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Summary  

During the last 20 years, exercise as a science has gained in importance in answering health and 

performance related questions in sports medicine, competitive sports and for the health of an 

increasingly inactive and ageing society. One important finding during these years was that one exercise 

does not fit all and can lead to highly variable adaptation between individuals, even to worsening of 

performance. As adaption is the key driver of athletic performance, risk factor reduction and even 

mortality, there is a need for individualization of exercise training to ensure physiological adaptation. 

So called omics methods enable a granular picture of exercise-associated changes in human metabolism 

by quantifying hundreds to thousands of metabolic molecules at the same time. In that way, the first 

steps towards individualized exercise can be made. 

Through incorporation of the existent literature and two experimental studies, this cumulative thesis 

aims to answer the first set of questions that arise during an individualization in exercise science.  

In a first step, a systematic literature review of studies looking at global metabolite concentration 

changes after an acute bout of exercise were summarized. The result is a comprehensive overview on 

how and at which time after exercise, metabolite classes like lipids, amino acids or TCA cycle 

metabolites change their concentration in human blood, urine, saliva and sweat. Amongst others, key 

pathways of energy metabolism were reflected in the summarized metabolite concentration changes. 

The review is designed as a resource for researchers on the expected metabolite changes after exercise 

in general and to aid future exercise omics study designs. 

After having global overview on metabolite changes in the systematic review, Study 2 (MetaExtreme 

study) experimentally investigates the specific metabolite changes after long-term exercises. For that we 

measured targeted and untargeted metabolomics in three groups of competitive athletes (natural 

bodybuilders, endurance athletes and sprinters) plus an untrained control group (n=35) before and after 

a maximum graded exercise test to exhaustion. Athletes represented the upper extremes of a particular 

spectrum of bioenergetic capacity (high anabolism, high oxidative capacity, high glycolytic capacity). 

Multivariate statistical analysis of the targeted dataset (n=18, ~200 metabolites) revealed that endurance 

athletes and natural bodybuilders have distinct metabolite profiles before and after exercise, whereas 

sprinters and controls were more similar. Some of the key metabolites that separate endurance athletes 

and natural bodybuilders from others were related to different bioenergetic capacities in oxidative 

metabolism, anabolism, and athlete-specific nutrition. In a first analysis of the untargeted dataset (n=35, 

~800 metabolites) we replicated the main results of the multivariate analysis and found additional 

metabolites that are different between athlete groups. Further we found novel associations between 

metabolites and phenotypic traits (e.g. muscularity), which all remain to be published.  
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A second experimental study (Study 3) was done to test if blood molecules can be used to predict the 

individual physiological adaptation to training. Predictability of an individual response to training is key 

to make individualized training decisions. Here, we used a set of >600 blood samples from the 

HERITAGE family study during my research residence at the Beth Israel Deaconess Medical Center in 

Boston. A set of ~5,000 blood proteins were quantified with an aptamer-based assay and associated with 

V̇O2max and V̇O2max trainability (ΔV̇O2max) after 20 weeks of endurance exercise. Proteins 

significantly associated with V̇O2max spanned a wide range of the known organ systems incorporated 

into V̇O2 (e.g. muscle, vascularization) and also revealed novel associations (e.g. proteins involved in 

bone metabolism). Finally, 56 out of the measured ~5,000 proteins were used in a prediction model of 

ΔV̇O2max changes with exercise, reaching ~80% positive predictive accuracy. 

In summary, metabolite changes upon exercise in general can reflect key pathways of energy 

metabolism (e.g. fat oxidation). However, not all metabolite changes can be generalized (e.g. amino 

acids). The thesis showed that sport-specific exercise training for years, favorable genetics and other 

factors like nutrition result in characteristic blood metabolite concentrations in athletes, many of which 

are relevant in metabolic diseases. With further validation, this knowledge could be used to individualize 

exercise training to change disease-associated blood metabolites in a targeted way. Secondly our study 

on subjects representing extreme phenotypes (Study 2) is another step into biomarker identification for 

exercise-related traits like muscle strength or cardiorespiratory fitness which are associated with future 

health and mortality. In the future, biomarkers for these traits could be used in standard clinical 

diagnostics and facilitate and fasten lifestyle decisions for the broad public. Protein concentrations 

measured in Study 3 can predict training responses and could help to identify individuals where exercise 

is beneficial to improve health and others for whom other interventions (e.g. pharmacological or dietary) 

may be more suitable to improve health. 
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Zusammenfassung 

Sport als Wissenschaft hat vor allem in den letzten 20 Jahren an Bedeutung gewonnen, um Antworten 

auf gesundheits- und leistungsbezogene Fragen in der Sportmedizin, im Spitzensporttraining und für die 

Gesundheit einer zunehmend inaktiven und alternden Gesellschaft zu finden. Eine wichtige Erkenntnis 

der Sportwissenschaft ist, dass dieselbe sportliche Aktivität oder Sportart nicht für alle Individuen gleich 

gut geeignet ist und zu stark unterschiedlichen physiologischen Anpassungen (z.B. 

Ausdauerleistungsfähigkeit oder Muskelmassewachstum), ja sogar zu einer Verschlechterung der 

Leistung führen kann. Da die physiologische Anpassung der Treiber sportlicher Leistung, der 

Verringerung von gesundheitlichen Risikofaktoren und sogar der Sterblichkeit ist, muss sportliches 

Training individualisiert werden, um die physiologische Anpassung zu gewährleisten. Mit so genannten 

Omics-Methoden können Hunderte bis Tausende von Stoffwechselmolekülen gleichzeitig im 

menschlichen Blut gemessen werden, was ein detailliertes Bild der mit dem Training verbundenen 

Veränderungen des menschlichen Stoffwechsels ermöglicht. Auf diese Weise können die ersten Schritte 

in Richtung eines individualisierten Trainings unternommen werden. 

Durch die Einbeziehung der vorhandenen Literatur und zweier experimenteller Studien, zielt diese 

kumulative Doktorarbeit darauf ab, einen ersten Teil der Fragen zu beantworten die bei einer 

Individualisierung sportlichen Trainings auftreten. 

In einem ersten Schritt wurden in einer systematischen Literaturarbeit Studien zusammengefasst, die 

Änderungen der Metabolitenkonzentrationen nach einer akuten sportlichen Belastung zeigen. Das 

Ergebnis ist ein umfassender Überblick darüber, wie und zu welchem Zeitpunkt nach sportlicher 

Belastung sich Metabolitenklassen wie Lipide, Aminosäuren oder TCA-Zyklus-Metaboliten ihre 

Konzentrationen im menschlichen Blut, Urin, Speichel und Schweiß verändern. Die Arbeit zeigt, dass 

sich in den Veränderungen der Metabolitenkonzentration, Schlüsselwege des menschlichen 

Energiestoffwechsels widerspiegeln. Sie soll Forschern als Ressource dienen, um zu erwartende 

Metabolitenänderungen nach sportlicher Aktivität im Allgemeinen zu kennen und somit die Planung 

künftiger Omics-Studien zu unterstützen. 

Nachdem in der systematischen Literaturarbeit ein globaler Überblick über Metabolitenänderungen 

gegeben wurde, untersuchte Studie 2 experimentell, wie spezifisches, jahrelanges Training zu 

Metabolitenänderungen führt. Dazu wurden targeted (~200 Metaboliten) und untargeted (~800 

Metaboliten) Metabolomics in drei Gruppen von Leistungssportlern (Natural Bodybuilder, 

Ausdauersportler und Sprinter) sowie einer untrainierten Kontrollgruppe (n=35) vor und nach einem 

maximalen Ausdauerbelastungstest gemessen. Die rekrutierten Leistungssportler repräsentierten 

extreme menschliche Metabolismen ihrer jeweiligen antrainierten bioenergetischen Kapazität (hoher 

Anabolismus, hohe oxidative Kapazität, hohe glykolytische Kapazität).  
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Die statistische Analyse der targeted Daten ergab, dass Ausdauerathleten und Natural Bodybuilder 

einzigartige Metabolitenkonzentrationen in Ruhe sowie nach der maximalen sportlichen Belastung 

haben, wobei sich die Metabolitenkonzentrationen von Sprintern und Untrainierten mehr ähnelten. Die 

wichtigsten Metaboliten, die Ausdauersportler beziehungsweise Natural Bodybuildern von allen 

anderen unterscheiden, hängen wahrscheinlich mit den unterschiedlichen bioenergetischen Kapazitäten 

im oxidativen Stoffwechsel, im Anabolismus und in der Ernährung zusammen. In einer ersten 

Auswertung der untargeted Daten konnten die Hauptergebnisse reproduziert werden sowie weitere 

Metaboliten und Metabolit-Phänotyp Assoziationen gefunden werden, welche in Zukunft ebenfalls 

publiziert werden.  

In einer zweiten experimentellen Studie wurde getestet, ob Blutmoleküle zur Vorhersage der 

individuellen physiologischen Anpassung an sportliches Training genutzt werden können. Die 

Prädiktion der Anpassung ist für die individualisierte Trainingsplanung wichtig. Für Studie 3 wurde an 

über 600 Blutproben der HERITAGE Familienstudie im Rahmen eines Forschungsaufenthaltes am Beth 

Israel Deaconess Medical Center in Boston durchgeführt. Dabei wurden ~5.000 Proteine mit einem 

Aptamer-basierten Verfahren gemessen und mit der V̇O2max und der V̇O2max Trainierbarkeit 

(ΔV̇O2max) nach 20-wöchigem Ausdauertraining assoziiert. Die Proteine, die signifikant mit der 

V̇O2max assoziiert waren, deuteten auf die bekannten Organsysteme, welche die VO2 bedingen (z.B. 

Muskulatur, Gefäße) sowie auf noch nicht bekannte Assoziationen (z.B. Knochenstoffwechsel) hin. 56 

der ~5.000 gemessenen Proteine konnten schließlich Modell zur Vorhersage der ΔV̇O2max verwendet 

werden, welches eine positive Vorhersagegenauigkeit von ~80% erreichte.  

Zusammenfassend spiegeln ein Teil der Metabolitenänderungen nach sportlicher Aktivität 

Schlüsselwege des Energiestoffwechsels (z. B. die Fettoxidation) wider. Jedoch können nicht alle 

Metabolitenändeurngen nach sportlicher Aktivität verallgemeinert werden (z.B. Aminosäuren).  

Weiterhin hat diese Doktorarbeit gezeigt, dass jahrelanges sportartspezifisches Training, günstige 

genetische Voraussetzungen und andere Faktoren wie Ernährung, zu charakteristischen 

Blutmetaboliten-Konzentrationen bei Leistungssportlern führen.  Durch weitere Validierung der 

Ergebnisse und umfangreichere Studien, könnte das Wissen um sportartspezifische metabolische 

Anpassung zur Individualisierung beitragen und neue Biomarker für metabolische Anpassung (z.B. 

Muskelmasse oder Reduktion der Risikofaktoren) gefunden werden. 

Letztlich zeigte diese Arbeit auch, dass mit Hilfe von Blutproteinen, eine gesundheitsrelevante 

Anpassung an sportliches Training vorhergesagt werden kann und besser ist als die Vorhersage durch 

Standardparameter (z.B. BMI, Geschlecht, Alter). Mit einer Vorhersage können einerseits Personen 

identifiziert werden, für die Sport eine gesundheitsfördernde Lebensstilintervention darstellt, und 

andererseits Personen, für die andere Interventionen (z.B. Ernährung oder Medikamente) besser 

geeignet sind, um ihre Gesundheit zu verbessern. 
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I. INTRODUCTION 

I-1. Exercise science and its role in improving health 

I-1.1. A brief history of exercise science 

Exercise science is a rather young field of research and was not regarded as ‘a true science discipline’ 

by politics, society, or other disciplines until the late 1960ies in Germany (Grupe 1996). Tackling 

exercise related questions scientifically was seen as ‘unnecessary’ back then and recommendations for 

exercise training were mostly based on practical experience by coaches. In the 1970ies, exercise science 

was institutionalized in the German academic system (Grupe 1996). Since then, plenty of sub-disciplines 

have emerged, for example biomechanics, sports psychology, didactics, sports medicine, sports 

informatics, or exercise biology, which all unite knowledge of exercise science with their respective 

mother discipline.  

Politics, society, and other disciplines have more and more valued exercise science since then, not only 

for supporting national athletes with evidence-based recommendations but also for answering health-

related questions that became increasingly important in society (Grupe 1996): “How can elderly people 

exercise safely after a myocardial infarction?”, “Is exercise beneficial or harmful during a 

chemotherapeutic treatment in cancer?”, or “Can young females run marathons without compromising 

fertility?”  

Exercise science has for several years now succeeded in answering all and more of these questions and 

continues to face novel challenges with societal and behavioral change like an ageing population and a 

sedentary lifestyle: “Can exercise slow down metabolic ageing?” (Viña et al. 2016), “Is a time and cost-

efficient form of exercise called ‘exercise-snacking’ (exercising for <1 minute but very intense bouts 

several times per day) sufficient to improve cardiometabolic health?” (Islam et al. 2021), “Can I 

counteract the negative metabolic consequences of sleep loss with exercise?” (Saner et al. 2018; Saner 

et al. 2021). Can we predict the individual training response after endurance training by blood tests 

(Robbins et al. 2021) ? These novel challenges reflect the increasing need to individualize exercise to 

fit our personal needs and circumstances like a limited time or travelling with the overall aim to reach 

health- or performance-oriented goals. 

I.1.2. Individualization as the turning point 

Individualization per se is established in other fields of research, for example in medicine, where 

individualized therapies have been developed for many diseases like cancer and where their application 

improves therapeutic outcomes or even survival. As an example, patients with a certain type of blood 

cancer called chronic myeloic leukemia (CML), are genetically screened for a mutation called BCR-
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ABL1, which if present, leads to an enzymatic over-expression of tyrosine-kinase, promoting cell 

proliferation and therefore the CML. Patients with the BCR-ABL mutation can be treated with imatinib 

which inhibits the overly active tyrosine-kinase in a targeted way and leads to cancer remission in over 

80% of eligible patients (Savage and Antman 2002).  

Not only genes like in CML, but also other biological features like immune cells in blood are used to 

decide upon treatment e.g. for COVID patients, natural killer T-cell levels can be used to predict severe 

courses of disease at hospital admission (Kreutmair et al. 2021).  

In medicine, the rationale for individualization is that patients respond different to the same therapy and 

that an individualized therapy, based on biological features of the patients (e.g. genetic variants) leads 

to the desired treatment success.  

In exercise science, the same rationale for individualization applies: the same exercise leads to different 

responses (i.e. outcomes in physiological adaptation) between individuals. An example for this is the 

variance in endurance capacity changes among individuals of the HERITAGE family study (Bouchard 

et al. 1999). Bouchard and colleagues showed, that endurance capacity (measured as maximum oxygen 

uptake capacity, V̇O2max) changes to the same 20-week-long training ranged from very few super-

responders, who increased their V̇O2max by over >1000 ml/min, over to a lot of average responders 

(between 200-800 ml/min increase) and few non-responders to very few adverse responders, who 

worsened their V̇O2max by endurance training (Figure 1) (Bouchard et al. 1999). This specific example 

highlights that standardized exercise programs over a defined time window, lead to highly variable 

adaptations of V̇O2max between individuals. Furthermore, it underlines that some individuals do not 

benefit at all from such a generalized exercise program.  

 

Figure 1. Distribution of V̇O2max changes (delta V̇O2max) of 481 individuals by 20 weeks of 

endurance training. Adapted from Bouchard et al. (1999). Blood samples of this study were used in 

study 3 of this thesis (Robbins et al., 2021) 

 
1 A fusion-gene originating from the fusion of the two genes BCR and ABL leading to production of altered 

proteins, which escape the regular cell cycle and have continuously enhanced activity of signaling pathways which 

lead to enhanced cell proliferation and increase the risk of oncogenesis 
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Not only the physiological adaptation to endurance training (ΔV̇O2max) but also the adaptation to 

resistance training, which is measured by the increase in muscle cross-sectional area (CSA, i.e. muscle 

size) is highly variable between individuals (Ahtiainen et al. 2016; Hubal et al. 2005) and follows, like 

V̇O2max, a normal distribution (Figure 1). A study by Hubal et al, showed that the M.biceps brachii 

size adaptation after 12 weeks of resistance training varied from none or adverse responders with loss 

of 2% of CSA (i.e. no muscle size change) over the average responders (increases of 10-25% in CSA) 

to super responders who increased their CSA by 59% after 12 weeks of resistance exercise (Figure 2). 

 

 
Figure 2. Muscle cross-sectional area (CSA, i.e. muscle size) adaptation in % change from baseline 

to 12 weeks of resistance training (M. biceps brachii and M. triceps brachii) shows responses in 243 

men (■) and 324 women (□). Adapted from (Hubal et al. 2005). 

 

Taken together, the evidence that not one exercise fits all, shows the need for individualization in 

exercise science. However, contrasting to medicine, where biological features (or biomarkers) measured 

in patients’ blood are already used to build an individualized therapy to reach positive outcomes, 

exercise science has just started to make use of biological feature-driven individualization (e.g. lactate) 

and has so far only tapped the full potential of large-scale biological feature detection that exists today.  

I-1.3. Individualization to improve long-term health 

Individualization of exercise must target physiological adaptation that is meaningful for either 

performance (e.g. of athletes) or health (e.g. the general population or patients). The variability in 

physiological adaptation shown by Hubal and Bouchard shows the necessity for a differentiated exercise 

training. Practically this could mean that non-responders (0 ml/min/kg of delta V̇O2max (Figure 1) or 

0% of CSA change (Figure 2)) would either need prolonged training periods, longer regeneration breaks 
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in between sessions, other training modes or an entirely different sport, to reach a meaningful 

physiological adaptation. As an example, a meaningful increase of V̇O2max would be >15% of an 

individuals’ baseline value, as this has been shown to decrease the risk of cardiovascular diseases (Ross 

et al. 2016b).  

In general, the degree of physiological adaptation is strongly associated with future health (Figure 3A 

and 3B) and is not only limited to muscle but also to systemic changes in the body that lead to 

improvements in health: Endurance exercise increases heart volume, blood volume, glucose uptake, 

insulin sensitivity, fat oxidation, and mitochondrial content and efficiency, consequentially increasing 

endurance capacity (V̇O2max or V̇O2peak). Resistance exercise elevates muscle protein synthesis 

(above protein breakdown) which increases muscle fiber size and trains neuromuscular activation of 

skeletal muscles. Functionally, this results in higher strength, power, and speed. Both adaptation 

examples, V̇O2max and muscular strength, are associated with reduced mortality (Blair 2009; Kodama 

et al. 2009; Ladenvall et al. 2016; Ruiz et al. 2008). Subjects in the middle and upper thirds of muscular 

strength were shown to have 1.46-1.50 times lower mortality compared to subjects in the lowest third 

(Figure 3A). Similarly, subjects with higher V̇O2max (tertile 1) had lower mortality (75%) compared to 

subjects with lower V̇O2max (tertile 3) (90% mortality) after 45-years of follow-up analysis (Figure 

3B). 

 

  

Figure 3 A. Age adjusted all-cause mortality rates by thirds of muscular strength separated by age from 

an 18-year follow up study (adapted from Ruiz et al. 2018). B. Cumulative all-cause mortality in relation 

to tertiles of predicted peak oxygen uptake capacity (V̇O2peak) from a 45-year follow up study: V̇O2 

Tertile 1: 2.0 l/min; V̇O2 Tertile 2: 2.26 l/min; V̇O2 Tertile 3: 2.56 l/min (adapted from Ladenvall et al. 

2016). 

 

 

B A 
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In summary, there is substantial evidence that exercise is beneficial for health (Pedersen and Saltin 2015) 

and that exercise adapted individuals have a reduced mortality (Ladenvall et al. 2016; Ruiz et al. 2008). 

However, there is also evidence that the adaptation to exercise is individual and that not one exercise 

fits all (Bouchard et al. 1999; Hubal et al. 2005). But only through either metabolic (e.g. increased insulin 

sensitivity) and/or phenotypic (e.g. increased muscle mass) physiological adaptation to exercise, 

positive health effects will be reached. Consequentially it is necessary to individualize exercise for 

society and for competitive sports. Advantages of such an individualization could be a better health and 

a more permanent commitment to exercise in society and better athletic performance in competitive 

sports. 

 

I-2. Steps towards individualizing exercise 

This thesis aims to answer a first set of questions that come along in the process of an individualized 

exercise science.  

The first step is to collect information on the metabolic changes through exercise in general. Whereas 

the phenotypic adaptation in the average exercising individual is well known for certain sports (Figure 

1 and 2), we know less about the metabolic adaptation that happens after exercise. Exercise scientists’ 

focus has been limited to single metabolic molecules like lactate (for endurance capacity at a given 

workload) (Mader 1976). Through modern omics, there are thousands of molecules measurable in the 

human body which entail metabolic information. Through this information, a global metabolic picture 

of exercise can be obtained. 

The second step is to collect information on the metabolic changes through specific exercise modes like 

resistance or endurance exercise, including the differentiation between chronic (several weeks to years) 

and acute exercise (one or few exercise sessions).  

The third step is to collect information the metabolic changes within specific exercise modes, different 

training intensities (which all have differing metabolic demand) like aerobic training, threshold training 

or high-intensity interval training, including differing exercise duration and regeneration times in 

between. 

Through such a granular fragmentation of exercise, scientists will better understand the short and long-

term metabolic changes through exercise and will be able to decide (after further validation) which 

exercises will be considered for which subjects or for reaching which goals in health and competitive 

sports.  

A granular, metabolic fragmentation of exercise can be determined with so called “omics” technologies. 

The term omics covers different sub-disciplines: genomics, transcriptomics, proteomics, and 

metabolomics and refers to the measurement of all respective biological features (e.g. molecules like 
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genes, transcripts, proteins or metabolites) within a biological sample (e.g. blood, urine, saliva, skeletal 

muscle a.s.o.), which can range from few hundreds to several thousands. Omics methods have already 

yielded biomarkers, which are biological features whose concentration indicates a certain phenotype 

(i.e. a diseased), mostly in a clinical context. 

Twenty years ago, discovery of such a great many features was difficult and only a single or a few 

features were measurable. Methods used in omics research like mass spectrometry (MS) have advanced 

technologically and nowadays enable the quantification of hundreds up to thousands of molecules in 

blood. Mass spectrometry today is quick, efficient, and more affordable than several years ago, making 

large-scale biological features detection possible for exercise scientists.  

I-3. Omics to measure biological features in exercise science 

I-3.1. Metabolomics 

I-3.1.1. Definition 

The term “omics” describes methods such as genomics, transcriptomics, proteomics, and metabolomics, 

which quantify or characterize hundreds or thousands of molecules such as genes, transcripts, proteins, 

and metabolites, in one biological sample. Omics methods are part of the unbiased discovery science 

(Aebersold et al. 2000) where as much data as possible of a biological system (e.g. an human) are 

generated and then analyzed with computational models e.g. to discover novel biomarkers. 

Metabolites are low-weight (up to 1500 Da) endogenous or exogenous molecules and are measurable in 

various human body fluids like blood, urine, saliva, cerebrospinal fluid or sweat and in tissues like 

muscle fibers or adipose tissue. Endogenous metabolites include lipids, amino acids, nucleotides, 

vitamins and cofactors, carbohydrates, and TCA cycle metabolites. Exogenous metabolites, so called 

xenometabolites or xenobiotics enter the body via food, drinks, drugs, or pollutants. In metabolomics, 

all (or as many as possible) metabolites within a biological sample are measured and are termed, the 

metabolome.  

Metabolites include the end products of human metabolism and therefore incorporate information from 

genes over transcripts, proteins, and environmental influences (Artati et al. 2012). From all molecules, 

they reflect human phenotypes best and inform about functional activities, transient effects, and 

endpoints of metabolic processes (Artati et al. 2012). 

Omics methods were established in the late 90ies (Humphery-Smith and Blackstock 1997; Tweeddale 

et al. 1999) and another 20 years later, the first exercise scientists used metabolomics (Yan et al. 2009). 

Exercise scientists can use metabolomics to analyze the metabolic response of human subjects to acute 

and long-term exercise or monitor metabolism during exercise. 
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I-3.1.2. Measurement approaches 

Metabolites can be quantified using a targeted or a non-targeted approach. Targeted metabolomics 

quantifies the absolute concentrations of a known and pre-defined set of metabolites (Table 1). Targeted 

metabolomics is used to measure a set of metabolites of interest where measurement accuracy and 

reliability is the priority.  

In contrast, non-targeted methods quantify metabolites relatively, meaning that no absolute 

concentrations of metabolites are given. For the same metabolite, researchers can only conclude a higher 

or lower value between two measured probes (Adamski and Suhre 2013). Non-targeted methods capture 

all signals of metabolites within a sample (Adamski and Suhre 2013) and thereby aim to discover new 

or “unexpected” metabolites or metabolic pathways as potential biomarkers for a human phenotype (e.g. 

for a certain disease) (Table 1).  

To measure metabolites, mainly mass spectrometry (MS) or nuclear magnetic resonance spectroscopy 

(NMR) are used as technologies. Only MS will be described in more detailed, as all experimental 

metabolomics data incorporated in this thesis were measured with MS. Details on the targeted approach 

used in thesis are found in the methods section of Study 2 (II-2.). 

In targeted and non-targeted MS, metabolites are first extracted from the biological sample (e.g. blood 

plasma or serum, urine, or tissue like muscle) and then separated by gas chromatography (GC) or liquid 

chromatography (LC), which improves analytical sensitivity (Artati et al. 2012). Afterwards, 

metabolites are ionized, which is required for subsequent mass spectrometry. Ions and their fragments 

are resolved in an electromagnetic field according to their mass to charge (m/z) ratio. A spectrum 

showing the quantity of ions with the m/z ratio of the molecule ion and its fragment is specific to every 

metabolite and ultimately used for identification and quantification. 

 

Table 1. Scientific approaches and main features in targeted and non-targeted metabolomics  

(adapted from Schrimpe-Rutledge et al. (Schrimpe-Rutledge, 2016 #754) and Adamski et al. 

(Adamski and Suhre 2013). FIA flow-injection-analysis, GC gas chromatography, NMR nuclear 

magnetic resonance spectroscopy. 

 Targeted Non-targeted 

Scientific  

approaches 

o Hypothesis-driven 

o Subset of metabolites analyzed 

o Correlated to reference 

standards 

o Compounds known 

o Absolute quantification 

o → Validation/quantification 

o Hypothesis-generating 

o Global analysis of the 

metabolome 

o Correlated to libraries/databases 

o Qualitative identification 

o Relative quantification 

o → Discovery 
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Metabolite 

coverage 

10-100 300-1200 

Advantages Absolute quantification of metabolites Diverse set of distinct metabolites 

Disadvantages Many metabolites not covered Only semi-quantitative determination of 

concentration 

Main use Pathway analysis, kinetics studies, 

quantitative estimation of challenge 

impact, diagnostics 

Unbiased search for differences, 

discovery 

 

I-3.2. Proteomics 

I-3.2.1. Definition 

Proteins formed through amino acids chains, interconnected by peptide bonds. Endogenous proteins 

include e.g. structural proteins that form and stabilize cells like collagen, contractile proteins, storage 

proteins, transporter proteins, protective proteins like antibodies in the immune system, or hormones 

that regulate metabolism or work as messenger substances like erythropoietin (EPO) and enzymes 

(Table 2). As metabolites, proteins are produced endogenously and can be ingested via food or drinks. 

As metabolomics, proteomics studies the entire set of proteins, the proteome, within a biological system 

at a given timepoint. 

I-3.2.2. Measurement approaches 

Proteins (for proteomics) can be measured using mass spectrometry or affinity-based proteomics, where 

either antibodies or other binding reagents (e.g. aptamers) specifically bind to target proteins in the 

experimental samples.  

Proteins are ten to thousand times heavier than metabolites (Table 2). To measure proteins using MS, 

they must be digested into smaller pieces before injection into the mass spectrometer. During digestion, 

proteins are split by using protein-cutting enzymes like trypsin, which splits proteins’ peptide bonds at 

specific amino acid sequences. This controlled splitting leaves amino acid and/or peptide fragments that 

are specific for the original protein and can be analyzed with MS.  

High or medium abundant proteins (e.g. if measured in human blood) can overlay proteins with lower 

abundance and can reduce measurement sensitivity for those. This can be problematic because 

functionally important, low abundant proteins, e.g. regulatory hormones will be missed. 

In this thesis, affinity-based proteomics, more precisely aptamer-based proteomics was used, which is 

why only this method is described. Detail can be found in the publication of Study 3 (II-3.) 
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Aptamers are molecules built from nucleic acids and fold into a specific 3-dimensional structure (Figure 

4). Aptamers are added to the research samples and their structure is designed to bind specifically to a 

target protein (Figure 4). In this way, every protein in the research sample is targeted individually. The 

method is highly sensitive and can bind proteins within a wide concentration range up to the femtomolar 

concentration (10-15) including low abundant proteins (Gold et al. 2010; Smith and Gerszten 2017). 

Aptamers for protein identification were first developed in the early 2000’s (Elrick et al. 2006). 

Aptamer-based methods have some limitations like unspecific binding of the aptamers to random 

proteins, which is why its outcomes should be validated by an independent method. So far, the technique 

was successfully applied in biomarker discovery in clinical settings e.g. for kidney health (Ngo et al. 

2020), cardiovascular diseases (Jacob et al. 2018), or muscle wasting in Duchenne’s disease (Hathout et 

al. 2015). 

 

Figure 4. Simplified aptamer-protein binding process. The aptamer has a specific nucleotide sequence 

(colored circles) and is folded in a 3-dimensional structure that specifically binds to the protein of 

interest (“Protein X”) like an antibody. 



26 

 

 

 
2DNA-aptamers are oligonucleotides of ~50 base pairs length and bind to proteins like antibodies 

Table 2. Overview and methodology in metabolomics and proteomics 

Omics technology Metabolomics Proteomics 

Molecular weight • Up to ~1.5 kDa • ~13 - 3000 kDa 

Complete set of molecules • Metabolome • Proteome 

Classes • Carbohydrates (e.g. hexose) 

• Lipids (e.g. fatty acids) 

• Amino acids and peptides (e.g. leucine) 

• TCA cycle metabolites (e.g. citrate) 

• Nucleotides (e.g. guanine) 

• Vitamins and cofactors (e.g. pantothenate) 

• Xenometabolites (e.g. caffeine or acesulfame) 

• Structural proteins (e.g. collagen) 

• Contractile proteins (e.g. myosin) 

• Storage proteins (e.g. ferritin) 

• Transport proteins (e.g. hemoglobin) 

• Immune function proteins (e.g. antibodies) 

• Hormones (e.g. insulin) 

• Enzymes (e.g. creatine kinase) 

Databases • Virtual metabolic human database (Noronha et al. 2018) 

• Human metabolome database (HMDB) (Wishart et al. 

2018) 

• The human protein atlas (Uhlén et al. 2015) 

• Uniprot (Consortium 2017) 

Measurement technologies • Liquid-chromatography followed by electrospray-

ionization and mass spectrometry (LC-ESI-MS)  

• Other technologies exist (e.g. GC-MS, NMR) 

• LC-MS with upstream trypsin digestion (and other pre-

analytical steps) 

• DNA aptamers2 

Measurement approaches  • Untargeted (see Table 1) 

o >1000 metabolites quantifiable 

o Discovery research 

• Targeted (see Table 1) 

o Pre-defined set of few hundreds of Metabolites 

quantifiable 

o High measurement accuracy  

• LC-MS:  

o Several hundreds of proteins quantifiable  

o Only high to medium abundant proteins  

• DNA aptamers (see Figure 4):  

o >5000 proteins quantifiable 

o  High to very low abundant proteins (Davies 

et al. 2012; Gold et al. 2010)  
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I-4. Biological features in exercise science  

I-4.1. Molecules that determine human exercise phenotype 

I-4.1.1. Genes: the stable basis of exercise phenotypes 

Genes determine the basic structure of human phenotypes (Wood et al. 2014), that is all observable and 

measurable characteristics of an individuum (e.g. body height) (Figure 5). 99.9% of the genes in the 

human genome are identical between individuals, leaving a 0.1% difference. Variations in phenotype 

such as body height, insulin sensitivity but also exercise capacity or the capacity to adapt to exercise 

depend on a combination of the variable genetic difference of 0.1% plus environmental stimuli (e.g 

exercise training, diet, lifestyle, or diseases) (Frazer et al. 2009). Among the 0.1% of genetic variability, 

the most common genetic variations are so called single nucleotide polymorphisms (SNPs) where one 

base pair within a gene differs between the individuals of a population. An SNP can change the amino 

acid sequence of a protein, which can, depending on the protein encoded, alter downstream metabolites 

and the phenotype or phenotypic traits (Figure 5) in many ways.  

 

 

 

Figure 5. Molecules that determine human (exercise) phenotypes. Changes on every molecular level 

can cause downstream alterations and finally alterations in phenotype. Genes contain all genetic 

information of an individual (Lander et al. 2001). Transcripts contain the manual to build proteins 

(synthesis, transcription, and translation). Proteins are built from amino acid chains and catalyze 

metabolic reactions. Metabolites are the end products of human metabolism and are direct read outs 

of biochemical processes within the body (Patti et al. 2012).  

 

An example of such a genetic variant causing a favorable exercise phenotype is that of the cross-country 

skier Eero Mäntyranta. Mäntyranta had an SNP on the gene that encodes the erythropoietin receptor 

(EPOR) (de la Chapelle et al. 1993), which led to an increased production of erythrocytes. Mäntyranta’s 

blood contained ~20 g/dl of hemoglobin, whereas the normal range in men is 16-18 g/dl, allowing him 

to transport high amounts of oxygen to his working muscles. Through this favorable genetics and 

exercise training, Mäntyranta won seven medals in Olympic games and five medals in the World 

Championships in the 1960s. 

Modifiable by exercise 
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In fact, genes can determine up to half of an exercise associated phenotype, which is relevant for 

performance and the adaption to exercise (Georgiades et al. 2017) 

Another example of genetically influenced exercise phenotypes was shown by Bouchard et al. (1998 & 

1999) (also see I-1.3.). In over 400 individuals (~100 two-generational families) Bouchard and 

colleagues showed that traits like intrinsic V̇O2max (Bouchard et al. 1998) or an individuals’ capacity 

to train V̇O2max (ΔV̇O2max or V̇O2max trainability) are determined by genes by ~50% (Bouchard et al. 

1999). Among Bouchard’s study participants, 21 SNPs in the genome were responsible for the variations 

in ΔV̇O2max with the strongest association for a variant in the acyl-CoA synthase long-chain member 1 

(ACSL1) gene, which accounted for ~6% of the differences in V̇O2max trainability (Bouchard et al. 

2011).  

More genes that determine endurance performance and whose manipulation has shown to increase 

endurance capacity by up to 1800% in mice were recently reviewed (Yaghoob Nezhad et al. 2019). 

Among the 31 genes identified in the review by Nezhad et al. was PPARGC1A which encodes the PGC1-

alpha protein. PGC1-alpha stimulates mitochondrial biogenesis and can increase oxidative fiber (slow 

twitch type 1) content in skeletal muscle (Liang and Ward 2006), leading to the development of an 

endurance phenotype.  

In summary, studies that systematically investigated the effect of genes on exercise phenotype found at 

maximum ~50% of the phenotype to be causally related to genes, so inherited. As a result, downstream 

molecules like transcripts, proteins, and metabolites, which partly influenced by the environment, are 

responsible for the other 50% of the phenotype. To describe an exercise phenotype or phenotypic trait, 

the stable (genes) and the modifiable (transcripts, proteins, and metabolites) parts are similarly 

important. 

I-4.1.2. Metabolites and proteins: the modifiable part of exercise phenotypes 

In contrast to genes, the concentrations of transcripts, proteins, and metabolites can change in response 

to environmental stimuli like exercise, diet, disease, or medication. As the experimental part of the thesis 

covers proteins and metabolites only, transcripts are not discussed in detail.  

Proteins are encoded by genes and built from transcripts, containing information on genetics and the 

genetic regulation (transcripts) plus information on the environment (Figure 5). In exercise science, few 

proteins are established as biomarkers, e.g. creatine kinase (CK) as a read-out or marker for skeletal 

muscle damage after exercise or CK-MB, the myocard-specific form of CK, which indicates heart 

muscle damage (e.g. in myocarditis). Other muscle-specific proteins indicating muscle damage in 

disease include myoglobin (MB) itself and skeletal muscle troponin I (TNNI2) (Hathout et al. 2015). 

Though CK-MB, MB and TNNI2 are all clinical examples, their usage shows that proteins released 

from skeletal muscle, one of the most metabolically active organs during exercise, can be found in blood 

and that their levels are directly associated to (muscle) phenotype.  
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Not only can proteins inform about phenotypic traits like muscular properties but also about ongoing 

exercise adaptation. For example follistatin, which is secreted by the liver after exercise and inhibits 

myostatin (Murphy et al. 2020) which is a growth regulator of skeletal muscle mass (Schuelke  et al. 

2004). Through myostatin inhibition, follistatin can increase muscle mass by 10% as shown in rats 

(Schumann et al. 2018).  

From an exercise perspective, proteins that are secreted from skeletal muscle during contraction and that 

have systemic effects on several other organs or on the whole organism (so called myokines) are very 

interesting to study. An example is interleukin-6 (IL-6) (Ostrowski et al. 1998), which is released from 

contracting muscles, has anti-inflammatory qualities (Starkie et al. 2003) and can help maintain glucose 

homeostasis during exercise (Febbraio et al. 2004).  

Numerous other examples exist for proteins involved in metabolic communication during (Murphy et 

al. 2020; Pedersen et al. 2007; Pedersen and Febbraio 2012), in regulating the adaptation to (Egan and 

Zierath 2013) or in showing health-beneficial effects of exercise. Despite their importance in exercise, 

few studies have used proteomics to measure proteins and their changes through exercise. Due to the 

proven importance of some proteins in exercise contexts, it is likely that a comprehensive measurement 

of hundreds up to thousands of proteins by using proteomics could yield novel biomarkers for any of 

the metabolic processes during or after exercise.  

Proteomics studies in an exercise context are limited, mostly to ones that use protein levels to predict 

health or performance changes after exercise. For example, a large cohort study (17,000 individuals 

from different sub-cohorts) by Williams et al. (2019) developed protein prediction models for different 

health conditions (e.g. liver fat) or future health risk (e.g. probability of a cardiovascular event within 

the next 5 years) with the vision for an “individual liquid health check” via blood proteins (Williams et 

al. 2019). Another study, relating proteins to V̇O2max was done by Santos-Parker et al. (2018) who 

compared aerobically trained with untrained participants and found that proteins related to V̇O2max 

training status are involved in metabolic pathways like apoptosis, glucose-insulin signaling, and immune 

response (Santos-Parker et al. 2018). One of the few studies on protein changes after acute exercise was 

done by Guseh et al., who showed that ~1,300 plasma proteins change their concentration in response 

to an acute bout of exercise (5-mile run) and that the magnitude of change depends on the intensity of 

the exercise (Guseh et al. 2020). Despite not many, the studies in the field of proteomics and exercise 

show that proteomics can yield readouts of metabolism after exercise and in the prediction of exercise 

adaptation.  

At the end of cascade of molecules that determine exercise phenotype are metabolites. They are potential 

candidates for biomarkers as they change quickly in response to external stimuli like exercise (e.g. 

lactate in response to exercise) or fasting (e.g. blood glucose decline) and therefore directly reflect the 

functioning of the body.  
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Like the phenotype itself, metabolite concentrations are influenced by genetics (up to ~75% of the blood 

metabolite concentration can be inherited (Shin et al. 2014)) and the above mentioned environmental 

stimuli (Suhre and Gieger 2012).  

During acute exercise, metabolites change quickly, and their concentration changes can be e.g. used to 

show fuel use during exercise (e.g. increased fat oxidation).  

Metabolites that are changed after long-term exercise training could indicate exercise adaptations such 

as a decreased resting lactate concentration.  

Cross-sectionally, metabolites could be used as biomarkers for a certain physiological phenotype (e.g. 

trained vs. untrained), in a similar way as they are used in the clinic for pathological phenotypes (e.g. 

health vs. disease). 

In exercise science, single metabolites such as lactate (e.g. to monitor endurance capacity) (Brooks 

2018) or glucose (e.g. to determine glucose availability during exercise) are established and applied as 

biomarkers. Attempts to discover novel biomarker with omics have started in 2009, when the first study 

used metabolomics to investigate metabolite concentration changes in response to exercise (Yan et al. 

2009). Since then, several exercise omics studies found that exercise changed the concentrations of many 

metabolites like lipids, carbohydrates, amino acids or TCA cycle intermediates (Andersson Hall et al. 

2016; Berton et al. 2017; Breit et al. 2015; Chorell et al. 2012; Coelho et al. 2016; Danaher et al. 2015; 

Daskalaki et al. 2015; Enea et al. 2013; Enea et al. 2010; Hall et al. 2016; Hooton et al. 2016; Howe et 

al. 2018; JanssenDuijghuijsen et al. 2017; Karl et al. 2017; Krug et al. 2012; Messier et al. 2017; Muhsen 

Ali et al. 2016; Mukherjee et al. 2014; Neal et al. 2013; Nieman et al. 2013; Peake et al. 2014; 

Pechlivanis et al. 2010; Pechlivanis et al. 2015; Prado et al. 2017; Ra et al. 2014; Samudrala et al. 2015; 

Sun et al. 2017; Valerio et al. 2017; Wang et al. 2015; Zauber et al. 2012), all summarized in Study 2 of 

this thesis (Schranner et al. 2020). Metabolite changes in these studies differed between exercise 

protocols and/or between subjects. This suggests that metabolomics is sensitive enough to distinguish 

exercises with different intensities, durations, or of different kind and to distinguish metabolic changes 

in-between subjects or subject groups.  

The high sensitivity of metabolomics for comparing different exercise modes was recently also shown 

by a cross-over study. (Morville et al. 2020). The study found that within a group of ten healthy young 

males, resistance and endurance exercise provoke distinct changes in ~10% of all measured metabolites 

(~700). Most metabolites (~600) changed directionally similar after resistance and endurance exercise. 

Unsurprisingly, both exercises increased energy metabolism but to a different extent: resistance exercise 

led to higher increases in lactate, pyruvate, malate, and alpha-ketoglutarate, whereas endurance exercise 

led to higher increases in succinate.  
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Further, studies using metabolomics have shown that it is possible to track individual (Brennan et al. 

2018; Contrepois et al. 2020) and inter-individual (Krug et al. 2012) metabolite concentration changes 

during exercise and in the recovery phase (which is particularly informative in terms of adaptation 

signaling). Contrepois et al. for example showed, that metabolite changes throughout exercise and in the 

post-exercise phase depend on individual capabilities of metabolism like glucose metabolism. This 

strongly suggests that metabolite changes during or after exercise could indicate bioenergetic capacities 

of an individual or between individuals (e.g. endurance athletes having high fat oxidation rates). Taken 

together, the susceptibility of metabolites to change quickly depending on the metabolic demands, 

makes it possible not only to find biomarkers for e.g. basal energy metabolism (e.g. mitochondrial ß-

oxidation) or energy metabolism during exercise (e.g. glucose metabolism) but also metabolites that 

potentially signal the adaptation to exercise in the recovery phase (e.g. mitochondrial biogenesis or 

protein synthesis).  

Though research on both proteomics and metabolomics in exercise has intensified in the last ten years 

(proteomics Pubmed articles 2010: 29 vs. 2020: 1073 and metabolomics Pubmed articles 2010: 15 vs. 

2020: 175)4, omics-driven biomarker discovery in exercise science is still in its beginnings.  

 

I-5. Aims of this PhD thesis 

In summary, there is a need for individualized evidence-based exercise interventions for (competitive) 

sports and society (prevention and therapy of lifestyle related diseases). The overall aim of an 

individualized exercise science would be to achieve or to accelerate meaningful physiological adaptation 

meeting individual health or performance goals (e.g. risk factor decrease, decrease in mortality, V̇O2max 

increase, muscle mass increase, a.s.o.). In the process of individualization, a knowledge base on the 

global and the specific metabolic effects of exercise is necessary, which is possible in-depth by using 

omics technologies.  

Therefore, the first aim of this PhD thesis was to summarize the existing literature on the effects of 

exercise on metabolite concentrations in humans. 33 studies from 2009 to 2019 were summarized in a 

systematic literature review on the effects of exercise on blood, urine, saliva and sweat metabolite 

concentration changes in healthy human subjects(Schranner et al. 2020). 

The second aim of this PhD thesis was, to investigate, how years of different exercise training in 

competitive athletes shape the blood metabolome at rest and after exercise. Highly trained athletes 

reflect the physiological extremes of human bioenergetic capacity: Years of selective training, increase 

concentrations of metabolic enzymes in the musculature e.g. endurance athletes have higher levels of 

 
3 For the search term “proteomics AND exercise” 
4 For the search term „metabolomics AND exercise” 



32 

 

succinate-dehydrogenase which is involved in fatty acid oxidation. Therefore, we assume that the 

bioenergetic capacity (e.g. high capacity to oxidize fat) of highly trained athletes is selectively shaped 

to their training and leads to changed blood metabolite levels. Furthermore, many metabolic enzymes 

are activated by exercise, which is why differences in bioenergetic capacity may only become apparent 

after exercise.  

A third, experimental publication of this thesis covers a future field of an individualized exercise science, 

namely predicting individual physiological adaptation by using blood proteins via proteomics. We 

decided on the most well-studied trait of exercise physiology, V̇O2max, which is also a biomarker for 

endurance capacity. As shown in the introduction, V̇O2max and its trainability are highly relevant for 

future health and vary greatly in-between individuals. Genome-wide association studies have so far not 

yielded robust genetic biomarkers especially for V̇O2max trainability and there has been no study to 

explore whether there are blood protein biomarkers whose concentration is associated with V̇O2maxand 

its trainability.  

 

The aims of each study were addressed in the following research questions: 

Study 1: How does one bout of acute exercise globally affect blood metabolite concentrations in healthy 

humans? 

Study 2: What is the effect of long-term specific exercise training/metabolism (highly anaerobic, 

aerobic, and anabolic metabolism) on blood metabolite concentrations at rest and after maximum 

exercise? 

Study 3: Are there blood protein biomarkers of intrinsic V̇O2max and the trainability of V̇O2max and 

can we use blood proteins to predict V̇O2max trainability? 
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II METHODS 

II-1. Systematic literature review (Study 1) 

For compiling a systematic literature review on metabolite concentration changes after an acute bout of 

exercise in healthy humans, I followed the guidelines described in the PRISMA statement for systematic 

reviews and meta-analyses (Moher et al. 2009). These guidelines include the reporting of the workflow 

from literature identification, literature screening, verifying study eligibility criteria and finally the 

inclusion of studies and the checklist of items to include within a systematic review or meta-analysis.  

Briefly, significant changes of metabolite concentrations in eligible studies were noted in a table and 

sorted according to the following metabolite subgroups and their underlying metabolism: carbohydrates 

and tricarboxylic acid (TCA) cycle intermediates; lipids; amino acids, their derivates and peptides; 

nucleotides; cofactors and vitamins, and xenometabolites (i.e., non-human metabolites). Metabolite 

concentration changes were further classified according to post-exercise sample timing and the biofluid 

in which they were measured. This quantitative analysis of the existing data in literature made it possible 

to compare very heterogenous studies, identify similarities within studies (e.g. increases in the 

concentration of most lipids) and find differences between studies in the metabolite response within 24 

hours after acute exercise. 

II-1.1. Search term building 

The search terms were built applying a reduced form of the PICO (Population, Intervention, 

Comparison, Outcome) search strategy, using only Population, Intervention and Outcome, as there was 

no need for a control group within the screened studies. I conducted two main searches separated by 12 

months (search 1: March 2018, search 2: March 2019) in different databases including PubMed, Web 

of Science, Scopus and MetaboLights database. According to the requirements of each database, the 

search term was slightly adjusted. For more comprehensive search results, the words “exercise” (for the 

intervention) and “metabolomics” or “metabolome” (for the outcome) were included as MeSH (Medical 

Subject Headings) terms. MeSH terms are words that are hierarchically mapped to a number of sub-

terms and facilitate database searches as only the MeSH word needs to be used to cover all words that 

are mapped to it. For example, the hierarchical structure that is covered by the MeSH term “exercise” is 

shown below (Figure 6), covering all different kinds of exercises, whereas each of them in turn covers 

another subset of more granular definitions of e.g. “running”. 
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MeSH term Subterms included, level 1 Subterms included, level 2 

Exercise   

 Cool-down exercise  

 Gymnastics  

 Physical conditioning, human  

  Endurance training 

  High-intensity interval training 

  Plyometric exercise 

  Resistance exercise 

 Running  

  Jogging 

  Marathon running 

 Swimming  
 

Figure 6. Examples of the sub-structure of the MeSH term “exercise” as listed in PubMed 

(https://www.ncbi.nlm.nih.gov/mesh/68015444). Bold words have sub-terms included. 

 

The initial MeSH terms were subsequently verified and expanded by PubMed Pubreminer 

(https://hgserver2.amc.nl/cgi-bin/miner/miner2.cgi), a webtool that enables detailed analysis of a 

PubMed query’s results and which lists all MeSH terms and regular phrases that fit the respective query. 

With this, the term “sportomics” was also added to the search string, resulting in the final search term: 

((“metabolomics” [MeSH Terms] OR “metabolome” [MeSH Terms]) OR sportomics [All Fields]) AND 

“exercise” [MeSH Terms] 

II-1.2. Identification and screening of studies 

The two main searches resulted in 716 abstracts that were retrieved from the respective databases and 

other sources such as reference list from the publications used. After removing duplicates, applying 

eligibility criteria, and reading full-text, 27 articles remained for quantitative analysis. 

II-1.3. Eligibility criteria 

Peer-reviewed articles, written in English language were rated as eligible. The outcome of the eligible 

studies needed to be quantitative metabolite concentration changes (e.g. fold-change or % change) 

occurring within 24 hours after a bout of any exercise. Subjects that were investigated within these 

articles had to be older than 18 years of age, healthy and normal weight or minimally overweight with 

a BMI between 18 and 28 kg/m². Metabolite measurement techniques had to be one kind of a 

metabolomics method, where many metabolites were simultaneously quantified, such as nuclear 
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magnetic resonance spectroscopy (NMR) or GC-MS or LC-MS. Physical activity or exercise of any 

kind or duration completed in one bout /session had to be the primary intervention of the study. For 

metabolites to be reported in the manuscript, concentration changes within 24 hours after exercise had 

to be reported as significant or had to have a nominal p-value of below 0.05 in comparison to a value 

taken pre-exercise or at rest. From every study, the following information were extracted, if available: 

Author, year of publication, subjects (age, weight, BMI, bodyfat percentage, engagement in regular 

exercise, V̇O2max) specifics on the exercise intervention of the study (duration of fasting period before 

exercise, duration of the exercise itself, relative intensity of the exercise itself in % V̇O2max or in % of 

heart rate maximum, allowance of drinks or food other than water during the exercise), and specifics on 

the samples (kind of sample like blood plasma, blood serum, urine, saliva or sweat, if blood: venous, 

capillary or arterial blood, timepoint of pre- and post-exercise sampling), details on metabolite 

quantification (instrumentation, number of quantified metabolites). 

 

II-1.4. Quantitative data analysis  

Extracted metabolite concentration changes were graphically summarized in horizontal dot plots per 

metabolite class and colored according to post-exercise sample timing and shaped according to the 

biofluid in which they were measured. The coloring according to sample timing was used as metabolite 

changes are highly dynamic and some metabolites/metabolite classes’ changes are observable only in 

defined time windows post-exercise and/or differ in extent or direction depending on post-exercise 

timepoint. For example, this is the case for some nucleotides such as hypoxanthine and its related 

metabolites which are observable only between ~ 5 to 20 minutes after exercise. Furthermore, lipid 

changes are highest post-exercise but can still be observed 24 hours after exercise, gradually decreasing 

in extent (Schranner et al. 2020). 

 

 

II-2. Experimental study on metabolite differences at rest and changes in 

response to exercise in human athlete phenotypes (Study 2) 

In study two, I experimentally investigated metabolite differences in between three different human 

athlete phenotypes and an untrained control group at rest and after maximum exercise. Details on 

subjects are found under II.2.2.  

Briefly, I designed questionnaires for training history, current training, diet, dietary supplement intake 

and medication which participants filled out for seven, 28 and 14 days before the study (Figure 7, (1)). 

24 hours before the study, participants followed a standardized nutrition plan that was designed together 

with a nutritionist (Figure 7, (2)). On testing days, subjects reported to the laboratory at 7 a.m. after a 

10 h overnight fast, followed by (Figure 7, (3)) physical examination and measuring anthropometry. 
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The first blood sample (Figure 7, (4)) was drawn ~20 minutes before the exercise (Figure 7, (5)). The 

second blood sample was drawn exactly 5 minutes after the exercise (Figure 7, (6)). Blood samples 

clotted for 30 minutes at 22° C and were then centrifuged at 15°C at 2460 g for 10 minutes after which 

supernatant serum (Figure 7, (7)) was harvested. A strength testing battery (Figure 7, (8)) was 

performed on every participant after a 90-minute break.  The testing day was finished at approximately 

11 am. Details of the experimental flow are found in II-2.5 – 2.11. 

 

Figure 7. Experimental flow chart of the MetaExtreme study.  

 

II-2.1. Ethical Approval for human studies 

Ethical approval (reference number: 356/17S, cf. VII-2.6.) was obtained at the medical ethics committee 

of the Technical University of Munich, confirming that the study conforms to the Declaration of Helsinki 

for use of human subjects and tissue. Before the study, participants were fully informed about the aims, 

procedures, and possible risks of the study before they gave their written informed consent to participate. 

Participants were fully informed that their data will be made publicly available to the scientific 

community after anonymization. 

 

II-2.2. Participant recruitment 

For this study, 35 healthy males between the ages of 19 to 39 years were recruited. As blood metabolites 

are influenced by the female cycle, metabolomics measurements must be done in the first ten days of 

the cycle to prevent hormonal influences on the metabolome. Further, female participant recruitment 

would be limited to either females who do not use hormonal contraceptives at all and have regular 

menstrual cycles or females who use the same hormonal contraceptive for at least 3 months. Therefore, 

additional planning and term re-scheduling on short notice (e.g. when cycle changes occur) can be an 

issue when working with female participants, especially in smaller cohorts like this. 
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Natural bodybuilders were recruited via the ‘German Natural Bodybuilding and Fitness Federation’ 

(gnbf.net) according to their competitions and performances during the last two years. Eligible natural 

bodybuilders needed to have at least two national competitions per year during the last two years. 

Natural bodybuilders needed to train at least 8 hours of resistance or hypertrophy exercise per week, 

leading to high anabolic capacity and to high muscle mass and low bodyfat. 

Endurance athletes were recruited via regional triathlon and road cycling clubs in the southern part of 

Germany according to their performance and partaking in at least two national or international 

competitions during the last two years. Triathletes were all training for long-distance competitions (3.8 

km swimming / 180 km cycling / 42.1 km running), so called “ironman” triathlons with typically 

extensive but low intense training bouts (80-90%) and only a fragment of short and intensive training 

(~10-20%), leading to highly adapted fat metabolism and aerobic glycolysis, with low gains in muscle 

mass and minimal gains of anaerobic glycolytic capacity. Cyclists were all competing in long duration 

cycling events typically lasting ~3-8 hours with a similar training intensity distribution as triathletes. All 

endurance athletes needed to train at least 8 hours of endurance exercise per week. 

Sprinters were recruited via regional track and field athletic clubs in the southern part of Germany. Track 

and field athletes were recruited as “sprinters” if they competitively trained for 400 m sprint or 400 m 

hurdles. These disciplines were selected according to their similarity in metabolic demands and typical 

loading times in training and competition of <60 seconds to few minutes. These short loading times with 

typically long breaks in between (up to ~20 minutes) lead to high muscular glycolytic capacity 

(anaerobic glycolysis) and to only little adaptation in aerobic glycolysis, endurance, and fat metabolism. 

In this way, we ensured maximum metabolic contrast between sprinters, natural bodybuilders, and 

endurance athletes. Sprinters needed to train at least 8 hours of sprint or speed training per week. 

None of the athletes were allowed to currently take or have ever taken prohibited substances according 

to the National Anti-Doping Agency (WADA 2021), e.g. anabolic substances, ß2-agonists, or diuretics, 

unless they had a medical condition and a prescription from a physician for any of those substances. 

Sedentary control subjects were recruited in different courses of the TUM and the LMU except exercise 

sciences. They were allowed to engage in a maximum duration of two hours of moderate exercise per 

week for at least 6 months before the study. 

II-2.3. Exclusion / Inclusion criteria for human subjects 

Exclusion criteria were cardiovascular, metabolic, respiratory, neoplastic, orthopedic, or acute illnesses 

that would exclude maximum exercise testing. Furthermore, subjects were excluded if they have had a 

long-distance flight (>3 time zones) during the last 4 weeks or were shift workers that include night 

shifts. 



38 

 

II-2.4. Pre-study questionnaires 

Participants were asked to fill out the following questionnaires that I designed: history of training (VII-

2.1.), including competitions, exclusion criteria questionnaire including questions on caffeine 

consumption, long-distance travels and diseases, a training diary for the last four weeks before the study 

(VII-2.2.), a diet diary of one week before the study (VII-2.3.), a nutritional supplement diary for two 

weeks (VII -2.4.)  before the study and a medication diary for four weeks before the study (VII -2.5.). 

On the day before the study, participants needed to follow a nutrition plan, to wash out short term 

influences of food or drinks on the metabolome. Further, subjects needed to refrain from exercise, 

caffeine, or alcohol for 24 hours before the study. All subjects reported to the laboratory at 7 am on the 

testing day, after fasting for 10 hours. Due to expected circadian variations in some metabolites, time of 

day was kept the same for all subjects. Water and unsweetened tea were allowed until 30 minutes before 

the study. All questionnaires can be found in the Supplementary material S2. 

II-2.5. Safety measures and anthropometry 

Upon arrival at the laboratory, arterial blood pressure was measured on both sides via the cuff/ 

stethoscope auscultation method and a 12-channel resting ECG (custo cardio 400, custo med GmbH, 

Ottobrunn, Germany) was written. Resting ECGs was examined by a physician and a short anamnesis 

(allergies, familial diseases, history of diseases or accidents) including auscultation of heart and lung 

was done. All participants were cleared for exercise stress testing. 

During exercise testing, participants wore a mobile 12-channel ECG (custo cardio 300, custo med 

GmbH, Ottobrunn, Germany) to detect any anomalies during exercise or in the immediate post-exercise 

phase (e.g. premature ventricular or supraventricular contractions or other arrythmias). Stress test ECGs 

were monitored throughout the course of the exercise and afterwards evaluated by a physician. Heart 

rate during exercise was collected by the ECG.  

Anthropometric measures like weight, height, muscle circumferences of M. biceps brachii and M. 

quadriceps femoris together with subcutaneous fat measures with a caliper using the 7-point-

calipermetry method by Jackson and Pollock (Jackson and Pollock 1978) were taken upon arrival. 

II-2.6. Exercise testing (Spiroergometry)  

Spiroergometry is the gold standard of cardiopulmonary performance diagnostics and is done to 

determine endurance capacity.  

Endurance capacity is measured as the maximum oxygen uptake capacity (V̇O2max or V̇O2peak) of an 

individual. Oxygen uptake (V̇O2) is a complex measure which incorporates information beyond the heart 

or cardiovascular system: it informs about metabolism, organ/ tissue specificities and cellular processes 

(Figure 8) of the whole organism.  
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Figure 8. Metabolic, organ, tissue and cellular processes that are incorporated into oxygen uptake 

(V̇O2). The limits of these processes incorporated into V̇O2 are given by the measures of V̇O2max or 

V̇O2peak. 

 

Endurance capacity (V̇O2max or V̇O2peak) can be measured by spiroergometric testing, where 

participants cycle on a stationary bike until exhaustion. In preparation for the ergometry of Study 2, the 

spirometric system (MetaLyzer 3B, CORTEX Biophysik GmbH, Leipzig, Germany) was warmed for 

~30 minutes, gas calibrated with ambient air and volume calibrated using a 3-liter standardized 

calibration syringe. 

After individual adjustments of the saddle and the handlebar reach, participants were seated on a Lode 

Excalibur Sport stationary bicycle ergometer (Lode B.V., Groningen, Netherlands). For the 

spiroergometry, an oro-nasal rubber mask (Figure 9A) (Hans Rudolph Inc., Shawnee, KS, USA) 

covering mouth and nose was fixed with a harness over subjects’ neck and upper head. The mask was 

connected to a volume flow sensor, measuring the inhaled and exhaled volume of air in liters. An oxygen 

sensor was connected to the volume flow sensor (Figure 9A), measuring the concentration of oxygen 

in the inhaled and in the exhaled airstream. A 12 channel ECG to record heart rate was fixed to the upper 

body by disposable electrodes, 8 as chest wall leads (Figure 9B), 4 as limb leads. Limb leads during 

stress ECG were fixed above bone structures on the posterior upper chest area (acromion or spina 

scapulae, both sides) after palpation and on the posterior lower chest area on the spina iliaca posterior 

on both sides. 
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Figure 9 A. Spiroergometry setting showing: (1) Oro-nasal rubber mask, fixed with a harness (2) on 

the back and upper head. (3) Flow sensor measuring inspired and exspired air volumina with an 

attached oxygen sensor (white cable). Real-time monitoring of measured oxygen, carbondioxide and 

volumina (4) and real-time ECG (5). Measurement device for O2, CO2 and volumina (6). Disposable 

ECG-electrodes placed on the chest wall (7). 

 

 

 

Figure 9 B. Detailed positioning of the 8 chest wall leads of the ECG during exercise. 
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The exercise protocol started with a 5-minute resting period, used to measure baseline gas exchange, 

and ensure proper operation of the spiroergometric system. After resting, subjects warmed-up for 3 

minutes at 80 Watts load. Then, a so-called fast ramp protocol was automatically executed by the 

spiroergometry software (Meta Soft Studio, Cortex Biophysik GmbH, Leipzig, Germany), with load 

increasing linearly at a rate of 30 Watts per minute (Figure 10A). The protocol was stopped at voluntary 

exhaustion of the participant and tests were subsequently validated with the pre-defined objective 

exhaustion criteria (a ventilatory equivalent of oxygen (VE/VO2) >30.0 or a respiratory exchange ratio 

(RER) >1.0) (de Marées 2003). Participants were verbally encouraged throughout the final ~3 minutes 

of the exercise to make sure they reach maximum exhaustion. At maximum exhaustion, capillary lactate 

was sampled into 20µl capillaries from the earlobe at an interval of 2 minutes for 10 minutes after 

cessation of exercise. Immediately after exhaustion, the participant was asked to lay down and a 

physician or nurse drew the second blood sample at exactly 5 minutes after the end of exercise. Lactate 

capillaries were immersed in a buffer solution (EKF-diagnostic GmbH, Barleben, Germany) and 

inverted 10 times to prevent clotting. Lactate samples from every participant were measured within ~30 

minutes at room temperature with an EKF BIOSEN C/S-line lactate analyzer (EKF-diagnostic GmbH, 

Barleben, Germany). 

Results from the spiroergometry were analyzed using Meta Soft Studio (Meta Soft Studio, Cortex 

Biophysik GmbH, Leipzig, Germany). As the spiroergometry records gas concentrations and breathing 

volumes dependent on breathing frequency (so called breath-by-breath recording), obtained values were 

averaged with the software build-in 30-s moving average. The validity of the VT1 was verified using 

the ventilatory equivalent plot (Figure 10A or Panel 4 in Figure 11) and adjusted if necessary to the 

point where both equivalents start to approximate each other (Figure 10B and C). Manual validation 

can be necessary if e.g. participants change their breathing frequency unconsciously during exercise. 

Relevant parameters (RER, VT1, V̇O2max/ V̇O2peak, HRmax, and maximum Watts per kilogram 

bodyweight) were extracted from the 9-panel-plot (Figure 11) and the respective data sheets. Parameters 

were used for phenotypical description of participants, to validate exhaustion. 

For the experimental studies of this thesis, two parameters of spiroergometry are essential: V̇O2max or 

V̇O2peak and the first ventilatory threshold (VT1). As mentioned earlier, V̇O2max indicates the limits 

of all processes incorporated within, so maximum endurance capacity. However, if subjective voluntary 

exhaustion can be verified with a set of objective exhaustion criteria.  

In endurance trained subjects objective and subjective exhaustion in general coincide well because they 

are used to exhaustive exercises. Verification of maximum exhaustion is indicated in all subjects but 

most important in non-exercise trained subjects. In our mixed cohort of study 2, cohort-adjusted 

objective exhaustion criteria of an RER >1.0 or a levelling-off of the oxygen uptake curve or reaching 

a ventilatory equivalent of oxygen (VE/V̇O2, Figure 10B) of >30.0 (de Marées 2003) were applied.  
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An RER >1.0 indicates primarily carbohydrate metabolism and hence metabolic exhaustion. Endurance 

trained subjects do not reach as high RERs than non-endurance trained subjects, as they have a higher 

proportion of fat metabolism during exercise (de Marées 2003).  

A levelling-off of oxygen uptake (shown in Figure 10A) is shown by a plateau in V̇O2 uptake despite 

increasing exercise load (Figure 10A). Whereas this criterion is the most obvious for the investigator, 

it is only seen in ~ 40-50% of cardiopulmonary exercise tests.  

Due to the limitations of RER and V̇O2 plateau as exhaustion criteria, a third objective criterion, the 

ventilatory equivalent of oxygen (VE/V̇O2, Fig. 10B) of >30.0 was applied. The VE/V̇O2 refers to the 

liters of ventilation per liter of oxygen consumed and indicates efficiency of ventilation (e.g. a VE/V̇O2 

of 25 means that 25 liters of air ventilating the lungs have to be inhaled to get one liter of oxygen). 

Normal values range between 23-28 at rest, with lower values referring to more efficient ventilation. 

During exercise, VE/V̇O2 increases and at VT2 or later (depending on training status) exceeds 30. A 

VE/V̇O2 of >30 is therefore used as the criteria for exhaustion. 

 

 

 

Figure 10 A. Absolute V̇O2-uptake curve (in l/min) during rest (0 W, sitting), warmup (80 W) and 

the ramp protocol (increasing load of 30 W per minute). Levelling-off of V̇O2 in the purple area 

indicates V̇O2max. When no levelling-off is shown but other objective exhaustion criteria are met, 

maximum exhaustion is termed V̇O2peak. 
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Figure 10 B. Panel 4 of the 9-panel plot (also see Fig. 11) showing the ventilatory equivalents of oxygen (VE/V̇O2) and carbondioxide (VE/CO2) during the 

ramp protocol of study 2. VE/V̇O2 of 30.0 seen slightly after VT2 in the graph was used as one of the objective exhaustion criteria. VT1 is determined via the 

approximation of the curves of VE/V̇O2 and of VE/VCO2 and verified using  

Figure 10 C. Panel 3 of the 9-panel plot (also see Fig. 11) showing the slopes of O2 uptake vs CO2 production. Prior to VT1 the red slope of VCO2 vs VO2 

has a smaller incline angle than after VT1. VT1 is at the point where the subsidiary lines for the slopes with differing inclination angles cross. 

 

 

B. C. 
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Next to oxygen uptake (V̇O2), other ventilatory gas exchanges like carbon dioxide production (VCO2) 

in liters per minute as well as ventilation itself (VE) in liters per minute are measured. In addition, 

parameters like heart rate pulse (V̇O2/HR) which quantifies how much oxygen is transported through 

the body per heartbeat or the ventilatory equivalents of oxygen (VE/V̇O2) and of carbon dioxide (VE/ 

VCO2), which are calculated by the ventilation (l/min) divided by the O2 uptake or CO2 production, are 

calculated by these measures. Further the so-called respiratory exchange ratio (RER) is calculated, 

which is the ratio between CO2 production and O2 uptake. The RER is used to estimate the respiratory 

quotient (RQ) which indicates which fuels (carbohydrates, fats, mixed) are metabolized at each phase 

of the test. All the above information is monitored throughout and is used to qualitatively and 

quantitatively inform about endurance capacity, summarized in the 9-panel-plot or so-called 

Wassermann graph) (Wasserman K 2012).  

 

 
Figure 11. 9-panel-plot according to Wassermann during the maximum exercise testing of Study 2. 

All measures in this graph were obtained using spiroergometry and simultaneous heart rate 

monitoring. Most relevant panels for endurance capacity testing and analysis are in bold. 

Panel 1: O2 uptake plotted with CO2 production during increasing load (P in Watts). 

Panel 2: O2 that is transported per heartbeat (VO2/HF) plotted with heart rate  
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Panel 3: O2 uptake plotted against CO2 production and heart rate; slopes in this graph are used to 

determine key parameters of endurance capacity (ventilatory threshold 1 (VT1) and ventilatory 

threshold 2 (VT2); also see Figure 10 C) 

Panel 4: Ventilatory equivalents of O2 and CO2 to determine VT1 (also see Figure 10 B) 

Panel 5: Pulmonary ventilation (VE) over the time of the exercise (male endurance subjects reach 

up to 200 l/min, untrained male subjects reach up to 120-150 l/min; BD = blood pressure - was not 

measured during exercise) 

Panel 6: Pulmonary ventilation plotted against CO2 production 

Panel 7: Oxygen and CO2 partial pressures over time. SpO2 = oxygen saturation was not measured. 

Panel 8: RER over time indicating fuel use during exercise: 0.7- 0.8 primarily fat metabolism, 0.8-

1.0 mixed metabolism, >1.0 primarily carbohydrate metabolism 

Panel 9: Absolute pulmonary ventilation plotted against relative. 

Panels 3, 6 and 9 also show VT1(light green) and VT2 (dark green). 
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II-2.7. Blood sampling, processing, and storage 

We drew 6 x 9 ml venous blood at both time points (2 x EDTA Plasma, 4 x Serum) from an antecubital 

vein, totaling ~108 ml. Before every draw, a 2.7 ml discard sample was drawn to ensure no 

contamination of the samples by the disinfectant, skin remainders or the needle. After drawing, EDTA 

monovettes were gently inverted for 3 minutes and then centrifuged at 2460 g for 10 minutes at 20° C. 

Serum monovettes were placed on a rack in an upright position and allowed to clot for 30 minutes after 

which they were centrifuged at 2460 g for 10 minutes at 15°C. After centrifugation, tubes were 

immediately put on ice (~1-4°C) and only two thirds of the supernatant plasma or serum were collected, 

to minimize the risk of contamination of the probes by the buffy coat (for plasma) or the separating gel 

layer (for serum). Supernatants of all serum or plasma tubes were merged into 15 ml falcons, inverted 

twice and then aliquoted as 400 µl aliquots into 1 ml cryotubes and immediately put on dry ice. Serum 

tubes were discarded, and plasma tubes were filled with phosphate buffered saline (PBS) and then 

frozen. All materials were bought from Sarstedt AG & Co. KG (Nümbrecht, Germany). 

II-2.8. Strength testing battery 

After spiroergometric testing, participants had a 90-minute break. Before the strength testing battery, 

participants re-warmed on a stationary bicycle ergometer for 10 minutes at 100 Watts and were 

instructed to do several dynamic jumping and dynamic stretching exercises (~ 5 minutes) to prevent 

injuries in the strenuous tests that followed. 

II-2.8.1. Reactive strength 

Reactive strength was assessed with a drop jump from 30 cm height onto a force measurement plate 

(Kistler Germany). The drop jump is used in exercise science to test reactive strength of the leg 

musculature. The jump is executed from a defined height (e.g. 30 cm) where the hands rest in the hips 

for the entire jump, prohibiting active arm movement to support the jump (Fig. 12A-1). The jump itself 

is rather a fall or a passive jump, where subjects lean slowly forward on the jumping-off height, moving 

the body’s center of gravity forward. The ground is covered with a force measurement plate (Fig. 12A-

2) where subjects, landing on the toes only, need to jump as quick as possible from (Fig. 12A-3). The 

force plate records the ground contact time and calculates the jump height (Fig. 12A-4). Jump height is 

calculated via the gravitational force and the participants weight, recorded in a resting standing position 

after the jump (Fig. 12A-5). The reactive strength is calculated from jump height / ground contact time.  

For study 2, participants were allowed 3 practice jumps from 10 cm height, 20 cm height and 30 cm 

height respectively. Three attempts from the measurement height of 30 cm were allowed after practicing 

and the jump with the best reactive strength index (RSI) was recorded. 
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Figure 12 A. Time-course of a drop jump. Participants stand with hands resting in their hips on a 30 

cm height (1), followed by a drop (2) onto a ground-integrated force measurement plate (3) and a 

jump (4) as high as possible. After the jump (5) weight of the participants is measured by the plate in 

a standing position. 

 

II-2.8.2. Grip strength 

Grip strength, of all strength measures in humans, is known to best reflect whole body strength (Trosclair 

et al. 2011) and is predictive of cardiovascular risk and all-cause mortality (Mearns 2015). We measured 

grip strength using a JAMAR dynamometer (JLW instruments, Chicago, IL, USA) in a seating position, 

with a knee angle of ~90° and the measurement arm hanging on one side with minimal elbow bent. 

Three attempts with verbal encouragement over 3 seconds of maximum voluntary grip were done on the 

dominant arm and the best out of three attempts was recorded. Between attempts a break of two minutes 

was allowed. 

II-2.8.3. Isometric leg strength 

Isometric leg strength was measured to quantify maximum ismetric strength of the M. quadriceps 

femoris. Isometric strength is characterized by the force that a muscle can develop without changing its 

length. Of all muscular contraction forms (concentric, eccentric, isometric), isometric strength (at a 

given angle of the muscle spanning joint) is the highest. For the M. quadriceps femoris, the knee angle 

with the highest force production is ~60° (Weineck 2009). We measured isometric strength of the 

quadriceps femoris on a stationary leg strength machine (Isomed2000, D. & R. Ferstl GmbH, Hemau, 

Germany) (Figure 12B). Before measurement, participants were seated and fastened on the machine 

and a specific warmup, including 20-30 movements over a movement spectrum of the knee joint angle 

of 60-90° was executed. Mechanical stops were set to prevent injury. Subjects were allowed 3 attempts 

of 3 seconds of voluntary maximum contraction at 60° knee angle and at 90° knee angle respectively 

with verbal encouragement. The highest isometric strength at both angles in Nm was recorded. 

5 4 

3 

1 2 

30 cm 
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Figure 12 B. Experimental setup of the isometric leg strength measurement, side-view (1). 

Participants are fastened on the machine and asked to produce maximum force with the M. quadriceps 

femoris (2) against the lever arm (3), front-view. 

 

Together with the V̇O2max/V̇O2peak measures and the anthropometry recorded, strength measures were 

used to describe phenotypes of the athletes and to ensure maximum phenotypic contrast between the 

subject groups. 

II.-2.9. Targeted metabolomics  

Details on measurement and statistics can be found in the publication of Study 2 (III-2.3.). Briefly, sera 

of a subset of 18 participants were analyzed with a kit-based targeted metabolomics approach 

(AbsoluteIDQ p180 Kit; Biocrates Life Sciences AG, Innsbruck, Austria) applying liquid 

chromatography (LC) and flow injection analysis-tandem mass spectrometry (FIA-MS/MS) quantifying 

a set of 188 metabolites: free carnitine (C0), 39 acylcarnitines, 21 amino acids, 21 biogenic amines, 

hexose (sum, consisting of about 90-95 % glucose), 90 glycerophospholipids (14 

lysophosphatidylcholines (lysoPC) and 76 phosphatidylcholines) and 15 sphingolipids. After quality 

control of the raw data, 151 metabolites remained for statistical analysis. 

II.-2.10. Untargeted metabolomics (unpublished data) 

To cover a broad spectrum of metabolic pathways, serum samples from all 35 participants, equaling 70 

samples (35 baseline and 35 post-exercise) were analyzed using untargeted metabolomics on mass-

spectrometry based platforms established by Metabolon Inc., Durham, USA. In total, ~1300 metabolites 

1 

2 

3 
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were quantified in the complete sample set, from which ~900 remained after quality control. Quality 

control included the following steps: batch correction on metabolites with <70% missing values over all 

samples, filtering out metabolites with >30% coefficient of variation (CV) in reference samples, filtering 

out metabolites with >30% of missing values over all samples. Finally, remaining missing values were 

imputed using a k-nearest-neighbor approach (k=10) (Do et al. 2018). Quality control was performed 

using R (version 4.1.0) and R Studio (version 1.3.1093). In a preliminary analysis of the new data using 

PLS-DA we were able to replicate our findings on global metabolite differences between the four subject 

groups (IV-2.5). Further analyses are ongoing.  

 

II-3. Experimental study on proteins associated with V̇O2max (Study 3) 

II-3.1. Summary of the HERITAGE family study 

For study 3, blood samples on a subset of participants (n=654) from the HERITAGE (HEalth, RIsk 

factors, exercise Training And Genetics) family study were used. Human experiments for that study 

have been carried out between 1995 and 1999 as a multi-center, multi-ethnic study across the USA and 

Canada (Bouchard et al. 1995) and have been stored at -80° since then. Details on the participants and 

protocol of HERITAGE can be found elsewhere (Bouchard et al. 1995) and the main publications can 

be found in (Bouchard et al. 1999; Bouchard et al. 1998). Briefly, subjects were males and females, 

healthy, between the ages of 17 and 65 years and sedentary for at least 3 months before entering the 

study. The 654 individuals belonged to 130 families (90 Caucasian, 40 African American) consisting of 

parents and at least three of their biological children. 

All subjects’ cardiorespiratory fitness (V̇O2max) was tested (similarly as described in II-2.6.) before 

and after a 20-week endurance exercise intervention. Endurance exercise was done three times per week 

increasing from 30 to 50 minutes per session and from 55% to 75% of their individual V̇O2max (Figure 

13), to ensure continuous physiological adaptation. Blood plasma samples used for proteomics analyses 

were drawn from intravenous catheters on the arm before the first and 24 hours after completing the last 

exercise session. 
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Figure 13. Study overview of the HERITAGE family study. Baseline VO2max testing was done 

before the first exercise session including baseline blood sampling. During the 20 weeks of exercise 

training, session intensities and durations gradually increased from 55% of baseline VO2max to 75% 

of baseline VO2max and from 30 to 50 minutes long. 24 hours after the last exercise session, post-

training blood was sampled and post-training VO2max was measured. The increase in VO2max (Δ 

VO2max) from baseline to post-training was calculated as post-training minus baseline. 

 

II-3.2. Proteomics  

Details on measurement with the aptamer-method can be found in the manuscript of Study 3 (III-3.3.). 

Briefly, plasma samples were incubated with a mixture of fluorescently labeled single-stranded DNA 

aptamers (~5,000 SOMAmers™). Protein-aptamer complexes were isolated from unbound or 

nonspecifically bound proteins using a two-step, streptavidin bead-based immobilization process. 

Aptamers that were eluted from the target proteins were quantified using the degree of fluorescence on 

a DNA microarray chip. Samples were normalized to 12 hybridization control sequences within each 

microarray and across plates using the median signal for each dilution. 

II-3.3. Statistical analysis  

Details on statistics are provided in the methods part of publication 3 (Study 3). Briefly, two linear 

regression models were performed to determine the relationship between baseline plasma protein values 

and both baseline V̇O2max (ml O2·min-1) and Δ V̇O2max (=post-training V̇O2max minus baseline 

V̇O2max). Covariates in regression models included age, sex, race, and baseline values of body mass 

index (BMI), body fat percentage, fat free mass (kg), and V̇O2max (for the Δ model only). Benjamini-
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Hochberg procedure was used to correct for multiple comparisons and a false-discovery rate (FDR) < 

0.1 was used to determine statistical significance. 

To find out if a prediction model of V̇O2max including clinical participant characteristics and a set of 

53 proteins can predict meaningful V̇O2max changes (>15% increase in V̇O2max relative to baseline) 

within an individual, receiver-operating-characteristics analyses and a subsequent logistic regression 

were done.   

 

Model 1:  relative V̇O2max change = age, sex, race, and BMI   

Model 2:  relative V̇O2max change = age, sex, race, BMI and >5,000 proteins 

 

Prediction model 1 is based solely on clinical traits, whereas model two incorporated over 5,000 proteins 

determined by aptamer proteomics. In several iterative steps, the initial panel of 5,000 proteins as 

predictors was reduced by a constraint-based features algorithm, resulting in a panel of 56 proteins. 

These 56 proteins were then used in a logistic regression model together with the standard clinical traits 

to predict relative V̇O2max change after training. Prediction of relative V̇O2max changes were based on 

a threshold of >15% due to the median change of the entire cohort being ~16% and because these 15% 

increase in V̇O2max have been shown to have clinical significance (e.g. risk factor reduction) in previous 

studies (Ross et al. 2016a).  

II-3.4. Biological interpretation of the data  

Proteins that were significantly associated with baseline V̇O2max or with ΔV̇O2max after 20 weeks of 

training were automatically annotated (pathways, diseases, and related genes) using Perseus version 

1.6.6.0 (Max-Planck Institute of Biochemistry; maxquant.net/perseus/) (Tyanova et al. 2016). 

Subsequently, proteins associated (negatively and positively) with either baseline V̇O2max or Δ V̇O2max 

were uploaded onto the string.db database (string-db.org), for building functional protein association 

networks from a list of uploaded proteins (Szklarczyk et al. 2021). In that way, proteins were clustered 

into the organ systems that are incorporated into V̇O2max (II-2.7), e.g. heart, muscle, mitochondria or 

cardiovascular system. Further, organ systems that are not actively known to be incorporated into 

V̇O2max were identified by this analysis (e.g. bone metabolism). For proteins that could not be annotated 

or clustered automatically, PubMed was searched for studies that related individual proteins to any of 

the organ systems incorporated into V̇O2max, to future health outcomes or endurance capacity itself.  

II-4. Data availability 

Data of Study 1 is available from the original manuscript at https://sportsmedicine-

open.springeropen.com/articles/10.1186/s40798-020-0238-4 

De-identified data of Study 2 is available at https://www.ebi.ac.uk/metabolights/MTBLS2104 

(accession number MTBLS2104). 

https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-020-0238-4
https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-020-0238-4
http://www.ebi.ac.uk/metabolights/MTBLS2104
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De-identified data of Study 3 is available at https://motrpac-data.org/related-studies/heritage-

proteomics. 

https://motrpac-data.org/related-studies/heritage-proteomics
https://motrpac-data.org/related-studies/heritage-proteomics


53 

 

III PUBLICATION RECORD 

III-1. Publication 1: Systematic literature review on metabolite changes after 

acute exercise 

o Title: Metabolite Concentration Changes in Humans After a Bout of Exercise: a Systematic Review 

of Exercise Metabolomics Studies 

o Authors: Daniela Schranner, Gabi Kastenmüller, Martin Schönfelder, Werner Römisch-Margl & 
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III-1.1. Personal contributions 

Personal contribution statements are written in the first person singular. 

III-1.1.1. Defining the research question and search term building 

I did an initial literature search to evaluate the need and the data for the systematic literature review. I 

built the search term and re-fined it. 

III-1.1.2. Literature search 

I performed two literature searches, defined eligibility criteria, and chose the studies that were eligible 

for the review. 

III.1.1.3. Data analysis 

I transcribed significant metabolite fold-changes from the written manuscript or from supplementary 

data from the respective studies into an excel sheet which was customized to summarize the number of 

studies reporting increases/decreases. 

III.1.1.4. Data interpretation  

I with the help of co-authors compared the findings and hypothesis for metabolic phenomena that are 

shown through metabolite changes after exercise with the literature. 
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III-1.1.5. Article  

I drafted the article, drew figures, and wrote the first version of the manuscript, and compiled the 

supplementary material. Manuscript revisions and submission were done with the help of co-authors. 

III-1.2. Summary Study 1 

Exercise changes the concentrations of many metabolites, which are small molecules (< 1.5 kDa) 

metabolized by the reactions of human metabolism. In recent years, especially mass spectrometry-based 

metabolomics methods have allowed researchers to measure up to hundreds of metabolites in a single 

sample in a non-biased fashion. To summarize human exercise metabolomics studies to date, we 

conducted a systematic review that reports the results of experiments that found metabolite 

concentration changes after a bout of human endurance or resistance exercise. We carried out a 

systematic review following PRISMA guidelines and searched for human metabolomics studies that 

report metabolite concentrations before and within 24 h after endurance or resistance exercise in blood, 

urine, or sweat. We then displayed metabolites that significantly changed their concentration in at least 

two experiments. Twenty-seven studies and 57 experiments matched our search criteria and were 

analyzed. Within these studies, 196 metabolites changed their concentration significantly within 24 h 

after exercise in at least two experiments. Human biofluids contain mainly unphosphorylated 

metabolites, as the phosphorylation of metabolites such as ATP, glycolytic intermediates, or nucleotides, 

traps these metabolites within cells. Lactate, pyruvate, TCA cycle intermediates, fatty acids, 

acylcarnitines, and ketone bodies all typically increase after exercise, whereas bile acids decrease. In 

contrast, the concentrations of proteinogenic and non-proteinogenic amino acids change in different 

directions. Across different exercise modes and in different subjects, exercise often consistently changes 

the average concentrations of metabolites that belong to energy metabolism and other branches of 

metabolism. This dataset is a useful resource for those that wish to study human exercise metabolism. 

III-1.3. Original manuscript
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Abstract

Background: Exercise changes the concentrations of many metabolites, which are small molecules (< 1.5 kDa)
metabolized by the reactions of human metabolism. In recent years, especially mass spectrometry-based
metabolomics methods have allowed researchers to measure up to hundreds of metabolites in a single sample in a
non-biased fashion. To summarize human exercise metabolomics studies to date, we conducted a systematic
review that reports the results of experiments that found metabolite concentrations changes after a bout of human
endurance or resistance exercise.

Methods: We carried out a systematic review following PRISMA guidelines and searched for human metabolomics
studies that report metabolite concentrations before and within 24 h after endurance or resistance exercise in
blood, urine, or sweat. We then displayed metabolites that significantly changed their concentration in at least two
experiments.

Results: Twenty-seven studies and 57 experiments matched our search criteria and were analyzed. Within these
studies, 196 metabolites changed their concentration significantly within 24 h after exercise in at least two
experiments. Human biofluids contain mainly unphosphorylated metabolites as the phosphorylation of metabolites
such as ATP, glycolytic intermediates, or nucleotides traps these metabolites within cells. Lactate, pyruvate, TCA
cycle intermediates, fatty acids, acylcarnitines, and ketone bodies all typically increase after exercise, whereas bile
acids decrease. In contrast, the concentrations of proteinogenic and non-proteinogenic amino acids change in
different directions.

Conclusion: Across different exercise modes and in different subjects, exercise often consistently changes the
average concentrations of metabolites that belong to energy metabolism and other branches of metabolism. This
dataset is a useful resource for those that wish to study human exercise metabolism.
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Key Points

� This study identified 196 metabolites that
significantly change their concentration from pre to
24 h post endurance or resistance exercise in human
blood, urine, or sweat in at least two metabolomics
experiments.

� A bout of acute exercise typically increases the
concentrations of lactate, pyruvate, fatty acids,
acylcarnitines, ketone bodies, nucleotides; lowers the
concentrations of bile acids; and has mixed effects
on proteinogenic and non-proteinogenic amino
acids.

Background
Living organisms are stable systems even though the
molecules within organisms constantly change in a myr-
iad of chemical reactions. Based on the Greek word
“metabole” (English: change), “metabolism” is used to de-
scribe all the chemical reactions that change molecules
in living organisms. Key metabolic discoveries by the
early biochemists are the discovery and characterization
of glycolysis by Pasteur, Embden, Meyerhof, and Parnas;
the discovery of enzymes; the mapping of metabolic
pathways; and discoveries linked to biochemical genetics
[1, 2]. Our current knowledge of human metabolism is
summarized in genome-scale metabolic reconstructions
such as the Virtual Metabolic Human database, contain-
ing 17730 reactions and 5180 metabolites [3]. Metabo-
lites are the molecules that change or react in metabolic
reactions of a living being. Metabolites typically have a
molecular mass of less than 1.5 kDa. In addition to our
own, endogenous metabolites, metabolic databases also
include exogenous metabolites that are produced by mi-
croorganisms, residing for example in our intestines, or
that are derived from nutrients or drugs, which are
termed xenometabolites [4].

How Does Exercise Affect Metabolism?
While each meal feeds our metabolic pathways with new
metabolites, nothing quite changes the rates of metabolic
reactions as much as a bout of intensive exercise [5]. On
a whole-body level, oxygen uptake rises from 0.25 l/min
at rest to 5 l/min during maximal exercise in a trained
athlete. This is an energy turnover of ≈5 kJ/min at rest
which equates to 0.3 g of glucose per minute to ≈100 kJ/
min during maximal exercise which equates to 6 g of
glucose per minute. The fact that there is only a total of
≈4 g of free glucose in a human being [6] demonstrates
the challenge that such a rise of energy expenditure
poses to the metabolism of the exercising individual.
The fold-changes of metabolic reactions in the work-

ing muscles are even greater. When changing from rest
to exercise, the rate of adenosine triphosphate (ATP)

hydrolysis especially by the force-generating myosin
heads of a muscle fiber can increase by more than 100-
fold [7]. Given that there are only ≈10 mM of ATP in a
muscle fiber [8] and given that a major drop of the ATP
concentration will cause rigor mortis, ATP-synthesizing
reactions must immediately increase their rate so that
ATP re-synthesis matches ATP hydrolysis within frac-
tions of a second [9].
Exercise also affects hormone concentrations which is

relevant as many hormones are technically classified as
metabolites. Here, the best characterized exercise change
is the increase of catecholamines [10, 11] that helps to
increase heart rate and cardiac contractility as well as
adjusts metabolism and blood flow. Finally, resistance
exercise not only increases muscle protein synthesis for
several days post exercise [12] but also elevates muscle
protein breakdown [13]. While proteins are not classified
as metabolites, the amino acids that constitute them are
metabolites and either ingested or synthesized in meta-
bolic reactions. Collectively, this demonstrates that the
three major branches of metabolism, which are energy
metabolism, anabolism, and catabolism, are profoundly
changed in response to a bout of exercise.

How Are Metabolites Measured and What Is
Metabolomics?
The concentrations of metabolites in biofluids such as
blood, urine, and saliva have traditionally been mea-
sured one-by-one with enzyme assays followed by
fluorometric or spectrophotometric detection [14].
This, however, has changed with the advent of meta-
bolomics methods. Metabolomics describes methods
that allow the high throughput quantification of hun-
dreds of metabolites in a single sample. This is
mostly achieved through the separation of metabolites
via liquid or gas chromatography followed by the de-
tection of individual metabolites through their specific
mass-to-charge ratio (m/z) and their induced break-
down (fragmentation) in a mass spectrometer. The re-
tention time from the chromatographic separation,
the mass-to-charge ratio, and the fragmentation pat-
tern are characteristic features for each ionized me-
tabolite. This information can therefore be used to
identify the detected metabolites through matching
against databases of known metabolites [4]. While nu-
clear magnetic resonance spectroscopy-based metabo-
lomics methods are also available and have specific
advantages [15], mass spectrometry-based metabolo-
mics methods dominate. Further variations of metabolo-
mics are untargeted or global metabolomics which
measures all detectable metabolites in a sample versus tar-
geted metabolomics where a specific subset of metabolites
is measured [4]. Collectively, the improvements in
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metabolomics methods allow researchers to detect more
and more metabolites in human body fluids [16].
While exercise physiologists have traditionally focused

on measuring individual metabolites such as lactate [17],
they have since 2009 used metabolomics methods to ob-
tain a global view of how exercise changes metabolite
concentrations [18]. The plethora of different metabo-
lites and methodologies used in these studies makes it
difficult to obtain a comprehensive overview over how a
bout of exercise changes human metabolite concentra-
tions in different body fluids and organs.
The aim of this project was therefore to conduct a sys-

tematic literature analysis to review all published studies
where researchers used mass spectrometry or nuclear
magnetic spectroscopy-based metabolomics to study
the effect of exercise on metabolite concentrations.
Specifically, we report and discuss metabolites that
significantly change their concentration in mass spec-
trometry or nuclear magnetic resonance-based human
metabolomics studies after a single bout of exercise.
In our analysis, we found 196 metabolites that signifi-
cantly change their concentration within 24 h after a
bout of exercise in at least two studies within human
blood or other body fluids.

Methods
Search Strategy
To identify publications that use a metabolomics ap-
proach to measure metabolite changes after a bout of
exercise, we carried out a systematic review following
the PRISMA guidelines [19]. We searched four different
literature databases using the PICO (Population, Inter-
vention, Comparison, Outcome) strategy [20]. This
search strategy combines the parameters of the research
question into one search string to find relevant studies
(Fig. 1).
For the literature search, we only used the parameters

“intervention” and “comparison” of the PICO search
strategy in the search terms because the eligible studies
did not need to have a control group. To get a first over-
view, we searched PubMed using the search term
(“metabolomics” AND “exercise”) and repeated this
search in PubReMiner to extract additional, relevant
search terms. We ended up with the search terms
((“metabolomics” [MeSH Terms] OR “metabolome”
[MeSH Terms]) OR sportomics [All Fields]) AND “exer-
cise” [MeSH Terms]. With these search terms, we con-
ducted two main searches on the third of August 2017
and on the first of June 2018 and searched PubMed (101

Fig. 1 PRISMA flowchart from the systematic literature search
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abstracts), Web of Science (194 abstracts), Scopus (313
abstracts), and MetaboLights database (88 abstracts).
The earliest study matching our search criteria was pub-
lished in 2010. We included studies from that date
onwards.
From the abstracts retrieved, we included articles from

peer-reviewed journals, written in English that investi-
gated metabolic changes in humans in response to a
bout of exercise. Our eligibility criteria were as follows:

– Adult participants (> 18 years of age) without
metabolic disease, malfunction or genetic disorder of
metabolism (e.g., diabetes mellitus) and normal
weight (BMI > 18 and < 28 kg/m2)

– Metabolomics analysis technique based on either
mass spectrometry or 1H-nuclear magnetic resonance
(1H-NMR) applied to analyze metabolic changes

– Physical exercise of any kind had to be the primary
intervention of the study

– Studies or experiments investigating changes of
metabolite concentrations within 24 h after a bout
of exercise

– Changes of metabolites had to be significant (raw p
values of p < 0.05) and reported with respect to a
resting value before exercise in fold-change, %
change or as “decrease” or “increase.” In cases with
no fold-change values given, we contacted the corre-
sponding author of the publication to request quan-
titative data

– Sampling specimen included in the review are
serum, plasma, capillary blood, urine, saliva, and
sweat

Studies with one or more of the following criteria were
excluded:

– Article type: conference proceedings, reviews,
comments or letters to editor

– Subjects: animal studies, studies on chronically or
acutely ill subjects; studies on overweight, obese,
individuals or individuals with eating disorders;
studies on children

– Methods: studies where exercise was not the
primary intervention and studies that used other
methods than mass spectrometry or nuclear
magnetic resonance metabolomics methods to
measure metabolites (e.g., studies that used
biochemical analyzer kits were excluded)

– Outcomes: metabolites within a study that showed
no significant change after an exercise intervention

– Studies reporting changes of metabolite
concentrations later than 24 h after a bout of
exercise or after an exercise training intervention

From every study, the following information was ex-
tracted if available: Author, year of publication, subjects
(numbers, age, sex, BMI or body fat percentage, training
status or cardiorespiratory fitness (VO2max), training load

Fig. 2 Distribution of post-exercise sample type and timing across all 57 experiments. Note that only experiments with blood samples are color-
coded and categorized into three timing categories. Blue: early samples; green: intermediate samples; red: late samples
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per week, intervention of the study (intervention ses-
sions, intensity (%VO2max), duration, kind of exercise,
nutrition during intervention), samples for metabolomics
analysis (number of samples, tissue sampled, nutritional
protocol before sampling, interval between exercise and
post-exercise sample, fasting/no fasting before sampling,
outcomes (number of metabolites detected, quantitative
change of significantly altered metabolites, analyses
method, database comparison)), and remarks.

Data Analysis
Significant changes of metabolite concentrations were
noted in a table and sorted according to the following me-
tabolite subgroups and their underlying metabolism: car-
bohydrates and tricarboxylic acid (TCA) cycle
intermediates; lipids; amino acids, their derivates and pep-
tides; nucleotides; cofactors/vitamins, and xenometabolites
(i.e., non-human metabolites such as drugs or food dyes).

Results
After removing duplicates and applying exclusion cri-
teria, we read 45 articles full-text of which 33 matched
our eligibility criteria. Within these 33 publications, we
further excluded six studies that were either exercise
training studies or reported data that were not measured
within the 24 h after a single bout of exercise. Within
the remaining 27 publications [21–49], 57 single experi-
ments were reported. Because only six out of these 57

experiments used resistance exercise as an intervention
and 51 used endurance exercise, data are presented to-
gether but labeled separately.
Out of the 57 experiments, 26 experiments reported

significant (p < 0.05) increase or decrease of metabolite
concentrations qualitatively within 24 h after a bout of
exercise without providing the corresponding fold
changes. Thirty-one experiments were quantitative,
reporting fold-change values for significantly (p < 0.05)
changed metabolites in blood, urine, saliva, and sweat.
The Additional file 1: Tables S1-5 summarize the results
from all 57 experiments.

Subjects
Of 57 experiments, 45 investigated only male subjects (n
= 307), ten investigated female and male subjects (n =
211) and two investigated only female subjects (n = 22)
which is a ≈10-to-1 male bias that should be rectified in
the future. In 23 of the 57 experiments, well-trained ath-
letes were used as subjects. The remaining 24 experi-
ments investigated heterogeneous groups ranging from
sedentary to recreationally active subjects. Further de-
tails are in Additional file 2: Table S6.

Exercise Interventions
Fifty-one out of 57 experiments chose endurance exer-
cise such as cycling or running as an exercise interven-
tion in a controlled laboratory or outdoor setting.

Fig. 3 Responses of each metabolite class within 24 h after a bout of exercise colored by direction of effects
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Exercise duration ranged from 30 min to 96 h. Exercise
intensities ranged from moderate (< 60% of VO2max) to
supramaximal (> 110–300% of the workload achieved at
VO2max) intensity. In 17 experiments, participants exer-
cised at an intensity around the individual anaerobic
threshold (corresponding to ≈60–80% VO2max). In a fur-
ther 13 experiments, participants did self-paced exercise,
without a measurement of VO2-uptake. Six experiments
chose resistance exercise such as leg press as an exercise
intervention on male subjects only. For details, see Add-
itional file 2: Table S6.

Sample Type and Timing
Forty of 57 experiments used human blood (plasma,
serum, capillary, or non-specified blood), thirteen used
urine, three saliva, and one experiment sweat to determine
metabolite concentration changes after exercise (Fig. 2).
With respect to timing, each included study compared

one or more post-exercise samples with a baseline or
pre-exercise sample. The earliest post-exercise samples
across all tissue types were drawn immediately after ex-
ercise, the latest 24 h after exercise. Due to this hetero-
geneity in sample timing, we categorized all experiments
with human blood samples into three categories: early

(0–0.5 h after exercise), intermediate (> 0.5–3 h after ex-
ercise), and late (> 3–24 h after exercise) (Fig. 2).

Metabolites With Significant Concentration Changes After
a Bout of Exercise
In total, 196 metabolites changed significantly in at least
two out of the 57 experiments. We used this require-
ment to limit the number of metabolites that we report
to a manageable level and to increase reliability. The 196
exercise-responsive metabolites belong to different me-
tabolite classes. They include 13 carbohydrates, 95 lipids,
seven tricarboxylic acid (TCA or Krebs) cycle metabo-
lites, 53 amino acids and their derivatives, three peptides,
14 nucleotides, six vitamins and cofactors, and five xeno-
biotics. Out of 196, 106 metabolites changed in the same
direction after exercise in all experiments: 71 metabolites
were solely reported to increase, 35 solely to decrease.
Ninety metabolites of 196 showed mixed responses be-
tween experiments (Fig. 3). Among these 90 mixed
cases, 38 metabolites were determined in the same bio-
fluid such as blood plasma. Twenty-two of the 90 mixed
responses were sampled in different blood samples like
serum, plasma, or capillary blood. Within the metabolite
subgroups, amino acids were those that accounted for

Fig. 4 Venn diagram showing the number of metabolites that are changed in relation to time point of sampling. Early changes: within 0.5 h after
exercise; Intermediate changes: between > 0.5 and 3 h after exercise; Late changes: between > 3 and 24 h after exercise. The respective
metabolites in each sample category (early to late) and the overlapping metabolites are shown in Additional file 3: Table S7. No metabolites were
changed equally in intermediate and late only. For example, we found 31 metabolites that are changed at all sampling time points following
exercise consisting of acylcarnitines and free fatty acids. Note that only blood metabolite changes of 33 experiments are shown in this diagram.
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most of the inconsistent findings. Within 37 mixed cases
of amino acid responses after exercise, 19 were mea-
sured in the identical biofluid.
To identify if metabolite or metabolite class changes

vary with post-exercise sample timing, we compared the
results for all metabolites detected in blood samples (33
experiments) across the three timing categories (Fig. 4).
Though not all metabolites were detected in each ex-
periment and only two experiments were categorized as
“late sampling,” we found 31 metabolites that were chan-
ged at all sampling time points. The majority of these
metabolites were lipids, with 20 fatty acids (mostly long-
chain; three dicarboxylic; three odd-chain) and five acyl-
carnitines (mostly medium-chain) being significantly
changed after a bout of exercise.
Thirty-eight metabolites—mostly amino acids and fatty

acids—were affected in cases of early and intermediate
sampling but not late sampling experiments. Ten metab-
olites among them mostly bile acids were affected in late
and early sampling experiments. Early only changes are
dominated by 19 amino acids, followed by 11 short- and
medium-chain acylcarnitines, six carbohydrates, and
TCA cycle intermediates, whereas intermediate changes
show a variety of different metabolite groups (e.g., amino
acids, nucleotides, vitamins/cofactors, and xenobiotics).

Comparison of Metabolite Fold Changes After a Bout of
Exercise
To analyze the quantitative range of metabolite effects,
we summarized the fold changes of all 31 experiments
reporting this information for each metabolite class

(Figs. 5, 6, 7, 8, 9, 10, 11, and 12). For simplification, we
pooled the results from serum, plasma, capillary blood,
and non-specified blood in our overview. The rationale
for this is that metabolite concentrations in human
serum and plasma correlate (r = 0.81), with concentra-
tions being generally higher in serum [50].

Carbohydrate Metabolism and TCA Cycle
Figure 5 shows carbohydrates and TCA cycle intermedi-
ates. Carbohydrates are metabolized to synthesize ATP
via glycolytic lactate formation or via their oxidative
phosphorylation. In the context of exercise, lactate is the
most measured metabolite as its concentration at a given
exercise intensity is a measure for endurance capacity
[51]. The concentrations of lactate and pyruvate increase
in various body fluids, as expected, whereas formate, a
by-product of ketone body synthesis, and the sugar
rhamnose (hexose) decrease.
In several reactions, the TCA cycle uses acetyl-CoA

derived from carbohydrates, fats, or amino acids espe-
cially for nicotinamide adenine nucleotide (NADH) and
subsequent ATP synthesis. After a bout of exercise,
TCA cycle intermediates mainly increase in blood and
urine. In blood, TCA intermediates are upregulated, es-
pecially in the early phase (until 30 min after exercise)
by both endurance and resistance exercise.

Lipids and Lipid-Derived Compounds
Lipids are hypdrophobic molecules including fuels for
energy metabolism such as triacylglycerols, signaling
molecules such as steroids or phosphatidic acid, and

Fig. 5 Carbohydrate and TCA cycle intermediate changes in response to exercise (log2 fold change versus rest). The graph shows seven
metabolites of carbohydrate metabolism and seven TCA cycle intermediates reported with significant fold-changes in 20 (15 endurance, 5
resistance) and 11 (nine endurance, two resistance) experiments, respectively. One symbol represents one experiment. Rest = 0 (dotted vertical
line). * fold-change values were only reported in one experiment. For detailed quantitative and qualitative changes of all carbohydrate
metabolites, see Additional file 1: Table S1
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Fig. 6 Free fatty acid changes in response to exercise (log2 fold change versus rest). The graph shows 37 fatty acids reported with significant fold-
changes after exercise in 16 experiments (all endurance). One symbol represents one experiment. Rest = 0 (dotted vertical line). * fold-change values
were only reported in one experiment. For detailed quantitative and qualitative changes of all fatty acids, see Additional file 1: Table S2

Fig. 7 Acylcarnitine changes in response to exercise (log2 fold change versus rest). The graph shows twenty acylcarnitines reported with fold-
changes after exercise in 10 experiments (all endurance). One symbol represents one experiment. Rest = 0 (dotted vertical line). * fold-change
values were only reported in one experiment. For detailed quantitative and qualitative changes of all acylcarnitines, see Additional file 1: Table S2
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structural components of cell membranes including
phospholipids and sphingolipids. Here, we summarize
the exercise-induced concentration changes of different
subgroups of lipid metabolism or their derived com-
pounds after exercise: free fatty acids, acyl-carnitines, ke-
tone bodies, bile acids, steroids, sterols, sphingolipids,
and glycerophospholipids.

Figure 6 shows the concentration changes of fatty
acids. Fatty acids are carboxylic acids with an aliphatic
chain and can be categorized according to their length
and structure into short-, medium-, and long-chain, sat-
urated and unsaturated fatty acids. Next to glucose, fatty
acids are the major muscular energy fuel during exercise
[52]. After a bout of exercise, the concentrations of

Fig. 8 Membrane lipids, steroids and bile acid concentration changes in response to exercise (log2 fold change versus rest). The graph shows five
membrane lipids (changed in three experiments), six steroids (changed in six experiments), and nine primary bile acids (changed in five
experiments) significantly changed after exercise. Rest = 0 (dotted vertical line). One symbol represents one experiment. * fold-change values
were only reported in one experiment; the other experiment(s) reported a significant change but no fold-change values. For detailed quantitative
and qualitative changes of all ketone bodies, see Additional file 1: Table S2

Fig. 9 Ketone bodies, ketogenic amino acids, and their degradation products changes in response to exercise (log2 fold change versus rest). The
graph shows 12 ketone bodies and ketogenic precursors of amino acid degradation and three ketogenic amino acids that changed significantly
in 31 experiments (26 endurance, five resistance). Ketogenic amino acids are displayed for the overview but are also as part of Fig. 10. Rest = 0
(dotted vertical line). One symbol represents one experiment. * fold-change values were only reported in one experiment; the other
experiment(s) reported a significant change but no fold-change values. For detailed quantitative and qualitative changes of all ketone bodies, see
Additional file 1: Table S2
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various free fatty acids increase in human blood as a
consequence of exercise-induced lipolysis. The majority
of free fatty acid concentrations are changed most early
after exercise. Contrarily, four of six dicarboxylates were
reported with highest fold-changes between > 0.5 and 3
h (intermediate) after exercise.
Figure 7 shows the concentration changes of acylcarni-

tines. Acylcarnitines are fatty acids bound to carnitine.
They are fatty acid intermediates that are transported
into the mitochondria but can leave cells to appear in
blood and other biofluids. Similarly to other lipids, the
concentrations of almost all acylcarnitines increase in
blood and urine in response to a bout of exercise. Like
fatty acids, they increase especially early after exercise.

In contrast to fatty acids, some acylcarnitines are also
detected in urine.
Figure 8 shows exercise-induced changes in bile

acids, glycerophospholipids, sphingolipids, and ste-
roids. Bile acids are synthesized in the hepatic cytosol
out of cholesterol and help to digest dietary fat in the
intestine. After a bout of exercise, the concentrations
of several bile acids decrease mainly in blood. The
highest fold-decreases are reported in late (> 3–24 h
after exercise) sampling time points. Glycerophospho-
lipids such as glycerophosphatidylethanolamines and
sphingolipids are mainly associated components of
human biological membranes. Overall, these lipid
classes decrease their concentration in blood and

Fig. 10 Amino acids, their derivates and peptides changes in response to exercise. The graph shows 48 amino acids, their derivates, and two peptides
that significantly changed in 32 (26 endurance, six resistance) and six (all endurance) experiments, respectively, after exercise. Rest = 0 (dotted vertical
line). One symbol represents one experiment. * fold-change values were only reported in one experiment; the other experiment(s) reported a
significant change but no fold-change values. For detailed quantitative and qualitative changes of all amino acids, see Additional file 1: Table S3
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urine after a bout of exercise, decreasing highest early
after exercise. Steroids especially act as steroid hor-
mones such as testosterone or cortisol and are de-
rived from cholesterol [53]. A bout of exercise
changes several steroids in blood but there is no uni-
form change of concentration.
Figure 9 shows the concentration changes in ketone

bodies. Ketone bodies are “energy metabolites” synthe-
sized from acetyl-CoA or ketogenic amino acids such as
leucine in the liver. Ketone bodies are used in particular
in brain and muscle when carbohydrates are limited,
e.g., during fasting or prolonged exercise [54].
After an acute bout of exercise, the concentration

of most ketone bodies and their precursors increases
significantly in different human body fluids. 3-
Hydroxybutyrate and acetoacetate, the classic ketone
bodies, show higher increases in intermediate samples
compared to early and late samples. In resistance ex-
ercises, acetoacetate even decreased early following
exercise. Other ketogenic compounds that result from
the degradation of branched chain amino acid
(BCAA) like 2-oxoisovalerate or 3-methyl-2-oxovale-
rate do not show this timing-pattern

Amino Acids, Peptides, and Related Metabolites
Figure 10 shows amino acids and peptide changes after
exercise. Amino acids comprise 20 proteinogenic amino
acids encoded by deoxyribonucleic acid (DNA), non-
proteinogenic amino acids, derivates, and amino acids
that are modified in proteins and then degraded into
modified amino acids such as 3-methylhistidine.
Amino acids also are part of the glucose-alanine cycle.

The glucose-alanine cycle degrades amino acids to sup-
ply glucose to muscles. Here, the remaining amino
groups are transported to the liver in the form of alanine

to generate ammonia in the urea cycle [55]. The main
finding is that an acute bout of exercise changes the
concentration of amino acids and their degradation
products significantly in different human body fluids
(Fig. 10). In contrast to the results for most lipids, the
findings for many amino acids are not consistent across
experiments. While similar fold changes have been ob-
served in the same tissue for amino acids such as glycine
or trimethylamine-n-oxide, vastly different changes
within the same body fluid were reported for amino
acids such as alanine, valine, or tryptophan.
Organic bounds between amino acid monomers form

peptides, which are reported as dipeptides (compounds
of two amino acids) here. They can be a part of enzymes
or signaling molecules in metabolism. Within peptides,
especially the dipeptides of glycine with leucine or pro-
line decrease in serum and plasma after a bout of
exercise.

Nucleotides
Figure 11 shows nucleotide changes after exercise. Nucleo-
tides are organic molecules that are the substrates for both
DNA and ribonucleic acid (RNA) synthesis. Moreover, nu-
cleotides such as ATP are key metabolites for energy me-
tabolism and nucleotides such as cyclic adenosine
monophosphate (cAMP) or guanosine triphosphate (GTP)
are involved in cellular signal transduction. However, phos-
phorylated metabolites are rarely detected in blood and
other biofluids because phosphorylation traps metabolites
inside cells [56]. Furthermore, nucleotides such as coen-
zyme A and NAD can act as mediators of hormone and
cofactor reactions. After one bout of exercise, many nucle-
otides as well as degradation products of nucleotide catab-
olism such as inosine and hypoxanthine mostly increase

Fig. 11 Nucleotide changes in response to exercise. The graph shows eleven nucleotides that changed significantly in 14 experiments (12
endurance, two resistance). Rest = 0 (dotted vertical line). One symbol represents one experiment. * fold-change values were only reported in
one experiment; the other experiment(s) reported a significant change but no fold-change values. For detailed quantitative and qualitative
changes of all nucleotides, see Additional file 1: Table S4
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their concentrations in human urine and blood in the
early and intermediate phase following exercise.

Cofactors and Vitamins and Xenometabolites
Figure 12 shows changes in cofactors, vitamins, and xeno-
metabolites after exercise. The metabolism of cofactors
and vitamins contains a variety of biochemical transforma-
tions. Organic compounds of non-proteinogenic origin,
including some vitamins, assist these transformations. Ob-
served changes of cofactors and vitamins differ between
the here summarized experiments. Like cofactors and vita-
mins, xenometabolites are exogenous compounds. Xeno-
metabolites can be drugs, food ingredients such as
preservatives, plant components, or pesticides. Xenometa-
bolites mostly decrease after a bout of exercise.

Discussion
In this review, we summarize how metabolite concentra-
tions change in human blood and other biofluids within
24 h after a bout of exercise. Our analysis provides the
first overview of results across metabolomics studies that
use different human subjects, endurance, and resistance
exercise; analyze different body fluids; utilize several ana-
lysis methods; and collect samples at different time
points after exercise. Even though there are many differ-
ences in-between studies, the concentrations of many
metabolites such as fatty acids or acylcarnitines often
change similarly after exercise. There are, however, ex-
ceptions where metabolite concentrations change in dif-
ferent directions after exercise. This combined dataset

illustrates such differences and may help researchers to
identify the causes.

Exercise Alters the Concentrations of Metabolites that Are
Involved in Energy Metabolism
Exercise is a major challenge to the body’s homeostasis as
it requires an immediate, large increase of ATP re-
synthesis. As a consequence, the flux of many energy me-
tabolism reactions changes quickly with the onset of exer-
cise. This changed flux then alters the blood and biofluid
concentrations of metabolites involved in these reactions.
These concentration changes reflect the mobilization,
utilization, and conversion of energy metabolites such as
carbohydrates and triacylglycerols (fats) to meet the ATP
demand of the exercising muscles. Exercise studies also
confirm that ketone bodies are generated, and amino acids
are converted into glucose when carbohydrates are
limited.
In the summarized studies, many of the metabolites that

increased globally after exercise are lipids or related to
lipid metabolism. These metabolites include glycerol (Fig.
5), free fatty acids (Fig. 6), and acylcarnitines (Fig. 7). Dur-
ing exercise, lipases split the triacylglycerols stored in adi-
pose tissue into fatty acids and glycerol [57]. The fatty
acids and glycerol are then released into the bloodstream,
before being taken up and utilized for ATP synthesis by
the exercising muscles. A new insight of this combined
analysis is that all free fatty acids increase within 24 h after
exercise no matter whether they are unsaturated or satu-
rated, short, medium, or long. The earlier the post-

Fig. 12 Cofactor/vitamin and xenometabolite changes in response to exercise (log2 fold change versus rest). The graph shows five cofactors or
vitamins and six xenometabolites that changed significantly in 17 experiments (all endurance) Rest = 0 (dotted vertical line). One symbol represents
one experiment. * fold-change values were only reported in one experiment; the other experiment reported a significant change but no fold-change
values. For detailed quantitative and qualitative changes of all cofactors/vitamins and xenometabolites, see Additional file 1: Table S5
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exercise sample is taken, the higher fatty acid increases in
blood are (Fig. 6) [58].
Fatty acids that are taken up by muscle are then trans-

ported into the mitochondria in several steps that involve
carnitine and the formation of acylcarnitines [52]. Even
though acylcarnitines are formed within the cell, increased
concentrations of acylcarnitines are detected after exercise in
blood and other biofluids (Fig. 7).
During high-intensity exercise, blood glucose and

muscle glycogen become the dominant sources of energy
[59, 60]. They enter glycolysis and as a consequence,
pyruvate and lactate concentrations are increased espe-
cially during and after high intensity exercise (Fig. 5).
Blood pyruvate and lactate then decline within an hour
after exercise but high urine concentrations are also
measured 24 h after exercise [36, 37]. In contrast to
pyruvate and lactate, glycolytic intermediates did only
appear in blood in one study [34] and are therefore not
shown in the graphs. Normally, glycolytic intermediates,
which are phosphorylated are trapped inside cells [56].
Also, at high-intensity exercise, TCA cycle flux and

the concentrations of TCA cycle metabolites such as
malate increase (Fig. 5) which has been previously
discussed in a review [52, 61]. In our analysis, the
TCA cycle intermediates succinate and malate in-
creased most in blood after high-intensity endurance
and high load resistance exercise [40, 47] especially
early after exercise (Fig. 5).
When carbohydrates run out during prolonged ex-

ercise or when fasted, then especially the liver is syn-
thesizing new substrates for energy metabolism
through ketogenesis and gluconeogenesis [62]. Liver
synthesizes ketone bodies from ketogenic amino acids
such as leucine or lysine and glucose from glucogenic
amino acids such as valine or glycine [54]. The main
ketone bodies 3-hydroxybutyrate and acetoacetate are
then released into the blood [54] (Fig. 9) which ex-
plains their increased blood concentration after exer-
cise. In parallel, the degradation products such as 2-
oxoisovalerate increase too (Fig. 9). For gluconeogene-
sis, glucogenic amino acids are degraded to pyruvate
and then transaminated to alanine. Alanine goes into
the blood stream and blood alanine concentration in-
creases (Fig. 10). In the liver, it is transformed to pyru-
vate again, and finally into glucose. Furthermore, the
degradation products of glucogenic amino acids such as
n-acetylphenylalanine and 4-hydroxyphenylpyruvate in-
crease (Fig. 10).

After Exercise, the Concentrations of Nucleotide
Degradation Products Increase, Whereas Bile Acid and
Complex Lipid Concentrations Decrease
While nucleotides such as ATP or inosine monopho-
sphate (IMP) molecules are trapped within cells [56], their

unphosphorylated degradation products inosine, hypoxan-
thine, xanthine, and uric acid are detected in blood and
other biofluids. After exercise, the concentrations of these
nucleotide degradation products generally increases, espe-
cially in urine (Fig. 11). Generally, the concentrations of
nucleotide degradation products increase most after high-
intensity exercise [63] and most concentration changes
occur between > 0.5 and 3 h after exercise [31, 43] (Figs. 4
and 11).
Exercise also lowers the concentrations of bile acids

(Fig. 8). The primary bile acids cholic acid (cholate) and
chenodeoxycholic acid are synthesized in the liver and
secondary bile acids are then formed by intestinal bac-
teria [64]. The decrease of bile acids after exercise re-
ported by metabolomics studies is in line with recent
literature showing that both endurance and resistance
exercise decrease the total bile acid concentration [65].
Fasting alone decreases bile acid concentrations [66]

and bile acids decreased after exercise (Fig. 8), during
which subjects did not eat. Therefore, lower bile acid
concentrations after exercise are a result from exercise
and fasting and not exercise alone.
Given that bile acid concentrations are associated with

metabolic disease [67], this may identify exercise as an
intervention that can modulate bile acid concentrations
for therapeutic gains.
Additionally, complex lipids like glycerolipids and

sphingolipids all decrease after exercise (Fig. 8). These
lipids are not only important constituents of membranes
but engage in signal transduction. For example,
sphingosine-1-phosphate is released from cells by cell-
specific transporters into the circulation. There, it can
bind to five G-protein coupled receptors to regulate cel-
lular behaviors such as survival and proliferation [68],
e.g., through the modulation of Hippo signaling [69].
Whether the observed drop of sphingosine-1-phosphate
after exercise (Fig. 8) can be exploited for the treatment
of disease is currently unknown.

Different Study Protocols and Feeding Can Influence
Metabolite Changes
Next to many consistent metabolite changes across stud-
ies, this analysis also showed metabolite changes in dif-
ferent directions between studies.
One example for variable concentration changes after

exercise are amino acids and their derivates. Specifically,
out of 53 amino acids, 37 changed in different directions
after exercise (Figs. 3 and 10). One reason for these dif-
ferences could be that amino acids are used or synthe-
sized by many reactions and that these reactions may
differ between different exercise and feeding protocols.
For example, amino acids can contribute up to 10% to
oxidative phosphorylation [70]. Amino acids are also
used as substrates for gluconeogenesis, ketogenesis [54],
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and protein synthesis especially after resistance exercise
[71] (Fig. 10). The use of amino acids in all of these reac-
tions will lower their concentration. Conversely, amino
acids are generated by protein breakdown via the prote-
asome or autophagy [72] or enter the blood when pro-
teins are digested and together breakdown and protein
ingestion will increase the concentrations of amino acids
in blood.
Compared to other metabolites such as fatty acids,

post-exercise sample timing alone did not influence
the variable changes in amino acids between the stud-
ies. What differs the most between studies is the dur-
ation of the exercise. The two studies [23, 31, 40, 47]
that had the biggest difference in protocols and en-
ergy demand (a VO2max test of ~ 10–15 min versus a
simulated ultra-marathon of ~ 8–9 h) had the highest
differences in fold-change after exercise (Fig. 10).
Amino acid concentrations were lower after exercising
with moderate intensity and for long duration. In
contrast, amino acid concentrations were higher after
exercise with high intensity but short duration.
Another factor that can influence amino acid con-

centrations and many other metabolites is pre- or
post-exercise feeding. Especially carbohydrate intake
reduces gluconeogenesis [66] and ketogenesis [54]
and thereby reduces the usage of amino acids in these
reactions so that the concentrations of these amino
acids change less if subjects ingest carbohydrates.

Limitations
This systematic review has limitations. First, the stud-
ies summarized in this review combine many different
exercise modes with variable intensity and duration
and further vary in their nutrition and sampling
times. Moreover, subjects are men and women, differ-
ing in their sex hormone concentrations and in the
concentration of roughly one-third of all metabolites
[73]. Furthermore, subjects were of different ages, dif-
ferentially trained, and may have varied in their
health and body composition. This is a key source of
variation in this dataset. Thus, if metabolites such as
fatty acids (Fig. 6) all increase their average concen-
tration in response to different exercise modes and in
different subjects then this suggests that the increase
of fatty acid concentrations is a robust response to
exercise.
A second limitation of our analysis is that not all in-

cluded studies measured the same set of metabolites.
When we report metabolites that only change in one of
the three sampling phases (early, intermediate, late), it
can be that this metabolite was measured only at this
specific time point after exercise.
A third limitation is that both mass spectrometry and

nuclear magnetic resonance methods have been used to

measure metabolites. Also, since 2010, the metabolomics
protocols have become more sensitive, allowing to detect
and better quantify more metabolites. Thus, variable
methodology is another source of variation in this com-
bined analysis. We have made no attempt to control for
the methods used but have indicated the methods used in
Additional file 2: Table S6.
A fourth limitation is that this study reports average

changes, not individual changes. This is an important
limitation, because individual resting blood metabolite
concentrations vary greatly in-between individuals and
are strongly dependent on DNA sequence variation
[74]. Moreover, the response of metabolites to exer-
cise training varies too [75] and this individual vari-
ability is not reflected in this dataset as we only
report mean concentration changes.

Conclusion and Outlook
Across different exercise modes and in different sub-
jects, exercise often consistently changes the average
concentrations of metabolites involved in energy me-
tabolism and other branches of metabolism. This
dataset should therefore be a useful resource for
those that wish to study human exercise metabolism.
For the future, one important focus should be to

use metabolomics to investigate whether individual
metabolite concentrations or “metabolite fingerprints”
(i.e., combinations of metabolites) are biomarkers for
disease, metabolic function, trainability, or other “hard
to measure” traits such as muscle fiber percentages.
Here, it may be essential, similar to cardiovascular
stress tests [76], to activate a system by exercise, as
the capacity and function of many systems can only
be assessed when the system is active and under
stress. Many metabolic enzymes are inactive at rest
and only become activated by exercise [77]. There-
fore, the capacity of these enzymes may only be re-
vealed by measuring metabolite concentrations during
and after an exercise challenge. The best known ex-
ample for this paradigm is of course lactate, as resting
concentrations do not but exercise lactate concentra-
tions do predict the capacity of aerobic metabolism
[51].
Finally, while metabolite concentrations might be use-

ful indicators of health or fitness-related phenotypes,
they often do not report the flux or capacity of meta-
bolic reactions. Here, the combination of stable isotope-
labeled tracer molecules such as glucose or amino acids
in combination with mass spectrometry analysis may in
future allow the measurement of metabolic flux and this
has been termed fluxomics [78]. Applying this technol-
ogy to exercise studies is arguably the next methodo-
logical frontier of metabolic research in relation to sport
and exercise.
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III-2.1. Personal contributions  
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III-2.1.1. Study planning & schedule study physicians 
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III-2.1.3. Study execution  

I spent ~7 hours on site per participant (in total 35 participants, manuscript includes first 18 participants 
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with physicians of the TUM Sports Medicine of Klinikum Rechts der Isar, blood handling and 
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Institute of Computational Biology of the Helmholtz Zentrum München. 

III-2.1.5. Data interpretation  

Comparison of results with literature and drawing conclusions was done with co-authors. 

III-2.1.6. Article  

I wrote the article draft, did the literature search for introduction and discussion, drew the figures, and 

compiled the supplementary material. Together with co-authors, I wrote and revised the manuscript. 

III-2.2. Summary 

Human metabolism is highly variable. At one end of the spectrum, defects of enzymes, transporters, and 

metabolic regulation result in metabolic diseases such as diabetes mellitus or inborn errors of 

metabolism. At the other end of the spectrum, favorable genetics and years of training combine to result 

in physiologically extreme forms of metabolism in athletes. Here, we investigated how the highly 

glycolytic metabolism of sprinters, highly oxidative metabolism of endurance athletes and highly 

anabolic metabolism of natural bodybuilders affects their serum metabolome at rest and after a bout of 

exercise to exhaustion. We used targeted mass spectrometry-based metabolomics to measure the serum 

concentrations of 151 metabolites and 43 metabolite ratios or sums in 15 competitive male athletes (6 

endurance athletes, 5 sprinters, and 4 natural bodybuilders) and 4 untrained control subjects at fasted 

rest and 5 minutes after a maximum graded bicycle test to exhaustion. The analysis of all 194 metabolite 

concentrations, ratios and sums revealed that natural bodybuilders and endurance athletes had overall 

different metabolite profiles, whereas sprinters and untrained controls were more similar. Specifically, 

natural bodybuilders had 1.5 to 1.8-fold higher concentrations of specific phosphatidylcholines (e.g. PC 

aa C36:6) and lower levels of branched chain amino acids than all other subjects. Endurance athletes 
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had 1.4-fold higher levels of a metabolite ratio showing the activity of carnitine-palmitoyl-transferase I 

and 1.4-fold lower levels of various alkyl-acyl-phosphatidylcholines. When we compared the effect of 

exercise between groups, endurance athletes showed 1.3-fold higher increases of hexose and of 

tetradecenoylcarnitine (C14:1). In summary, physiologically extreme metabolic capacities of endurance 

athletes and natural bodybuilders are associated with unique blood metabolite concentrations, ratios, and 

sums at rest and after exercise. Our results suggest that long-term specific training, along with genetics 

and other athlete-specific factors systematically change metabolite concentrations at rest and after 

exercise.  
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Abstract
Human metabolism is highly variable. At one end of the spectrum, defects of en-
zymes, transporters, and metabolic regulation result in metabolic diseases such as 
diabetes mellitus or inborn errors of metabolism. At the other end of the spectrum, 
favorable genetics and years of training combine to result in physiologically extreme 
forms of metabolism in athletes. Here, we investigated how the highly glycolytic 
metabolism of sprinters, highly oxidative metabolism of endurance athletes, and 
highly anabolic metabolism of natural bodybuilders affect their serum metabolome at 
rest and after a bout of exercise to exhaustion. We used targeted mass spectrometry- 
based metabolomics to measure the serum concentrations of 151 metabolites and 43 
metabolite ratios or sums in 15 competitive male athletes (6 endurance athletes, 5 
sprinters, and 4 natural bodybuilders) and 4 untrained control subjects at fasted rest 
and 5 minutes after a maximum graded bicycle test to exhaustion. The analysis of all 
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1 |  INTRODUCTION

Inactivity, overweight and its negative impacts on health 
are a world- wide problem (Afshin et al., 2017). In con-
trast, physical activity and exercise training are widely 
accepted as health- promoting factors (Afshin et al., 2017; 
Blair, 2009; Cohen et al., 2015; Pedersen & Saltin, 2015). 
Therefore, a major goal in exercise science is to under-
stand how exercise triggers physiological adaptation (e.g., 
an increase in muscle mass or aerobic capacity) and how 
these adaptations can benefit health or mitigate disease 
(Pedersen & Saltin, 2015).

In athletes, years of training plus a unique genetic makeup 
(Sarzynski & Bouchard, 2020) result in metabolic adapta-
tions: Endurance training increases mitochondrial content 
and activity of oxidative enzymes in skeletal muscle (Egan & 
Zierath, 2013), resistance training increases muscle fiber size 
(Mero et al., 2013), and anerobic training like sprint train-
ing increases glycolytic enzymes in skeletal muscle (Ross 
& Leveritt, 2001). Eventually, genetics and years of specific 
training in athletes result in physiologically extreme meta-
bolic phenotypes.

Metabolites can serve as molecular read- outs of these 
metabolic phenotypes (Aebersold & Mann, 2016; Patti et al., 
2012). The metabolome, which comprises all metabolites 
within an organism, is highly dynamic, and susceptible to 
external influences like exercise (Krug et al., 2012). Studies 
have shown that one bout of exercise (Contrepois et al., 2020; 
Morville et al., 2020; Schranner et al., 2020) and exercise 
training for several weeks (Felder et al., 2017; Neal et al., 
2013) change hundreds of metabolites in blood.

A targeted change of specific metabolites through exer-
cise could be directly relevant to diseases with dysregulated 
metabolism. Recently, Morville et al. showed that a short 
term, targeted change of metabolites is possible through dif-
ferent exercise modes. They showed that within one session, 
endurance exercise changes different metabolites than resis-
tance exercise does (Morville et al., 2020). However, it is not 
clear if there is a long- term effect of different exercise modes 
on the metabolome.

While short- term metabolite changes after one exercise 
session in athletes were reported (Al- Khelaifi et al., 2018, 
2019; Breit et al., 2015; Coelho et al., 2016; Hall et al., 2016; 
Howe et al., 2018), no study showed how years of metabolic 
adaptation to endurance, resistance, or sprint training affect 
metabolite changes to the same acute exercise.

Therefore, we wanted to find out how long- term physio-
logical adaptation to different exercise training modes (en-
durance, resistance, sprint) affect the metabolome at rest and 
how these different adaptations affect the metabolic response 
to the same acute exercise. By comparing the serum metab-
olomes of glycolytic sprinters, oxidative endurance athletes, 
and anabolic natural bodybuilders before and after a maxi-
mum graded exercise test, we aimed to answer the following 
research questions:

1) Do sprinters, endurance athletes and natural bodybuild-
ers have distinct blood metabolite concentrations? If so, the 
concentrations of which metabolites explain the differences 
in- between athlete groups?

2) Within these highly trained athletes, how does a bout 
of graded cycle exercise to exhaustion affect blood me-
tabolite concentrations? And specifically, do metabolite 

e.V.). GK is supported by several grants 
from the National Institute on Aging 
(NIA) within the funding scheme of the 
US National Institutes of Health (NIH) 
(RF1- AG057452- 01, RF1- AG058942- 01, 
RF1- AG059093- 01, U01- AG061359- 
02S1, U19- AG063744- 01) and by a 
BMBF grant to the German Network 
for Mitochondrial Disorders (mitoNET, 
01GM1906C).

194 metabolite concentrations, ratios and sums revealed that natural bodybuilders 
and endurance athletes had overall different metabolite profiles, whereas sprinters 
and untrained controls were more similar. Specifically, natural bodybuilders had 1.5 
to 1.8- fold higher concentrations of specific phosphatidylcholines and lower levels 
of branched chain amino acids than all other subjects. Endurance athletes had 1.4- 
fold higher levels of a metabolite ratio showing the activity of carnitine- palmitoyl- 
transferase I and 1.4- fold lower levels of various alkyl- acyl- phosphatidylcholines. 
When we compared the effect of exercise between groups, endurance athletes showed 
1.3- fold higher increases of hexose and of tetradecenoylcarnitine (C14:1). In sum-
mary, physiologically extreme metabolic capacities of endurance athletes and natural 
bodybuilders are associated with unique blood metabolite concentrations, ratios, and 
sums at rest and after exercise. Our results suggest that long- term specific training, 
along with genetics and other athlete- specific factors systematically change metabo-
lite concentrations at rest and after exercise.
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concentrations change differently after the exercise depend-
ing on the athlete group?

2 |  MATERIALS AND METHODS

2.1 | Study cohort and human exercise 
testing

For this study, we recruited three groups of healthy male ath-
letes (n  =  15): 5 sprinters, 6 endurance athletes, 4 natural 
bodybuilders, and 4 healthy untrained males. All participants 
passed the inclusion criteria (Supplementary Table S1) and 
completed the study. Mean group characteristics (Table 1) 
and individual details (Supplementary Table S2) are pro-
vided. In preparation for the study, participants followed a 

standard diet (Supplementary Table S7) on the day before 
testing, refrained from exercise training for 24 hours and from 
dietary supplements for 48 hours before testing. Participants 
recorded their exercise training for 4  weeks (Table 1) and 
their intake of dietary supplements and medication for one 
week before the study (Supplementary Table S2).

Human exercise testing included three phases: baseline 
measurement, exercise testing, and recovery (Figure 1). To 
reduce circadian bias, all participants reported to the labora-
tory at 7 am after a 10 hour overnight fast. Upon arrival, we 
measured height, weight, body circumferences, and body fat 
including measurement of subcutaneous fat over Biceps bra-
chii and Quadriceps femoris. Body fat was calculated from 
the thickness of seven skin folds (7- point- calipermetry) using 
the method by Jackson & Pollock (Jackson & Pollock, 1978). 
After resting for 10 minutes, we took blood samples from an 

T A B L E  1  Mean (SD) group characteristics of study participants showing significantly different groups (p < 0.05) in bold after correcting for 
multiple testing

Control Natural Bodybuildinga Endurance Sprint

Number of subjects 4 4 6 5

Age (years) 30 (2) 28 (6) 30 (3) 24 (3)

Resting heart rate (bpm) 70 (9) 56 (4) 51 (15) 59 (7)

Resting blood pressure (mmHg) 140/80 (12/7) 123/78
(10/4)

122/75
(11/7)

126/78 (9/9)

BMI (kg/m2) 24.8 (2.3) 26.5 (2.7)b 22.1 (1.9) 21.9 (1.5)

Height (cm) 188 (4.5) 172 (6.6) 183 (3.8) 189 (7.0)

Body fat (%) 18.8 (7.7) 10.6 (1.2) 7.5 (1.0)c 5.5. (0.7)c 

Upper arm circumference (cm) 30.1 (2.7) 33.1 (3.7) 28.1 (1.7) 28.3 (1.8)

Thigh circumference (cm) 54.2 (4.2) 59.5 (6.6) 51.4 (5.1) 55.4 (4.1)

Subcutaneous fat upper arm (mm) 14.4 (7.2)b,d,e 6.4 (0.5) 6.5 (2.1) 5.6 (0.9)

Subcutaneous fat thigh (mm) 20.4 (7.3)b,d,e 10.1 (2.7) 7.7 (3.4) 5.8 (1.7)

Ventilatory threshold 1
(ml/kg/min)

26.2 (2.1) 27.2 (3.0) 47.9 (6.0)b,c,d 27.3 (5.6)

VO2max (ml/kg/min) 45.6 (4.7) 41.8 (2.0) 63.6 (6.6)b,c,d 52.6 (5.4)

Relative maximum workload (W/kg) 3.9 (0.5) 3.7 (0.2) 5.9 (0.3)b,c,d 4.8 (0.2)c,d 

Lactate (mmol/l) 4 min after 
maximum workload

12.0 (1.0) 9.7 (0.9) 9.5 (2.6) 13.0 (1.5)

Lactate (mmol/l) 10 min after 
maximum workload

12.1 (1.7) 9.2 (2.7) 5.9 (1.7)b,c 11.4 (3.1)

Reactive strength (RSI) 111 (30) 125 (25) 164 (29) 218 (37)c,d 

Hand grip strength (kg) 59.3 (7.2) 62.4 (6.6) 51.5 (2.8) 60.2 (5.1)

Endurance training (min/week) 41 (63) 80 (40) 815 (317)b,c,d 162 (65)

Resistance training (min/week) 0 (0) 413 (227)c,e 85 (50) 207 (56)

Speed training (min/week) 0 (0) 135 (201) 65 (84) 294 (161)c 
aNatural bodybuilders are bodybuilders who abstain from performance enhancing drugs listed in the World Natural Bodybuilding Federation banned substances list 
e.g. steroid hormones (Liokaftos, 2018).
bsignificantly different from sprinters.
csignificantly different from controls.
dsignificantly different from natural bodybuilders.
esignificantly different from endurance athletes.
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antecubital vein of the right arm in a supine position. After a 
three- minute warm up, subjects performed a ramp- test on a 
bicycle ergometer (Lode, Groningen, Netherlands) with power 
increasing linearly at a rate of 30 W per minute until volun-
tary exhaustion. During cycling, we continuously measured gas 
exchange with a stationary cardiopulmonary exercise testing 
system (Cortex, Germany). Out of 19 subjects, 18 met objec-
tive exhaustion criteria of either a respiratory exchange ratio 
(RER) >1.0 or a ventilatory equivalent of oxygen (VEeqO2) 
of >30.0 (Aspenes et al., 2011). One endurance athlete, E1 did 
not meet these criteria. Despite endurance trained subjects have 
lower RER than non- endurance trained subjects in response to 
similar relative exercise intensity (Jeukendrup et al., 1997) we 
conclude subject E1 was not entirely physically exhausted. Five 
minutes after the end of exercise, we took a second blood sam-
ple from the antecubital vein of the left arm in a supine position. 
At maximum exhaustion, we started to sample lactate from the 
earlobe in 20 µl capillaries (EKF diagnostics, Germany) every 

2 min for 10 min in total and analyzed samples immediately 
(Biosen S- Line Analyzer, EKF diagnostics, Germany). Then 
participants rested for 90 minutes and ingested drinks and foods 
ad libitum. After rest, participants re- warmed for ~15 minutes 
(10 min ergometry at 100 W and 5 min supervised jumping and 
dynamic stretching exercises). After re- warm, reactive strength 
was measured by a drop jump from 30 cm height with a force 
plate (Kistler GmbH, Germany). The best out of three attempts 
(highest RSI) was recorded. Afterwards, we measured maxi-
mum hand grip force with a hand grip dynamometer (Jamar, 
JLW instruments, USA) where the best out of three attempts 
was recorded as well.

2.2 | Blood sample preparation

We drew venous blood samples in four replicates into 9 ml 
serum S- Monovettes Z- Gel collecting tubes (Sarstedt AG und 

F I G U R E  1  Overview of the study design where a standardized bicycle ramp test was performed with a continuously increasing load of 30 
watts per minute until voluntary exhaustion

Natural bodybuilders

RecoveryBaseline Bicycle ramp test

Venous blood

Baseline 
serum

10 min

Post-exercise 
serumCentrifuge

10 min/18°C/2460g

Clot for 30 min

15 min 5 min

Maximum 
workload

Endurance athletes

Sprinters

Untrained controls



   | 5 of 17SCHRANNER Et Al.

Co KG, Nuembrecht, Germany) at each timepoint. Clotting 
was allowed at room temperature for 30 min in an upright 
position. After centrifugation (10 min / 18°C, 2460 g), we 
merged the serum replicates into one 15  ml Falcon tube 
(Greiner Bio- One GmbH, Kremsmuenster, Austria). Then, 
we aliquoted the serum into cryotubes (Sarstedt AG und Co 
KG, Nümbrecht, Germany), froze aliquots on dry ice for 
~30 min and stored them at −80°C until analysis.

2.3 | Metabolomics measurement

Blood serum samples were analyzed at the Genome 
Analysis Center at the Helmholtz Zentrum München 
(Munich, Germany) with a kit- based metabolomics ap-
proach (AbsoluteIDQ p180 Kit; Biocrates Life Sciences 
AG, Innsbruck, Austria) applying liquid chromatography 
(LC- MS/MS) and flow injection analysis- tandem mass 
spectrometry (FIA- MS/MS) to measure a pre- defined set 
of 188 metabolites in a targeted fashion. Sample prepara-
tion and MS/MS measurements were performed accord-
ing to the manufacturer's instructions (manual UM- P180) 
as described previously (Zukunft et al., 2013). Briefly, 
10 µL blood serum were placed into the 96- well plate of 
the p180- kit and dried in a nitrogen stream for 30 minutes. 
For tagging amino acids and biogenic amines, samples 
were derivatized with an excess of 5% phenylisothiocy-
anate (Sigma- Aldrich, Steinheim, Germany). After dry-
ing under nitrogen, metabolites were extracted in 300 µL 
methanol (AppliChem, Darmstadt, Germany) containing 
5  mM ammonium acetate (Sigma- Aldrich, Steinheim, 
Germany). After incubation for 30 min at room tempera-
ture and centrifugation, the eluate was split and diluted 
for the following MS/MS analyses. For sample prepara-
tion and MS/MS analysis, we used the following labora-
tory equipment: (i) Hamilton Microlab STARTM robot 
(Hamilton Bonaduz AG, Bonaduz, Switzerland) for liquid 
sample handling, (ii) Ultravap nitrogen evaporator (Porvair 
Sciences, Leatherhead, UK) for sample drying, (iii) 1200 
Series HPLC (Agilent Technologies Deutschland GmbH, 
Böblingen, Germany) equipped with a HTC PAL auto sam-
pler (CTC Analytics, Zwingen, Switzerland) for the liquid 
chromatography step, and (iv) API 4000 triple quadrupole 
(Sciex Deutschland GmbH, Darmstadt, Germany) oper-
ated using the software Analyst (version 1.6.2) for MS/MS 
analysis. For compound identification and quantification, 
the mass spectrometer was run in multiple reaction moni-
toring mode. Following the kit procedure, we applied the 
MultiQuant 3.0.1 (Sciex) and MetIDQ™ software to assess 
measurement quality and to calculate metabolite concen-
trations in reference to the corresponding isotope- labeled 
internal standards contained in the kit plate. Concentrations 
were reported in µM.

The assay allows simultaneous quantification of 188 metab-
olites: free carnitine (C0), 39 acylcarnitines (Cx:y), 21 amino 
acids (19 proteinogenic +citrulline + ornithine), 21 biogenic 
amines, hexose (sum, consisting of about 90%– 95% glucose), 
90 glycerophospholipids 14 lysophosphatidylcholines (lysoPC) 
and 76 phosphatidylcholines and 15 sphingolipids (SMx:y). 
The abbreviations Cx:y are used to describe the total number 
of carbons and double bonds of all fatty acid chains, respec-
tively. PCs are labeled as either diacyl- phosphatidylcholines 
(PC aa) or alkyl- acyl- phosphatidylcholines (PC ae). This la-
beling is based on the assumption that even- numbered fatty 
acids and lower degrees of desaturation are more common 
than odd- numbered fatty acids or very high degrees of desatu-
ration. For example, the labels PC ae C38:0, PC aa C37:0, and 
PC aa C38:7, all have the same mass and, thus, all would de-
scribe the same PC kit measure representing a mixture of these 
structurally different PCs; according to the assumptions above, 
the respective kit measure is labeled as PC ae C38:0 (for more 
details see (Quell et al., 2019)).

The values for limit of detection (LODs) of metabolites 
were calculated as three times the values of the zero samples, 
here phosphate- buffered saline. To assess the experimental 
variation of measurements, five aliquots of a pooled refer-
ence plasma (Haid et al., 2018) were measured on the same 
kit plate as the samples of interest and were used to calculate 
the coefficient of variation (CV) for each metabolite.

For a full list of all measured 188 metabolites and 44 cal-
culated biologically relevant metabolite ratios or sums see 
Supplementary Table S3.

2.4 | Statistical analysis

2.4.1 | Data quality control and preprocessing

In total, 37 metabolites and 1 ratio were excluded from further 
analysis based on the following criteria: (i) missing values for 
more than 90% of the samples (c4- OH- Pro, Dopamine, Nitro- 
Tyr, Carnosine), (ii) CV of the five reference plasma samples 
(indicating the technical variation of measurements) exceed-
ing 25% (Zhang et al., 2020) (DOPA, Histamine, PC aa C30:2, 
SM C22:3, PEA, Spermine, SM C26:0, Spermine/Spermidine, 
C5:1- DC), and (iii) values below specified LOD for more 
than 50% of samples (29 metabolites, including DOPA, PEA, 
Spermine, C5:1- DC). Parameters for quality control (missing-
ness, CV, LOD) along with the mean concentrations of all 
measured analytes are provided in Supplementary Table S3.

As metabolite concentrations are mostly log- normally 
distributed, the 151 metabolites and 43 ratios remaining after 
quality control were log- transformed (log2) and missing val-
ues (PC ae C30:1, 5.3%; PC ae C38:1, 18.4%) were imputed 
using a k- nearest- neighbor approach (k=3) with variable se-
lection (Do et al., 2018).
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2.4.2 | Partial least squares discriminant 
analysis (PLS- DA)

To check if the four groups (control, endurance, sprint, body-
building) can be discriminated based on their metabolomic pro-
files at baseline and after exercise, we performed a PLS- DA 
analysis using the ropls R package (version 1.16.0). Prior to 
the analysis, metabolite concentrations were scaled (mean = 0, 
standard deviation = 1) over all samples. PLS- DA projects these 
z- scores of the 194 metabolite measures onto a reduced number 
of artificial components (here: components 1 and 2) that are 
linear combinations of the original variables which maximize 
the distinction of the pre- defined groups (i.e., the covariance 
between components built from the variables and response 
(grouping)) (Wold et al., 2001). R2X (0.258), R2Y (0.488), 
Q2Y (0.304) representing the fraction of explained variances 
(of variables and response) and the accuracy of prediction 
(Eriksson, 2002; Tenenhaus, 1998) are provided as measures 
for the quality of the resulting PLS- DA model in Supplementary 
Figure S1. To test for overfitting, we inspected R2Y and Q2Y 
from 20 PLS- DA models based on our data with random per-
mutations of the group labels. Resulting empiric p- values for 
the achieved R2Y and Q2Y were below 0.05 (Szymańska et al., 
2012). To identify key variables that drive the discrimination 
of athlete groups, we examined the loading vectors of the two 
PLS- DA components (i.e., the weights assigned to each me-
tabolite in the linear combination that defines each component). 
The loadings along with the metabolites' variable importance in 
projection (VIP) scores (summarizing the loading weights for 
both components and how much the components explain the 
group distinctions) are given in Supplementary Table S4 and 
Supplementary Figure S1. To examine the influence of sums 
and ratios (as partially redundant variables) on the separation of 
groups in the PLS- DA, we repeated the analysis based on the 
151 single metabolites and found the group differences to be 
stable (Supplementary Figure S2).

2.4.3 | Hypothesis testing for group differences 
in metabolite levels

For the metabolites that showed the five most extreme load-
ing weights in negative and positive direction in the two 
PLS- DA components, we formulated a linear mixed effects 
model (assuming fixed effects for time (baseline/post ex-
ercise) and group and a random intercept for the subjects) 
and performed an ANOVA to obtain p- values for the group 
differences in the levels of these 2*10 selected metabolites 
(z- scored). Group effects were considered significant if 
p < 0.0050 (α = 0.05/10 adjusted for ten tests). As compo-
nent 1 separates the bodybuilding group and component 2 
the endurance group from the other groups, we additionally 
tested for differences of these two groups against all other 

participants for the selected metabolites respectively, again 
using analogous linear mixed models.

2.4.4 | Hypothesis testing for effect of 
exercise and effect differences by group

To identify metabolites or ratios/sums that significantly 
change upon exercise, we performed a paired Student's t- test 
for each of the 194 variables. The resulting - log10(p- value) 
were displayed versus the means of metabolite fold changes 
within individuals of measured metabolite concentrations 
in a Volcano plot (generated using Prism 8.3.0, GraphPad). 
Log2 fold changes (means of fold change within individuals) 
and p- values for the full list of metabolites are provided in 
Supplementary Table S5. p- values were considered signifi-
cant if p < 2.58*10−4 (α = 0.05/194 adjusted (Bonferroni) for 
multiple testing). For identification of group- specific effects 
of exercise, we performed a t- test for each metabolite com-
paring the mean log2 fold change (within individuals) of each 
group with the mean log2 fold change (within individuals) of 
all other subjects (Supplementary Table S6). Additionally, 
we performed non- parametric Wilcoxon signed rank/rank 
tests to ensure robustness of our results against potential out-
liers (Supplementary Tables S5 and S6).

All calculations were performed using R Studio (Version 
1.2.5033, Boston, MA, USA) with R version 3.6.2. Single 
metabolite plots, the PLS- DA loading plot and the Volcano 
plot were generated using Prism version 8.3.0.

3 |  RESULTS

We recruited three groups of healthy male athletes: 5 sprint-
ers, 6 endurance athletes, and 4 natural bodybuilders. Four 
healthy sedentary males were recruited as a control group. 
All subjects met the inclusion criteria given in Supplementary 
Table S1 and completed the study. Mean group characteris-
tics are listed in Table 1 and subjects’ details are provided in 
Supplementary Table S2.

We analyzed 194 blood metabolite measures before and 
after the graded bicycle test to exhaustion to identify differ-
ences in the metabolomes of our four subject groups (Figure 
1). These measures include 151 metabolites and 43 biologi-
cally relevant metabolite ratios and sum that remained after 
quality control of the analytical data (see Methods). We used 
a targeted metabolomics kit that mainly measures amino acids 
and lipids. Measured lipids include acylcarnitines, which 
are essential for fat metabolism and complex lipids such as 
sphingomyelins (SMs), and phosphatidylcholines (PCs), 
which are incorporated into membranes and carry two fatty 
acid residues. The kit also includes lysophosphatidylcholines 
(lysoPCs), which are degradation products of PCs. Over 70 
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PCs with different molecular weights are measured by the kit 
and are labeled as either diacyl- phosphatidylcholines (PC aa) 
or alkyl- acyl- phosphatidylcholines (PC ae), also known as 
ether lipids. This labeling bases on the assumption that even- 
numbered fatty acids and lower degrees of desaturation are 
more common than odd- numbered fatty acids or very high 
degrees of desaturation. Common violations of these assump-
tions and observable mixed molecular compositions of mea-
sured PCs in human blood have been discussed recently in 
more detail (Quell et al., 2019). The assessed biologically rel-
evant ratios include e.g. the carnitine- palmitoyl- transferase- 1 
ratio (CPT1- ratio), calculated as the concentration ratio of 
the CPT- 1 reaction products hexadecanoylcarnitine (C16:0) 
and octadecanoylcarnitine (C18:0) to the substrate free carni-
tine (C0). The CPT1- ratio is considered a proxy measure of 
ß- oxidation activity.

After quality control, the final set of 194 metabolite mea-
sures included 151 metabolites and 43 biologically relevant 
ratios or sums, which we used for all further statistical analy-
ses (Supplementary Table S3).

3.1 | Do sprinters, endurance athletes and 
natural bodybuilders have distinct blood 
metabolite concentrations at rest and after 
exercise?

We calculated a partial least squares discriminant analysis 
(PLS- DA) by combining baseline and post- exercise samples 
and using all 194 metabolite measures. PLS- DA combines 
the large number of metabolite concentrations to yield two 
artificial components (component 1 and component 2) that 
are calculated to maximize the distance between the groups. 
Our PLS- DA revealed overlapping clusters of controls and 

sprinters suggesting more similar metabolite concentrations. 
Natural bodybuilders (along component 1) and endurance 
athletes (along component 2) appeared as distinct clusters 
from sprinters and untrained controls (Figure 2) suggesting 
unique metabolite concentrations.

3.2 | Which metabolites explain the 
differences in- between groups?

In a next step, we identified those metabolites that separated 
the clusters of natural bodybuilders and those of endurance 
athletes from the other groups. We inspected the PLS- DA 
loadings which show by how much each metabolite contrib-
utes to component 1 and component 2. We selected the five 
metabolites with the highest positive and negative contribu-
tions (i.e., largest absolute weights), respectively, for each 
component (Table 2). All 10 metabolites selected for compo-
nent 1 (Table 2a) differed significantly in- between groups in 
an ANOVA. Out of the 10 metabolites selected for component 
2 (Table 2b), four differed significantly in- between groups.

Isoleucine, leucine, BCAA, tryptophan and tetradecadien-
oylcarnitine (C14:2) were lower concentrated in natural body-
builders (Figure 3a) when compared to all other groups. Five 
complex lipids including two hydroxy- sphingolipids (SM- OH), 
the total sum of hydroxy- sphingolipids (total SM(OH)) and two 
PCs (Table 2a) were higher concentrated in natural bodybuild-
ers (Figure 3b) when compared to all others. Out of the 10 me-
tabolites selected in component 1, PC aa C36:6, PC ae C38:0, 
and C14:2 differed significantly (p < 5.0*10−3) between body-
builders and all other groups when tested one by one (Table 2a).

Alpha- aminoadipic acid (alpha- AAA) and four PCaes 
(Table 2b, Figure 3d) were lower concentrated in the endur-
ance athletes when compared to all other groups. In contrast, 

F I G U R E  2  PLS- DA score plot 
showing baseline (●) and post- exercise 
(■) serum metabolite profiles within 75% 
confidence intervals (shading) of natural 
bodybuilders (B1- B4), endurance athletes 
(E1- E6), sprinters (S1– S5) and untrained 
controls (C1– C4)
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three lysoPC measures, the kynurenine/tryptophan ratio and 
the CPT1- ratio (Figure 3c) which is a proxy measure for a rate- 
limiting step in ß- oxidation, were higher concentrated in endur-
ance athletes than in all other groups (Table 2b). Out of the 10 
metabolites selected in component 2, PC ae C36:4 and PC ae 
C36:5 differed significantly (p < 5.0*10−3) between endurance 
athletes and all groups when tested one by one (Table 2b).

3.3 | How does a fasted, graded exercise 
test to exhaustion affect blood metabolite 
concentrations?

Next, we compared the concentrations of 151 metabolites 
and 43 metabolite ratios or sums between post- exercise and 

baseline. After exercise, a third of all metabolite measures 
(46 metabolites and 12 metabolite ratios or sums) signifi-
cantly increased. In contrast, only ~5% of all metabolite 
measures (4 metabolites, 5 ratios or sums) significantly de-
creased after exercise (Figure 4, Supplementary Table S5).

In detail, the ratio spermidine/putrescine decreased most, 
while the ratio serotonin/tryptophan increased most across 
groups (tryptophan decreasing; serotonin increasing). Alanine 
concentration increased and had the lowest p- value (Figure 4a) 
of metabolites that changed by exercise. Among all amino acids, 
muscles mainly excrete alanine during fasting, and the blood 
transports it to the liver for gluconeogenesis (Adeva- Andany 
et al., 2016). After exercise, the ratio of short chain acylcarni-
tines to free carnitine (C2+C3/C0), the ratio of acetylcarnitine to 
free carnitine (C2/C0), short chain acylcarnitines (C2, C3) and 

T A B L E  2  Metabolites that contributed most to the distinction of the natural bodybuilders in component 1 (a) and to the distinction of 
endurance athletes in component 2 (b) from all other subjects

(a) Metabolite, ratio or 
sum Loading on component 1a 

p value
Overall group differences

p value
Natural Bodybuilder versus others

Isoleucine −0.1500 2.7*10−6* 0.021

BCAA −0.1397 1.1*10−5* 0.014

Leucine −0.1375 6.5*10−5* 0.023

C14:2 −0.1344 2.3*10−3* 5.0*10−3*

Tryptophan −0.1269 3.8*10−6* 0.011

PC ae C38:0b 0.1603 3.2*10−7* 6.8*10−4*

Total SM- OH 0.1553 4.8*10−5* 0.014

SM (OH) C22:2b 0.1501 1.6*10−4* 0.0260

PC aa C36:6 0.1490 2.9*10−7* 2.2*10−3*

SM (OH) C22:1b 0.1488 3.5*10−6* 0.015

(b) Metabolite, ratio or 
sum Loading on component 2c 

p value
Overall group differences

p value
Endurance versus others

LysoPC a C18:2 −0.1426 0.018 0.138

Kynurenine/tryptophan −0.1411 0.050 0.054

LysoPC a C18:1 −0.1370 6.9*10−3 0.083

Total lysoPC −0.1369 0.020 0.073

CPT- I ratiod −0.1328 2.7*10−3* 0.042

PC ae C36:5 0.1758 2.2*10−4* 3.8*10−3*

PC ae C36:4 0.1722 1.5*10−3* 4.9*10−3*

PC ae C38:6 0.1491 7.9*10−5* 0.018

PC ae C38:5 0.1427 0.017 0.023

Alpha- AAA 0.1418 0.060 0.059
aNegative loadings indicate lower concentration in natural bodybuilders. Positive loadings indicate higher concentration in natural bodybuilders compared to all other 
groups.
bPC ae C38:0 is isobar (same nominal mass) with PC aa C38:7. In human plasma of young healthy men, PC ae C38:0 is considered to contain considerable amounts 
of PC molecules that carry a fatty acid chain with 22 carbon atoms and 6 double bonds (C22:6), same as for the related measure PC aa C36:6 (Quell et al., 2019). SM 
(OH) C22:1 and SM (OH) C22:2 labeled as hydroxy- sphingolipids are isobar with odd- chain non- hydroxy sphingolipids (e.g. SM C23:0 and SM C23:1).
cNegative loadings indicate higher concentration in endurance athletes. Positive loadings indicate lower concentration in endurance athletes compared to all other 
groups.
dSum of hexadecanoylcarnitine (C16:0) and octadecanoylcarnitine (C18:0) divided by free carnitine (C0).
*Significant comparison after correcting for multiple testing p < 5.0*10−3.
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the ratio of esterified to free carnitine (total AC/C0) increased, 
indicating higher ß- oxidation activity. Several complex lipids 
like PCs and SMs increased after exercise (Figure 4a), suggest-
ing a general increase in blood complex lipids after exercise.

3.4 | Do metabolite concentrations change 
differently after exercise depending on the 
group?

Finally, we compared the log2 fold- change of each metabo-
lite between groups (Supplementary Table S6). No metabolite 
change differed significantly between groups when correcting 
for 194 tests (151 metabolites, 43 ratios or sums). However, 
when using a raw p- value cut- off of p < 0.01, we identified me-
tabolites with suggestive, group- specific responses to exercise.

In endurance athletes, hexose (Figure 5a), which mainly 
comprises glucose (fasting blood glucose concentration in 
healthy humans ranges between 4.0 and 5.9 mmol/l) (American 
Diabetes Association, 2014), butyrylcarnitine (C4), tetradece-
noylcarnitine (C14:1), and tetradecadienoylcarnitine (C14:2), 
had higher fold- changes in response to exercise compared to 
all other groups. In natural bodybuilders, putrescine and tau-
rine (Figure 5b) stayed almost at the same level form pre- to post 

exercise, whereas in all other groups, putrescine and taurine in-
creased. In the control group, C14:1 and tetradecanoylcarnitine 
(C14:0) had lower fold- changes compared to all other groups. 
Notably, C14:1 was one of those metabolites which increased 
the highest in endurance athletes.

In sprinters, we found no metabolite that had a p- value 
below 0.01. The metabolites that differed most were sero-
tonin (p = 0.029) and the serotonin/tryptophan ratio (Figure 
4d) with higher, but not significant, increases in sprinters 
when compared to all other groups.

4 |  DISCUSSION

The aim of this study was to investigate how the selectively 
adapted metabolism of aerobic, glycolytic, and anabolic athletes 
affects blood metabolomes at rest or after exercise and in response 
to exercise. We made the following main observations: First, 
endurance- trained athletes and natural bodybuilders had unique 
metabolite concentrations, ratios and sums when compared to 
sprinters and untrained controls. Second, endurance athletes had 
higher CPT1- ratios, higher lysoPCs C18:1 and C18:2 and lower 
levels of highly unsaturated alkyl- acyl- phosphatidylcholines than 
others. In contrast, natural bodybuilders had lower concentrations 

F I G U R E  3  Concentration changes 
for every participant between baseline (○) 
and post- exercise (□) for isoleucine (a) 
and PC aa C36:6 (b), contributing most 
to the separation of natural bodybuilders 
and the CPT1- ratio (c) and PC ae C38:6 
(d) contributing most to the separation of 
endurance athletes
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of BCAAs, lower tryptophan and higher concentrations of spe-
cific phosphatidylcholines and sphingomyelins. Third, ~30% of 
all serum metabolite measures increased 5 minutes after a graded 
bicycle ergometry test to exhaustion, whereas ~5% of all metabo-
lite measures decreased. Fourth, some metabolites changed dif-
ferently during exercise in- between groups but not significantly.

The first and the second main findings are discussed to-
gether, followed by the third and the fourth finding separately.

4.1 | Natural bodybuilders have a depleted 
blood BCAA pool, which might be caused by 
high muscle growth

Fasted, natural bodybuilders had lower concentrations of leu-
cine, isoleucine, tryptophan, and BCAAs than the other groups. 
A likely explanation is that higher rates of protein synthesis 
(McGlory et al., 2017) and a greater muscle mass result in faster 
declines of amino acids including BCCAs. The standardized 

nutrition on the day before testing may have contributed to this 
finding: Based on their dietary reports, natural bodybuilders 
usually ingested higher amounts of protein (~36%, ~2.4 g/kg 
bodyweight) than all other groups (20– 24%, ~0.9– 2.0 g/kg bod-
yweight). On the day before testing, protein intake was standard-
ized to 20% of total macronutrient intake for all participants. For 
bodybuilders, this reduced protein intake could have depleted 
BCAA and tryptophan in blood even faster because bodybuild-
ers need more of these dietary essential amino acids than the 
other groups due to higher protein synthesis rates. A practical 
conclusion to the fast overnight depletion of blood amino acids 
could be that bodybuilders should consider ingesting protein 
pre- and post- sleep to avoid “running empty” on amino acids.

In general, habitual dietary protein intake can also influ-
ence amino acid levels in blood (Durainayagam et al., 2019; 
Seyedsadjadi et al., 2018). Durainayagam et al. report that 
doubling protein intake (from 0.8 g/kg bodyweight to 1.6 g/
kg bodyweight) for 10 weeks increases tryptophan, creatine, 
and glutamine levels. Seyedsadjadi et al. report that the intake 

F I G U R E  4  Volcano plot (a) showing significant metabolite changes (in black; α < 2.58*10−4) after graded cycle exercise in all participants 
and metabolites with the highest concentration changes from baseline (○) to post- exercise (□) including (b) alanine, (c) spermidine/putrescine and 
(d) serotonin/tryptophan
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of ~94 g protein per day increases tryptophan and kynurenine 
but do not provide data on relative protein intake in g/kg body-
weight. Contrasting to both studies, tryptophan levels in body-
builders were lower than in all other groups in our study. We 
are not aware of any study that has shown how the habitually 
high protein intake of the participating natural bodybuilders 
(~36%) affects the blood metabolome long- term.

4.2 | Natural bodybuilders have higher 
levels of two docosahexaenoic acid derivatives 
which may originate from supplemented 
fish oils

PC aa C36:6 and PC ae C38:0 concentrations were higher in 
natural bodybuilders when compared to all other groups, with 
the largest differences observed for PC aa C36:6. Quell et al. 
recently showed that blood PC aa C36:6 measured in healthy 
young men mainly comprises a derivative of DHA, a fatty acid 
with 22 carbons and 6 double bonds (C22:6). Quell et al. found 
PCaas that contain DHA as one, and tetradecanoic acid as the 
second fatty acid chain (PC 14:0_22:6) account for the major 
part (~88%) of measured PC aa C36:6 concentrations (Quell 
et al., 2019). They also suggested the second PCae that was 
higher in natural bodybuilders (PC ae C38:0) to be a DHA 
derivative. The measure labeled as PC ae C38:0 includes the 
concentrations of the isobaric (i.e., showing the same mass 
spectrometric signal) PC aa C38:7 with C22:6 as one of the 
two fatty acid chains. Natural bodybuilders may have higher 
levels of DHA- containing PCs as some bodybuilders sup-
plemented fish oils. Fish oils are rich in omega- 3 fatty acids 
including DHA and eicosapentaenoic acid (EPA, C20:5) and 
have been reported to increase muscle protein synthesis via 
increased mTOR and p70 S6 k signaling (Smith et al., 2011). 
Especially two natural bodybuilders (B3 and B4) who either 
ingested omega- 3 capsules (B3, Supplementary table S3) or 

ate omega- 3 rich oils (around 20 g daily), chia seeds (around 
20 g daily), and fish (weekly) (B4) had high concentrations of 
DHA- containing PCs. Among the other participants, only en-
durance athlete E3 ate fish regularly. E3 had the highest base-
line concentration in PC aa C36:6 next to B3 and B4, but no 
notable elevation in PC ae C38:0. No other participant reported 
rapeseed oil, linseed oil, or chia seeds or fish in their nutri-
tion. Besides the DHA derivatives, the concentrations of two 
sphingomyelins which also contain fatty acids with 22 carbons 
were higher in natural bodybuilders than in all other groups. 
Whether this is similarly a result of the natural body builders 
diet or because other factors play a role is unclear. Collectively, 
the overall pool of 22 carbon fatty acid- containing molecules 
such as PCs or sphingomyelins is higher in natural bodybuild-
ers, which might be in part because of their diets.

4.3 | Endurance athletes have higher CPT1- 
ratio, suggesting higher fat oxidation

Endurance athletes had higher CPT1- ratios than all others, 
especially sprinters. CPT1 is a mitochondrial transmembrane 
enzyme that catalyses a reaction essential for the transport 
of fatty acids from the cytosol into the mitochondria, where 
fatty acids enter β- oxidation (Lundsgaard et al., 2018). 
Metabolomics analyses allow to estimate the activity of the 
CPT1 reaction via its reaction products hexadecanoylcarni-
tine (C16:0) and octadecanoylcarnitine (C18:0) versus the 
concentration of free carnitine (C0). The CPT1- ratio could 
be a biomarker either for a higher capacity for fat oxidation 
or for acutely higher fat oxidation rates in endurance athletes. 
Supporting this assumption, endurance athletes had the low-
est respiratory exchange ratios (RERs) of all groups, at rest 
and during the exercise test, indicating higher fat oxidation 
compared to the other groups (Supplementary Figure S3). 
Further studies should seek to clarify the association between 

F I G U R E  5  Among all 194 metabolite measures, hexose (a), taurine (b) and tetradecenoylcarnitine (c) showed suggestive group- specific 
responses between baseline (○) and post- exercise (□)
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the CPT1- ratio, the capacity for fat oxidation, CPT1 activity 
and the acute rate of fat oxidation.

4.4 | Endurance athletes have higher lysoPC 
a C18:1 and C18:2 concentrations, which may 
be linked to cardiovascular fitness

Endurance athletes had higher concentration of lysoPC a 
C18:1 than bodybuilders and controls. Earlier studies have 
already associated lysoPCs containing 18 carbons with en-
durance traits (Felder et al., 2017; Schader et al., 2020). 
Specifically, lysoPC a C18:1 was, among other lysoPCs, re-
ported to increase after several weeks of endurance training 
(Felder et al., 2017). Another lysoPC C18:2 was found to be 
elevated after a marathon race in subjects with high VO2max 
(63.3 ± 5.2 ml/kg/min) that is similar to the VO2max of our 
endurance athletes (Table 1), but not in subjects with low 
VO2max (41.8 ± 5.5 ml/kg/min) (Schader et al., 2020) that is 
similar to the VO2max of natural bodybuilders and controls 
(Table 1). Supporting the association between cardiovascu-
lar fitness and these lysoPCs, lysoPC a C18:0 and lysoPC 
a C18:2, were shown to be lower in patients with heart fail-
ure, who typically have a lower VO2max (17.2 ± 7.2 ml/kg/
min), than in healthy controls (Marcinkiewicz- Siemion et al., 
2018). LysoPCs are generated by phospholipases A (PLA) 
from PCs. Overexpression of a specific PLA, phospholipase 
A2 type IIA (PLA2G2A), which is secreted to blood and 
expressed in skeletal muscle and adipose tissue (Prunonosa 
Cervera et al., 2021), increased the metabolic rate, and im-
proved both insulin sensitivity and glucose tolerance in 
mice (Kuefner et al., 2017). Interestingly, mice expressing 
PLA2G2A compared to mice without PLA2G2A expression 
had higher uncoupling protein 1 (UCP- 1) and higher peroxi-
some proliferator- activated receptor- gamma coactivator- 1- 
alpha (PGC1- alpha) expression in adipose tissue, suggesting 
a role of PLA2G2A in adipose tissue browning (Kuefner et al., 
2017). Among others PGC1- alpha is known as a major regu-
lator for mitochondrial biogenesis after endurance exercise in 
humans. Furthermore, there is first evidence in humans that 
exercise can increase PLA2G2A expression in adipose tissue 
(Imam, 2019). Collectively, increased lysoPCs in endurance 
athletes may point to exercise- associated increases in spe-
cific phospholipases that are beneficial for metabolic health.

4.5 | Endurance athletes have lower levels of 
highly unsaturated PCaes, which are ligands of 
endurance adaptation regulators

Endurance athletes had lower concentrations of specific 
PCaes (PC ae C36:5, PC ae C36:4, PC ae C38:6) than all 
other groups. Functionally, PCae can act as ligands of 

signaling molecules like PPARγ (Dean & Lodhi, 2018), 
which is a known regulator of the mitochondrial biogenesis 
adaptation to endurance exercise. We therefore speculate that 
endurance exercise decreases certain blood PCaes, because 
they are needed in intramuscular signaling for signaling pro-
cesses in adaptation.

4.6 | In all subjects, fasted, graded 
cycle ergometry to exhaustion affects 
energy metabolism

Consistent with other studies (Contrepois et al., 2020; 
Morville et al., 2020; Schranner et al., 2020), most metab-
olites that changed after exercise in all participants were 
energy metabolites related to glucose or fat degradation. 
Specifically, the concentrations of gluconeogenic and glyco-
lytic metabolites such as alanine and hexose (mainly glucose) 
increased after exercise. Increases in blood glucose concen-
tration during exercise probably result from hepatic glucose 
production via glycogenolysis and gluconeogenesis (Brooks, 
2020; Kjær, 1998). Measures of overall fatty acid oxidation 
activity (C2+C3/C0), even- numbered fatty acid oxidation ac-
tivity (C2/C0) and the concentrations of short chain acylcar-
nitines (C2, C3) all increased. Exercise is known to increase 
lipolysis in fat tissue and fat oxidation within mitochondria 
(Lundsgaard et al., 2018), leading to increased acylcarnitine 
levels in blood (Schranner et al., 2020).

4.7 | In all subjects, exercise increases 
tryptophan breakdown to serotonin and 
kynurenine, which links to mental health 
effects of exercise

Exercise increased the ratios of serotonin/tryptophan and 
kynurenine/tryptophan as well as increased the serotonin 
concentration and decreased the tryptophan concentration. 
In contrast, kynurenine concentrations did not change sig-
nificantly. Thus, we assume that the increase in kynure-
nine/tryptophan is only because tryptophan decreased, 
suggesting that exercise shifted the tryptophan breakdown 
towards serotonin. Serotonin can be broken down to mela-
tonin and positively regulate mood or sleep (De Crescenzo 
et al., 2017; Zimmer et al., 2016). Serotonin increases were 
shown to depend on exercise intensity (Zimmer et al., 
2016), which explains the significant increase of serotonin 
after maximum exercise done in our study. Supporting our 
findings, Strasser et al. also found decreased tryptophan 
concentrations in athletes after exercise (Strasser et al., 
2016). Collectively our data confirm that acute exercise al-
ters metabolites that are associated with mood and mental 
health.
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4.8 | In all subjects, exercise increases 
complex lipids, especially PCaes

Complex lipids can act as ligands for cell signaling and 
can be used for fat oxidation. We assume that increased 
concentrations of complex lipids after maximum exercise 
are a sign of increased lipolysis and oxidation in the fasted 
state. In line with that, total PCae concentrations increased 
in rat livers after acute exercise (Hoene et al., 2016), which 
could show a higher demand for muscular fatty acid oxi-
dation. In contrast, several studies reported that complex 
lipids decrease after exercise in non- fasted humans (Karl 
et al., 2017; Nieman et al., 2013; Schader et al., 2020). 
Therefore, we assume that in fasted but not in non- fasted 
subjects, complex lipids like PCae or PCaa are used for fat 
oxidation during exercise.

4.9 | In all subjects, exercise increases 
polyamines, which are related to muscular 
hypertrophy

Spermidine and the spermidine to putrescine ratio de-
creased after exercise. As putrescine did not change, the 
observed decrease in the spermidine to putrescine ratio is 
mainly because of the decrease in spermidine. Polyamine 
concentrations in skeletal muscle are associated with hyper-
trophy (Cepero et al., 1998; Turchanowa et al., 2000) and 
muscle regeneration after injury (Kaminska et al., 1982) in 
rats. We assume that the blood spermidine pool decreases 
after exercise not because of changed spermidine synthe-
sis, but because of higher spermidine demand in muscle 
after exercise e.g. to regenerate. Mechanistically, it is still 
unclear why muscular polyamine concentrations increase 
after exercise (Lee & MacLean, 2011) but it seems that 
androgens like testosterone, which also increase muscle 
mass and strength, regulate polyamine synthesis (Cyriac 
et al., 2002). Eventually, it is unclear if and how polyam-
ine concentration changes after exercise in blood relate to 
intra- muscular processes.

4.10 | In endurance athletes, blood glucose 
concentration increased more after exercise 
than in all other groups

Despite the low sample size and lack of significance after 
stringent multiple testing correction, we briefly discuss me-
tabolites that changed differently in- between groups after 
exercise. Specifically, we highlight the differences found in 
endurance athletes.

After exercise, hexose (mainly glucose) concentrations in-
creased in all athletes but most in endurance athletes. Despite 

strenuous exercise, hexose increased only in 2 out of 4 un-
trained controls. Intensive exercise increases hepatic glucose 
production via glycogenolysis and gluconeogenesis by 2– 3 
fold (Brooks, 2020) to prevent hypoglycemia. Collectively, 
this suggests that endurance athletes either have a high ability 
for hepatic glucose synthesis and/or less muscular glucose 
uptake because of higher rates of fat oxidation during sub-
maximal exercise.

4.11 | In endurance athletes, medium/long- 
chain acylcarnitines increased more after 
exercise than in all other groups

During exercise, the concentrations of C14:1 and C14:2, 
which are involved in the ß- oxidation of long- chain fatty 
acids, increased highest in endurance athletes especially 
when compared to untrained controls. We assume that this 
shows different usage or availability of long- chain fatty acids 
for fat oxidation. Recently, several other long- chain acylcar-
nitines have been associated with endurance exercise vari-
ables (Al- Khelaifi et al., 2018). Collectively, this suggests 
that endurance athletes may metabolize long- chain fatty 
acids differently than subjects who are not endurance trained.

4.12 | Limitations

This study has several limitations. First our study cohort was 
small, restricting the statistical power for group comparisons. 
We justify this small cohort with the large differences of gly-
colytic capacity, aerobic capacity, and anabolism in the four 
groups investigated. Following a hypothesis- free approach, 
we indeed observed significant differences in the metabo-
lomes of these highly selective groups, despite the relatively 
low sample size and variations within groups. However, due 
to the limited statistical power in our study and because re-
sults of the PLS- DA might be biased towards the groups with 
the biggest differences observed (bodybuilders vs. all oth-
ers and endurance vs. all others), we might have missed less 
pronounced differences, in particular potential differences 
between sprinters and controls. Therefore, we cannot draw 
any robust conclusion on the differences between these two 
groups. Still, we consider that the metabolomes of sprinters 
and controls are more similar than those of the other groups 
in this study. Moreover, the choice of PLS- DA might have 
biased the selection of metabolites for differential analy-
sis (Ruiz- Perez et al., 2020). Second, we only used endur-
ance exercise as an exercise mode, which activates only a 
subset of metabolic enzymes in the musculature. Other ex-
ercise modes such as resistance exercise would have stimu-
lated other branches of metabolism (Morville et al., 2020) 
and may have revealed other group- specific changes in the 
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metabolome. With choosing a standardized maximum endur-
ance test, we did not aim to report metabolite changes of en-
durance training per se but those of a metabolic challenge to 
metabolism. Contrepois et al. showed that such standardized 
maximum exercise testing is sufficient to show phenotypic 
differences in metabolism (Contrepois et al., 2020). Third, 
we measured a limited set of metabolite classes mainly lipids 
(e.g. acylcarnitines) and amino acids. We assumed that acute, 
fasted exercise particularly challenges lipid energy metabo-
lism and shows differences between athlete groups with dif-
ferently well- developed lipid metabolism. Furthermore, we 
assumed that especially natural bodybuilders, who have high 
protein synthesis, have different baseline amino acid levels 
than other athletes. Amino acids were also of interest be-
cause previous studies inconsistently reported amino acid 
changes after exercise (Schranner et al., 2020). Fourth, after 
study completion, subject E5 reported a nightly ingestion of 
~1 mg of melatonin, which was against our inclusion crite-
ria. Studies suggest that melatonin has effects on several or-
gans (Opie & Lecour, 2016) besides the brain. Possibly, this 
influenced E5’s metabolite levels at baseline, post- exercise 
or the level changes by exercise. Specifically, melatonin 
ingestion can affect metabolites of its related pathway, the 
tryptophan- serotonin pathway. In the PLS- DA, E5 appeared 
metabolically different from the cluster of E1- E4. However, 
this difference is not attributable to different serotonin levels, 
as E5 showed no conspicuous serotonin levels compared to 
E1- E4. Fifth, special nutrition or dietary supplements may 
influence certain metabolite concentrations long- term. As 
suggested by higher DHA levels in natural bodybuilders in 
our study, refraining from dietary supplements for 48 hours 
before a metabolomics analysis may not be long enough to 
eliminate all nutritional influences on certain blood metab-
olites. However, it is also questionable if longer restriction 
of supplements for several days is enough to wash out long- 
term dietary influences. Studies that investigated dietary ef-
fects on the metabolome assessed diets between 2 weeks and 
6  months (Guasch- Ferré et al., 2018). Controlling supple-
mentary intake that long is problematic when working with 
ambitious athletes. Sixth, we additionally provided 500– 1000 
kilocalories for athletes (Supplementary Table S7) on the day 
before the study as they have higher energy demand than sed-
entary controls. Increased caloric intake included all classes 
of macronutrients but slightly higher fat intake (~25%) when 
compared to controls (~20%). Dietary fat intake on the day 
before the study could have influenced acylcarnitine levels of 
the natural bodybuilders because they habitually ate low- fat 
(~14.7%). Low levels of C14:2 acylcarnitine have been asso-
ciated with higher intake of fats such as butter (Floegel et al., 
2013). Complex lipids like PCae's and PCaa's are not influ-
enced by short term but by long- term fat intake over weeks 
and months (Saadatian- Elahi et al., 2004). Seventh, as ex-
pected in highly specialized athletes, we observed significant 

differences in body fat and suggestive differences in muscu-
larity between groups (Table 1). A population- based study by 
Jourdan et al., (2012) found that a high fat free mass index 
(FFM kg/height²) which corresponds to low body fat, was 
associated with higher levels of BCAAs, acylcarnitines, and 
a shift in phosphatidylcholine composition, chain length and 
saturation (Jourdan et al., 2012). In the case of BCAA, we 
see the highest concentrations in the group with the lowest 
body fat (sprinters) but no consistent association, across our 
cohort.

5 |  CONCLUSION

In conclusion, we found systematic differences in the con-
centrations of metabolites in- between highly trained glyco-
lytic, aerobic, and anabolic athletes. Moreover, we observed 
different metabolite changes in- between groups that were 
not significant but worth of mentioning. The observed meta-
bolic differences of years of training could give hints on 
which exercise mode can change specific metabolites or me-
tabolite classes. However, influences on the metabolome are 
manifold and further studies are needed to disentangle the 
specific contributions of genetic variants, of adaptations to 
sports- specific exercise training or of special nutrition to the 
systematic metabolic differences between differently trained 
individuals.
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III-3.2. Summary 

Maximal oxygen uptake (V̇O2max) is a direct measure of human cardiorespiratory fitness and is 

associated with health (e.g. all-cause mortality). However, the molecular determinants of interindividual 

differences in baseline (intrinsic) V̇O2max, and of increases of V̇O2max in response to exercise training 

(ΔV̇O2max), are largely unknown. Here, we measure ~5,000 plasma proteins using an affinity-based 

platform in over 650 sedentary adults before and after a 20-week endurance-exercise intervention and 

identify 147 proteins and 102 proteins whose plasma levels are associated with baseline V̇O2max and 

ΔV̇O2max, respectively. Proteins positively associated with baseline V̇O2max were related to 

angiogenesis (e.g. extracellular matrix protein 1), coagulation and hematopoiesis (e.g. tetranectin), lipid 

metabolism (e.g. apolipoprotein F) and included structural and functional muscle proteins (e.g. alpha-

actinin 2, troponin-I, myosin light chain 3), and proteins involved in glycolysis (e.g. beta-enolase or 

lactate dehydrogenases A and B). Proteins with the strongest associations with ΔV̇O2max included 

5’nucleotidase, IL-22 binding protein and fibromodulin. Only 5 proteins of those associated with 

V̇O2max and ΔV̇O2max overlapped including insulin. Addition of a protein biomarker score derived 

from these proteins to a score based on clinical traits improved the prediction of an individual’s 

ΔV̇O2max. We validate findings in a separate exercise cohort, further link 21 proteins to incident all-

cause mortality in a community-based cohort and reproduce the specificity of ~75% of our key findings 

using antibody-based assays. Taken together, our data shed light on biological pathways relevant to 

cardiorespiratory fitness and highlight the potential additive value of protein biomarkers in identifying 

exercise responsiveness in humans.  
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Oxygen uptake (VO2) represents a measure of the body’s 
capacity to supply oxygen to skeletal muscle to perform 
physical work. VO2 reflects the integration of multiple 

organ systems and cellular processes, including pulmonary venti-
lation, oxygen carrying capacity and transport through the circu-
latory system, cardiac output, central nervous system recruitment 
of motor units, oxygen diffusion and extraction at the capillary–
skeletal muscle level, as well as mitochondrial respiration. VO2max 
defines the limits of these processes and is thus widely considered 
the gold-standard measure of cardiorespiratory fitness (CRF)1,2.

It is thus not surprising that VO2max (as a direct measure of 
CRF) has been firmly established as a powerful prognostic marker 
of cardiovascular disease (CVD) and all-cause mortality3. VO2max’s 
inverse relationship with CVD and mortality risk applies to both 
its baseline measure (intrinsic VO2max4,5) and capacity to improve 
VO2max through regular physical activity (acquired or adaptive 
VO2max; ΔVO2max)6,7. Consequently, there has been significant 
interest in characterizing the relative contributions of different 
organ systems to VO2max. Several lines of evidence point to cardiac 
output and oxygen delivery as being the principal determinants of 
VO2max8,9; however, even the precise contributions of these pro-
cesses, including oxygen diffusion, convection and mitochondrial 
oxidative capacity, are not fully resolved10,11.

Furthermore, both baseline measures of VO2max and ΔVO2max 
appear to vary greatly in the general population. In the HERITAGE 

Family Study, a subgroup of 429 apparently healthy but sedentary 
members of family units, who were of European descent, under-
went direct measurements of baseline VO2max through cardiopul-
monary exercise testing (CPET) on 2 separate days, and the s.d.  
(9 ml O2 kg−1 min−1) was ~29% of the mean (31 ml O2 kg−1 min−1) 
after adjustment for age, sex, body mass and body composition12. 
Similarly, among 720 HERITAGE participants who completed 
the supervised 20-week endurance-exercise training programme, 
the s.d. was 53% of the mean change in VO2max. Interestingly, 
there was no relationship between baseline and ΔVO2max in this 
group (r2 = 0.011). This suggests that these traits may have differ-
ent biologic underpinnings and underscores our inability to predict 
VO2max ‘trainability' using existing clinical factors13.

Given our incomplete understanding of the biologic basis of CRF 
and its close relationship to long-term health outcomes, uncover-
ing the molecular determinants of VO2max may provide insights 
into the mechanistic links between physical fitness and well-being. 
Indeed, this has become an important goal of the medical commu-
nity. Prior efforts to characterize both baseline and acquired CRF 
at the molecular level have included genetic analyses, transcrip-
tomic profiling of skeletal muscle and plasma metabolomics14–16. 
Although biochemical profiling of plasma proteins has yielded 
insights into differences in substrate metabolism among different 
fitness states in animal models17 and has provided biologic ‘snap-
shots’ of human metabolism18, few data exist regarding plasma  
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proteomics profiling of CRF in humans, particularly in the context 
of exercise training. These limitations are in part due to the tech-
nical challenges involved in capturing the highly dynamic range 
of circulating proteins. Advancements in aptamer-based profiling 
methods now allow for the high-throughput measurement of over 
5,000 proteins19. This technology spans a dynamic range of at least 
7 orders of magnitude (~100 fM–1 µM) with demonstrated high 
assay reproducibility across both hospital- and population-based 
cohorts20,21, and was recently applied in the HERITAGE study22.

Here, we sought to compare the circulating proteomic profiles of 
baseline VO2max as well as its adaptation to an exercise programme 
by applying a large-scale, affinity-based platform in more than 
650 healthy but sedentary participants before and after a 20-week 
supervised endurance-exercise training intervention. We hypothe-
sized that plasma protein signatures associated with VO2max would 
reflect its integrative biology and highlight proteins related to skel-
etal muscle, hematopoiesis and the vascular system, among other 
determinants of CRF. Further, given that clinical traits are weakly 
correlated with VO2max changes following exercise training, we 
anticipated that the addition of plasma proteins would improve the 
capacity to predict VO2max responsiveness. Finally, given that both 
baseline VO2max as well its capacity to change in response to exercise 
training are associated with future risk of death, we tested whether 
plasma proteins related to these measures would be associated with 
incident all-cause mortality in a separate population-based study.

Results
HERITAGE participant characteristics. The HERITAGE cohort 
was composed of adult parents and their biologic offspring. The 
mean (s.d.) age of the full cohort (n = 745) used for baseline VO2max 
analyses was 34.3 (13.4) years; 288 were African American (39%), 
409 were women (55%) and 503 were offspring (68%). Mean (s.d.) 
baseline VO2max was 2,345 (726) ml min−1. Among the participants 
with VO2max measurements before and after exercise training 
(n = 654), the mean ΔVO2max was 383 (203) ml O2 min−1 (Table 1).

Plasma proteins associated with baseline levels of VO2max. We 
measured ~5,000 proteins using a multiplexed, single-stranded 

DNA aptamer (SOMAmers) assay (Supplementary Table 1). We first  
tested for age- and sex-adjusted protein associations with baseline 
VO2max in the offspring generation (n = 503) and then sought 
to replicate our findings in the parent generation (n = 242).  
We identified 94 proteins that were associated with VO2max in the 
offspring by using a false-discovery rate (FDR) threshold of <1%. 
Fifty of 94 proteins were associated with VO2max in the parents at 
nominal significance (P < 0.05) and 90/94 were directionally con-
sistent (Fig. 1). We subsequently collapsed these subgroups for all 
further analyses.

In the full cohort, we identified 147 circulating proteins that 
were associated with baseline VO2max (Fig. 2), including 85 pro-
teins that were positively associated and 62 proteins negatively 
associated in analyses that were adjusted for age, sex, body mass 
index (BMI) and race (Supplementary Table 2). Proteins posi-
tively associated with baseline VO2max spanned organ systems 
and biologic processes relevant to CRF including angiogenesis 
(for example extracellular matrix protein 1 (ECM1) and anthrax 
toxin receptor 2 (ANTXR2)), coagulation and hematopoiesis (for 
example, complement decay-accelerating factor (DAF) and tetra-
nectin (TN)) and lipid metabolism (for example apolipoprotein 
F (APOF) and lipase member K (LIPK)). Interestingly, we found 
a large number of circulating proteins related to striated muscle 
structure and function (Fig. 3 and Supplementary Table 3). These 
included actin and myosin stabilizing molecules (for example, 
alpha-actinin 2 (ACTN2) and myomesin-2 (MYOM2)); proteins 
involved in muscle contraction (for example, troponin-I (TNNI2) 
and myosin-binding protein C (MYBPC1)); and two essential myo-
sin light-chain elements (MYL3 and MYL6B) that regulate force 
production during muscular cross-bridge cycles. We also identified 
several muscle-isoform-specific enzymes involved in glycolysis in 
plasma, including beta-enolase (ENOB), ALDOA, phosphoglycer-
ate mutase 1 (PGAM1) and 2 (PGAM2) and lactate dehydrogenase 
alpha (LDHA) and beta (LDHB).

These baseline cross-sectional analyses also identified several 
well-known markers of metabolic dysregulation known to be posi-
tively associated with adiposity, including leptin, CRP and insu-
lin, which were inversely associated with baseline VO2max. Thus, 
we adjusted for additional measures of body composition—body 
fat percentage and fat-free mass—to further examine the role of 
adiposity in our results. We found that the relationships between 
these proteins and VO2max were no longer significant after adjust-
ment for body fat percentage but remained significant after adjust-
ment for fat-free mass (Supplementary Table 4). In contrast to 
these markers of metabolic dysregulation, the striated muscle pro-
teins described above (and in Supplementary Table 3) maintained 
their correlation with baseline VO2max after adjustment for body 
fat percentage but not fat-free mass, suggesting that their asso-
ciation with CRF may proceed through their relationship to lean 
body mass.

Among the 85 proteins positively associated with baseline 
VO2max following multivariate adjustment, 25 were known to 
be secreted based on UniProt Consortium data (Supplementary  
Table 2). The group of secreted proteins included multiple proteins 
related to bone homeostasis, including members of osteoblast dif-
ferentiation (SPARC-related modular calcium binding protein 1 
(SMOC1)), bone metabolism via TGF-ß signalling (NOG, bone 
morphogenic protein 8B (BMP8B)) and structural components of 
hyaline cartilage (COL9A1, COMP, EPYC; Extended Data Fig. 1).

Test results for the interaction of generation, sex and race on 
protein–VO2max relationships are shown in Supplementary Table 5.  
Although we identified 23 protein–generation interactions at  
nominal significance (P value < 0.05; highlighted in Supplementary 
Table 2), all were directionally consistent among parents and off-
spring. Similarly, all 20 protein X sex interactions were direction-
ally consistent among males and females. Only Tartrate-resistant 

Table 1 | HERiTAGE cohort clinical characteristics

Clinical characteristics Participants with 
baseline Vo2max 
(n = 745)

Participants with 
baseline and 
post-training Vo2max 
(n = 654)

Age, mean (s.d.), years 34.3 (13.4) 34.8 (13.6)

Female, n (%) 409 (54.9) 361 (55.2)

European descent, n (%) 457 (61.3) 424 (64.8)

BMI, median 
(interquartile range), 
kg/m2

25.5 (22.4–29.7) 25.5 (22.5–29.7)

Maximal oxygen uptake, mean (s.d.), ml min−1

 Baseline 2,345 (726) 2,348 (732.5)

  Change after exercise 
training

– 383 (202.8)

  SBP, mean (s.d.), 
mmHg

119 (12.0) 119 (11.8)

  DBP, mean (s.d.), 
mmHg

69 (8.9) 68 (8.8)

  Resting heart rate,  
mean (s.d.)

65 (8.9) 65 (8.9)

Mean (s.d.) and median (25–75%) values are shown.
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acid phosphatase type 5 (ACP5) and Neural cell adhesion molecule 
L1-like protein (NRCAM) were directionally different among the 
29 protein-VO2max associations that were different between racial 
groups, with both ACP5 and NRCAM having a positive associa-
tion with VO2max among African Americans and negative asso-
ciation among Caucasians (ACP5, β = 2.5 and −93.6, respectively;  
P for interaction = 0.003; NRCAM, β = 21.1 and −10.6, respectively;  
P for interaction = 0.02). All data have been made available and are 
available through the NIH Common Fund Molecular Transducers 
of Physical Activity Consortium (MoTrPAC; https://motrpac-data.
org/related-studies/heritage-proteomics).

Validation of baseline VO2max findings in an external cohort. To 
further assess the generalizability of our findings, we performed a 
similar proteomics screen in a separate cohort of abdominally obese 
individuals who were enroled in a dose–response trial of endurance 
exercise23. Participants in the validation study subgroup were older 
(mean age = 47) and had larger body mass (median BMI = 32.8) 
than HERITAGE participants. A higher percentage of the valida-
tion study subgroup was female (71%), and all participants were of 
European descent (Supplementary Table 6). Of the top 147 proteins 
associated with baseline VO2max in HERITAGE, 107 were avail-
able in the validation dataset. Seventy-nine proteins were direction-
ally consistent, and 24 met statistical significance in the validation 

cohort in a linear regression model adjusted for age, sex and BMI 
(P < 0.05; Supplementary Table 7).

Proteins associated with VO2max changes to exercise training. 
We found 102 baseline proteins that were associated with ΔVO2max 
in a linear regression model adjusted for age, sex, BMI, race and 
the baseline level of VO2max (Supplementary Table 8). The proteins 
with the strongest associations with ΔVO2max included: 5′ nucleo-
tidase (NT5E), a cell-surface protein that hydrolyses extracellular 
nucleotides into membrane permeable nucleosides and in which 
cognate gene variants have been associated with premature arterial 
calcification24; IL-22 binding protein (IL22RA2), a soluble receptor 
whose ligand is involved in insulin and glucose homeostasis25; and 
fibromodulin (FMOD), a secreted protein that has been implicated 
in tissue repair and myogenic regulation through its interaction 
with myostatin26.

A generation–protein interaction on ΔVO2max was found for 
four proteins, with hepcidin (LEAP1) having directionally dif-
ferent associations among parents and offspring (Supplementary 
Table 9). Eleven proteins demonstrated a sex–protein interaction, 
with β-1,3-galactosyltransferase (B3GALT1) and triggering recep-
tor expressed on myeloid cells 1 (TREM1) having directionally 
different associations among males and females. Among the 18 pro-
teins that demonstrated a race–protein interaction on ΔVO2max, 
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6 demonstrated directionally different associations among African 
Americans and those of European descent: C–C motif chemokine 
27 precursor (CCL27), retinal rod rhodopsin-sensitive cGMP 
3′,5′-cyclic phosphodiesterase subunit delta (PDE6D), phos-
phatidylinositol polyphosphate 5-phosphatase type IV (INP5E), 
plexin-A1 (PLXA1), pleiotropin (PTN), and EGF-like repeat and 
discoidin I-like domain-containing protein 3 (EDIL3).

We next performed gene set enrichment analysis (GSEA) to fur-
ther elucidate biochemical pathways among this set of proteins, as 
well as those previously identified in the baseline VO2max analyses 
(Supplementary Tables 10 and 11, respectively). Proteins negatively 

associated with ΔVO2max were most enriched for ECM-related 
proteins (the ‘matrisome’)27 (Fig. 4a,b). Positively associated pro-
teins, however, were enriched for core signalling pathways that 
include platelet-derived growth factor receptor, neurotrophin 
and hepatocyte growth factor pathway signalling, among others  
(Fig. 4a,c,d). These biochemical pathways contrast with those 
enriched after GSEA was applied to proteins ranked by their asso-
ciation with baseline VO2max (Fig. 4e).

We also compared the group of proteins associated with base-
line VO2max with those associated with adaptive VO2max changes 
to exercise training and found minimal overlap between the two 
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groups. Only five proteins, T132B, ATF6A, COL9A1, INS and 
PIANP, were associated with both baseline VO2max and ΔVO2max.

Plasma proteins improve prediction of ΔVO2max responses. 
Given the vast heterogeneity in VO2max changes that occur with 
exercise training, as described above, and that clinical factors 
account for a limited amount of the variance in VO2max train-
ability15, we sought to determine whether baseline plasma proteins 
could improve our ability to predict VO2max changes in response to 
exercise training. Because baseline VO2max and VO2max changes 
with exercise training are minimally correlated, we tested to see 
whether proteins could help predict VO2max changes relative to 
one’s baseline VO2max level (ΔVO2max/baseline VO2max). We 
selected a relative VO2max change threshold of 15%, given that the 
median value among the cohort was ~16% (4.9 ml O2 kg−1 min−1) 
and a 15% change represented > 1 metabolic equivalent (1 MET), 
a clinically meaningful unit that has been related to >10% relative  
risk reduction in CVD and all-cause mortality in a series of longi-
tudinal cohorts3.

We first performed receiver–operating characteristic (ROC) 
analyses using a clinical trait model that included age, sex, race and 
BMI for relative VO2max changes > 15%. The area under of the curve 
(AUC) was 0.62 (P = 0.91) (Fig. 5). Feature selection and elastic net 
regression modelling of the 5,000 proteins yielded a final panel of 
56 proteins (Supplementary Table 12). We next added our protein 
panel to the clinical trait model, and the AUC significantly increased 
to 0.81 (P = 0.00018). With regard to the operator characteristics, 

we found 79% sensitivity, 71% specificity, positive predictive value 
of 66% and negative predictive value of 83% for relative VO2max 
changes > 15%. In a subsequent model that included the same 
clinical traits but only the group of proteins that both overlapped 
with an antibody-based proteomics platform (see ‘Complementary 
data to support aptamer specificity') and demonstrated moderate 
to strong correlation between both platforms (7/10 proteins; SELE, 
TCL1A, COMP, CREG1, STC1, IL1RL2, LILRA2; ρ = 0.41–0.91), 
the operator characteristics were similar but performed slightly 
worse (AUC = 0.75, Extended Data Fig. 2), suggesting that there is 
added information provided by the remaining protein targets in our 
main model.

Association of VO2max-related proteins and mortality. We pre-
viously performed proteomics profiling in the Framingham Heart 
Study (FHS) Offspring Study using first a 1.1 k-plex (n = 821 par-
ticipants) and then an updated 1.3 k-plex version (n = 1,092) of 
the aptamer-based proteomics platform used in HERITAGE28,29. 
The clinical characteristics of the FHS sample are presented in 
Supplementary Table 13. Among the 102 proteins that were asso-
ciated with ΔVO2max in HERITAGE, 20 were available in both 
batches of FHS. Thirty-six out of the 147 proteins associated with 
baseline VO2max were available in the FHS.

Of 1,909 FHS participants, 551 died after a mean (s.d.) follow-up 
of 13.6 (5.6) years. In age- and sex-adjusted analyses, 12 out of 36 
proteins associated with baseline VO2max and 9 out of 20 pro-
teins associated with ΔVO2max were also associated with incident 
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all-cause mortality (FDR q < 0.1; Table 2). We next performed step-
wise regression using these protein sets (12 and 9 proteins, respec-
tively) to estimate the percentage variation in all-cause mortality 
explained by each protein beyond age, sex and batch. Among the 
proteins associated with baseline VO2max, gelsolin (GSN) was the 
most significantly associated with all-cause mortality (hazard ratio 
(HR), 0.71; FDR q = 9.1 × 10−13) and explained 3.4% of the variation 
beyond age and sex. Among proteins associated with ΔVO2max, 
macrophage metalloelastase (MMP12) was the most significantly 
associated with all-cause mortality (HR, 1.34; FDR q = 1.2 × 10−7), 
explaining 1.8% of the variation in outcome.

Complementary data to support aptamer specificity. We tested 
the reproducibility of our top aptamer-based findings in HERITAGE 
specific samples using Olink’s antibody-based proteomics platform 
(Olink Explore). Clinical characteristics of the random sample from 
HERITAGE are shown in Supplementary Table 14. Among the 21 
proteins significantly associated with incident all-cause mortality, 
12 protein targets were available on both platforms. Nine out of 12 
of the protein targets were highly correlated. In addition, among the 
top protein targets associated with either baseline or ΔVO2max that 
did not overlap with our all-cause mortality findings (Supplementary 
Table 15 and Tables 2 and 3 in Supplementary Data), an additional 
13 proteins were available on both platforms. Ten of 13 assays dem-
onstrated strong correlations. Taken together, 19 out of 25 of our top 
aptamer-based protein findings from HERITAGE were well corre-
lated with an equivalent antibody-based assay (both sets of protein 
correlations shown in Fig. 6).

In addition, we leveraged mass spectrometry (MS)-based and 
genetic assays to support the specificity of the aptamer assays for 
our most significant findings. Among the 21 proteins significantly 
associated with incident all-cause mortality, genome-wide signifi-
cant associations at cis loci (within 1 Mb of the transcription start 
site for the cognate gene of the protein) were identified for 17, 
consistent with the specificity of the aptamer–protein relationship. 
Aptamer specificity for two additional proteins (B2M and MB) was 
confirmed by MS30. Among the top 25 findings in both our baseline 
VO2max and ΔVO2max analyses, 23 and 24 were available for testing 
across genetic and MS-based analyses, respectively. The specificity  

of 11/23 proteins associated with baseline VO2max and 12/24 
proteins associated with ΔVO2max was supported by these tests 
(Supplementary Table 15).

Discussion
VO2max—as a direct measure of CRF—reflects the body’s ability to 
transfer oxygen to skeletal muscle during sustained physical activ-
ity, and is thus a quantifiable measure of functional capacity. It has 
emerged as an important prognostic marker of future health risk 
that adds value beyond traditional risk factors3. While both base-
line VO2max and the adaptive changes in VO2max in response to 
regular exercise provide valuable information about health status, 
these traits are largely unrelated to each other, a fact that under-
scores our limited understanding of their biologic basis and links 
to long-term health outcomes. Here, we performed large-scale 
plasma proteomic profiling in over 650 individuals with directly 
measured VO2max before and after an endurance-exercise inter-
vention to illuminate the biochemical features of baseline CRF and 
its adaptation to regular exercise. These analyses produced four 
notable findings. First, there was a broad and diverse set of circu-
lating proteins associated with both baseline VO2max levels and its 
changes in response to exercise training. Second, there was mini-
mal overlap between the proteomic profiles of these distinct clini-
cal traits. Third, the addition of a plasma protein score to baseline 
clinical traits improved the predictive accuracy of clinically sig-
nificant improvements in VO2max to exercise training. Finally, key 
proteins that are correlated with baseline VO2max or ΔVO2max 
were also associated with incident all-cause mortality in a separate 
population-based cohort.

Proteins are important regulators of biologic processes and, like 
CRF, reflect an individual’s current health state as well as future 
risks22. The plasma proteome encompasses proteins from all tissues, 
making it an attractive medium to study the integrative biology of 
CRF. Indeed, we identified circulating proteins that spanned many 
of the organ systems involved in determining VO2max, including 
the nervous, musculoskeletal, pulmonary, haematologic and cir-
culatory systems. These included tissue-specific, structural and 
functional proteins (for example, striated muscle, Fig. 3) and pro-
teins with signal peptide sequences (for example, secreted proteins; 
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Supplementary Table 2), as well as several proteins of uncertain  
function or not predicted to be secreted. Although these latter 
proteins may reflect tissue leakage or aberrantly secreted proteins, 
recent evidence suggests that traditional annotation methods may 
not fully account for proteins released into circulation via extra-
cellular vesicles31. Indeed, our finding that a number of glycolytic 
enzymes, including fructose bisphosphate aldolase A (ALDOA), 
β-enolase 3 (ENO3) and lactate dehydrogenase (LDHB and LDHA), 
were present in the blood are consistent with those from Whitham 
et al.31, who demonstrated a rise in plasma levels during acute bouts 
of exercise. The mechanistic relevance of these findings remains 
unknown, and additional research is needed to understand whether 
these enzymes have unanticipated functional effects in circulation 
or are biomarkers of physiologic states.

Among a group of classically secreted proteins, we identified sev-
eral relevant to bone homeostasis that were positively associated with 
baseline VO2max (Extended Data Figure 1). This group included 
BMP8B, an adipokine that regulates cartilage and bone develop-
ment and has also been shown to induce brown-adipose-tissue 
thermogenesis32 and adipocyte neurovascular remodelling33, and 
SMOC1, a regulator of osteoblast differentiation relevant in physi-
ologic cardiac hypertrophy34. We cannot localize the tissue origin of 
these circulating proteins, but our findings highlight the emerging 
paradigm of bone as an important endocrine organ involved in tis-
sue crosstalk and exercise adaptation and motivate further interro-
gation of our data35.

Few data describing the plasma proteomic profiles of baseline 
VO2max exist22,36, and to our knowledge this is the first study to 
investigate large-scale proteomic relationships with longitudinal 
VO2max adaptations. Santos-Parker and colleagues36 performed 
aptamer-based proteomics using a smaller-scale (1.1 k-plex) plat-
form among a group of 47 sedentary or exercise-trained young men 
and women, and older men. The authors performed gene network 
and gene ontology (GO)-based annotation to identify biological 
processes associated with those in the exercise-trained state. More 
recently, Williams et al.22 applied aptamer-based proteomic profil-
ing in HERITAGE to generate a predictive model of cross-sectional 
VO2max based on 115 proteins, using a training set that included 
50% of samples from participants at baseline and 50% after com-
pleting exercise training.

While there was overlap among some of the broad biologic pro-
cesses identified by Santos-Parker et al. (for example, autophagy 
and vasculogenesis) or individual proteins found by Williams et al. 
(~23% of our findings overlapped), our baseline VO2max findings 
differed from these for several reasons. First, in contrast to these 
studies, our analyses were performed separately using only pretrain-
ing or post-training measures of VO2max. Our baseline analyses did 
not include values obtained after the HERITAGE exercise interven-
tion, which may reflect adaptive changes in VO2max, a trait that is 
uncorrelated to its intrinsic value13. In addition, we used absolute 
values of VO2max (ml O2 min−1) and adjusted for clinical charac-
teristics in contrast to the univariate analyses of weight-adjusted 

Table 2 | Proteins associated with baseline or ΔVo2max in HERiTAGE and all-cause mortality in the FHS offspring Study

Gene name Protein name Adjusted HR 95% Ci FDR q 
value

Variation explained 
by protein (%)

Baseline VO2max

 GSNa Gelsolin 0.71 0.65 0.78 9.1 × 10–13 3.00

 CRPa C-reactive protein 1.24 1.13 1.36 8.2 × 10–5

 B2Ma β2-microglobulin 1.21 1.09 1.33 1.6 × 10–3 1.00

 ECM1a Extracellular matrix protein 1 0.84 0.77 0.93 2.9 × 10–3

 MBa–c Myoglobin 0.87 0.79 0.96 1.7 × 10–2 0.22

 FCGR3Ba–c Low-affinity immunoglobulin gamma Fc region receptor III-B 1.13 1.04 1.23 1.7 × 10–2

 ACP5a–c Tartrate-resistant acid phosphatase type 5 1.14 1.03 1.27 3.1 × 10–2 0.17

 PLGa Plasminogen 0.90 0.82 0.98 4.4 × 10–2 0.45

 NRCAMa,b Neuronal cell adhesion molecule 0.90 0.83 0.98 4.6 × 10–2 –

 CFBa Complement factor B 1.11 1.01 1.22 5.4 × 10–2 –

 ENPP7a–c Ectonucleotide pyrophosphatase/phosphodiesterase family 
member 7

1.11 1.01 1.21 5.4 × 10–2 –

 NRXN3a Neurexin-3-β 0.90 0.83 0.99 5.4 × 10–2 –

ΔVO2max

 MMP12a–c Macrophage metalloelastase 1.34 1.22 1.48 1.2 × 10–7 1.80

 FAPa–c Prolyl endopeptidase FAP 0.78 0.72 0.85 3.8 × 10–7

 ANGPT2a–c Angiopoietin-2 1.21 1.10 1.33 6.7 × 10–4 0.47

 STC1a–c Stanniocalcin-1 1.19 1.09 1.30 1.8 × 10–3 0.74

 CCL27a,b C–C motif chemokine 27 1.16 1.06 1.28 7.3 × 10–3 –

 IL11RAa Interleukin-11 receptor subunit α 0.86 0.79 0.94 7.3 × 10–3 0.54

 ERBB3a,b Receptor tyrosine-protein kinase erbB-3 0.86 0.78 0.94 8.3 × 10–3 0.21

 ACANa,c Aggrecan 0.87 0.80 0.96 1.7 × 10–2 –

 IMDH2 Inosine-5′-monophosphate dehydrogenase 1.12 1.03 1.23 3.3 × 10–2 –

Cox proportional hazards analysis was performed for both the proteins associated with baseline VO2max and those associated with VO2max and all-cause mortality, adjusting for age, sex and batch. 
Proteins from each analysis that were statistically significant (FDR q < 0.1) were brought forwards in stepwise regression. The percent variation in all-cause mortality beyond age and sex is listed in the final 
column for those proteins retained in the final model. aAptamer specificity supported by pQTLs and/or MS-based proteomics in population-based data (Supplementary Table 15). bAptamer targets available 
for comparison on Olink Explore platform in HERITAGE subset (n = 88). cProteins with Spearman correlation > 0.4 on aptamer and antibody-based platforms in HERITAGE subset.
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VO2max (ml O2 kg−1 min−1) performed by Williams et al.22. 
Adjustments for age, sex and race probably significantly contrib-
uted to the differences between our groups’ findings, owing to their 
relationships with CRF as previously documented and underscored 
in our interaction analyses37–39.

Interestingly, when we performed additional adjustments for 
body-composition measures, we found that proteins closely asso-
ciated with adiposity (for example, C-reactive protein, leptin and 
insulin) were no longer significant after adjusting for body fat per-
centage, but remained highly associated with VO2max in a model 
adjusted for fat-free mass, similar to our main model using BMI. 
Although the main influence of body mass on VO2max is medi-
ated by fat-free mass, these data support prior findings that adi-
pose tissue may contribute to VO2max beyond differences in lean 

body weight40. Overall, there was modest overlap between the pro-
teins related to baseline VO2max in the models adjusted for body 
fat percentage and fat-free mass compared with the BMI-adjusted 
model (61 proteins, 48% overlap and 15 proteins, 56% over-
lap, respectively), whereas there was only one common protein 
(insulin-like growth factor binding protein 1 (IGFBP1)) among the 
fat-free-mass-adjusted and body-fat-percentage-adjusted models 
(Supplementary Table 4). These findings, coupled with the attenu-
ation of striated-muscle-specific protein associations with baseline 
VO2max after adjustment for lean body mass, highlight the impor-
tance of using standardized body size and composition adjustments 
for VO2max when comparing results across studies.

We believe that the limited number of derivation proteins that 
achieved statistical significance in the external validation cohort 

NRCAM: ρ = 0.336 P = 0.0014 SMOC1: ρ = 0.251 P = 0.019 PTK7: ρ = 0.133 P = 0.22 CCL27: ρ = 0.056 P = 0.6 SEZ6L2: ρ = 0.001 P = 0.99

ROBO2: ρ = 0.537 P = 6.9 × 10–8 NT5E: ρ = 0.535 P = 7.8 × 10–8 FCGR3B: ρ = 0.502 P = 7.3 × 10–7 MB: ρ = 0.49 P = 1.3 × 10–6 ERBB3: ρ = 0.342 P = 0.0011

ACAN: ρ = 0.66 P = 2.6 × 10–12 RGMA: ρ = 0.657 P = 3.7 × 10–12 SERPINA11: ρ = 0.653
P = 5.2 × 10–12 STC1: ρ = 0.611 P = 2.7 × 10–10 SPON2: ρ = 0.584 P = 2.4 × 10–9

ANGPT2: ρ = 0.781 P = 2.9 × 10–19 COL9A1: ρ = 0.759 P = 1.1 × 10–17 ACP5: ρ = 0.725 P = 1.4 × 10–15 SCG3: ρ = 0.725 P = 1.5 × 10–15 MMP12: ρ = 0.694 P = 6.9 × 10–14

LEP: ρ = 0.965  P = 5.7 × 10–52 ENPP7: ρ = 0.927 P = 2 × 10–38 ENPP5: ρ = 0.895 P = 7.1 × 10–32 FAP: ρ = 0.812 P = 8.6 × 10–22 GGH: ρ = 0.797 P = 1.7 × 10–20

5.75 6.00 6.25 6.50 7.2 7.4 7.6 7.4 7.6 7.8 8.0 5.9 6.1 6.3 6.5 6.7 6.9 6.0 6.5 7.0 7.5 8.0

7.0 7.2 7.4 7.6 8.4 8.7 9.0 9.3 9.6 7.5 8.0 8.5 9.0 7.0 7.5 8.0 7.75 8.00 8.25 8.50 8.75

6.4 6.8 7.2 7.6 9.0 9.2 9.4 9.6 9.0 9.5 10.0 7.0 7.5 8.5 9.0 9.5

8.0 8.5 9.0 9.5 5 6 7 8 8.0 8.4 8.8 8.1 8.4 8.7 9.0 9.3 6.0 6.5 7.0 7.5

8 9 10 11 6.5 7.0 7.5 8.0 8.5 9.0 9.5 6.5 7.0 7.5 8.0 6.25 6.50 6.75 7.00 7.25 7.5 8.0 8.5

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

−2

−1

0

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

−2

−1

0

−2

−1

0

1

2

−2

0

2

4

−2

−1

0

1

−2

−1

0

1

−2

−1

0

−2

−1

0

1

2

−2

−1

0

1

−2

−1

0

1

−2

−1

0

−2

−1

0

log (RFU)

lo
g 

(N
P

X
)

Fig. 6 | Spearman’s correlations between aptamer-based and antibody-based assays among top findings. Spearman’s correlations between protein levels 
measured by an aptamer-based method (log (RFU); x axis) and antibody-based method (log (NPX); y axis).
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reflects the large differences in sample size between the two stud-
ies (n = 745 in HERITAGE versus n = 91 in the validation study) 
and the directional consistency of protein–VO2max relationships 
(79/107) better reflects the stability of our findings across these 
studies. Further, given the known age- and body-size-related effects 
on proteomic profiles, as demonstrated in HERITAGE, we believe 
that large differences in the clinical characteristics between the two 
studies—even after restricting the validation cohort to age- and 
BMI-specific limits—impact the interpretation of our findings. We 
encourage additional validation of our findings; however, we are 
unaware of any other longitudinal, large-scale proteomic studies 
that include directly measured VO2max at the moment.

The distinct proteomic profiles of baseline VO2max and its 
exercise-induced changes that we observed are consistent with prior 
clinical observations demonstrating a lack of correlation between 
these traits13,14. The molecular mechanisms that underlie these dif-
ferences are not well understood, and prior efforts to character-
ize CRF using candidate gene analyses41, gene-expression data for 
skeletal muscle42 and genome-wide association (GWAS) studies43 
have been limited by small sample sizes, lack of replication and the 
inherent challenges in applying reductionist strategies to describe a 
complex trait.

Using GSEA, we found nonrandom associations with base-
line VO2max in pathways related to hematopoiesis and angiogen-
esis (pathway participants included: chitinase 1 (CHIT1), haeme 
oxygenase 2 (HMOX2), cAMP-dependent protein kinase A 
(PRKACA), extracellular matrix protein 1 (ECM1)), the comple-
ment and coagulation systems (CD55, complement factor B precur-
sor (CFB), cofilin-1 (CFI), plasminogen precursor (PLG), heparin 
cofactor 2 (SERPIND1)) and metabolic processes, including glycol-
ysis, as described above (Supplementary Table 11a,b). These find-
ings are consistent with those recently published from HERITAGE 
using integrative genomic analyses from GWAS and skeletal-muscle 
expression data in participants of European descent44. There, Ghosh 
et al. identified several gene loci that highlighted key determinants 
of CRF that we found using GSEA and through manual annotation 
(for example, skeletal muscle function (SGCG, DMRT2), cardiovas-
cular physiology (CASQ2, ATE1) and hematopoiesis (PICALM)).

In contrast to our baseline VO2max findings, we observed pathway 
enrichment reflecting proteins involved in extracellular matrix regu-
lation (collagen alpha-1 (III) chain (COL3A1), COL9A1 COL10A1, 
aggrecan core protein (ACAN) and macrophage metalloelastase 
(MMP12)), key signalling pathways (for example, platelet-derived 
growth factor receptor B (PDGFRB) and hypoxia-induced factor 1 
(HIF-1) signalling) and autophagy (for example, guanine nucleo-
tide exchange factor (VAV3), cofilin-1 (CFL1)), among others, 
that were related to VO2max responses to the exercise programme 
(Supplementary Table 10). These pathways were also present in a 
group of 16 over-represented Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways in GSEA previously performed using 
GWAS from HERITAGE45. While many of the proteins encoded by 
the relevant genes from HERITAGE genomic analyses were intra-
cellular and were not captured on our plasma proteomics platform, 
our shared findings regarding relevant pathways point to possible 
biologic underpinnings that reflect or possibly mediate the dif-
ferences between these two traits. Ongoing efforts to incorporate 
additional molecular profiling data in the study of fitness traits, 
including the NIH-sponsored initiative, Molecular Transducers of 
Physical Activity Consortium (MoTrPAC: NCT03960827), will fur-
ther advance our understanding of these processes.

We also identified five circulating proteins that were associated 
with both VO2max traits. Although variants in TMEM132B have 
been associated with lean body mass46, and insulin may also be 
correlated with both traits through its relationship to body com-
position, the relationships of COL9A1, PIANP and ATF6A with 
VO2max are unclear and remain the subject of future exploration.

Our protein biomarker analyses highlight the current lack of 
predictive capacity for exercise-induced VO2max responses and 
the potential for large-scale plasma protein profiling for biomarker 
discovery. Although individual clinical traits such as age, sex, race 
and BMI have all been shown to influence VO2max, their collec-
tive ability to predict a clinically meaningful response in VO2max 
to exercise training was modest, and no other readily available bio-
markers exist. The addition of our protein score helped identify at 
a high percentage (negative predictive value = 83%) those individu-
als unable to modestly improve their VO2max despite undergoing a 
standardized, supervised exercise training programme. If validated 
in an external cohort, these findings would help with the early iden-
tification of individuals who may benefit from alternative lifestyle 
interventions or additional therapeutics to improve their CRF.

Finally, our observation that plasma proteins related to both 
baseline VO2max and its trainability are also associated with future 
mortality risk highlights the potential value of biochemical profil-
ing to better understand the mechanistic links between CRF and 
long-term health outcomes. The strongest relationship among both 
sets of proteins was gelsolin (Table 2), both a secreted and intra-
cellular protein with multiple cellular functions. Gelsolin was posi-
tively associated with baseline VO2max (β = 56.3; FDR = 0.014) and 
inversely associated with incident all-cause mortality (HR = 0.71; 
95% CI, 0.65–0.78), explaining ~3% of the variation in mortality 
after adjustment for age and sex in stepwise regression. Prior groups 
have linked lower plasma gelsolin levels to adverse outcomes in 
people with sepsis47 and end-stage renal disease48, and most recently 
higher gelsolin levels were associated with a decreased risk of con-
gestive heart failure after adjusting for established risk factors49. Our 
data demonstrating its inverse association with all-cause mortality 
in a large population-based cohort extend these findings. Whether 
gelsolin is a biomarker or potential mediator of CRF and long-term 
health remains unclear. Gelsolin’s most well-studied role relates to 
intracellular actin filament severing and cytoskeletal remodelling50; 
however, its secreted form predominantly comes from striated mus-
cle and has been shown to function as an extracellular scavenger of 
actin51 and inflammatory intermediates52, as well as a participant in 
signal transduction pathways relevant to CRF, including the PI3K 
pathway53. Additional research into gelsolin’s role in cardiometa-
bolic health is warranted by these recent findings.

There are several limitations to our work. First, HERITAGE is a 
single-arm study and thus VO2max adaptations may reflect unmea-
sured factors beyond the exercise-training stimuli. Leisure-time 
physical activity was not measured; however, all participants were 
sedentary for 6 months prior to enrolment. The aptamer-based plat-
form that we utilized targets ~5,000 proteins; however, this tech-
nology is biased towards circulating proteins and does not provide 
complete coverage of the plasma proteome. Further, affinity-based 
assays, such as aptamer technology, are subject to nonspecific bind-
ing and may have limitations in their performance in response to 
post-translational protein modifications54. To address these con-
cerns, we measured protein levels of 25 of our top findings using 
an orthogonal, antibody-based platform in a random subset of 
88 HERITAGE samples and found that 18 out of 25 protein tar-
gets were correlated with our aptamer-based results. Among the 
7 proteins with a Spearman correlation < 0.5, 2 aptamer targets 
(SMOC1 and ERBB3) have variants in cis (located within 1 Mb of 
the transcription start site of the gene encoding the protein) that 
are highly associated with protein levels in internal HERITAGE 
genetic-protein analyses (SMOC1, P = 5.9 × 10–8; ERBB3, P = 2.16 
× 10–6). In addition, five (CCL27, PTK7, SMOC1, NRCAM and 
ERBB3) aptamer measurements had cis genotype-protein quan-
titative trait loci (cis-pQTL) relationships from publicly available 
and existing population-based human genetics studies, and one 
protein (MB) was validated using a multiple-reaction-monitoring 
MS-based method (Supplementary Table 15). Although we cannot 
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resolve the reason for the lack of a stronger correlation between 
these target proteins, these additional data support the specificity of 
our aptamer-based findings. Ultimately, we recognize the need for 
additional confirmation to validate the remaining analytes in the 
platform. Efforts to do so are ongoing22, and all of our primary data 
have been made available to the broader scientific community for 
subsequent efforts. The proteomics platform includes a broad group 
of proteins; however, we are unable to identify their tissue origin. 
We limited the number of adjustments in our analyses relating pro-
teins to all-cause mortality because our central goal was to assess 
the presence of shared protein biology between CRF and long-term 
health outcomes, thus these findings cannot explain the specific 
mechanisms through which this occurs nor can they be used as bio-
markers of risk prediction without additional work. We also lim-
ited our analyses of VO2max changes to linear methods, thus there 
may be additional insights yielded by using nonlinear methods. Our 
tests for interaction among race, sex and generation among protein–
VO2max relationships may not have been sufficiently powered, and 
our use of nominal statistical significance may have yielded false 
positive results, particularly given that the great majority of interac-
tions were directionally consistent between groups.

In summary, we identified a large number of circulating proteins 
that are associated with VO2max and highlight distinct profiles 
that exist for its baseline state as well as its adaptation to endurance 
exercise training. While our findings highlight specific proteins and 
biochemical pathways associated with these traits, further analyses 
of these data should yield additional biologic insights and motivate 
studies in model systems to both identify the sources of these pro-
teins and evaluate their functional significance.

Methods
HERITAGE Family Study. The HERITAGE Family Study design and its 
participants have been described55. Briefly, family units of African Americans 
and people of European descent, totalling 763 sedentary participants (62% of 
European descent) between the ages of 17 and 65 years, were enroled in a 20-week 
training study of graded endurance exercise training across 4 clinical centres in 
the United States and Canada. Participants were healthy but sedentary over the 
previous 3 months and were free from apparent cardiometabolic disease. A total 
of 745 participants who had baseline measures of VO2max and plasma samples 
were included in cross-sectional analyses, whereas 654 participants who completed 
exercise training and had complete data were used for longitudinal analyses. 
Written informed consent was obtained from all participants in the HERITAGE 
Family Study. HERITAGE study consent was reviewed and the research performed 
in these analyses was approved by Beth Israel Deaconess Medical Center’s 
institutional review board.

Cardiopulmonary exercise testing and VO2max. Two maximal CPETs were 
performed on separate days, at least 48 hours apart, before and after the 20-week 
exercise training programme, using a cycle ergometer (model 800S, SensorMedics) 
connected to a metabolic cart (model 2900, SensorMedics). Standard gas-exchange 
measures were obtained as an average of 20-second intervals. The criteria used 
for the attainment of VO2max were defined as: a respiratory exchange ratio >1.1, 
plateau in VO2 uptake (change of <100 ml/min in the last 3 consecutive 20-second 
averages) and a HR within 10 beats/minute of the maximal level predicted by 
age. All participants met at least one of these criteria in one of the two tests12, but 
most met two or more56. The average of the two measurements before and after 
exercise training were used as VO2max unless the values differed by more than 
5%, in which case the higher value was used. The correlation between VO2max 
measurements between the two tests (r = 0.97), coefficient of variations (CVs, 5%) 
and reproducibility among clinical centres were excellent57. We used absolute  
(ml O2 min−1) rather than weight-adjusted (ml O2 kg−1 min−1) measures of 
VO2max so that body mass changes that occurred after exercise testing were not 
incorporated into our assessment of ΔVO2max.

Exercise training protocol and plasma sampling. Participants exercised 3 
times per week for 20 weeks, beginning at 30 minutes/session and increasing to 
50 minutes/session for the final 6 weeks of the programme. Exercise intensity 
increased from the heart rate associated with 55% VO2max obtained during 
baseline CPET to the heart rate associated with 75% VO2max over the final 8 
weeks of training. Cycle ergometers were electronically programmed to maintain 
a training heart rate by adjusting the power output. Each exercise session for all 
participants was continuously monitored by trained staff. Fasting plasma samples 
were collected in EDTA tubes from peripheral intravenous catheters prior to 

the beginning of the exercise training programme and at 24 hours following 
completion of the final exercise session.

Proteomic profiling. Aptamer-based method. Detailed analytic methods of the 
SOMAscan assay have been described19–21. Briefly, archived plasma samples stored 
at −80 °C from HERITAGE were diluted in 3 different concentrations (40%, 1% 
and 0.05%) and incubated with a mixture of fluorescently labelled single-stranded 
DNA aptamers (~5,000 SOMAmer). Plasma samples had either 0 freeze–thaw 
cycles or 1 freeze–thaw cycle prior to proteomics profiling. Protein–aptamer 
complexes were isolated from unbound or nonspecifically-bound proteins using a 
two-step, streptavidin-bead-based immobilization process. Aptamers eluted from 
the target proteins were quantified using the degree of fluorescence on a DNA 
microarray chip. Samples were normalized to 12 hybridization control sequences 
within each microarray and across plates, using the median signal for each 
dilution. We have previously reported median intra- and interassay CVs for the 
SOMAscan assay of ~5% (ref. 58).

Antibody-based method. We subsequently performed additional proteomics 
profiling using an antibody-based technology (Olink) on a random sample 
(n = 88) from the HERITAGE study to determine the reproducibility of our 
aptamer-based results. Briefly, the Olink plasma extension assay technology uses 
DNA oligonucleotide-labelled antibody pairs to bind target proteins; 384 assays are 
performed on 4 separate panels with different dilutions for different dynamic ranges 
of target proteins (total proteins assayed = 1,536). After incubation with plasma 
samples, the oligonucleotide pairs hybridize and are extended by DNA polymerase 
to create a unique DNA barcode that is subsequently read out using next-generation 
sequencing. The median intra-assay CV for the 1,536 proteins was 10.25%, as 
assessed by multiple replicates of a pooled sample included in the experiment.

Genome-wide association studies. We also leveraged existing GWASs of proteins 
to help to determine aptamer specificity. Genotypes were available for 1,421 
participants in the Malmo Diet and Cancer Study and 759 participants in the 
FHS with existing SOMAscan data59. A meta-analysis of genome-wide association 
analyses was performed to identify variants associated with circulating protein 
levels within 1 MB of the cognate gene, which were considered cis. Analyses 
were conducted on unrelated individuals. The methods used to generate publicly 
available genetics analyses for SOMAscan data have been described30,60,61.

Framingham Heart Study. Participants in the FHS Offspring cohort who attended 
the fifth examination (1991–1995) and who had previously underwent plasma 
proteomic profiling with the SOMAscan single-stranded DNA aptamer-based 
platform (1.1 or 1.3 k-plex assays) were included in this study28,29. A total of 1,909 
participants were included in analyses. Clinical characteristics were obtained from 
FHS investigators.

Validation cohort. The clinical characteristics and methods to derive baseline 
VO2max from this randomized clinical exercise trial have been described23. Briefly, 
300 sedentary adults with abdominal obesity were randomized into 3 exercise arms 
and a control group. Of the 217 participants who completed the 24-week exercise 
intervention, 216 had baseline VO2max data and were available as a validation 
cohort. Given substantial differences—by design—in clinical characteristics 
between the validation and HERITAGE study cohorts, we restricted our analysis 
to subjects in the validation study with BMI < 40 and age < 55 (n = 91), to more 
closely approximate HERITAGE participants.

Statistical analysis. Baseline clinical characteristics of participants in the 
HERITAGE Family Study, validation study and FHS are reported as means ± s.d., 
proportions, or medians (interquartile range) according to visual inspection of 
normality. A two-sample Student’s t-test was used to compare cases and controls in 
FHS. All protein values were natural-logarithmically transformed for subsequent 
analyses. Correlations between aptamer-based and antibody-based proteomics 
assays were assessed using the Spearman correlation coefficient. Linear regression 
was performed to determine the relationship between baseline protein values and 
both baseline VO2max (ml O2 min−1) as well as the changes in VO2max (ΔVO2max, 
post-training VO2max – pretraining VO2max). Covariates in regression models 
included age, sex and baseline values of BMI, body fat percentage, fat-free mass 
(kg),and VO2max (Δ model only). Protein levels were standardized to mean = 0 
and multiples of 1 s.d. We used the Benjamini–Hochberg procedure to correct 
for multiple comparisons and employed a FDR < 0.1 to determine statistical 
significance for these hypothesis-generating analyses.

We tested for the interactions of generation, sex and race with protein level on 
baseline- and ΔVO2max and adjusted for the other covariates, given previously 
reported differences in VO2max trainability among these groups13.

To evaluate the predictive utility of protein biomarkers for relative VO2max 
changes (ΔVO2max/baseline VO2max) after exercise training, we performed the 
following analyses. First, we implemented a clinical trait model that included 
age, sex, race and BMI for relative VO2max changes > 15%. We then added 
more than 5,000 proteins to train a more comprehensive model. The maximum 
number of missing values per protein within the entire dataset was ≤7, and the 
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total number of missing values was <2%. The data were randomly split into a 
training set (80% of cohort) that uses crossvalidation and a test set (20%) that 
was not used for model development. All preprocessing steps were first applied to 
the training set. The same steps were then carried out for the test set. We used a 
k-nearest neighbour algorithm to impute missing values (k = 10)62. All continuous 
variables were zero-centred and scaled (s.d. = 1). Scaling in the test set was applied 
using the same scaling factors calculated from the training set. The initial set of 
more than 5,000 predictors (proteins, age, sex, race and BMI) was reduced using 
a constraint-based feature selection algorithm for identifying minimal feature 
subsets (MMPC algorithm63). We then fit elastic net logistic regression models on 
the basis of the remaining predictors. The hyperparameters of the elastic net were 
optimized for the AUC using a global optimization algorithm. Receiver–operating 
characteristics of the protein score were subsequently calculated, with sensitivity, 
specificity, positive predictive value and negative predictive value generated. The 
training performance in the results is the result of repeated tenfold cross validation 
within the 80% training datasets.

GSEA using the full proteomics dataset was performed using the Molecular 
Signatures Database canonical pathways collection (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/collections.jsp), which includes a total of 2,199 
curated gene sets from domain experts64. Signed log-transformed P values were 
computed from the regression models using the coefficient estimates and P values 
for protein–VO2max associations. The full proteomic dataset was then ranked by 
their signed P values and used as input for GSEA (v4.0.3, with default parameters). 
GSEA results were exported to Cytoscape for visualization with the Enrichment 
Map tool using the following thresholds for gene set significance (P < 0.05, FDR 
q < 0.15, overlap index > 0.5)65.

For the FHS participants, we performed Cox proportional-hazard regression to 
model all-cause mortality using the proteins that were significantly associated with 
baseline or ΔVO2max and also available in FHS. In age-, sex- and batch-adjusted 
models, proteins that were associated with baseline or ΔVO2max using a FDR 
q < 0.1 were brought forward for stepwise regression to estimate the percentage 
variation in all-cause mortality explained by each protein. Cis variants were 
identified using a linear regression model to assess the associations of variants with 
proteins that had statistically significant relationships with baseline and ΔVO2max; 
statistical significance was set at P < 5 × 10−8. All statistical analyses were performed 
using R version 3.6.2 (R Core Team, R Foundation for Statistical Computing).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Deidentified, individual-level proteomics and phenotypic data that support the 
HERITAGE findings within this paper are available at https://motrpac-data.
org/related-studies/heritage-proteomics. Overlapping aptamer-based and 
antibody-based proteomics data on the HERITAGE sample are included 
Supplementary Data Table 1. GWAS summary statistics for FHS and JHS are 
available through restricted access via the database of Genotypes and Phenotypes 
(dbGaP), a publicly available resource developed to archive data from human 
studies of genotype–phenotype relationships and can be accessed here (https://
www.ncbi.nlm.nih.gov/gap/; FHS accession number: phs000363.v19.p13; JHS 
accession number: phs000964). FHS proteomics data have also been deposited 
in dbGaP and are available through the same accession number. JHS proteomics 
data have been deposited in the JHS Data Coordinating Center and are being 
deposited in dbGaP (accession number: phs002256.v1.p1); pending its receipt 
in dbGaP, all JHS data are available from the JHS Data Coordinating Center on 
request (JHSccdc@umc.edu). In addition, proteogenetics findings (precise SNP 
IDs) included in Supplementary Table 15 from FHS/MDCS meta-analysis and 
JHS have been provided in Tables 2 and 3 in the Supplementary Data, respectively. 
Additional data supporting the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Secreted proteins positively related to bone homeostasis and baseline Vo2max. Functional representation of proteins‘ role in bone 
metabolism and homeostasis. Left and middle: SMOC1 regulates osteoblast differentiation. BMPs are related to bone formation via the TGF-ß pathway 
and are mediated by extracellular signalling molecules such as NOG. Right: simplified schematic of proteins related to cartilage formation and their 
location within cartilage tissue.
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Extended Data Fig. 2 | Receiver-operating characteristic curve for relative Vo2max changes with exercise training > 15% using overlapping targets 
between aptamer- and antibody-based proteomic platforms. 7/10 overlapping proteins on both platforms demonstrated moderate-strong correlation 
(SELE, TCL1A, COMP, CREG1, STC1, IL1RL2, LILRA2; ρ = 0.41–0.91) and were used in modeling.

NATURE METABoLiSM | www.nature.com/natmetab

http://www.nature.com/natmetab


 

108 

 

IV. DISCUSSION 

The following discussion includes a short summary of the results that from the original manuscripts. 

and puts them into the context of basic exercise science literature, exercise omics literature and the 

efforts to understand the routes by which exercise improves health. 

IV-1. Study 1: An inventory of global metabolite changes in response to 

exercise  

The aim of the systematic literature review was to summarize metabolite concentration changes in 

response to an acute bout of exercise. Studies that met eligibility criteria spanned a broad field of 

exercise modes, exercise intensities, and durations. Despite only studies with healthy participants 

were eligible and the majority of studies included only males, large differences in training status 

and or phenotypic characteristics (e.g. BMI or bodyfat) between participants, were present in the 

entire set of studies. Sample timing between studies varied from few minutes to 24 hours after 

exercise. Biofluids in which metabolite concentration changes were measured included blood, urine, 

saliva and sweat. 

The systematic summary I did for this review with the categorization of post-exercise sample timing, 

made it possible for me to distinguish metabolites that change their concentration robustly meaning 

non-dependent on post-exercise sample time from other metabolites that show a recovery curve (i.e. 

high concentration changes after exercise and a slow return towards baseline levels) in the post-

exercise time. 

 Overall study protocols and across all subject groups and sample time points, we found 

consistencies in many of the reported metabolite concentration changes after exercise: All fatty acids 

and almost all acylcarnitines measured, increased significantly following exercise; membrane lipids 

and bile acids decreased significantly. Ketogenic amino acids decreased, and degradation products 

of ketogenic amino acids and ketone bodies increased. Carbohydrates and TCA cycle metabolites 

increased. Only the effect directions reported for nucleotides, cofactors/vitamins, xenometabolites, 

and amino acids differed between studies.  

The directionally consistent changes of lipids, carbohydrates, and TCA cycle metabolites mirror the 

activation and/or upregulation of key metabolic pathways relevant for skeletal muscle contraction 

during exercise (Figure 14) (Hargreaves and Spriet 2020). As an example, lactate and pyruvate 

increase, indicating glycolysis, fatty acids increase, indicating lipolysis, and malate, succinate and 

fumarate increase indicating activity of the TCA cycle (fueled by products of the ß-oxidation of 

fatty acids) (Figure 14, cf. III-1.3.).  
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Figure 14. Metabolic pathways that play a key role in energy metabolism (ATP supply) of the 

working musculature during exercise. The graph is adapted from Hargreaves et al. (Hargreaves 

and Spriet 2020) and gives an overview of the major fuel avenues, enzymes and transport proteins 

(e.g. CPT-1, carnitine palmitoyl transferase 1) during exercise. 

FFA, free fatty acids; PM, plasma membrane; FABPPM, plasma membrane fatty acid–binding 

protein; FATP, fatty acid transport protein; ATG, adipose triglyceride; HS, hormone sensitive; 

MG, monoglyceride; TG, triglyceride; FABPc, cytoplasmic fatty acid binding protein; HK, 

hexokinase; PFK, phosphofructokinase; LDH, lactate dehydrogenase; Cr, creatine; mtCK, 

mitochondrial creatine kinase; mt OM and mt IM, outer and inner mitochondrial membrane; 

ACT, acyl-CoA transferase; MCT, monocarboxylase transporter; ANT, adenine transport; PDH, 

pyruvate dehydrogenase; ETC, electron-transport chain. 

 

This systematic literature makes it possible to show time-courses for different metabolite 

concentration changes from immediately to 24 hours post an acute bout of exercise, despite 

heterogenous study designs.  

These time-courses could be used to monitor the extent of post-exercise upregulation of metabolites 

relevant for energy metabolism e.g. to compare the extent or the duration of upregulation after 

different exercise-training modes. For example, fatty acids could be used to demonstrate by what 
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extent lipolysis is upregulated or how long because fatty acid concentration changes were highly 

dependent on post-exercise sample timing with a 2 to 5-fold increases in the early (5-15 minutes) 

post-exercise phase, whereas this increase gradually decreased over the intermediate (30 minutes – 

3 hours) post-exercise and the late (>3 – 24 hours) post-exercise phase, staying significantly elevated 

compared to baseline levels. The time course of fatty acids in this review shows the mobilization of 

free fatty acids following exercise that is known to increase and subsequently persist for 12-24 hours 

after exercise and to decline with progressing time (Magkos et al. 2009). Whilst this review gives a 

good overview over metabolite concentration changes with respect to post-exercise time, there were 

not enough studies to judge the differences regarding exercise mode or regarding differences in 

subject characteristics (e.g. training background). 

 

   

IV-2. Study 2: Long-term specific exercise shapes the metabolome and 

influences the metabolic response to exercise  

IV-2.1. The biological concept of extreme athlete phenotypes 

The concept of Study 2 of “extremes of human metabolism” assumes that years of specific exercise 

training also cultivates specific bioenergetic capacity in different groups of athletes. It is known that 

different exercise modes (e.g. strength or endurance training) shape distinct exercise capacities (e.g. 

muscular maximal strength or VO2max). The biological basis of these distinct capacities lie in the 

organ systems of the respective metabolic capacity or trait. For exercise, this is mostly skeletal 

muscle, its fibre type distribution, and the metabolic capacities that accompany fibre type. In 1976, 

Costill et al showed that sprinters and other glycolytic athletes have higher percentages of fast twitch 

type IIa/IIx fibres which have a high concentration of enzymes involved in glycolysis and glycogen 

breakdown, especially when compared to untrained subjects and endurance trained subjects (Table 

3) (Costill et al. 1976a; Costill et al. 1987; Costill et al. 1976b). In contrast, endurance trained 

subjects have a higher proportion (~50-98%, mean 79%) of slow twitch type I muscle fibres (Table 

3) compared to untrained subjects (27-73%) or sprinters (21-28%) (Costill et al. 1976a). Type I 

fibres have higher mitochondrial enzyme concentrations e.g. succinate dehydrogenase (Costill et al. 

1987) and  enzyme activities (Nemeth et al. 1986), favoring oxidative energetic capacity.   
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Table 3. Lateral gastrocnemius head enzyme activities of female and male track athletes, distance 

runners and untrained controls (Costill et al. 1976a; Costill et al. 1987; Costill et al. 1976b). Extreme 

values are in bold. F Female. M Male. Note that fibre distribution within the M. gastrocnemius is not 

uniform so some values may be expected.  

Subjects Phosphorylase 

(mol.g.min-1) 

glycogen 

breakdown 

Lactate 

dehydrogenase 

(mol.g.min-1) 

glycolysis 

Succinate 

dehydrogenase 

(mol.g.min-1) 

oxidative 

phosphorylation 

Untrained 

controls 

F 4.1-10.5 

M 4.3-12.0 

F 630-940 

M 603-1192 

F 5.4-14.9 

M 5.2-10.1 

Sprinters F 16.5-23.5 

M 12.8-17.7 

F 1340-1360 

M 1048-1525 

F 10.1-10.7 

M 12.4-13.4 

Distance 

runners 

F* 3.4-7.1 

M 5.6-8.9 

M 4.1-12.2 

No data 

M 632-847 

M 620-1000 

F* 9.6-17.6 

M 8.2-20.9 

M 15.8-31.9 

 

Next to endurance athletes and sprinters, extreme muscular properties are also seen in physique 

athletes such as natural bodybuilders, who aim to achieve high muscular anabolism. The cross-

sectional area of a bodybuilders’ muscle fibres can reach 12000 m2 in type 2 fibres (Alway et al. 

1989) when compared to normal means of 3500 m2 in non-resistance trained controls (Lexell et 

al. 1988).  

Taken together, scientific evidence on the biological “extremes” in human muscle between 

differently trained athletes exists and between athletes and untrained subjects already exists. But no 

study before ours has systematically investigated if and how the biological differences in muscle 

properties (enzymes or fibre size) translate into changed blood metabolites. 

IV-2.2. Participant selection and scheduling 

We selected athletes with a minimum training history of 3 years within their respective sporting 

discipline, to make sure we recruit extremes of their respective sporting discipline. We kept the 

within-group differences of training history, training volume and competitions at a minimum by 

prior interviewing/mailing with each athlete. For example, we recruited sprinters from the same 

training group. We limited our cohort to males only, due to metabolite fluctuations during the female 

cycle. When working with females in small study cohorts, metabolomics experiments are ideally 

limited to the early follicular phase (day 1.-10. of the cycle) because later, hormonal disturbances 

can make between-subject comparisons difficult. Despite requiring more planning and possible 

spontaneous re-scheduling, we included females in the study following this PhD project 

(MetaPerform).  
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We had to schedule athletes depending on their competitions. For example, we scheduled our tests 

at least two weeks before and one week after a competition, to allow for complete regeneration. It 

is known that acute strenuous exercise influences a variety of standard clinical blood parameters for 

at least 24 hours post-exercise, mainly due to tissue inflammation in skeletal and heart musculature, 

e.g. CK, CK-MB, cardiac troponin, white blood cell count and others (Gerth et al. 2002; Kratz et al. 

2002; Seneczko 1983; Siegel et al. 2001), which might also influence  blood metabolite levels. Time 

periods between competitions and testing were even longer in natural bodybuilders, as their 

preparation for competition can take over one week and includes several facets that might influence 

blood metabolites, like restriction in dietary carbohydrate intake, overdrinking, restriction in 

drinking, and fasting.  

IV-2.3. Sports-specific factors that influence the metabolome in athletes  

Next to exercise itself, other factors that are essential for specific adaptation (e.g. building muscle 

mass but not fat mass) can influence metabolite levels. In Study 2, this was shown by various DHA-

containing phosphatidylcholines that were higher in bodybuilders who supplemented omega-3 fatty 

acids. Further, differing macronutrient intakes (Table 4) could have influenced the blood metabolome 

and/or the metabolome differences between groups. But as underlined in the introduction, an athlete 

or any human phenotype as a whole, is formed through a variety of internal (e.g. genes) and external 

(e.g. exercise, nutrition) factors. Information on nutritional supplements and diet should be carefully 

protocolled and taken into consideration when metabolite differences between different athlete 

phenotypes are interpreted, especially in small cohorts.  

If we find out that these extreme physiological phenotypes and the distinct metabolomes in these 

athletes are beneficial for diseases or in the prevention of diseases, it is important to know which 

specific exercise was combined with which macronutrient intake and with which dietary supplements 

to shape these phenotypes and metabolomes. 

 

Table 4. Relative macronutrient intake in grams per kilogram bodyweight in the cohort of study 2 

according to a 7-day self-reported dietary intake. Extreme values are in bold. 

 

Group Carbohydrates (g/kg) Proteins (g/kg) Fats (g/kg) 

Control 2.43 0.87 0.86 

Bodybuilding 3.28 2.40 0.98 

Endurance 4.23 1.59 1.30 

Sprint 4.59 2.00 1.58 
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IV-2.4 Transferability of the results into exercise practice and sports medicine 

Despite this was the first study to investigate metabolic differences between different athlete groups, 

some data can be valuable for athletes’ exercise practice and give clues for future studies in sports 

medicine. One valuable result is that of bodybuilders having significantly lower blood amino acids, 

including branched chain amino acids which are essential for skeletal muscle growth (Wolfe 2017) 

after fasting overnight. To limit muscle protein breakdown, a practical suggestion for these athletes 

could be to refuel BCAAs in the morning after waking up or before going to bed at night, especially 

when fasting periods overnight are long. This result might also be transferrable to patient cohorts that 

suffer from muscle loss after diseases, age-associated muscle loss or muscle loss after injuries and 

need to increase their muscle mass. Resistance exercise leads to a known increase in muscle protein 

synthesis for up to 48 hours after exercise (McGlory et al. 2017), which could be mitigated in patients 

without proper refueling of amino acids. As shown in the introduction, muscle mass (CSA) is 

significantly associated with risk of mortality, and it has been shown that amino acid supplementation 

in people suffering from muscle loss can increase muscle protein synthesis (Rieu et al. 2006) or 

mitigate further muscle loss (English et al. 2016). 

A second transferrable result is that of endurance athletes having higher CPT1-ratios at baseline and 

post-exercise. As shown in IV.-1 and Figure 14, CPT1-ratio is a proxy for the transporter activity of 

CPT1 in mitochondrial membranes, which is a rate-limiting step in the oxidation of fatty acids (ß-

oxidation). Higher levels in endurance athletes at both time points may show higher mitochondrial 

fat oxidation rates in general and/or acutely higher fat oxidation rates after exercise. Supposable 

reasons for this are an increased fat mobilization from adipose tissue and/ or more mitochondria in 

the skeletal muscle fibers (mostly type 1 fibers, cf. IV-2.1) also meaning more transporters like CPT1 

that are incorporated into mitochondrial outer membranes and hence higher rates of fat transport and 

oxidation. That certain steps and the efficiency of mitochondrial energy metabolism can be 

approximated with blood metabolomics may be relevant for a number of diseases that either lead to 

mitochondrial dysfunction (e.g. Alzheimer’s disease, muscular dystrophy, diabetes or cancer) (Bose 

and Beal 2016; Chow et al. 2017; Srinivasan et al. 2017) or  such that might be in part caused by it 

(e.g. Alzheimer’s disease) (Moreira et al. 2010). Short – and long-term exercise interventions that 

positively influence mitochondrial energy metabolism (e.g. by increased fat oxidation rates) could be 

tried out as a supplemental therapy in these diseases and changes in metabolites that approximate ß-

oxidation efficiency can be monitored via metabolomics.  

In general, exercise is recommended in diseases with mitochondrial dysfunction, and the sensitivity 

of metabolomics shown in previous exercise studies (Contrepois et al. 2020; Morville et al. 2020) and 

in this thesis (Schranner et al. 2020; Schranner et al. 2021) may also enable comparison of different 

exercise (e.g. exercise mode, intensity, duration and frequency) and their effect on proxies of 

mitochondrial ß-oxidation efficiency and maybe even on how long the effects of exercise persists.  
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A third transferrable result is that of higher increases of blood hexose (which mainly comprises 

glucose) following exercise in the blood of endurance athletes. Glucose stored in glycogen, is the 

main fuel for the working muscles during intense exercise, which is why hepatic glucose production 

is upregulated and glucose is released into the blood stream during exercise (Brooks 2018). We know 

that endurance athletes oxidize more fat during exercise compared to non-endurance trained subjects 

(as shown by the lower respiratory exchange ratios during the same exercise load, Figure 15) and 

therefore might need less glucose released from the liver.  

 

 

Figure 15. Respiratory exchange ratio curves during the course of the graded cycle ergometry test 

to exhaustion. *As gas exchange was measured breath-by-breath, every participant has an 

individual time stamp depending on breathing frequency. The x-axis is here only to show the 

courses of the RER and cannot be used to compare RER at different time points during the exercise. 

From Schranner et al. 2021 

 

We also suggest that endurance athletes need less of the glucose in blood, because they have 

approximately two times higher intra-muscular glycogen stores compared to non-endurance trained 

subjects (Table 5) (Burke et al. 2017).   

Table 5. Muscle glycogen content per kilogram wet muscle weight depending on endurance 

training status and diet (Burke et al. 2017). 

 Endurance trained 

 

Non endurance 

trained 

Glycogen content, mixed diet 

(per kg wet muscle weight) 
~120 mmol 80-85 mmol 

Glycogen content, high carb diet 

(per kg wet muscle weight) 
~200 mmol - 
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For the practice of competitive sports, initial glucose increases measured with metabolomics during 

short term, exhaustive exercise could inform (although in a limited way) about muscle and liver 

glycogen stores. For example, when glucose does not increase as expected during acute exercise, a 

depletion of glycogen stores could be the reason. Similarly non-increasing or a timely delay in 

increasing lactate during graded exercise is already used in performance diagnostics as an indication 

for glycogen depletion.  

In that way, in the future, results from exercise metabolomics studies could inform about metabolic 

capacity of energy metabolism (e.g. transporters like CPT1 or fuel status like glycogen stores) and 

help in selecting exercise interventions in exercise practice of athletes and in various diseases. 

IV-2.5. Reproducibility of global metabolome differences with untargeted metabolomics 

We were able to reproduce the global metabolite differences of the targeted metabolomics that was 

done on a subset of all participants with untargeted metabolomics that was done on all participants 

(n=35). Briefly, we measured 70 serum samples of 35 participants on a non-targeted metabolomics 

platform (Metabolon Inc., Durham, USA). I did the quality control of the raw data (filtering 

metabolites with >70% missing values over all samples, followed by median batch correction, 

filtering for technical measurement variability using a CV cutoff of <30%, and filtering of metabolites 

with >30% missing values over all samples). Missing values for the remaining metabolites were 

imputed using the k-nearest-neighbor approach (k=10). After quality control, data was analyzed in 

the same way as the targeted data has been. In a first step we did a principal component analysis 

(PCA) followed by a partial least squares discriminant analysis (PLS-DA). Whereas the supervised 

PLS-DA (with a priori definition of the groups that should be separated) reproduced our findings of 

the targeted dataset well (Figure 16A and B), we also found the bodybuilders + endurance athletes 

to be separated from sprinters + controls in the unsupervised PCA (Figure 16C). In summary, we 

could reproduce the main findings in global metabolite differences between the four subject groups.  

 

 

 

 
A. B. 
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Figure 16 A. PLS-DA of the targeted dataset on a subset of 18 participants and the B. 

PLS-DA and C. PCA of the untargeted dataset on 35 participants. Lines in the PCA 

indicate changes from pre (▲) to post-exercise (●).  

Color-code PLS-DAs: ●=control, ●=bodybuilding, ●=endurance, ●=sprint,  

Color-code PCA: ●=control, ●=bodybuilding, ●=endurance, ●=sprint,  

 

IV-3. Study 3: Predicting meaningful physiological adaptation by proteomics  

Whereas studies 1 and 2 magnified the knowledge base on metabolite concentration changes after 

exercise in general and in specific, Study 3 has shown two things: First, a set of over 100 proteins is 

significantly associated with baseline VO2max and with VO2max increases after 20 weeks of exercise. 

Second, and relevant for future individualization in exercise, is that a set of 56 proteins (measured in 

the untrained state) and standard clinical factors can be used to predict meaningful changes in 

VO2max after exercise. Despite the individual response to the same exercise is highly variable and 

follows a normal distribution (Figure 1 and 2), positive predictive accuracy of our model reached 

~80% (Robbins et al. 2021). Though independent validation of this set of protein predictors has to be 

done, it still shows that minimally invasive measures like a blood draw can inform researchers, 

physicians, or the individual itself if it is beneficial for their health to engage in this kind of exercise. 

Such a prediction via blood proteins also offers the possibility to find those individuals who will not 

benefit sufficiently from an exercise intervention and need to do other things (e.g. medication or diet) 

to improve their health. 

 

C. 
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IV-4. Thesis outcomes in the context of exercise omics literature 

The studies of this thesis contribute to the existing literature on exercise metabolomics and 

proteomics: Study 1 and Study 2 contribute to the literature on metabolite and protein changes after 

acute or chronic exercise. Study 3 contributes to studies that have reported protein or metabolite 

associations with either VO2max or ΔV̇O2max. For an overview, exercise omics studies found in the 

literature and the studies of this thesis are categorized depending on the molecules (genes, transcripts, 

proteins, metabolites) reported in each study (Table 6).  

IV-4.1. Omics in acute exercise studies 

Transcripts, proteins, and metabolites have all been studied in response to acute exercise, including 

27 studies summarized in the systematic review of this thesis (cf. II-1.3) and others (Andersson Hall 

et al. 2016; Bassini and Cameron 2014; Berton et al. 2017; Breit et al. 2015; Chorell et al. 2012; 

Coelho et al. 2016; Danaher et al. 2015; Daskalaki et al. 2015; Enea et al. 2013; Enea et al. 2010; 

Floegel et al. 2014; Hall et al. 2016; Hooton et al. 2016; Howe et al. 2018; Huang et al. 2010; 

JanssenDuijghuijsen et al. 2017; Karl et al. 2017; Krug et al. 2012; Messier et al. 2017; Muhsen Ali 

et al. 2016; Mukherjee et al. 2014; Neal et al. 2013; Nieman et al. 2013; Peake et al. 2014; Pechlivanis 

et al. 2010; Pechlivanis et al. 2015; Prado et al. 2017; Ra et al. 2014; Samudrala et al. 2015; Schader 

et al. 2020; Sun et al. 2017; Valerio et al. 2017; Wang et al. 2015; Zauber et al. 2012). Formerly, 

others have reviewed metabolite concentration changes after exercise (Heaney et al. 2017) but only 

narratively reported exemplary results.  In contrast, the systematic review of this thesis gives a 

comprehensive and quantitative summary of metabolite concentration changes after exercise, broken 

down into metabolite classes, sampling time and sample type. The given sample time informs the 

reader when after exercise a certain metabolite is expected to change and an help decide on sample 

timing in future studies (e.g. carbohydrates and TCA cycle intermediates mostly changed up to 30 

minutes after exercise, whereas lipid concentrations changed from 5 minutes up to 24 hours after 

exercise) (Schranner et al. 2020). The review therefore recapitalizes metabolite changes after acute 

exercise and serves as a resource for scientists in the field of omics and exercise. 

Metabolite changes after acute exercise depending on different exercise phenotypes are limited and 

respective studies classify phenotypes based on only one trait, e.g. V̇O2max (Chorell et al. 2012; Enea 

et al. 2010; Mukherjee et al. 2014; Schader et al. 2020). Being more comprehensive, in terms of 

athlete phenotype and its definition, in Study 2 of this thesis (Schranner et al. 2021), we looked at the 

baseline and post-exercise metabolite profiles of three highly specialized athlete cohorts and an 

untrained control group based on various phenotypic traits, e.g. endurance capacity, reactive strength, 

muscularity, muscle strength and athletes’ training regimes. Study 2 therefore extends current 

exercise omics literature with the fact that athletic phenotypes can be discriminated based on their 

metabolite concentrations at rest and after exercise. Differing metabolite changes, which need to be 
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validated, in response to exercise also suggest that phenotypes can be discriminated by their metabolic 

reaction to the same exercise challenge (with certain metabolites). The metabolite differences after 

long-term specific training (at baseline), seen in Study 2, comply with data from Morville et al., who 

showed that only one bout of resistance or endurance exercise changes certain metabolites differently 

(Morville et al. 2020).  

IV-4.2. Omics in chronic (long-term) exercise studies 

In comparison to omics studies reporting acute metabolite changes after exercise, metabolomics in 

chronic exercise studies was done less (Brennan et al. 2018; Felder et al. 2017; Neal et al. 2013; 

Pechlivanis et al. 2013; Wang et al. 2015) (Table 6) and only Pechlivanis et al. compared different 

exercise modes and no study compared different phenotypes.  

We recorded protein changes after chronic endurance training in the thesis’ Study 3 (Robbins et al. 

2021) however the data is not published yet. As one of the few studies that looked at protein changes 

after chronic exercise, Pillon et al. provide an online database on transcript and protein changes, 

separated into exercise modes (resistance exercise, aerobic endurance exercise, anaerobic endurance 

exercise and high-intensity endurance exercise) and duration (acute, chronic) (Pillon et al. 2020). 

Other than that, we are not aware of any other study investigating protein changes after chronic 

exercise in blood, only studies in skeletal muscle (Deshmukh et al. 2021; Oertzen-Hagemann et al. 

2019; Petriz et al. 2017).   

IV-4.3. Omics associations with V̇O2max or ΔV̇O2max 

Plenty of studies, mainly with data from the HERITAGE family study (Bouchard et al. 1995), 

investigated the association of genes with intrinsic V̇O2max and identified several SNPs that are 

associated with V̇O2max.  

More recently, Al-Khelaifi et al investigated metabolites and genes in 490 world-class athletes (Al-

Khelaifi et al. 2019a; Al-Khelaifi et al. 2018; Al-Khelaifi et al. 2019b). To find biomarkers associated 

with world-class athlete status, they compared their results to those of non-world-class athletes and 

found that metabolite profiles between non – and world-class athletes differ (Al-Khelaifi et al. 2019b). 

In a second study, Al-Khelaifi compared metabolite profiles of two different athlete phenotypes (high 

power vs. moderate power and high endurance vs. moderate endurance) and also found several 

metabolites that differed between phenotypes (Al-Khelaifi et al. 2018). Subsequently, they replicated 

104 of these metabolites associated with world-class athlete status (high-endurance and high-power 

athletes) like higher androgenic steroids, higher monohydroxy fatty acid, lower diacylglycerols or lower 

acylcarnitintes, in an independent cohort (Al-Khelaifi et al. 2019a). Then, they tested if these metabolites 

are linked to genetic variants and found 19 genetic variants (17 known, 2 novel) that explained up to 

~40% of metabolite levels in world-class athletes (Al-Khelaifi et al. 2019a) (Table 6). Despite the 
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metabolites associated with world-class athlete status, their causal relation to performance, need to be 

investigated. Al-Khelaifi et al.s’ findings of ~40% of genetically explained variance in metabolite levels 

also supports Bouchard et al.s’ ~47% of genetically explained variance of the phenotype (Bouchard 

2012; Bouchard et al. 2011), as metabolites are known to be closely related to the phenotype. 

Study 3 of this thesis gives first evidence that not only genes but also environmentally modifiable 

molecules like proteins are associated with intrinsic V̇O2max and increases in V̇O2max in a large and 

diverse cohort of over 650 Caucasian and African American individuals. For the majority of these 147 

proteins, the directionality of the association with V̇O2max and the physiological function, points to real 

causal associations (e.g. positive associations between V̇O2max and proteins involved angiogenesis or 

in muscle function) that warrant validation in further studies. Compared to other exercise-proteomics 

studies by Contrepois et al., (~370 proteins quantified), Santos-Parker et al. (~1,100) (Santos-Parker et 

al. 2018) and Guseh et al. (~1,300 proteins quantified) (Guseh et al. 2020), we were able to quantify 

>5,000 proteins in Study 3 by using aptamer-based proteomics, which is novel amount and method in 

an exercise training context. 

Plenty of literature on genetic associations with ΔV̇O2max exists, likewise as with V̇O2max (Table 

6), mainly coming from HERITAGE and summarized in systematic reviews (Rankinen et al. 2010; 

Williams et al. 2017). For ΔV̇O2max, Bouchard et al. could even show causative SNPs (Bouchard et 

al. 2012; Bouchard et al. 2011; Ghosh et al. 2019). 

Evidence on associations between transcripts, proteins, or metabolites to ΔV̇O2max trainability is 

limited to a study by Castro et al. 2019, suggesting serum metabolites like lysine, phenylalanine, 

creatine, and glycerol are associated with Δ V̇O2max after 8 weeks of aerobic endurance training or 

high-intensity interval training (Castro et al. 2019) (Table 6). Here Study 3 of this thesis can add 102 

associations of proteins with Δ V̇O2max (pending future validation). Notably, 9 out of 102 proteins 

associated with ΔV̇O2max and 12 out of 147 associated with baseline V̇O2max were significantly 

associated with all-cause mortality in a separate cohort of the Framingham Heart Study (Ko et al. 

2019), emphasizing the associations between V̇O2max and all-cause mortality described in the 

introduction. Despite the prediction model of Δ V̇O2max, developed in Study 3, is modest in accuracy, 

it is unique so far and lays a foundation for predicting training responses by a set of protein biomarkers 

and other easy to obtain parameters.
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Table 6. Classification of the PhD thesis outcomes in the context of existing literature on blood molecule changes in exercise omics studies. 

 

 

Genes 

 

 

Transcripts 

  

 

Proteins 

 
 

 

Metabolites 

 
 

Changes with acute exercise  
  

 

-- 

Contrepois et al. 2020; 

Pillon et al. 2020 

Contrepois et al. 2020; 

Guseh et al. 2020; 

Preliminary data, 

unpublished 

 

Contrepois et al. 2020; Morville et al. 

2020; Schranner et al. 2021* 

Depending on the kind of exercise --  Guseh et al. 2020 Morville et al. 2020 

Depending on phenotype -- 
Contrepois et al. 2020; 

Pillon et al. 2020 
Contrepois et al. 2020 

Contrepois et al. 2020; Schranner et 

al. 2021 

Changes with chronic exercise  
 

-- Pillon et al. 2020 
Preliminary data, 

unpublished 

 

Pechlivanis et al. 2013; Felder et al., 

2017; Neal et al., 2013; Wang et al., 

2015; Brennan et al., 2018 

 

Depending on the kind of exercise -- Pillon et al. 2020 -- -- 

Depending on phenotype -- Pillon et al. 2020 -- -- 

Associations with V̇O2max or 

ΔV̇O2max 

Ghosh et al., 2019; Rankinen 

et al., 2010; 

Al-Khelaifi et al. 2019a; Al-

Khelaifi et al., 2018; Bouchard 

et al. 1998; Bouchard et al. 

2011; Bouchard et al., 2012; 

Williams et al., 20175 

-- 

Robbins et. al. 2021; 

Santos-Parker et al. 2018 
(Santos-Parker et al. 2018; 

Williams et al. 2019) 

(Schader et al. 2020) 

Al-Khelaifi et al. 2019a; Schader et 

al., 2020 
 

Depending on the kind of exercise -- -- -- -- 

Depending on phenotype 

Al-Khelaifi et al. 2019a; Al-

Khelaifi et al., 2018 

 
 

-- Robbins et al. 2021 
Al-Khelaifi et al. 2019a; Schader et 

al. 2020; Castro et al., 2019 

 
* References of the summarized articles can be found in the original manuscript  
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IV-5. Feasibility of this thesis as foundation for further studies (MetaPerform, 

SportFATIGOM) 

The outcomes of this thesis, namely that we could find global metabolite differences between exercise 

phenotypes and trace these differences back to statistically significant single metabolite differences 

which can be logically attributed to athlete’s bioenergetic capacity, training or diet, led us to initiate two 

further studies: MetaPerform and SportFATIGOM. For both studies, I contributed significantly to 

writing the proposal and study design. In MetaPerform, I was lead scientist in recruiting participants, 

performing experiments during my PhD and will do the main part of data analysis.  

The main rationale for a study like MetaPerform comes from an individualized exercise approach as 

well: No study in existing literature has looked at individual metabolite trajectories during prolonged 

constant exercise lasting >2 hours without nutritional fuel intake. Another novelty of MetaPerform is 

that metabolite changes are closely monitored every 30 minutes during cycling and one, two, and 24 

hours post-exercise, totaling 11 timepoints per participant. From the experience of Study 1 and Study 2, 

we standardized pre-study exercise and nutrition for 24 hours before and after the test, protocolled 

nutrition, dietary supplements and training for one, two and four weeks before the study.  We determined 

the load for the 3-hours cycling exercising for every subject individually by maximum exercise testing 

(V̇O2max testing) on another day that had to be at least three days before the 3-hours test. We set the 

load for the 3-hours test to 5% below the individual first ventilatory threshold (VT1-5%) to make sure 

that subjects can complete the test despite having no food. By the initial V̇O2max testing, we made sure 

that all subjects were sufficiently trained and have a very good to excellent V̇O2max/V̇O2peak for their 

age and sex (females >50 ml/min/kg; males >60 ml/min/kg) plus are used to endurance exercises that 

last for 3 hours and longer. The time of cycling of three hours was chosen, to challenge metabolism with 

fuel restriction as endogenous glycogen stores empty after ~90 minutes of exercising. We hypothesize 

to see a “switch” in metabolism from mixed metabolism of carbohydrates and fat (0-90 minutes) to 

primarily fat metabolism (after 90 minutes). During the last 5 minutes before each blood sample was 

taken, ventilatory gas exchanges were measured using spiroergometry (Figure 16). This was done, to 

make sure participants are exercising below their first ventilatory threshold, as duration of exercise 

increases, and to verify the metabolic switch from mixed metabolism to primarily fat metabolism. 

Depending on the individual, we further hypothesize that we see differences in metabolism or in 

metabolic compensation for the limited fuel availability, supposably also between females and males. 

The analyses of the MetaPerform blood samples are done using non-targeted metabolomics (Metabolon 

Inc, Durham, USA). 
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Figure 17. Study design of the MetaPerform study adding up to 11 timepoints of venous blood 

sampling. 

 

 

IV-6. Limitations of metabolomics and proteomics in exercise science 

Metabolomics and proteomics can inform exercise science researchers about metabolism at a given 

timepoint e.g. at rest, during exercise or in the recovery phase after exercise. Sensitivity of omics 

technologies allow to detect a plethora of molecules and to (at least in part) reflect biological processes 

within the body (especially metabolomics). However, researchers need to be careful to draw immediate 

mechanistic conclusions based on metabolomics or proteomics done in blood. Blood passes through the 

whole body and reflects the metabolic sum of all single organ or single tissue processes. Omics results 

from blood (especially in new fields of application like exercise) should ideally be compared in terms 

of plausibility with other direct metabolic measures e.g. respiratory gas exchanges by spiroergometry 

during exercise, which reliably states energy fuel usage.   

Furthermore, careful considerations on the timing of blood samples during or after exercise should be 

made. Rapid changes of protein and metabolite concentrations in response to exercise can complicate 

interpretation of the results from only one or few time points. Even small timely variance (~10-15 

minutes or even less) in sampling between subjects can lead to metabolite concentration changes, e.g. 

in nucleotides, which have been shown to change their concentration in the early post-exercise phase 

(5-20 minutes) but return to resting values quickly. As a classical exercise example, lactate changes in 

blood can be observed every minute when sampling from the earlobe during graded exercise and return 

to pre-exercise concentrations within minutes (depending on the exercise and the individual lactate 

clearance). 

Practically, studies should be designed with at least two sampling time points within on subject and 

should cover different and precise metabolic states (e.g. pre-exercise, during exercise, post-exercise) to 

generate mechanistic hypotheses. Furthermore, researchers should verify metabolic states with other 
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measures (e.g. spiroergometry) and test mechanistic hypothesis in cell culture studies, mouse models, 

and ultimately, if feasible, in humans. 

Thirdly, environmental factors like diet (e.g. protein-rich diet in strength athletes), dietary supplement 

intake (e.g. amino acid supplements), medication and exercise training (e.g. muscle damage) should be 

recorded and ideally standardized as they can influence metabolite concentrations in blood.  

Finally, genetics contribute to metabolite and protein concentration differences between subjects (Lotta 

et al. 2021; Yousri et al. 2014) and can be responsible for up to 75% (for metabolites) of the metabolite 

concentration in blood (Shin et al. 2014). Similarly, athletic talent itself is influenced by genes 

(Sarzynski and Bouchard 2020). Advantageous traits for e.g. endurance performance like the trainability 

of V̇O2max, cardiac output or fat-free mass, and for strength-related performances like muscle strength 

are all in parts inherited (Bouchard 2012). Also, links between metabolites that differed between world-

class and non-world-class athletes to genetic variants in world-class athletes have been reported (Al-

Khelaifi et al. 2019a). Especially in small and highly specialized cohorts, genetics can influence 

outcomes in exercise studies.  
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IV-7. Conclusion 

The variability and individuality of human metabolism, its associated phenotypes (from disease to 

athlete) and its capacity to adapt, calls for a granular and individualized compilation of exercise-

associated metabolic changes. Within the field of exercise science, which has grown more and more 

important for a sedentary and ageing society, individualization can ensure the achievement of health and 

performance goal. Omics methods, which have been used in individualized medicine, enable such a 

granular compilation of metabolism and are since recently, attractive for exercise science research.  

Metabolomics and proteomics studies in exercise science have become more and more since 2009 with 

the aim to discover metabolic read-outs or biological markers for metabolism or metabolic changes 

during or after short and long-term exercise interventions. The main issues in existing exercise omics 

studies were that a systematic summary on global metabolite changes after exercise was missing and 

that existing studies were to heterogenous in design to find out what the long-term effect of specific 

exercise modes on metabolite and protein changes was. 

This thesis complements and extends existing basic exercise science and exercise omics literature with 

a global summary of exercise-associated metabolite concentration changes, the fact that the metabolome 

is shaped distinctly after to long-term specific exercise training and the finding that proteins can be used 

to predict exercise adaptation to training.  

 

IV-8. Outlook and future directions 

The valuable characteristic of omics methods for exercise or health science is the plethora of information 

about an individuals’ metabolism they deliver. A targeted application of omics can lead to more 

individualization of exercise training in the future: the prediction of physiological adaptations and the 

monitoring of health and performance.  

One specific hope is that omics measurements will yield biomarkers of a person’s endurance, strength, 

or risk factor trainability that cope with the fact of individual variation in training or risk factor responses 

(Bouchard et al. 1999; Hubal et al. 2005). To avoid training for several weeks to find out that e.g. a risk 

factor has worsened, a key goal is to predict training responses at the planning stage e.g. by measuring 

biomarkers. In medicine, such an approach is known as precision, personalized or individualized 

medicine, where biomarkers are measured which are then used to select an intervention that works for 

the individual. Promising attempts to relate proteins or metabolites to endurance training status (Al-

Khelaifi et al. 2019b; Robbins et al. 2021; Santos-Parker et al. 2018; Schader et al. 2020; Williams et 

al. 2017; Williams et al. 2019)) , world-class athlete status (Al-Khelaifi et al. 2018) or exercise 

phenotype have been made, including this PhD thesis (Robbins et al. 2021; Schranner et al. 2021). Still, 

these attempts need to be validated.  
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A proof-of-concept study that individual metabolic responses to external stimuli (here diet) can be 

calculated from multiple biomarkers was done by Zeevi et al. (2015). They used a combination of 

measures from the microbiome, dietary habits, anthropometry, physical activity, and blood parameters 

to predict the individual blood glucose response to different meals (Zeevi et al. 2015).  

In relation to exercise, the prospective MoTrPac (Molecular Transducers of Physical Activity) studies 

aim to develop personalized recommendations for exercise (e.g. which kind of exercise and which 

intensity is most beneficial for an individual’s health). Therefore, MoTrPac studies the systemic effects 

(genome, transcriptome, proteome, metabolome, adipose tissue, and muscle tissue) of acute and chronic 

exercise in untrained and trained subjects to identify molecules that cause adaptations to exercise. One 

specific goal is to find out if these molecules can be manipulated pharmacologically to mimic beneficial 

exercise effects (e.g. muscle mass gain or minimizing a risk factor) in people who cannot exercise (e.g. 

during bed rest) (Sanford et al. 2020). 

In competitive sports, prediction of trainability would lay the fundament for future (training) decisions. 

Specifically, a future vision would be to shape or change the career of young athletes in several ways: 

First, for the individual itself, as performance goals are being reached in a reasonable time which 

increases the motivation to stick to the training. Secondly, it saves time for coaches as trainings are 

tailored to the athletes and training failures or injuries due to training that is not suitable fot he individual 

will get less frequent. Specifically, a prediction of trainability would include the identification of existing 

biomarker(s) for a trainability trait of interest, e.g. muscle mass gains or VO2max in the blood of an 

individuum. Based on existing and validated computational models (e.g. ROC-analyses) for this trait of 

interest, the trainability can be predicted within a certain % accuracy. The limitation of such a prediction 

is that trainability prediction will be dichotomous in these models, meaning that a threshold value of the 

trait of interest e.g. muscle mass gain of 10% within a certain time frame is set and the prediction can 

only state if the subject can expect <10% or >10% of muscle mass gains. In most clinical settings, where 

improvements in health are the primary goal, such a dichotomous prediction (e.g. reduction in 

cardiovascular risk) would be sufficient, however in athletes or subjects who have specific performance 

goals a more detailed prediction (e.g. how much % muscle mass will I gain if I do training X for Y 

weeks?) is necessary. With current dichotomous prediction models being modest in predictive 

performance, such an envisioned detailed prediction might only be possible in the long run. Supposably, 

predictions would need to include a variety of standard physiological (BMI, sex, age, body fat, muscle 

mass), behavioral (exercise training, nutrition, lifestyle), exercise associated physiological (e.g. heart 

rate, performance tracking) and maybe even genetic predictors (SNPs) to reach a relevant predictive 

accuracy for application in competitive sports. 
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VI. GLOSSARY 

Aptamer Nucleotide-based compounds with protein affinity, alternative to 

antibodies 

 

Biomarker Measurable biological indicator in body fluids like blood or urine 

that can be used for diagnosis or prognosis 

 

Chromatography method for protein separation from a mixture based on 

differential mobility through a medium 

 

Duchenne’s disease 

 

A rare muscular dystrophy disease with muscle weakness and 

muscle loss 

 

Electrospray ionization (ESI) A technique to produce ions by spraying a liquid with molecules 

onto a laser to create an aerosol  

 

Liquid chromatography (LC) A separation technique applied in chemistry where molecules are 

dissolved in a liquid and are separated depending on their 

physical properties 

 

Mass spectrometry (MS) Method for metabolite or protein detection by mass and charge 

 

Metabolome All metabolites within one biological sample 

 

Metabolomics The study of all metabolites within one biological sample 

 

Myokine A protein with hormone-like effects that is secreted from skeletal 

muscle cells in response to muscle contraction and has various 

effects on other organs of the body (e.g. the liver) 

 

PCG1a Peroxisome proliferator-activated receptor gamma coactivator 1-

alpha. PCG1a is a protein that in humans is encoded by the 

PPARGC1A gene 

 

Phenotype All observable characteristics or traits of an organism 

(morphology, physical properties, structure, biochemical and 

physiological properties) 

 

PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-

alpha 

 

Proteome All proteins within one biological sample 

 

Proteomics The study of all proteins within one biological sample 

 

Sensitivity Measure of assay ability to capture analytes with low abundance 

 

Specificity Measure of assay ability to measure a particular analyte rather 

than others 

 

Tandem mass spectrometry 

(MS/MS) 

A form of mass spectrometry using two or more mass analyzers 

in row to increase the sensitivity of molecule analysis (especially 

molecules with similar masses/charges) 
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Throughput number of samples and/or analytes undergoing analysis in a 

certain timeframe 

 

Intrinsic/baseline V̇O2max the V̇O2maxan individual has without prior endurance training 

or after refraining from training for at least 3-6 months 

 

Trait (phenotypic) A characteristic of an organism 
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VII. SUPPLEMENTARY MATERIAL 

VII-1. S1: Dynamic range of human plasma proteome and current detection 

methods 

 

Figure S1. Dynamic range of the human plasma proteome and current detection methods.  

Adapted from (Smith and Gerszten 2017). 

Dynamic ranges for classical plasma proteins (high-medium abundance) and selected clinically 

relevant proteins. Intervals refer to published 95% reference ranges, or quartiles or ranges where 

reference intervals were unavailable. Lower ends of reference intervals have not been established for 

a few proteins (arrowhead). Affinity-based methods essentially capture proteins across the entire 

abundance spectrum but may be offset by specificity, whereas mass spectrometry (MS) has excellent 

specificity but is limited to proteins with high and medium abundance. Newer MS methods such as 

multiple reaction monitoring (MRM), immuno-MRM (iMRM) and isobaric tags (iTRAQ) may detect 

lower-abundance proteins and with additional separation steps reach as low as affinity methods. 

Ultrasensitive single molecule detection (SMD) assays are necessary to detect proteins at very low 

abundance, down to fg/ml. 2DE, 2-dimensional gel electrophoresis. LC-MS, liquid chromatography 

MS. 
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VII-2. S2: Pre-study questionnaires (in German) 

VII-2.1. History of training 
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VII-2.2. Training protocol  

Endurance athlete, example for one week: 
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Natural Bodybuilder, example for one week: 
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VII-2.3. Nutritional protocol  

Example for one day 

 

 

 



 

148  

  

VII-2.4. Dietary supplemental protocol  

Example for one week 
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VII-2.5. Medication protocol  

Example for one week 
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VII-2.6 Ethical approval for Study 2 
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