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TECHNOLOGICAL INNOVATION AND RESOURCES
Spectral Prediction Features as a Solution for
the Search Space Size Problem in
Proteogenomics
Steven Verbruggen1,2, Siegfried Gessulat3, Ralf Gabriels4,5 , Anna Matsaroki2,
Hendrik Van de Voorde2, Bernhard Kuster3, Sven Degroeve4,5, Lennart Martens4,5 ,
Wim Van Criekinge1, Mathias Wilhelm3, and Gerben Menschaert1,2,*
Proteogenomics approaches often struggle with the
distinction between true and false peptide-to-spectrum
matches as the database size enlarges. However, fea-
tures extracted from tandem mass spectrometry intensity
predictors can enhance the peptide identification rate and
can provide extra confidence for peptide-to-spectrum
matching in a proteogenomics context. To that end, fea-
tures from the spectral intensity pattern predictors
MS2PIP and Prosit were combined with the canonical
scores from MaxQuant in the Percolator postprocessing
tool for protein sequence databases constructed out of
ribosome profiling and nanopore RNA-Seq analyses. The
presented results provide evidence that this approach
enhances both the identification rate as well as the vali-
dation stringency in a proteogenomic setting.

Proteogenomics is defined as the research field in which
proteomics is combined with genomics and/or tran-
scriptomics. In practice, this is achieved by the generation of a
custom protein sequence database from genomic or tran-
scriptomic sequencing information, which can be subse-
quently used to identify nonreference peptides in mass
spectrometry (MS) proteomics data (1). In this way, the
protein-level validation, offered by proteomics, can be inte-
grated with the depth and de novo capacities of sequencing
technologies.
Nevertheless, proteogenomic approaches always imply an

important trade-off: with increasingly more candidates in the
custom search space, it gets more difficult to statistically
differentiate true from false peptide-to-spectrum matches
(PSMs). Two possible explanations for this effect are pro-
posed. One describes that, with a growing number of candi-
dates in the custom search space, it gets more likely that the
best scoring PSM is actually a false one that jumped over a
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true one by chance (2, 3). Another explanation states that a
spectrum without a true match in the database has more
options to produce a false PSM when the database is
expanded. In this last case, the score distribution of the true
PSMs does not change, but the score distribution of the false
PSMs increases, which can result in true PSMs, priorly located
at the false discovery rate (FDR) margins, now dropping below
the raised FDR cutoff. Altogether, searching with larger data-
bases can result in a number of novel peptide identifications,
owing to the additional information available in the expanded
search space. However, if the size of this database grows too
drastically, the total number of identified peptides can drop
considerably compared with proteomics performed with a
conventional reference database (e.g., UniProt), owing to the
statistical issues explained above (3–5). In that case, the
confidence gets underestimated owing to the database size
(6).
A search space, constructed out of the complete in silico

translated human genome, led to a 70-fold increase in size
compared with the corresponding reference proteome from
Ensembl (7). In order to narrow down this database size and at
the same time use a more tailored approach, one can apply
RNA-Seq on the same samples with the intention of deriving a
sample-specific protein search space from the transcriptome
(8, 9).
The development of ribosome profiling (10, 11), a deep

sequencing technique in which the ribosome-protected mRNA
fragments are sequenced resulting in a genome-wide base
resolution signal of translation, allowed this approach to be
pushed even further. With ribosome profiling, a proteoge-
nomic search space can be extracted from the translatome,
one extra step closer to the final protein products (6, 12–14). In
this way, proteogenomic search spaces got even more
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attuned and smaller in size because ribosome profiling un-
covers both the reading frame of the translated protein
product as well as its position inside the transcript. Recently,
we could demonstrate that this interplay of ribosome profiling
and proteomics allows the validation of novel proteoforms (15)
with evidence both on the levels of translation and peptide
detection. This approach was embedded in a computational
pipeline, called PROTEOFORMER (16).
Despite the fact that these more tailored approaches limit

the search space expansion, additional sequences are still
added on top of the reference information. So, in order to
counteract the effect of this enlarged database, a pursuit for
more stringent peptide-to-spectrum matching is ever present
in the proteogenomic field. Besides, more stringent matching
is always desired as it results in more confident proteomic
identifications (2).
The application of postprocessing tools on search engine

scores and additional PSM-derived features provides a way to
raise the number of spectrum identifications at a fixed FDR
(17). Machine learning algorithms can be implemented to
separate true from false PSMs using the features obtained
from the prior matching step. This concept got especially
popular with the introduction of Percolator (18, 19), a tandem
mass spectrometry (MS/MS) postprocessing tool that applies
support vector machines in combination with a statistical
iterative framework to enhance the information yield obtained
from PSM features. As such, the confidence to distinguish true
from false PSMs can be enhanced.
Beside postprocessing tools, another trend in proteomics is

the rise of fragmentation spectrum intensity predictors. Con-
ventional MS/MS scoring engines only consider m/z values
when comparing experimental spectra with theoretical ones
(20, 21). However, it has been demonstrated that identification
rates firmly rise when fragment intensities are added to the
search algorithms (22–24). In the last few years, this field has
seen a significant progress where machine learning algorithms
allow increasingly better predictions of spectral intensity pat-
terns (25–29). One of these predictors is called MS2PIP, and it
is trained using gradient decision tree boosting approaches
(25, 26). MS2ReScore, a tool linked to MS2PIP, uses MS2PIP’s
predictions to come up with an extensive feature set, which
can then be used to increase the power in PSM post-
processing (30). On the other hand, Prosit is a tool that strives
to optimally predict peptide spectra through the training of its
deep learning model on the comprehensive ProteomeTools
database (29). ProteomeTools offers an extremely broad
resource of synthetically generated peptides linked to their
MS/MS analysis results (31). Both MS2Rescore and Prosit
thus offer an extended feature set that is compatible with
Percolator postprocessing (29, 30). The combination of
spectral intensity predictors with postprocessing tools already
demonstrated its advantages for metaproteomics (29),
another field that, just like proteogenomics, suffers from FDR
problems because of search space size explosion.
2 Mol Cell Proteomics (2021) 20 100076
In this paper, we provide the first results that this approach
is extremely useful in the context of proteogenomics. We
demonstrate that this setup clearly improves our earlier ribo-
some profiling-driven proteogenomics research, leading to-
ward more confident peptide identifications and subsequently
more confident proteoform validations. Results show that this
leads to considerably more identifications with higher confi-
dence. Furthermore, we also returned to an RNA-Seq–based
three-frame translation database and demonstrate that our
approach even allows to perform confident peptide identifi-
cation in this setting, where the search space is around 20
times larger than a reference proteome search space. This last
setup moreover shows that third-generation cDNA and direct
RNA-Seq using nanopores (32) can now be easily integrated
into proteogenomic research.
EXPERIMENTAL PROCEDURES

Construction of Proteogenomic Search Spaces

All experiments were performed on the human colorectal cancer
cell line HCT116. Ribosome profiling data from the following paper (6)
was used and is available in the Gene Expression Omnibus (dataset
GSE58207). In our previous study (16), we applied the PROTEO-
FORMER pipeline to derive a search space in FASTA format out of this
dataset. The obtained database is a combination of novel candidate
translation products derived from ribosome profiling as well as ca-
nonical sequences from UniProt.

Next, we performed RNA extraction and purification on
HCT116 cells, conversion to cDNA, library preparation, and subse-
quent Oxford Nanopore Technologies cDNA sequencing on
HCT116 cells. Full details on RNA purification, library preparation, and
sequencing protocols can be found in the supplemental Materials and
supplemental Figs. S12-S16 (16, 18, 19, 25, 26, 29, 30, 33–41) of this
article. Raw sequencing data were uploaded on NCBI’s Sequencing
Read Archive (Project number SRP289438). Raw sequencing data
were base called and mapped. Afterward, translated transcripts were
called, and in these, open reading frames (ORFs) were searched over
the three reading frames. All ORFs were exported in FASTA format
and merged with reference information from UniProt. More details on
this data processing can be found in the supplemental Materials and
supplemental Figs. S12-S16 (16, 18, 19, 25, 26, 29, 30, 33–41) of this
paper.

MS/MS Data and MaxQuant Search Results

Raw MS/MS data were generated for HCT116 cells in our previous
study (16). The experimental protocols applied to obtain the prote-
omics raw data can be read in the supplemental Materials and
supplemental Figs. S12-S16 (16, 18, 19, 25, 26, 29, 30, 33–41) of the
respective publication. The raw data itself are available from Proteo-
meXchange under the identifier PXD011353.

As the ribosome profiling-based search space is used from that
same study (16), the MaxQuant search results (folder: HCT116_uni-
prot_canonical_txt.zip) under identifier PXD011353 could be used as a
starting point for the postprocessing analysis based on the ribosome
profiling search space.

For the RNA-Seq case, we searched the same HCT116 raw spectral
data against the newly generated RNA-Seq–based ORF FASTA
database (merged with the splice isoform-included version of UniProt).
Apart from the search space, all search parameters were the same
as described in the supplemental Materials and supplemental
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Figs. S12-S16 (16, 18, 19, 25, 26, 29, 30, 33–41) of our previous
publication (16). All new search results were submitted to Proteo-
meXchange under the identifier PXD022280. The MaxQuant search
results on protein group level of this search are also available in Excel
format in supplemental File S1.

Spectral Intensity Prediction and Postprocessing

For the ribosome profiling case, both MS2ReScore and Prosit were
run on the MaxQuant PSM search results. Both tools internally predict
the MS/MS spectra (including fragment intensities) for all possible
peptides and afterward construct additional features per PSM based
on the spectrum prediction of the matching peptide and the experi-
mental spectrum. As these features are combined with the canonical
scores of MaxQuant (which do not contain any fragment intensity
information, only information from the m/z dimension), the feature in-
formation content per PSM increases vastly. Further details on how
both tools were used can be found in the supplemental Materials and
supplemental Figs. S12-S16 (16, 18, 19, 25, 26, 29, 30, 33–41). Each
of both spectrum predictors puts some constraints on the peptides for
which a spectrum can be predicted. These constraints are, for
example, based on peptide sequence length, primary fragment ion
charge, peptide modifications, amino acid usage, and secondary
matches. Further details on these constraints can be found in the
supplemental Materials and supplemental Figs. S12-S16 (16, 18, 19,
25, 26, 29, 30, 33–41). We filtered the total pool of PSMs for a set of
constraints in order to obtain a common pool of spectra that can be
predicted by both tools. For other analyses in this article, where only
one of both spectral predictors was used, this PSM filtering was not
performed and all PSMs that could be rescored by that tool were
consequently used. Percolator (version 3.02.1) (18, 19) was subse-
quently used to rescore the common pool of PSMs for different feature
combinations: (1) a baseline setting with only the Andromeda score
and delta score from MaxQuant, (2) the baseline setting combined
with the features from MS2Rescore, and (3) the baseline setting
combined with the features from Prosit. For all Percolator runs, the
target-decoy competition method was used to obtain q-values.
Furthermore, the option to not remove redundant peptides (keep all
PSMs) was selected. All other Percolator parameters were set to the
default values.

To investigate the feasibility of our approach on a full RNA-Seq–
based three-frame translation search space, MS2ReScore was run on
the MaxQuant search results for the RNA-Seq protein sequence
database with the same settings as described earlier. All rescored
PSMs were postprocessed by Percolator for two distinct feature sets:
(1) a baseline setting with only scores based on MaxQuant and (2) the
baseline setting combined with all features from MS2Rescore.
Percolator parameters were set as earlier described.

We also investigated the yield of our new approach on the protein
level (next to the PSM and peptide levels), as this can provide infor-
mation on novel proteoforms, i.e., proteogenomic novel events.
Therefore, for the ribosome profiling setting, we linked all PSMs
(without prior FDR filtering) that were rescored with Prosit with the
protein information obtained in MaxQuant. For the RNA-Seq setting,
we used all rescoring information from MS2ReScore. To match the
complete MaxQuant search space, we added decoy and contaminant
protein sequences to the FASTA file as is done internally in MaxQuant.
With the extended Prosit PSM feature file and the extended FASTA
file, we ran Percolator again. Compared with previous Percolator an-
alyses in this publication, we included the Fido protein inference al-
gorithm this time (42). The identified proteins were compared against
the list of proteins we identified earlier with MaxQuant (16). Further-
more, the proteins, inferred by Fido, were further parsed and classi-
fied. We checked per peptide if it validated the existence of a
proteoform that got into our search space solely because of ribosome
profiling information and not because of UniProt reference informa-
tion. If so, this protein was added to the list of validated novel pro-
teoforms. Moreover, we made sure that the confirming peptide was
included in or covering the protein’s variation point (e.g., truncation,
extension, splice isoform change, single amino acid variation). Based
on this verification, the novel proteoform could also be included in a
proteoform subcategory based on the nature of its variation point.
Results on the level of proteins and proteoforms are easier to interpret
in the ribosome profiling setting as this sequencing strategy clearly
delineates the actively translated ORF. Therefore, classification of
proteoform results into annotation (sub)classes was primarily done for
ribosome profiling (more on this in the supplemental Notes).

The hardware specifications, software availability, and the general
statistical rationale can be found in the supplemental Materials and
supplemental Figs. S12-S16 (16, 18, 19, 25, 26, 29, 30, 33–41).

RESULTS

To start off, custom protein search spaces were con-
structed for human HCT116 cells out of ribosome profiling and
RNA-Seq analyses. For ribosome profiling, the protein search
space obtained with PROTEOFORMER 2.0 (16) was used. For
RNA-Seq, HCT116 cells were subjected to Oxford Nanopore
Technologies cDNA sequencing, and for each transcript with
transcription evidence, all theoretical ORFs that were present
over the three reading frames were added to the search
space. For both sequencing techniques, the result database
was combined with the reference database (Swis-
sProt+TrEMBL) from UniProt to make the distinction between
known and novel proteins (proteoforms) later on. In both
cases, this results in an expansion of the database size
(Table 1 and supplemental Fig. S1). The UniProt reference
database (containing 71,356 canonical protein sequences;
93,275 when splice isoforms were included) was expanded to
186,627 sequences owing to the added protein candidates
from ribosome profiling, which is a growth of the database size
by a factor around 2. Based on the amino acid content, this is
a growth by a factor around 1.7. On the other hand, added
RNA-Seq results led to a combined database size of
4,988,183 sequences, a total growth in database size by a
factor of around 53.5. Based on amino acid content, the RNA-
Seq database grew with a factor around 20.4 compared with
the UniProt reference.
Using MaxQuant (37), the HCT116 proteomics data were

searched against both expanded search spaces. The sta-
tistics of these searches (Table 1) illustrate how enlarged
database sizes introduce FDR issues in conventional pro-
teomic search algorithms. Compared with a UniProt-only
database, a database with added ribosome profiling infor-
mation only led to a minor decrease in identified PSMs and
peptides. The number of identified protein groups even
increased as this database has a larger information content,
which earlier led to the identification of additional proteo-
forms (16). For RNA-Seq, this situation, however, got out of
hand. The search space grew exponentially, and this resul-
ted in a significant decrease of identified PSMs, peptides,
and even protein groups. Using conventional search
Mol Cell Proteomics (2021) 20 100076 3
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algorithms, the extra information added from RNA-Seq got
completely undermined by the problems introduced by the
search space size expansion. Percolator postprocessing on
the raw MaxQuant scores (i.e., Andromeda scores) allowed
recovery of the identification rate almost completely for
ribosome profiling-based databases, though. For RNA-Seq
databases on the other hand, a fair loss of identification
seems still present. The “Andromeda+Percolator” setting is
in the rest of this article used as the baseline setting.
Based on supplemental Fig. S2, it appears that Max-

Quant allows identification of novel proteoforms (i.e., their
sequence originally added to the database because of
sequencing information) for both the ribosome profiling–
and the RNA-Seq–based database. However, the number
of identifications supported by both the UniProt reference
and the custom sequencing information drops dramatically
in the RNA-Seq case. As this is a consequence of the
increased search space size and the linked FDR diffi-
culties, improvements to counteract this should first be
implemented before one can trustfully validate novel
protein identifications. Furthermore, these improvements
could also be helpful for the ribosome profiling case as
it will help to validate new proteoforms even more
confidently.
With that goal in mind, the spectrum predictors MS2PIP

and Prosit were applied to construct predicted spectra for
all peptides in the merged databases. In conventional
search tools such as Andromeda (21) (embedded in the
MaxQuant (37) software), theoretical spectra are only con-
structed and matched with experimental spectra based on
their x-axis (m/z range). Spectral predictors allow to addi-
tionally predict the intensities of all fragments of each
theoretical spectrum (supplemental Fig. S3), greatly
expanding the information content of each PSM. This
additional information can be extracted from the PSMs in
the form of extra features that can be added to the basic
scores from Andromeda. For MS2PIP predictions, feature
calculation is done using the standalone MS2ReScore tool,
whereas for Prosit, this is implemented inside the tool itself.
Prior to Percolator postprocessing, scores and features
could be examined by plotting their distributions for target
and decoy PSMs (supplemental Fig. S4). In these plots, it
can be observed that the decoy distribution coincides with
the lower part of the bimodal target distribution. The targets
typically behave bimodal because of the underlying
composition of negative and positive PSMs. However, these
negative and positive target PSMs are more clearly sepa-
rated for the predictor scores (panels C and D) than for the
conventional scores (panels A and B). For these last scores,
there is actually quite some overlap between the negative
and positive peak areas, and this effect got even more
pronounced for the RNA-Seq case (panels E and F). On the
other hand, the principal score of MS2ReScore still keeps a
clean separation between negatives and positives for the
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RNA-Seq case (panel G). The same scores can also be
visualized using joint plots (supplemental Fig. S5). In these
plots, it is noticeable that the scores of the spectrum pre-
dictors allow a cleaner separation than the Andromeda
score. This is true in the ribosome profiling case (panels A
and B), but it is even more accentuated in the RNA-Seq
case (panel E) where there is an even greater mixing on
the Andromeda score axis while the MS2Rescore Pearson
correlation retains a clean separation between positive tar-
gets and decoys.
Concerning scoring, Prosit’s spectral angle seems an

easier to use statistic compared with MS2ReScore’s
Pearson correlation as the separation between targets and
decoys occurs more spread over the [0,1]-range for
spectral angle than for Pearson correlation (supplemental
Fig. S5C). An eventual threshold for spectral angle
would be positioned more in the center of this range,
making separation easier. MS2ReScore also provides a
cosine score in its feature vector. This score resembles
Prosit’s spectral angle more than the Pearson correlation,
although it is not completely identical. A comparison be-
tween these two scores (supplemental Fig. S5D) shows
that both tools succeed very well in separating positive
targets from negative targets and decoys.
Next, feature vectors from (1) solely Andromeda, (2)

Andromeda combined with MS2ReScore features, and (3)
Andromeda combined with Prosit features were, for the
ribosome profiling case, processed with Percolator to
check whether the features added by the intensity-based
predictors boosted the identification process. For the
analysis starting from the RNA-Seq search space, only the
first two vectors were compared. In its postprocessing,
Percolator generates total scores and statistical measures
per PSM (supplemental Files S2–S4 for the ribosome
profiling case; supplemental Files S5 and S6 for the RNA-
Seq case). Distributions of these scores give a first
impression of the identification performance of Percolator
for the different feature sets (supplemental Fig. S6). For a
feature set with only Andromeda scores, there is quite
some distribution overlap between the true and false target
PSMs, especially for the analysis started from the RNA-
Seq search space. Addition of intensity-based features
makes the peak areas of these bimodal distributions
sharper as these added features allow Percolator to
strengthen its separating power. Also, the confidence on
which individual PSMs can be identified rises when spec-
tral prediction information is added, as there is enrichment
for lower posterior error probabilities (PEPs) visible for
feature sets with additional intensity-based features
included (supplemental Fig. S7).
Filtering for a set of significant PSMs is generally performed

using the q-values and the resulting FDR-estimation (18). The
most valuable measure to compare the sets with and without
additional features is therefore the FDR as this shows the
actual yield on PSM-level stringency. In Figure 1, it is clearly
visible that the introduced MS2ReScore and Prosit features
extensively improve the stringency on which Percolator can
classify the PSMs. This is illustrated by the remarkable shift to
the left, compared with the baseline. Next to that, there is also
a gain in identification rate, which is shown in the vertical di-
rection of this figure. Moreover, for our data, it appears that
MS2ReScore and Prosit perform this task almost equally well.
The number of identified spectra could also be converted to
the number of true-positive spectra using following formula:

#positives=#identifications−FDR • #identifications (1)

The true positives plot is given in supplemental Fig. S8, and
also here, the classification stringency of Percolator is shown
to improve. Using additional features from spectral predictors
leads to both a loss and gain of PSMs compared with con-
ventional search strategies (supplemental Fig. S9). The loss
describes the PSMs that appear to be false matches after all,
while the gain describes PSMs that match much better as the
fragment intensities are taken into account. In supplemental
Fig. S9, it is shown that the gain of using extended features
is bigger than the loss for FDR thresholds up until 0.1% and
sometimes even lower, compared with a conventional setting
of using only Andromeda features at a 1% FDR threshold.
In the context of proteogenomics, it is interesting to push

the improved PSM information onto the protein level. This
allows validation of the translation profiles of ORFs from
ribosome profiling or the transcript expression from RNA-Seq
with protein validation from proteomics. We performed this
using conventional proteomic search strategies before for
ribosome profiling databases (6, 12, 13, 16), but incorporating
the improved PSM information into this workflow would pro-
vide significant advantages. In order to demonstrate this, we
used the extended feature set of Andromeda combined with
Prosit for PSMs coming from a search against the ribosome
profiling custom search space. This set was again inputted in
Percolator but this time with the Fido (42) protein inference
algorithm activated. The Percolator results (supplemental Files
S7–S9) were further parsed to search for novel proteoforms,
similar to what was done before based on MaxQuant output
(16). In doing so, the confidence on which proteoform identi-
fications could be called was checked. The novel proteoforms
obtained from this novel Prosit-Percolator approach are given
in supplemental File S10. The collections of novel proteoforms
are compared between the novel Prosit-Percolator approach
and the conventional approach using MaxQuant (16) in
Figure 2. Panel A shows that a big part of the novel proteo-
forms is shared between the two approaches, but neverthe-
less, both analyses identify unique novel proteoforms as well.
Further investigation into these unique proteoforms for each
technique shows, however, that the underlying peptides of the
Prosit-Percolator approach are distributed over an expected
confident PEP (posterior error probability) range (panel C),
Mol Cell Proteomics (2021) 20 100076 5
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FIG. 1. The number of identified spectra as a function of differing FDR levels for the different feature sets. A, for the ribosome profiling
case, the feature set of only Andromeda scores (serving as a baseline), the combination of Andromeda scores with MS2ReScore features, and
the combination of Andromeda scores with Prosit features are shown. B, for the RNA-Seq case, the feature set of only Andromeda scores
(serving as a baseline) is compared with the combination of Andromeda scores and MS2ReScore features. Percolator was used on both baseline
and expanded feature sets. Additional intensity-based features on top of the Andromeda scores enhance Percolator’s capability to separate true
from false peptide-to-spectrum matches, ultimately leading to both a higher identification rate as well as an elevated stringency. For example, if
one would use Andromeda + Percolator at a 1% FDR threshold, extended features will allow one to identify around 10,000 PSMs more
(described by the vertical dotted line). At the same time, these identifications will be much more stringent and confident as the underlying
confidence measures of these individual identifications will be much smaller (described by the shift to the left). FDR, false discovery rate.
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whereas the underlying peptides of the MaxQuant approach
are situated around the FDR threshold of 1% (panel B). The
MaxQuant-unique peptides thus rather not present the most
confident identifications and are classified as doubtful by the
Prosit-Percolator approach. The increase in identification rate
is therefore present on two levels: in absolute numbers of
identified proteins as well as by replacing doubtful MaxQuant
6 Mol Cell Proteomics (2021) 20 100076
identifications with more confident ones using Prosit-
Percolator. For the shared proteoforms (panels D-F), the
PEP distribution of the underlying peptides is generally situ-
ated at more stringent values for the Prosit-Percolator
approach than for the MaxQuant, further illustrating that also
on the protein level the additional PSM information leads at
the same time to more confidence.



FIG. 2. Comparison of the novel proteoform identification results (ribosome profiling setting). The new approach, using Prosit and
Andromeda features in Percolator rescoring, was compared with the conventional approach, using direct Andromeda results in MaxQuant
(without rescoring). A, Venn diagram showing the overlap in novel proteoforms found by both approaches. B, PEP scores of the peptides
confirming novel proteoforms, unique for the MaxQuant approach. C, PEP scores of the peptides confirming novel proteoforms, unique for the
Prosit-Percolator approach. D, PEP scores, as obtained from the MaxQuant approach, of the peptides for the shared novel proteoforms. Two
outliers were situated at the left side of the x-axis. E, analog to (D), but zoomed in on a specific range of the x-axis. F, PEP scores, as obtained
from the Prosit-Percolator approach, of the peptides for the shared novel proteoforms. PEP, posterior error probability.

Spectral Prediction Features in Proteogenomics
As done in our previous work for the conventional Max-
Quant approach (16), it is interesting to classify the novel
proteoforms based on the nature of their variation point.
However, this time, the proteomics results with the intensity-
based features were included. In Figure 3, the classification
of all novel proteoforms found with the new Prosit-Percolator
approach is presented. Around one-third of the novel pro-
teoforms occurs because of splicing events, whereas another
third because of translation in generally presumed noncoding
regions. Furthermore, events like N-terminal extensions, N-
terminal truncations, out-of-frame ORFs, upstream ORFs,
downstream ORFs, and single amino acid variations could be
validated with proteomics. In order to compare the novel
Prosit-Percolator approach with the conventional MaxQuant
approach, classification results were put next to each other in
supplemental Fig. S10. Remarkable classification result dif-
ferences between these two approaches are elaborated on in
the discussion section below.
Proteoform identification results were also analyzed for the

RNA-Seq setting (supplemental Fig. S11). The proteoform
overlap between MS2ReScore-Percolator and MaxQuant is
now smaller, though, which is expected asMaxQuant hasmore
problems because of the even larger database of RNA-Seq.
Therefore, MaxQuant misses a lot of the novel proteoforms
and, at the same time, MaxQuant also calls some doubtful
proteoforms, as can be seen based on the PEP distribution
Mol Cell Proteomics (2021) 20 100076 7



FIG. 3. Classification of the MS-validated proteoforms found with Percolator using extended Prosit features based on the ribosome
profiling search space. The proteoforms are classified based on the nature of their variation. For splice variants and proteoforms in previously
considered noncoding regions, more detailed classification categories are shown. More details about the different classification categories can
be found in supplemental Table S1.

Spectral Prediction Features in Proteogenomics
(Panel B). The PEP distributions of MS2ReScore-Percolator,
however, remain unaffected by the database size (Panel C).
Also, for the PEP distributions of the novel proteoforms that the
two approaches have in common, a negative effect of the
database size on the MaxQuant PEPs can be observed (Panel
D), whereas this effect is absent for MS2Rescore-Percolator
(Panel E). Taken together, the differences in the proteoform
identification rate between the RNA-Seq setting and the ribo-
some profiling setting can be accounted onto following two
causes. On the one hand, the RNA-Seq database is too vast for
MaxQuant to call all present novel proteoforms correctly.On the
other hand, the RNA-Seq database contains even more search
space information than the ribosome profiling database, lead-
ing to extra identifications with the MS2Rescore-Percolator
approach, as this new algorithm allows one to circumvent the
issues typically seen for comprehensive search spaces.
DISCUSSION

Over the last years, machine learning algorithms trans-
formed mass spectrometry–based proteomics research (18,
25, 28, 29). Conventional database search algorithms largely
base their scoring on the presence of specific fragment ions
but mostly ignore the signal intensities of these fragment ions
8 Mol Cell Proteomics (2021) 20 100076
(20, 21, 43–45). However, it was demonstrated that the
introduction of in silico predicted intensity information into the
search strategy improves the peptide identification rates
significantly (22–24). To use the full information of fragment
intensities, it was shown that the predictions of MS2PIP and
Prosit can be used to rescore PSMs in order to improve
confidence and peptide identification rates in standard pro-
teomic (29, 30). However, this was not yet applied in proteo-
genomics, a field that specifically encounters problems with
decreased confidence and peptide identification rates
because of enlarged search space sizes (1).
In order to demonstrate the applicability and the advantages

of these new machine learning–based PSM rescoring tech-
niques in proteogenomics, search spaces were constructed
that merge reference information from UniProt with novel
candidate protein information from sequencing techniques.
We previously demonstrated how ribosome profiling can help
in tempering this search space expansion while still providing
additional information from the translatome layer. In this way,
ribosome profiling allowed outlining enough novel proteoform
candidates without creating an overload of useless se-
quences. As such, proteoform candidates can still be vali-
dated confidently with conventional proteomic search
strategies afterward (16). For a first application of the novel
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rescoring techniques in proteogenomics, this ribosome
profiling–based search space provides a good opportunity to
check the yield on a moderately expanded search space. In
addition, a proteogenomic search space was also constructed
based on a nanopore RNA-Seq run. This resulted in a data-
base that is around 15 times bigger (based on amino acid
content) than the database obtained from ribosome profiling
(Table 1 and supplemental Fig. S1). In contrast to ribosome
profiling, RNA-Seq does not account which transcripts are
subjected to translation, neither does it allow selection of the
part of the transcript that leads to a protein. On top of that,
ORFs generated over three reading frames are presented in
the RNA-Seq database, while the triplet periodic signal in
ribosome profiling allows one to select for ORFs in the active
reading frame (46). Therefore, RNA-Seq databases contain all
possible ORFs that occur in every transcribed transcript and a
lot of these are in fact not translationally active. As we did not
apply additional filtering on the sequences and as all tran-
scripts with at least one read were retained, very lenient
thresholds were here applied on purpose. This results in an
even bigger search space as compared with previous RNA-
Seq–based proteogenomic studies (8, 38, 47–49), but as the
goal was here to test to which degree machine learning–based
rescoring techniques can compensate this effect, such an
expansion rate was actually what was being pursued.
In order to increase the peptide identification stringency,

machine learning–based rescoring techniques apply match-
ing scores that take into account the fragment intensity in-
formation of both spectrum predictions and experimental
spectra (29, 30). This information was often overlooked in
conventional matching strategies (21). Overfitting is very
unlikely to occur in this rescoring process as the training sets
of the applied spectrum predictors (25, 26, 50) are
completely unrelated to the data used in this study.
Furthermore, both spectrum predictors apply different regu-
larization techniques (cross-validation, early stopping (51),
dropout (52), inherently noisy data) to avoid overfitting (25,
26, 29). Percolator, which combines these features and tries
to maximize the discriminative power between true and false
PSMs, is also insusceptible for overfitting as it uses a cross-
validation strategy and, in addition, because it exploits
different features without focusing on certain types of
spectra (18). On top of that, using Percolator in combination
with one of both rescoring tools does not contribute to
additional overfitting as the two tools function as successive
steps that optimize different problems.
As shown in supplemental Figs. S4 and S5, the advantages

of incorporating machine learning–based scores are already
visible in the distributions of these scores. Compared with
canonical scores like the Andromeda score, these novel
intensity-based scores, such as Pearson correlation and
spectral angle, draw upon a broader information content as
they use not only the m/z values of fragment ions but also
their intensities. As such, another dimension (y-axis
representing the intensity) is added on top of the already
included m/z value (x-axis of the fragmentation spectrum).
This is reflected in the clearer separation of decoys and
positive target PSMs for the novel features. In Percolator, the
total information that can be learned from both novel and
conventional scores is maximized, and as almost literally
illustrated in the joint plots of supplemental Fig. S5, a
dimension of yet overlooked PSM information is as such
included.
Percolator on itself is already a powerful tool, which is

reflected in the data presented here. For example, in
Figure 1B and Table 1, Percolator identifies 175,775 PSMs
for the RNA-Seq search space based on a feature set that
only contains conventional scores from Andromeda using the
default 1% FDR threshold. MaxQuant also uses these same
Andromeda scores (37) but hardly identifies 91,232 PSMs for
the RNA-Seq database (Table 1). On top of that, it can be
seen that Percolator manages to do even a far better job
when the more informative intensity-based features are also
added to the feature set. This is visible in the distributions of
the Percolator scores (supplemental Fig. S6), where
intensity-based features allow a cleaner separation of posi-
tives and negatives, and in the PEP distributions
(supplemental Fig. S7), where the additional features enrich
more confident values. Furthermore, and important toward
better identification results, these extended feature sets allow
one to filter more stringently and with higher PSM identifi-
cation rates, as shown in the FDR and true-positive plots
(Fig. 1 and supplemental Fig. S8). It is even the case that
some false identifications (initially found in the baseline
search) get replaced with identifications that are more plau-
sible in the new step because extra information is added in
the postprocessing (supplemental Fig. S9). Taken together,
the advantages of the novel approach are thus dual. On the
one hand, features from spectral predictors elevate the
identification rate. On the other hand, the identification
stringency greatly improves as the positive identifications
can be called with much more certainty (Fig. 1). This dual
advantage is also illustrated on the level of novel proteo-
forms in Figure 2, where panels B and C describe the gain of
additional identifications, whereas panels E and F rather
describe the gain in stringency.
Performing PSM identification more stringently is definitely

a positive thing because as such, one can expect more
identifications to be truly positive. Moreover, there is always
a chance that a correct PSM is ranked lower than a false
PSM for a certain experimental spectrum because of a lack
of information when only m/z values are taken into account.
This is certainly the case for larger search spaces as the
more theoretical candidates are available, the higher the
likelihood that the best match for a specific experimental
spectrum is an incorrect one by random chance (1). Including
knowledge about intensities will thus help the correct PSM in
jumping over the false-positive PSMs in the ranking, making
Mol Cell Proteomics (2021) 20 100076 9
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it more likely that it will be the best scoring PSM for that
spectrum. It should be noted, though, that this jumping in the
ranking of PSMs per experimental spectrum is not imple-
mented in our algorithm yet. In this first application on pro-
teogenomics, we only rescored the best scoring PSM per
experimental spectrum. Rescoring multiple PSMs per spec-
trum would require one to thoroughly check how the decoy
and target distributions behave as the balance between the
number of positive and negative PSMs in the total distribu-
tion would shift completely when multiple matches per
spectrum are allowed. Nevertheless, it is an interesting future
implementation as it could prove to be useful for the pro-
teogenomic identification of additional novel proteoforms.
Other previous efforts have tried to incorporate predicted
spectra and their intensity information in the proteomic
search engine itself (53), rather than using this for rescoring
purposes. In that way, intensity information is already avail-
able when the best matching PSM for each experimental
spectrum is picked. Besides this, intensity predictions could
also help in resolving chimeric spectra (54).
Over all the results in this publication, the fairest comparison

between Prosit and MS2ReScore can be made based on the
FDR plots (Fig. 1A), as herein it is given how much the addi-
tional features yield in peptide identification rates and strin-
gency. It is clear that both tools perform equally well for the
purposes we wanted to compare and demonstrate in this
proteogenomic study.
The raw proteomic data that were used here (16) were ac-

quired in quite standard conditions (cell conditions, MS/MS
settings, fragmentation method, digestion, etc.). It would be
interesting, though, to check how the novel tools perform in
different sets of conditions.MS2PIP trains amodel for each new
condition set (fragmentationmethod, MS/MS analyzer, labeling
technique) (25, 26), whereas Prosit presents its training basis to
be more robust to changing conditions (29), mainly owing to its
deep learning architecture and its vast training dataset (31, 50).
Because of this, it can be expected that Prosit is able to predict
better inmore versatile conditionswithout any retraining. On the
other side,MS2PIP’smodel is less complex to use and does not
depend on graphical processing units, which makes it appli-
cable to a broader range of computational resources. For the
analysis of datasets digested with other enzymes than trypsin,
MS2PIP is for themoment nooption as it is currently only trained
on trypsin data (26). In the future, MS2PIP models for other
digestion enzymes will become available (internal communi-
cation). Prosit, however, showed to be able to transfer its
learning over different digestion enzymes (29).
In previous work (16), we demonstrated how the unique

hallmarks of ribosome profiling can be used to obtain a set of
novel proteoform candidates, which could subsequently be
validated using matching proteomics. The proof-of-concept
studies presented here show that machine learning–based
approaches can improve this proteomic validation of proteo-
form candidates tremendously. This was true not only on the
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level of PSMs and peptides (Fig. 1) but also on the protein
level (Fig. 2) as less good MaxQuant matches are removed
(Fig. 2B) and novel truthful identifications get over the filtering
threshold. On the protein level, Percolator on itself again
seems to have a share in this process. The additional features
of spectral predictors further increase the discriminative power
on the protein level as well.
With enhanced power and stringency, we are thus now

able to validate novel proteoforms on the proteomic level.
These novel proteoforms can be subdivided in different
categories, based on the nature of their variation, as shown
in Figure 3. The abundances of these different proteoform
categories in our novel Prosit-Percolator approach can be
compared with the abundances coming out of the conven-
tional approach using MaxQuant (16). This comparison is
given in supplemental Fig. S10. A few findings catch the eye
here. First, the number of proteoforms with N-terminal vari-
ation points (N-terminal truncations, extensions, and N-ter-
minal splice variants) was higher using MaxQuant. This has a
logical explanation, as at the time of our analysis, the latest
version of Prosit could not take into account peptides with
N-terminal acetylations. Of course, N-terminal variants are
mostly supported by N-terminal peptides and these generally
contain an acetylation at their N terminus. Second, the
“multiple variations” category decreases using Prosit-
Percolator. In the prior MaxQuant results, it is more likely
that one of the variation points of a proteoform with multiple
variations is actually false than that the variation point of a
proteoform with only one variation would be false. Therefore,
using the more stringent Prosit-Percolator approach will
rather eliminate false-positive proteoforms from the category
with multiple variations. And third, the novel Prosit-Percolator
approach results in more novel proteoforms from earlier
supposed noncoding regions, especially from pseudogenes.
It is known that pseudogenes could, especially in specific
cell conditions or differentiation states, still be expressed (55,
56). Owing to the increased confidence of using extended
PSM feature sets, the novel approach will be stronger in
finding proteomic evidence for eventual translation events in
pseudogenic regions. On top of that, this analysis is done in
a specific differentiation and disease state, namely, a colon
cancer cell line, which could explain extra translation in
pseudogenic regions. Besides that, analyses that used pre-
fractionation techniques in order to improve proteomic
identification stringency also identified an enrichment of
translation evidence in pseudogenes in the proteomics
search results (57). Enhanced search strategies altogether
could thus tend to enrich translation evidence from pseu-
dogenic regions in a similar way.
Next to analyses on ribosome profiling–based custom

search spaces, we tested our approach also in RNA-Seq–
based search spaces that are several times larger in size. With
conventional proteomics, this database size expansion would
imply severe problems for statistical validation, but we could
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demonstrate that most of these issues can be compensated
for by using spectral prediction features in combination with
Percolator. This makes the urge for custom search spaces
with manageable sizes less pressing. With these new tools in
place, statistically feasible proteogenomics could thus be
possible, not only with custom search spaces coming from
ribosome profiling, but also with search spaces from con-
ventional RNA-Seq analyses. This has some practical
advantages. Ribosome profiling requires a time- and
skill-intensive wet laboratory protocol (11, 46), and specialized
software is generally necessary to handle its valuable but
specific data hallmarks (58). RNA-Seq on the other hand has a
much easier library preparation protocol and is more acces-
sible and more routinely applicable for most laboratories. Also,
the computational pipeline for RNA-Seq contains in general
less steps and more tools are available as compared with
ribosome profiling (59). Therefore, these state-of-the-art pro-
teomic search strategies can make RNA-Seq–based proteo-
genomics possible and, as such, they can help in making
proteogenomics more accessible as an overall approach to
more laboratories. This could mean that, in the upcoming
years, increasingly more studies will decide to replace general
proteomic reference search spaces (e.g., UniProt) with
sample-specific custom search spaces based on sequencing
information. Of course, this could have significant effects on
the outcome of future studies as the reference dataset is said
to be far from complete (60–63).
Using RNA-Seq instead of ribosome profiling as the basis for

proteogenomics has also another big advantage. Ribosome
profiling is oriented toward the Illumina high-throughput
sequencing platform, mainly because of its extensive
sequencing depth, which allows detection of the ribosomal
profile in more detail (11). However, over the last years, the rise
and continuous further development of third-generation
sequencing techniques was observed (64). Third-generation
techniques as SMRT sequencing (65, 66) and nanopore
sequencing (67) pushed the upper read length boundary to a
whole new dimension. This switch to longer read lengths has
major advantages for detecting different transcript isoforms in
proteogenomics. Also, it allows an easier characterization of
novel splicing events and repetitive regions. Ribosome profiling
is not in an urge to make the step toward third-generation
sequencing, though, as the ribosome protected fragments are
anyway around 28 base pairs in length (68), short enough to be
comfortably measured with Illumina sequencing. Furthermore,
the third generation is just recently approaching the read ac-
curacy levels of Illumina sequencing (69). However, third-
generation sequencing offers additional advantages that
could be beneficial in proteogenomicworkflows. As such, third-
generation sequencing techniques do not require an amplifi-
cation step before sequencing, which avoids the presence of
PCR artefacts in the readout (32). Second, great efforts are
invested in minimal sample preparation, portable instrumenta-
tion, and lower library preparation times and costs, especially
for the nanopore sequencing technology (70, 71). And third,
third-generation sequencing allows the direct study ofmodified
bases in both DNA and RNA (32). As RNA-Seq–based proteo-
genomics can readily apply third-generation sequencing, as
shown in this study, all these additional advantages could be
built in into future proteogenomic workflows.
To conclude, we strongly believe that spectral predictors

and machine learning–based approaches will play a major
future role in computational proteogenomics. As demon-
strated in this study, these algorithms come to good use, in
particular to counter the statistical drawback of using over-
sized custom search spaces constructed out of matching
sequencing experiments. As these techniques find a more
common place in proteogenomics research, we believe that
ever more conclusions from the sequencing level can find
validation at the proteomic level, further nurturing the cross-
fertilization between these two important omics fields.
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