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Microorganisms including bacteria, fungi, viruses, protists and archaea live as communities in complex
and contiguous environments. They engage in numerous inter- and intra- kingdom interactions which
can be inferred from microbiome profiling data. In particular, network-based approaches have proven
helpful in deciphering complex microbial interaction patterns. Here we give an overview of state-of-
the-art methods to infer intra-kingdom interactions ranging from simple correlation- to complex condi-
tional dependence-based methods. We highlight common biases encountered in microbial profiles and
discuss mitigation strategies employed by different tools and their trade-off with increased computa-
tional complexity. Finally, we discuss current limitations that motivate further method development to
infer inter-kingdom interactions and to robustly and comprehensively characterize microbial environ-
ments in the future.
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1. Introduction

The human body acts as a host for complex microbial commu-
nities consisting of bacteria, protozoa, archaea, viruses and fungi
[1]. Next-generation sequencing techniques proved very effective
for characterizing microbial communities by sequencing suitable
molecular targets such as 16S ribosomal RNA gene amplicons for
bacteria, internal transcribed spacer regions of ribosomal RNA
genes for fungi and shotgun metagenomics for viruses (Fig. 1A).
Since these organisms share the same host, they are in constant
competition, where some organisms develop symbiotic relation-
ships in which they cooperate or synergize with each other for
gaining a fitness advantage that may or may not benefit the host
organism [2,3]. Thus far, microbiome research has mostly focused
on interactions between the host and its microbiome, mostly on
the level of bacteria. However, trans-kingdom interactions
between bacteria, fungi and viruses, as well as their joint effect
on the host, have only recently been studied [4].

Network-based analytical approaches have proven useful to
study systems with complex interactions and represent a powerful
tool in systems biology to infer gene-regulatory and other complex
networks [5–7]. The complex interactions between thousands of
individual species across kingdoms as found, for instance, in the
human gut microbiome, suggests that such network analysis
methods are also useful in the microbiome field. In this review,
ig. 1. (A) Schematic overview on taxonomic profiling of bacteria, fungi and the virom
rrelations in microbial co-occurrence network analysis.
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we first highlight network analysis methods that have already
been used successfully for inferring community structures from
bacterial abundances. Next, we focus on recently developed and
repurposed methods that have been used for trans-kingdom anal-
ysis. Finally, we will discuss why more concerted efforts in net-
work method development are necessary to address the unique
aspects of microbial data.

2. Network methods for microbial communities

Until now, bacterial co-occurrence patterns were studied exten-
sively while fungal or viral interactions have received less atten-
tion [8,9]. Systems and network biology approaches have been
used to decipher microbial co-occurrence patterns and range from
correlation methods to complex graph-based models. A recent
study investigating the earth microbial co-occurrence network
identified connections across fourteen different environments,
including plants, animals, water and soil [10]. The earth microbial
co-occurrence network thus highlights the importance of studying
microbial interactions across microbial niches using suitable tools.

Decoding complex microbial co-occurrence relationships is
associated with three main challenges. Firstly, microbiome data
are compositional [11]; i.e. microbial counts represent proportions
instead of absolute abundances. Secondly, sparsity in the dataset
can lead to false associations of microorganisms. A zero indicates
e. (B) Illustrates three important biases: compositionality, sparsity and spurious
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either the absence of a microorganism, or an insufficient sequenc-
ing depth. Thirdly, it is challenging to differentiate between direct
and indirect associations, in particular if these are related to envi-
ronmental factors (Fig. 1B).

Correlation-based techniques, including Pearson or Spearman
correlation, are among the most popular methods for studying
microbial interactions in human gut [12], oral [13] and soil [14]
microbiomes. Weiss et al. [15] evaluated the strengths and weak-
nesses of eight different correlation methods and provided recom-
mendations based on the nature of the data and identified sparsity
as a key issue not sufficiently addressed by these approaches. Cor-
relation analysis often results in artefactual and spurious associa-
tions between low-abundant microbial members in a community
as it fails to account for compositionality [11]. As Lovell et al.
[16,17] showed, correlation-based methods are not subcomposi-
tionally coherent such that, for instance, depleting rare taxa is
expected to change the outcome of correlation analysis. To over-
come this issue, compositional data analysis can be employed. Var-
ious proportionality measures [16,17] have been proposed some of
which are implemented in the R package propr [18] and can be
used for network construction. A frequently used method to
account for compositionality is centered log ratio transformation
(CLR) [19,20], where the geometric mean of the sample vector is
used as the reference. CLR transformation maps the relative counts
from simplex into Euclidean space and hence makes these data
compatible with linear analysis methods. Apart from these classi-
cal approaches, more complex methods have been proposed based
on probabilistic graphical, Gaussian graphical and complex multi-
ple regression models to construct microbial interaction networks
[6,21]. Most methods take compositionality into account either by
performing CLR transformation as a pre-processing step or by
using a Dirichlet multinomial model to directly account for compo-
sitionality. Existing methods differ with respect to sensitivity,
specificity and computational complexity and can be grouped into
four different categories (Fig. 2). In the following, we describe the
underlying concepts of tools (Table 1 and Supplemental Material)
that have been successfully applied in the analysis of microbial
data in humans [22] as well as other environments [23].
Fig. 2. Overview of network approaches for micr
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3. Correlation based methods

Many correlation-based methods employ variants of Pearson
or Spearman correlation to obtain an estimate of microbial inter-
action between pairs of taxa [24,25]. However, these measures
do not account for compositionality, where, for instance, an
increase in absolute abundance of just a single taxon is followed
by a decrease in relative abundances of all other taxa even if
their absolute abundance does not change (Fig. 1B) [11]. This
can be mitigated by ratio transformation of the data. Ratio trans-
formations ensure that the ratios between two features are the
same whether the data are absolute counts or proportions. Tak-
ing the logarithm of these counts makes the data further sym-
metric and linearly related [19]. The resulting correlation
coefficients are thus compositionally coherent, i.e. the log ratio
of two taxa is completely independent of other taxa. Sparse Cor-
relations for Compositional data (SparCC) [26] is a popular
method employing this strategy with applications ranging from
human gut microbiome studies [27–29] to environmental stud-
ies. SparCC is based on an iterative approximation approach
and uses log-ratio transformed data to infer the correlations
between the components. Under the assumption that the under-
lying networks are large-scale and sparse. SparCC was shown to
be better suited to avoid spurious correlations compared to
direct Pearson correlations [15] at the cost of higher computa-
tional complexity [30]. Another strategy that was proposed to
improve the robustness of correlation coefficients is bootstrap-
ping as implemented in CoNet [24]. CoNet further employs sim-
ilarity (Steinhaus, distance correlation) and dissimilarity
measures (Euclidean, Jensen-Shannon, Kullback Leibler, Bray Cur-
tis) as alternatives to correlation coefficients. Another challenge
in correlation-based networks is the choice of a suitable correla-
tion cut-off which controls the sparsity of the resulting network.
While the choice for the cut-off is often left to the user, the
Molecular Ecological Network Analysis Pipeline (MENAP) [25]
offers an automated selection of the optimal correlation thresh-
old via a random matrix theory-based method [31] to simulate a
random background.
obial intra- and inter-kingdom interactions.



Table 1
Overview of microbial co-occurrence network methods.

Tools Principle/Models Advantages Limitation Applications

Correlation based Methods
SparCC (2012)

python r-
sparcc

� Pearson correlations from log-
transformed abundance

� Bayesian approach to differentiate
true fractions from the observed
counts and to handle sparsity

� Log-ratio transformed abun-
dance/count matrix

� Handles composi-
tionality bias and
sparsity

� High computational com-
plexity due to the itera-
tive approximation
approach

� Nonlinear relationships
cannot be detected

� Interaction between gut fungi micro-
biome of the Human Microbiome Project
healthy cohort [105] and other studies
including identifying biomarkers in of
diet and lifestyle [28], interaction
between Mucosal microbiome in gastric
carcinogenesis [106] etc

CCLasso (2015) R
package

� Latent variable model with l1-
norm shrinkage method

� simple pseudo count
implementation

� Log-ratio transformed abun-
dance/count matrix

� Faster than SparCC
� Handles Composi-
tionality bias

� Nonlinear relationships
cannot be detected

� Study only pairwise cor-
relations between micro-
biomes [107]

� It was used to capture the interaction
between Marine phototrophs and
archaea [108]

REBACCA (2015) � Linear system using log ratios
between pairs of compositions
with l1-norm shrinkage method

� Obtain higher accu-
racy when a sparse
condition is satisfied

� Controls the false
positives

� Suitable for large
sample size

� Nonlinear relationships
cannot be detected

� Asymptotic performance
with large sample size

� Positive correlation between S. amnii,
BVAB1, Prevotella cluster 2 and TM7-H1
which are associated with Preterm birth.
It also helps to report the first report of
an association of TM7-H1 with PTB [109]

CoNet (2016)
Cytoscape
Command line
tool

� Five similarity measures: Bray and
Curtis, Kullback–Leibler dissimi-
larity measures, Pearson and
Spearman correlation, and mutual
information

� Compendium of generalized
boosted linear models

� Able to build bipar-
tite network

� Does not address compo-
sitionality bias

� Study only pairwise cor-
relations between micro-
biomes [107]

� Interaction studies of ecological systems
like ranging from plant [110,111], soil
[112] to human microbiome.

� Identification of autism spectrum disor-
der-enriched F. prausnitzii, B. uniformis,
and B. vulgatus [113]

Meta-Network
(2019)

� Hybrid method with Pearson Cor-
relation and graph-based method
FS-Weight method to study indi-
rect relationships

� Nonlinear associations using PCA-
PMI method

� MCODE cluster algorithm to detect
clusters and hubs

� indirect correlation
and non-linear corre-
lations can be
identified

� Outperforms the
Spearman and Pear-
son Correlation

� Does not address compo-
sitionality bias

� Identification of hidden relationship
between Syntrophomonas and Methano-
gens which plays a vital role in transfer-
ring the short-chain fatty acid into
methane and energy [36].

Correlation-
Centric
Network
(2020)
Command line
tool

� Edge-centric Network
� Pearson correlation coefficient for
network construction

� Isomorphism mapping for deriving
Correlation-Centric Network from
species–species co-occurrence
networks (SCNs)

� Correlations of the
edge distribution
can be studied

� Outperforms the
SCNs

� Does not address
compositionality

� CCN a new perspective in
microbiome network
derived from host diet
during the seasonal vari-
ations. Identified

� Identification of biomarkers in gene-co-
expression and personalized characteri-
zation of diseases [114] and also in
time-series human gut microbiome data
[89]

MENAP (2012)
online tool

� Random Matrix Theory (RMT)-
based molecular ecological net-
work analysis

� Threshold to con-
struct network is
automatically
determined

� Robust to noise

� Does not address the
issues of network spar-
sity and compositional
bias

� Detection of highly connected cluster of
Fusobacterium in oral bacterial dysbiosis
and oral squamous cell carcinoma
(OSCC) [115]

� Study of soil microbial structures [116–
118]

Conditional Dependence/graphical Models
gCoda (2017) R

package
� Logistic normal distribution to
overcome compositionality-bias

� Majorization-Minimization
algorithm

� Maximum likelihood with l1 pen-
alty to deal with dimensionality

� Requires less compu-
tation time than
SPIEC-EASI

� Efficient for compo-
sitional data

� More stable and
accurate compared
to SPIEC-EASI.

� Non-convexity of the
likelihood function [119]

� Lack in identifying the
hub/Key species [120]

� Lack in consistency of the
estimators [121]

� Not available

MDiNE (2019) R
package

� Dirichlet-multinomial logistic-
normal distribution to address
the compositional nature

� Markov Chain Monte Carlo
(MCMC) methods to define logistic
multinomial normal model

� Differential networks
based on precision
matrix estimation
for binary sample
condition

� Zero handling with-
out resorting to the
addition of a pseudo-
count

� Handles
Compositionality

� Running time is high
� Supports only single bin-
ary covariate to construct
the networks

� Dirichlet-multinomial
logistic-normal distribu-
tion model cannot cap-
ture positive and
negative covariances [56]

� Identification of new biomarkers such as
Enterobacteriacea, more abundant in
Crohn’s samples and Lachnospiraceae to
be less [60]

MixMPLN (2019)
R package

� Mixture of K Multivariate Poisson
Log-Normal distributions

� Minorization–maximization
principle

� ‘1-penalty model to solve the
sparse networks

� Capturing multiple
networks from the
same count matrix

� Handles
Compositionality

� Runtime comparison and
computational complex-
ity are not well-
addressed.

� Able to reproduce and identify the
changes between infants gut micro-
biome and older children and adults [56]
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Table 1 (continued)

Tools Principle/Models Advantages Limitation Applications

NetComi (2020)
R package

� Integrates extensive list of meth-
ods that take into account the spe-
cial characteristics of amplicon
data: SparCC, SPIEC-EASI, propor-
tionality, SPRING

� unique feature: Differential net-
work analysis

� Ability to study dif-
ferential networks

� Easy-to-use

� Model networks from a
single domain of life

� Not available

Environmentally-
Driven Edge
Detection
(2020)

� Sign Pattern, Overlap, Interaction
Information, Data Processing
Inequality to remove the environ-
mentally-driven (indirect)
associations

� Ability to identify the
environmentally-dri-
ven (indirect) associ-
ations (edges) from
the network

� Currently ENDED sup-
ports only any closed tri-
plet i.e (fully connected)

� Not available

Mint (2015) R
package

� Poisson-multivariate normal hier-
archical model with ‘1-penalty
model to capture direct
interactions

� Controls for con-
founding predictors
to remove indirect
interactions

� Does not account for the
compositional nature of
microbiome data

� Unable to detect latent
factors

� Not available

mLDM (2016) R
package

� Hierarchical Bayesian model with
sparsity constraints

� Handles composi-
tional bias

� Able to detect direct
associations and
remove indirect
associations

� Microbial absolute
abundance can be
estimated

� Lacks scalability and effi-
ciency, high computa-
tional power

� Hierarchical Bayesian
model consume most of
the training time.

� Unable to detect latent
factors

� Not available

HARMONIES
(2020) R
package
webtool

� A hybrid approach using Zero-
inflated negative binomial distri-
bution and Dirichlet process

� Gaussian graphical model to deal
with sparse network

� Handle overdisper-
sion and high num-
ber of zero counts

� Small sample size affects
the performance

� Discovered a unique subnetwork of
Fusobacterium, Peptostreptococcus, and
Parvimonas in healthy patients com-
pared to Colorectal cancer patients [122]

SPIEC-EASI
(2015) R
package

� CLR transformation of the input
� Selection of two approaches:
Glasso or Neighborhood Selection

� Handles
compositionally

� Avoids detection of
transitive
correlations

� Graphs with large hub
node are more difficult
to recover

� Cannot handles co-
variates

� Interaction studies of various ecological
systems like plants [23], murine [123]
and human.

� Study the interactions of Viral Popula-
tions to identify the Age-Dependent pat-
terns in human gut [124]

Hubs weighted
graphical
lasso (2020)

� Weighted lasso approach with
special row/column sum weights
to penalize hubs

� Includes structural
information of the
network to correctly
identify hub edges

� Not available

FlashWeave
(2019)

� Local-to-global learning
framework

� Adjusts for latent
variable

� Less runtime
� Good performance
on heterogenous
datasets

� Quality drop when
applied to homogeneous
data with small sample
number

� Understanding the interaction between
Core Microbiome of ascidian, a marine
invertebrate chordates [125]

COZINE R
package
(2020)

� CLR transformation only on non-
zero count values

� Multivariate Gaussian Hurdle
model

� Group-lasso penalty to obtain
sparse estimates

� Handles composi-
tional bias and zero
inflation

� High accuracy

� Not available

Network-based methods for trans-kingdom analysis
SPIEC-EASI

Extension
(2018) R
package

� Central Log Ration Transformation
of the input

� Selection of two approaches:
Glasso or Neighborhood Selection

� Handles
compositionally

� Avoids detection of
transitive
correlations

� Graphs with large hub
node are more difficult
to recover

� Identification of associations between
fungi and bacteria and also elucidated
the importance of including cross-biom
interactions in microbiome data analysis
[90]

Multi-Omics
Factor
Analysis R
package
(2018)

� Normalized data matrices from
one or more data modalities

� Bayesian Group Factor Analysis
framework

� Automatic Relevance
Determination

� Integrates multiple
data modalities and
sample groups and
finds drivers of
variation

� Assumes linear or moder-
ate non-linear
relationships

� Assumes independence
between features in prior
distribution

� Identification of complex interaction
between trans-kingdom during antibi-
otic perturbation [93]

DIABLO R
package
(2019)

� Singular value decomposition with
‘1-penalized selection of corre-
lated variables from several omic
data sets

� Finds correlated fea-
tures which possess
a discriminative
ability

� Assumes linear relation-
ship between features
from different omics data
sets

� Interaction study between bacterial taxa,
metabolites and physiological traits in
the study of haem-induced lipoperoxi-
dation on mucosal and luminal gut
homeostasis [126]
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4. Regularized linear regression

An alternative to correlation methods is to build linear regres-
sion models in which the abundance of each taxon is modelled
as a response variable using the abundance of all other taxa as
explanatory variables. Here, the coefficient of each taxon serves
as a linear measure for the interaction strength of two taxa. How-
ever, due to the large number of features, such models are gener-
ally prone to overfitting. A common strategy to mitigate this
issue is to introduce a penalty term, yielding regularized regression
models. Here, the ‘1-penalty, also known as lasso, is typically used
to drive the coefficients of taxa with negligible contribution to
zero, thus increasing the sparsity of the solution. For instance, Cor-
relation inference for compositional data through Lasso (CCLasso)
[32] and Regularized Estimation of the BAsis Covariance based on
Compositional dAta (REBACCA) [33] use this strategy to build a
regularized correlation network of microbiome data. CCLasso also
adapts CLR transformation to address compositionality, while
REBACCA models the log basis covariance structure to directly
account for compositionality. While CCLasso and REBACCA per-
form similar to SparCC in terms of reproducibility and consistency,
regularization appears to be beneficial for avoiding the detection of
spurious relations [32]. In addition to the existing lasso methods,
Bates and Tibshirani [34] proposed a new ‘1-penalized regression
model based on all-pairs log-ratios for sparse estimation. The all-
pairs log-ratio model overcomes compositionality, increases accu-
racy and leads to improved interpretability. Further, Lu et al. [35]
introduced ‘1-penalized generalized linear regression models
(GLMs) with linear constraints that achieve sub-compositional
coherence.
5. Association rule mining

Instead of regularization, Meta-Network [36] uses advanced
association rule mining [37] to detect intricate (i.e. including indi-
rect and non-linear) correlations. To this end, Meta-Network first
generates presence-absence indicator matrices for each sample.
Subsequently, the co-occurrence frequencies of taxa pairs are com-
puted yielding a co-occurrence probability matrix. This matrix is
then used to construct a network with a co-occurrence probability
of e.g. 80%. (default threshold in Meta-Network). Following this
loose definition, Meta-Network uses the graph-based Functional
Similarity Weight (FS-Weight) [38] algorithm to detect indirect
relationships and the PCA-PMI [39] method (Path Consistency
Algorithm) to infer non-linear associations. These two methods
(FS-Weight and PCA-PMI) are able to independently capture many
of the same nodes and edges which, according to the authors, indi-
cates that they both can depict the complex nature of the microbial
relationships.
6. Conditional dependence and graphical methods

Correlation based methods typically fail to differentiate
between direct and indirect associations. To account for this, a
plethora of methods have been developed to model conditional
dependence which usually have a higher computational complex-
ity and run-time than correlation-based methods. Partial correla-
tion [40] and related approaches are used here to distinguish
between direct and indirect interactions, resulting in an undirected
weighted graph where the edges imply the conditional depen-
dency between two taxa.

Most of these methods can also account for confounders such as
biological covariates and technical biases such as sequencing
depth. For instance, Mint (MicrobialInteraction) employs a
Poisson-multivariate normal hierarchical model to identify direct
2692
microbial interactions while controlling for user-provided con-
founders at the multivariate normal layer using an ‘1-penalized
precision matrix [41].

Two different strategies are implemented in SPIEC-EASI (SParse
InversE Covariance Estimation for Ecological Association Inference)
[42] after applying a CLR transformation to the data to address
compositionality. The first method generates a graphical network
by estimating a sparse inverse covariance matrix (sparse graphical
model inference with Glasso) [43] and the second method employs
the Meinshausen-Bühlman method, a node wise regression model
[44,45]. SPIEC-EASI infers the appropriate amount of sparsity of a
network by using the Stability Approach to Regularization Selec-
tion [46].

A number of methods were inspired by SPIEC-EASI and mostly
differ in the models they employ to infer conditional indepen-
dence. For instance, gCoda [47] also performs CLR transformation
on the relative abundance but then uses a logistic normal distribu-
tion to model the counts and a maximum likelihood model with
‘1-penalty to deal with sparsity. According to the authors, gCoda
surpasses SPIEC-EASI in terms of stability, accuracy and runtime.

Another method, metagenomic Lognormal-Dirichlet-
Multinomial (mLDM) [48] affords a more complex hierarchical
Bayesian model with three layers. First, mLDM models the count
matrix by using a multinomial distribution. Second, a Dirichlet dis-
tribution is used to model the multinomial probabilities and,
finally, mLDM utilizes a multivariate log-normal distribution to
model the absolute microbial abundance [48]. The authors could
show that mLDM performed favourably compared to Pearson and
Spearman correlation, SparCC, CCLasso, CCREPE, glasso and
SPIEC-EASI in terms of finding true taxa-taxa and environmental
factors and taxa associations. However, this multi-layer approach
leads to high computational complexity and limits both scalability
and interpretability [47].

Hybrid Approach foR MicrobiOme Network Inferences via
Exploiting Sparsity (HARMONIES) [49] employs the zero-inflated
negative binomial distribution (ZINB) and a Dirichlet prior to deal
with overdispersion and the large number of zero counts. HARMO-
NIES then uses a graphical lasso approach to infer interactions with
favourable results compared to SPIEC-EASI (using both Glasso and
the Meinhausen-Bühlmann method), and CClasso on synthetic
data, in particular when additional zeros were added.

Most of the methods which try to solve zero-inflation, introduce
pseudo counts before log transformation. Ha et al. [50] discussed
that introducing pseudo counts may have a huge impact on down-
stream analysis and also may lead to spurious associations i.e.
neglecting the fact that some taxa are completely absent in the
data. To overcome this, Ha et al. [50] proposed a new COmposi-
tional Zero-Inflated Network Estimation (COZINE) model where
they generate a binary incidence matrix and a compositional abun-
dance matrix in which CLR is applied only to the non-zero count
data. A Multivariate Gaussian Hurdle model [51] with group-
lasso penalty is then fitted into the combined form of binary and
continuous matrix to infer the three types of interactions:
binary-binary, binary-continuous and continuous-continuous rela-
tions. By doing so, COZINE tries to accommodate both composi-
tionality and zero inflation.
7. Addressing network topology bias

Topological features of the network such as the node degree
may introduce a bias in statistical inference, where highly con-
nected taxa (hubs) have disproportionate influence. The vast
majority of methods do not consider topological network features
since they implicitly assume conditional independence [52].
Recently, McGillivray [53] proposed a weighted graphical lasso
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approach that incorporates row/column sums as weights to penal-
ize hub edges. The method performed significantly better com-
pared to competing methods including graphical lasso, adaptive
graphical lasso or hubs graphical lasso.

8. Methods scaling to large-scale data

A general issue with probabilistic graphical model approaches is
their lack of computational scalability. FlashWeave [54] mitigates
this issue by using a modified version of the semi-interleaved
HITON-PC algorithm [55], a causal inference algorithm which
infers for each taxon its Markov blanket. Given its Markov blanket,
a taxon is conditionally independent of every other taxon in the
graph. The algorithm starts by labelling for each taxon T signifi-
cantly associated taxa, based either on Pearson correlation or
mutual information, as candidate neighbours. Then only taxa
which are conditional dependent from T given all combinations
of other neighbour taxa are kept. Individual neighbourhoods are
subsequently connected. To achieve scalability FlashWeave uses
a set of heuristics and optionally incorporates metadata to disen-
tangle direct microbial associations from confounding factors
introduced in cross study analyses.

9. Multi-view networks

Most of the network methods assume that the sample-taxa
matrix is associated with a single network, i.e. there is only one
network topology with a set of edge weights. However, a
sample-taxa matrix may be derived from a larger number of bio-
logical samples where taxa may be associated with more than
one network topology. Especially the human gut microbiome is
associated with various factors including diet, age and health
and, hence, the associated microbial network may vary according
to the influence of these factors. Tavakoli et al. [56] used a mixture
model based on the Multivariate Poisson Log-Normal (MPLN) dis-
tribution [57] to build K microbial networks from a sample-taxa
matrix associated with K underlying distributions. Similar to Mint
[41], MixMPLN uses a Poisson-multivariate normal hierarchical
model to capture the direct microbial interactions. However, dif-
ferent to Mint, MixMPLN constructs one network for each con-
founder and infers the parameters of the distributions using a
maximum likelihood framework based on the Minorization–Maxi
mization (MM) algorithm [58]. In addition, MixMPLN also uses
the ‘1-penalty to regularize the sparsity of the networks. The
authors extended this idea also to other algorithms such as
MixGGM and MixMCMC [59]. MixMCMC utilizes Markov Chain
Monte Carlo model to evaluate the latent parameters in the MPLN
mixture framework. MixGGM utilizes Gaussian distributions on
CLR transformed- abundance matrix to overcome compositionality
bias.

10. Differential network analysis

While most methods construct a single co-occurrence network
irrespective of study conditions such as disease, treatment or con-
trol, it is in many cases the differences between such conditions
that are of greatest interest. To account for this, a few methods
have been developed for differential network analysis.

Microbiome Differential Network Estimation (MDINE) [60] gen-
erates differential networks to show how microbial relationships
vary between two conditions based on an estimation of the preci-
sion matrix. MDiNE addresses compositionality by utilizing a
Dirichlet-multinomial logistic-normal distribution model [61,62].
Apart from handling compositionality, multinomial logistic models
are also suited to handle the large number of zeros in microbial
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abundances without reverting to pseudo counts. In contrast to
MDiNE, NetCoMi [63] utilizes permutation tests to evaluate the
significantly different taxa between the groups. More specifically,
NetCoMi performs differential association analysis using Fisher’s
z-test [64], a non-parametric resampling procedure [65] and the
discordant method [66] to build differential networks that are lim-
ited to differentially associated taxa.
11. Inferring interaction types

In ecological networks, microbial interactions are shown as
directed edges from a source to a target species, where different
types of interactions can be modelled, e.g. competition, mutu-
alisms or parasitism [67]. In contrast, microbial association net-
works are typically undirected and not all interactions represent
true ecological relationships. EnDED [68] aims to differentiate
direct and indirect associations based on environmental factors
which may affect the dynamics of the ecosystem, such as temper-
ature, turbidity, salinity and nutrients. It employs four different
approaches, such as Sign Pattern [69], Overlap [68], Interaction
Information [69,70], and Data Processing Inequality [71,72] to
identify indirect (environmentally-driven) edges. It classifies an
edge as indirect due to environment factor, only if all four methods
classify it as indirect.

Alternatively, Lotka–Volterra models are commonly used to
predict different types of interactions. While classical Lotka-
Volterra models are used to predict predator–prey (competition)
interaction between two species, the generalized Lotka–Volterra
(gLV) [73,74] uses a logistic model to simulate the growth of
microbes and to infer whether an interaction of two species is
competitive, amensalistic or predator–prey [75]. However, since
gLV-based models estimate dynamics with respect to absolute
abundance, a new nonlinear dynamical system called composition-
ally aware Lotka-Volterra method (cLV) [76] was developed. cLV
predicts microbial dynamics in-terms of ratio of relative abun-
dance between taxa. Joseph TA et al. [76] compared the perfor-
mance of cLV against gLV using simulated and real datasets and
showed that cLV forecasts microbial interactions more accurately
compared to gLV.
12. Studying microbiome time-series dynamics

Microbiomes tend to change their compositions in response to
perturbations of their environment. Time-series analysis aims to
study dynamic interaction changes in microbial compositions to
reveal contemporaneous patterns and factors which are responsi-
ble for changes in the community behaviour. Faust et al. [77]
discussed different network inference techniques to investigate
temporal changes in microbiome studies including local similarity
analysis (LSA) [78], Time-decay analysis [79], Augmented Dickey
Fuller test [80], Cross correlation [80], Time-varying network infer-
ence [81], Hurst exponent [82], Bistability analysis [83], as well as
Extended LSA (eLSA) [84], which offers support for replicates.
Among these techniques, LSA is the most commonly used method
to study dynamic changes. It utilizes dynamic programming to
detect changes between the time series and to identify associations
based on a similarity score. Alternatively, Dynamic Bayesian net-
works and temporal event networks can be used to study the tem-
poral changes in microbial data. Dynamic Bayesian networks have
been successfully used to study the changes in microbial composi-
tions of the infant gut microbiome [85], other longitudinal micro-
biome data including vaginal and oral cavity microbiome [86].

The majority of the microbial network tools emphasize nodes
(representing taxa at different taxonomic levels) but only limited
attention is given to the edges capturing their associations
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[87,88]. Although these may delineate important dynamic changes
of microbial co-occurrence. Correlation-Centric Network (CCN)
[89] transforms the node into an edge graph, where nodes repre-
sent the co-occurrence of two taxa while edges represent one of
the two co-occurring taxa, respectively. This correlation-centric
network representation is hence suited to capture dynamic
changes in the microbial environment [89].
13. Network-based methods for trans-kingdom analysis

During the last years, the continuously dropping costs for high
throughput sequencing technologies allowed scientists to go
beyond the mere characterization of the bacterial part of the
microbiome and to investigate the role of viruses and fungi within
the microbial community. Methods using the information of sev-
eral data modalities concurrently are thus sought to deliver
insights into the relation between taxa from different kingdoms
and to gain a more comprehensive understanding of the microbial
system. Since such multi-modal data is still relatively scarce in the
microbiome community, only few methods have been developed
and applied for this purpose. For instance, Tripton et al. [90]
adapted the SPIEC-EASI method for trans-kingdom analysis by con-
catenating two or more data sets which were independently CLR-
transformed. The combined data is then used to estimate a sparse
inverse covariance matrix which can be interpreted as an intra-
and cross-domain interaction network. Applying their method on
data from lung and skin bacteria as well as from the fungal micro-
biome, the authors showed that cross-kingdom networks had a
higher overall connectivity and that the modularity was reduced
compared to the single-domain networks.

However, the SPIEC-EASI extension does not offer insights into
underlying factors driving the variation across samples or different
groups of samples. To achieve this, Argelaguet et al. [91] proposed
a method called Multi-Omics Factor Analysis (MOFA) which uses
group factor analysis [92] to provide an integrative analysis of a
set of samples with measurements from different data modalities,
making it an attractive tool for trans-kingdom analysis as demon-
strated by Haak et al. [93].

Similarly, Data Integration Analysis for Biomarker discovery
using Latent cOmponents (DIABLO) [94] is a multi-omics integra-
tion tool based on partial least squares (PLS) regression, a tech-
nique to reduce the number of predictors by finding a small set
of uncorrelated variables which are then used to perform least
squares regression and was successfully applied to multi omics
data set consisting of microbiome, metabolome, proteome und
mRNA measurements, where it revealed discriminatory biomark-
ers for fibromyalgia patients [95]. However, in contrast to MOFA,
DIABLO supports only continuous variables and assumes a linear
relationship between the selected variables which may not be
given, in particular in such complex scenarios.
14. Discussion

Microorganisms have built complex and robust ecosystems in
various environments ranging from soil or sea water to various
organs of the human body. Understanding the nature of microbial
co-occurrence and correlation patterns within and between king-
doms may thus provide insights into the robustness of ecological
systems and offer insights into complex human diseases such as
inflammatory bowel disease, which is known to be influenced by
the microbiome. However, to study microbial interactions, we
need suitable computational tools that can robustly infer the
microbial interaction network and subsequently disentangle it to
interpret the contribution of microorganisms and their interactions
with respect to their environment. This is of particular importance
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in medical research, where microbial interactions may be associ-
ated with the onset of certain diseases. Microbial communities,
or key members thereof, are thus attractive drug targets in preci-
sion medicine [96]. Network-based approaches are powerful con-
cepts to model and study complex relationships which can be
employed in this context. Currently, the majority of network-
based tools and models are used to study intra-kingdom interac-
tions, mostly between bacteria. Most of these methods employ lin-
ear models based on correlation, regression, and probabilistic
graphical models. Only few tools consider confounding factors in
spite of their importance in microbiome studies. A frequently
addressed bias is compositionality which results in artefactual cor-
relations and is typically countered by pre-processing relative
abundances with CLR transformation or by using a Dirichlet multi-
nomial model. Few methods are able to distinguish direct and indi-
rect effects using more complex conditional models and
regularization. Nevertheless, simple linear models appear to be
used more frequently in the literature, likely because more com-
plex models that account for biases are plagued by a steep increase
in computational complexity which leads to intolerable runtime.
Moreover, network inference is hindered by a large fraction of
zeros in the abundance matrices as well as by an unfavourable
ratio of samples to features (curse of dimensionality). To counter
these issues, relative abundances are often grouped on a higher
taxonomic level, precluding insights into smaller communities.
This may be mitigated by recently proposed tools such as Flash-
Weave, which offer bias-aware inference of microbial networks
for hundreds of thousands of samples.

Species- or strain-level network analysis is not only prohibited
by the additional computational complexity but also limited by the
sequencing method employed. 16S rRNA amplicon sequencing
method provides reliable taxonomic resolution up to genus level.
In contrast, shotgun metagenomics enables species-level, and
potentially strain-level resolution. Species-level network analysis
may be subject to additional challenges that are currently not
addressed. For instance, strain/species-level associations can be
dominated by a single species as one species may comprise more
than 100 different strains, yet this may not imply that all members
of a particular species should be associated. This is the common
phenomena observed in microbial network studies [42,97] and is
known as assortativity [98]. In other words, taxa are more likely
to interact with other phylogenetically related taxa. Ha et al. [50]
proposed using a standardized assortative coefficient [99] to quan-
tify the extent of assortativity in the constructed networks of var-
ious methods but only investigated this issue for genus level and
higher.

None of the existing tools successfully addresses all issues of
microbial network inference. For instance, very few existing net-
work approaches cannot reliably separate the actual ecological
relationships from other pseudo (artifact) relationships. Further-
more, they typically fail to detect the nature of microbial relation-
ships, i.e. they are unable to distinguish between competition and
cooperation [21].

A plethora of methods have already been developed for study-
ing microbial interactions from a network-level perspective. Con-
sidering that many of the available tools employ similar
strategies, the choice of method is a daunting task for microbiome
researchers. Comprehensive guidelines are currently missing due
to the lack of a suitable and comprehensive benchmark datasets
or commonly accepted simulated datasets which could be used
as a gold standard to systematically evaluate the performance of
existing network models. Thus, users can currently choose an opti-
mal method for their analysis only based on the trade-off between
complex models that address existing biases and reveal the differ-
ences of direct and indirect relationships and faster methods which
can reliably infer networks even when hundreds of taxa and thou-
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sands of samples are given. We have summarized the trade-offs in
Table 1 and Fig. 3 illustrates the best options to use depending on
various challenges.

Microbial interactions go far beyond within-kingdom interac-
tions of bacteria alone. With the availability of trans-kingdom
and multi-modal data sets including the transcriptome, metabo-
lome and proteome, integrative network approaches are urgently
needed to study trans-kingdom and functional interactions in the
microbiome. However, very few methods have been adapted for
trans-kingdom analysis, motivating the use of general methods
developed for multi-modal integrative analysis such as MOFA+
[100]. Moreover, several data integration techniques have been
used to integrate nodes from different networks, including a bipar-
tite network [101] approach, which was used to build the commu-
nity fungal-bacterial networks on the root microbiome [102] and a
deep learning model allowing the integration of microbiome and
metabolome [103]. Many of the existing tools currently used for
inferring bacterial interaction networks have yet to be adapted
for trans-kingdom interactions, including Gaussian graphical mod-
els, graphical lasso and mixed graphical models [104].
15. Conclusion

Network analysis provides valuable insights into microbial
interaction networks. However, the currently available methods
are not able to overcome all of the challenges associated with
microbiome data including compositionality bias, overdispersion,
a poor sample to feature ratio and trans-kingdom interactions.
Analysis methods should be carefully selected based on the com-
putational complexity that can be afforded with the data set and
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also with respect to the biological question that defines if it is
acceptable to study the microbiome on a higher taxonomic level.
In addition, further studies have to be carried out to validate these
methods using universal benchmark datasets. While network anal-
ysis methods often suggest plausible hypotheses and interpreta-
tions of the data, they cannot infer causality. Integrative methods
utilizing shotgun sequencing, metatranscriptomics and meta-
metabolomics data are thus needed. Finally, efforts in computa-
tional method development need to be matched with experimental
studies of microbial communities in, e.g., gnotobiology to be able
to validate findings and to ultimately unravel the complexity of
microbial interactions.
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