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Abstract

Precision maps have found wide applicability and are predominantly used in precision agri-
culture, which relies on the visual communication of relevant, high-resolution, environmental
data, obtained through sensing systems to the end-user (Sishodia et al., 2020). Despite
being treated as a map, the precision map contemporarily exists outside of a theoretical
cartographic framework. This study aims at developing a cartographic understanding and
methodology for producing precision maps to support local, technology oriented farmers,
scientists, and authorities in plant disease management.

As an interdisciplinary domain, cartography bears a huge potential in meeting the increas-
ing demand for the decision-supporting visualisation of Geospatial Big Data (Coetzee et
al., 2020; Robinson et al., 2017) and thus may contribute to the development of more sus-
tainable agriculture. Particularly, plant pests endanger tree health and harvest, thus high-
lighting farmers’ vulnerability to plant diseases and ultimately undermining Sustainable De-
velopment Goals (SDGs), such as Zero Hunger, and food security (Savary et al., 2012). In
contrast to traditional plant disease management, plant health monitoring through hyper-
spectral data enables stakeholders to detect plant stress outside the range of visible light,
and hence, at an early disease stage.

This experimental study is expected to encourage future application of cartographic gener-
alisation in agriculture and foster cartographic understanding in precision mapping using
multi- and hyperspectral data. In the course of the study, it is argued for the adoption of a
multi-scale mapping approach in order to visualise different spatial granularities at respect-
ive levels of detail within a precision map. Using the case study of an orchard in South Tyrol
(Italy), this research focuses on developing a multi-scale precision map of Apple Prolifera-
tion (AP), a phytoplasma-induced disease transmitted through insects. It is believed that
precision maps are a cartographic tool that can be part of an environmentally sustainable
disease and pest management programme with the potential to minimise yield losses and
foster food security.

Keywords: Sensor-Driven Mapping, Plant Disease Mapping, Precision Map, Hyperspectral
Data, Agriculture Mapping
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1 Introduction

The general notion of precision mapping has been around for at least the past 40 years
when the idea of technology-driven precision agriculture has gainedmomentum in the 1980s
(Directorate-General for Internal Policies of the Union [DGIPU], 2014). With the pressing urge
to increase global food production, precision agriculture was envisaged to keep up with the
increasing demand for crops in light of global population growth (Delgado et al., 2019). It
might come as a surprise though, that in the past 10 years precision mapping experienced
a major boost (Huang & Brown, 2018).

Particularly, the combination of scientific and technological advancements, especially in re-
mote sensing and the domain of photogrammetry, havemade platforms such as unmanned
aerial vehicles (UAV’s) or different kinds of high-resolution optical sensors more affordable
targetting a wider audience (Szabó et al., 2017). Consequently, precision mapping has be-
come more appealing outside of the agricultural sector, as it serves a wide range of applica-
tions, and hence, has turned into a buzzword also in other industries or scientific fields like
the automotive sector or the construction business (Liu and Liu, 2018; Casagrande, 2017).
Sensors, for example, are deployed on autonomous vehicles to produce HD (high definition)
street maps (Liu & Liu, 2018) or 3D renderings of construction sites with high precision
(Casagrande, 2017). Subsequently, different understandings of precision mapping have de-
veloped across industrial sectors. What they do have in common, is the increased demand
for exact (near-real-time) environmental data and information throughout their working pro-
cesses, documentation, monitoring, prediction and eventually overall-performance. High
spatial accuracy and precision are immensely facilitated through past advancements in GPS
technologies, even offering sub-centimetre positioning. Precision is therefore considered
as a game-changer: the more exact the data, the more precise the information at hand, the
better the final outcome.

The use of new technologies has opened new possibilities in mapping and map making,
also for the agricultural sector. Precision agriculture is not only limited to yield maps, which
was at the heart of precision farming in its infancy but precision mapping is adopted for
various purposes within agriculture. By and large, precision mapping includes the location
and visualisation of soil types and properties (soil moisture, fertility, nutrient content, etc.)
or phenotyping (identifying different types of vegetation), amongst others. The latter makes
it possible to differentiate between weeds and crops in remotely sensed imagery, which in
turn, allows a precise estimation of weed spread and adequate planning of management
practices like the spraying of pesticides (Yao et al., 2018).

Another field of interest in precision agriculture is the mapping and monitoring of plant
health, which is inevitable as diseases and pests pose a fundamental threat to crop losses
resulting in food shortages. Crop loss due to plant diseases and pests is estimated to be
around 20-30% globally (Savary et al., 2019), highlighting farmers’ vulnerability to plant dis-
eases and ultimately undermining Sustainable Development Goals, such as Goal 2 (”Zero
Hunger”) (United Nations General Assembly [UNGA], 2015). and more broadly food security
(Savary et al., 2012). Hence, early detection of plant diseases through precision mapping
can support minimizing crop losses and ultimately pave the way to a more sustainable agri-
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1 Introduction

culture.

On-site visible inspections and follow-up laboratory analysis by plant disease experts are
rather considered as time and resource-costly practices, which do not guarantee an early
detection of plant diseases, especially that not all pant diseases and pests manifest them-
selves through an early onset of symptoms that are visible to the human eye. Unlike tradi-
tional monitoring strategies, plant diseases can be detected at an early stage through re-
mote sensing. Remote sensing techniques allow assessing the plant’s physiological state
through spectral analysis of the sunlight reflectance behaviour at the leaf or canopy level
(Blackburn, 2006). Conventionally, multispectral data was and still is used in spectral band
analysis and for computing respective vegetation indices (VI’s) to assess plant physiology.
However, the development of hyperspectral narrowband sensing systems has offered new
opportunities in plant monitoring. Hyperspectral data is characterised not only by narrower
bandwidths, but at the same time covers a larger extend within the electromagnetic spec-
trum (Thenkabail et al., 2018). Recording electromagnetic reflectances in finer bandwidths,
allows the identification of small nuances within the electromagnetic spectrum, which has
become even more promising for plant health monitoring through precision mapping.

Despite being a cartographic product in the end, the precision map, although widely in use,
contemporarily exists outside of a theoretical cartographic framework. On the other hand,
Geographical Information Science and Remote Sensing have primarily found entry in agricul-
tural practices (Usery et al., 1995; Papp et al., 2021), consequently laying the foundation for
precision agriculture (Sishodia et al., 2020). The intrinsic nature of a map, however, aims at
communicating spatial information visually through abstraction and generalisation of what
would be too big or complex to be understood in its raw format (Robinson et al., 2017). Carto-
graphy as an interdisciplinary domain bears a huge potential in meeting the increasing con-
temporary demand for automated spatial information extraction and visual communication,
especially, when dealing with Big Data, for decision making (Coetzee et al., 2020; Robinson
et al., 2017), and hence, may drive progress towards more sustainable agriculture.

This research aims at developing a cartographic understanding and methodology for produ-
cing precision maps to support local, technology oriented farmers, scientists, and authorit-
ies in making spatial decisions. The methodological framework for precision mapping shall
be developed at the example of Apple Proliferation in the Upper Adige Valley in South Tyrol,
Italy, using multi- and hyperspectral imaging techniques for classifying (un)infected plants
as a non-destructive method and early-warning detection.

2



1 Introduction

1.1. Motivation

AP is considered to be amongst the most hazardous apple plant diseases, bearing enorm-
ous environmental, economic and social costs on apple growing regions across Europe and
also in the Middle East (Janik et al., 2020). This phytoplasmal disease – a phytoplasma
being a cell wall-less bacterium – causes significant yield loss, as it impairs fruit quality,
size and weight in affected trees (Janik et al., 2020), resulting in severe economic losses.
In Italy alone, for instance, the yield deficit caused through AP is estimated to account for
an equivalent of around 100 million Euro in economic loss for 2001 only (Strauss, 2009).
Consequently, AP is not only considered a severe plant disease, but even a plant pest in the
agricultural sector. Adequate plant disease control and pest management are inevitable to
reduce impacts caused through AP by containing and removing affected trees, as well as
identifying trees in an early stage of contamination.

Formerly, traditional plant disease management required labour intensive monitoring based
on expert knowledge, ideally present on-site regularly or even daily. Additionally, biological
and laboratory Polymerase Chain Reaction (PCR) analysis have been developed in recent
years, which are very accurate in detecting plant diseases such as AP, but in turn are de-
structivemethods, as plant samples are needed for biogenetic analysis. As the biochemical
analysis follows an invasive procedure or having a plant pathologist or an expert in the field
of plant diseases present at the orchard seems impractical and costly, farmers are left with
few alternatives. One of them is the extensive use of pesticides to cover especially large
areas of apple orchards. However, as spraying of pesticides is commonly applied on a large
scale, it seems rather inefficient, let alone environmentally harmful in greater quantities over
a longer period of time (Sishodia et al., 2020).

Therefore, more sustainable practices need to be developed to minimise costs associated
with AP (i.e. uneconomical expenditure on and use of pesticides, resulting in an inefficient
pest control and if left unmonitored implying significant environmental and economic dam-
age, once trees at an advanced disease stage face uprooting). Technology and data-driven
strategies may aid in designing pest control more efficiently as less time and labour is re-
quired in the field and losses are being minimised through identification of AP in its early
stages (Janik et al., 2020).

Precision farming, also referred to as precision agriculture, may be considered as a pos-
sible solution in reducing crop losses caused through AP, following a non-invasive method
for collecting environmental data. Precision agriculture is understood as a ‘whole-farm man-
agement approach’ (DGIPU, 2014), ranging from the remote and proximal sensor-based data
collection in combination with Global Navigation and Positioning Satellite System (GNSS)
to the derived precision maps, which are sensor-driven, large scale maps.

Particularly, the use of hyperspectral data for precision mapping is considered promising
for early detection of AP, due to the narrowband spectral resolution extending the visible
light spectrum (VIS) and near-infrared (NIR) spectrum. To the author’s knowledge, there is
currently no other research activity with the focus on detecting AP through hyperspectral
data for precision mapping.

Contemporarily, precisionmaps are used to convey spatial information to the end-user, com-
monly presenting sensor-derived, rawdata containing a lot of detail at high spatial resolution.
However, maps are considered as powerful visual tools to communicate space as they only

3
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depict a selection or in other words an abstraction of the conceived environment (Kraak &
Fabrikant, 2017). Seemingly, there is a need for further research to establish a cartographic
foundation for existing precision maps, as cartographic principles are neglected within their
creation. Guided by this research interest, this thesis is aiming at the development of a
framework for precision maps, to serve as tools for spatial decision making regarding plant
pest control. Hence, this thesis is viewed as a cartographic contribution in realising sustain-
able agriculture as precision maps enable early plant disease detection and, therefore, may
aid in pursuing food security in the long-term.

4



1 Introduction

1.2. Research Scope

In line with the proposed scientific contribution, the scope of this thesis is set around the
establishment of a methodological framework which shall enrich the contemporary under-
standing for precisionmapping by a cartographic perspective. For this purpose, the concept
of the visualisation pipeline (Haber &McNabb, 1990), which shall be elaborated in the course
of the thesis, will be adopted as a guiding structure for precision map making. In brief, this
conceptualisation summarises the visualisation process as a logical sequence of working
stages, beginning with the collection of data, in this case remotely sensed, its processing,
analysis, visualisation, and finally, the accessibility by the intended users. Therefore, the
breadth of this research spans the entire data life cycle, from ’cradle to adolescence’.

Following an interdisciplinary approach might seem a crux at first, but is indispensable
herein, as the interplay of remote sensing, image processing, photogrammetry and carto-
graphy allows developing a reproducible, data-driven and non-invasive mapping strategy of
AP. Expert knowledge on AP is additionally provided by the Department for Plant Genomics
of the Laimburg Research Centre (LRC). However, the thesis is not understood as a piece
of work placed directly in plant pathology, per se, but the biological knowledge is funda-
mental for gaining insight from the hyperspectral data analysis. Consequently, this research
is based on findings from previous plant pathology studies of AP in order to reason the pos-
sible effects of the plant disease on the plant’s spectral characteristics.
Additionally, the investigation of other biotic and abiotic plant disease stressors is out of
thesis scope. This means, that neither biotic (e.g. plant age and constitution, insect count
on orchard, etc.), nor abiotic (e.g. soil properties, altitude, exposition, geological context,
etc.) were investigated as environmental vectors potentially favouring the spread of AP.
The thesis is also not considered as a feasibility study for precision mapping of AP, but
rather an experimental study. Currently, there is no other research on precision mapping of
AP undertaken in the face of cartographic visualisation that is known to the author.

By implementing a multi-scale view in precision maps, scientific innovation is aimed at in
the field of cartography. The precision map-making of AP disease spread is based on multi-
modal data acquisition using remote sensing techniques. This includes a ground sensing
approach, to obtain individual leaf spectral signatures with a field-spectroradiometer, as well
as airborne proximal sensing adopted on the orchard level using multi- and hyperspectral
cameras mounted on an UAV. Insights gained through the spectral data analysis are sup-
posed to serve as the basis for subsequent multi- and hyperspectral waveband selection
and composition of adequate vegetation indices that aid in detecting AP infested plants.
Additionally, with the use of a machine learning technique, the support vector machine, it is
expected to ensure a reproducible and accurate image classification of the aerial imagery
in order to delineate infected from uninfected trees based on a robust field-derived train-
ing dataset. Spatial granularity shall be integrated within the precision maps by means of
abstraction along the interconnected spatial scales (from a high-resolution leaf layer to an
object-oriented orchard layer). Finally, the precision maps will be made accessible through
open-source geospatial soft-and hardware, ensuing the idea of open science proposed by
Coetzee et al. (2020).

The experimental research is coordinated and supervised by colleagues at the Center for
Sensing Solutions (CSS) at Eurac Research in Bolzano, located in South Tyrol, Italy. The
CSS is a competence centre that aims at establishing innovative technological solutions to
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monitor and understand key environmental dynamics in sensitive mountain regions. This in-
cludes the design and implementation of environmental and data-driven services by integrat-
ing multi-source andmulti-scale information (remote, proximal, ground sensing techniques)
with interdisciplinary approaches.
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1.3. Research Questions and Objectives

In achieving the development of a cartographic methodology for producing multi-scale pre-
cision maps of AP, the underlying research objectives are identified as follows:

Research Objectives

RO.1 Develop a cartographic understanding and definition for a precision map.

RO.2 Identify relevant spectral bands and VI that meaningfully discriminate
between leaves infected from AP vs. uninfected leaves (binary and multi-
class discrimination).

RO.3 Implement a robust and reproducible image classification procedure based
on a machine learning approach specifically for the identification of AP on
varying levels of detail (at the leaf, tree, and orchard level).

RO.4 Establish a mapping technique to produce precision maps dedicated to AP
on different levels of detail.

Respectively, the research questions are formulated like so to answer the above stated ob-
jectives:

Research Questions

RQ.1 How can a precision map be defined from a cartographic understanding?

RQ.2 Whichmeaningful spectral bands from the hyperspectral range andwhich AP
can be identified, or computed, respectfully, from the spectral signature of a
diseased leaf..
(a) to reflect changes caused through AP?
(b) to therefore be an indicator for the presence of AP?
(c) to ultimately be used to distinguish between healthy and diseased leaves
[binary classification]?
(d) additionally: to distinguish degree of disease severity from healthy leaf
[multi-class classification]?

RQ.3 Whichmachine learning approach produces a robustmulti-/ hyperspectral im-
age classification for identifying and classifying AP on different scales (leaf,
tree and orchard)?

RQ.4 How can multi-scale data be effectively visualised on various granularity
levels?

7
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1.4. Thesis Outline

The structure of the proceeding discourse follows a logical set-up that aims to establish
a cartographic understanding for precision mapping of plant diseases and exemplify the
experimental methodological framework for precision mapping of AP infected trees based
on hyperspectral data. For this purpose, the scope and intended contribution of the thesis
needs to be contextualised first.

Hence, in Chapter 2 the need for precisionmapping in sustainable agriculture shall be reasoned
and the gap for cartographic research identified. Thereafter follows a scientific background
on remote sensing applications for precision agriculture as precision mapping itself starts
with the collection of data. Subsequently, state of the art in hyperspectral data analysis for
plant disease detection shall be outlined, which eventually leads to the visualisation tech-
niques adopted in precisionmapping and the need for cartographic approaches in precision
agriculture. A brief excursion on the effects, symptoms and overall context on AP is made,
concluding the literature review.

In Chapter 3, the methodological approach is defined, which adopts the concept of the visu-
alisation pipeline and delineates the subdivided work stages for precision mapping.

The elaboratedmethodology is then investigated in the Case Study on AP detection in South
Tyrol and its workflow described in Chapter 4.

The derived findings from the spectral analysis, image classification and the precision map-
making itself will be presented under Results, Chapter 5.

These will set the basis for the follow-on discussion in Chapter 6, where the findings will be
placed in context with the previously defined research objectives.

In Limitations and Paths for Future Research (Chapter 7), shortcomings faced during this
scientific work are reflected and outlook for future research suggested before concluding
the thesis in Chapter 8.
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Plant diseases, pests and pathogens, as well as animals, are considered to cause yield
losses estimated between 20 and 40% of global agricultural production (for example Oerke,
2006). It can be assumed, that the herein stated direct economic losses imply far more
adverse indirect effects on public health, the textile industry, livelihoods, and more broadly
speaking societies as well as the environment (Savary et al., 2012). Hence, the true costs
can be considered to exceed those of agricultural productivity as crop losses due to plant
diseases and pathogens compromise on food availability, ultimately undermining food se-
curity. The latter is commonly understood as the ability to have access to food, following
the definition from the 1996 World Food Summit (Food and Agriculture Organization of the
United Nations [FAO], 1996), which states that food security ‘exists when all people, at all
times, have physical and economic access to sufficient, safe, and nutritious food to meet
their dietary needs and food preferences for an active and healthy life’. According to Ingram
(2011), food security has commonly been framed as a logistical matter when referring to
access to food, but concepts such as productivity or agriculture are neither included in the
formulation by FAO (1996), nor in other definitions. However, it is important to account for
agricultural productivity when conceptualising food security, as this state of basic need is a
mutual interdependence of food production and consumption, or in other words, producer
and consumer patterns within a political context. The need to account for production pat-
terns when referring to food security and thus adopting Ingram’s 2011 review on the term
becomes more clear when looking, for instance at the SDG 2 - End hunger, achieve food
security and improved nutrition and promote sustainable agriculture is directly linked to it
(UNGA, 2015). More precisely, the SDG 2 is broken further down into sub-targets of which
Target 2.3 and Target 2.4 directly address an increase in agricultural productivity and a trans-
ition to agricultural sustainability (Table 2.1). Furthermore, synergetic effects between the

Sustainable Development Goals - Goal 2

Target 2.3 By 2030, double the agricultural productivity and incomes of small-scale
food producers, in particular women, indigenous peoples, family farmers,
pastoralists and fishers, including through secure and equal access to land,
other productive resources and inputs, knowledge, financial services, mar-
kets and opportunities for value addition and non-farm employment

Target 2.4 By 2030, ensure sustainable food production systems and implement resi-
lient agricultural practices that increase productivity and production, that
help maintain ecosystems, that strengthen capacity for adaptation to cli-
mate change, extreme weather, drought, flooding and other disasters and
that progressively improve land and soil quality

Table 2.1: SDGs - Goal 2 (End Hunger) - Targets 2.3 & 2.4 ( UNGA, 2015, p.15)

17 SDG’s exist, which means that they are highly interrelated and interdependent and thus
when working towards one goal, another goal or several are also tackled at the same time.
This, for instance, is the case in the pursuit of Goal 2 (‘End hunger’), as targets from Goal
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12 - Ensure sustainable consumption and production patterns can be addressed at the same
time (Table 2.2).

Sustainable Development Goals - Goal 12

Target 12.2 By 2030, achieve the sustainable management and efficient use of natural
resources

Target 12.4 By 2020, achieve the environmentally sound management of chemicals
and all wastes throughout their life cycle, in accordance with agreed inter-
national frameworks, and significantly reduce their release to air, water and
soil in order to minimize their adverse impacts on human health and the en-
vironment

Table 2.2: SDG - Goal 12 (Ensure sustainable consumption and production patterns) - Tar-
gets 12.2 & 12.4 (UNGA, 2015, p.22)

In sight of an increasing world population and subsequently increased demand for aliment-
ation, food productivity needs to be upscaled to meet current demands and those of future
generations. Considering that natural resources are finite, the amount of arable land, soil
capacity as well as the quantities of water used for irrigation are limited. This means that
agriculture sees itself in need of rethinking and -shaping. Having undergone various trans-
formations (i.e. the Green Revolution in the 1960s – 1980s) in the past due to technological
development, agriculture, as we know today, will need to incorporate strategies to overcome
food insecurity by maintaining food production, minimizing crop losses during growing, pro-
cessing and post-harvesting stages (UNGA, 2015).

What is also referred to as agriculture 4.0 (Tappeiner et al., 2020) needs to be based on
efficient food production, using available resources reasonably well, and minimize the risk
of food shortages due to plant diseases or pests that undermine SDGs, and subsequently,
is idealized as sustainable agriculture. How is sustainability understood, though, and what
is meant particularly with sustainable agriculture? The definition of sustainability per se is
an entire discourse itself and shall not be the focus of this literature review; however, it is
important to be aware of its meaning and how it is been understood throughout the thesis.
Hence, the definition of the Brundtland Report (United Nations Secretary-General & World
Commission on Environment and Development [UN][ & WCED], 1987) sets the theoretical
frame for the concept of sustainability used within this thesis, in which sustainable develop-
ment aims to ‘ensure that it meets the needs of the present without compromising the ability
of future generations to meet their own needs’. Furthermore, any action undertaken towards
sustainable development must address its three dimensions, which again are interrelated
and interdependent: environment, society and economy (UNWCED, 1987).

How does this apply to agriculture, and what does sustainable agriculture mean then? Dif-
ferent concepts and terms have developed around the notion of sustainability in agriculture,
such as community-based, ecological, environmentally sensitive, extensive, organic, and
permaculture, to name a few amongst the wide terminological range (Pretty, 2008). All of
them touch upon aspects of sustainability, but it is open to debate whether the above qualify
as sustainable.
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Therefore, Pretty (2008) (p.451) identified the following key principles for agricultural sus-
tainability:

– integrate biological and ecological processes such as nutrient cycling, nitrogen fixation,
soil regeneration, allelopathy, competition, predation and parasitism into food produc-
tion processes,

– minimize the use of those non-renewable inputs that cause harm to the environment or
to the health of farmers and consumers,

– make productive use of the knowledge and skills of farmers, thus improving their self-
reliance and substituting human capital for costly external inputs, and

– make productive use of people’s collective capacities to work together to solve common
agricultural and natural resource problems, such as for pest, watershed, irrigation, forest
and credit management

The FAO defines their five key principles more broadly, but highlights more the balance
between the social, economic and environmental dimensions of sustainability (FAO, 2014,
p.7) :

– improving efficiency in the use of resources;

– conserving, protecting and enhancing natural ecosystems;

– protecting and improving rural livelihoods and social well-being;

– enhancing the resilience of people, communities and ecosystems; and

– promoting good governance of both natural and human systems.

Sustainable agriculture can therefore be considered as a key for economically stable and
less volatile production, an environmentally friendlier cultivation and a practice to ensure
livelihood for people employed in the agricultural sector – especially those who live of what
they harvest.

Striving towards sustainability, which is described rather as a process than a state (UNW-
CED, 1987), and thus progressing towards agricultural sustainability, the use of technologies
and the promotion and implementation of innovations take a special role within this trans-
formation (Pretty, 2008; FAO, 2014; Tappeiner et al., 2020, amongst others). Adapted to
the local circumstances, technologies like in-field irrigation systems, crop harvesting, but
also monitoring and imaging systems using (geospatial) sensors pose opportunities for an
agriculture 4.0. These cite specific farming measures are all techniques covered under the
umbrella term precision farming or precision agriculture (both terms are used synonymously
within the context of this thesis). According to DGIPU (2014), the US House of Representat-
ives firstly defined precision agriculture in 1997 as ‘an integrated information-and production-
based farming system that is designed to increase long term, site-specific and whole farm
production efficiency, productivity and profitability while minimizing unintended impacts on
wildlife and the environment’ (p.11). This core concept of precision farming is still valid
today, but the field of applications of precision agriculture has diversified in light of tech-
nological advancements, such as the inclusion of GNSS, Geographic Information Systems
(GIS), remote sensing based not only on satellites, but also on unmanned aerial vehicles, as
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well as the presence of Internet of Things (IoT) (Thenkabail et al., 2018). Precision agricul-
ture implies farming with precise knowledge of the within-field variability (Thenkabail et al.,
2018).

In terms of sustainable agriculture, precision farming can offer a toolset to pursue sustain-
able development within the agricultural sector (Directorate-General for Parliamentary Re-
search Services [DGPRS], 2019). Amongst others, it is expected that precision agriculture
can contribute to amore efficient resourcemanagement (DGPRS, 2019), decreasing the use
of and thus the expenses for pesticides due to an early detection of plant diseases, which
is expected to reduce production costs in the long-term, and more importantly decrease
crop loss due to pests and pathogens (Al-Saddik et al., 2018). Particularly, remote sens-
ing techniques that are deployed in precision agriculture, allow sensing plants’ constitution
or crop health adopting a non-invasive, reproducible as well as time and cost efficient ap-
proach (for example Thenkabail et al., 2018; Yao et al., 2018; Lowe et al., 2017; Al-Saddik
et al., 2018). In order to utilize the remotely sensed data, the spatial information needs to
be communicated visually and prepared in a way that spatial information can be used by in-
volved stakeholders who can rely on the this approach in their spatial decisionmaking, when
it comes to disease and pest control and the choice in adequate management practices. To
convey spatial information in an usable manner, maps or rather precision maps are an in-
tegral part in precision agriculture. The word precision is being given also another meaning
when high-resolution cameras mounted on UAVs are deployed for precision agriculture, in-
stead of using satellite-derived images. Large scale precision maps can, therefore, cover a
small area of interest with a high amount of detail. However, this poses a dilemma from a
cartographic point of view, as the shear amount of data, what one could also refer to as Big
Data, cannot be displayed in its raw form, but cartographic abstraction and generalisation
is required in order to communicate spatial information through maps. Consequently, the
contemporary notion of precision maps exists outside a cartographic understanding.

To address this issue in a logical manner, the following literature review will focus on the de-
velopment of a cartographic methodological framework for future precision map-making,
which sets the scope for this thesis. In the course of the following chapters, an under-
standing for precision mapping through a cartographic lens shall be elaborated by firstly
highlighting the importance of remote sensing applications for data collection in precision
agriculture. Thereafter, state of the art in hyperspectral data analysis for plant disease de-
tection shall be outlined, followed by a review of visualisation techniques currently adopted
in precision mapping and the need for cartographic approaches in precision agriculture. A
brief outline of the research on AP and a summary of intended research ideas conclude the
literature review.
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2.1. Remote sensing in Precision Agriculture

According to Robinson et al. (1995, p.127) remote sensing can be described as the ‘process
of collecting, storing, and extracting environmental information from images of the ground
acquired by devices not in direct physical contact with the features being studied’. Initially,
the potential of remote sensing was perceived in bridging the lack of detailed geographic in-
formation, that could eventually be overcome with the first photographic images taken from
aircraft in the late 1930s, when remote sensing was in its beginnings (Robinson et al., 1995).
Particularly, topographicmapping profited from remote sensing in the early stages, as carto-
graphers were now given new tools for designing large scale and detailed topographicmaps
(Robinson et al., 1995). Since the initial stages of remote sensing, its techniques have found
entry in various fields, of which precision agriculture is one of them, which in turn sees re-
mote sensing techniques deployed in various formats and for a range of applications. For
instance, field sensors are mounted on tractors during harvest, to map high-yielding and
low-yielding areas (Environmental Systems Research Institute [ESRI], 2006), variable rate
fertilisation systems used to execute site specific nutrient input (ESRI, 2006), satellite de-
rived imagery is used to assess soil properties, such as moisture content (Yao et al., 2018),
or airborne sensors are operated to estimate crop damage across the field (Yao et al., 2018).
Recent technological advancements enabled the increased production of high-tech devices
available on themassmarket. This includes the development of cameras that over the years
have offered higher resolution imagery due to constantly shrinking pixel size, as well as the
design of low-cost UAVs for producing high-resolution digital orthophotos and Digital Eleva-
tion Model (DEM) (Casagrande & Gusto, 2017). Consequently, the advantage of affordable
UAV-installed cameras is self-evident, as low-costmaps can be produced, for example of the
vegetation, highlighting healthy and unhealthy plants on a cultivated area (Candiago et al.,
2015). The use of UAVs as a portable platform for mounting sensors is trending within pre-
cision agriculture as it allows cite-specific, remote sensing at low altitude (10–100 m above
ground typically) (Yao et al., 2018). UAVs exist in all sorts of shapes, such as fixed-wing
airframes, helicopters, and multirotors (e.g. quadrotor, hexcopter, octocopter), on which
portable sensors, like digital cameras, multispectral broadband cameras, thermal cameras,
hyperspectral cameras, Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar
(SAR) sensors are mounted. The above stated definition of remote sensing has changed
with time as machine-mounted and especially hand-held proximal sensing typically with a
spatial resolution in the range of 0.001–0.01 m extends the understanding of (aircraft or
satellite) remote sensing applications which are in the order of 0.1–100 m spatial resolu-
tion (Oerke et al., 2014)(Fig. 2.1).

However, at the very core of remote sensing data analysis is the interpretation of spectral
information (Robinson et al., 1995). Deriving the essential information about the vegeta-
tion from remote sensing data depends on sensor specifications, radiation interaction with
a vegetation canopy and the methods adopted (Curran, 1989). The spectral signal that is
recorded at the sensor carries information of the land’s surface that is not necessarily vis-
ible to the human eye (Robinson et al., 1995). When referring to the spectral signal, it is
understood as the reflectance of light at an object’s surface that is measured along specific
wavelengths either in micro or nano metres within the electromagnetic spectrum (Robinson
et al., 1995). The latter, is divided into certain spectral ranges, such as the VIS (400–700
nm), NIR range (700–1300 nm,) and the shortwave infrared (SWIR) region (1300–3000 nm),
amongst others (Schowengerdt, 2006)(Fig. 2.2).
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Figure 2.1: Proximal and remote sensing platforms (adopted from Oerke et al., 2014, p.57)

According to Yao et al. (2018), relative reflectances have been used in several studies with
the intention to minimize the impact of variable lighting conditions, as well as relative pos-
itioning variation between sensor and object. However, it is worth mentioning at this point,
that developing a robust, in-field plant spectral sensing technique is subject to variable light-
ing (i.e. varying sunlight conditions), which poses a challenge (Yao et al., 2018). Unlike data
collection under laboratory conditionswith an artificial light-source, outdoor, passive remote
sensing commonly depends on ambient sunlight. Thus, the spectral signature that is recor-
ded at the sensor is subject to the sun’s illumination intensity at a given point that changes
according to the time of day, atmospheric effects, such as absorption or scattering of light.
The object’s surface composition (e.g. flat, rugged, smooth, undulated or multiple stories in
case of vegetation canopy), orientation of the object, presence of non-leaf elements, as well
as the reflection angle determine the recorded object’s radiance (Lowe et al., 2017; Black-
burn, 2006).The measured radiance of an object at the Earth’s surface is consequently the
result of an interplay of several factors, that eventually shape the objects spectral signature,
which is essential for remote sensing data analysis.

Due to the high correlation between an object’s reflectance and its physical and chemical
composition (Curran, 1989), spectral signals are considered as indicators for plant physiology
(Peñuelas and Filella, 1998; Wegmann et al., 2016). Multispectral cameras for instance, pro-
duce imagery that commonly cover a wider range within the electromagnetic spectrum and
therefore typically produce imagery composed of red, green and blue spectral bands, but
also within the NIR and thermal domain (Yao et al., 2018). Generally, in the red portion (630–
690 nm) sunlight is absorbed by healthy vegetation, but reflected in the NIR (>760–920 nm).
In-between the red and NIR range in the electromagnetic spectrum is the so called red edge
(>690–760 nm)(Fig. 2.3). This is a very characteristic feature in vegetative spectral reflect-
ances, because a swift change occurs from red with high absorption to high reflectance
rates in the NIR. For healthy vegetation a red shift in the red edge portion can be observed.
On the contrary, a blue shift in the red edge portion can occur with stressed plants (Then-
kabail et al., 2018).
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Figure 2.2: Electromagnetic spectrum (adopted from Bock et al., 2020, p.2)

Plant reflectance is governed by leaf surface properties and internal structure, as well as
by the concentration and distribution of biochemical components (Peñuelas & Filella, 1998).
Within the visible blue electromagnetic spectrum, reflectance ratios are affected for instance
by carotenoid and chlorophyll absorption, whereas in the visible red, absorption is only driven
by chlorophylls mainly (Peñuelas et al., 1994). The ‘red edge’ has been viewed as a good in-
dication of chlorophyll content at the leaf level, but also at the canopy level (Fiella & Peñuelas,
1994). In the NIR spectral range, reflectance correlates to structural composition (Fig. 2.4)
and changes found in the leaf and generally there are no prominent absorption features in
this spectral range. On the other hand, absorption characteristics of a leaf is driven by water
and other compounds in the middle infrared region, resulting in varying reflectance values
(Peñuelas & Filella, 1998).

This means, that remotely sensed data is not only used for categorising vegetation form the
physical contents of canopies, but also considered as an indicator for its chemical compos-
ition (Curran, 1989). In the visible spectrum, leaf reflectance is low because of absorption
by photosynthetic pigments (Peñuelas & Filella, 1998), primarily by carotenoid and chloro-
phyll concentrations, the most important solar light absorbing pigments (Blackburn, 2006).
Chlorophyll a and b are both indicators of plant stress and phenological stage, whereas
carotenoid concentrations disclose ancillary information on vegetation physiological status
(Young and Britton, 1990, cited by Blackburn, 2006, p.856). Furthermore, anthocyanins are
the third major pigment group in leaves which can regulate the light environment within the
leaf and exhibit a photoprotective function (Steyn et al., 2002; Close and Beadle, 2003) by
regulating photosynthesis through limiting photoinhibition and photobleaching (Barker et
al., 1997). Generally, it may be difficult to pinpoint a specific reflectance to a particular con-
centration of a plant pigment as they and other constituents show overlapping absorption
features (Blackburn, 2006).

The absorption effects of the chlorophyll can be observed at 675 nm and 550 nm, whereas
the former is considered as the wavelength, where maximum absorption occurs and thus
sensitive to reflectances even at very low concentrations.
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Figure 2.3: Spectral signature of a leaf and characteristic features (adopted from Peñuelas
and Filella, 1998, p.152)

At 550 nm, reflectance sensitivity is higher for medium-to-high chlorophyll concentrations
(Peñuelas & Filella, 1998). Reflectance values within single spectral wavebands are there-
fore seen as indicators for plant physiology, but also VI are seen as insightful, where sev-
eral of these wavebands are included, each of them correlating to a certain biophysical
or biochemical trait of a plant (Filella et al., 1995). A VI is a ratio of reflectances (Yao
et al., 2018), which are commonly used in precision agriculture for monitoring vegetation
physiology and more specifically disease infestation, and shall be further elaborated in the
following chapter.

16



2 Foundations and State of the Art

Figure 2.4: Profile of a leaf and illustration of light interaction (adopted from Mahlein, 2016,
p.243)

2.2. Plant Disease Detection and Mapping based on Hyperspectral Data

In contrast to multispectral broadband images, which cover a wider electromagnetic spec-
trum, hyperspectral narrowbands offer a higher spectral resolution which allows spectral
analysis of reflectances at single wavelengths. This is of particular interest for precision
farming, as not only high spatial resolution is taken into consideration, but also high spectral
resolution, which enables the identification of fine nuances within the spectral signatures.
Especially the identification of plants that are affected by plant diseases profits from the
use of hyperspectral data analysis, as slight changes within the spectral signature that are
caused by infestation can be detected.

Typically, hyperspectral data can be obtained with handheld devices, such as spectrora-
diometers with a very fine resolution (1 to 10 nm bandwidths covering the electromagnetic
spectrum between 400 – 2500 nm). Per se, this is not considered as spatial data, but can be
understood as single point measurements fromwhich spectral vectors can be obtained that
ultimately are used to compute the spectral signature of that point measurement. Spatial
data can be obtained through image spectroscopy, or in other words, hyperspectral imaging.
In precision agriculture, this is commonly used to cover a certain area of interest and is also
deployed with other precision farming applications that make use of additional thermal or
LiDAR sensors (Thenkabail et al., 2018).

As mentioned already in the preceding section, hyperspectral data distinguishes itself from
multispectral data in respect to the bandwidth at which spectral signals are recorded. As a
consequence of this very fine separation of the electromagnetic spectrum, a hyperspectral
data set is also considered as high dimensional. Dimensionality here refers to the num-
ber of spectral bands used. For instance, in case of a single point measurement using a
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Figure 2.5: Illustration of a hyperspectral data cube (adopted from Bock et al., 2020, p.13)

hand-held device, one obtains a vector with reflectance values for each spectral narrow-
band. Regarding the hyperspectral imagery, however, one can envision the whole data set
as a three-dimensional data set, a data cube (Fig. 2.5). The third dimension consists of
two-dimensional images (e.g. 20 – 30 or even more) stacked to a data cube, where a single
image represents a narrowband at which reflectance values are recorded. A pixel, therefore,
can be understood as a data vector, which comprises of several reflectance values across
the feature space. The latter refers to the detection range or window of recordedwavebands
within the electromagnetic spectrum (Yao et al., 2018). What does this now mean for preci-
sion agriculture?

Hyperspectral imagery can potentially provide more information for precision agriculture
due to the high data volume (Yao et al., 2018). Some applications even allow UAV-derived
hyperspectral imaging in the fields to be processed even in real-time, through advances in
cloud computing, machine learning and artificial intelligence that all have contributed to a
paradigm shift in remote sensing: data availability and processing at any place anytime, con-
sidering that one can also collect, operate and process (UAV-based) data (Thenkabail et al.,
2018). Despite bothmultispectral and hyperspectral systems being used for plant andweed
sensing in the field within the VIS-NIR spectral range, hyperspectral sensors allow in compar-
ison to broadband multispectral cameras the detection of subtle changes in plant spectral
narrowbands (Yao et al., 2018). In combination with UAV flights, the operation of hyperspec-
tral cameras for precision agriculture has the additional advantage of increasing the spatial
resolution of the imagery, which typically ranges between 5mm– 5 cm per pixel, allowing in-
field variability detection with a high amount of detail. Despite being limited in water stress
detection of plants when compared to thermal imaging systems, hyperspectral sensorsmay
identify plant disease and pest infestation at high spatial and spectral resolution. This, in
turn, means that the data quantity from hyperspectral sensors is generally larger than that of
multispectral broadband images (Yao et al., 2018). Nevertheless, hyperspectral imaging is
considered a fast and economical acquisition of detailed field data (Yao et al., 2018), which
makes this technology very versatile and suitable for different applications (Mulla, 2013). In
precision agriculture, for instance, hyperspectral systems are deployed for a range of pur-
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poses like the assessment of plant nitrogen content (as plant nitrogen is crucial for crop
productivity); estimation of the effects of heavy metals on vegetation reflectance; mapping
abundance and distribution of flowering plants; quantifying litter and invasive species; weed
sensing; phenology and seasonal vegetation pattern identification; soil management zoning
and crop herbicide damage detection through pesticide spray drift, to name a few (Yao et al.,
2018).

More important for this thesis is the detection of plant diseases through remote sensing
applications, particularly as their reliable detection and identification remain a challenge in
agriculture (Savary et al., 2012; Oerke, 2006, amongst others). Remote sensing of plant
diseases bare the huge potential to be utilized at an early plant pathological stage (Oerke
et al., 2014), where symptoms are not clearly visible to crop agronomists or farmers but
only display visible symptoms at middle or late stages of infection (Lowe et al., 2017). Thus,
using remote sensing techniques for plant disease detection can definitely be argued for be-
ing at least a complementary practice to the existing methods of in-field visual assessment
or laboratory, but meanwhile also in-field, diagnostic testing by experts (Lowe et al., 2017).
Manual disease identification and monitoring is considered as rather time-consuming and
demanding, hugely depending on the size of the arable land and the crop type (Lowe et al.,
2017). Hence, identifying plant diseases at an early stage would allow early action in con-
trolling and preventing the spread of infection (Lowe et al., 2017). Apart from (a) an early
detection of the onset of an attack, plant disease identification should also be considering
the following aspects, according to Mahlein (2016): (b) separability of different diseases,
(c) differentiation of biotic and abiotic stress, and (d) disease severity quantification. Bock
(2011) defines disease severity as ‘ the area (relative or absolute) of the sampling unit (leaf,
fruit, etc.) showing symptoms of disease and is often expressed as a percentage or propor-
tion’ (p.2).

To be able to take a stance on these aspects, it is essential to understand the complex-
ity of hyperspectral data from which to obtain insight into the effects of plant diseases.
Primarily, it can be said that hyperspectral data is complex in nature. This is due to the
aforementioned, large data volume, which was also referred to as a dimensionality issue.
Hence, the increased number of dimensions in a hyperspectral data set is adding complex-
ity to the data analysis, may it be multivariate analysis of hyperspectral vector data or image
processing (Thenkabail et al., 2018). However, there is a considerable amount of redund-
ancy within a hyperspectral data set, as spectral autocorrelation is evident within sensed
reflectance values from adjacent narrow wavebands. Therefore, it is necessary to elimin-
ate redundancies for the follow-on spectral analysis by adopting dimensionality reduction
techniques, where the main spectral variability within the data set is preserved. Dimension-
ality or feature (a feature being a dimension or an image band) reduction techniques focus
on the identification of wavebands with maximum information (Blackburn, 2006) to reduce
image-processing complexity and increase image-interpretation accuracy (Yao et al., 2018).
By and large, Richards and Jia (2006) distinguish between two types of feature reduction
methods: feature selection and feature extraction. The former aims at evaluating the image
bands in a hyperspectral data-set to select the most effective or discriminating features by
removing the least effective. Feature extraction, on the other hand, involves a transformation
of pixel vectors into a new set of coordinates. This allows a subsequent feature selection
to be more evident as the transformation amplifies feature discrimination within the data
set. Common techniques for feature-extraction in remote sensing are PCA, wavelet trans-
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forms, spectral angle mapping, or arithmetic transformations such as VIs (Yao et al., 2018).
Common VIs, such as the well established Normalised Difference Vegetation Index (NDVI),
The Photosynthetic Reflectance Index (PRI) and the Red Edge Vegetation, are not diseases
specific (Mahlein et al., 2013). However, the broad range of VIs offers a first glance of the ve-
getative physiology, highlighting particular properties of vegetation (apart from chlorophyll
and carotenoids, also water content, cellulose, lignin, dry matter, etc.). ‘Spectral pigment
indices’ are ratios of narrowbands that are more sensitive to pigments and those spectral
areas that are not sensitive or related to another control reflectance (Blackburn, 2006). In
general, three bands have been found to be sufficient for the composition of VIs on the leaf
level, whereas at the canopy VIs comprising of three and four bands have been developed
(Blackburn, 2006).

Disease-centred studies focused on creating disease-specific VIs (Lowe et al., 2017), which
to a large extend make use of hyperspectral data. Hyperspectral VIs are viewed as a central
method (Izenman, 2008) and their computation is considered fairly simple in order to extract
information (Yao et al., 2018). However, the specificity of a vegetation index for delineating
a specific disease according to their spectral characteristics or, in other words, the classi-
fication accuracy is decisive. According to Bendel et al. (2020), classification accuracy is
defined as the ‘ratio calculated from the number of samples correctly classified among all pos-
sible samples’ (p.7). A common approach is the assessment of spectral bands for disease
specificity following the interest in detecting infected, but symptomless plants, at an early
disease stage. Up to this point, there was no differentiation between the type of disease,
which Yao et al. (2018) identified as a pest, fungal or bacterial. This needs to be considered
for the hyperspectral analysis as well because disease types impact the plant material dif-
ferently (attacking the plant organism in various ways, causing diverse plant reactions and
disease symptoms), consequently affecting the spectral reflectance properties of the plant
individually. Scientific research has focussed on developing crop and disease-specific in-
dices for quick and reliable assessment of hyperspectral data. Therefore a combination of
dimensionality reduction techniques for feature extraction with a follow-on machine learn-
ing classification approach is contemporarily considered as state of the art procedure in
identifying and detecting plant diseases. However, machine learning models underlie differ-
ent mathematical algorithms, which is why it is difficult to determine beforehand which ap-
proach performs best for hyperspectral data analysis. It is a common approach to compare
different algorithms regarding their classification accuracy for a specific disease (Bendel et
al., 2020). Often used classification algorithms include, linear or stepwise discriminant ana-
lysis, partial least squares, spectral mixture analysis, artificial neural networks or Support
Vector Machine (SVM), amongst others (Yao et al., 2018).

Rumpf et al. (2010), for instance, usedSVM classification to differentiate healthy from three
different fungal diseased sugar beet leaves. Also Al-Saddik et al. (2018) adopted the SVM
classification, a discriminant analysis as well as VIs to compare to a novel approach in fea-
ture selection termed Successive Projection Algorithm to assess classification accuracy
and propose a multi-class classification regarding disease severity of Flavescence dorée.
It is a disease where phytoplasma colonises plant cells of grapevine, which is transmitted
through leaf sucking insects that pass on the disease with their infected saliva while feeding
on the sap. In the European Union Flavescence dorée is declared a reason for quarantine due
to its infectiousness. In their study, they were using hyperspectral data collected with a port-
able, in-field spectroradiometer (350 – 2500 nm) to propose an alternative, and particularly,
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reliable and early identification in comparison to the naked eye disease assessment. Visual
inspection still being the most common technique use for grapevine monitoring (Al-Saddik
et al., 2018). Albetis et al. (2017) also performed remote sensing studies on Flavescence
dorée, but following a proximal sensing approach with an UAV collecting multispectral im-
agery of the orchard under field conditions. The authors were comparing spectral bands, VIs
and biophysical parameters in combination with machine learning classification, amongst
them the SVM classifier to assess classification accuracies. One of their recommendations
for future studies, is the investigation of hyperspectral data on the leaf level for improving
knowledge about spectral responses of the phytoplasmal disease (Albetis et al., 2017). Mah-
lein et al. (2013) computed disease-specific VIs based on hyperspectral data that were su-
perior to pigment-related VIs in delineating infected plants from uninfected plants.

Bock et al. (2020) conducted a study also concerned with plant disease detection and ar-
guing for the use of hyperspectral data, but set the focus on plant disease severity classi-
fication and visual representation. It is one of the few studies encountered in the literature
review of this thesis, that addressed the concept of visualisation in the context of plant dis-
eases detection and identification. The authors also promote the adoption and at the same
time argue for the need for further research on automated image processing techniques for
classifying and recognising disease severity, using different supervised and unsupervised
machine learning approaches (Bock et al., 2020). Moreover, the authors address further
classification concerns regarding the severity rating of plant diseases such as the classi-
fication scheme (nominal or ordinal, quantitative or qualitative), the number of classes and
class intervals, as well as how accurate disease severity can be represented independent
of scaling. Additionally, the authors addressed questions regarding usability, when intend-
ing to develop mobile applications for plant disease severity classifications, bearing in mind
visual user-oriented communication.

Cartography typically addresses questions regarding usability, classification and an adequate
number of classes, colour scheme, generalisation and abstraction of spatial data and how to
communicate these visually. Hence, the following chapter will shine some light on precision
mapping in agriculture from a cartographic perspective and to which extend cartographic
principles have been adopted in precision mapping for plant disease detection.
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2.3. Precision Mapping and Cartography

By and large, cartography has not yet lived up to its potential in agriculture. Surveying, GIS
and remote sensing, on the other hand, have already found an entry and are integrated
in common agricultural practices since the 1980s (Thenkabail et al., 2018). Cartography,
the art, science and technology of reading and producing maps (Kraak, 2019), bears a great
chance for improving visual communication of spatial information in agriculture. Mapping
is fundamental for spatial decision making and sets the basis for crop monitoring, includ-
ing plant disease management. Due to the limited use, perhaps even awareness of the
strengths in implementing cartographic techniques, not much scientific literature has been
produced on what could be termed agricultural cartography, or perhaps even precision car-
tography in the face of precision agriculture. In respect to the detection and visualisation
of plant diseases, there is a rather overseeable amount of scientific publications and re-
porting of successful implementations dedicated to cartography in plant disease mapping.
Particularly, precision maps, which are widely used in agriculture but have hardly received
attention from a cartographic perspective. Hence, their nature and the cartographic require-
ments from its making to the final use of precision maps are core to this chapter. In order
to develop a cartographic understanding of how precision maps are perceived and what
expectations exist towards precision mapping, it is important to firstly capture the notion
of precision maps from their making to their use in the past, as well as at present. These
different notions of precision mapping need to be perceived with respect to their mapping
context. Especially that precision mapping is used as a buzzword in different domains and
it is closely associated with UAV-based applications, it is crucial to look at the current pre-
cision map users and map makers. Only then a contemporary understanding of precision
mapping within precision agriculture for plant disease identification and mapping can be
synthesized.

In the introductory session to this literature review, it was mentioned that precision map-
ping is currently used in the construction business, as well as in the automotive sector, for
example. The latter has also adopted the term HD maps, or high definition maps (Liu & Liu,
2018). Autonomous driving, in particular, sets the present vision of the future expectations
towards cars and, therefore, the need to develop sensors attached to the car in order to
perceive the vehicle’s environment and in real-time. High definition mapping is therefore un-
derstood in the automotive industry as data collection of the vehicle’s environment at high
spatial resolution, the real-time processing of the data to be made available either for the
vehicle’s computer for spatial decisionmaking or as a visual representation of the street and
the car’s surrounding (Liu and Liu, 2018; Geospatial Media, 2019). Generally, the spectrum
of applications the use of high-resolution imagery for their mapping purposes is wide and
ranges from Structure from Motion (SfM) of UAV imagery of a construction site for assess-
ment of ongoing construction work to the identification of potential sources of infection of
schistosomiasis in Cameroon (Tchuenté et al., 2018). What they do have in common though,
is the need for high-resolution imagery. Here, it is important to stress that high-resolution im-
agery should not bemisleadingly set equal to a precisionmap. Moreover, the high-resolution
imagery rather sets the basis for the final map. In terms of resolution, spatial resolution is
considered foremost for precision applications.

However, spatial resolution is also relative to the are of interest or the scale of mapping.
Tchuenté et al. (2018) for instance, describe precision mapping in their attempt to delineate
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areas with potential infection risk of schistosomiasis as ‘conducting sampling at a much
finer geographical resolution’ (p.1). In their study, high spatial information was defined on
the level of health districts and subdistricts of Cameroon to delineate high-risk zones of
infection. In another study also dedicated to schistosomiasis, but in Senegal, Wood et al.
(2019) used UAV-derived imagery to perform habitat mapping of the disease transmitting
snails and delineate high-risk of infection zones along the shores of a lake. Here, precision
mapping is understood as mapping an area less than one hectare, a very large scale map
on the basis of high resolution imagery. Kim et al. (2021) conducted precision mapping
related to child undernourishment across India, where the smallest unit is at the level of
the village. From the authors’ point of view, the smallest plausible spatial to be used for
this study with the given data, was the village units from which clusters could be generated.
At the same time, Kim et al. (2021) distance themselves from other studies conducted on
the African continent where a spatial resolution was conceived differently for their precision
mapping. In a review on high resolution, but thematically different maps produced in three
publications (Walker et al., 2016; Osgood-Zimmerman et al., 2018; Graetz et al., 2018) on the
African Continent, Reich and Haran (2018) refer to the produced maps as ‘precision maps’,
where the smallest spatial unit is a 5x5 km ‘pixel’. Perhaps a more virulent topic in times of
a global pandemic in 2021, locales vulnerable to the Coronavirus disease 2019 (COVID-19)
have been visually displayed on district levels of South Korea in what the authors refer to as
a methodological approach to be used for precision mapping of pandemics (Weinstein et
al., 2021). Precision in the sense of spatial resolution is conceived differently when looking
at the above mentioned examples and studies, where spatial units of reference vary from
intra-state mapping (Kim et al., 2021), to 5x5 km pixel as the smallest spatial reference
(Walker et al., 2016; Osgood-Zimmerman et al., 2018; Graetz et al., 2018) or even decimetre
mapping of snail habitats that pose infection risk zones of schistosomiasis disease (Wood
et al., 2019). All aforementioned studies, however, claimed to produce high-resolutionmaps
or precision maps. What then is precision in a map? Is high precision the same as high
resolution? And is it possible to define precision mapping with this variety of use cases and
understandings?

According to Raposo (2017), precision can be defined in cartography as ‘[t]he repeatability
of similar measures or representations; the granularity or frequency at which distinctions can
be made by a sensor or display medium’. Closely related to this definition of precision is
also the cartographic understanding of resolution (Raposo, 2017), which the same author
defines as follows: ‘The degree of detail to which a phenomenon is detected or represented.
Data are stored and rendered at some degree of representation resolution’. In terms of res-
olution, Raposo (2017) differentiates between raster sensor arrays and vector geospatial
data. The latter, resolution is defined by both ‘by the spatial precision to which vertices are
defined and how densely vertices are posted, though both measures can vary greatly through-
out a single dataset’. Resolution from raster sensor arrays ‘is defined by the dimensions
of the individual sensors in terms of ground units (i.e. the width of one pixel in meters on
the Earth)’. Both precision and resolution are both variables in an interplay with scale, par-
ticularly in cartography, where map scales refer to the abstraction of space defined by its
areal extent. Raposo (2017) again defines scale as a ‘measure of relative size, of objects or
representations’. Herein, Raposo (2017) distinguishes between phenomenon (‘relative spati-
otemporal sizes at which objects and processes occur in the natural world’), analysis (‘relative
spatiotemporal sizes over which something is studied or simulated’) and cartographic scale
(‘ratio between the size of an object and its representative symbol on a map’). In cartography
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particularly, the balance between scale and detail is or rather should ideally be considered in
the map making process, as ‘cartographic scale is correlated to resolution’ (Raposo, 2017),
which means that at a smaller map scale less detail is shown in the map, than at a large
scale.

Generally, a map is understood as being ‘a visual representation of environment’ (Kraak and
Fabrikant, 2017, p.14), whereas the physically available space on a map is limited, which is
why real world objects, that need to be represented on a map have to be scaled accordingly
to be visible (Weibel, 1997). At this point it is necessary to acknowledge, that there is a range
of definitions and a whole discourse on what a map is supposed to be (Kraak & Fabrikant,
2017), especially that the demand for maps, the basis as well as the media for map making,
map use itself, and ultimately the understanding of maps has changed over time. However,
this thesis is not aiming at entering this discourse in depth, but adopting this less-specific
definition above, which allows maps in general wider applicability (Kraak & Fabrikant, 2017),
which can already be seen from the broad range of ‘precision mapping’ examples pointed
out in the beginning of this chapter.

By and large, any kind of map though, has to implement cartographic scale reduction, which
is also referred to as generalisation, map generalisation or cartographic generalisation. Gen-
eralisation ontologies and the implementation of automatic digital generalisation are com-
plete research areas for themselves embedded in the cartographic domain. This research,
however, is merely tapping into some aspects of this domain and its scientific literature. By
highlighting and linking core aspects of cartographic generalisation that are fundamental to
map making the need for generalisation shall be argued for, particularly in precision map-
ping. According toWeibel (1997), generalisation ‘encompasses a reduction of the complexity
in a map, emphasizing the essential’ (p.101). Without doubt, what is being referred to as ‘the
essential’, is subject to the map maker and the map’s purpose. Raposo (2017) defines the
process of generalisation as ‘abstracting and transforming geospatial data in order to reduce
their detail and generate versions that instead retain only their main, common, or principal
components or forms’. Broadly speaking, generalisation techniques have been addressed
in the scientific cartographic literature with a strong research focus on vector feature gener-
alisation, GIS supported automation of feature generalisation, and more recently also web-
based, real-time generalisation, also for mobile mapping applications.

The range of adopted techniques (Table 2.3) and the respective terminology has grown par-
ticularly with the advent of GIS favouring digital generalisation in mapmaking. Hence, since
the past century generalisation ontologies and respective terms have changed over time,
which is nicely compiled in various studies, of which Roth et al. (2011) shall be highlighted.
Roth et al. (2011) surveyed generalisation typologies and respective terms used cartography,
giving a good overview of the different understandings of generalisation techniques. Des-
pite the authors’ conclusion from the survey that there is a very heterogeneous perception
and even disagreement among the prominent cartographers regarding the terminology on
generalisation techniques, they stress the intrinsic interrelation between generalisation and
scaling. Frank and Timpf (1994) already identified the benefits of applying generalisation it-
eratively (not restricted to a single generalisation technique, but also in combination), creat-
ingmultiple representations of the same data set, where the rendered representation of real-
world phenomena would de adequately displayed balancing the level of detail and viewing
scale. Furthermore, they identified ‘zoom’ as the dominant operation in moving in-between
mapping scales and viewing the visual representations at varying levels of detail.
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Cartographic Generalisation Techniques

Simplification The reduction in sinuosity or complexity of a linear or polygonal
shape, usually involving a reduction in vertices along its constitu-
ent polylines

Aggregation The combination of polygon symbols into a smaller number, usu-
ally by filling space between the initial polygons to create a lesser
number of contiguous polygons

Smoothing The replacement sharp angles in a polyline or polygon with
curves so that the overall shape is softened

Selection/Elimination The retention of certain features and rejection of others

Typification The transformation of detailed polygonal features into canonical,
usually simpler versions of the type of object being represented
(e.g. complex buildings to simple rectangles)

Displacement Moving features away from their planimetrically-accurate loca-
tions for legibility or to emphasize a spatial relationship (e.g.,
moving a building closer to or further away from a road)

Exaggeration Adding visual emphasis, usually with increased symbol size, to
an object

Classification Reducing the variety of measures in a dataset by binning similar
measures together

Trend Calculation A relatively severe generalization of a surface into a mathemat-
ically simple function approximating it, commonly defined by a
lower-order polynomial

Opening and Closing
(Expand and Shrink)

The increasing or decreasing dilation, respectively, of the set of
areas of a given class in a classified dataset. Often employed on
classified raster regions, opening and closing tends to produce
simplified region boundary geometries. The two operations are
not commutative

Resampling Changing the unit of aggregated data by recollecting source data
in differently-sized units (e.g. changing the resolution of a raster
dataset)

Table 2.3: An overview of cartographic generalisation techniques (adopted from Raposo,
2017)
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Figure 2.6: A comparison of cartographic generalisation techniques (adopted from Roth et
al., 2011, p.35)

Following this line of thought – the combination of interaction, which Robinson et al. (2017)
describes as an ‘essential mechanism by which users can navigate, search, filter and compare’
and precision, that is spatial granularity – may help to overcome the dichotomy in current
precision mapping. Particularly in precision agriculture, where precision maps have found
common usage to reveal intra-field variability regarding crop yield, soil properties, but also
plant infections, the process of spatial abstraction is limited to classification techniques
from image processing either focussing on key wavelengths or the entire spectrum (Lowe et
al., 2017). Classification of the imagery is necessary for information extraction and not only
restricted to image processing, but also understood as a generalisation technique adopted
in cartography (Fig. 2.7). Nevertheless, a classified high-resolution image does not equal a
map yet, particularly, when the amount of detail restrains maintaining the visual overview or
observing patterns within a map (Fig. 2.8).

From a cartographic perspective, Wahabzada et al. (2015) have conducted a very fruitful im-
plementation of cartographic abstraction to plant disease detection focussing on the tem-
poral dynamics of disease development. By using metro maps, where tram lines indicate
the development of selected diseases, which uses a combination of visual variables such
as colour, orientation and spacing to communicate the disease development, where stops
along the tram line indicating changes to the plant caused by the disease or the visual per-
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Figure 2.7: An example of an aerial, high-resolution orthophoto taken with an UAV and the
derived NDVI classification (adopted from Pix4D)

ception of symptoms. In another study on plant phenotyping, Wahabzada et al. (2016) again
use hyperspectral data like already in the aforementioned study, whereas the focus is not on
schematic generalisation where the geographic reference is simply lost, but on the combin-
ation of hyperspectral information with labelling. Disease dynamics undergo a process of
‘wordification’, where words are used to express disease development and their respective
symptoms are used as labels.

In terms of precision farming, Řezník et al. (2020) have identified already the need for ap-
plying cartographic techniques to precision maps. They, however, argue from a different
point of view for integrating cartography into agriculture, as they focus on veracity in pre-
cision maps. Veracity, which is one of the ‘4 Vs’ of Geospatial Big Data (Volume, Velocity,
Variety, Veracity) (Robinson et al., 2017), is considered as most persistent issue in agro-
environmental science together with variety, according to Lokers et al. (2016). Subsequently,
this is taken as a justification by Řezník et al. (2020) to address bias within the collected
field data and implement visual variables for highlighting uncertainty within the precision
map. This can be considered definitely a step towards cartographic precision mapping, but
the argumentation laid out by Řezník et al. (2020) does not include spatial scaling and thus
adapting the spatial resolution of the ‘raw’ data depicted in the precision maps. This might
be considered at least as equally important if not to be prioritised, as an overview of the
general spatial pattern needs to be presented to the map user, thereafter more detail can be
offered, following Shneiderman’s (1996) visualisation mantra ‘overview first, zoom and filter,
then details on demand’.

In cartography, great attention has been given to the development of an integrated design for
representing the same geographic topic at varying resolutions and respective map scales,
which is also known as multi-scale or multiscale mapping (for example Spaccapietra et al.,
2000). Multiscale mapping is not the same as generalisation (Roth et al., 2011). The latter
can be described as a design decision made on a single scale (Brewer & Buttenfield, 2009),
whereasmultiscalemapping is the compound ofmap design decisions across all supported
scales (Roth et al., 2011). Hence, mapping at multiple scales involves generalisation across
supported map scales aiming at maintaining map legibility. This in turn, implies that map
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Figure 2.8: A precision map example using a regular grid for spatial aggregation (adopted
from farmmanagement.pro)

precision or granularity needs to be adapted according to mapping scale. It is therefore
essential to select, extracted and generalise features within the process of precision map
making.

Roth et al. (2011) have identified at least three cartographic research and development ef-
forts, where multiscale mapping is of relevance: (1) Multiple Representation Databases; (2)
National Mapping Agencies; and (3) Web Mapping Services. Web-based mapping applica-
tions utilize remoteweb servers to delivermaps to the users. They are considered as service
oriented cartography (Trakas, 2012). Deploying web mapping services also for precision
farming seems very advantageous, as a use case from New Zealand demonstrates. Here, a
complete GIS architecture (from the ESRI software suit) was installed to support spatial de-
cision making regarding fertilising demands to increase field crop yields. This architecture
relies on geospatial sensing systems that collect and transmit field data, satellite or aerial
imagery for including orthophotos within the geospatial analysis. Eventually, fertilizer ap-
plication data is transformed into a series of colour coded ‘snail-trails’ overlaid on the map
(ESRI, 2006).

There are several other commercial web mapping services, web-based portals or mobile ap-
plications for precisionmapping, that specialised on UAV-imagery for example Pix4Dfields1,
DroneDeploy for Agriculture2 or PrecisionAnalytics Agriculture3 amidst the vast ecosystem
of precision agricultural software and services. In contrast, there are also open-source and
free software solutions, the most prominent in the field being OpenDroneMap4.

A Spatial Data Infrastructure (SDI) is not quite comparable to the above applications as it ex-
tends the concept of a user application by several more components that offer information
on data quality in form of metadata as well as web mapping services that can be accessed
within some of the above user applications. A major advantage of SDIs is that they facilit-

1https://www.pix4d.com/product/pix4dfields
2https://www.dronedeploy.com/solutions/agriculture/
3https://www.precisionhawk.com/precisionanalytics-agriculture
4https://www.opendronemap.org/
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ate the exchange and sharing of geospatial data as well as services among stakeholders
(Hjelmager et al., 2008). Open SDI have emerged (Vancauwenberghe & Valečkaitė, 2018),
in the spirit of the freedom of access to information and its provision as a service to the
public. An open SDI is rooted in the principles of open data and knowledge, thus making
spatial data available to anyone without any restrictions to rights of access or use (Coetzee
et al., 2020). Nevertheless, a SDI might also reserve certain access rights to administrators
or developers who are in the process of sharing data, where further development is needed
prior to publication. Furthermore, Hjelmager et al. (2008) identified that by organising spa-
tial data across disciplines and organisations, SDIsmeet the need to createmulti-participant,
decision-supported environments in order to address the issues of sustainable development
and improving quality of life.

This is also true for spatial decision-making in terms of plant disease spread. A SDI en-
ables visualising varying spatial dimensions of plant diseases and pests that compromise
on crop yield and can be seen as amedium to address sustainable agriculture. Herein, plant
diseases can be visualised across multiple scales, ranging from small-scale, cross-border
maps to national or regional scales and eventually on a very large scale, such as at the level
of a single orchard. The SDI-supported precision map would allow the identification and
detection of plant diseases at a very high level of detail, which needs to be considered as
a multiscale map. Subsequently, this thesis argues for cartographic generalisation of high-
resolution imagery particularly used as a mapping basis in precision agriculture, without
compromising on the precision of the original data set, as the whole precision map can
be understood as a multi-scaled, layered map, where map interactivity like zooming allows
presentation of further detail.

This proposal of a cartographic framework for precision mapping shall be applied in an ex-
perimental set-up on the plant disease AP serving as a case study in South Tyrol. Before
continuing with the methodological scope of this thesis, it is necessary to be familiar with
the disease in order to make the best use of the findings from the spectral analysis, which
in the end sets the foundation for the mapping of AP.
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2.4. Overview of Apple Proliferation Research

Figure 2.9: Shrinking of fruit size due to AP infection (adopted from Janik et al., 2020, p.17)

Phytoplasmas are considered important insect-transmitted pathogenic agents responsible
for a breadth of plant diseases worldwide that entail large economic impact (Christensen
et al., 2005; Weintraub and Beanland, 2006). They are bacteria without cell walls and their
minimal genome makes them ’the simplest known natural self-replicating life-form, on the
border between living cellular organisms and viruses’ (Christensen et al., 2005, p.527). Com-
monly transmitted by phloem-sucking insects, phytoplasma cause a wide variety of symp-
toms, flower alterations, stunting and a general decline in infected plants (Christensen et
al., 2005). Amongst the most economically severe phytoplasmal diseases is AP (also re-
ferred to as ‘apple witches’ brooms’). The cell wall-less bacterium Candidatus Phytoplasma
mali (Ca. P. mali) causes AP and reduces fruit size, weight and quality in affected apple
trees (Janik et al., 2020) (Fig. 2.9). AP has been recorded in several European Regions
such as Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Fin-
land, France, Germany, Hungary, Italy, Norway, Poland, Romania, Serbia, Slovenia, Spain,
Switzerland, the Netherlands and Turkey (Tedeschi et al., 2013). Hence, Ca. P. mali is listed
as a quarantine organism in many countries and must be absent in planting material (Janik
et al., 2020).

Particularly in both Italian provinces Trentino and South Tirol, where one can find large
areas of apple cultivation, recurrent outbreaks of AP have been recorded. In the Province
of Trentino, Rui (1950) reported first on AP in the 1950s but it was only to Bovey (1963)
to investigate its epidemiological character linking the disease to specific vector insects,
that spurred a progressive spread in the area (Amici et al., 1972). It is important to note
that despite the intensive apple cultivation in the region of Trento and South Tyrol, AP has
been detected not only in commercial orchards but is also present in low-intensity orchards,
where infected trees are actually considered more of as a hub of infection (Seemüller et al.,
1998).

Unfortunately, there is currently no curative treatment for this disease. Hence, a range of
preventive measures exists to limit the disease spread with the foremost strategy being
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(a) Witches Broom

(b) Enlarged and dentate stipules

Figure 2.10: AP specific symptoms (adopted from Janik et al., 2020, p.15; Barthel et al.,
2021, p.3)

insecticide treatment as means of vector control, followed by uprooting of infested trees as
well as the use of certified uninfected planting material (Janik et al., 2020).

Thesemanagementmeasures have proven effective in limiting disease outbreaks and spread
in Northern Italy in the last decade (Janik et al., 2020), which can also be attributed to
stronger political stewardship. Following the adoption of a Ministry decree in 2006 (Min-
istero delle Politiche Agricole e Florestali, 2006), control measures against AP were obligat-
ory and a sanitation programme was implemented. These prescribed regular inspections
for the presence of typical symptoms and subsequent removal of infested plants. More
precisely, in the event of more than 25% infection in an orchard, the whole cultivation had
to be uprooted. Additionally, growers received grants to subsidise uprooting of orchards
older than 20 years or with more than 20% of infested trees, which ultimately promoted the
adoption of recommended control measures. As a consequence, infection rates decreased
due tomandatory uprooting of infected trees and prescription of chemical control measures

31



2 Foundations and State of the Art

Figure 2.11: Leaf reddening as a typical asymptomatic symptom of AP (adopted from Janik
et al., 2020, p.17)

against the insect vectors.

Currently, surveys are still being carried out and treatments against insect vectors prescribed
in both regions (Janik et al., 2020; Tedeschi et al., 2013). Reliable recognition of infected
trees, and hence, the ability to identify specific AP symptoms is decisive in infected plant
removal and therefore an indispensable skill of any fruit grower in affected regions (Janik
et al., 2020). Infection induces a broad range of symptoms in wild and commercial Malus
species (Bovey, 1963; Blattny et al., 1963; Kartte and Seemüller, 1988) but symptom expres-
sion can vary enormously (Schmid, 1975). Here, it is essential to distinguish between AP
specific and non-specific symptoms, where specificity means, as already touched upon, the
unambiguous relation of symptoms to a particular disease, in this case an AP infection. The
following have been identified as AP specific symptoms: the formation of witches’ brooms,
hence AP’s alternative denotation, which is an ’abnormal bush like cluster of dwarfed weak
shoots’ as well as an ’enlarged and dentate stipules’ (Janik et al., 2020, p.15), whereas the
latter symptom is not easy to diagnose on a tree (Jarausch, 2007) (Fig. 2.10).

An early leaf reddening is the most visible and evident of the non-specific symptoms, which
are those that cannot be clearly linked to an AP infection (Bovey, 1963) (Fig. 2.11). The
degree of colouring can vary between cultivars and over time due to climatic conditions
and is additionally characterised by a papery leaf texture (Mattedi, Forno et al., 2008). An
early leaf reddening, however, can also be induced by mechanical tree damages, fungal in-
fections or certain physiological conditions (Schmid, 1975). Furthermore, Mattedi, Forno
et al. (2008) observed, in case of Gala apples, a pre-harvest chlorosis, which is the yellow
colouring or bleaching of the leaf (Britannica [Britannica], n.d.-a), can be a hint for an AP in-
fection. Schmid (1975) considers an earlier bud break in springtime as an indication for AP
infected trees, which is rather difficult to recognize as a symptom, as it can only occur in a
short time interval. Zawadzka (1976) has also observed stunted branches and rosette form-
ation of apical leaves due to AP, which can emerge during summer, and new shoots from
axillary buds of the old wood. Kartte and Seemüller (1988) describe late blossoming (or late
flowering) as a non-specific AP symptom. Moreover, non-specific but economically import-
ant symptoms induced by AP, are the shrinkage in fruit size, their loss in taste and colour as
well as the growth of a long stem (Blattny et al., 1963; Zawadzka, 1976; Schmidt et al., 2009;
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Seemüller et al., 2010), making these fruits less marketable and resulting in outstanding rev-
enue (Herzog et al., 2012). According to Jarausch (2007) most symptoms are developed in
autumn, when the number of trees with specific symptoms has nearly doubled in compar-
ison to springtime, thus arguing for the best period for visual symptom assessment being
during harvest. However, symptoms can also co-occur and symptom expression is irregular
(Carraro et al., 2004), which is why an iterative symptom assessment throughout the veget-
ation period is recommended, also considering that certain symptoms are observable only
in specific time periods (Janik et al., 2020).

Further understanding and research is necessary to shed light onto differential symptom
development, which is a complex interplay of differences in pathogen strains, sensitivity
of apple types, phytoplasmal colonisation behaviour of the aerial parts of the tree, environ-
mental factors and certain plant-physiological conditions (Seemüller, Schaper et al., 1984;
Carraro et al., 2004; Seemüller and Schneider, 2007; Herzog et al., 2010; Baric et al., 2010).
Adding to the complexity of detectingAP-specific and non-specific symptoms, symptomless
trees can be infected as well. This is mainly because symptom expression can be affected
by the physiological state of the tree, the phase of infection, climatic conditions and other
factors (Janik et al., 2020). In most cases, AP symptoms are expressed within one-and-a-
half to two years after infection, whereas prolonged latency periods of four years have also
been reported (Unterthurner & Baric, 2011). What is referred to as latency period describes
the time span from the AP infection to the development of visible symptoms in the plant
(Janik et al., 2020). Visual inspections are therefore not sufficient to recognize the entirety
of infected but asymptomatic plant material (Janik et al., 2020).

Similarly complex and not detectable though mere visual inspection is the phenomenon
termed recovery, which according to (Osler et al., 2000), is the spontaneous remission of
symptoms in field grown apple trees infested by Ca. P. mali. Osler et al. (2000) found
that 71% of AP symptomatic trees of the cultivar ’Florina’ recovered within 10 years. This
plant disease state may occur either transiently or permanently in infected trees (Seemüller,
Schaper et al., 1984; Osler et al., 2000; Carraro et al., 2004). Despite the cessation of symp-
toms, recovered trees have not literally recovered from the disease but from typical symp-
toms, as bacteria persist in the roots, that can recolonize the canopy spontaneously and
induce symptoms again (Carraro et al., 2004). However, after a period of dormancy charac-
terised by the absence of symptoms, the tree may become symptomatic again and phyto-
plasma can be detected in the aerial parts of the tree (Osler et al., 2000; Carraro et al., 2004;
Seemüller, Schaper et al., 1984; 2010). Consequently, visual assessment is very restricted
and not reliable in identifying AP infected trees but PCR are commonly used to prove the
presence of phytoplasma. Usually, root material of the respective tree is taken as the basis
for analysis (Janik et al., 2020). The use of PCRmethods require specific lab equipment and
must be performed by trained personnel.

Apart from the reliable detection of AP through PCR analysis, there is also a clear consent
regarding the Ca. P. mali transmission. Several forms of transmission have been recor-
ded. One not uncommon way of transmitting Ca. P. mali is by natural root bridges, also
referred to as grafting, or by dodder (Janik et al., 2020). Several tree species have shown
interconnected root systems (Tarroux et al., 2014), which also seems to be very common
with apple trees (Ciccotti et al., 2007). Root anastomosis, which is the technical term for this
phenomenon, has been reported in more than 150 species and allows a tree community to
improve its nutrient’s absorption, increase root system longevity, strengthen tree stability
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(a) Cacopsylla melanoneura (b) Cacopsylla picta

Figure 2.12: AP-transmitting insect vectors (adopted from Janik et al., 2020, p.41)

and mitigate competition between trees (Bormann, 1966; Epstein, 1978). On the other hand,
epidemiological studies show that root bridges also serve inevitably as a medium in the
spread of AP, particularly in medium-aged and old-aged apple orchards (Baric et al., 2007).
Furthermore, remains of old roots left behind in the soil were tested positive for Ca. P. mali
even after 5 – 6 years subsequent to uprooting (Mattedi, Ciccotti et al., 2008).

Without any doubt though, insects are themain drivers behind phytoplasmal spread, whereas
transmission of phytoplasma is highly vector-specific, which means that they are transmit-
ted by only one or a few vectors (Christensen et al., 2005). AP is mainly transmitted by two
psyllids, also known as jumping plant lice (Britannica, n.d.-c), Cacopsylla picta (C. picta) (För-
ster 1848) and Cacopsylla melanoneura (C. melanoneura) (Förster 1848)(C. picta: Frisinghelli
et al., 2000; Jarausch et al., 2003; Carraro et al., 2008; C. melanoneura: Tedeschi and Alma,
2004) (Fig. 2.12). Additionally, the leafhopper Fieberiella florii (F. florii) (Stål 1864) has been
demonstrated to transmit Ca. P. mali (Krczal et al., 1988; Tedeschi and Alma, 2006). All
of them are phloem-sucking insects, which tap the phloem, which can simply be described
as food conducting plant tissue (Britannica, n.d.-d). When feeding on the plants’ sap, the
phytoplasma can then be transmitted through the saliva of an infested insect to the phloem
(Christensen et al., 2005). The phytoplasma spreads systematically in the plant using the
continuous sieve tube system and will eventually remain a parasitic occupant of the phloem.
Phytoplasmas are pleiomorphic (pleiomorphism being the ability to take on several shapes
and forms (Britannica, n.d.-e) and can pass freely through sieve pores due to their small
size. Hence, they might be merely swept along with the ’assimilate flow from leaves to sugar
consuming plant organs like systemic viruses’ (Christensen et al., 2005, p.531). Throughout
the whole year Ca. P. mali is present in the infected apple tree (Baric et al., 2010), and more
specifically in the root system (Schaper and Seemüller, 1982; Seemüller, Kunze et al., 1984;
Baric et al., 2010) as constant phloem renewal allows the phytoplasma to survive there dur-
ing winter (Schaper & Seemüller, 1982). In the course of the year though, phytoplasma con-
centrations vary in the aerial parts of the tree (Schaper and Seemüller, 1984; 1984; Seemüller,
Kunze et al., 1984; Loi et al., 2002; Pedrazzoli et al., 2008; Baric et al., 2010), as recolonisa-
tion of the canopy by Ca. P. mali starts in late spring/early summer, peaks in late summer
and lasts until December.
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Phytoplasmas interact with their plant hosts on different levels, as they move through the
sieve pores, interfere with physiological and biochemical processes in plants and block the
phloem transport by obstructing the sieve tubes (Kartte and Seemüller, 1991; Lepka et al.,
1999). Cell metabolism of Ca. P. mali relies, as any phytoplasma, on their plant host for their
own nutrient uptake (Janik et al., 2020). Although the sugars in the phloem are a potential
food source (Christensen et al., 2005), phytoplasma do not have the necessary toolset, such
as enzymes to break down the sugars and make them available for glycolysis (Christensen
et al., 2005); simply explained as the biochemical process of converting available glucose
into cell available energy known as Adenosine triphosphate (ATP) (Britannica, n.d.-b). Not
being able tomake use of the available fructose or glucose but only sucrose, which, however,
is not in the phloem, phytoplasma disrupt the plantsmetabolite between sieve elements and
companion cells (Christensen et al., 2005). The collapse of sieve elements is considered as
the primary effect of phytoplasma on plant’s metabolism, which might be linked to avail-
able compounds provided by companion cells that might be an important food source for
phytoplasma (Christensen et al., 2005).

Lepka et al. (1999) have demonstrated that AP infection induced impairment of carbohydrate
transport (translocation) to sink tissue, which was correlated to the development of growth
inhibition (stunting) and accumulation of carbohydrates in the source tissue. The increase
of sucrose but also starch, total saccharides and amino acids was observed to go along
with the decrease of glucose and fructose (Giorno et al., 2013), chlorophyll content and the
amount of soluble proteins in AP infected plant tissue (Mittelberger et al., 2017; Bertamini
et al., 2002). The former, the build-up of carbohydrates in source leaves, is considered to trig-
ger feedback through inhibiting photosynthesis causing leaf degreening (chlorosis) (Negro
et al., 2020; Lepka et al., 1999). Impaired photosynthesis is considered as secondary effect
of phytoplasma on the plant metabolism which is related to inhibition of phloem transport
(Christensen et al., 2005; Negro et al., 2020). Negro et al. (2020) showed at the example of
pathogen infestation of the grape cultivar Bois noir, quantities of chlorophyll b, total chloro-
phylls (a+b) and carotenoids, were considerably less in September (at a later disease stage
but not significantly different in the middle disease stage - July). This means, that biochem-
ical concentrations are affected not only differently but also according to the disease stage
or severity.

Infection with Ca. P. mali may trigger plant’s defence reactions, which may lead to the in-
creased production of different defence proteins (Negro et al., 2020). Particularly, phenolic
and flavonoid compounds increase in infected plant tissues, which are both associated with
the strengthening of the plant’s resistance towards pathogens and in turn seem to alter hy-
drogen peroxide production in the infected plants (Negro et al., 2020). Hydrogen peroxide
is considered to counteract symptom development also in AP infected plants (Mittelberger
et al., 2017).

In order to design an AP tailored precision map, it is inevitable to be aware of the Ca. P. mali
and what changes and symptoms it may cause in the apple plant. Hence, the above outline
on past research on AP which goes beyond the cartographic domain is nonetheless funda-
mental for the analysis, classification and interpretation of the remotely sensed data.
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2.5. Summary

The main research ideas evolving from the preceding literature review are based on the mo-
tivation of developing an early detection of AP which is caused by the phytoplasma Ca. P.
mali. With the resurgence of witches’ brooms in recent years, Janik et al. (2020) have high-
lighted the importance for a systematic and interdisciplinary approach to deepen knowledge
about the disease, phytoplasma and plant host interaction and possible reasons for its spa-
tial clustering in certain regions. It is therefore necessary to understand the interaction of the
phytoplasma with the plant host, what biochemical and physiological changes are caused
and that an infected tree can also be asymptomatic which poses a challenge to in-field, eye-
based visual identification (Janik et al., 2020).

The use of hyperspectral data can provide insight and be used as an indicator for infected
plants, as plant physiology can be monitored outside the visible electromagnetic spectrum
(Lowe et al., 2017).Hence, various studies have investigated the use of hyperspectral data
for remote sensing of plant diseases (Albetis et al., 2017; Al-Saddik et al., 2018; Mahlein et al.,
2013; Mahlein, 2016; Rumpf et al., 2010), aiming at an early identification of the diseases
plants allowing an early intervention and implementation of pest control strategies, such
as the removal of infected plant at an early stage in the growing season to prevent it of
becoming a source for further infection.

In order to support spatial decision making in plant disease control, precision maps can be
considered as a powerful tool in communicating plant disease spread visually to the end-
user. Originally precision maps have been used in precision agriculture which relies on the
use of sensing systems for the collection of environmental data that in turn are used for
spatial decision making for agricultural practices. Especially, that precision maps are gen-
erally based on high-resolution imagery which in themselves already represent a form of
Geospatial Big Data, it is necessary to extract relevant, high-resolution geoinformation that
can then be communicated visually to the end-user (Sishodia et al., 2020). Common preci-
sion maps, however, do not follow a cartographic understanding of presenting the essential
spatial information, but instead offer high-detail imagery to the end user.

This thesis therefore argues for the implementation of cartographic generalisation within
the precision map making, which may aid in detecting spatial patterns that can be clearly
communicated to the map user. Cartographer Arthur Robinson and his colleagues (1995,
p.42) formulate that ’the act of generalization gives the map its raison d ’être’. A precision
map needs to undergo a process of generalisation, as it is a cartographic product. The above
quote by Robinson et al. (1995) was primarily concerned with static maps at the time, where
a constant display is given, but the notion of generalisation is also applicable for digital in-
teractive maps. Interactive maps allow an overview of the abstracted or more generalised
spatial information, before offering further spatial detail, which follows Shneiderman’s fam-
ous visualisationmantra 1996 for interactive visualisations – amap essentially being a form
of visualisation – and is described as follows: ’overview first, zoom and filter, then details on
demand’. Consequently, combining interactivity with cartographic generalisation may aid in
representing high-resolution imagery atmultiple scales inwhat one can then coin a precision
map. Multi-scale mapping which is the application of cartographic generalisation at differ-
ent zoom levels may help to bridge the inner conflict of a precision map between display-
ing precise geoinformation based on high-resolution remote sensing and the abstraction of
real-world phenomena or objects that is intrinsic to map-making. An integrated multiscale
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design may aid decision making in respect to plant disease control. As a cartographic tool,
precision mapping, can to be used for minimizing crop losses due to plant diseases and
therefore pose the technological potential for promoting sustainable agriculture.
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Although there are several already existing studies dealing with the detection and mapping
of plant diseases (Albetis et al., 2017; Al-Saddik et al., 2018; Mahlein et al., 2013; Mahlein,
2016; Rumpf et al., 2010), there is no existing methodology for the detection and visual-
isation of AP. Thus, the thesis is considered as experimental research focussing on the
development of a data-driven methodology covering the entire data life cycle: starting with
an in-field detection of AP infection; follow-on multivariate data processing and analysis of
multi- and hyperspectral data; setting the basis for the fusion of multi-modal data obtained
at varying scales; and finally the implementation of a precision map, made accessible as
open data.

Themethodological set-up underlying the thesis is oriented towards a data-centric workflow
presented in the visualisation pipeline. The latter being a theoretically as well as practically
long-prevailing methodological concept, firstly described by Haber and McNabb (1990) as
a creation of visualisation through a procedure of transformations.

Each data handling step within the work flow is seen as a transformation of its original, raw
character to processed, increasingly abstracted representations. The original concept has
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Figure 3.1: Visualisation Pipeline Scheme (based on Haber and McNabb, 1990)
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Figure 3.2: Components of Openness (adopted from Coetzee et al., 2020, p.2)

evolved since its first formulation and found its adoption in software packages that have
automatised this workflow to present the final visualisation to the user or integrating inter-
activity in the visual exploration or visual analytics (Card et al., 1999; for example). Hence,
the concept covers nearly all aspects of the data life cycle, ranging from the collection of
raw data to its visualisation and data sharing. The archival of data and respective visualisa-
tions is not addressed in this methodological framework at hand as it exceeds the scope of
this thesis. However, attributing the raw data with its respective metadata is crucial when
contributing to open data in the geospatial domain. Providing contextual information on
data quality and purpose, not only creates a transparent and reproducible work process but
allows others to adopt the data for their needs (Bossomaier & Hope, 2015).

In achieving this, the methodological framework is set around the idea of open science,
which is defined as ‘making scientific research and its dissemination accessible to all levels
of the society’ (Coetzee et al., 2020, p.2). The term openness is understood here as typic-
ally referring to ‘transparency, to free and unrestricted access to information, and to inclusive
consensus-based decision-making’ (Brovelli et al., 2019, p.1). Embracing this belief in open
science means that openness runs through the entire data life cycle and ideally is reflec-
ted in every working step, as its concept and practice are intrinsically anchored in applying
knowledge (Coetzee et al., 2020).

Thus, science, as the process of building knowledge (Coetzee et al., 2020), is considered
as open science, if the produced knowledge is ‘open if anyone is free to access, use, modify,
and share it - subject, at most, to measures that preserve provenance and openness’ (Open
Knowledge Foundation, n.d.). Another prerequisite with digital Open Scientific Geospatial
Data are the foundational principles of FAIR data, aiming at a sustainable use of digital re-
sources, increasing the data value in being reused by humans or evenmachines (Coetzee et
al., 2020) and ensuring that the data are Findable, Accessible, Interoperable, and Reusable
(Wilkinson et al., 2016). Although FAIR data does not require the data to be open (Laurie

39



3 Methodology

et al., 2012), the principles of both, openness and FAIR, should be viewed as complementary
in data science, particularly once public funding is involved for publishing resources, those
‘need to be as open as possible and only as closed as necessary’ (European Comission, 2018,
p.10).

To live up to the presented understanding of open science, the choice of technology sustains
openness, and thus, open-source (geospatial) soft- and hardware form the fundamental pil-
lars (Coetzee et al., 2020). However, for the sake of scale and scope of the thesis as well
as the project’s capacities, the choice for open-source (geospatial) soft- and hardware had
to be weighed up against what was technically possible and timely feasible. Therefore, the
use of commercially licenced soft- and hardware was indispensable, as some of the meas-
urements instruments come with their own software suite or other commercial software
are considered as state of the art in their domain and application. Nevertheless, the use of
open-source software packages was preferred, especially those offered through the OSGeo
software ecosystem, which projects are considered as the foundation of open-source geo-
spatial software and services that are designed for every geospatial application (Coetzee
et al., 2020), all covering the aforementioned stages in the visualisation pipeline. Thus, the
work packages defined in the development of the thesis are closely coupled to each proced-
ure outlined in the visualisation pipeline covering the collection of raw data, data processing,
data analysis, data visualisation, and map creation as well as the sharing of the data in the
form of a precision map. In the following sections, these steps adopted within the workflow
shall be described in more detail.

3.1. Data Collection

As previouslymentioned, themethodological focus is on the development of a robust in-field
identification of AP infected plants on an orchard. On-site measurements, therefore, consti-
tute the first step in the visualisation workflow – the data collection. Unlike sampling under
laboratory conditions, in-field data collection is subject to the prevailing weather conditions
on the day of the field campaign as well as the daily management activities when sampling
on an agriculturally cultivated site, such as an orchard. Hence, careful and in-advance plan-
ning of the field campaign is a necessity as the quality of collected data can be compromised
by unfavourable weather conditions, such as clouds causing shadows for example, which
can create illumination differences within a scene of an aerial image taken of the Earth’s
surface. Non-invasive technical sensing of plant diseases, either using remote or proximal
sensor systems, can provide highly detailed information on the infection status and even
severity (Oerke et al., 2014).

For the purpose of this thesis, a multi-modal data collection strategy was employed, which
includes the use of several sensing platforms covering different scales. Firstly, taking a
ground-based proximal sensing approach on the leaf level, a hand-held device, such as a
spectroradiometer, gives information about the spectral signatures of infected and uninfec-
ted leaves. The leaf spectral signature constitutes the reflection of light by the leave from
which leaf biochemical and -physical composition, and ultimately the infection state, can be
induced. Additionally, the geographic position of each sampled tree is determined with a
GNSS signal receiving system. In order to validate the results from this non-invasive sens-
ing technique, root samples of the respective trees are taken once early in the phenological
stage to test for the presence of Ca. P. mali. After measuring the leaf spectral signatures,
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the respective leaves are used as samples for follow-on laboratory analysis as well. A PCR
and laboratory spectroscopic analysis provide further insight into the infection status of the
leave and respective tree. Hence, the laboratory findings serve as ground truth of the apple
proliferation invested or uninfected plants. Secondly, following an airborne proximal sens-
ing procedure on the orchard level, multispectral and hyperspectral cameras mounted on
an UAV deliver high-resolution imagery covering the orchard’s extend. Prior software-based
flight planning allows control and optimisation of flight parameters (such as duration, speed,
elevation, amongst others), and it specifies the approximate number of images taken to en-
sure minimum over- and sidelap for seamless follow-on image stitching.

3.2. Data Processing

Leaf Level

Prior to the spectral data analysis of the leaf signatures, pre-processing is required of the
raw data that was collected with the field-spectroradiometer. Spectral data processing typ-
ically starts with the correction for atmospheric effects as well as the calibration of target
scans with respective references before the actual data wrangling. Regarding the atmo-
spheric correction of leaf spectral signatures, the atmospheric effect on the spectral signa-
tures can be considered as very minimal and even negligible. The adopted ground sensing
approach with the spectroradiometer implies close contact between the lens and the single
leaf, literally not leaving a lot of space for air to influence the recorded reflectance values.
Seemingly atmospheric correction does not seem relevant for the ground sensing approach
with a spectroradiometer. In case of this study, calibration of the spectroradiometer is done
automatically already prior to recording leaf spectral signatures and therefore only requires
taking reference scans before each batch of leaf scans for a single tree. More detail on this
will be presented in the following chapter though. Theoretically, a base line correction can
be applied, if collected spectral signatures showa vertical shift along the y-axis (reflectance).
This shift can be explained through the black background of the spectralon which was recor-
ded during the target scan and thus impacts the trend of the spectral signature. Hence, it
is advisable to cover the entire foreoptic lens prior to sampling unless the area of the black
background is known and can then be accounted for in the baseline correction. Thereafter,
leaf spectral signatures are resampled to an evenly spaced spectral response of 1 nm high
spectral resolution, which involves interpolation of the spectral data. Once the original data
has been resampled, the spectral signatures are filtered, removing outlier measurements
that could have an impact on follow-on data analysis. Depending on the software and work-
ing packages deployed, the follow-on data analysis requires a further transformation of the
data format to be used for statistical analysis and plotting.

Orchard Level

Pre-processing of the UAV imagery deviates from that of spectral signatures collected with
the spectroradiometer as it is slightly more complex and involves several working steps.
However, calibration is equally important and is also required for the cameras mounted on
the UAV either prior to or after the data collection, depending on the camera. Once the im-
ages are orthorectified as orthomosaiced, the images are radiometrically corrected. The
former relies on the SfM principle, which requires the identification of tie points within the
overlapping scenes of neighbouring images. Tie points are used to align the images to
each other, which includes supplementary orientation parameters (interior orientation, ex-
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terior orientation and aerial triangulation) for photogrammetrical bundle block adjustment
(Szabó et al., 2017). Due to the low flying altitude of the UAV, possible atmospheric absorp-
tion features are considered to be negligible again; hence atmospheric correction is also
not applied to the proximally sensed imagery. Certainly, the atmosphere has a specific im-
pact (e.g. water droplets) on the spectral reflectance of the earth’s surface recorded at the
sensors, but the influence is considered to be fairly low under sunny and cloud-free weather
conditions.

Nevertheless, the recorded images need to be georeferenced to align spatially. Hence, the
coordinates from the Ground Control Points (GCPs) are used as reference points for trans-
lating the images in the respective coordinate system. Once the imagery is georeferenced,
a DEM can be computed using the multispectral images as a basis. The digital elevation
model typically consists of a Digital SurfaceModel (DSM) and a Digital TerrainModel (DTM),
and their difference is equal to the Canopy Height Model (CHM). The latter represents the
heights of the detected tree canopies, which serve as input for the tree canopy delineation.
Ideally, individual tree canopies can be delineated and segmented from the CHM using in-
verse watershed algorithms, where the highest points or local maxima in the tree crown
model are used as seeding points for the watershed algorithm (Barnes et al., 2017, for in-
stance). However, this ideal procedure for an object (i.e. tree) oriented classification on the
basis of the CHM had to be compromised which shall be elaborated in the following chapter
in more detail. Thus, as an alternative to the single tree classification and introducing fur-
ther cartographic abstraction, a regular grid structure allows binning of the hyperspectral
information in the data analysis.

3.3. Data Analysis

Leaf Level

The processed leaf spectral signatures can be regarded as a multivariate data set because
one leaf spectral signature is composed of reflectance values respective for each recorded
wavelength within the detection window of the spectroradiometer. Consequently, one leaf
spectral signature consists of hundreds or even thousands of wavelengths (to be thought
of as a variables) and the corresponding reflectance values. This shear number of variables
for a single measurement makes this data set high-dimensional. Dimensionality, which is
understood here as the number of variables – a variable representing one dimension of the
data – is an essential characteristic in the hyperspectral data structure.

Hence, within the scope of this thesis, the data analysis aims at the extraction of spectral
information from the collected data in order to differentiate AP infected from uninfected
leaves on the orchard based on their spectral reflectance behaviour – their spectral signa-
tures. In order to pinpoint spectral changes between these two classes or physiological
states of the leaves, it would be ideal to narrow down the whole data set to a smaller num-
ber of spectral bands where the greatest changes can be observed and compose VI that
serve as the first indication for general plant stress. The wavelength or waveband selection
of hyperspectral data requires data dimensionality-reduction techniques. These aim at redu-
cing the number of wavelengths (i.e. dimensions) of high-dimensional data to a set of a few
wavelengths by either variable selection, when specific variables, in our case, wavebands
are selected, or feature extraction, which is the creation of composite variables by (linear or
non-linear) projection methods (Izenman, 2008). Both approaches imply information loss,
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funnelling the entire data to essential and relevant information for further analysis and in-
terpretation. However, spectral wavelengths are highly inter-correlated, which means that
a potential change in plant’s health status will most likely not affect a single band only, but
impose alterations across the spectral signature, which means a lot of redundancy in the
spectral signal (Wegmann et al., 2016). Nonetheless, the recorded reflection will probably
show greater changes in some bands than in others (Izenman, 2008), which can be con-
sidered basically as noise for the spectral analysis. Thus, dimensionality reduction aims at
identifying bands that inhibit essential information. Consequently, the change in amplitude
of the spectral signatures is considered as relevant information for the spectral differenti-
ation between infected and uninfected leaves within the methodological framework of this
study. In other words, wavelengths, which show the highest difference or variance between
the reflectance values of infected and uninfected leaves, are of interest for the variable se-
lection or feature extraction.

As one of the most prominent projection methods for feature extraction not only for hyper-
spectral data, is the PCA (Wegmann et al., 2016), which was introduced as a dimensionality
reduction technique by (Hotelling, 1933). The PCA computes new dimensions by orthogon-
ally projecting a set of correlated variables, ranking the projections in decreasing sequence
based on their variance (Izenman, 2008). Based on the predefined settings of the PCA, ten
to 20 dimensions are usually computed, where one dimension is a linear composition of the
eigenvectors of the variables respective to their share in total variance within the data set.
Hence, the first PC is the newly computed dimension with the greatest variance amongst
the variables, whereas each variable within this newly computed dimension contributes dif-
ferently by their loadings to the orientation of that dimension (Kucheryavskiy, 2020). There-
fore, the 20th PCwill show least variance amongst the set of PCs as it inhibits least variance
amongst the variables. Variance is therefore used here as a statistical variable property to
deduce relevant information from a reduced data set. Anyhow, it is not the variance per
se that is of interest but the separability of the two classification groups (infected vs. unin-
fected) and therefore identifying which variables or which dimensions are best suitable for
separating these two groups in feature space.

Orchard Level

The findings from the dimensionality reduction of the hyperspectral data on the leaves level
can then be incorporated into the follow-on image analysis of the multi-and hyperspectral
imagery, in respect to composing vegetation indices and applying classification algorithms
to delineate the infected from the uninfected trees. Scaling is the keyword when transferring
the results obtained from the leaf spectral analysis and applying them to another level of ana-
lysis. Zarco-Tejada et al. (2001) have already described various approaches in scaling their
findings from the spectral analysis on the leaf level to the canopy level, whereas their particu-
lar focus in their study back then was on the relationship between leaf pigments and reflect-
ance values. For this study, variables’ loadings contributing to the respective PC are con-
sidered as an important criteria from the leaf level to be included in the orchard level. High
loadings (or, in other words, greater contribution to the newly formed PC) are considered
as an indicator for more significant variance within recorded reflectance values. Hence, a
larger variancemay imply better separability between infected and uninfected leaves, which
is why these wavebands are selected for the composition of vegetation indices.

However, the vegetation indices are yet to be considered as disease unspecific. Thus, a re-
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producible, disease-specific classification of the hyperspectral imagery would be ideal for
delineating AP infected from uninfected trees. As already mentioned in the literature review,
machine learning algorithms are widely used in image classification and also in plant dis-
ease identification and detection from imagery. Ideally, when applying machine learning
classification techniques, it is advisable to test and experiment with several algorithms, as
each classification algorithm performs differently well on various plant diseases. Therefore,
there is no machine learning approach that ‘does it all’ or what Wegmann et al. (2016) de-
scribe as ’no-free-lunch theorem’.

For a supervised classification, training and validation data sets are required for the algorithm
to separate two or more classes and evaluate the classification performance. The idea is
to use the trees that are also sampled with the in-field spectroradiometer as training data
or input for the machine learning classification in order to (a) scale the findings from the
leaf level of the exact same tree to the canopy level, and (b) the infection status is known
prior (ground truth provided by a priori laboratory analysis at LRC. Ground validated GPS
measurements shall help to identify the exact trees in the aerial imagery. Additionally, the
vegetation indices may be used as a further indication for delineating the training data as
plant stress can be identified within the canopy.

3.4. Data Visualisation and Map Design

Leaf Level

The resampled leaf spectral signatures are plotted in line graphs to visually compare the
curvatures of the uninfected and the AP infected leaves. Firstly, all leaf measurements of a
single tree (10–12 samples) are plotted in one diagram in order to understand the intra-tree
variability. Thereafter, the leaf spectral signatures are averaged to a mean leaf spectral sig-
nature. These are also visually plotted as line graphs for visual comparison with other infec-
ted and uninfected trees. The averaged leaf spectral signatures cannot be strictly speaking
treated equally as respective tree canopy spectral signatures but as mere leaf averages of
the respective tree. Averaging the spectral mean leaf signature allows capturing a certain
pattern across the electromagnetic spectrum for each tree’s respective leaves. Finally, these
tree respective leaf means are aggregated once more by averaging in respect to infection
status to obtain an AP infected and uninfected mean leaf spectral signature.

Furthermore, PCs are also visualised in several ways. A so-called scree plot displays each
PC’s relative share in total variance foundwithin the dataset in descending order, consequently
beginning with the first PC where the greatest variance is found in the dataset, which de-
creases sharply to the last computed PC. More importantly though is the plotting of PCs
against each other. This allows making use of the maximum variances along with the PCs
in order to increase visual separability between the infected and uninfected trees.

Regarding the visual display and differentiation between the two infection statuses in the
plots, colour hue is the only colour variable to represent qualitative data suitably (White,
2017), or in other words the two categories (binary classification) infected and uninfected.
The choice of colour hue, though, is not trivial, as colour invokes certain associations, but
at the same time, is an essential visual variable that can effectively convey information visu-
ally. Additionally, it is advisable to bear in mind a colour-blind safe choice of hues to avoid
confusion of the two plant infection categories.
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Orchard Level

The development of an interactive web map allows implementing a multi-scale designed
precision map. For this purpose, the map user interface shall consist of several thematic
layers displayed in (a) a spatially aggregated format and (b) its original spatial resolution ac-
quired by the camera sensors. The thematic map layer represents different aspects of the
spatial information on the orchard, including an orthophoto, multi- and hyperspectral veget-
ation indices and the AP map layer, which is the classified imagery regarding AP infection
using amachine learning classification. Thesemap layers shall be displayed at a high zoom
level or largemap scale in full detail. Whereas, when accessing themap, the user shall firstly
be presented with aggregated spatial information of the respective thematic layers to have
a general overview of the orchard.

Ideally, the tree canopy shapes can be extracted as polygonal outlines from the CHM in or-
der to implement a spatial aggregation and object-based classification. Alternatively, the
classified spatial information can be aggregated cell-wise using a grid structure which is
then colour coded according to predefined classes. This procedure is comparable to a tes-
sellation approach, where regular polygons (equilateral triangles, squares, and hexagons)
can be used to tessellate (or aggregate) cells without overlapping (Carr et al., 1992). Unlike
tessellation, though, which covers the entire map pane, the regular grid structure is applied
only to the tree rows, where a single grid cell is used as a graphical primitive to abstract the
tree canopy shape. Although tessellation foresees the mapping of frequency or occurrence
of real-world phenomena (represented as vector points), graphical primitives can also be
used to apply zonal statistics, such as the average or the majority, to the classified raster
images to obtain an aggregated value within the respective bounds.

Again colour is used as a visual variable (including hue and value [lightness]) to represent
data classes. Here one needs to distinguish between the visual representation of vegeta-
tion indices, on the one hand, which adopt a sequential colour scheme and therefore colour
value (lightness) needs to be successively adapted between classes and the binary image
classification for AP infection, on the other hand, where a qualitative colour scheme is more
suitable, and consequently the colour hue is crucial.

Commonly, map user interfaces offer additional components or map elements, such as nav-
igation buttons on the side for panning and zooming within the web map; a display of scale
or scale bar; an overview of (active) layers; and a legend. When selecting interactively map
features, a window will pop-up at the side offering further details on the feature regarding
information stored in the attribute table or exact pixel values on demand.

3.5. Data Sharing

The web-based precision map is not a single application but is part of an orchestra of soft-
and hardware that form a SDI. The architecture of a SDI can be generally stratified into an
user interface (which includes the map user interface), an application layer, which serves
the data for the web application, a data layer that hosts or stores the data and a metadata
catalogue which provides essentially information about the data that is being used within
the mapping application. A SDI therefore needs to be understood as a complex system
comprised of several components (soft- and hardware alike) with the aim to facilitate and
coordinate spatial data exchange amongst stakeholders (Hjelmager et al., 2008). Webmap-

45



3 Methodology

ping services can be offered through a SDI which supports the idea of openness as well as
open and FAIR data access.

Particularly for academia and scientists, SDIs can promote open scientific data, where re-
search findings are shared to be reused, provide incentives for verification or promote new
findings (Coetzee et al., 2020). Furthermore, as this research is understood as an experi-
mental study on precision mapping of AP, a SDI enables the storing of the relatively large
data volume of the high-resolution imagery and, at the same time offering accessibility to
the findings. Additionally, the use of open geospatial software (for instance, the OSGeo
ecosystem) and implementation of open standards (i.e. publicly developed and available
specifications for hardware, software, or data) (Open Geospatial Consortium [OGC], n.d.;
International Organisation for Standards et al. [ISO et al.], 2018) underlines the idea of open-
ness. Therefore the development of an AP specific precisionmap in the scope of this thesis
can be considered as open science.

As mentioned briefly already, the use of metadata is essential when guaranteeing a stand-
ard conform dissemination of the precision map as a mapping service. Metadata provide
essential information about a dataset, regarding its content (what it is about), means of
collection (When, where and how the data was acquired?), authorship (Who produced the
data?), and its structure (Bossomaier & Hope, 2015).
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Study Site

The orchard, that was taken as a case study for this thesis and is specifically used for
scientific studies on AP at the LRC, is situated in the Upper Adige Valley between Meran
and Bolzano, in the Italian province of South Tyrol. To be precise, the orchard is located at
11°1939’ E, 46°642’ N and around 745 m of elevation close by the Fragsburg Castle on the
west-facing slope of the Tschögglberg (western mountain fringe of the Sarntal Alps) in the
Etschtal. It is an exceptional site for the study of AP as infected treesmay be kept in place on
the orchard for further scientific investigation and thus do not face uprooting by Italian law
which is followed as soon as an apple tree is identified as infected (Ministero delle Politiche
Agricole e Florestali, 2006). The orchard itself is split into two parts. Relevant for this study
is the northern part which, unlike the southern half, is not treated with pesticides to prevent
the spread of AP and, therefore, consists of infected and uninfected trees. The apple variety
grown on the orchard is called Golden Delicious.

Climate

The prevailing moderate, continental climate in South Tyrol ensures a yearly average tem-
perature of 12,4°C in Bolzano (266 m) (Tappeiner et al., 2020). Generally, the seasons
are defined by cool to cold winters and warm to hot summers, typically with little rainfall,
especially in the broad main valleys of South Tyrol. The average annual precipitation is
between 500 mm in Schlanders in the Vinschgau, northwest of Meran, and 1100 mm in the
area between Passeier and Brenner. In July and August, maximum precipitation is reached.
Profiting from the inner-Alpine location and the resulting mass warming effect, South Tyrol
registers a high number of hours of sunshine, creating favourable apple and wine-growing
conditions. Even in higher altitudes just over 1000 m above sea level, it is possible to cul-
tivate these. Additionally, temperature differences of up to 20°C between day and night

Figure 4.1: View from the Orchard over the Frabsburg Castle, Meran and the Etschtal
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Figure 4.2: Drip and Overhead Irrigation Systems (adopted from Zebisch et al., 2018, p.70)

provide good ripening conditions for grapes and apples (Tappeiner et al., 2020).

Background - Agricultural Context

Fruit growing and viticulture have an essential share in South Tyrolean agriculture and achieve
together 60% of the agricultural value added (Institut für Wirtschaftsforschung, 2016). Par-
ticularly the district of Überetsch-Unterland, in the valley floor between Bolzano andMerano,
in the Vinschgau and the middle Eisack Valley, specialised fruit and wine farms cultivate
about 11% of the agricultural land (Tappeiner et al., 2020). The favourable growing condi-
tions as well as increased mechanisation and industrialisation of the fruit and wine growing
sector have pushed harvest volumes to rise sharply since 1990 by an average of around
1.8% per year, resulting in an increase of over 58% over 27 years (Tappeiner et al., 2020). The
economic importance of fruit growing industry and viticulture for the region can be easily un-
derstood from this historical development. With the agricultural intensification, the fruit and
wine cultivation also expanded in terms of elevation, reaching altitudes up to around 1000
m in the Etsch- and Eisack Valleys (Tappeiner et al., 2020). Spraying of plant protection
products, like pesticides, fungicides, or herbicides, are common practice in extensive apple
orchards, such as the use of black hail nets (to protect the fruits during growing and ripening
stages from hail as well as acting as filters to diminish the risks of sunburn) (Zebisch et al.,
2018).

Also, in terms of water use, irrigation in the fruit growing sector is considered as one of
the most intensive in South Tyrol, compared to wine or grassland farming (Tappeiner et al.,
2020). Especially deep south-facing cultivation areas, like the entire Vinschgau region in
general, have always depended on additional irrigation (Tappeiner et al., 2020). Overhead
irrigation or foliage sprinkling systems are widely deployed in fruit growing, as they can also
be used for frost protection. However, steering towards a more sustainable agriculture, con-
scious and regulated water use for irrigation is inevitable and has lead to a continuously
increasing share of drip irrigation over the past ten years (Tappeiner et al., 2020). Instead
of sprinkling water over a large area consuming large quantities, drip irrigation systems are
considered to be more efficient in irrigating the apple trees, especially with water shortages
in summer months (Tappeiner et al., 2020). This drip irrigation is one example of precision
agriculture.

Technological innovations that implement farming measures on a small scale or locally ac-
cording to demand contribute to more sustainable agriculture. Following the vision of ag-
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riculture 4.0, which summarises the latest technological developments in the agricultural
sector, precision and digital farming form an integral part. This idea spans from the afore-
mentioned improvements in irrigation to advances in fertilisation, crop protection, livestock
management and optimising bureaucratic processes through the use of sensors, automated
monitoring systems and UAVs (Tappeiner et al., 2020).

This thesis aims at contributing to this vision of sustainable agriculture through developing
a methodology for precision mapping of plant disease detection at the example of AP by
adopting a proximal and ground sensing approach (Fig. 4.3).

Figure 4.3: Schema of the adopted workflow
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4.1. Data Collection

Within the scope of this thesis, the data collection was structured in four field campaigns
covering several phenological growth stages from April (inflorescence emergence - stage 5)
through to apple fruit development in August (stage 7), according to the BBCH-Scale (Meier,
2001) (Table 4.1).

Field campaign Date Penological stage description (BBCH-Scale)

1 06.04.2021 inflorescence emergence (phenological stage 56),
green buds, still closed single petals begin to separate
from each other

2 18.05.2021 fruit fall after flowering (71)
3 23.06.2021 between T-stage and fruit about half final size (74/75)
4 21.07.2021 fruit about 70% final size (77)

Table 4.1: Overview of field campaigns and the corresponding phenological stage according
to the BBCH-Scale

The first field campaign was conducted in an experimental and explorative manner in or-
der to test the sampling procedure and analyse first spectroradiometric measurements ob-
tained and potentially improve the overall sampling procedure for subsequent fieldwork.

Leaf level

Similar to Al-Saddik et al. (2018), a field-portable spectroradiometer (SVC HR-1024i, SVC,
Poughkeepsie, New York, USA) was deployed for spectral reflectancemeasurements of leaf
surfaces (Fig. 4.4). SVC’s HR-1024i offers a detection window of wavelengths ranging from
350 nm to 2500 nm (SVC, 2012), covering parts of the Ultraviolet (UV) (UV-A: 315–400 nm),
VIS (400-700nm), NIR (700–1100 nm) and parts of the SWIR (1100–1350 nm, 1400–1800
nm, 2000–2500 nm) electromagnetic wavelength spectra (Schowengerdt, 2006). Further-
more, it is equipped with three diffraction grating spectrometers with one silicon (with 512
discrete detectors) and two InGaAs diode arrays (each having 256 discrete detectors) that
provide the capability to read 1024 spectral bands (SVC, 2012). The spectral resolution of
the spectroradiometer is defined as fwhm which also varies across the detection window
(SVC, 2012):

≤ 3.5 nm fwhm between 350–1000 nm

≤ 9.5 nm fwhm between 1000–1850 nm

≤ 6.5 nm fwhm between 1850–2500 nm

Leaf spectral signatures were obtained using SVC’s LC-RP PRO, a pistol-like hand-held exten-
sion, which is connected via a foreoptic sleeve and a fibre optic light guide to the spectrora-
diometer that is carried in a backpack for conducting fieldwork (Fig. 4.5). The leaf clip ac-
cessory is supplied with power through the spectroradiometer’s LI-Ion batteries, when fully
charged allowing over three hours of operation according to SVC (2012), and the collected
data is transferred back from the LC-RPPRO through a signal cable. Ameasurement is taken,
also referred to as a target scan, after having performed a scan of the white reference spec-
tralon plate, a reflectance disk that is used for the reference scan. The disk is attached at
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Figure 4.4: Set-up of the SVC-HR-1024i spectroradiometer (adopted from SVC, 2012, p.7ff.)

the back of the sample plate holder of the leaf clip. A measurement is conducted by placing
a leaf between the sample plate holder’s dark plate as a background and the probe window,
covering the entire leaf clip’s field of view (FOV) (Fig. 4.6). While taking the target scan,
the probe should be held steady in order to avoid abrupt changes in the sampled leaf area
that, in turn, can affect the recording of the spectral reflectance (SVC, 2012). A scan time
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Figure 4.5: Leaf spectra Sampling using the hand-held spectroradiometer on the orchard

of five seconds was chosen during which the leaf is exposed to the leaf clip’s artificial light
source. It is worthmentioning that prior to sampling, the ‘low’ light setting needs to be selec-
ted when sampling vegetative material. The ‘high’ light setting is selected when sampling
harder or rougher surfaces, such as rocks or soil, and would, therefore, burn the sampled ve-
getation. A single percent reflectancemeasurement is provided by the acquisition software,
taking the scan of the white disk reference surface radiance (in Wcm−2 nm−1 sr−1 – watt
per square-centimetre per nanometre per steradian) and calculating the ratio of the target
scan to that reference (SVC, 2012). Following the recommendation by SVC (2012), a new
reference measurement was taken at the beginning of a new set of scans – a set of scan
being around ten leaves of a single tree – and also when the instrument was turned off and
back on again during sampling. Deviating from the originally defined sampling strategy of

Figure 4.6: SVC’s LC-RP PRO(adopted from Spectra Vista Corporation, 2021)

52



4 Case Study: Apple Proliferation in South Tyrol

Figure 4.7: RTK ground station receiver

collecting spectral data from 20 infected and 20 uninfected trees, around 20-23 trees were
sampled in total during each field campaign. The selection of apple trees for spectrora-
diometric sampling was subject to the long-termmonitoring and studying of certain trees on
the orchard by LRC. Consequently, the infection status of each sampled apple tree was valid-
ated by testing respective root samples in the laboratory taken from the first field campaign.
Thus, the spectroscopic and PCR laboratory analysis of the root material, as well as addi-
tionally sampled leaves that were taken after each spectroradiometricmeasurement, served
as ground truth. Hence, the tree’s infection status was known prior to sampling. Under the
guidance of colleagues from LRC’s Department for Functional Genomics, leaves were ‘ran-
domly’ selected for in-field spectroradiometric sampling. However, absolute randomness
cannot be assumed due to two main reasons: firstly, the sampling design stipulated leaf
measurements to be taken from the same side (which faced east) in between apple rows to
remain somehow consistent during the sampling procedure. And secondly, sampling itself
was limited to the reaching area restricted by the arm’s length and that of the power cable
supplying the leaf clip. Additionally, the selection of sample leaves was biased by preferring
rather older leaves over younger leaves, as these are consideredmore representative for the
entire tree canopy.

It is worth mentioning that the weather conditions were fairly stable during the sampling
activities. However, outdoor temperatures varied from the first (beginning of April) to the
fourth (mid-July) field campaign as well as throughout the day, with typically rising temper-
atures towards midday and the afternoon. The SVC HR-1024i’s internal temperature sensor
also recorded a difference in temperature of around 30°C during the last field campaign
in July (circa 22°C with beginning of sampling activities from a cold start at 9 o’clock in the
morning and around 50°C after the last leaf sample at 3 o’clock in the afternoon). Themeas-
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urements with the spectroradiometer were usually taken between 9 o’clock in the morning
till noon and from 2-5 o’clock in the afternoon. All measurements were completed within
around 6-8 hours.

The geographic position of each sampled tree was obtained using the Leica GS14 GNSS
RTK Base & Rover Receiver Set (Leica Geosystems AG, Heerbrugg, Switzerland)(Fig. 4.7).

Orchard level

In addition, an airborne proximal sensing strategywas adopted by deploying anUAVequipped
with two cameras. Prior to take-off, it is necessary to plan the flight missions according to
the mapping interest and the area to be mapped. For instance, one should be aware of
the extend of the area of interest and be able to set a flight altitude for appropriate cover-
age. What kind of product is needed and which camera or sensor system is suitable for
the survey? How are the camera’s mounted (e.g. using a gimbal) and what are the cam-
era’s specifications? And not to forget to mention the take-off and landing conditions in
the field (Szabó et al., 2017). Hence, taking into consideration the high sensor payload and
consequent load on the UAV’s batteries, two consecutive flights with an approximate flight
duration of eight minutes were performed during each field campaign for safety reasons.
The open-source and free firmware MikroKopter-Tool, or short Kopter-Tool (Version 2.20b,
HiSystems GmbH, Moormerland, Germany)1, allows flight pattern computation prior to take-
off. Such a pattern can be a regular grid or zig-zag flight pattern covering the whole aerial
extent of the orchard.

Figure 4.8: Soleon Octocopter mounted with the MicaSense Red Edge and the Rikola hyper-
spectral camera

1https://wiki.mikrokopter.de/MikroKopterTool
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The prior flight control software use planning algorithms to improve accuracy (Li et al., 2016)
and allows setting the flight parameters in advance to the UAV launch. Thus, flight altitude
and speed were specified prior as 45 m above ground ideally and 2 m/s, respectively. Every
5 seconds, images are taken, ensuring approximately 60-80% of longitudinal and transversal
overlap of image strips for follow-on image stitching. Georeferencing is done with three to
four GCPs which are pre-marked artificial features (Szabó et al., 2017). These are placed on
the ground prior to the flightmission in a way that clearly appear in the recorded scene of the
orchard. Their respective locations are also recorded in a known reference system.

During surveying, the UAV’s flight controller unit (FCU) follows the predefined waypoints and
flight route autonomously, additionally handling speed and manoeuvring. Equipped with
further positional sensors, such as a GPS/GNSS sensor, a magnetometer and/or an inertial
measurement unit (IMU), actual flight parameters (e.g. attitude, accelerations, and altitude)
are recorded and controlled during the flight in order to follow the predefined flight route as
close as possible. However, the FCU permits pilot intervention through a remote controller,
as the pilot needs to have the UAV in their FOV throughout the entire flight.

The CSS’s octocopter (Soleon GmbH - SRL, Varna, Italy) (Fig. 4.8) was deployed for airborne
imaging, which is a lightweight multicopter made out of a carbon and plastic construction,
equipped with six 15” carbon propellers (Soleon GmbH, n.d.). Unlike the spectroradiometer,
the UAV’s motors and propellers are powered by lithium-polymer (Li-Po) batteries. At the
UAV’s underside, the PSC1 Rikola hyperspectral camera (Rikola Ltd., Finnland) and theMica-
Sense RedEdge (MicaSense, Seattle, WA, USA) multispectral camera were mounted on a
2d-axis gimbal for aligning both cameras to nadir view. By and large, a gimbal is a stabil-
izing mount that automatically corrects for weak flight turbulences and holds the camera
or sensor in the intended orientation (Szabó et al., 2017). Both cameras achieve a Ground
Sampling Distance (GSD) of 5 cm, which is the distance between centres of two adjacent
pixels or, in other words,the spatial resolution of the imagery.

Figure 4.9: MicaSense RedEdge multispectral camera (adopted from MicaSense, 2021)
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From the MicaSense RedEdge five spectral bands were obtained covering the following
bandwidths:

Multispectral band Centre wavelength in nm Bandwidth in nm

Blue 475 32
Green 560 27
Red 668 14
Red edge 717 12
Near-Infrared 842 57

Table 4.2: Recorded Wavelengths and respective bandwidths of the MicaSense RedEdge
multispectral camera

The Rikola hyperspectral camera was measuring radiance in the following bands and their
respective fwhm:

Wavelength in nm fwhm in nm Wavelength in nm fwhm in nm

506.285 9.84 716.158 11.92
521.498 14.62 731.318 10.53
536.468 11.51 746.096 10.27
551.474 10.06 761.157 15.64
566.249 9.76 776.245 13.97
581.498 14.01 791.462 12.81
596.211 12.53 806.339 14.67
611.086 17.53 820.873 15.0
625.943 16.4 835.804 21.04
645.258 12.74 850.597 25.85
656.031 12.85 866.602 24.49
671.165 16.08 881.009 20.16
686.279 15.14 896.406 22.87
701.45 11.25

Table 4.3: Recorded Wavelengths and respective fwhm of the Rikola hyperspectral camera

Figure 4.10: PSC1 Rikola hyperspectral camera (adopted from Patria Magazine, 2017)
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However, what was not considered prior to the second field campaign was the hanging-up
of black hail nets above and across the apple tree rows on the orchard. This being a very
common practice in South Tyrol, as summer showers in the alpine environment can pose
a severe risk to apple fruits. Summer rainfall can rapidly turn into hailstones due to sud-
den cooling at high altitudes in a montane environment. Consequently, irradiance measure-
mentswere taken using the SVC-HR-1024i spectroradiometer oncemore, but in combination
with SVC Direct Connect Full Sky Irradiance Sphere (SVC, Poughkeepsie, New York, USA) at-
tached at the foreoptic port on the front of the instrument. Two solid sphere halves form
the 3.3 inch (≈84 cm) diameter spherical integrating chamber, enclosed in a robust metal
housing, mated with solid high-density spectralon PTFE, having one inlet and one exit port
(SVC, 2016). Two irradiance measurements were taken with the spectroradiometer moun-
ted on a tripod between the apple tree rows directly beneath the black hail net and the other
just outside the hail net.

Figure 4.11: SVCDirect Connect Full Sky Irradiance Sphere (left) and the SVC-HR-1024i spec-
troradiometer equipped with the Sphere (right) (adopted from SVC, 2012)
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4.2. Data Processing

Leaf level
The collected leaf spectral signatures are stored in the SVC specific Signature (SIG) file
format, which is a text file containing a header with the measurement’s respective metadata
(for example, measurement ID, scan duration, geographic coordinates, time, units, battery
status, instrument temperature, etc.) followed by the spectral information (SVC, 2012). The
.sig-file lists for every recorded wavelength (in nanometres) the respective radiance values
(in Wcm−2 nm−1 sr−1) of the target as well as reference scan and ultimately the respective
reflectance (in percent) (SVC, 2012).

The proprietary PC Data Acquisition Software that comes with SVC’s HR-1024i spectrora-
diometer was used to calibrate and resampling the leaf spectral signatures. Reflectance
scans were taken of the white reference disk during data collection prior to every batch
of tree-specific leaf measurements. These reference measurements are compared to the
respective values of the internally stored White Plate Reflectance Data File, which is a two-
column text file, containing the wavelengths in nanometres and respective reflectance val-
ues (SVC, 2012). Based on this calibration, the leaf radiance and reflectance values are
corrected retrospectively.

As mentioned in the methodology already, a baseline correction can be conducted, if a ver-
tical shift along the reflectance-axis can be seen from plotting the leaf spectral signatures.
This is due to the exposition of the black spectralon background during leaf sampling. Only
part of the foreoptic lens is covered by the leaf and the overall reflectance measured is re-
duced due to light absorption features of the black disk. Not knowing the exact area of
the black background that was exposed during a spectral measurement makes it difficult
to quantify the black spectralon background’s absorption. Consequently, leaf spectral sig-
natures were not baseline corrected during data processing. This absorption effect of the
black disk wasmost significant in the first field campaign when the sampling technique was
still to be refined. For the subsequent field campaigns greater attention was paid to the leaf
sampling, ensuring that the spectroradiometer’s lens was entirely covered by the sampled
leaf.

After radiometric correction, leaf spectral signatures were resampled using the PC Data Ac-
quisition Software to 1 nm intervals through spline interpolation. Hence, each measure-
ment’s spectrum ranges from 350 nm to 2500 nm at 1 nm increments.

Once the radiometric resolution was enhanced, the follow-on data wrangling, plotting and
data analysis was conducted with R (R Core Team, 2021) in the RStudio IDE (RStudio Team,
2021). For data wrangling, R was favoured over the commercial software provided by SVC,
as it is one of the leading open-source data science languages in the domain of remote
sensing and geospatial sciences (Coetzee et al., 2020), allowing the plugging-in of several
different packages. The ‘spectrolab’ package (Meireles et al., 2017) for instance was used
for reading the reflectance values from the sig file formats to be processed in the RStudio
environment. The ‘dplyr’ (Wickham et al., 2021) and ‘magrittr’ packages (Bache & Wickham,
2020) were used for data cleaning and formatting and ‘ggplot2’ (Wickham, 2016) for produ-
cing plots of leaf spectral signatures, both packages being part of the ‘tidyverse’ R-package
(Wickham et al., 2019).

A tree data set usually consists of ten leaf measurements per tree, with a few cases also
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eleven or twelve leaf measurements. All tree data sets were plotted in a single graph and
visually inspected for potential measurements deviating from the ‘common’ trend. A more
reproducible approach using a statistical selector would have been favoured over this fairly
subjective selection of leafmeasurements through visual interpretation. However, not know-
ing the natural variability within the tree spectra, filtering for outliers in a tree dataset might
be considered a legitimate approach to reduce the influence of seemingly different leaf spec-
tral signatures that do not follow the same distribution of the other measurements. A higher
number of target scans per tree (at least 30) would have been a statistically reasonable num-
ber for computing an averaged tree specific leaf spectral signature that could have been
used for filtering, e.g. selecting all spectral signatures within a certain tolerance or variance
from the tree mean signature.

Orchard Level

Subsequent to the UAV flight(s), the camera sensors and the derived multi- and hyperspec-
tral images need to be calibrated and corrected respectively, thereafter the imagery is stitched
to orthomosaics andgeoreferencedduring the processing stage prior to image analysis.

Radiometric calibration/correction is necessary for both types of camera sensors and im-
agery, multispectral as well as hyperspectral data. However, the MicaSense RedEdge cam-
era requires radiometric calibration prior to the flight mission, using a white reference, which
is scanned before take-off in the field. The imagery from the Rikola hyperspectral camera, on
the other hand, requires radiometric correction afterwards. Coloured tarps (black and white
as theoretical limits, as well as grey) were laid out in the orchard (Fig. 4.12) and recorded
within the scene, which are then used for radiometric correction.

The obtainedmulti- and hyperspectral images were radiometrically corrected using the cam-
eras’ metadata files to transfer the pixel values (or also called digital number (DN)) into ra-
diance values. Spectral radiance being the amount of energy radiated from an area, energy
values ranging from 0 to 1. The multispectral images have a radiometric resolution of 8 bit
(256 DN) and the hyperspectral images of 12 bit (4096 DN). Radiometric correction of the
images was performed with the proprietary ENVI software package based on IDL2, which
are both considered still as state of the art in remote sensing.

Atmospheric correction of the imagery was not considered to be necessary, as the UAV-
derived imagery taken at the low altitude is not as affected by atmospheric absorption as
for instance, remotely sensed satellite imagery (Hernández-López et al., 2012).

Theoretically, the multi- and hyperspectral images would need to be corrected for the black
hail net, which spans above the apple tree rows and acts as a filter to the incoming solar irra-
diance and, consequently, impacts the recorded reflectance from the apple trees (Fig. 4.13).
Practically speaking, this is considered as a fairly complex task, exceeding the scope of the
thesis, as it would require further segmentation of the apple rows to apply the radiometric
correction to compensate for the filtering effect of the black hail nets. Also, this filtering ef-
fect is not spatially equal within the recorded scene due to amultitude of factors. Firstly, the
hail net undulates across the rows, being higher at the hail net concrete poles and hanging
in-between tree rows. Thus, the black net cannot be treated as a plain surface across the
covered area with homogeneous reflectance properties.

2https://www.l3harrisgeospatial.com/Software-Technology/ENVI
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Figure 4.12: White, grey and black tarps used in the field for calibrating the Rikola camera

Secondly, this undulating character means that solar irradiance enters the hail net not spa-
tially equally, as incidence angles vary across space. Same is true for the outgoing radiance
from the trees.

Consecutive to the image correction, the recorded images are photogrammetrically stitched
together for each respective band. Single images are collected at around 5 second intervals,
resulting in a total of around 96–160 images per spectral band. The very-user friendly Pix4D
software, again considered as state of the art in the field of photogrammetry, particularly
for processing UAV imagery was used for orthorectification and orthomosaicing (or image
stitching). Thereafter the UAV images were projected to the European Terrestrial Reference
System 1989 / Universal Transverse Mercator (UTM) zone 32 N coordinate system (EPSG-
code: 25833). Pixel values were converted to relative surface reflectance values in each
band.

Tie points which are corresponding points in the overlapping areas of neighbouring images
were identified in order to photogrammetrically merge the images to a mosaic covering the
extend of the orchard in nadir view. Images are simultaneously orthorectified according to
the images’ orientation parameters.

The orientation parameters are obtained through the UAV log-file which is a GPX-file that
stores the GPS-coordinates of the image camera position at a point in time during the flight,
which corresponds to the time stamp allocated to each image taken. With the open source
tool Geosetter3 the metadata from the GPX log-file can be transferred to the respective im-
age using their respectively shared timestamp.

3https://geosetter.de/en/main-en/
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Figure 4.13: Black hail net hanging across the apple tree rows on the orchard

Thereafter, once each spectral band has been mosaicked and orthorectified, the processed
images are georeferenced using 6–9 GCPs, that have been recorded with the Leica GNSS
Receiver and their coordinates read out from the log-files with the software LEICA Geo Of-
fice 4.0 (Leica Geosystems AG, Heerbrugg, Switzerland)4. Using the Georeferencing tool in
the open source and free GIS, QGIS (Version 3.18.2-Zürich, QGIS Development Team [QGIS],
2021), the GCPs were used to translate and spatially align the imagery as good as pos-
sible.

So far, the images have been processed band-wise, which eventually enables the compos-
ition of multispectral RGB true-colour orthoimages from the MicaSense Red Edge camera
as well as hyperspectral VIs.

As mentioned previously in the methodology, an object-oriented classification was initially
aimed at, as the high-resolution imagery would have granted an accurate delineation of the
tree canopy. However, the black hail net not only functions as a radiance filter but also mod-
ifies the DEM of the apple orchard. Both DSM and DTM were obtained through the SfM
principle from the multispectral imagery in order to derive the CHM. A lot of noise has been
introduced into the imagery due to the small plastic clips that hold together the net, the con-
crete posts that hold the whole construction, and the black net itself, acting as a thin blanket
above the tree crowns. As the hail net is not a plain surface, the camera sensors either detect
the black net or the radiance from the tree canopy or vegetated ground below.

This, in turn, makes it increasingly difficult to apply an inverse watershed algorithm to the
local maxima of the CHM to delineate the individual tree crowns (Fig. 4.14). Local maxima
should theoretically reflect the highest points in the tree canopy, but instead, many features
from the hail net structure are picked up (concrete poles and net clips). Despite manually
filtering and removing those false local maxima, the remaining true local maxima do not
serve as seeding points as the neighbouring pixels are a mixture of vegetations response or
signals obtained from the hail net reflectance. As a result, this theoretically ideal approach
could not be adopted for the follow-on analysis.

4https://leica-geo-office.software.informer.com/4.0/
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(a) Manually cleaned local maxima from the CHM colour-coded according to the
tree row

(b) Exemplary hexagonal grid structure for one tree row laid over the CHM

(c) Exemplary hexagonal grid structure for one tree row laid over the orthophoto

Figure 4.14: Illustration of the adopted working procedure to derive a hexagonal grid struc-
ture 62
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Alternatively, the CHM was used to extract canopy tree heights ranging between 2–4 m in
order to obtain the apple tree rows on the orchards. Again this segmentation contained
some noise as the concrete poles holding the hail net, the net itself and the hail net clips
were also within this height range. Thereafter, the binary raster image was vectorised using
the GDAL ‘Polygonize’-tool offered through QGIS5. Some of the noise wasmanually removed
from the computed vector file to obtain the outlines of the tree rows, which served as a basis
for computing the centreline of the tree row polygons. Once these lines were defined, a
hexagonal grid structure was created with QGIS’s ‘Create Grid’ vector processing tool6. One
column of hexagonal cells running fromnorth to south seem to be an adequate cartographic
abstraction of the individual trees as well as the apple tree rows on the orchard. Commonly,
tree plantings on an orchard follow standard regulations, which meant for the studied apple
orchard that distances between tree rows are around 3.5 m (for orchard vehicles to drive
through) and the distance between tree stems in a row around 1.2 m. The dimensions of
a single hexagonal cell measure 1 m vertically and 1.155 m horizontally. The hexagonal
shape was also preferred over a quadrilateral cell as it follows a more organic outline for
abstracting the tree canopy rather than a pixel-like square.

During the image analysis and data visualisation the hexagonal grid structure will serve as
a graphical primitive as well as a common classification reference for applying zonal stat-
istics reflectance values. However, it is important to note that a single hexagonal grid cell is
not filled entirely by the tree canopy, as also the trees on the orchard vary in size and shape.
Consequently, a signal from the soil or also parts of the neighbouring tree might be repres-
ented within a hexagonal cell; thus one hexagonal cell does not equal to one orchard tree
on a one-to-one basis.

4.3. Data Analysis

Leaf Level

The ‘mdatools’ R-package (Kucheryavskiy, 2020) proved useful for the implementation of the
PCA for dimensionality reduction and feature extraction. The PCA was applied to the three
hyperspectral data sets collected with the spectroradiometer during the three last field cam-
paigns. To be precise, several PCAs were conducted. Firstly, the entire dataset consisting
of single leaf spectral signatures (n ≈ 230) but also tree respective mean leaf spectral sig-
natures (n = 23) were analysed. However, reflectance values in the UV spectral range were
excluded ≤400 nm from the remaining spectral subset 401–2500 nm before each data set
was analysed for PCs. Spectral reflectance in the UV range were not considered for the
analysis as the spectral signals showed significant variation and, therefore, considered as
noise that distorted the entire PCA. In another processing step, each data set was trimmed a
second time in respect to the detectionwindowof the Rikola hyperspectral camera 500–900
nm and PCA was applied once more.

5https://docs.qgis.org/testing/en/docs/user_manual/processing_algs/gdal/rasterconversion.html#
gdalpolygonize

6https://docs.qgis.org/testing/en/docs/user_manual/processing_algs/qgis/vectorcreation.html#
create-grid

63



4 Case Study: Apple Proliferation in South Tyrol

Orchard Level

From the PCA on the leaf level, some spectral bands contribute according to their loading
more than other wavelengths to the computation of new PCs. Hence, wavelengths’ loadings
were considered as a statistical indicator for more significant variance along the respect-
ive unit vectors, potentially allowing greater separability between infection classes. Con-
sequently, VIs were chosen that are based on similar wavebands as revealed by the PCA as
a first indication for plant stress that may be linked to AP infection. The bands used for the
composition of VIs do not correspond exactly to those wavelengths found in the literature
as particular, the hyperspectral camera was not programmed prior to the field campaigns to
detect at exactly the same wavelengths found in the literature. Many VI can be found in the
literature, all aiming at different biochemical or biophysical plant characteristics. The follow-
ing VIs seemed relevant to this study, setting a particular focus on leaf pigments:

Vegetation Indice Waveband composition Description Reference

Normalised difference
vegetation index (NDVI)

(R750−R705)÷(R750+R705) NDVI is a very typical index.
Positive values suggest veget-
ated areas

Tucker, 1979;
Tucker et al., 1981

Photochemical
reflectance index (PRI)

(R531−R570)÷(R531+R570) PRI index is a function of the
reflectance at the 531 nm, this
reflectance is related to xantho-
phyll. When the xanthophyll
activity is high, the light use ef-
ficiency is low, meaning a pos-
sible stress occurred

Peñuelas et al.,
1994.

Anthocyanin reflectance
index 2 (ARI2)

R800 · (1÷R550)− (1÷R700) ARI index is designed to estim-
ate the stack of anthocyanin in
senescing and stressed leaves

Gitelson et al., 2001

Gitelson and Merzyak 1
(GM1)

R750÷R550 GM1 and GM2 were created
to measure the chlorophyll con-
tent in vegetation leaves

Gitelson et al.,
1996;
Gitelson and
Merzlyak, 1997

Gitelson and Merzylak 2
(GM2)

R750÷R700

Zarco-Tejada Miller
(ZTM)

R750÷R710 ZTM is a Red edge index highly
correlated to chlorophyll con-
tent. At the canopy level, it
has the advantage of minimiz-
ing shadow effects

Zarco-Tejada et al.,
2001;
Underwood, 2003

Table 4.4: Overview of hyperspectral VIs (adopted from Al-Saddik et al., 2018)

The above listed VIs are disease unspecific as already mentioned which is why the imple-
mentation of a robust and reproducible machine learning approach for classifying the hy-
perspectral imagery for AP infected trees was initially set as a research goal (RO.3) (Table
4.4).

In order to experiment and at the same time not exceeding the scope of this study, the spec-
tral analysis of the hyperspectral imagery was confined to the testing of a single machine
learning algorithm for classifying AP infected trees. As already mentioned in the previous
chapter, ideally several machine learning algorithms should be tested and evaluated accord-
ing to their classification performance. This would, however, require a whole study for itself
and exceeds the frame of this research.
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Figure 4.15: Comparison of Radiance underneath and outside the hail net with the SVC Irra-
diance sphere

In the end, a supervised classification was adopted as the trees, that were sampled with the
spectroradiometer serve as training data for the image classification. A few studies have
shown that the SVM is a robust algorithm for a supervised classification, relatively easy to
implement and achieves good classification results of plant diseases even using on a small
number of training data (Rumpf et al., 2010; Albetis et al., 2017; Al-Saddik et al., 2018). Al-
Saddik et al. (2018) and Rumpf et al. (2010) achieved high classification accuracies using
SVMwhich performed better than some other classification algorithms for identifying differ-
ent plant diseases. According to Ben-Hur andWeston (2010), SVMs find the best separating
hyperplane between classes according to the hyperplane with the maximal margin. A pen-
alty is defined by a cost parameter for misclassifying objects which in turn introduce soft
margins allowing objects to lie on the wrong side. Particularly, when classes are not fully
separable, this may be suitable. Furthermore, SVMs use a kernel for non-linear decision
boundaries needed in feature space, whereas amongst others the radial basis function ker-
nel is commonly used.

Hence, the SVM seemed promising for testing a machine learning based image classific-
ation approach applied to the detection of AP infected trees. As it is a supervised classi-
fication, the GPS coordinates of the sampled trees set a starting point for the sampling of
training and testing data from the hyperspectral imagery. Additionally, the computed ve-
getation indices were used as further indicators for potential plant stress in the canopy for
delineating the input data. Two approaches were followed and tested to extract training
data from the imagery. Firstly, the Semi-Automatic Classification Plugin (Congedo, 2021)
was used in QGIS for selecting so-called regions of interest (ROIs). For selecting ROIs one
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Figure 4.16: Potential additional reflectance caused through the hail net

can choose between pixel or area-based ROIs computation. The latter was chosen in this
study, as the user can interactively select a pixel and according to an adjustable threshold.
When selecting a pixel of interest, its DN is compared to those of adjacent pixels, which
are also selected in respect to the threshold to form a larger polygon with similar spectral
characteristics. And secondly, a polygon was simply drawn around the respective tree on
top of the orthomosaic to provide the bounds of the training input to the SVM which was
performed in QGIS using the SAGA-GIS module SVM Classification7. A binary classification
was adopted with the attribution of the ROIs as either infected or uninfected, considering
the latent trees also as infected.

Unfortunately, the testing of the SVM for AP classification of the hyperspectral imagery did
not work out as expected. The effect of the black hail net spanning across the apple tree
rows is considered to be the reason, as it impacts the spectral responses recorded at the
sensor. According to the measurements taken with the irradiance sphere, there is a clear
difference between the incoming solar irradiance and the radiance transmitting the hail net
(Fig. 4.15). Consequently, a certain amount of incoming solar energy that does not pass
through the hail net is converted into heat or is reflected at the net surface. This may also
explain, why the hail nets in the region are also considered as a sunlight filter to protect the
apple fruits from sunburn (Zebisch et al., 2018). The filtering effect of the hail net means for
the taken UAV imagery that the collected reflectance values of the vegetation are distorted
by the hail nets, which increases the recorded reflectance values.

In Figure 4.16 one can see the ratio of the radiance that does not pass the hail net to the
7http://www.saga-gis.org/saga_tool_doc/2.2.4/imagery_svm_0.html
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overall incoming solar irradiance. Consequently, it can be said that the hail net potentially
adds to the recorded reflectance across the entire detection window, whereas not uniformly.
Particularly in the SWIR range, there is a greater variance. Although the effect of the hail
net may seem to fluctuate less in the detection window of the Rikola hyperspectral camera
500–900 nm, this amplifying effect can not be accounted for easily. If the hail net would be
a flat surface, the image may be radiometrically corrected for this effect. However, the hail
net undulates between rows and thus seems more like a light-absorbing blanket.

Nonetheless, the cartographic idea of implementing a multi-scale mapping approach in pre-
cision mapping presents coarser spatial information at a smaller scale, and further detail
at a larger scale was alternatively applied to the VIs. For this purpose, spatial data was ag-
gregated to the hexagonal grid cells using the Zonal Statistics Raster tool8 offered through
QGIS.

4.4. Data Visualisation and Map Design

Leaf Level

As already outlined in the data processing stage, the R-package ‘ggplot2’ (Wickham, 2016)
was used for plotting leaf spectral signatures as line graphs for visual comparison. It was
already necessary to plot the obtained spectral signatures during the processing stage as
a visual interpretation of the overall trend was the basis for including individual signatures
for further analysis. As already touched upon, natural variability in tree respective leaf sig-
natures was not known. Thus, a more reproducible statistical approach was challenging
to implement, especially as the number of leaf scans per tree was limited to a comparable
small sampling number of 10–12 samples. Once the outliers were removed, tree related
sets of spectral signatures were individually plotted.
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Figure 4.17: Comparison of Spectral Signatures of (a) an uninfected and (b) AP infected tree
sampled in the second field campaign

In order to identify certain spectral ranges where AP infected and uninfected trees might
deviate, leaf spectral signatures were averaged tree-wise to obtain a representative leaf sig-
nature for that specific tree. These signatures show that there is a certain inter-tree variab-

8https://docs.qgis.org/testing/en/docs/user_manual/processing_algs/qgis/rasteranalysis.html#
qgiszonalstatisticsfb
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Figure 4.18: Comparison of mean spectral signatures of (a) uninfected and (b) AP infected
trees sampled in the second field campaign

ility. This means that spectral signatures of the ‘tree means’ of the same infection status
(infected and uninfected) not only vary but that they also overlap in certain ranges within the
electromagnetic spectrum, where a clear separability cannot be visually observed.

Lastly, these ‘tree’ means were further averaged regarding their infection status to produce
two spectral signatures representing infected anduninfected averaged leaf signatures, already
accounting for intra and inter-tree variability.
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Figure 4.19: Leaf spectral signatures averaged (a) tree-wise and (b) regarding infection
status sampled from the second field campaign

In the PCA, scree plots were drawn to visualise the relative share in total variance exhibited
by the PC. As can be clearly seen from the scree plots, the first PC has the accounts for the
greatest variance of the leaf spectral signatures, which decreases rapidly with an increase
in PCs. In search of best separability between the two spectral signature classes (infec-
ted/uninfected), computed PCs were plotted against each other to utilize their respective
variance to increase the division between classes in feature space. The PCA was applied to
all three datasets from the field campaigns covering 400–2500 nm of the electromagnetic
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Figure 4.20: Scree plot of the PC’s loadings regarding the entire hyperspectral range and
from all field campaigns

spectrum and to a subset defined by the detection window of the hyperspectral camera
(500–900 nm). Of particular interest was the detection window of the hyperspectral cam-
era, as the PCs expected to indicate which wavebands may seem suitable for applying the
SVM classification to detect AP infected trees.

In terms of visual display, a blue and red tone were chosen as colour hues to represent the
two infection statuses or two categorical classes (uninfected and AP infected, respectively).
The colour hues were adopted from the colour blind barrier-free colour pallet suggested by
Okabe and Ito (2002). A blue colour huewas chosen over a green hue deliberately, as it is not
only colour blind friendlier, but the latter might also invoke a false sense of a healthy plant,
whereas this study only focusses on one particular disease. Thus, a more neutral colour
hue was chosen to infer that there those samples are not AP infested. Latent trees which
could have also been viewed as another class were, however, considered as AP infected for
the purpose of the study.

Orchard Level

Eurac’s EDP which is a geoportal maintained by the CSS provides the SDI with a map user
interface based on the open source OpenLayers9 library.

The precision map is intended as a slippy map, where the map user can interact with the
map content by zooming and panning, which makes the map slip around10.

Several basemaps are offered throughOpenLayers and can be interactively selected as back-
ground information, such as a mosaic of satellite imagery or OpenStreetMap11 layers.

Furthermore, the precision map consists of orthophotos of the orchard and several VIs at
the original resolution of the multi- and hyperspectral cameras. The VIs were classified and
accordingly colour coded, whereas in terms of colour choice, sequential colour schemes
were adopted, intentionally moving away from the overused and partially shrill rainbow col-
our map (Moreland, 2016) or ‘traffic light’ colour sequence in common VIs.

9https://openlayers.org/
10https://wiki.openstreetmap.org/wiki/Slippy_Map
11https://www.openstreetmap.org/
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Řezník et al. (2020) argued in their study, that mainly focussed on uncertainty mapping, for
the adoption of exactly this easily understandable solution for new and inexperienced users
(Drecki &Maciejewska, 2005), as amap reader can utilise everyday experience (traffic lights)
easily to decode categories intuitively. Hence, according to Řezník et al. (2020) it facilitates
map users to integrate their external knowledge into the map-based decision-making pro-
cess. On the other hand, a sequential colour palette might seem more adequate to repres-
ent a continuous increase or decrease in value. Thus, colour value (lightness) may be used
instead of adding additional chroma to a colour ramp. Consequently, change in colour value
(lightness) may be perceptually closer to a change in class (McNeall, 2015).

For the intended map on AP which was supposed to be derived from the SVM classifica-
tion of the hyperspectral imagery, the binary image classification (infected or uninfected)
would be visually expressed rather by adopting a qualitative colour scheme. Again a blue
(for uninfected) and a red tone (for AP infected) were used to express the infection status.
However, due to the issues encountered with the black hail net and the consequent spectral
distortions, which complicate the implementation of the SVM classification, the sampled
trees were alternatively represented in the map through coloured hexagons depending on
their infection status. Thismay indicated the idea of abstracting and scaling the information
gathered on the leaf level to the orchard level by using single hexagonal cells to convey AP
infection within the orchard, although restricted to the number of trees that were sampled
with the spectroradiometer.

It would have been ideal to use the outlines of the tree canopy for an object-based classi-
fication which can be segmented theoretically from the CHM. A regular grid, however, as-
similates already the tree row structure on an orchard. Single hexagonal grid-cells function
as graphical primitives for the individual tree canopies, bearing in mind, though, that this
relationship is not on a one-to-one basis, as a canopy of a neighbouring tree may also be
within the same hexagon, as already mentioned. To demonstrate the cartographic idea of
a multi-scale map design and introduce a scale dependent visualisation in precision map-
ping, generalisation was applied to VI as an alternative to the not successful SVM image
classification.

For this purpose, the same colour scheme and classification that was used for the VIs was
also applied to the hexagonal cells that represent coarser granularity. Each hexagon was
attributed with the majority value that was obtained through the zonal statistics tool in QGIS
regarding the extent that the graphical primitive covered.

To offer more details on demand, the intended map user can interactively select features to
obtain further information, such as spectral values or ratios. In the case of the hexagons rep-
resenting AP infected or uninfected trees, averaged leaf spectral signatures collected with
the spectroradiometer are also available as additional information. Ideally, spline graphs
could be used to visualise the spectral signatures of selected features on-demand in a sep-
arate panel within the user interface. This, unfortunately, is not supported with the spatial
data structure of the attribute table of a shapefile. Thus, additional data formats, such as a
data cube, seem promising for this purpose (as indicated in Fig. 2.5).
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Figure 4.21: Spatial Data Schema used for the Implementation of the Precision map

4.5. Data Sharing

Eurac’s CSS kindly offered their resources, amongst others the EDP12 for developing and
implementing the precision map. The EDP, in turn, is the user interface and therefore one
layer within the SDI’s set up (Fig. 4.21) used for implementing the precision map. One can
consider the SDI at the CSS as an open SDI as it relies on open source and free hard- and
software to offer open data access to the public. In particular, software from the OSGeo
finds their implementation within the different layers of the SDI’s architecture.

The user interface is internally at the CSS also referred to as ‘maps’ and allows publicly shar-
ing research findings, engage and collaborate with project partners in ongoing work and
create interactive maps. The EDP builds up on GeoNode13, an open-source Content Man-
agement System (CMS) for geospatial data (GeoNode Development Team [Geonode], n.d.).
As a web-based application and platform for deploying SDIs, GeoNode offers an easy-to-
use interface and pulls together open-source software (Geonode, n.d.). Through GeoNode
spatial data can also be uploaded to the Geoserver and already converts vector data into
geospatial tables and retains raster data as GeoTIFFs. Additionally, all the layers are auto-
matically re-projected to web Mercator for map display, which allows the use of basemaps,
like Open Street Map or Google Satellite (Geonode, n.d.). Map visualization, for instance is
done through OpenLayers14 which can be embedded into GeoNode.

12https://maps.eurac.edu/
13https://geonode.org//
14https://openlayers.org/
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Figure 4.22: Map entry in the EDP

In addition to the user interface (Fig. 4.22), the SDI consists of a metadata catalogue, an ap-
plication layer and a data layer. The latter uses PostgreSQL15 as open-source databaseman-
agement system with the PostGIS16 extension for storing and managing geospatial data on
Eurac’s servers.

On the application layer, GeoServer17, an open-source, Java-based server, is deployed for
hosting the geospatial data from the spatial database to theGeoNodewebapplication.

Themetadata catalogue composes of two catalogue applications to manage spatially refer-
enced resources: pycsw18 as well as GeoNetwork19. The former is automatically linked to
GeoNode already, whereas GeoNetwork is installed as a stand-alone system and therefore
requires additional handling of entries.

15https://www.postgresql.org/
16https://postgis.net/
17http://geoserver.org/
18https://pycsw.org/
19https://geonetwork-opensource.org/
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All above components of the SDI architecture comply to open standards defined by the Open
Geospatial Consortium (OGC) which allows interoperability of the different software com-
ponents and underlines the idea of openness and FAIR principles adopted for the imple-
mentation of the precision map as a service-oriented web map.
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Synthesising the findings from the work implemented in this thesis, it is important to place
the results into scientific context outlined in the literature review and relate these to the
initially defined research objectives.

5.1. RO/RQ-1

The first research objective and the respective question set at the beginning of this thesis
read as follows:

RO.1 Develop a cartographic understanding and definition for a precision map.

RQ.1 How can a precision map be defined from a cartographic understanding?

The prior literature review clearly shows that the term precision mapping is used interdis-
ciplinarily and enjoys wide application. As a result, different understandings of precision
mapping have developed depending on the mapmaker and their underlying intentions. This
may also be linked to the close terminological overlapping of precision and resolution, which
are partially confused and therefore misleadingly used interchangeably. Precision refers to
spatial granularity at which distinctions can be made by a sensor (Raposo, 2017). Resolu-
tion, however, refers to the degree of detail to which a phenomenon is detected or represen-
ted (Raposo, 2017). Indeed, both terms are seemingly closely related but it is important to
make this differentiation in order to understand the inherent conflict at which precisionmap-
ping sees itself. The literature review suggests that the map intentions and themes are very
broad and different, although all of them claim to produce precision maps, whereas refer-
ence units vary from the sub-district level, to 5x5 km2 and decimetres. Hence, geographical
and ultimately map scale varies hugely between the thematic map examples, which implies
that precision and resolution are both variables in an interplay with scale and need to be
adapted accordingly. Raposo (2017) again defines scale as a ‘measure of relative size, of
objects or representations’. Particularly in cartography, cartographic scale is correlated to
resolution (Raposo, 2017), which means that the balance between scale and detail needs
to be considered in the map-making process, e.g. showing less spatial detail at a smaller
map scale than at a larger scale. Scale depended map-making relies on cartographic gen-
eralisation, which aims at the reduction of the complexity in a map by reducing the detail
and maintaining the essential spatial information (Weibel, 1997; Raposo, 2017). However,
in contemporary precision mapping, classified high-resolution imagery is mistakenly under-
stood as synonymous with a map. Therefore, it is important to stress that spatial resolution
is considered foremost in precision applications but can only set the basis for the final map,
as scale-dependingmap generalisation is inevitable, such as spatial aggregation or displace-
ment (amongst other generalisation techniques) scaled representations of the original data.
Consequently, in light of providing a definition, a precision map shall be herewith proposed
as being a

‘sensor-driven, interactive, thematic map that offers different degrees of granularity at
multiple-scales’.
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5.2. RO/RQ-2

The initial idea of precision mapping derived from the need to visualise intra-field variability
in precision agriculture (Thenkabail et al., 2018). Precision mapping has since established
itself as a method adopted in agricultural spatial decision making regarding plant or crop
monitoring, which primarily includes yield estimation, application of fertilizers but also plant
disease monitoring, amongst others (Thenkabail et al., 2018). The latter is of great import-
ance, as plant diseases and pests compromise on crop yields (Oerke, 2006; Savary et al.,
2012, for example). Remote sensing of vegetative surfaces follows a non-destructive ap-
proach for an early plant disease identification (Lowe et al., 2017). In order to reduce crop
losses due to plant disease, it is important to understand the specific disease and relate
plant pathology to spectral analysis. Hence, changes within the plant caused by the disease
can be related to a change in spectral characteristics, referred to as the spectral signature.
This way, the analysis of spectral signatures helps to differentiate between infected and un-
infected plants. The methodological approach adopted for the scope of this thesis aims at
combining multi-modal data, which were collected at different scales. The underlying inten-
tion is the upscaling of the findings from the spectral analysis of the hyperspectral data to
UAV image classification used for designing a plant disease precision map, at the example
of AP. For this purpose, the second research objective and respective questions defined
previously, recapitulate as follows:

RO.2 Identify relevant spectral bands (SB’s) and vegetation indices (VI’s) that
meaningfully discriminate between leaves infected from AP vs. uninfec-
ted leaves (binary and multi-class discrimination).

RQ.2 Whichmeaningful spectral bands from the hyperspectral range andwhich
vegetation indices (VI) can be identified, or computed, respectfully, from
the spectral signature of a diseased leaf..
(a) to reflect changes caused through AP?
(b) to therefore be an indicator for the presence of AP?
(c) to ultimately be used to distinguish between healthy and diseased
leaves [binary classification]?
(d) additionally: to distinguish degree of disease severity fromhealthy leaf
[multi-class classification]?

As already mentioned, a binary classification of the hyperspectral data was the focus of the
study, distinguishing between the two infection statuses infected and uninfected. A multi-
class classification regarding plant disease severity or including uncertainty regarding the
likelihood of an infection would be possible approaches but, in the end, exceeded the scope
of this experimental analysis.

At this stage it is also necessary to retrospectively differentiate between ‘healthy’ and ‘unin-
fected’ as they are used interchangeably in some literature. Consequently, there was a lack
of awareness in respect to this difference at the time of defining the research objectives. As
only one particular plant disease is analysed for, already knowing from the laboratory find-
ings from the LRC that some plants are already infected by AP, categorising the uninfected
trees as healthy would ignore other potential biotic or abiotic plant stress.

In a first attempt at identifying potential spectral differences, spectral signatures were plot-
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ted and both infection groups visually compared. Thus, the leaf spectral signatures that
had been obtained with the spectroradiometer were grouped regarding infection status and
averaged according to the respective tree (Fig. 5.1).
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(c) 4th field campaign (July)

Figure 5.1: Uninfected (blue) and infected (red) tree respectivemean leaf spectral signatures
of all field campaigns

The ‘tree’ spectral signature of both infection groups do not substantially vary in shape and,
when overlaying both groups (Fig. 5.2), it becomes even more difficult to detect spectral
difference.
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(b) 3rd field campaign (June)
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(c) 4th field campaign (July)

Figure 5.2: Overlay of uninfected (blue) and infected (red) tree respective mean leaf spectral
signatures of all field campaigns
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(b) 3rd field campaign (June)
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(c) 4th field campaign (July)

Figure 5.3: Mean leaf spectral signatures by infection status
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To reduce the visual clatter of the individual ‘tree’ spectral signatures, one can group the
curves by infection status to obtain two averaged spectral curves (Fig. 5.3). What can be
seen from the line graphs is that spectral differences between the two groups are easier
to distinguish at an earlier phenological stage (despite very low visual expression of symp-
toms which become visually more expressive in September/October). Spectral differences
seemed to be larger in May as both means are visibly more separable. In June and July,
it becomes even more difficult to distinguish between these two groups as they are nearly
identical. It is difficult to give a plausible explanation for the assimilation of the spectral
signatures with progression in phenological stage but it might be linked to the outdoor tem-
perature. This is rather speculative but might be a reasonable argument as with an increase
in outdoor temperature the leaf temperature increases as well, ultimately affecting the leaf’s
water household. In combination with water stress on the plants (due to high temperatures),
the leaf may deploy self-protection mechanisms such as the closure of the stomata (which
is an opening of the leaf to transpire water which is a byproduct during photosynthesis)
(Pastenes et al., 2004).

In order to pinpoint which spectral bands may indicate the presence of AP, PCs may be a
good indication as these exhibit variancewithin the dataset. Consequently, treemeanswere
used rather than single leaf measurements to investigate spectral separability between un-
infected and AP infected trees. Table 5.1 gives an overview of the first five principal com-
ponents (that make up more than 98% of the total variance within the dataset according to
Fig. 4.20) and their respective 10–15 spectral wavebands with the greatest loadings. These
waveband ranges are characterised by high loadings for the respective wavelengths, as the
variance between the two infection statuses were comparatively large.

Furthermore, it is necessary to have a look also at the spectral bands within the detection
window of the hyperspectral camera as ultimately the image bands are within the range
500–900 nm (Table 5.2).

When comparing both tabular overviews regarding the PCs’ respective spectral bands, it is
clearly noticeable that the spectral wavebands do not match. The main reason being the
different coverages of the electromagnetic spectrum used for the analysis, as the subset
focuses on a far smaller spectrum. Additionally, which is perhaps more important though,
is that in the PCA of the entire dataset, the first and second PCs are outside of the spectrum

Entire Dataset (400–25000 nm)
Field Campaign 2nd 3rd 4th

Month May June July

PC1 1850–1859 1788–1799 1839–1847
PC2 1077–1105 1077–1086 1079–1085
PC3 645–654 645–655 630–645
PC4 554–563 702–711 426–435
PC5 1884–1890

1393–1398
400–413 683–690

Table 5.1: Tabular Overview of the PCs for the entire dataset and their respective 10–15
spectral bands with greatest loadings
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Rikola Detection Window (500–900 nm)
Field Campaign 2nd 3rd 4th

Month May June July

PC1 731–743 731–743 734–746
PC2 889–910 522–531 504–516
PC3 716–727 674–686 710–722
PC4 680–690 684–706 682–694
PC5 517–526 639–652 694–706

Table 5.2: Tabular Overview of the PCs and their respective 10–15 spectral bands with
greatest loadings within the subset covering the hyperspectral camera’s detection window

from 500–900 nm covered by the subset. In the PCA on the dataset collected from May
spectral bands show more significant variance mainly in the SWIR, primarily corresponding
to changes in structural leaf components. Furthermore, wavebands ranging from around
645–655 nm and at around 685–710 nm also appear often amongst the PCs for the entire
dataset. The latter range in the electromagnetic spectrum was also prominent in the com-
position, especially of the fourth PC of the subset. Especially the range between 731–746
nm seemed to show greater variance as the spectral wavelengths within this range contrib-
uted most to the first PC due to their high loadings. However, what both analysis show are
the temporal dynamics throughout the phenological stages. One can see from the Figures
5.4 and 5.5 that the magnitude of variance within the spectral bands changes over the grow-
ing season and, thus, the composition of PCs changes. This means, that the wavebands
with the highest loadings for a particular PC do not necessarily remain amongst the ten
wavelengths with greatest loadings for the respective PC of a dataset from another pheno-
logical stage.

For the subsequent image analysis, it is important to understand which image ratios may
entail the best separability between the two infection classes that could potentially be also
used in the composition of VIs. Therefore, PCs and their respective scores, that are the
coordinates of projected data points in principal component space (Kucheryavskiy, 2020)
were plotted against each other. For this purpose, the first five PCs from the data subset
were used asmore than 98% of the total variance is concentrated here. It was found that the
two classes can actually be visually separated in principal component space, whereas the
combination of PCs varies again in order to achieve good visual separability. For the second
field campaign in May the combination of PC 4 with PC 1 allowed a good visual separability,
whereas for the third and fourth field campaigns (in June and July, respectively) it was the
combination of PC 5 and PC 1 (Fig. 5.6).

Regarding the feature selection for the narrowband VIs, the wavelengths with highest load-
ings for the respective PCs roughly correspond to the Rikola hyperspectral camera’s wave-
bands 10, 13 and 16. Especially, the latter two were used for computing a Fluorescence
ratio ( 690 nm / 735 nm)1. The narrowband VI referred to in the previous chapter (Table 4.4)
– NDVI (705 nm), PRI, ARI2, GM1, GM2 and ZTM – were also computed, trying to come as
close as possible to the ideal wavelengths (Table 5.3).

1https://www.indexdatabase.de/db/i-single.php?id=313
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(a) 2nd field campaign (May)
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(b) 3rd field campaign (June)
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(c) 4th field campaign (July)

Figure 5.4: Mean leaf spectral signatures by infection status and highlighted relevant spec-
tral bands from the PCA
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(a) 2nd field campaign (May)
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(b) 3rd field campaign (June)
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(c) 4th field campaign (July)

Figure 5.5: Mean leaf spectral signatures by infection status and highlighted spectral wave-
bands from the PCA within the detection window of the hyperspectral camera
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(c) 4th field campaign (July)

Figure 5.6: PCA - Score plots for good visual separability of infection groups

Unfortunately, the bands from the hyperspectral camera do not correspond to the ideal wave-
bands needed for the VI. Consequently, it is a challenge to reproduce exactly the same ratios
and therefore highlight spectral differences to the same extend as what has been described
in the scientific literature. As a result, it remains difficult to judge and quantify VI classifica-
tion performance.

Additionally, the spectral ratios also suffer from the influence of the black hail net causing
spectral distortions in all bands which adds to the difficulty in quantifying classification per-
formance.

Based on visual interpretation, though, the ZTM seemed a good indicator for slight nuances
in chlorophyll content between infected and uninfected trees. This would definitely need to
be evaluated quantitatively, how well the ZTM corresponds to areas classified as AP infec-
ted.
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Rikola
Waveband

Wavelength
(in nm)

fwhm (in nm) Ideal
wavelength
used for VI
(in nm)

2nd

campaign
3rd

campaign
4th

campaign

1 506.285 9.84 PC2
2 521.498 14.62 PC5 PC2 PC2
3 536.468 11.51 531 PC2
4 551.474 10.06 550
5 566.249 9.76 570
6 581.498 14.01
7 596.211 12.53
8 611.086 17.53
9 625.943 16.4
10 645.258 12.74 PC5
11 656.031 12.85
12 671.165 16.08 PC3
13 686.279 15.14 PC4 PC3/4 PC4
14 701.45 11.25 700 PC4
15 716.158 11.92 710 PC3 PC5
16 731.318 10.53 PC1 PC1 PC1
17 746.096 10.27 750 PC1
18 761.157 15.64
19 776.245 13.97
20 791.462 12.81
21 806.339 14.67 800
22 820.873 15.0
23 835.804 21.04
24 850.597 25.85
25 866.602 24.49
26 881.009 20.16 PC2
27 896.406 22.87 PC2

Table 5.3: Tabular overview of matching Rikola wavelengths and PCs’ wavelengths for VI
composition

5.3. RO/RQ-3

Research objective 3 and the respective question were formulated as follows:

RO.3 Implement a robust and reproducible image classification procedure
based on a machine learning approach specifically for the identification
of AP on varying levels of detail (at the leaf, tree, and orchard level).

RQ.3 Which machine learning approach produces a robust multi-/ hyperspec-
tral image classification for identifying and classifying AP on different
scales (leaf, tree and orchard)?

Unfortunately, this research objective was not met in the scope of this research and the
respective question remains unanswered. Prior to the commencement of the field collection,
one was not aware of the orchard practices during the fruit growing season which in the
region of South Tyrol commonly includes the use of a black hail net. As has been shown
through the irradiance sphere the black hail net adds to increased reflectance, thus making
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it impossible to capture the spectral signatures from the leaf surfaces that are needed for
a supervised classification method. As can be seen from the orthophotos in the precision
map, a lot of noise is being introduced to the image including blurring effects.

This shows, in retrospect, that this research goal was highly dependent on controls out of the
author’s reach of influence. This may also demonstrate that working under field conditions
with a real-life dataset seemsmore challenging than working under laboratory conditions as
there are some unknown controls that can have an impact on the research. Nonetheless, the
findings from the principal component analysis of the hyperspectral dataset collected with
the spectroradiometer serve as a starting point for follow on research and classification of
in-field collected UAV imagery for AP identification and detection.

5.4. RO/RQ-4

Despite not being able to use the UAV imagery to apply a machine learning classification
for the detection of AP, research objective 4 was not compromised and aims at the follow-
ing:

RO.4 Establish a mapping technique to produce precision maps dedicated to
AP on different levels of detail.

RQ.4 How can multi-scale data be effectively visualised on various granularity
levels?

When reading the research question carefully, the focus is rather on the map making itself,
allowing a certain flexibility and independence from the outcome of the image classification
regarding AP. Of course, it would have been ideal to present a precision map on AP. How-
ever, the cartographicmethodology developed in this thesis is considered at least as equally
important, if not even higher. As already touched upon this aspect throughout the course
of this thesis, contemporary precision mapping sees itself in a dichotomy between offering
thematically classified, high-resolution imagery and the claim to be a map which justifies its
raison d’être through cartographic generalisation of real-world objects. Thus, the design of
a map concept for precision mapping is at the core of this research objective.

Following Shneiderman’s (1996) visualisation mantra ‘overview first, zoom and filter, then
details on demand’, an interactive, multi-scale web map was implemented to allow layering
of the classified high-detail imagery and generalised map features. Multi-scale mapping in-
volves cartographic generalisation, which can be several generalisation techniques applied
jointly to spatial information across supported scales (Roth et al., 2011). Cartographic gen-
eralisation techniques that were employed for map design include the segmentation of tree
rows from the grassy alleys between tree rows, classification of the hyperspectral images,
and ultimately applying a form of tessellation using the hexagon as regular graphical prim-
itive to assimilate the tree canopy abstractly and aggregate pixel values within. The latter
is similar to the concept of hexagonal binning, whereas, instead of using the density of typ-
ically vector point data, a statistical value was calculated from the pixel values within the
respective hexagon.
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Figure 5.7: Overview of the precision map and the contained layer groups: Apple Prolifera-
tion, Vegetation Indices and Orthophotos
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Figure 5.8: Spread of apple proliferation diseased trees visually abstracted as hexagonal
cells

Figure 5.9: Hexagonal abstraction of PRI vegetation index layer – at small scale
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Figure 5.10: Hexagonal abstraction of PRI vegetation index layer – zoomed in

Figure 5.11: Full resolution of PRI vegetation index layer – at large scale
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6.1. Contextualising the Spectral Analysis

Spectral analysis of leaf reflectances constitutes a non-destructive approach to uncover
phytoplasma-host interaction, as changes in spectral bands are closely linked to biochem-
ical and biophysical alterations which can be inferred to impacts caused by phytoplasma.
The findings from PCA indicate that spectral variance between AP infected and uninfected
trees is not in a single wavelength or spectral range but that there are differences across
several wavebands in the VIS, NIR and SWIR spectra. It can be argued that the reasons for
the spectral differences are twofold. On the one side, it can be assumed that phytoplasma
assimilates a wide range of nutrients and organic compounds from the host cells (Janik et
al., 2020). As a result of phytoplasma infestation, the host metabolism is impacted, which is
partially expressed through symptoms that indicate a disturbance of hormone balance, dis-
orders in the phloem function and/or altered content of the phloem sap (Lee et al., 2000). On
the other side, Curran (1989) points out that chemical compositions are highly interconnec-
ted. Thus, a high correlation between reflectance and chemical concentration in one wave-
band may not be reasoned by single chemical bonds but a strong intercorrelation between
several chemicals. As an example Curran (1989) refers to the starch concentration being
often correlated with reflectance at around 660 nm, as starch concentration is correlated
with chlorophyll concentration, the latter strongly absorbing in this spectral region.

Particularly in the VIS electromagnetic spectrum, photochemical pigments, such as chloro-
phylls, carotenoids and anthocyanins, account for strong light absorption (Blackburn, 1998;
Peñuelas and Filella, 1998). According to Blackburn (2006), those wavelengths with high ab-
sorption are sensitive to lower pigment concentrations. In other words, it is assumed that
wavelengthswhere high pigment concentrations result in high absorption aremore sensitive
to low pigment concentrations. Consequently, spectral differences between uninfected and
infected plants, are expected to be more apparent in these wavelengths, as photochemical
pigment concentration is lowered as a reaction to phytoplasma infestation.

For instance, Chlorophyll a+b absorption bands are said to be correlated to the wavelengths
at 430 and 450 nm and at 700 and 630 nm, respectively (Blackburn, 1998; Sims and Gamon,
2002). Additionally, Peñuelas and Filella (1998) suggests that chlorophyll concentrations
can be derived at 675 nm (where maximum absorption occurs and thus sensitive to reflect-
ances even at very low concentrations) and at 550 nm (where reflectance sensitivity is higher
for medium-to-high chlorophyll concentrations). Blackburn (1998) also argues for optimal
individual wavebands for pigment estimation at 680 nm for chlorophyll a, 635 nm for chloro-
phyll b, and 470 nm for the carotenoids. Peñuelas and Filella (1998) suggest 430 to 445
nm wavelengths for carotenoids to be used for physiological reflectance indices. Anthocy-
anin absorption is supposed to be pronounced at 550 nm wavelength (Gitelson et al., 2001).
When looking at the spectral wavebands that contributed with their high loadings to the
composition of PC, one can see that PCA highlighted some of these wavebands, which are
typically characterised by high photochemical pigment concentrations (Table 6.1).

The colouration of the above table cells is to be understood as an indication that these
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Entire Dataset (400–2500 nm)
Field Campaign 2nd 3rd 4th

Month May June July

PC1 1850–1859 1788–1799 1839–1847
PC2 1077–1105 1077–1086 1079–1085
PC3 645–654 645–655 630–645
PC4 554–563 702–711 426–435
PC5 1884–1890

1393–1398
400–413 683–690

Rikola Detection Window (500–900 nm)

PC1 731–743 731–743 734–746
PC2 889–910 522–531 504–516
PC3 716–727 674–686 710–722
PC4 680–690 684–706 682–694
PC5 517–526 639–652 694–706

Legend: chlorophyll a chlorophyll b

Table 6.1: Relation of photochemical wavebands (chlorophyll a and chlorophyll b) to spectral
bands from PCA

ranges of spectral wavelengths pick up differences in the respective photochemical pig-
ments. It is to be read with a certain caution, as this study did not evaluate the chemical
concentrations of the pigments in the leaves to clearly relate the concentrations to the dif-
ference in spectra between AP infected and uninfected trees. However, other studies on
phytoplasma-induced plant disease have found similar spectral patterns, relating the spec-
tral bands to impacts and thus the presence of phytoplasma in leaves. Negro et al. (2020)
found out in their study on the plant disease Bois Noir that the chlorophyll content and par-
tially the carotenoid decreased in infested leaves due to the phytoplasma. More specifically
on AP, Barthel et al. (2021) proves a downregulation of chlorophyll in infested leaves. As
a result of chlorophyll reduction, photosynthetic activity decreases as well (Bertamini et al.,
2003), which is also indicated by the PCA in this study. Specifically, in the data subset cover-
ing the spectra of the hyperspectral camera detection window, the first PC relates to spectral
bands that indicate chlorophyll fluorescence, which closely relates to photosynthetic activ-
ity. The spectral range at around 735 nm is the end of rapid change in slope in the red
edge area and, therefore, a sensitive range to vegetation stress and dynamics1. According
to Lichtenthaler and Rinderle (1988), the chlorophyll fluorescence intensity has its maxima
near 690 and 735 nm. Therefore, an increase in the ratio 690/735 nm increases as leaf
chlorophyll content begins to decrease.

Contrary to the drop in chlorophyll content in phytoplasma infected leaves, contents of sol-
uble sugars, starch, and total saccharides significantly increased (Negro et al., 2020; Barthel
et al., 2021).

1https://www.indexdatabase.de/db/i-single.php?id=537
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Al-Saddik et al. (2018) discovered in their study on Flavescence dorée that with a rise in
infestation level, the spectral signature increased in the VIS region, whereas it decreased in
the NIR region.

Additionally, Barthel et al. (2021) linked in their spectroscopic analysis of AP infected leaves
a strong relation between AP infection to differences in cellulose content. Phytoplasmas are
considered to affect cellulose which is one of the most abundant structural carbohydrates
in plants (McFarlane et al., 2014), strengthens the cell wall, and acts as a protective layer
against water loss (Sieber et al., 2000). Downregulation of cellulose synthesis weakens the
cell walls and facilitates phytoplasma entry (Kalluri et al., 2016).

Particularly, the first PC of the entire dataset indicates greatest spectral differences between
uninfected and AP infected leaves in the NIR and SWIR. Especially the bands around 1820
nm correlated to cellulose as well as 1780 nm, which is also related to sugar. The second
PCs are potentially more related to changes in oils or lignin in infected leaves. According
to Curran (1989), the plant contained oils correlated well to 1040 nm and lignin to 1120 nm.
For example, Negro et al. (2020) found out that in Bois noir-positive leaves lignin content
decreased.

Furthermore, Negro et al. (2020) observed that anthocyanin and carotenoid concentration
also decreased through phytoplasma infestation. The PCA did not indicate though spectral
bands that correlated to the anthocyanin and carotenoid concentration that would indicate
the spectral difference between the two infection statuses. However, this means that those
expected changes may still occur but where perhaps smaller compared to the changes in
cellulose or chlorophyll content. Additionally, changes in anthocyanin and carotenoid con-
centrations may also be more evident at a later phenological stage, when the discolouring
is more pronounced in September and October.

6.2. Hyperspectral Imaging for AP Detection

Generally, spectral analysis enables identifying spectral differences in leaf spectral signa-
tures of diseased plants, which can be related to phytoplasma-induced changes. Hence,
spectral analysis lays the foundation for developing an early and reproducible in-field de-
tection, follow-on image classification, and, lastly, the mapping of plant diseases, such as
AP.

Commonly, biological tests have been used that allow laboratory and even in-field analysis
of leave samples to test for the presence of phytoplasma(Al-Saddik et al., 2018). However,
biological testing in the laboratory has its limitations, as it implies labour and time-intensive
sample preparation (collection and extraction) and therefore adopts a ‘destructive’ or invas-
ive approach by plucking leaves as sampling data. In-field testing methods definitely enable
real-time results at the sampling cite but seemboth impractical and expensive in larger fields
(Al-Saddik et al., 2018). Despite having revolutionised the identification and quantification
of pathogens, they are considered as incapable of detecting early stages of disease devel-
opment.

Hence, there is a keen interest in the agricultural sector to replace this manual process
with more automated and sensitive approaches (Lowe et al., 2017). Remote sensing has
therefore proved itself useful at assessing the physiological state of a plant in respect to
plant stress and disease manifestation (Peñuelas and Filella, 1998; Wegmann et al., 2016).
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Generally, phytoplasma infestation causes a reduction in the concentration of photosyn-
thetic pigments, which leads to a reduction of the photosynthetic activity (Peñuelas & Filella,
1998). However, broadband multispectral imagery is less suitable for remote sensing of
phytoplasma-related impact on photochemical pigment composition in diseasedplants. Nar-
rowbandhyperspectral data can provide higher spectral resolution to analyse singlewavelengths
(Blackburn, 2006).

Subsequently, hyperspectral data bears the potential to design disease-specific spectral ra-
tios (or VI) and can also be used for machine learning model training to facilitate image-
based identification of diseased plants. The development of a AP-specific VI based on hy-
perspectral data seems very promising, as spectral ratios are fairly easy to compute (Yao
et al., 2018) and would allow a fast understanding of the spatial variability of the disease
from a disease monitoring point of view. A machine learning based model would prove very
beneficial in terms of upscaling the classification algorithm to and applying the information
gained from hyperspectral data also to other orchards for disease detection. Both, the de-
velopment of a AP-specific VI and machine learning classifications are considered as paths
for future research.

6.3. Precision Mapping

Due to recent technological advancements, UAVs have not only become a presence in every-
day life (Klauser &Pedrozo, 2015) but also findpopular use for agricultural applications, such
as for precision agriculture.

Despite being targeted for the mass market, UAV-based mapping for taking aerial imagery
still remains subject to accessibility, affordability, and ultimately, feasibility. In terms of mak-
ing UAVs more accessible, the aim is to increase the efficiency of UAV-based mapping at
the lowest possible cost, where cost refers to the overall effort (financial, technical, bureau-
cratic) borne to successfully deploy UAVs in the field (Casagrande & Gusto, 2017). Hence
the feasibility, or viability of UAV-based precision mapping in the field, largely depends on
the field deployability. The latter largely depends on (a) the make-up of the UAV allowing
immediate availability, use, portability and extensibility; (b) the operator’s ease in setting up
and flying the UAV on-site; and (c) regulatory and technical aspects, such as the qualific-
ation for pilots (flying licence), required authorisation for performing flights and validation
for the respective UAV (Casagrande & Gusto, 2017). It is important to be aware of these
aspects, as a drone can also become an unpredictable cause of damage in case of failure
or interference with the flight control system. The potential danger of a UAV is implied by its
weight, payload, material and the surrounding environment, which is why certain regulations
are involved in the flying of UAVs ensuring human and environmental safety.

Legitimately, the question arises whether UAV-based precision mapping is an adequate tool
for plant disease monitoring? Particularly, when looking at the financial costs UAVs imply
andwhen dealingwith plant diseases, especially the challenge in dealingwith the dimension-
ality and complexity of hyperspectral aerial imagery (Albetis et al., 2017). In a recent article
published by the German newspaper ZEIT ONLINE, the author made a thought-provoking
comment regarding the use of UAVs for sustainable agriculture, especially in regions that
do suffer immensely from crop losses but where the people, that are living of the land, not
even access to electricity (Grefe, 2021). On the other hand, Nebiker et al. (2016) argues that
high-resolution aerial images may replace ground inspections of farmlands in the near fu-
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ture. Notably, small UAVs have become popular as they show great potential for acquiring
reliable and detailed bi- and tridimensional data, which are essential in spatial reconstruction
and mapping (Casagrande, 2017).

Furthermore, precision approaches would result in the reduction of pesticides and herbi-
cides usage, with subsequent beneficial impact for the environment, ecosystem services,
grower finances and the end consumer (Lowe et al., 2017). Deploying remote sensing tech-
niques for plant disease identification could also improve our knowledge of the amount of
pest- and pathogen-induced damage, and thus prevent excessive use of chemical controls
(Peñuelas et al., 1994).

Klauser and Pedrozo (2015) argue that a deep reflection on the increased use of UAVs and
the arising political implications is increasingly urgent, though. Sandbrook (2015), for in-
stance, describes UAVs as relatively affordable, safe and powerful tools, whereas their use
compatible with the regulations and their overall perception are not obvious. The social
implications of using UAVs are not fully understood but one can assume that a negative
social perception could severely affect their use and should be carefully avoided. A negat-
ive perception may possibly be rooted in the origins of UAVs as they derived from military
ancestors (Birtchnell and Gibson, 2015 cited by Casagrande and Gusto, 2017). Hence, the
word drone is consciously avoided throughout the course of the thesis to differentiate and
not cause false misperceptions in the underlying intentions of using UAVs.

Moreover, Tsouvalis et al. (2000) address in their study the farmer’s experience and percep-
tion of precision farming techniques for yieldmapping in the English counties of Lincolnshire
and Suffolk, at a time when this technology was newly introduced in agriculture. Although
it becomes fairly clear in the course of the argumentation that the authors adopt a certain
stance in supporting the local farmers by victimizing them, one needs to be aware of com-
peting knowledge cultures, especially when technological-based knowledge, gains an insti-
tutionalised stance overruling farmer’s knowledge. Despite Tsouvalis et al. (2000) very dual
portrayal of farmer’s participation – basically none, apart froma few exceptions, where farm-
ers were more technology oriented – in precision mapping processes, the author emphas-
izes the suppression of already exiting farmer’s knowledge by scientific knowledge imposed,
reinforcing the image of the otherness of non-scientific forms of understanding (Harvey,
1997 cited by Tsouvalis et al., 2000). As a consequence, farmers redefined their identities
in response to technological change and rather taking a rejecting stance towards precision
farming and viewing it as impractical. This sense of disapproval grew consequently when
the farmers felt to be more dependent on technicians in order to implement the technolo-
gies. One of the farmers was saying that ‘if you have to rely on this technology you’re not a
good farmer’, clearly referring to decision-making increasingly being based on virtual repres-
entations of reality. Furthermore, and of immense importance from a cartographic point of
view, is the challenge in interpreting the yield maps that were produced for the farmers back
then. In order to design effective precision maps, user needs and requirements need to be
assessed, and the map content visually displayed to the users’ abilities.

Additionally, the map users, who are intended to be mainly the farmers themselves, should
be ideally involved in the precision map-making process. In their study, Tsouvalis et al.
(2000) got positive feedback when farmers were included in the process of knowledge shar-
ing and the development of the technology tailored to their needs. Consequently, offering
either a participatory approach or giving the farmersmore stewardship in the precisionmap-
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making process would win greater acceptance for the use of technological innovations in
their daily spatial decision making in the field, instead of imposing a system that seems to
be plausible from a scientific viewpoint.

According to Tsouvalis et al. (2000) map illiteracy seemed to be a major challenge, which
is why cartography can bridge the gap between cognition of space and a meaningful visual
representation of exactly the same place. Applying cartographic principles in precisionmap-
making enables the reduction of spatial data to themost relevant information, which, in turn,
reduces cognitive load, and, consequently, facilitates communicating the essential visually
to the map user. Principally, the aspect of cartographic generalisation has, however, re-
ceived very little attention in existing precisionmapmaking. The here proposed definition of
a precision map being sensor-driven, interactive, thematic map that offers different degrees
of granularity at multiple scales aims at highlighting the increased need for scale depend-
ent map display. A multi-scale mapping implies the adoption of cartographic generalisation
techniques at various supported scales (Roth et al., 2011), allowing the visual display of dif-
ferent spatial granularities. By applying cartographic generalisation, according to Robinson
et al. (1995), the map maker takes the decision, how much detail to display at the chosen
scale and finding a balance between reducing the amount of information and maintaining
the essential geographical characteristics of the mapped phenomena.

In this thesis, an object-oriented classification was suggested tomap the infection status of
apple trees across the orchard. The hexagonwas chosen to abstract the tree’s canopy shape
and use the graphical primitive to aggregate the classification results from the hyperspectral
imagery. According to Carr et al. (1992), the hexagon has several advantages over using
squares for binning a 2D surface – strictly speaking, hexagonal binning is slightly different
from the approach followed in this thesis, though, as hexagonal binning plots density, rather
than raster values. Nevertheless, hexagons are more similar to a circle than a square and
may seem to resemble the canopy shape more naturally than a quadrilateral cell. However,
using a hexagonal shape for abstracting trees, might not work for a farmer as the intended
map user, though. This would need to be assessed in map use related studies.

According to Robinson et al. (2017), that is exactly the challenge, transforming ‘raw’ data
into insights and meaningful information in the future, and not a possible lack of geospatial
data. It is cartography though, so they argue, that can play an important role in overcoming
this hurdle.

6.4. Agriculture 4.0 in South Tyrol

Adopting cartographic approaches in agriculture may also prove itself advantageous not
only in the sense of cartographic generalisation but in the exchange and sharing of geospa-
tial data and services among stakeholders, which is facilitated by SDIs (Hjelmager et al.,
2008). According to Nebert (2004), a SDI comprises of policies, technologies, standards,
and human resources needed for an effective collection, management, access, delivery and
utilisation of geospatial data for a specific community. Rooted in the principles of open data
and knowledge, an open SDI aims at making spatial data available to anyone without restric-
tions to rights of access or use (Coetzee et al., 2020). Following open standards, such as
the provision ofmetadata, and by adopting FAIR principles, establishes greater transparency
and strengthens the collaboration between stakeholders. Coupling a SDI with plant disease
monitoring on a regional level may prove beneficial for an effective collaboration between
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stakeholders from science, technology and local agriculture joining regional forces in tack-
ling plant disease spread, and at the same time, bearing a huge participatory potential for
local stewardship of farmers.

As the case study of AP in South Tyrol shows, phytoplasma is not restricted to administrat-
ive borders, which is why the use of a SDI for regional plant disease management would
seem favourable for all involved stakeholders. This said, South Tyrol is also an exceptional
example in terms of agriculture and the formation of unions. The agricultural area of South
Tyrol totals 455,840 ha, which is almost 62% of the national territory, whereas only around
28% of the land (an area of around 209,232 ha) is used as cultivated land, meadows and
pastures due to the steepness of the terrain (Tappeiner et al., 2020).

95% of the apple-growing area is used for the cultivation of only ten different apple varieties.
This fairly monocultural apple growing underlines the agricultural value for the region as it
is very much export-oriented, including wine and milk. In turn, South Tyrol’s agriculture de-
pends on the import of fertilisers and fodder, which highlights the region’s dependency on
the world economic situation. In order to be more resilient towards the volatility of market
prices for agricultural commodities, protective measures were taken by founding a world-
wide unique cooperative system, which is basically a union of farmers and producers to
gain more negotiating power (Tappeiner et al., 2020).

Furthermore, farmers in South Tyrol have formed, for instance, an association called the
Maschienenring (eng. machinery ring), which is an institution to facilitate the inter-farm use
of machinery and services amongst members, as purchase and maintenance of machinery
is very costly (Tappeiner et al., 2020).

Additionally, there is a high degree of parcelling in South Tyrol, meaning that the agricultural
land is divided by many farmers and split into several private plantations and orchards. This
may also be viewed as an argument that speaks in favour of developing a SDI as an umbrella
platform for the exchange of agricultural geoinformation, such as spatial patterns of plant
diseases, for the whole region. By means of implementing technologies in agriculture, it is
expected to also lower production costs, which in mountain agriculture are mainly driven up
by topographical challenges, such as the difficult terrain with steep slopes and few usable
areas as well as the remoteness and accessibility of certain orchards. These technologies,
however, require cooperative solutions in order to contribute to safety and ease of work
(Tappeiner et al., 2020).

South Tyrol’s vision of a sustainable agriculture 4.0 promotes the implementation of innov-
ations, both technological and entrepreneurial (Zebisch et al., 2018), which require (a) the
provision of financial subsidies creating incentives to acquire new technologies; (b) an in-
vestment into complementary training (in termsof operating these technologies); and (c) the
offer of advisory services regarding sustainable agriculture (Zebisch et al., 2018; Tappeiner
et al., 2020). On the other side of the production chain, it is also important to sensitise the
consumers about agricultural sustainability, as consumerism has its fair share in defining
the future of agriculture.

In terms of plant disease management, investing in new technologies poses a financial
hurdle without a doubt. However, these technologies can possibly exert a positive long-term
impact, as early detection of infected trees offers early scope for action, thus, reducing pro-
duction costs, which are again lowered through the reduced use of large-scale pesticide
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spraying (Tappeiner et al., 2020).

Yes, crop protection is important to ensure future food supplies but at what price? Future
agriculture needs to drastically reduce the use of pesticides and fertilisers, become more
climate-neutral and promote biodiversity (Tappeiner et al., 2020).

Sustainable agriculturemust protect andpreserve land, water, climate andgenetic resources
for future generations, ensure the health andwelfare of all livestock, produce high-quality ag-
ricultural products, be economically viable and socially acceptable (Tappeiner et al., 2020).
Thus, the SDGs need to be pursued in conjunction, as, for instance, ensuring food security
cannot be realised only by implementing innovative technologies to end hunger, but the hu-
man footprint on natural resources, the contribution to greenhouse gases and, ultimately,
adaptation to climate change need to be addressed simultaneously. Thus, expectations
towards sustainable agriculture are high, but the need for change outweighs it. And imple-
menting innovative strategies is part of steering towards sustainability.

Cartography bears the potential through precision maps that are already embedded in pre-
cision agriculture to foster the use of sensing systems and integrate maps into spatial de-
cision making, particularly for plant disease control and plant health monitoring. Precision
farming that employs cartographic principles in map making can prove efficient in minim-
izing crop losses and ensure food supplies. This requires knowledge sharing, adequate
training as well as collaborative or participatory mapping approaches to empower farmers,
who are willing and use the technology to deploy these themselves. Furthermore, Hjelmager
et al. (2008) identified that by organising spatial data across disciplines and organisations,
SDIs meet the need to create multi-participant, decision-supported environments in order to
address the issues of sustainable development and improving quality of life.

‘Yet in the end, sustainable development is not a fixed state of harmony, but rather a process
of change in which the exploitation of resources, the direction of investments, the orientation
of technological development, and institutional change are made consistent with future as
well as present needs. We do not pretend that the process is easy or straightforward. Painful
choices have to be made. Thus, in the final analysis, sustainable development must rest on
political will.’ (UNWCED, 1987)
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In hindsight, it is definitely easier to point out certain risks or indicate shortcomings that
one was not aware of when beginning to work on the thesis. In the following sections, an
overview shall be given, briefly describing limitations encountered during the thesis work
and suggesting possible paths for future research:

Data Collection

Early disease detection

– Further research is necessary to find an optimal time period for deploying an early
disease detection in the field. Yuan et al. (2013), for instance, conducted a multi-
temporal study, comparing classification results of data acquired at an early dis-
ease stage with data obtained at a later, more developed disease manifestation.
Classification results imply that detecting plant diseases at a later stage achieved
higher accuracy and thus seemed more reliable.

– Albetis et al. (2017) outdoor temperature is assumed to have an effect on the
leaf spectral signatures, which implies that in-field detection may be biased as
leaf spectral signatures are affected by environmental temperature, which typic-
ally increases during the growing season. Thus, comparability of leaf spectral
signatures of different phenological stages need to aware of temperature influ-
ence.

– This also includes diurnal changes in the spectral signature, as the photosyn-
thetic activity and thus the leaf metabolism varies across the day. How great
is the impact of diurnal changes on the ‘general’ leaf spectral signature?

– So far this thesis indicates that there are detectable spectral differences in May
(at a fairly early phenological stage). At which phenological stage would it be
technically possible and feasible to identify AP-induced spectral differences early
in the field?

Instrument operability

– Instrument warm-up time and sampling logistics (spectroradiometer)

– For optimal performance, SVC (2012) recommends switching on the spec-
troradiometer and leave the device running for approximately 15 minutes be-
fore commencing with the sampling

‘During this period, the instrument should be placed in the environment
where scanning will take place. This period allows the detector temperat-
ures and other electronics to stabilize before taking spectral data.’ (SVC,
2012, p.51)

– Al-Saddik et al. (2018) for instance allowed the spectroradiometer used in
their study towarmup at least for 20minutes prior to sampling to exclude any
bias on the spectral signatures, potentially caused by the instrument itself
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– The durability of LI-Ion batteries is seen as a limitation, although theoretic-
ally they are originally designed to provide over 3 hours operation following a
full charge. However, to perform the sampling in one day with the spectrora-
diometer, three batteries were needed in total.

– As the spectroradiometer recorded an internal temperature of around 50°C
under hot outdoor conditions in July, one cannot exclude necessarily an im-
pact of the instrument’s internal temperature on the sampled spectral signa-
tures. There might be an influence.

Operating the UAV

– In termsof reproducibility of themethodological framework suggested in this
thesis, the mayor hurdle seemed to be the operation of a UAV, which

a) relies on optimal flying conditions, which might pose a challenge espe-
cially in mountain environments.

b) a flying licences and equally important the financial budget for acquiring
a UAV

Orchard activities and black hail nets

– Field campaigns were not only restricted by the weather conditions but also by
the ongoing orchard management, such as spraying, that limited accessibility of
the orchard for taking measurements on certain days

– Black hail net:

– The annual estimates of theHail ProtectionConsortium (de. Hagelschutzkon-
sortium) in South Tyrol do not indicate any significant increase in area af-
fected by hail during 1981–2017. With climate change and rising temper-
atures, it is expected, though, that hail events become more intense. Con-
sequently, hail nets are increasingly used in both fruit growing and viticulture
(Zebisch et al., 2018)

– The hail net was amajor drawback for the purpose of this thesis, as the aerial
UAV-based imagery of orchards was affected by the filtering effect of the net
and distorts the spectral information below.

– Perhaps it would be possible to model the spectral characteristics of the hail
net in order to use a model-based approach for processing and diminishing
or totally eliminating the filtering effect. This may seem a fairly complex task
as the hail net does not appear as a flat surfacewith homogenous absorption
features in the aerial images.

– Deploying a ground-sensing approach usingmulti- and hyperspectral camera
sensors either on a tripod, orchard vehicles in motion, or install permanent
field sensors, covering all the vegetation periods would be an alternative ap-
proach.

– Bendel et al. (2020), for instance, suggest a tractor-mounted system as
a suitable method in viticulture since data could be collected in parallel
to fieldwork.
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– Deery et al. (2014), describe proximal remote sensing buggies for field-
based phenotyping.

– As Bock et al. (2020) already highlighted, crop motion due to wind can be a
limiting issue though during ground and proximal sensing in the field.

Plant disease characteristics

– Upper leaves in a canopy may have different phytoplasma concentrations and
therefore also show varying levels of symptom expression than lower parts of
the crop stand. Consequently, there might also be a bias in scaling the findings
from the ground to the airborne sensing approach, also bearing inmind that phyto-
plasma concentrations vary in the canopy throughout the year.

– Mixed infection, a plant suffering of multiple stress factors. Thus, the need to de-
velop and deploy disease-specific camera sensors in the field to detect changes
in specific spectral wavebands, particularly in the NIR and SWIR that can be re-
lated to specific phytoplasma-induced diseases

Data Processing

– According to Blackburn (2006), thematuration of sensor technology and growing oper-
ational deployment of ground-based, airborne and spaceborne instruments will greatly
enhance the capabilities for routinely acquiring hyperspectral data and potentially, for
quantifying plant pigments over a wide range of spatial scales.

– Therefore, scalability of data, which require standard conform data formats, will re-
ceive more attention in geospatial science than it already has, particularly for map
development and spatial analysis

– Hence, Open standards will need to be increasingly adopted and further developed.

– The processing, analysis and visualisation of hyperspectral data will also gain further
momentum when adopting data cubes in automatising plant disease identification
and detection (for instance using rasdaman1 or opendatacube2)

a) for real time,

b) cloud-based, and/or

c) cartographic web-map services

Data Analysis

Range of the electromagnetic spectrum used for analysis

– Similarly to Al-Saddik et al. (2018), the spectral range below 400 nm was not
considered in the spectral analysis, due to high noise within the UV range. Ad-
ditionally, the region outside of the Rikola hyperspectral camera, so below 500
nm would be interesting to include in the analysis in respect to photochemical
pigments, such as anthocyanins and carotenoids.

1https://www.rasdaman.com/
2https://www.opendatacube.org/
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Multi-class Classification

– Applying a multi-class classification instead of a binary classification (i.e. unin-
fected / infected), would be fascinating in terms of identifying latent trees and
recovered trees from the other AP infected trees. Further, research and spectral
analysis would be needed to investigate whether latent and/or recovered trees
show different spectral properties from the AP infected and uninfected trees.

– Regarding the differentiation between recovered (and probably also latent trees)
analysing theH2O2 accumulationwithin the plant as a defencemechanismagainst
phytoplasma (Musetti et al., 2007) might be a first starting point for a multi-class
classification or differentiation between symptomatic and symptomless plants

– Additionally, a multi-class classification could also be realised by mapping the
severity of infection or visualising the likelihood of infection (i.e. uncertainty map-
ping)

– From a management perspective or a map user point of view, it would be inter-
esting to know whether a multi-class classification would be meaningful, as it
is imagined that a binary classification might be already sufficient, as the tree
inevitably faces uprooting as soon as the infection is evident.

Disease specific VI

– Developing a AP specific VI would require further research activity and further
testing of spectral ratios

Machine learning

– Entering deeper into the field of machine learning seems promising for develop-
ing a robust and reproducible model for image classification; this would require
a comparison of different machine learning algorithms and evaluation of their
classification performances

Data Visualisation

Data format

– Having touched upon data cubes as potential data formats for hyperspectral data
analysis, this would also imply new opportunities in terms of data visualisation

– Further testing and research on map interaction with data cubes would be
promising as the data cube might become a more relevant data format in
the future,

– Further research is necessary on the visualisation of data cubes particularly
in precision agriculture and for the development of precision maps,

– With the focus on implementingmulti-scale databases and their manage-
ment for user interaction

– These databases are also referred to asmulti-resolution ormulti-representation
databases (MRDB) (Spaccapietra et al., 2000)
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– Meijers et al. (2020), for instance, suggest another format for web map-
ping using space-scale cube data for smooth user interaction

Cartographic generalisation

– Another aspect that was not addressed in this thesis is the Modifiable Areal Unit
Problem (MAUP) which arises when data is aggregated spatially. It would be
worthwhile investigating further towhich extendMAUPoccurs by choosing hexagons
for aggregating the raster values

Map use

– User testing is definitely required in order to gain deeper insight into how partic-
ularly farmers perceive their orchard spatially, if and how a map could help their
needs in spatial decision-making, and if a multiscale map is an effective visual-
isation approach in precision mapping

– Another feature that one could add to the visualisation would be the aspect of
time, as several flights covering different phenological stages could be visualised
and compared by implementing a time slider for instance; it would be interesting
to analyse further the spectral variations in a phytoplasma-diseased tree over
time

– Furthermore, it could be considered useful to provide ancillary information ac-
companying the web map in order to develop an interactive dashboard to the
end-user

Data Sharing

Collaborative mapping in agriculture

– Further testing of the SDI and involvement of agricultural stakeholders in a preci-
sion mapping would be ideal in order to upscale the scope of the mapping effort
from a single orchard to an entire region (potentially South Tyrol) and further im-
prove the proposed methodological framework

– Additionally, the social perception of UAV-based precision mapping could be fur-
ther investigated, as precision farming is commonly associated with intensive
agriculture and less with organic, low or no chemical input farming – hence, pre-
cisionmappingmight be perceived as ameans for mass production, which is not
proposed here
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8 Conclusion

This experimental research aimed at developing a cartographic understanding and a meth-
odological framework for precision mapping. For this purpose, contemporary examples
from different domains were reviewed with respect to their notion of and expectations to-
wards a precision map. Despite the thematic amplitude in the drawn examples, precision
mapping was closely related to sensor-based data acquisition, particularly to UAV-mapping
and the classification of high-resolution imagery. However, map-making rests upon general-
isation of spatial information, which is commonly overlooked in precision mapping. Hence,
this study argues for adopting amulti-scale mapping approach in order to visualise different
spatial granularities at respective levels of detail within a precision map.

Mapping is fundamental for spatial decision-making in agriculture and sets the basis for
crop monitoring, including plant disease management. Plant pests endanger tree health
and harvest, which is why an early disease detection is important in order to take adequate
measures andminimise potential costswith further disease spread. As ‘traditional’methods
for plant disease detection, which include visual, in-field inspection of trees or biological test-
ing either on-site or in the laboratory, are costly in terms of labour and time. Sensor-based
methods, therefore, have becomemore attractive, as they allow a spectral analysis of differ-
ent plant diseases, since plant pathogens cause biochemical and biophysical modifications,
which can be identified from the leaf spectral signatures (Mahlein, 2016).

At the example of anAP infected orchard in South Tyrol, a non-invasivemappingmethodwas
established spanning the whole data lifecycle: adopting a ground and airborne, proximal
sensing approach, hyperspectral data were collected on the leaf and orchard level. Relevant
spectral bands were identified through PCA to differentiate between infected and uninfec-
ted leaves and the findings serve for future spectral analysis of AP and image classification
deploying machine learning algorithms. Insights gained through the spectral data analysis
served as the basis for the subsequent hyperspectral waveband selection and composition
of adequate vegetation indices. A hexagonal grid structure, assimilating the tree rows, is
used for cartographic generalisation of the image classifications as well as for the abstrac-
tion of the tree canopy shape by the individual hexagonal cell. Following Shneiderman’s
1996 visualisation mantra ‘Overview first, zoom and filter, then details-on-demand’, the multi-
scale precision map is designed as a web map, which is embedded in the EDP, an open-
source SDI geoportal maintained by Eurac Research’s CSS. Understood as open science,
this study follows the FAIR and open data principles and aims at making the data available
for further reuse for future research.

This experimental study is expected to encourage future application of cartography in agri-
culture and foster cartographic understanding in precision mapping using multi- and hyper-
spectral data. Further research is required on the spectral analysis of AP, but also in terms
of SDI-based collaborative mapping in the agricultural sector, as well as user-oriented pre-
cision mapping of plant diseases adopting multi-scale visualisations. The precision map is
viewed as a cartographic tool that can be part of an environmentally sustainable disease
and pest management programme with the potential to minimise yield losses and foster
food security, if politically wanted and promoted.
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