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a b s t r a c t 

Brain atlases and templates are at the heart of neuroimaging analyses, for which they facilitate multimodal 

registration, enable group comparisons and provide anatomical reference. However, as atlas-based approaches 

rely on correspondence mapping between images they perform poorly in the presence of structural pathology. 

Whilst several strategies exist to overcome this problem, their performance is often dependent on the type, size and 

homogeneity of any lesions present. We therefore propose a new solution, referred to as Virtual Brain Grafting 

(VBG), which is a fully-automated, open-source workflow to reliably parcellate magnetic resonance imaging 

(MRI) datasets in the presence of a broad spectrum of focal brain pathologies, including large, bilateral, intra- 

and extra-axial, heterogeneous lesions with and without mass effect. 

The core of the VBG approach is the generation of a lesion-free T1-weighted image, which enables further 

image processing operations that would otherwise fail. Here we validated our solution based on Freesurfer recon- 

all parcellation in a group of 10 patients with heterogeneous gliomatous lesions, and a realistic synthetic cohort 

of glioma patients ( n = 100) derived from healthy control data and patient data. 

We demonstrate that VBG outperforms a non-VBG approach assessed qualitatively by expert neuroradiolo- 

gists and Mann-Whitney U tests to compare corresponding parcellations (real patients U(6,6) = 33, z = 2.738, 

P < .010, synthetic-patients U(48,48) = 2076, z = 7.336, P < .001). Results were also quantitatively evaluated by 

comparing mean dice scores from the synthetic-patients using one-way ANOVA (unilateral VBG = 0.894, bilateral 

VBG = 0.903, and non-VBG = 0.617, P < .001). Additionally, we used linear regression to show the influence of 

lesion volume, lesion overlap with, and distance from the Freesurfer volumes of interest, on labeling accuracy. 

VBG may benefit the neuroimaging community by enabling automated state-of-the-art MRI analyses in clinical 

populations using methods such as FreeSurfer, CAT12, SPM, Connectome Workbench, as well as structural and 

functional connectomics. To fully maximize its availability, VBG is provided as open software under a Mozilla 

2.0 license ( https://github.com/KUL-Radneuron/KUL _ VBG ). 
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. Introduction 

Brain mapping is the process of spatially representing known brain

tructures, e.g., anatomical regions, or functional areas on a coordi-

ate system or space. Attempts to create a map of the human brain

redate the 20th century ( Moore, 2011 ; Standring, 2016 ), initially ex-
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sting mostly in anatomical and medical textbooks as sketches of ex-

ivo specimens. The earliest modern detailed cytoarchitectonic rep-

esentation of the human brain is the Brodmann atlas, published in

 monograph in 1909 and remains widely used in the field today

 Mandal et al., 2012 ). Thanks to Talairach and Tournoux ( Talairach and

ournoux, 1988 ) and similar coordinate systems as well as other ad-

ances in medical imaging and computer science, brain atlases are

ow widely used in neuroimaging and neurosurgery for structural

rain mapping ( Tzourio-Mazoyer et al., 2002 ); ( Frazier et al., 2005 );
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 Desikan et al., 2006 ); ( Makris et al., 2006 ); ( Goldstein et al., 2007 );

 Nowinski, 2016 ); ( Dickie et al., 2017 ). Atlas-based brain mapping can

e achieved accurately and non-invasively for individual subjects or

ven groups using brain images acquired from a magnetic resonance

maging (MRI) scanner. Many atlases are available non-commercially as

igital image files, representing different brain structures using specific

mage intensity values ( Dickie et al., 2017 ). 

Typically, brain atlas images are defined in the space of a template

r reference brain image, which may be a single subject image or an

veraged image from a specific cohort, e.g. Montreal Neurological Insti-

ute 152 (MNI152) brain template ( Mazziotta et al., 1995 ). Structural

rain mapping using an atlas requires it first to be spatially matched to

he brain image being mapped, or vice versa. This can be achieved by

mage registration, a process that maximizes spatial similarity between

ource and target images, also known as normalization, when a stan-

ard brain image such as MNI152 is the target. Many strategies exist,

ncluding rigid-body and affine registration, and non-affine approaches

uch as symmetric diffeomorphic registration ( Avants et al., 2008 ). If

uccessful, the resulting transforms and/or warps can be used to bring

he atlas to the patient’s brain or, vice versa, achieving a basic brain

apping, which may be efficient but lacking in tissue and subject speci-

city. More advanced pipelines e.g. Freesurfer ( Fischl, 2012 ) recon-all

 FreeSurferWiki, 2020a ) leverage several steps e.g. brain extraction, tis-

ue segmentation and surface-based registration to maximize tissue and

ubject specificity. 

Structural brain mapping, also called segmentation or parcellation,

an normally be automated, and is available through several programs

uch as FSL ( Jenkinson et al., 2012 ), SPM ( Ashburner et al., 2006 ),

NTs ( Avants et al., 2011a ), Freesurfer ( Fischl, 2012 ), AFNI ( Cox, 1996 )

nd others https://github.com/topics/neuroimaging (accessed 8.2.20),

 Hanke and Halchenko, 2011 ; Jahn, 2020 ) and https://www.nitrc.org/ .

owever, as this process typically relies on image contrast between tis-

ues and prior anatomical knowledge, most methods are optimized for

natomically normal or close to normal brains without major morpho-

ogic aberrations. Consequently, brain parcellation remains problematic

n the presence of structural brain pathology (( Weiller et al., 1995 );

 Nachev et al., 2008 ); ( Solodkin et al., 2010 ); ( Ledig et al., 2015 ). It

s important to realize that brain pathologies are highly heterogeneous,

ften requiring tailored solutions depending on the nature of the pathol-

gy. For example, diffuse pathologies such as Alzheimer’s disease can be

ddressed using more specific or age appropriate priors ( Fillmore et al.,

015 ), as it causes global atrophic changes without distorting the gen-

ral shape of the brain. 

In contrast, for focal lesions, the appropriate solution depends on

he type of affected tissue and size of the lesion. For example, small

hite matter lesions typically only have a minor effect on brain map-

ing but can bias subsequent analyses such as voxel-based morphom-

try (VBM) ( Guo et al., 2019 ). Such an impact can be mitigated us-

ng lesion filling where the lesioned voxels are replaced with inten-

ity values consistent with neighboring unaffected voxels ( Chard et al.,

010 ); ( Battaglini et al., 2012 ); ( Magon et al., 2014 ); ( Popescu et al.,

014 ); ( Griffanti et al., 2016 ); ( Prados et al., 2016 ); ( Guo et al., 2019 );

 Schmidt et al., 2019 )). Larger gray matter lesions (e.g., large focal cor-

ical dysplasia) cannot be addressed using lesion filling unless this is

onstrained to replicate only healthy gray matter intensities and pre-

erve cortical shape. Pathologies affecting different brain tissues, i.e.,

ot confined to gray matter, white matter or a cerebrospinal fluid (CSF)

ompartment such as brain tumors, stroke, tumefactive multiple scle-

osis and others are more difficult to tackle. Moreover, the presence

f pathological mass effect, and perilesional edema adds to this diffi-

ulty. Such pathology can potentially degrade the performance of many

teps in a brain mapping pipeline, e.g. skull stripping (( Iglesias et al.,

011 ); ( Lutkenhoff et al., 2014 ); ( Isensee et al., 2019 ), making it dif-

cult and even impractical to use automated whole-brain structural

apping pipelines for such patients. Freesurfer( Fischl, 2012 ) recon-all

 FreeSurferWiki, 2020a ) failure rates can be as high as 30% ( Reid et al.,
2 
016 ) in moderately pathological cerebral palsy brain images, and even

igher in case of brain tumors ( Zhang et al., 2017 ). 

A number of methods have been proposed to address the prob-

em of brain mapping in the presence of pathology. However, to date

here is no consensus on which are the most optimal, nor is a solu-

ion available that can be broadly applied to different types of lesions.

or example, in case of small or subtle lesions Freesurfer ( Fischl, 2012 )

econ-all ( FreeSurferWiki, 2020a ) and similar pipelines may still work.

arger or more obvious lesions may benefit from a cost function mask-

ng (CFM) approach ( Brett et al., 2001 ); ( Andersen et al., 2010 )).

his means that the lesion is masked out of the input brain im-

ge, and the registration is limited to the non-lesioned brain tissue.

FM has been reported to improve results in some cases (( Kim et al.,

007 ); ( Andersen et al., 2010 ), but may also result in a lower qual-

ty parcellation in case of large lesions ( Nachev et al., 2008 ). Oth-

rs resort to functional mapping using resting-state functional MRI to

arcellate all healthy gray matter ( Wang et al., 2015 ), or use task-

ased fMRI for a partial mapping ( Reid et al., 2016 ). Few studies

ave exclusively investigated this issue in different pathological co-

orts (( Weiller et al., 1995 ); ( Nachev et al., 2008 ); ( Solodkin et al.,

010 ); ( Ledig et al., 2015 ). Besides the CFM approach, only two of

hese resulted in dedicated solutions that were made available non-

ommercially, namely enantiomorphic normalization ( Nachev et al.,

008 ) http://www.bcblab.com/BCB/normalization.html and MALP-EM

 Ledig et al., 2015 ) https://github.com/ledigchr/MALPEM . 

. Aims of the study 

First, we propose a new workflow to reliably segment/label MR im-

ges in the presence of a broad spectrum of focal brain pathologies,

hether extra-axial or intra-axial, including large, bilateral, heteroge-

ous lesions with and without mass effect. In doing so, we provide a

olution that facilitates state-of-the-art MRI analyses in clinical popula-

ions. Subsequently, we test and evaluate its performance in a sample

f clinical data and a sample of realistic synthetic data. 

. Material and methods 

.1. Proposed workflow 

We present a fully automated open-source image processing pipeline

alled “Virtual brain grafting ” (VBG). Briefly, VBG encompasses two ap-

roaches for intra-axial lesions, both of which generate a synthetic tem-

late brain image. The first approach is intended for unilateral lesions

uVBG), it generates a donor brain using the native non-lesioned hemi-

phere and one hemisphere from the synthetic template brain image.

he second approach is intended for bilateral lesions (bVBG) here the

ynthetic template brain image is used directly as the donor brain. Both

pproaches use the same synthetic template brain, 2 mm full-width half-

aximum (FWHM) 3D Gaussian smoothed masks to fill the lesion, and

 two-step lesion-filling. 

A third approach, inspired by the recent work of Hou et al.

 Hou et al., 2020 ), is included for extra-axial lesions, where the lesion

s zero-filled, though this is not based on virtual grafting. VBG uses

arious open-source Unix-based image processing programs in a fully

utomated pipeline, including ANTs ( Avants et al., 2011a ) v2.3.0, FSL

 Jenkinson et al., 2012 ) v6.0, MRtrix3 ( Tournier et al., 2019 ) v3.0_RC3,

nd Freesurfer ( Fischl, 2012 ) v6.0. However, the steps outlined below

ay be executed with different programs, VBG as described here is fully

utomated, currently available for use without the need for any closed-

ource software. Required inputs are a 3D T1-weighted image and a

inary integer format lesion mask covering the entire pathology in the

ame space, which can be obtained using any manual or semi-automated

egmentation tool-box ( McCarthy, 2020 ; Yushkevich et al., 2006 ). This

ask should cover the entire lesion and include perilesional edema if

ny. 

https://github.com/topics/neuroimaging
https://www.nitrc.org/
http://www.bcblab.com/BCB/normalization.html
https://github.com/ledigchr/MALPEM
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Fig. 1. Schematic representation of VBG: Part 1 generates the lesion-free image. It starts in the top left with basic processing and Atropos segmentation (light blue), 

donor image generation and initial filling (yellow), then final lesion filling (pink). Part 2 is concerned with parcellation (orange). Lastly a text report is generated 

detailing lesion overlap with various labelled brain structures. 
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VBG can be split into two main parts, i.e. (1) lesion filling and (2)

hole-brain parcellation of the lesion-free output image using Freesurfer

 Fischl, 2012 ) recon-all ( FreeSurferWiki, 2020a ). The different steps are

xplained broadly below, illustrated in Fig. 1 and with additional detail

rovided in the supplementary material. 

.1.1. Part 1, lesion filling; this generates the lesion-free T1-weighted 

mages through the following 3 stages 

. Basic preprocessing. This stage applies basic preprocessing to the in-

ut T1-weighted image and lesion mask. It starts with image reorienta-

ion in FSLpy ( McCarthy et al., 2020 ), denoising ( Manjón et al., 2010 )

nd bias correction ( Tustison et al., 2010 ) and denoising ( Manjón et al.,

010 ) in ANTs ( Avants et al., 2011a ), and brain extraction using HD-

ET ( Isensee et al., 2019 ) or ANTs ( Avants et al., 2011a ). The brain is

hen warped using cost-function masking in ANTs ( Avants et al., 2011a )

o the VBG template brain in MNI space. Finally, ANTs ( Avants et al.,

011a ) Atropos ( Avants et al., 2011b ) is applied for segmenting the

arped brain while excluding the lesion using the brain mask with the

esion subtracted. 

. Initial donor image generation. The second stage involves flipping the

rain along the right-left axis, iterative deformation to match the tem-
3 
late brain using ANTs ( Avants et al., 2011a ), synthesizing an initial

onor image from the inverse warped template and tissue probability

aps (TPMs), and selecting the appropriate pipeline for unilateral or

ilateral lesions. 

TPM-based T1-weighted image synthesis (supplementary figure 1) uses

he inverse warped template, prior TPMs, subject’s brain image and

PMs with the lesion excluded. First the input brain images are nor-

alized by a two-pass mean division, and the template (source) TPMs

re binarized at a lower threshold of 0.1 and used as masks to isolate

ach tissue from the source image. The target TPMs are binarized at

5% probability and used to calculate target tissue specific mean in-

ensity with mrstats ( Tournier et al., 2019 ). Each source tissue map is

ultiplied by the corresponding target tissue mean, and a forced cor-

ection of CSF signal intensity is used to scale its maximum to 0.2 of the

ray matter mean signal intensity. Finally, all tissues are combined using

calar addition with ImageMath “addtozero ” ( Avants et al., 2011a ). 

Automated lesion laterality detection (supplementary figure 2) sets the

orkflow to be followed for the rest of the script. It uses the lesion

ask in MNI space, and binary masks of the template’s right and left

emispheres. 

If the lesion is unilateral, the lesioned hemisphere is replaced with a

ynthetic hemisphere retaining the non-lesioned native hemisphere. The
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esulting image is called a stitched brain. An initial filled brain image is

enerated by replacing the lesion with healthy tissue from this stitched

rain. Next, the stitched brain is further deformed to match the initial

lled one, then segmented into different tissues with ANTs ( Avants et al.,

011a ) Atropos ( Avants et al., 2011b ). If the lesion is bilateral the syn-

hetic brain is directly used to derive the initial filled brain, which is

hen segmented with Atropos ( Avants et al., 2011b ). 

. Final donor image generation and fill. This constitutes the last stage

n lesion filling. Here the initial filled brain is warped back to native

pace and sharpened with ANTs ( Avants et al., 2011a ) to create the

nal donor brain image. The lesion replacement graft is harvested using

 2 mm FWHM smoothed mask and inserted into the recipient image,

imilar to ( Chard et al., 2010 ). The skull and noise are added back to

enerate a realistic lesion-free whole head T1-weighted image. Finally,

he initial transformation is reversed to generate the image in native

rientation. Whole head, brain extracted, and brain mask images are

aved in original and standard orientations. 

.1.2. Part 2, brain parcellation 

This involves running recon-all ( FreeSurferWiki, 2020a ) on

he output lesion-free image in native orientation. First recon-all

 FreeSurferWiki, 2020a ) is run until the brain extraction stage,

hen the VBG generated brain mask is applied to the recon-all

 FreeSurferWiki, 2020a ) results, after which it is restarted and run to

he end. Finally, parcellation maps are generated with an additional le-

ion label, and with a zero-filled lesion. 

.2. VBG testing and evaluation 

.2.1. General outline 

Dice similarity coefficient (DSC) calculations represent one of the

ainstays for quantitative analyses of segmentation accuracy in the

resence of a ground truth. In the case of brain pathology, a manual de-

ineation is typically used as the ground truth. However, for the whole

rain this process would be highly time consuming and was not feasi-

le for the current work. Thus, we resorted to two approaches: first, we

rocessed and parcellated T1-weighted images from 10 clinical patient

articipants (real-patients) with gliomas, with and without the proposed

ethod. We included patients with gliomatous lesions of different sizes

nd locations. A group of healthy control (HC) volunteers ( N = 10) was

lso included. We generated a synthetic cohort ( N = 200), consisting of

wo groups. First, a lesion-free group ( N = 100), which was created by

on-linear deformation of the HC images to match the mass effect of

he patients, referred to henceforth as the synthetic-mass-effect group.

econd, a synthetic-patients group ( N = 100) were generated contain-

ng both the mass effect and the lesions. All synthetic-mass-effect im-

ges were parcellated with recon-all ( FreeSurferWiki, 2020a ) and the

ynthetic-patients images were parcellated after VBG filling. We also at-

empted to parcellate the real-patients and synthetic-patients’ images

ithout VBG. We assessed the parcellation accuracy of all volumes-of-

nterest (VOIs) outside the lesion patch both qualitatively and quantita-

ively. Fig. 2 shows a schematic of both the image processing steps and

he evaluation procedures. 

All completed non-VBG parcellations (HC, real-patients, and

ynthetic-mass-effect), real-patients’ non-VBG and uVBG, synthetic-

atients non-VBG and corresponding synthetic-patients’ uVBG parcel-

ations were qualitatively evaluated ( Section 3.4.1 .). For the synthetic-

ass-effect parcellations this was used to confirm acceptable quality

rior to further analyses. None of these were excluded. Consequently, all

ompleted synthetic-patients’ parcellations (non-VBG, uVBG and bVBG)

ould be quantitatively evaluated with DSC using the corresponding

ynthetic-mass-effect parcellations as the ground truth ( Section 3.4.2 .). 

Statistical tests used the results of both evaluation approaches to in-

estigate the accuracy of VBG-driven parcellations. Exploratory analyses
4 
sing linear regression were also used to investigate the effects of the le-

ions on each VOI’s DSC in the VBG-driven parcellations ( Section 3.3.4 ).

ig. 3 shows representative slices from the patients and uVBG-generated

esion-free output. 

.2.1.1. Participants. This study included ten adult surgery naïve pa-

ients with gliomas (3 females, 7 males, age range 19 – 61 years, me-

ian 36.5), and 10 adult healthy participants (8 females, 2 males, age

ange 18 – 66 years, median 35) who were free of any neurological dis-

ase. This study was approved by the local research ethics committee at

Z/KU Leuven, Leuven, Belgium, study number S61759, and conducted

n accordance with the Declaration of Helsinki. A written informed con-

ent was acquired from each participant prior to scanning. Table 1 lists

esion features, and MR acquisition. 

.2.1.2. Medical image acquisition. MRI acquisition used two 3-Tesla

canners (Achieva dStream and Ingenia-X, Philips Medical Systems,

est, The Netherlands), both with 32 channel phased array receive

ead coils. The following images were acquired for the patients:

agittal 3D Turbo-Field Echo T1-weighted images pre and post intra-

enous gadolinium injection (TR/TE/FA: 9 ms/4.1 ms/8°, voxel size:

.9 × 0.88 × 0.88 mm, matrix: 200 × 288 × 288), sagittal 3D Turbo-

pin-Echo (TSE) T2-weighted images (TR/TE/FA: 3000 ms/280 ms/90°,

oxel size: 0.9 × 0.98 × 0.98 mm, matrix: 220 × 256 × 256), and sagit-

al 3D TSE T2 fluid attenuation inversion recovery (FLAIR)-weighted

mages, (TR/TE/TI/FA: 2800 ms/340 ms/1650 ms/90°, voxel size:

.0 × 0.98 × 0.98 mm, matrix: 200 × 256 × 256). We used all avail-

ble modalities for lesion segmentation and only the pre-contrast T1-

eighted images for the rest of this study. The healthy participants were

canned on the same scanners with the same non-contrast enhanced T1-

eighted scan but reconstructed at 0.6 × 0.6 × 0.6 mm voxel size and

atrix size of 228 × 384 × 384. One patient (PAT004) was included

ut had only post-contrast T1-weighted images acquired with the same

rotocol as the healthy participants. 

.3. Image processing 

.3.1. Lesion segmentation 

Lesion masks were generated by a neuro-radiologist (AR) in ITK-snap

 Yushkevich et al., 2006 ) v3.8.0 in Mac OSX 10.13.6. We followed the

rotocol described in ( Yushkevich et al., 2019 ) for multimodality semi-

utomated lesion segmentation. However, we aggregated the different

esion tissue components into a single binary mask, which is required

or VBG. The remainder of the work used the original unprocessed pre-

ontrast T1-weighted images. The pathological mass effect of the real

atients was subjectively rated (by AR) into none, mild, moderate, and

evere for descriptive purposes. 

.3.2. Initial VBG application 

Following lesion segmentation, the uVBG approach was applied to

enerate lesion-free T1 brain images from the real-patients’ data. None

ere excluded upon visual inspection. All images were included with

heir original resolution since VBG is designed to accommodate varying

patial resolutions. The lesion-free images generated here were used to

reate the synthetic cohort. 

.3.3. Synthetic cohort creation 

.3.3.1. The synthetic-mass-effect group. This was generated using ANTs

 Avants et al., 2011a ) nonlinear warping of each HC T1 brain image to

ach real-patient’s lesion-free uVBG output image, then applying the

enerated transforms and warps to the whole head T1-weighted im-

ges resulting in 100 synthetic subjects. All 10 HCs were registered

o each real-patients image mimicking the pathological mass effect of

ach patient in the 10 HCs. Resulting images were used as the syn-

hetic ground truth for quantitative evaluation. We hypothesized that

n the absence of a focal pathology, Freesurfer ( Fischl, 2012 ) recon-all
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Fig. 2. A schematic representation of the VBG validation process. Top: image processing steps applied to generate the Freesurfer parcellations used for evaluation, 

1–2. Bottom: qualitative and quantitative evaluation and statistical testing, 3–5. (PAT = real patients, HC = healthy controls, SM = synthetic-mass-effect group, SP 

–= synthetic-patients group, VBG = virtual brain grafting, uVBG = unilateral VBG, bVBG = bilateral VBG), VBG derived datasets are highlighted in gray. 

(  

r  

t

3  

f  

b  

m  

i  

e  

k  

p  
 FreeSurferWiki, 2020a ) would be able to run without failure and accu-

ately represent the mimicked pathological mass effect in the parcella-

ions. 

.3.3.2. The synthetic-patients group. These images were generated as

ollows: first the intensity histogram of each real patient’s original T1

rain image was matched to the target synthetic-mass-effect image with
5 
rhistmatch ( Tournier et al., 2019 ). The lesion patch and edema were

solated from the patient’s image and inserted into the synthetic-mass-

ffect brain using a smoothed lesion mask (2 mm FWHM 3D gaussian

ernel) to avoid a sharp interface with the recipient image. This ex-

anded our test group to 100 simulated patients, accurately represent-
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Fig. 3. Representative sagittal and axial slices from each patient and the results of uVBG lesion filling demonstrated in axial. Asterisk indicates postcontrast T1- 

weighted image used as input. (VBG = virtual brain grafting, PAT = real patients). 

Table 1 

Lesion features and MR acquisition. 

Patient ID Lesion location Lesion grade 

(WHO) 

Lesion + edema 

mask volume in cm 

3 

Mass effect 

severity 

MR images acquired 

PAT001 Left temporal Low grade 109.75 Moderate T1 / T2 / FLAIR / T1 + c 
PAT002 Right temporo-parietal High grade 190.48 Severe T1 / T2 / FLAIR / T1 + C 
PAT003 Right frontal Low grade 38.98 None T1 / T2 / FLAIR / T1 + C 
PAT004 Left fronto-parietal High grade 171.71 Moderate T2 / FLAIR / T1 + C 
PAT005 Left fronto-parietal High grade 70.41 Mild T1 / T2 / FLAIR / T1 + C 
PAT006 Right parietal Low grade 21.41 None T1 / T2 / FLAIR / T1 + C 
PAT007 Right midline parietal High grade 77.44 Moderate T1 / T2 / FLAIR / T1 + C 
PAT008 Left frontal Low grade 17.51 None T1 / T2 / FLAIR / T1 + C 
PAT009 Right temporal Low grade 101.56 Mild T1 / T2 / FLAIR / T1 + C 
PAT010 Left parieto-occipital High grade 70.35 Mild T1 / T2 / FLAIR / T1 + C 

PAT = real patients, cm 

3 = cubic centimeter, FLAIR = fluid attenuation inversion recovery, + C = contrast enhanced, 

WHO = world health organization, WHO grades I&II = low-grade glioma, and WHO grades III&IV = high-grade glioma. 
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p
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a  
ng each patient’s pathology in each of the 10 healthy volunteers ( sup-

lementary figure 3 ). 

.3.4. Parcellation 

All VBG lesion filling and recon-all ( FreeSurferWiki, 2020a ) par-

ellations were done on a dedicated compute node of the Vlaams

Flemish) Supercomputer Center (VSC) with two Intel Xeon Gold 6240

.6 GHz CPUs, 36 cores in CentOS 7.8.2003. The HC ( N = 10) and

ynthetic-mass-effect ( N = 100) data were parcellated using recon-all

 FreeSurferWiki, 2020a ) with an HD-BET ( Isensee et al., 2019 ) brain

ask inserted, as done in VBG. The real-patients ( N = 10) and synthetic-
6 
atients ( N = 100) data were parcellated with uVBG and attempted after

nly zero-filling the lesion patch similar to CFM, and also without VBG

lling (non-VBG). bVBG was applied to a subset of synthetic-patients

 N = 25), since there were no true bilateral lesions in our sample.

on-VBG real-patients and synthetic-patients parcellations were used as

ontrol parcellations to compare recon-all ( FreeSurferWiki, 2020a ) suc-

ess/failure rates and parcellation quality with and without VBG. A total

f 455 recon-all ( FreeSurferWiki, 2020a ) analyses were attempted, each

ith a runtime cap of 8 h using GNU timeout. Those that quit with an

rror or exceeded the timeout duration were considered to have failed,

nd all parcellations were allowed two attempts in case of failure. We
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Fig. 4. Representative coronal slices for each qualitative score (Red boxes indicate identified defects). Score 3 indicates the best quality and score 0 indicates the 

worst. 
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mposed the 8-hour time limit after an initial test of non-VBG recon-all

 FreeSurferWiki, 2020a ) on the first 18 synthetic-patients’ images using

 cores per subject continued for 24 h with less than 50% completion

ate, while VBG driven recon-all tended to finish in under 7 h. 

.4. Evaluation 

.4.1. Qualitative evaluation 

Two independent experienced neuro-radiologists (NS & SS) visually

valuated the parcellations and assigned a quality score. We attempted

o minimize rater bias, particularly for the evaluation of lesioned brain

arcellations. More specifically, our main concern was blinding the

aters to whether the parcellation came from VBG or not, and whether

he source was real or synthetic data. To this end we resorted to (a)

oding and mixing datasets together, and (b) standardizing the parcel-

ations by using the lesion free T1-weighted images as underlays and

ubtracting the lesion patch from all parcellations except the HC group,

hich we used to imply a gold standard. This allowed us to blind our

xpert raters to the source image of all parcellations of interest. Images

ere given to the raters as high-resolution multi-frame panels in axial,

oronal and sagittal with 10 mm interslice gap, generated using fsleyes

ender ( McCarthy, 2020 ). Example coronal slices from each qualitative

core are shown in Fig. 4 . 

The qualitative evaluation protocol we used can be described as fol-

ows: 

A defect (error) may be minor, intermediate or major. A minor de-

ect was defined as an unlabeled cluster of voxels (e.g., 10) belonging

o gray matter, or non-brain tissue e.g., dura labelled as gray matter, or

 more subtle focal underestimation of the cortical ribbon thickness. An

ntermediate defect/error was a larger falsely labelled or unlabeled area

n the scale of the inferior frontal gyrus pars orbitalis, or anterior tem-

oral pole. Finally, a major defect was any defect on the level of a whole

yrus or larger. We defined four categories for the quality of a parcella-
7 
ion: 3 – Good, up to 3 minor unconnected defects, which can happen

ith structurally normal data ( FreeSurferWiki, 2020b ; Guenette et al.,

018 ; Klein et al., 2017 , 2005 ; McCarthy et al., 2015 ). 2 – Acceptable,

p to 5 minor, unconnected, or 1 intermediate scale defect/error. 1 –

air, between 5 and 7 unconnected minor defects, or 2 intermediate

nconnected defects. 0 – Poor, > 7 unconnected minor defects, > 2 in-

ermediate defects or a major defect. 

Experts rated all completed non-VBG synthetic-patients, real-

atients parcellations, corresponding uVBG driven ones, all the synthetic

ass-effect, and HC parcellations. We also added a group of a-posteriori

arped HC parcellations (HC 

∗ ), where each HC parcellation was warped

o a patient using ANTs ( Avants et al., 2011a ) and nearest-neighbor in-

erpolation. 

.4.2. Quantitative evaluation 

We relied on DSC as a quantitative measure of parcellation quality.

or reference, DSC is a measure of spatial similarity between two binary

mages, ranging between 0 and 1, with 0 meaning no similarity and 1

eaning perfect agreement. It can be expressed as follows (if X repre-

ents the synthetic-mass-effect VOI and Y the synthetic-patient VOI): 

 𝑺 𝑪 = 

2 ∗ ( 𝑿 ∩ 𝒀 ) 
( 𝑿 ∪ 𝒀 + 𝑿 ∩ 𝒀 ) 

In Matlab r2018a we calculated the center of mass (CoM) of each

abel in the synthetic-mass-effect parcellations, then the shortest Eu-

lidean distance from each VOI’s CoM to the lesion mask. This is referred

o simply as “distance ”. Lastly, we calculated the percent of volume by

hich each VOI overlaps with the lesion mask, referred to for simplicity

s “percent overlap ”, another factor we hypothesized would influence

ccuracy. 
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Table 2 

Parcellation outcomes, inclusions for visual QC, DSC calculations, and inter-rater reliability results. 

Lesioned data (PAT + SP) Lesion-free data 

(HC + SM) 

Parcellations Non-VBG uVBG bVBG Non-VBG 

Attempted 10 PAT + 100 SP 10 PAT + 100 SP 25 SP 10 HC + 100 SM 

Completed 6 PAT + 48 SP 10 PAT + 100 SP 25 SP all 

Failed 1st attempt 6 PAT + 56 SP (zF) 1 PAT ∗ none none 

Failed 2nd attempt 4 PAT + 52 SP 

(non-VBG) 

none none none 

Visual QC per expert 6 PAT (common) + 34 

SP (24 unique) 

10 PAT (common) + 34 SP 

corresponding to non-VBG 

SP (24 unique and 10 

common) 

none 10 HC (common) + 10 

HC ∗ (common) + 61 SM 

(39 unique + 22 common) 

DSC 48 SP non-VBG vs. 

corresponding SM 

100 SP vs. corresponding 

SM 

25 SP vs. 

corresponding SM 

100 SM (as ground truth) 

Gwet’s AC2 ( 𝚪) 

scores 

PAT non-VBG = 0.910 PAT uVBG = 0.932 - SP 

uVBG = 0.849 

– All = 0.967 - SM 

only = 0.969 - HC 

only = 0.988 - HC ∗ 

only = 0.936 

SP = synthetic patient, PAT = real patient, SM = synthetic mass effect group, HC = healthy control, HC ∗ = a -posteriori warped HC 

parcellations, uVBG = unilateral VBG, bVBG = bilateral VBG, DSC = dice similarity coefficient, uVBG 

∗ = uVBG corresponding to 

completed non-VBG parcellations, ANOVA = analysis of variance, df = degrees of freedom, Std dev = standard deviation, Stat = statistic. 
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.5. Statistical analyses 

All statistical testing was done in Matlab r2018a, results were consid-

red significant at P ≤ .05. For inter-observer agreement we compared

he visual scores of the parcellations evaluated by both experts using

wet’s AC2 (gamma) ( Gwet, 2016 ) in mReliability tools ( Girard, 2016 ).

o ensure the validity of the synthetic-mass-effect group parcellations

e first compared their visual scores to those of the HCs plus the a-

osteriori warped HC parcellations using an unpaired Mann-Whitney U

MWU) test. Secondly, we asked “Are VBG driven parcellations qualita-

ively rated higher than non-VBG parcellations? ” To answer this question,

e compared the ratings of the real-patients and synthetic-patients non-

BG driven parcellations to corresponding unilateral VBG driven parcel-

ations using a paired Mann-Whitney U test. 

The remaining analyses focused on the synthetic-patients quantita-

ive evaluation results. Here, we asked “Do VBG driven parcellations have

igher dice scores than non-VBG driven parcellations? ” All dice values from

he three parcellation types were plotted for visual comparison. Next,

e compared the mean dice values from the three parcellation meth-

ds. First, we compared completed non-VBG parcellations to the corre-

ponding uVBG ( N = 48 non-VBG and N = 48 uVBG) and bVBG ( N = 25

on-VBG and N = 25 bVBG) ones separately using paired two-sample

-tests. Then the common parcellations from the three approaches in a

ne-way ANOVA and post hoc paired t-tests ( N = 20) 

Additionally, we explored the effect of the lesion on uVBG and bVBG

SC with Spearman correlations between average DSC per subject and

he lesion volume. Each 10 synthetic-patients with the same lesion were

ssigned the lesion volume as calculated from their source real-patient.

ext, we applied linear regression to investigate the effect of different

esion properties on uVBG and bVBG DSC, namely lesion volume, dis-

ance of the VOI from the lesion in mm, and percent overlap between

he lesion and the VOI. We hypothesized that larger lesions would result

n a global reduction of DSC scores, and that VOIs closer to the lesion

nd/or with higher lesion overlap would have a lower DSC score than

hose further away and/or without overlap. The parameters explaining

ost of the variance were used in a stepwise multiple linear regression

odel, with the pooled VOI DSC scores from all subjects in the synthetic-

atients group as dependent variable. 

. Results 

First, the parcellations derived from the synthetic-mass-effect group

ere comparable in visual quality scores (88 scored 3, 11 scored 2,
8 
nd 1 scored 1) to the HC group and a-posteriori warped HC parcel-

ations (15 scored 3, and 5 scored 2). A two-tailed MWU test com-

aring both groups without pairing indicated no significant differ-

nces, U(100,20) = 1127.5, z = 1.486, P = .137. Secondly, Gwet’s

C2 ( Gwet, 2016 ) was used to measure inter-observer reliability. This

howed a good overall agreement between both experts using all com-

on parcellations (gamma = 0.943, observed agreement = 0.960,

hance agreement = 0.318). Thirdly, we report on the results of par-

ellation, qualitative and quantitative evaluations, as well as the paired

tatistical comparison of parcellation methods and exploratory analyses

see supplementary information for results of the unpaired comparison).

able 2 lists the attempted, completed and failed parcellations, inclu-

ions for visual QC, and DSC calculations, as well as Gwet’s AC2 results

or inter-rater reliability. 

We included the results from the second attempt (non-VBG,

 = 48/52 completed/failed, grand average DSC = 0.675, and standard

eviation = 0.281) due to higher DSC values and more completed parcel-

ations (see supplementary information for results of the first attempt).

ll synthetic-patients uVBG parcellations succeeded on the first attempt.

nly 1/10 Patient’s uVBG parcellation failed initially, but completed on

he second attempt, compared to 6/10 failed after zero-filling and 4/10

ailed non-VBG patients parcellations. We used the minimum of the vi-

ual scores assigned for the common parcellations by both experts, and

he remaining unique scores from each expert. 

Qualitative evaluation showed real-patients uVBG parcellations scored

ignificantly higher than corresponding non-VBG ones, U(6,6) = 33,

 = 2.738, P < .01. uVBG also outperformed non-VBG parcella-

ions in the synthetic-patients group. This was confirmed on a paired

WU-test comparing corresponding parcellations from both methods

(48,48) = 2076, z = 7.336, P < .001. 

Quantitative analysis also confirmed this impression using the

ynthetic-patients average DSC scores, uVBG out-scored non-VBG in the

aired two-sample t -test ( N = 48 each, t-stat = 3.011, P < .01, t-critical

wo-tailed = 2.684). One-way ANOVA and post hoc paired t-tests com-

aring the common parcellations from the three approaches (uVBG,

VBG and non-VBG, N = 20 each) showed significant differences be-

ween the three groups, with both VBG approaches scoring significantly

igher than non-VBG. Table 3 lists the visual scores summary statistics,

nd paired DSC comparison results. 

Fig. 5 Shows plotted visual scores from all synthetic-patients non-

BG and uVBG parcellations plus the average DSC scores from the

ynthetic-patients common to the three parcellation approaches. Un-

aired analysis results are detailed in supplementary information. 
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Table 3 

Visual scores summary statistics and paired DSC comparison results. 

(A) Visual scores summary statistics 

Parcellation Count Completed/failed Visual QC Score 0 

(worst) 

Score 1 Score 2 Score 3 

(best) 

uVBG PAT 10 10/0 10 0 1 1 8 

non-VBG PAT 10 6/4 6 0 1 4 1 

uVBG SP 100 100/0 48 0 9 15 76 

bVBG SP 25 25/0 none – – – –

Non-VBG SP 100 48/52 48 18 10 15 7 

Non-VBG SM 100 100/0 100 0 1 12 87 

Non-VBG HCs 10 10/0 10 0 0 1 9 

Non-VBG HCs ∗ 10 10/0 10 0 0 4 6 

(B) Paired DSC comparison results (matching the three approaches) 

Summary statistics 

Groups Count Average Std dev 

uVBG 20 0.894 0.020 

bVBG 20 0.903 0.017 

Non-VBG 20 0.617 0.286 

ANOVA: Single factor 

Source of variation df F P -value F critical 

Between groups 2 19.188 < 0.0001 3.158 

Within groups 57 

Total 59 

Post hoc t-tests: Paired two-sample assuming unequal variances 

df t stat P (two-tail) t critical (two-tail) 

uVBG vs non-VBG 19 2.871 < 0.01 2.093 

bVBG vs non-VBG 19 3.008 < 0.01 2.093 

SP = synthetic patient, PAT = patient participant, SM = synthetic mass effect group, HCs = healthy control partici- 

pants, HCs ∗ = a -posterior warped HCs, uVBG = unilateral VBG, bVBG = bilateral VBG, DSC = dice similarity coefficient, 

uVBG 

∗ = uVBG corresponding to completed non-VBG parcellations, ANOVA = analysis of variance, df = degrees of free- 

dom, Std dev = standard deviation, Stat = statistic. 

Table 4 

Statistical results exploring the relation between DSC and lesion characteristics. 

Statistical test Independent 

variables 

Results (significance accepted at P < .05) 

uVBG SC LeV r s = − 0.862 P < .001 

Adjusted R 2 Beta P value RMS Error 

SLR Log 10 D 0.467 0.130 < 0.001 0.064 

SLR %ov 0.542 − 0.004 < 0.001 0.059 

MLR Log 10 D 0.576 Log 10 D: 0.050 < 0.001 0.057 

LeV LeV: − 4.6e-05 

%ov %ov: − 0.003 

bVBG SC LeV r s = − 0.894 P < .001 

Adjusted R 2 Beta P value RMS Error 

SLR Log 10 D 0.409 0.120 < 0.001 0.064 

SLR %ov 0.598 − 0.004 < 0.001 0.060 

MLR Log 10 D 0.605 Log 10 D: 0.02 < 0.001 0.060 

LeV LeV: − 7.0e-05 

%ov %ov: − 0.004 

uVBG = unilateral VBG, bVBG = bilateral VBG, RMS = root mean squared, LeV = lesion volume in milliliters, 

Log 10D = log 10 shortest Euclidean distance in millimeters,%ov = percent label to lesion volume overlap, 

SC = spearman correlation, SLR = simple linear regression, MLR = multiple linear regression. 
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We found a strong logarithmic relationship between distance and

SC, thus log 10 scaled distance measure was used for exploratory anal-

ses. Results from the statistical tests used to explore the lesion’s influ-

nce on DSC are listed in Table 4 . 

Briefly, we found a strong significant inverse association using Spear-

an correlation (uVBG ( N = 100): r s = − 0.863, P < .001; bVBG ( N = 25):

 s = − 0.89, P < .001), between the average dice scores per subject and

esion volumes. Simple linear regression (SLR) revealed a significant in-

erse relation between the DSC per VOI and log 10 scale distance, and a

ignificant inverse relation to percent overlap. Results of the SLR tests

or uVBG and bVBG dice scores versus log 10 distance are shown in Fig. 6 ,

long with those of the non-VBG parcellations for comparison. In a mul-
9 
iple linear regression model, these variables together explained 58%

f the variance in dice scores. Results using the shortest Euclidean dis-

ance between each VOI CoM and Hausdorff distances as measures of

imilarity are provided in the supplementary information. 

. Discussion 

The first aim of this work was to propose and explain VBG as

 workflow for heterogeneous brain lesion filling and optional sub-

equent structural mapping using Freesurfer ( Fischl, 2012 ) recon-all

 FreeSurferWiki, 2020a ). Our second aim for this study was to test and

valuate the quality and accuracy of the VBG driven whole brain parcel-
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Fig. 5. (A) shows synthetic-patients (SP) visual scores for uVBG & non-VBG parcellations. (B) shows a box-plot comparison of grand average dice scores from all 

VOIs outside the lesion mask of all subjects common to the three parcellation approaches used (uVBG, bVBG and non-VBG, N = 20 each), asterisks indicate statistical 

significance at P < 0.05 ( < 0.01), error bars indicate standard error. (VBG = virtual brain grafting, uVBG = unilateral VBG, bVBG = bilateral VBG). 
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ations. We chose a test sample of preoperative patients with gliomas for

his work as they provide a variety of lesion sizes, locations, and mass

ffect. 

Our evaluation shows a significant benefit from using VBG in this

roup, both qualitatively and quantitatively in the real and synthetic

ohorts. Put simply, VBG allows an accurate parcellation for patients

here recon-all ( FreeSurferWiki, 2020a ) would otherwise fail to com-

lete. Our exploratory analysis partially explained the variation in VOI

ice values in the VBG driven parcellations of the synthetic cohort. In

ntuitive terms, our analysis showed that VOIs lost 0.004 DSC for every

00 mL increase in lesion, 0.05 DSC was gained for a 10-fold increase

n distance to the lesion, and 0.003 DSC is lost for every 1% label vol-

me lost to overlap with the lesion. However, there is an inherent multi-

ollinearity between the three parameters as in the case of larger lesions
t  

10 
here is less probability for VOIs to be more distant, and more chance

or overlap with the lesion mask. 

Only 1 of 135 VBG recon-all ( FreeSurferWiki, 2020a ) runs failed, a

eal patient’s postcontrast T1 weighted image that was appropriately

lled by VBG but lagged in the automated topographical error cor-

ection ( FreeSurferWiki, 2020c ) of recon-all ( FreeSurferWiki, 2020a ).

e hypothesized that the cause was the gadolinium signal confound-

ng cortical surface morphology. This was confirmed upon inspecting

econ-all ( FreeSurferWiki, 2020a ) inflated surfaces, which showed ma-

or defects in the vicinity of the bright blood vessels ( supplementary fig-

re 4 ). Thus, we repeated recon-all ( FreeSurferWiki, 2020a ) without a

ime-limit. This finished without error after 18 h and the dataset was

ncluded. Such cases would be better addressed using another modality

o assist with the cortical surface reconstruction, e.g., T2 or FLAIR. Al-

ernatively, a different surface reconstruction approach, e.g. FastSurfer
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Fig. 6. Results of simple linear regression for VOI DSC on the (Y – axis) against 

the log10 distance between each VOI and lesion mask in mm (X – axis). Red line 

and parallel dotted range represent the intercept and 95% confidence interval. 

( + ) represents VOIs overlapping with lesion mask by 1% or less and (o) repre- 

sents VOIs overlapping with lesion mask by 1% or more. Shown in navy and red 

for uVBG (A), blue and orange for bVBG (B), and teal and maroon for nonVBG 

(C) (VBG = virtual brain grafting, uVBG = unilateral VBG, bVBG = bilateral 

VBG). 
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 Henschel et al., 2020 ) could be used, which may be adopted in the next

ersion of VBG as this also promises to significantly shorten runtime. 

Adequate lesion filling must conform to the healthy brain tissue mor-

hology and image intensity pattern. Furthermore, sharp interfaces be-

ween the lesion fill graft and surrounding recipient brain image must

e avoided. VBG achieves this by generating a synthetic donor image

hat matches the input brain image to ensure the filling tissue does not

arry concomitant pathologies or parts of the main lesion from the rel-

tively non-lesioned side. In bilateral lesions, there is no healthy hemi-

phere to rely on, and the unilateral approach would simply duplicate

he whole lesion into the filling patch ( supplementary figure 5 ). Thus, the

ynthetic images are used directly for the initial and final lesion fill-

ng. Here, we did not observe a significant difference in performance

etween unilateral and bilateral approaches, as quantified with mean

SC. 
11 
VBG can be used to achieve an adequate whole brain parcella-

ion in the presence of a wide variety of lesions, both unilateral and

ilateral, as opposed to previously described lesion filling-based ap-

roaches, which were more suited for smaller unilateral lesions. For

xample, enantiomorphic normalization ( Nachev et al., 2008 ) relies

n the native healthy hemisphere for patching the lesion prior to

ormalizing to the MNI152 template brain. This is available non-

ommercially ( http://www.bcblab.com/BCB/normalization.html ) but

eportedly performs best on unilateral lesions with no significant mid-

ine shift ( Solodkin et al., 2010 ) and aims only to achieve a bet-

er normalization. Another approach called virtual brain transplanta-

ion was described in 2010 ( Solodkin et al., 2010 ). This also relied

n the native healthy hemisphere for lesion filling, and evaluated its

mpact on the accuracy of recon-all ( FreeSurferWiki, 2020a ) parcel-

ations. The authors reported encouraging results in a sample of pa-

ients with relatively large stroke lesions. However, to our knowl-

dge this method has not yet been made available on any open-source

latforms. 

MALP-EM ( Ledig et al., 2015 ) has shown encouraging results in a

ample of patients with traumatic brain injury ( Ledig et al., 2015 ) and

as validated in patients with ventriculomegaly ( Carass et al., 2017 ).

n contrast to the previously mentioned methods and to VBG, MALP-

M ( Ledig et al., 2015 ) does not need a lesion mask, and does not rely

n lesion filling prior to segmentation. It uses multi-atlas matching and

xpectation maximization for volumetric segmentation. Incorporating

ALP-EM ( Ledig et al., 2015 ) with VBG could be mutually beneficial

or the results of both approaches, and ultimately improve the accu-

acy of structural brain mapping. VBG initially focuses on Freesurfer

 Fischl, 2012 ) as this enables the standardization of analyses in patho-

ogical data to match state-of-the-art methods used in normal data

.g., CIFTIFY ( Dickie et al., 2019 ) and the HCP processing pipeline

 Glasser et al., 2013 ). Alternatively, the lesion-free output of VBG could

lso be used to improve results of normalization or other structural

apping pipelines such as MALP-EM ( Ledig et al., 2015 ), ANTs MALF

 Wang et al., 2011 ), CAT12 ( Gaser and Dahnke, 2012 ), CARET ( Van Es-

en et al., 2013 ), connectome workbench ( Marcus et al., 2011 ) or for

esion-symptom mapping ( Foulon et al., 2018 ). 

VBG can benefit from a reduction in runtime, and optimizing work-

ow details such as image synthesis, which can occasionally expand

ome structures within the filling patch in very large lesions ( > 150 ml),

.g., insula, putamen ( supplementary figure 6 ). The gray - white matter

nterface may also appear sharper than normal. We tested the bilateral

pproach (bVBG) in a subset of synthetic data only, as none of the in-

luded patients had truly bilateral lesions, only midline shift due to mass

ffect, or slight contralateral extension through white matter structures

e.g., PAT004). Future validation studies would benefit from a larger

ample with more varying lesion and types of pathology, e.g., stroke,

erebral palsy, and cortical dysplasia. As well as the use of more ad-

anced statistical tests employing nonlinear models and/or linear mixed

odels for evaluating parcellation performance. Further development

ill adopt full BIDS ( Gorgolewski et al., 2016 ) compliance, release a

BG Docker ( Merkel, 2014 ) image, fine-tune donor image synthesis, re-

uce run-time, and potentially include different MR modalities, e.g. T2

nd FLAIR, from which a T1 image could be synthesized. 

Future studies addressing the issue of structural mapping of brain im-

ges with large lesions could rely on deep learning solutions, for example

 convolutional neural network (CNN) e.g. DeepMedic ( Kamnitsas et al.,

017 ) may be used to segment the lesion, a generative adversarial net-

ork can generate a lesion-free version of the input brain, and the

ast CNN would segment the remaining healthy tissue, e.g. FastSurfer

 Henschel et al., 2020 ), or DeepNat ( Wachinger et al., 2017 ). In this

ontext VBG could benefit deep learning solutions by providing the re-

uired ground truth and training data, after sufficient quality checking.

his would ideally be undertaken in a multidisciplinary collaborative

etup and use different MR modalities from different scanners for max-

mum yield. 

http://www.bcblab.com/BCB/normalization.html
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onclusions 

In this work we have proposed VBG, a new workflow for reliable

tructural mapping of T1 images using Freesurfer ( Fischl, 2012 ) in the

resence of heterogeneous, and large pathologies. Our testing and eval-

ation show it to be a reliable approach in this group of patients with

eterogeneous gliomas, and similarly in the synthetic testing dataset.

o conclude, VBG achieves a realistic lesion filling and enables an ac-

urate whole brain parcellation as tested with Freesurfer ( Fischl, 2012 ).

t is an open-source workflow, currently requiring no GPU processing,

nd is available under a Mozilla 2.0 license, via ( https://github.com/

UL-Radneuron/KUL _ VBG ). 
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