)].

At all times reported, Cx
1 and Cx

2 decrease rapidly with
increasing the value of κ for κ ≳ κc. In addition, with
increasing time, the decrease in the correlators becomes
more prominent when κ ≈ κc. This fact is apparent in the
insets, where we show the derivative of the correlators.
They develop sharper dips close to κc as the evolution time
increases.
In Refs. [6,7], it is proven that following the same

protocol discussed here but for noninteracting models (or

models mappable to them) results in nonanalytic behavior
of local observables at the quantum phase transition in the
limit t → ∞ (after having taken the thermodynamic limit
first). While such is not the case in the quenches in generic
models studied here (see Sec. IV), the prominent features
seen in Fig. 3 at finite times are promising for an
experimental determination of κc.
We also study the dynamics of the half-chain entangle-

ment entropy S1=2 ¼ −Tr½ρ1=2 ln ρ1=2�, where ρ1=2 is the
density matrix of the half chain (obtained by tracing out the
other half). This nonlocal observable is expected to increase
linearly with time in quantum chaotic systems [21]. In
Fig. 4(a), we plot the time evolution of S1=2 for six values of
κ. As for the local operators in Fig. 2(a), the change of S1=2
with time speeds up as κ increases about κc. Figure 4(b)
shows S1=2 at fixed times t after the quench plotted versus κ,
and the inset in Fig. 4(b) shows the derivative with respect
to κ of the results in the main figure. Like the local
operators in Fig. 3, the behavior of the half-chain entan-
glement entropy carries a marker of the quantum phase
transition.

A. Changing κI
In Fig. 5, we show the derivative of Cx

1 with respect to κ
at a fixed time after the quench, plotted as a function of κ,

(b)

(a)

FIG. 2. Time evolution of (a) Cx
1 and (b) Cx

2 for six values of κ
after quenches starting from the ground state of the ANNNI
Hamiltonian with Γ ¼ 0.2 and κI ¼ 0.

(a)

(b)

FIG. 3. Ferromagnetic to paramagnetic quantum phase tran-
sition in the ANNNI chain as revealed via real-time dynamics of
local observables. (a) Cx

1 and (b) Cx
2 at different times plotted as

functions of κ after the quench (the legend is the same for both
observables). Insets: derivative with respect to κ of the results
shown in the main figure. The initial state is the ground state of
the ANNNI Hamiltonian with Γ ¼ 0.2 and κI ¼ 0. The vertical
dashed lines mark the critical κc ≈ 0.41.
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for different values of κI in the initial ground state. We
recall that as κI departs from κc, for κI < κc, the ground
state of the system is deeper in the ferromagnetic phase.
The results in Fig. 5 show that starting deeper in the
ferromagnetic phase results in a slightly shallower dip in
dCx

1=dκ, while its position remains unchanged. This result

might be expected as the departure of κI from κc increases
the magnitude of the quench, and, hence, increases the final
energy density, thereby blunting the signature of the
quantum phase transition. This result is consistent with
the ones in Sec. IV C, where we discuss the effect that the
increase in the magnitude of the quench has in observables
after thermalization.

IV. RESULTS AFTER THERMALIZATION

Because of the linear growth of the entanglement entropy
seen in Fig. 4, the iTEBD technique allows one to study
dynamics only at short and intermediate times. To explore
the fate of observables after thermalization, we use a NLCE
[13]. We broaden the class of initial states to explore how
initial nonzero temperatures modify the behavior of observ-
ables after thermalization.
Here, we consider more general quenches within the

ANNNI Hamiltonian involving initial states ρ̂I that are
thermal equilibrium states of the initial Hamiltonian ĤðκIÞ.
For an initial temperature TI, ρ̂I has the form

ρ̂I ¼
e−ĤðκIÞ=TI

Tr½e−ĤðκIÞ=TI � : ð4Þ

When TI ¼ 0, ρ̂I is the ground state of ĤðκIÞ. As in the
previous section, we quench κI → κ, while Γ is kept
unchanged (Γ ¼ 0.2). In Secs. IVA and IV B, we fix
κI ¼ 0. In Sec. IV C, we explore what changes when κI
is varied within the ferromagnetic phase (κI < κc ≈ 0.41).
Since the energy after the quench is the only conserved

quantity, at sufficiently long times in the thermodynamic
limit, observables are expected to be described by a Gibbs
ensemble (GE) [17]:

ρ̂GEðκÞ ¼
e−ĤðκÞ=TðκÞ

Tr½e−ĤðκÞ=TðκÞ� ; ð5Þ

with a temperature TðκÞ > 0 (which is nonzero even when
TI ¼ 0) determined by the energy EðκÞ set by the initial
state ρ̂I , as dictated by

Tr½ρ̂GEðκÞĤðκÞ� ¼ Tr½ρ̂IĤðκÞ�: ð6Þ

We use the NLCE technique introduced in Refs. [13] to
study the thermal expectation values of observables in the
thermodynamic limit (see Appendix A for details). All the
NLCE results for the ANNNI chain are obtained using 15
orders of the maximally connected cluster expansion
introduced in Ref. [22]. To gauge how well the series
converges, we estimate the convergence error for an
observable by computing the relative difference between
the last two orders (14 and 15) of the NLCE [22]. We report
only results whose convergence error for the energy is less
than 10−5. TðκÞ is obtained by numerically matching the

(a)

(b)

FIG. 4. Ferromagnetic to paramagnetic quantum phase tran-
sition in the ANNNI chain as revealed via real-time dynamics of
the half-chain entanglement entropy S1=2. (a) Time evolution of
S1=2 for six values of κ. (b) S1=2 at different times plotted as a
function of κ. Inset: derivative with respect to κ of the results
shown in the main figure. The initial state for the dynamics is the
ground state of the ANNNI Hamiltonian with Γ ¼ 0.2 and
κI ¼ 0. The vertical dashed lines mark the critical κc ≈ 0.41.

FIG. 5. Results for dCx
1=dκ, as those in the inset in Fig. 3(a),

obtained at a fixed time t ¼ 15 after the quench for different
values of κI (¼ −0.2, 0, 0.2) in the initial ground state. The
vertical dashed line marks the critical κc ≈ 0.41.
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energies in the left and right sides in Eq. (6). Both energies
are evaluated using NLCE to 15 orders, and TðκÞ is
computed by enforcing that their relative difference be
less than 10−11 (see Ref. [22]). For observables other than
the energy, we report only results whose convergence errors
are less than 5 × 10−5 (except for the entropy, for which we
set the cutoff to be 7 × 10−5). Those errors are small
enough to be unimportant for the discussions that follow.

A. Observables

As mentioned before, in the thermodynamic limit at
sufficiently long times after the quench, thermalization is
expected to occur in the nonintegrable systems considered
here [17]. Next, we study the expected thermal equilibrium
results that observables Ô reach after equilibration follow-
ing the quench.
In the space of all possible thermal equilibrium ensem-

bles parameterized by the coordinates ðT; κÞ, the initial
state ρ̂I sets a trajectory TðκÞ determined by Eq. (6). One
can then write

dO
dκ

¼ dT
dκ

�∂O
∂T

�
κ

þ
�∂O
∂κ

�
T
: ð7Þ

Since OðT; κÞ is an analytic function whenever T > 0 and
since dT=dκ is expected to be a smooth function of κ (we
discuss this expectation in Sec. IV B), dO=dκ must be a
smooth function of κ after equilibration following the
quench. Still, for observables that are indicators of the
quantum phase transition in nonintegrable systems (e.g.,
order parameters and related observables), ð∂O=∂TÞκ and
ð∂O=∂κÞT can be large if T is low when κ is close to κc
(we show the latter to be the case for our quenches in
Sec. IV B). This conclusion means that, even in thermal
equilibrium, it is possible to have prominent (but smooth)
features in dO=dκ as observed at intermediate times in the
previous section. In integrable systems, in which all
possible states after equilibration are described by gener-
alized Gibbs ensembles that are parameterized by extensive
numbers of quantities [23,24], nonanalytic behavior is
possible and is, in fact, observed in Refs. [6,7].
In Fig. 6, we show the thermal equilibrium results

obtained for the nearest-neighbor (Cx
1) and the next-

nearest-neighbor (Cx
2) longitudinal spin correlations per

site [see Eq. (3)] as functions of κ after the quench, as well
as their expectation values in the ground state of ĤðκÞ
computed with iTEBD. The main figures show dC1ð2Þ=dκ,
while the insets show C1ð2ÞðκÞ, for various initial temper-
atures TI and in the ground state (dotted lines, computed
with iTEBD). In the ground state, Cx

1 and C
x
2 are nearly one

in the ferromagnetic phase and exhibit a rapid decrease
when crossing the quantum phase transition (prominent
minima can be seen in dC1ð2Þ=dκ at κc); i.e., they serve as
indicators of the quantum phase transition. (They also serve

as indicators of the ferromagnetic to paramagnetic quantum
phase transition in the integrable transverse field Ising
model; see Appendix B.) This zero-temperature behavior is
the precursor of the behavior of Cx

1 and Cx
2 observed in

the insets for low initial TI , which, in turn, produces the
prominent minima in dC1ð2Þ=dκ near κc observed in the
main figures. Figure 6 shows that the position of
the minima drifts away from κc, and they become shal-
lower, with increasing TI . Note that the results for TI ¼ 0
and TI ¼ 0.1 overlap in the plots.
Qualitatively similar results are obtained for other local

observables, such as the transverse magnetization per site
mz ¼ P

i σ
z
i =L, shown in Fig. 7(a), and for the (von

Neumann) entropy per site s ¼ −trðρ̂GE ln ρ̂GEÞ=L of the
thermal state ρ̂GEðκÞ, shown in Fig. 7(b). In the ground
state, mz increases rapidly when transitioning from the
ferromagnetic to the paramagnetic phase, as shown in
Fig. 7(a) (dotted lines, computed with iTEBD). Hence,
mz serves as an indicator of the quantum phase transition,
and its behavior at zero temperature is the reason there are
prominent maxima in dmz=dκ near κc for quenches at low
TI . (See Appendix B for ground-state results of mz across
the ferromagnetic to paramagnetic quantum phase transi-
tion in the integrable transverse field Ising model.) The
entropy, on the other hand, is strictly zero at zero temper-
ature; i.e., it does not change at the phase transition [the

(a)

(b)

FIG. 6. The nearest- (next-nearest-) neighbor longitudinal spin-
spin correlation per site Cx

1 (Cx
2) [see Eq. (3)], evaluated in

thermal equilibrium using NLCE following quenches
κI ¼ 0 → κ, with TI ¼ 0, 0.1, 0.5, and 1.0. We also show Cx

1

and Cx
2 in the ground state of ĤðκÞ (dotted lines) computed using

iTEBD. The main figures in (a) and (b) show dC1=dκ and
dC2=dκ, respectively, while the corresponding insets show Cx

1

and Cx
2. The vertical dashed lines mark the critical κc ≈ 0.41.

SIGNATURES OF QUANTUM PHASE TRANSITIONS AFTER … PHYS. REV. X 11, 031062 (2021)

031062-5



entanglement entropy does change, as shown in Fig. 4(b)].
However, as we show in Sec. IV B, when TI is low, the
temperature after quench increases rapidly when κ crosses
κc, and this increase produces the rapid increase of s seen in
Fig. 7(b).

B. Temperature

Let us now show that dT=dκ is a smooth function
of κ. The ANNNI Hamiltonian can be written as
ĤðκÞ ¼ Ĥ0 þ κV̂, so that keeping the initial state ρ̂I fixed
and changing κ after the quench results in EðκÞ being a
linear function of κ:

EðκÞ ¼ ðTr½ρ̂IĤ0�Þ þ κðTr½ρ̂IV̂�Þ; ð8Þ

with a slope A≡ dEðκÞ=dκ ¼ Tr½ρ̂IV̂�.
As in the previous section for dO=dκ, for the energy, one

can write

dE
dκ

¼ dT
dκ

�∂E
∂T

�
κ

þ
�∂E
∂κ

�
T
; ð9Þ

where ð∂E=∂TÞκ ¼ CκðTÞ is the specific heat. Combining
Eqs. (8) and (9), we have that

dTðκÞ
dκ

¼
A − ð∂E∂κÞTðκÞ
Cκ½TðκÞ�

: ð10Þ

All functions in the rhs of Eq. (10) are smooth, and
Cκ½TðκÞ� > 0, because TðκÞ > 0 after the quench. This
result shows that TðκÞ is also a smooth function. Next, we
use numerical calculations to explore whether quenches
κI → κ spanning across κc produce temperatures TðκÞ with
signatures of the quantum phase transition, as shown to be
the case in Sec. IVA for local observables.
Figure 8 shows TðκÞ for quenches with κI ¼ 0 → κ for

various initial temperatures TI, including the ground state
of ĤðκIÞ. For very low initial temperatures TI ≲ 0.1, the
temperatures TðκÞ after the quench are essentially indis-
tinguishable from those for TI ¼ 0. This fact explains why
all the results reported in Sec. IVA are indistinguishable for
TI ¼ 0 and TI ¼ 0.1. For those very low TI, the temper-
atures TðκÞ exhibit a low-temperature minimum in the
vicinity of κc [at κm ≈ 0.39, for which TðκmÞ ≈ 0.06]. At
TI ¼ 0.5, a temperature at which TðκÞ after the quench
departs from the TI ¼ 0 result, a minimum in TðκÞ still
remains visible close to κc. The locus of minima in TðκÞ,
shown as a dotted line for a large number of TI , makes
apparent that the minima remain close to κc as long as TI
remains low (TI ≲ 1.0). At higher initial temperatures, the
minima depart from κc, indicating that the information
about κc is washed out.
Overall, it is remarkable that, due to the presence of the

phase transition (and the corresponding closing of the gap
above the ground state), when quenching to the same

FIG. 8. NLCE results for the temperature of the Gibbs
ensemble describing observables after equilibration, following
quantum quenches κI ¼ 0 → κ within the ANNNI Hamiltonian,
for initial thermal states at temperatures TI ¼ 0.0, 0.1, 0.5, 1.0,
and 2.0. For those initial temperatures, minima in TðκÞ occur at
κm ≈ 0.391, 0.391, 0.392, 0.379, and 0.306, respectively. The
locus of minima [κm; TðκmÞ] for a large number of initial
temperatures TI is also shown. The vertical dashed lines mark
the critical κc ≈ 0.41.

(a)

(b)

FIG. 7. The transverse spin magnetization (mz) and the von
Neumann entropy (s), per site (see the text), evaluated using
NLCE in thermal equilibrium following quenches κI ¼ 0 → κ
with TI ¼ 0, 0.1, 0.5, and 1.0. The main figures in (a) and
(b) show dmz=dκ and ds=dκ, respectively, while the correspond-
ing insets showmz and s. In (a), we also show results formz in the
ground state of ĤðκÞ (dotted lines) computed using iTEBD. The
vertical dashed line marks the critical κc ≈ 0.41.

ASMI HALDAR et al. PHYS. REV. X 11, 031062 (2021)

031062-6



(ordered) side of the critical point, the effective temperature
decreases as the size of the quench increases and κ
approaches the critical point. This trend sharply reverses
as κ crosses the critical point. Examining Eq. (10) in the
context of our numerical results allows us to understand
why a minimum develops near κc at very low (TI ≲ 0.1)
and low (TI ≲ 1.0) initial temperatures. At the minimum,
we have that

a ¼
�∂e
∂κ

�
T
; ð11Þ

where we define the intensive counterparts of the extensive
quantities in Eq. (10) as a ¼ A=L and e ¼ E=L.
The main figure in Fig. 9 shows ð∂e=∂κÞT versus κ at

different temperatures [the inset Fig. 9(a) shows e versus κ
at the same temperatures]. For T ¼ 0, we also show iTEBD
results (the NLCE results do not converge close to κ ¼ κc).
Notice that, in the region in which the NLCE results
converge to the precision mentioned in the introduction of
this section, they are indistinguishable from the iTEBD
ones. The iTEBD results for ð∂e=∂κÞT¼0 exhibit a
rapid decrease about κc [resulting in a singularity in
ð∂2e=∂κ2ÞT¼0 at κc, as shown in the inset Fig. 9(b)],
reflecting the nonanalytic behavior of the energy at the
(second-order) quantum phase transition. That rapid
decrease leaves its signature in the low-temperature behav-
ior of ð∂e=∂κÞT>0, and this fact is what makes possible for
Eq. (11) to be satisfied close to κc for low initial
temperatures.

In Fig. 9, a ¼ hσxi σxiþ2iρ̂I =L is shown as a horizontal line
for TI ≲ 0.1. For those very low initial temperatures, a is
very close to 1 (a ≈ 0.99), since κI ¼ 0 is deep in the
ferromagnetic phase, and Fig. 9 shows that the condition
ð∂e=∂κÞT ¼ a is satisfied at κ ¼ 0.39 for T ¼ 0.05 and at
κ ¼ 0.37 for T ¼ 0.1. Those two temperatures approxi-
mately bound the range of effective temperatures after the
quench for κ close to κc when TI ≲ 0.1; see Fig. 8. This
result explains why the minimum in TðκÞ versus κ occurs
very close to κc for TI ≲ 0.1. Increasing the initial temper-
ature beyond TI ¼ 0.1 increases T but also reduces the
value of a. This fact results in the minimum remaining
close (and actually slightly approaching) κc in Fig. 8 when
TI departs from 0.1 but still remains low (TI ≲ 1.0). Since
the slope of ð∂e=∂κÞT at the crossing point near κc is
negative, it follows from Eq. (10) that the extremum in TðκÞ
near κc is a minimum.

C. Changing κI
Motivated by the results discussed in Sec. III A, we

explore next what happens to the thermal equilibrium results
after equilibration when one changes κI within the ferro-
magnetic regime, keeping TI ¼ 0 fixed. In Fig. 10(a), we
show TðκÞ versus κ for κI ¼ −0.2, 0, and 0.2. As expected
from the fact that the initial state remains a nearly perfect
ferromagnet, the minima in TðκÞ close κc are robust to the
choice of initial κI . However, the minimum value of TðκÞ
attained decreases as κI approaches κc. As a result, the
signature of the presence of a quantum critical point in
observables after thermalization becomes sharper as
κI → κc. This fact is apparent in Fig. 10(b), in which we
plot dCx

1=dκ.
Note that, in Fig. 10(a), there is a singularity in TðκÞ at

κ ¼ 0.2 for κI ¼ 0.2, as well as at κ ¼ 0 for κI ¼ 0. These
are trivial consequences of performing no quench, which

(a) (b)

FIG. 9. Thermal equilibrium energy per site e and its deriva-
tives at different T. The main figure shows ð∂e=∂κÞT , inset
(a) shows e versus κ at constant temperature, and inset (b) shows
ð∂2e=∂κ2ÞT . Results are shown for different values of T (the main
figure and the insets share the legend). The solid (black) curve
(T ¼ 0) shows the iTEBD results for the ground state, while the
other curves show NLCE results. Also depicted in the main figure
is a ¼ hσxi σxiþ2iρ̂I =L ≈ 0.99 for TI ≲ 0.1. The vertical dashed
lines mark the critical κc ≈ 0.41.

(a)

(b)

FIG. 10. (a) Equilibrium temperature TðκÞ and (b) dCx
1=dκ in

thermal equilibrium, after quenches κI → κ from initial ground
states of ĤðκIÞ for three different values of κI . The vertical dashed
lines mark the critical κc ≈ 0.41.
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means that the system remains in the ground state. The fact
that jdT=dκj → ∞ at those points follows from Eq. (10)
due to specific heat CκðT → 0Þ → 0 in the denominator.
These singularities have no consequence in the expectation
values of observables.

V. PHASE DIAGRAM

Here, we combine results obtained for Cx
1 at intermediate

times after the quench (from iTEBD calculations), and after
equilibration (from NLCE calculations), to identify, in the
ðκ;ΓÞ plane, the phase boundary separating the ferromag-
netic and paramagnetic phases in the ground state. We
estimate κc by carrying out quenches κI ¼ 0 → κ for
different values of Γ (Γ is not changed during the quench).
Qualitatively similar results are obtained for other local
observables such as Cx

2 and mz and are not reported here.
In Fig. 11, we show κc extracted from the extrema of

dCx
1=dκ obtained using iTEBD results at t ¼ 25 after

quenches starting from the ground state and NLCE thermal
equilibrium results after quenches starting from the ground
state (TI ¼ 0) and from an initial temperature TI ¼ 0.3. As
Γ increases, the NLCE convergence errors are higher for
quenches starting from the ground state because the critical
point gets closer to κI ¼ 0 and the effective temperature
after the quench becomes too small (see Fig. 10 and related
discussion). This fact is the reason no NLCE points are

reported for quenches with Γ ≥ 0.4 and TI ¼ 0. On the
other side of the phase diagram, when Γ is small, the
quenches in κ result in fewer excitations (Γ → 0 becomes
the classical Ising chain), thereby bringing the thermal
equilibrium ensemble about κc close to the ground-state
critical point. This fact also affects the NLCE convergence,
resulting in no NLCE data points for Γ≲ 0.2. The results in
Fig. 11 show that both the intermediate-time and (expected)
long-time extrema follow very closely the phase boundary
calculated using iTEBD for the ground state [locating the
singularity in ð∂2e=∂κ2ÞT¼0], which is well described by
the second-order perturbation theory results.

VI. EXPERIMENTAL TESTS

It is a central aspect of this work that the reported
signatures of the quantum phase transitions in the ANNNI
model are accessible in state-of-the-art quantum simulator
platformswith Rydberg atoms. TheANNNIHamiltonian (1)
can be straightforwardly realized using Rydberg dressing in
ultracold atoms in optical lattices [25,26]. Rydberg-dressed
atoms exhibit a soft-core interaction potential Ji;j ¼
J0=½1þ ðRij=RcÞ6�, which is approximately constant below
a threshold distance Rc between two atoms and decays
quickly beyond the threshold Rc (in a R−6

ij fashion as a
function of distance Rij ¼ aji − jj, where a is the lattice
spacing between the involved spins) [25]. Realizing approx-
imately the ANNNI model with such a soft-core interaction
potential requires one to choose the tunable threshold Rc

such that ðRi;iþ3=RcÞ6 ≫ ðRi;iþ2=RcÞ6; ðRi;iþ1=RcÞ6 so that
Ji;iþ3 ∼ J0ðRi;iþ2=RcÞ−6 ≪ Jiþ1; Jiþ2. In such a regime,
only nearest- and next-nearest-neighbor couplings have to
be taken into account, while further distant ones can be
neglected. The relative strength of nearest- and next-nearest-
neighbor interactions, quantified by κ ¼ Ji;iþ2=Ji;iþ1 ¼
½1þ ða=RcÞ6�=½1þ ð2a=RcÞ6� in Eq. (1), can also be varied
by tuning Rc relative to the lattice spacing a with the only
limitation that κ < 1. As the targeted quantum critical point
κc ≈ 0.41 < 1, the reported signatures, therefore, lie within
the tunability of the couplings. Let us note that the interaction
in the experiment would be of antiferromagnetic nature and
not directly of the type required in Eq. (1). However, by
performing a rotation σxl → −σxl on every other lattice site,
e.g., even ones, theHamiltonian inEq. (1)maps onto a purely
antiferromagnetic spin model and, therefore, to the one
which can be realized experimentally. Furthermore, trans-
verse fields can be straightforwardly generated, implying that
the full Hamiltonian can be modeled with high accuracy.
It remains to clarify whether also the dynamics of this

system can be accessed in the desired regimes, which we
now answer in the affirmative. First, Rydberg-dressed atom
systems with a large number of spins (L ≈ 200) were
already created in Ref. [25]. The trapping potential for the
ultracold quantum gas has only a minor impact when
considering Rydberg dressing; it affects the preparation of

FIG. 11. Phase boundary for the ground-state quantum phase
transition separating the ferromagnetic and paramagnetic phases
in the ðκ;ΓÞ plane. Unbiased results for the boundary are obtained
using ground-state iTEBD [iTEBDGS in the legend, obtained
locating the singularity in ð∂2e=∂κ2ÞT¼0] and are closely fol-
lowed by the predictions of second-order perturbation theory
(continuous line). The phase boundary is well described by κc
estimated from the extrema of dCx

1=dκ obtained in finite-time
iTEBD calculations after the quench (for t ¼ 25) and in the
(expected) long-time thermal results obtained using NLCE. In all
quenches κI ¼ 0 → κ, Γ is not changed during the quench, and
we show results for TI ¼ 0 (iTEBD and NLCE) and for TI ¼ 0.3
(NLCE).
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the initial condition by limiting the maximal number of
spins which can be controllably initialized [25].
Specifically, the fully polarized initial condition we are
considering in our work can be prepared with high fidelity
as demonstrated in Ref. [26]. Hence, the main point that
remains to be addressed is the coherence time, i.e., whether
it is possible to identify the proposed signatures before
decoherence sets in. In a recent experiment with Rydberg-
dressed atoms, timescales Jt≳ 10 were achieved, where J
denotes the strength of the nearest-neighbor couplings.
Consequently, the timescales discussed in Sec. III are in the
experimentally accessible regime. We note that also the
desired spin-spin correlation functions in Eq. (3) can be
measured in the aforementioned experimental systems [26].

VII. TOPOLOGICAL TRANSITIONS

A final question we address next is how generally one
can use the previously introduced protocol to locate
quantum phase transitions in one-dimensional models.
Given the results obtained and insights gained within the
ANNNI chain (notice that in Fig. 11 we report results for an
entire phase boundary), we expect this protocol to be
widely applicable to one-dimensional models with tradi-
tional quantum phase transitions. A different question is
whether such signatures in local quantities can be used to
locate topological quantum phase transitions, as shown for
noninteracting models in Ref. [7] (nonlocal quantities can,
of course, retain such information in the noninteracting
case—see, e.g., Refs. [27,28]). In what follows, we report
results from a preliminary exploration of dynamics after
quantum quenches about topological transitions in two
quantum chaotic models.
First, we explore the quantum phase transition from the

Néel to the symmetry-protected topological “Haldane”
phase in the spin-1 anisotropic (XXZ) Heisenberg chain
model. The Hamiltonian for this model reads

ĤXXZ ¼
XL
i

ðŜxi Ŝxiþ1 þ Ŝyi Ŝ
y
iþ1 þ ΔŜzi Ŝ

z
iþ1Þ; ð12Þ

where Ŝx;y;zi denote the x, y, and z components, respectively,
of the spin-1 operator at site i. Four different phases occur
in this model when one changes the anisotropy parameterΔ
(see, e.g., Refs. [29,30], and references therein). Here, we
focus on the transition that occurs upon decreasing Δ from
Δ ≫ 1, a limit in which ĤXXZ reduces to the spin-1 Ising
antiferromagnet. With decreasing Δ, the ground state of
ĤXXZ undergoes a quantum phase transition from the
antiferromagnet to the Haldane phase at Δc ≈ 1.183. The
Haldane phase is a topological phase, protected by any one
of the following three global symmetries: D2 spin rotation,
time reversal, and bond-centered inversion [31]. This
transition is of second order and belongs to the 2D Ising
universality class [32,33].

In Fig. 12, we show ground-state results for dCx
1=dΔ,

where

Cx
1 ¼

1

L

XL
i¼1

hŜxi Ŝxiþ1i; ð13Þ

and for dCz
1=dΔ, where

Cz
1 ¼

1

L

XL
i¼1

hŜzi Ŝziþ1i; ð14Þ

plotted as functions ofΔ. As for the local observables shown
in Fig. 6 for the ANNNI model, dCx

1=dΔ in Fig. 12(a)
[dCz

1=dΔ in Fig. 12(b)] exhibits a sharp maximum (mini-
mum) at the transition point. We expect this maximum
(minimum) to be the precursor of a peak (dip) close to Δc
after the quantumdynamics generated following the protocol
introduced in Sec. II. To test this expectation, we take as the
initial state the ground state at large ΔI ¼ 2 and quench Δ
across the neighborhoodofΔc. Becauseof the high computa-
tional cost of the iTEBD calculations for the spin-1 aniso-
tropic Heisenberg chain, we are able to study dynamics only
at short times (t ≤ 7) after the quench. Still, for these short
times, Fig. 12(a) [Fig. 12(b)] shows that a peak (dip) appears
to develop in dCx

1=dΔ (dCz
1=dΔ) about aΔ� greater than, but

close to, the transition point Δc. As t increases, those peaks

(a)

(b)

FIG. 12. Signatures of the Néel to Haldane quantum phase
transition in the anisotropic XXZ chain. Derivatives with respect
to Δ of (a) Cx

1 [see Eq. (3)] and (b) Cz
1 [see Eq. (14)] at different

fixed times after the quench and of the results in the ground state
(black solid line). The gray vertical line shows the critical
Δc ≈ 1.183.
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sharpen and move toward Δc. This result suggests that our
protocol can be used to locate this phase transition.
In the spin-1 anisotropic (XXZ) Heisenberg chain model,

like in the ANNNI model, to locate the phase transition
using our protocol we rely on the rapid change of local
correlations close to the transition point. Next, we study a
model in which at the transition point in equilibrium, due to
a symmetry, there is a vanishing change in local correla-
tions. The question then is whether something similar
occurs in the quantum dynamics and can be used to locate
the transition point.
The model is the bond-alternating Heisenberg model [34]

Ĥ ≐
XL
i¼1

ðσ⃗2i−1σ⃗2i þ ησ⃗2iσ⃗2iþ1Þ; ð15Þ

where σ⃗i are the Pauli matrices (periodic boundary condition
implied). This model exhibits a topological transition
between two dimerized phases at ηc ¼ 1, which can be
located using a nonlocal string order parameter. Because of

the invariance (up to a rescaling) of Hamiltonian (15) under
η → 1=η, one can see that in thermal equilibrium local
correlations are symmetric about ηc ¼ 1. This symmetry
means that, so long as the correlations depend on η, theymust
exhibit a maximum or a minimum at ηc ¼ 1. In Fig. 13, we
show that such is indeed the case for Cx

1 and Cx
2, defined in

Eq. (3), in the ground state. At ηc ¼ 1, Cx
1 exhibits a

minimum in Fig. 13(a), and Cx
2 exhibits a maximum in

Fig. 13(b). Next, we explore the fate of those extrema in the
quantum dynamics.
We quench the parameter η following our protocol in

Sec. II, namely, taking the initial state to be the ground state
of Hamiltonian (15) for ηI ¼ 0.5 and studying the time
evolution under Hamiltonian (15) with different values of η.
Figure 13 shows that extrema occur at η� close to ηc, both in
the short-time dynamics (studied using iTEBD and shown
in the main figures) and after thermalization (studied using
NLCE and shown in the insets). We note that the position η�
of the minimum in Cx

1 (maximum in Cx
2) relative to ηc

depends on whether the initial state chosen is the ground
state for ηI greater or smaller than ηc. The minimum
(maximum) develops at η� < ηc for ηI < ηc, as seen in
Fig. 13(a) [Fig. 13(b)] and would develop at η� > ηc for
ηI > ηc. This behavior is also a result of the invariance (up
to a rescaling) of Hamiltonian (15) under η → 1=η. Hence,
our protocol can also be used in this model for which the
transition is located directly using the local observables, as
opposed to the earlier models for which it was located using
derivatives of the local observables.

VIII. SUMMARY AND DISCUSSION

In summary, we have shown that local observables can
be used to locate the ferromagnetic to paramagnetic
quantum phase transition in the ANNNI chain (a non-
integrable model) both at intermediate times after a quench
and at long times after thermalization. The initial states for
our quenches were chosen to be ground states of the
ANNNI chain deep in the ferromagnetic phase. We
explored the effect that changing the magnitude of the
quench and starting from initial finite-temperature states
has in many of our conclusions and showed that our
conclusions are robust against those changes. We also
discussed potential experimental tests, as well as the
applicability of our protocol to detect topological quantum
phase transitions.
More generally, the fact that intermediate-time dynam-

ics, following quenches whose initial states are ground
states far from a quantum phase transition, provide a way to
locate the quantum phase transition is promising for
experiments with ultracold quantum gases [3,4] and ions
[35,36]. In those experiments, it is usually straightforward
to prepare ground states far away from quantum phase
transitions, but it is much more challenging to prepare them
close to the transitions. The latter is needed to locate the

(a)

(b)

FIG. 13. Behavior of local operators (a) Cx
1 and (b) C

x
2 about the

topological transition at ηc ¼ 1 in the bond-alternating Heisen-
berg chain. The main figures display results of the short-time
dynamics (obtained using iTEBD) following quantum quenches
(see the text for details about the quenches) as well as in the
ground state (obtained using iTEBD). The insets show the
expected long-time thermal equilibrium results after the quenches
evaluated using NLCE to 15 orders (NLCE-15) and 16 orders
(NLCE-16), as well as the longest-time result reported in the main
figure. All the results exhibit extrema close to the critical point.
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quantum critical point via traditional measurements of the
system in equilibrium. Also, not needing to wait long times
to observe signatures of the quantum phase transition in the
dynamics after the quench is important, because, due to
heating and other undesirable effects, keeping the dynamics
coherent in the experiments becomes increasingly chal-
lenging as the evolution time increases.
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APPENDIX A: NUMERICAL CALCULATIONS

1. Infinite-time-evolving block decimation

In this section, we briefly outline details about the
iTEBD method. The iTEBD algorithm is based on the
infinite matrix-product state (iMPS) representation, which
can efficiently represent many-body wave functions with
the accuracy controlled by the bond dimension χ (the error
decreases rapidly with increasing χ). A general quantum
state jΨi on a chain with L sites can be written in the
following MPS form [10,11]:

jΨi ¼
X

s1;…;sL

A½1�s1A½2�s2…A½N�sL js1;…; sLi; ðA1Þ

where A½n�sn is a χn−1 × χn-dimensional matrix and jsni
with sn ¼ 1;…; d is a basis of local states at site n. For any
arbitrary state jΨi represented in this product basis
js1i ⊗ � � � ⊗ jsLi, one can write

jΨi ¼
X

s1;…;sL

cs1…sL js1;…; sLi:

Doing repeated Schmidt decomposition on the state jΨi,
one can get the form for the coefficients cs1…sL :

cs1…sL ¼
X

s1;…;sN

Γ½1�s1Λ½1�Γ½2�s2Λ½2�…Λ½L−1�Γ½L�sL ; ðA2Þ

where Γ’s are rank-3 tensors and Λ’s are positive, real,
square-diagonal matrices. After doing the tensor contrac-
tions, the structure obtained can be readily identified with a
matrix product state as in Eq. (A1).
The size of the tensors χi required to represent a state can

be shown to be related to the von Neumann entropy Si of
the partition 1…i∶iþ 1…L, as Si ≤ 2 ln χi. If the entropy
is area law (as is the case for ground states of one-
dimensional gapped systems), χi remains finite in the
thermodynamic limit.
Using the iTEBD algorithm, one can evaluate the time

evolution of a quantum state:

jψðtÞi ¼ ÛðtÞjψð0Þi ðA3Þ

and use the imaginary time evolution ÛðτÞ ¼ expð−ĤτÞ to
find the ground state of the Hamiltonian Ĥ. Using the
Trotter-Suzuki decomposition to the first order, one can
write

eðÂþB̂Þδ ¼ eÂδeB̂δ þOðδ2Þ; ðA4Þ

where Â and B̂ are operators and δ is a small parameter. To
use this expression, we write the Hamiltonian as a sum of
two-site operators of the form Ĥ ¼ P

i ĥ
½i;iþ1� and decom-

pose it as a sum:

Ĥ ¼ Ĥodd þ Ĥeven

¼
X
i odd

ĥ½i;iþ1� þ
X
i even

ĥ½i;iþ1�: ðA5Þ

The terms within one partition act on different sites and,
thus, commute with each other: ½ĥ½i;iþ1�; ĥ½i

0;i0þ1�� ¼
½ĥ½2i−1;2i�; ĥ½2i0−1;2i0�� ¼ 0.
One can approximate the time evolution operator for a

very small time slice δt ≪ 1, to the first order, using
Eq. (A4), as

ÛðδtÞ ≈
�Y
iodd

Û½i;iþ1�ðδtÞ
��Y

i even

Û½i;iþ1�ðδtÞ
�
; ðA6Þ

where

Û½i;iþ1�ðδtÞ ¼ e−iδtĥ
½i;iþ1�

: ðA7Þ
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To determine the suitable δ, one can successively make it
smaller to achieve convergence. We use the bond-link
dimension χ ¼ 4000 to ensure convergence for the longest
real-time dynamics results, and the time step used is
δ ¼ 0.01. The time evolution in Eq. (A3) is obtained by
applying the operators e−iĤoddδ and e−iĤevenδ iteratively to the
initial state jψð0Þi, which has been previously decomposed
in the form of an MPS. After the application of each
operator at sites i and iþ 1 the decomposition (A2) is
updated, involving at each step only the transformation of
the tensors Γ½i�, λ½i�, and Γ½iþ1� [11,12].
For a translational invariant infinite chain, the state can

be written in the form of Eq. (A2), where Γ½i� and λ½i� are
independent of i. Thus, given that the time evolution is
generated by two-site operators, only the tensors ΓA, ΓB,
λA, and λB have to be updated, where ΓA ¼ Γ½2i�,
ΓB ¼ Γ½2iþ1�, λA ¼ λ½2i�, and λB ¼ λ½2iþ1�.
In our case, in which we also have a next-nearest-

neighbor interaction, one can group the sites (merge two
neighboring site to one) and proceed with the same
algorithm where the local Hamiltonian is now 16 × 16
instead of 4 × 4.

2. Numerical linked cluster expansion

For lattice models in the thermodynamic limit ðL → ∞Þ,
NLCE allows one calculate the expectation value of
extensive observables Ô per site, O ¼ hÔi=L, as a sum
over contributions from all connected clusters c that can be
embedded on the lattice:

O ¼
X
c

MðcÞ ×WOðcÞ; ðA8Þ

where WOðcÞ is the weight of cluster c and MðcÞ is the
number of ways per site in which one can embed c on
the lattice. WOðcÞ is computed for each cluster c using the
inclusion exclusion principle:

WOðcÞ ¼ hÔic −
X
s⊂c

WOðsÞ; ðA9Þ

where hÔic is the expectation value of Ô in the cluster c and
the sum runs over all connected subclusters of c. For the
smallest cluster c0, WOðc0Þ ¼ hÔic0 .
For each cluster, hÔic ¼ Tr½ρ̂cÔ�, where ρ̂c is the

relevant density matrix in the cluster. For the initial state
ρ̂c is of the form Eq. (4), and for the thermal state used to
describe observables after equilibration ρ̂c is of the form
Eq. (5), with their respective Hamiltonians restricted to the
cluster c. hÔic is calculated numerically using full exact
diagonalization.
We use the maximally connected expansion introduced

in Ref. [22], in which each cluster c contains all possible
bonds between the sites as per the specific Hamiltonian
considered. The order of the NLCE is then the number of

lattice sites of the largest cluster c considered in the sum
(A8). The series is convergent when errors in consecutive
orders vanish exponentially fast with increasing order.
For the thermal equilibrium results in the bond-

alternating Heisenberg model in Sec. VII (Fig. 13),
we calculate hÔic separately for the bond-alternating
Hamiltonian and its reflected configuration in c and average
them. This extra step is necessary to restore the translational
invariance assumed to build the NLCE used. For this model,
in order to calculate the temperatures of the thermal equilib-
rium ensembles used to describe observables after thermal-
ization, we use energies after the quench that are obtained
using iTEBD. With those energies, the temperatures are
obtained using a 16-order NLCE calculation. The conver-
gence errors in the calculation of the energy are smaller than
5 × 10−4 for all parameters considered (they aremuch smaller
than 5 × 10−4 for most parameters considered).

APPENDIX B: TRANSVERSE-FIELD
ISING CHAIN

The transverse field Ising chain is probably the most
studied exactly solvable (integrable) model in the context of
quantum phase transitions [1,18]. Its Hamiltonian reads

Ĥ ≐ −
XL
i

σxi σ
x
iþ1 − Γ

XL
i

σzi : ðB1Þ

It is the noninteracting limit (κ ¼ 0) of our ANNNI
Hamiltonian [Eq. (1)].
In Fig. 14, we report ground-state results forC1ð2Þ andmz

[Fig. 14(a)] and their derivatives [Fig. 14(b)], across the
ferromagnetic to paramagnetic phase transition, which
occurs in this model at Γ ¼ 1.

(a)

(b)

FIG. 14. Ground-state results for (a) Cx
1ð2Þ and mz and (b) their

derivatives, as functions of the strength of the transverse
magnetic field.
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